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SUMMARY

Great progress has been made in understanding gut microbiome’s products and their effects 

on health and disease. Less attention, however, has been given to the inputs that gut bacteria 

consume. Here we quantitatively examine inputs and outputs of the mouse gut microbiome, using 

isotope tracing. The main input to microbial carbohydrate fermentation is dietary fiber, and to 

branched-chain fatty acids and aromatic metabolites is dietary protein. In addition, circulating host 

lactate, 3-hydroxybutyrate and urea (but not glucose or amino acids) feed the gut microbiome. 

To determine nutrient preferences across bacteria, we traced into genus-specific bacterial protein 
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sequences. We find systematic differences in nutrient use: Most genera in the phylum Firmicutes 

prefer dietary protein, Bacteroides dietary fiber, and Akkermansia circulating host lactate. Such 

preferences correlate with microbiome composition changes in response to dietary modifications. 

Thus, diet shapes the microbiome by promoting the growth of bacteria that preferentially use the 

ingested nutrients.

Graphical Absctract

In Brief:

Isotope tracing into bacterial-specific protein sequences allows for a determination of nutrient 

preferences across gut microbes in vivo, and reveals how diet alters microbiome composition.

INTRODUCTION

The gut microbiome possesses an enormous diversity of enzymes, exceeding the number 

in mammals’ genomes by more than 100-fold (Qin et al., 2010). This enzymatic capacity 

enables the processing of incoming dietary nutrients into a broad spectrum of microbial 

metabolites. Some of these reach the host circulation at substantial concentrations (Lai 

et al., 2021; Quinn et al., 2020). Microbial metabolites can play important roles in host 

pathophysiology. For example, short-chain fatty acids (SCFAs; acetate, propionate, butyrate) 

(Dalile et al., 2019; Koh et al., 2016), trimethylamine N-oxide (Tang et al., 2013), secondary 

bile acids (Arab et al., 2017; Funabashi et al., 2020), indole-3-propionate (Wikoff et al., 

2009), and imidazole propionate (Koh et al., 2018) affect immune maturation (Campbell et 

al., 2020; Hang et al., 2019), insulin sensitivity (Koh et al., 2018), cancer growth (Garrett, 

2015; Yoshimoto et al., 2013), and cardiovascular disease (Nemet et al., 2020; Wang et al., 

2011).
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Both to replicate themselves and to release metabolic products, gut bacteria require nutrient 

inputs. These come in forms including ingested food, host-synthesized gut mucus (Desai et 

al., 2016; Sicard et al., 2017), and host circulating metabolites (Scheiman et al., 2019). The 

availability of dietary nutrients to gut microbiota depends on the extent of host absorption: 

nutrients that are absorbed in the small intestine, like starch, are not available to the colonic 

microbiome. In contrast, nutrients that are poorly digested in the upper gastrointestinal tract, 

like fiber, can be key microbiome feedstocks (Lund et al., 2021; Wong and Jenkins, 2007).

Isotope tracing enables quantitative measurement of the inputs to metabolites and biomass. 

Studies employing radioactive tracers defined the basics of mammalian metabolism (Wolfe, 

1984). Recent work has increasingly relied on stable isotope tracers coupled to mass 

spectrometry detection, which enables the measurement of labeling in specific downstream 

products (Fernández-García et al., 2020; McCabe and Previs, 2004). This approach has 

revealed fundamental features of host metabolism, such as circulating lactate being a major 

TCA fuel (Faubert et al., 2017; Hui et al., 2017). In addition, it has provided important 

insights into host-microbiome metabolic interplay. For example, it revealed that dietary 

fructose is processed by the microbiome into acetate, which fuels hepatic lipogenesis (Jang 

et al., 2018; Zhao et al., 2020).

In principle, stable isotope tracing coupled to mass spectrometry can also be applied 

to determine the metabolic inputs to specific microbes, based on measuring labeling in 

bacteria-specific peptide sequences (Berry et al., 2015; Holmes et al., 2017; Oberbach et al., 

2017; Reese et al., 2018; Zhang et al., 2016a, 2016b). By infusing nitrogen-labeled threonine 

to label host mucus, investigators were able to compare the contribution of dietary versus 

mucus protein to the gut microbiome and observed a shift towards more mucus contribution 

in mice fed a low-protein diet (Holmes et al., 2017).

Here, we perform large-scale, quantitative assessment of the metabolic inputs to the gut 

microbiome and its products. We examine the contributions from dietary starch, fiber, and 

protein, and from host mucus. We also examine most major circulating host nutrients, 

finding that lactate, 3-hydroxybutyrate, and urea stand out for passing from the host to 

the gut microbiome. Based on the measurement of bacteria-specific peptide sequences, we 

assess the nutrient preferences of different bacterial genera and show that these preferences 

align with microbiome composition changes in response to altered diet.

RESULTS

Microbiome consumes less digestible dietary components

A major mechanism by which the microbiome may impact host physiology is via secreted 

metabolic products. We measured, in the portal, systemic circulation and the cecal contents, 

the absolute concentrations of more than 50 metabolites characterized in the literature as 

microbiome-derived (Campbell et al., 2020; De Vadder et al., 2014; Han et al., 2021; Hang 

et al., 2019; Koh et al., 2018; Mager et al., 2020; Ridlon et al., 2014; Wikoff et al., 2009) 

(Figure S1A-B, Table 1, S1). Most were elevated in the portal circulation relative to systemic 

blood, and all but two (inosine and N-acetyl-tryptophan, which are apparently mainly host 

derived) were depleted by antibiotics treatment.
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The dominant excreted products on a molar basis (0.4 – 2 mM in the portal blood) are 

SCFAs. Other relatively abundant microbiome products (10 – 30 uM) are aromatic amino 

acid fermentation products (phenol, indoxyl sulfate, and 3-phenylpropionate) and branched-

chain fatty acids (valerate, isovalerate, 4-methylvalerate, isobutyrate, 2-methylbutyrate). 

Primary bile acids, while present in the portal circulation at up to ~ 10 uM concentration, 

are produced by the host and accordingly were not included in Table 1. Secondary bile acids, 

which are produced from primary bile acids by the microbiome, were lower in absolute 

concentration, the most abundant being tauroursodeoxycholic acid (3 uM in portal vein).

To probe the dietary inputs to gut microbial products, we began by feeding mice via oral 

gavage, starch (readily digestible glucose polymer) and inulin (slowly digestible fructose 

polymer, i.e., soluble fiber) (Figure S1C). Following 13C-starch gavage, labeled glucose, 

lactate, and alanine quickly appeared in the portal circulation and accounted for most starch 

carbons (~75%) (Figure S1D–F, S1G) (Jang et al., 2018). In contrast, after 13C-inulin 

gavage, substantial labeled fructose, glucose, lactate, and alanine were not observed, and 

instead labeled portal metabolites slowly appeared in the form of SCFAs, with ~ 40% of 

inulin carbons becoming SCFAs and the remainder being undigested and excreted in the 

feces (Figure S1E–F, S1H–I). Moreover, dietary inulin, but not starch, extensively labeled 

glycolytic and TCA intermediates and amino acids in the cecal content (Figure S1G).

We next carried out similar experiments, comparing the gavage of a free amino acid 

mixture to algal protein, both uniformly 13C-labeled (Figure S1C). The free amino acids 

resulted in the rapid appearance of labeled amino acids in portal circulation (Figure S1J–

L), while the algal protein substantially labeled amino acids within the cecal contents 

(Figure S1M). Moreover, the algal protein copiously labeled microbiome-derived portal vein 

metabolites: SCFAs, branched-chain fatty acids, and aromatics (indole, indole-3-propionate, 

3-phenylpropionate) (Figure S1K–L). Thus, poorly digestible carbohydrates and protein feed 

the microbiome directly, and the host indirectly via microbiome-derived products.

Few circulating metabolites reach the microbiome

Next, we examined the possibility that nutrients in host circulation feed the gut microbiota. 

We infused deuterated water and eighteen major circulating nutrients (13C-labeled) into 

the systemic circulation of pre-catheterized mice (Figure 1A). The infusion rates were 

selected to achieve modest but readily measurable labeling without substantially perturbing 

circulating concentrations. Circulating labeling reached a steady state by 2.5 h, at which 

time we collected serum and feces to quantitate the carbon contributions of each circulating 

nutrient to the corresponding fecal metabolites. Upon intravenous infusion of 13C-lactate, 

fecal lactate labeled rapidly (Figure 1B). Most infused circulating nutrients, however, did 

not penetrate the feces (Figure 1C–D). Indeed, while water fully exchanged with the feces, 

among abundant circulating carbon carriers, only lactate and 3-hydroxybutyrate penetrated. 

Glucose, amino acids, TCA intermediates and fatty acids did not. Both lactate and 3-

hydroxybutyrate are substrates of monocarboxylate transporters (MCTs), which are highly 

expressed in the colonic epithelium (Halestrap and Price, 1999, p. 1). Pharmacological MCT 

inhibition prevented lactate from penetrating the feces (Figure 1E). Thus, in contrast to most 
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host circulating metabolites, which do not reach the colonic microbiome, monocarboxylic 

transporters render circulating lactate and 3-hydroxybutyrate accessible to gut microbes.

Circulating urea is a microbiome nitrogen source

In addition to carbon, nitrogen is a fundamental constituent of all living cells. To assess 

nitrogen sources of the gut microbiome, we infused twelve abundant circulating nutrients 

in 15N-labeled form. Nitrogen from circulating urea and ammonia, but not amino acids, 

penetrates the feces and contributes to microbiome amino acids and ammonia (Figure 1F, 

S2A–B). Urea usage by the microbiome involves its re-conversion to ammonia via the 

enzyme urease, which is expressed by a subset of gut microbes (Mora and Arioli, 2014; Ni 

et al., 2017), and gnotobiotic mice colonized intentionally with only urease-negative bacteria 

showed no labeling from urea (Figure S2C-D).

Urea, which is made from ammonia in the liver, was a quantitatively greater source of 

microbiome nitrogen than ammonia. Moreover, urea but not ammonia was more abundant 

in the host circulation than cecal lumen, consistent with only urea being able to passively 

flow into the gut lumen (Figure S2E–F). We hypothesized that circulating host ammonia 

might be feeding the microbiome mainly indirectly, after being converted by the host liver 

into circulating urea (Figure S2G) (Bartman et al., 2021). This indirect contribution was 

calculated by multiplying circulating urea’s contribution to fecal amino acids (LAAs←urea) 

by the circulating urea fraction that comes from circulating ammonia (Lurea NH3 = 33%). 

It fully explained the observed microbiome labeling from circulating ammonia (Figure 

S2H). Further supporting the indirect pathway, antibiotics treatment blocked both circulating 

urea and ammonia from becoming cecal ammonia (Figure S2I–J), which makes sense if flux 

of ammonia into the cecal contents goes through host urea and microbial urease (Figure 

S2K).

Microbiota synthesize amino acids from fiber and urea

To determine quantitatively the sources of microbiome metabolites, we measured their 

labeling after ad libitum feeding of isotopically enriched food. To this end, we fed mice 

standard chow with a portion of the fiber, fat, or protein 13C-labeled, with cecal labeling 

reaching steady-state within 12 h (Figure S3A). To account for circulating nutrient inputs, 

we also infused 13C-lactate or 3-hydroxybutyrate (Figure 2A). These studies identified a 

majority of the carbon feeding into most microbiome central metabolites, with glycolytic 

and pentose phosphate metabolites labeling almost exclusively coming from dietary fiber 

(inulin), while pyruvate and TCA metabolites are also labeled from dietary protein and 

circulating lactate (Figure 2B and S4A).

We next examined inputs to microbiome free amino acids, tracing also with 15N-labeled 

dietary protein and infused urea. Unlike mammals, most gut bacteria have the biosynthetic 

capacity to make all 20 proteogenic amino acids. Nevertheless, we observed that “essential 

amino acids,” which cannot be made by mammals and require the expression of extensive 

biosynthetic pathways in bacteria, are derived mainly from dietary proteins (Figure 2C). In 

contrast, “non-essential amino acids” are primarily synthesized within the gut microbiome, 

using dietary inulin and circulating lactate as carbon sources. Microbiota depletion with 
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antibiotics or in germ-free mice favored cecal accumulation of those amino acids coming 

(based on our isotope tracing studies) largely from dietary protein, and depletion of those 

being synthesized by the microbes (Figure S3B–G).

Dietary protein was the main nitrogen source for both essential and non-essential amino 

acids, with host urea also contributing substantially to the non-essential amino acids (Figure 

2D). Dietary protein provides nitrogen to cecal amino acids mainly directly, not through 

circulating urea (Figure S3H–I). Consistent with the gut microbiome synthesizing amino 

acids from fiber carbon and urea nitrogen, across amino acids, urea’s nitrogen contribution 

correlated with inulin’s carbon contribution (Figure 2E).

Amino acid labeling from inulin was typically partial (i.e., one or a few of the amino acid’s 

carbons atoms were labeled), reflecting inulin’s carbons being scrambled with other inputs 

into central metabolism (Figure S3J). In contrast, labeling from 13C, 15N-proteins were 

typically complete (or complete except for the nitrogen label, Figure S3K), indicating direct 

usage of intact amino acids after proteolysis (sometimes after a cycle of deamination and 

re-amination). Consistent with such re-amination, the combination of 15N-urea infusion and 
13C-protein feeding produced some double-labeled (13C,15N-labeled) amino acids (Figure 

S3L).

Lastly, the amino acids synthesized by the microbiome, stay in the microbiome: We do not 

observe discernible labeling of these amino acids in the host (Figure S3M). Taken together, 

we found that: (i) essential amino acids, although capable of being synthesized by the 

microbiome, come mainly from the diet and do not go through any carbon rearrangements, 

(ii) the most closely TCA-linked non-essential amino acids are substantially synthesized by 

the microbiome using carbon from fiber scrambled with other carbon via central metabolic 

reactions, and (iii) transamination reactions partially mix nitrogen from diet-derived amino 

acids with nitrogen from host urea.

Diverse microbiome products come from dietary protein

We next examined the carbon inputs to the other major microbiome products, especially the 

ones excreted into the portal circulation (Table 1). As expected, SCFAs, the most abundant 

microbial metabolites, come mainly from dietary fiber. Many less abundant ones, however, 

are mainly derived from dietary protein (Table 1).

In addition to classical microbiome products, we also observed metabolites that are made 

in a collaborative manner, with the host carrying out the final synthesis using microbiome-

derived inputs. For example, a wide range of microbiome-derived carboxylic acids are 

conjugated to glycine in the liver and the kidneys to make different acyl-glycines (Figure 

S4B–E) (Wikoff et al., 2009).

We also examined the host clearance mechanisms of microbiome metabolites, based on 

arterial-venous gradients across the liver and kidney and levels in the urine. SCFAs and 

branched-chain fatty acids were avidly consumed by the liver. Most microbiome-derived 

metabolites were excreted by the kidney into the urine, with the notable exception of SCFAs, 

which are actively reabsorbed (Table S1A) (Jang et al., 2019; Ullrich et al., 1982). Thus, we 
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establish dietary protein as a major precursor to many microbiome metabolites and identify 

host-microbiome interplay in the metabolism of SCFAs, including their renal reabsorption 

and use by liver and kidney for the synthesis of acyl-glycines.

Circulating levels of microbiota metabolites are controlled by protein digestibility

We found that many microbiome-derived metabolites are derived from unabsorbed dietary 

protein that reaches the colon. We hypothesized that the circulating levels of such 

metabolites would depend on the extent of dietary protein reaching the colon microbiome. 

To manipulate this, we fed mice diets in which a portion of the protein (casein, which 

in part reaches the colonic microbiome) was replaced with free amino acids (which are 

essentially fully absorbed in the small intestine) (Figure 3A). After 2 weeks, we performed 

metabolomics on the systemic blood. As expected, diets with less intact protein and more 

free amino acids tended to increase circulating amino acid levels (Figure 3B). Importantly, 

protein-derived circulating microbial metabolites (phenols, indoles, and acyl-glycines) fell in 

tandem (Figure 3C–I). Thus, knowledge of the nutrient sources of microbiome metabolites 

can be applied to manipulate their systemic levels.

Gut bacterial growth is synchronized with host feeding

Thus far, we have reported inputs and outputs of the gut microbiome as a whole. We now 

shift to examining the growth and metabolism of specific bacterial genera. To this end, 

we deployed proteomics to measure gut microbial peptides and their labeling, focusing on 

peptide sequences specific to a single bacterial genus (Figure 4A).

To quantify protein synthesis in different gut microbial genera, we used deuterated water 

(D2O) tracing (Holmes et al., 2015; O’Brien et al., 2020). To achieve steady-state labeling of 

body water, we gave mice D2O by bolus injection followed by mixing it into drinking water. 

Peptide labeling in the cecal contents was then measured by proteomics (Figure 4B).

A key technical challenge in using proteomics to read out metabolic activity is the 

complexity, arising from natural isotope abundances, of peptide mass spectra. We used 

liquid chromatography-high resolution mass spectrometry to obtain the full scan (MS1) 

mass isotope distribution for each peptide of interest, with MS/MS analysis of the unlabeled 

form used to determine the peptide’s identity. We then calculated, based on the mass 

isotope distribution, the fraction of peptide that was newly synthesized (θ). To this end, 

first, we calculated the mass isotope distribution of unlabeled peptides based on natural 

isotope abundances (“old”). Second, we calculated the expected mass isotope distribution 

of a newly-synthesized peptide generated from cecal free amino acids, whose labeling we 

experimentally measured by metabolomics. Then, we determined the fraction of newly 

synthesized (θ) by linear interpolation between the “old” and “newly synthesized” spectra 

(Figure 4C). To verify this approach in vitro, we cultured Clostridium sporogenes and 

Bacteroides dorei in media enriched with D2O and measured growth rate as is typically done 

(based on OD600) and as above (using media in place of cecal amino acid labeling), finding 

good agreement (Figure S5A–C).

We then measured the newly synthesized fraction (θ) for a minimum of 5 peptides for each 

bacterial genus in vivo, with abundant gut bacteria yielding θ for over 100 characteristic 
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peptides. Irrespective of their intracellular location, different peptides from the same 

bacterial genus tended to label at a similar rate (Figure 4D, S5D–E). Labeling rate varied 

across bacterial genera, with a half doubling time ranging from 2.5 h for Akkermansia to 8 h 

for Lactobacillus, which still markedly exceeded the labeling rate of host intestinal proteins 

(> 24 h half doubling time) (Figure 4E–F, Figure S5F).

Our prior analyses revealed that the microbiome is fed substantially by dietary components. 

Accordingly, we hypothesized that microbial growth synchronizes with physiological 

feeding, which in mice occurs mainly during the nighttime. To assess the diurnal rhythm of 

gut bacterial protein synthesis, mice were given D2O for 6 h intervals throughout the diurnal 

cycle, followed by proteomic analysis of their cecal contents. Every measured bacterial 

genus showed greater protein synthesis during nighttime than daytime (Figure 4G). Thus, 

gut bacteria grow in sync with the physiological feeding patterns of the host.

Preferred carbon sources differ across gut bacteria

Next, we quantitated the carbon feedstocks of different microbes, by combining 13C-nutrient 

labeling and proteomics. Each 13C-labeled nutrient (dietary inulin, dietary algal protein, or 

circulating lactate) was provided for 24 hours, which is sufficient to achieve steady-state 

labeling in the gut bacteria. Our analysis strategy involved two steps: first, we calculated, 

based on each genus-specific peptide’s observed mass isotope distribution, its relative 13C-

enrichment (γ) compared to that of cecal free amino acids (Figure 5A). Mathematically, 

this calculation is identical to the calculation of θ in the D2O case, except here, the tracer 

is a particular 13C-labeled nutrient, which unlike D2O is used preferentially by certain 

bacterial genera. The observed peptide’s relative 13C-enrichment multiplied by the average 

contribution of that 13C-tracer to the gut microbial amino acids pool (LAA_avg←nutrient) gives 

a quantitative measure of the tracer’s contribution to the observed genus-specific peptide. 

Averaging across such peptides gives a fractional contribution of the 13C-labeled nutrient to 

protein synthesis in a bacterial genus.

Using this method, we measured feedstocks of the bacterial genera that were detected in 

every proteomics experiment. We were also able to make species-specific measurements 

in some cases (Figure S6A–F). We observed marked differences in nutrient preferences 

across microbiota. For example, Bacteroides and Clostridium use over four-fold more inulin 

than Akkermansia, Muribaculum, or Alistipes (Figure 5B, S6A). Overall, bacteria from the 

phylum Firmicutes, used more dietary protein than did Bacteroidetes (Firmicutes 0.237 ± 

0.052; Bacteroidetes 0.175 ± 0.031, p = 0.02). Akkermansia, which is generally considered 

a health-promoting gut microbe, used among the least dietary inulin and protein (Figure 

5B–C, S6A–B). In contrast, it used by far the most circulating lactate from the host (Figure 

5D, S6C).

We were curious whether these bacterial nutrient preferences predict microbiome 

composition changes upon dietary changes. To explore this possibility, we fed mice an 

inulin-enriched or algal protein-enriched diet for two days and measured microbiome 

composition by 16S rRNA gene amplicon sequencing. Bacteroides, the top consumer of 
13C-inulin, increased by 4-fold after high inulin diet (Figure 5E–G). Clostridium, another 

high inulin consumer, also increased by 2-fold. Other genera that use less inulin carbon 
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were either unchanged or slightly decreased. Similar consistency between microbes’ nutrient 

preference and abundance changes was observed in mice fed the algal protein-enriched 

diet (Figure 5H–J). Carbon-source preference measured by proteomics (fgenus←nutrient) 

correlates with abundance change following a diet shift measured by 16S rRNA gene 

amplicon sequencing, for both the inulin and algal protein conditions (Figure 5G, J). Thus, 

the nutrient preferences of different gut bacteria help explain microbiome compositional 

changes following dietary manipulations (David et al., 2014).

Firmicutes consume dietary protein while Bacteroidetes consume secreted host protein

Lastly, we turned to the nitrogen source preferences of different gut bacteria, comparing 
15N-labeled dietary protein feeding to 15N-urea infusion. The analytical approach was 

identical to that employed above for carbon source preferences. Bacterial genera that highly 

use carbon from dietary protein also highly use nitrogen from dietary protein, consistent 

with amino acids from dietary protein being assimilated intact in bacterial proteomes (Figure 

6A, S6D, S6G).

Conversely, among members of the phylum Firmicutes, genera preferring urea nitrogen 

tended to be avid inulin users, i.e., to synthesize their own amino acids using inulin and 

urea (Figure 6B, S6E, S6H). This includes some urease-negative genera, which presumably 

acquire urea nitrogen via cross-feeding. Moreover, again among Firmicutes, we also saw the 

expected trade-off where some genera prefer nitrogen from dietary protein, and others from 

circulating urea (Figure S6I). Following intravenous urea infusions to raise circulating urea 

concentrations, abundance of those Firmicutes preferring urea, along with Akkermansia, 

increased substantially (Figure 6C–F).

Compared to Firmicutes, the lower use of both dietary protein and circulating urea 

nitrogen by Bacteroidetes raised a key question: How do Bacteroidetes get nitrogen? 

Some members of gut microbiome (e.g. Bacteroides and Akkermansia) are capable of 

digesting host secreted proteins such as mucins (Berry et al., 2013; Reese et al., 2018). 

We hypothesized that host secreted proteins are a key source of Bacteroidetes nitrogen. To 

probe this possibility, we performed long-term 15N-labeled lysine and arginine infusions 

(12, 18, 36 h) to label host proteins in the colon (Figure 6G and Figure S7A–E). Despite 

not directly feeding the microbiome (Figure 1F, S7E), lysine and arginine did contribute 

after 36-h infusion, consistent with the labeling occurring via host proteins. Such labeling 

occurred preferentially in Bacteroidetes and Akkermansia (Figure 6H, S6F). The nitrogen 

contributions from dietary and secreted host proteins were anti-correlated, consistent with 

some gut bacteria preferentially consuming dietary protein, and others host protein (Figure 

6I). Bacterial genera with a greater preference for dietary protein, whose availability 

depends on host feeding, grow more differently between daytime and nighttime (Figure 

S6J–K). Thus, dietary proteins and circulating urea are the major nitrogen feedstock of 

Firmicutes, while secreted host proteins provide nitrogen to Bacteroidetes.

DISCUSSION

As for most microbial communities, the composition of the gut microbiome is shaped 

by nutrient availability. Here we developed quantitative isotope tracing approaches to 
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measure the nutrient preferences of gut bacteria. In addition to dietary fiber and secreted 

host proteins, we establish dietary protein and circulating host lactate, 3-hydroxybutyrate, 

and urea as important nutrients feeding gut bacteria. Importantly, we rule out direct 

contributions from other circulating host nutrients, like glucose and amino acids, to the 

colonic microbiome.

A key technical achievement is enabling tracing from different carbon and nitrogen 

sources into bacteria-specific peptides, thereby revealing the nutrient preferences of 

different bacteria within the complex and competitive gut lumen environment. We find that 

Firmicutes and Bacteroidetes differ systematically in their utilization of host secreted protein 

versus dietary protein: Firmicutes tend to acquire amino acids from dietary protein, while 

Bacteroidetes rely more on secreted host protein (Figure 6J). This may relate to different 

localization of bacteria within the colon, either in terms of central versus peripheral (closer 

to host mucus) or distal versus proximal (closer to incoming food remnants) (Albenberg et 

al., 2014; Li et al., 2015; Yasuda et al., 2015).

Within these two major families of gut bacteria, we found marked disparities in the use of 

dietary fiber as a carbon source. The most abundant Bacteroidetes’ genus is Bacteroides, and 

it was the most avid assimilator of fiber (inulin). In contrast, other types of bacteria in the 

same phylum hardly consumed inulin. Likewise, some Firmicutes like Clostridium avidly 

used fiber, while others did not. Strikingly, feeding a fiber-enriched diet led to an increased 

abundance of Bacteroides and Clostridium, the precise genera that most actively assimilate 

fiber based on isotope tracing.

A similar trend was observed in the case of dietary supplementation with algal protein: 

Firmicutes, which actively use such protein, tended to increase in abundance. Algal protein 

(the only type commercially available in bulk in 13C-labeled form) may be particularly 

hard for mammals to digest. This is reflected in the limited appearance of 13C-labeled 

amino acids from algal protein in the portal circulation, and instead extensive passage 

from the intestine into the colon. This influx of dietary protein to the microbiome was a 

major contributor to secreted microbiome metabolites: As shown by replacing intact dietary 

protein with more absorbable (and thus less microbiome-accessible) free amino acids, the 

production and hence systemic concentration of these products depends on dietary protein 

reaching the colonic microbiome. An important future question is whether the nature of 

dietary protein (e.g. plant or animal-based) impacts passage through the small intestine to 

the colonic microbiome and thereby shapes microbiome composition or metabolite secretion 

(Madsen et al., 2017; Wali et al., 2021).

Host circulating metabolite levels may also impact microbiome nutrient access and 

ultimately composition. Here we show such effects are likely limited to the few host 

metabolites that meaningfully penetrate the microbiome: urea, 3-hydroxybutyrate, and 

lactate. Among them, lactate was recently shown to feed the gut microbiome in human 

marathon runners (Scheiman et al., 2019). Among gut bacteria, Akkermansia most avidly 

use circulating lactate. Akkermansia are mucin degraders, and their proximity to the gut 

epithelial wall may augment their access to lactate from the host circulation. Akkermansia 
are more abundant in athletes, and exercise increases their levels in mice and human (Liu 
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et al., 2017; Munukka et al., 2018). A possible mechanism involves increased circulating 

lactate levels following exercise directly feeding Akkermansia. Whether lactate induced 

Akkermansia growth in part mediates beneficial effects of exercise is an important open 

question. Consistent with their urea preferences measured by isotope tracing, Akkermansia 
and certain genera within Firmicutes (e.g., Roseburia, Butyricoccus, Ruminococcus) also 

increase in abundance upon experimental elevation of circulating host urea.

Ultimately, manipulating the microbiome requires understanding which nutrients different 

bacteria consume, and how such consumption impacts microbiome composition and product 

secretion. Through isotope tracing, including proteomic measurements that offer bacterial 

genus specificity, we provide foundational knowledge about which nutrients feed the gut 

microbiome, and which bacteria prefer which nutrients. The methodologies developed here 

are poised for broader application, to eventually contribute to the holistic and quantitative 

understanding of the diet-microbiome-health connection.

LIMITATIONS OF THE STUDY

Our investigation focuses solely on healthy mice fed standard chow (in some cases with 

specific fiber or protein supplements). Measurements of microbiome feedstocks are limited 

to isotope tracing and mass spectrometry. Feedstocks of different bacteria are determined 

based on the isotopic signatures of bacteria-specific peptides. Peptide identification 

involves a 2% false discovery rate. Taxonomic assignment is based on bacterial proteome 

sequences available on Uniprot (Gurdeep Singh et al., 2019). Orthogonal approaches, which 

could provide measurement validation or complementary information, such as fluorescent-

activated cell sorting of bacteria, were not explored (Batani et al., 2019). In most cases, 

taxonomic assignment was limited to the genus level, due to lack of sufficient specificity of 

the detected peptide sequences. In the future, improved sensitivity may enable species- or 

strain-specific peptide sequence measurements.

STAR*METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Professor Joshua D. Rabinowitz 

(joshr@princeton.edu).

Materials Availability—This study did not generate new unique regents or new mouse 

lines.

Data and Code Availability—The proteomics datasets generated during this study are 

deposited in PRIDE: PXD031015. The isotope tracing data are included in Table S2. The 

taxonomic assignment of the detected tryptic peptides in the study are included in Table S3. 

Composition of the diet used in the study are included in Table S4. The 16S rRNA gene 

amplicon sequencing datasets generated during this study are available in Table S5. The 

code for peptide enrichment calculations generated during this study is available at GitHub: 
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(https://github.com/xxing9703/pepMID_simul). Any additional information required to re-

analyze the data reported in this work is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse studies.—Mouse studies followed protocols approved by the Princeton University 

Animal Care and Use Committee. Unless otherwise indicated, 7–9-week-old male C57BL/

6NCrl mice (strain 027; Charles River Laboratories) were group-housed on a normal light-

dark cycle (8:00–20:00) with free access to water and chow.

Bacterial culture studies.—B. dorei, C. sporogenes, E. coli, S. aureus and L. reuteri 
glycerol stocks were brought into an anerobic chamber (70% N2, 25% CO2, 5% H2) and 

grown in liquid media: L. reuteri was grown on MRS (MRS Broth, Sigma); E. coli was 

grown on LB (Luria Broth, Sigma); S.aureus was grown in TSB (Tryptic Soy Broth, Bacto) 

and C. sporogenes and B. dorei were grown in GAM (GAM Broth Modified, HyServe).

METHOD DETAILS

Mouse gavage and nutrient feeding.—For the 13C-nutrient gavage experiments, mice 

were fasted at 9 am and received a 1:2:4 mixture of inulin, protein/amino acids, and starch 

(0.5 g kg−1 inulin, 1 g kg−1 protein/amino acids 2g kg−1 starch dissolved in water) at 3 pm 

via oral gavage with a plastic feeding tube (Instech Laboratories). Food was given back at 8 

pm.

For the mouse experiments involving labeled nutrient feeding, the labeled diet was 

prepared by adding 13C/15N-nutrients to a diet mixture premix (modified from normal 

diet with reduced protein, inulin, and starch content, Research diets Inc, D20030303). 

The final enrichment for each labeled dietary nutrient was 10% - 25% (with observed 

labeling corrected by dividing by the fraction dietary nutrient labeled). The contribution 

of each dietary nutrient to metabolites is calculated by the metabolite labeling enrichment 

normalized to the final enrichment of each labeled dietary nutrient. All diets shared the same 

final macronutrient composition (40% starch, 20% protein or amino acids, 7.5% inulin and 

2.5% cellulose). Mice were first adapted to a non-labeled diet (of identical composition to 

the subsequent labeled diet) for 10 days, and then fed labeled diet for 24 h prior to sacrifice.

For the deuterium water drinking experiment, mice were administered a bolus 

intraperitoneal injected of D2O (1.26 % w/w relative to body weight), followed by having ad 

lib access to 3% D2O drinking water.

For the protein and amino acids diet feeding experiment, mice were fed on casein or 

compositional matched amino acids diet (20% casein, 13% casein + 7% amino acids, 7% 

casein +13% amino acids, and 20% amino acids as protein/amino acids sources, Table S4) 

for 2 weeks. Serum was sampled by tail-bleed at 9 am ad lib.

Intravenous infusions.—To quantify contribution of circulating nutrients to microbiota 

metabolism, 9–11-week-old C57BL/6 mice were catheterized in house in the right jugular 

vein. The mice were infused with carbon or nitrogen-labeled tracer starting at 3:30 pm 

without any fasting. Infusion rate was 0.1 ul/min/g. Infusion solutions are described in Table 
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S2A. Overnight (24 h) infusions both started and finished around 9 am. The contribution of 

circulating nutrient to each metabolite is calculated by the metabolite labeling enrichment 

normalized to the average tracer serum enrichment throughout 24 hr.

Antibiotics treatment.—To deplete the mouse resident microbiome, an antibiotic 

drinking water protocol was used. In brief, mice were treated with a cocktail of antibiotics 

(1 g/L ampicillin, 1 g/L neomycin, 1 g/L metronidazole, and 1 g/L vancomycin) in both 

their drinking water 14 days. To make the drinking water more palatable, 5% aspartame 

was added. The effectiveness of antibiotics treatments was verified by observing much lower 

SCFAs in the feces by LC-MS.

Sample collection.—Systemic blood samples (~6 μl) were collected by tail bleeding. For 

sampling from tissue-specific draining veins, a mouse was put under anesthesia and different 

tissue veins were exposed, and blood samples were pulled with an insulin syringe (BD 

insulin syringes, # SY8290328291) insertion into the vein. Successful isolation of portal 

vein was confirmed by much higher (> 10x) concentrations of SCFAs and secondary bile 

acids (deoxycholic acid and lithocholic acid) than systemic vein; hepatic vein was confirmed 

by much lower secondary bile acids, SCFAs and higher glucose, 3-hydroxybutyrate levels 

compared to portal vein. Mouse urine was collected from the urinary bladder using a 

syringe. All serum samples were placed on ice without anticoagulant for 15 min, and 

centrifuged at 16,000 × g for 15 min at 4 C.

Tissues were harvested by quick dissection and snap freezing (<5 sec) in liquid nitrogen 

with a pre-cooled Wollenberger clamp; intestinal contents were removed before clamping. 

For cecal content sampling, the mouse cecum was first removed and cut on the surface, then 

the cecal content was squeezed out using a tweezer followed by freeze clamping. Whole 

liver, intestine, and intestinal contents were collected and grounded to homogenous powder. 

To sample fresh feces, the mouse belly was gently massaged to induce defecation and fresh 

feces were freeze clamped. For long-term feces collection, a mouse was transferred to a new 

cage and mouse fecal pellets on the bedding were collected every 1~2 h and freeze clamped. 

Serum, tissue, and feces samples were kept at −80 °C until further analysis.

16S rRNA gene amplicon sequencing and analysis.—Extraction of Bacterial DNA 

from cecal or fecal samples was performed using the Power Soil DNA Isolation kit 

(QIAGEN). A section of the 16S rRNA gene (~250 bp, V4 region) was amplified, and 

Illumina sequencing libraries were prepared from these amplicons according to a previously 

published protocol and primers (Caporaso et al., 2012). Libraries were further pooled 

together at equal molar ratios and sequenced on an Illumina HiSeq 2500 Rapid Flowcell 

or MiSeq as paired-end reads. These reads were 2×150 bp with an average depth of ~20,000 

reads. Also included were 8 bp index reads, following the manufacturer’s protocol (Illumina, 

USA). Pass-Filter reads were generated from raw sequencing reads using Illumina HiSeq 

Control Software. Samples were de-multiplexed using the index reads. The DADA2 plugin 

within QIIME2 version 2018.6 was used to inferred Amplicon sequencing variants (ASVs) 

from the unmerged paired-end sequences (Bolyen et al., 2019; Callahan et al., 2016). The 

forward reads were trimmed at 150 bp and the reverse reads trimmed at 140 bp, with all 

other DADA2 as default. Taxonomy was assigned to the resulting ASVs with a naïve Bayes 
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classifier trained on the Greengenes database version 13.8, with only the target region of the 

16S rRNA gene used to train the classifier (Bokulich et al., 2018; McDonald et al., 2012). 

Downstream analyses were performed MATLAB (Hunter, 2007; McKinney, 2010).

Bacterial culture studies.—For the D2O experiment, 250 – 1000 μl D2O was added 

into the media (5–10 mL, to reach a final enrichment of 5–10%) with either B. dorei 
or C. sporogenes, and OD600 was recorded at the addition. After every 25–30 min, 

OD600 was recorded and 100–200 μl bacterial solution was taken for metabolomics and 

proteomics analysis. The newly synthesized fraction of bacteria was calculated by (OD600 – 

OD600, 0min)/OD600.

Bacterial colonization in mice.—Mice were treated with antibiotics in drinking water 

for 10 days. On day 11, no antibiotics were administered, and mice were gavaged with 

250 μl of bacterial consortia consisting of urease-negative bacteria (B. dorei, C. sporogenes 
and E. coli) or a combination of urease-negative and urease-positive bacteria (B. dorei, C. 
sporogenes, E. coli, S. aureus and L. reuteri).

Metabolite extraction.—For serum samples, 3 ul serum was added to 90 ul methanol and 

incubated on ice for 10 min, followed by centrifugation at 17,000 × g for 10 min at 4°C. 

The supernatant was transferred to an MS vial until further analysis. For tissues and feces 

samples, frozen samples were first ground at liquid nitrogen temperature with a cryomill 

(Restch, Newtown, PA). The resulting tissue powder was extracted with 40:40:20 methanol: 

acetonitrile: water (40 ul extraction solvent per 1 mg tissue) for 10 min on ice, followed by 

centrifugation at 17,000 × g for 10 min, the supernatant was transferred to a MS vial until 

further analysis.

Measurements of metabolites, protein, and polysaccharides.—To measure 

metabolites in serum, tissue and feces samples, a quadrupole orbitrap mass spectrometer 

(Q Exactive; Thermo Fisher Scientific) was coupled to a Vanquish UHPLC system (Thermo 

Fisher Scientific) with electrospray ionization and scan range m/z from 60 to 1000 at 1 

Hz, with a 140,000 resolution. LC separation was performed on an XBridge BEH Amide 

column (2.1×150 mm, 2.5 μm particle size, 130 Å pore size; Waters Corporation) using a 

gradient of solvent A (95:5 water: acetonitrile with 20 mM of ammonium acetate and 20 

mM of ammonium hydroxide, pH 9.45) and solvent B (acetonitrile). Flow rate was 150 

μl/min. The LC gradient was: 0 min, 85% B; 2 min, 85% B; 3 min, 80% B; 5 min, 80% 

B; 6 min, 75% B; 7 min, 75% B; 8 min, 70% B; 9 min, 70% B; 10 min, 50% B; 12 min, 

50% B; 13 min, 25% B; 16 min, 25% B; 18 min, 0% B; 23 min, 0% B; 24 min, 85% B; 

and 30 min, 85% B. Injection volume was 5–10 μl and autosampler temperature was set at 

4°C. For cysteine measurement, samples were derivatized before measurement as follows: 

Serum, cecal content or feces samples were extracted and centrifuged. To the supernatant, 

2 mM N-ethylmaleimide was added and incubated at room temperature for 20 min. The 

resulting mixture was transferred to a MS vial. Derivatized cysteine has a m/z at 245.06015 

in negative mode.

To quantify the metabolite concentration in serum and tissue samples, either isotope 

spike-in or standard spike-in was performed. For isotope spike-in, known concentrations 
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of isotope-labeled standard were added to the serum or tissues extraction solution, then 

the concentration was calculated by the ratio of labeled and unlabeled metabolites. When 

isotope standard is not available, a serially diluted non-labeled standard was added, and a 

linear fitting between measured total ion count and added concentration of standard was 

generated. Then, the concentration of endogenous metabolite was determined by the x 

intercept of the fitting line.

Starch and inulin were measured by acid hydrolysis and LC-MS. In brief, 5–10 mg sample 

was mixed with 10 μl 2 M hydrochloric acid, and samples were incubated at 80°C for 2 

h. After cooling down, the resulting mixture was neutralized with 12 μl saturated sodium 

bicarbonate, followed with 88 μl 1:1 acetonitrile: methanol solution. After centrifugation 

at 17,000 × g for 10 min at 4°C, the supernatant was transferred to a MS vial. Inulin and 

starch concentration in samples was inferred from total ion count of fructose and glucose, 

respectively.

SCFAs and BCFAs were derivatized and measured by LC-MS. Serum (5 μl) or 

tissue samples (~10 mg) were added to 100 μl derivatizing reagents containing 12 

mM 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide, 21 mM 3-Nitrophenylhydrazine 

hydrochloride acid and pyridine (2.4% v/v) in methanol. The reaction was incubated at 

4°C for 1 h. Then, the reaction mixture was centrifuged at 17,000 g for 10 min. 20 μl 

supernatant was quenched with 200 μl 0.5 mM beta-mercaptoethanol in 0.1% formic acid 

water. After centrifugation at 17,000 g for 10 min, the supernatant was transferred to MS 

vials until further analysis. The measurement of SCFAs and BCFAs are performed using 

the same Q Exactive PLUS hybrid quadrupole-orbitrap mass spectrometer with different 

column and LC setup. LC separation was on Acquity UPLC BEH C18 column (2.1 mm × 

100 mm, 1.7 5 μm particle size, 130 Å pore size, Waters, Milford, MA) using a gradient of 

solvent A (water) and solvent B (methanol). Flow rate was 200 μL/min. The LC gradient 

was : 0 min, 10% B; 1 min, 10% B; 5 min, 30% B; 11 min 100% B; 14 min, 100% B; 

14.5 min 10% B; 22 min 10 % B. Autosampler temperature was 5 °C, column temperature 

was 60 °C and injection volume was 10 μl. Ion masses for derivatized acetate, propionate, 

butyrate, iso-butyrate, valeric acid, isovaleric acid, 2-methylbutyrate, 4-methylvaleric acid 

were 194.0571, 208.0728, 222.0884, 222.0884, 236.1041, 236.1041, 236.1041, 250.1197 in 

negative mode, respectively.

The ammonia derivatization method was modified from the previous reported Berthelot 

reaction assay (Spinelli et al., 2017b, 2017a). In brief, 20 mg tissue or 10 μl serum was 

extracted by using 200 μl 80% methanol. 100 μl of the metabolite extract was mixed with 

100 μl. Solution #1 (100 mM Phenol, 50 mg/L sodium nitroprusside) and 100 μl. Solution 

#2 (0.38 M dibasic sodium phosphate, 125 mM NaOH, 1% sodium hypochlorite, available 

chlorine 10–15%). The mixture was incubated at 40°C for 30 min. Then, 100 μl reaction 

solution was mixed with 200 μl methanol to oversaturate the inorganic salt to quench the 

reaction. The final solution was centrifuged for 30 min. Then the supernatant was loaded to 

LC-MS for analysis. Ion mass for derivatized ammonia is 198.05605 in negative ion mode.

Protein amino acid composition was measured by acid hydrolysis. Approximately 10 mg of 

protein was extracted with 400 μl methanol, 200 μl chloroform and 300 μl water, followed 
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by centrifugation at 20,000 × g for 10 min at 4 °C. The upper layer was removed. The 

resulting mixture was further extracted with 600 μl methanol twice and supernatant was 

discarded. The resulting precipitate was dried under nitrogen gas and then hydrolyzed with 

250 μl 6 M hydrochloric acid incubated overnight at 115°C. After incubation, the samples 

were dried under nitrogen gas and reconstituted in 1 mL methanol, and the supernatant was 

transferred to a MS vial for analysis. Amino acid composition of the proteins used in the 

study are shown in Figure S4F, and such differences in protein amino acid composition do 

not correlate with the quantified dietary protein contribution to cecal amino acids (Figure 

S4G).

Proteomics sample preparation.—Proteomics samples were prepared mostly as 

previously described (Gupta et al., 2018; Wühr et al., 2014). Mouse cecal samples (10 

mg each) were dissolved in 400 μl lysis buffer (6M guanidium chloride, 2% cetrimonium 

bromide, 5 mM dithiothreitol, 50 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 

(HEPES), pH 7.2). Then the sample mixture was put on ice and sonicated for 10 cycles 

(30 s on and 30 s off cycle, amplitude 50%) by a sonicator (Qsonica), followed by 

centrifugation at 20,000 × g for 20 min at 4 °C. The supernatant was taken and alkylated 

with 20 mM N-ethylmaleimide for 20 min at room temperature, 5 mM dithiothreitol was 

added to quench the excessive alkylating reagents. Proteins were purified by methanol-

chloroform precipitation. The dried protein pellet was resuspended in 10 mM EPPS 

(N-(2-Hydroxyethyl) piperazine-N’-(3-propanesulfonic acid)) at pH 8.5 with 6 M guanidine 

hydrochloride. Samples were heated at 60°C for 15 min and protein concentration was 

determined by BCA assay (Pierce BCA Protein Assay Kit, Thermo Scientific). The protein 

mixture (30~50 μg) was diluted with 10 mM EPPS pH 8.5 to 2 M GuaCl and digested with 

10 ng/μL LysC (Wako) at room temperature overnight. Samples were further diluted to 0.5 

M GuaCl with 10 M EPPS pH 8.5 and digested with an additional 10 ng/μL LysC and 20 

ng/μL sequencing grade Trypsin (Promega) at 37°C for 16 h. Samples were desalted using 

a SepPak cartridges (Waters) and then vacuum-dried and resuspended in 1% formic acid 

before mass spectrometry analysis.

Proteomics peptide measurement.—Samples were analyzed on an EASY-nLC 1200 

(Thermo Fisher Scientific) HPLC coupled to an Orbitrap Fusion Lumos mass spectrometer 

(Thermo Fisher Scientific) with Tune version 3.3. Peptides were separated on an Aurora 

Series emitter column (25 cm × 75 μm ID, 1.6 μm C18) (Ionopticks, Australia) and held 

at 60°C during separation using an in-house built column oven over 180 min, applying 

nonlinear acetonitrile gradients at a constant flow rate of 350 nL/min. The Fusion Lumos 

was operated in data dependent mode. The survey scan was performed at a resolution setting 

of 120k in orbitrap, followed by MS2 duty cycle of 1.5 s. The normalized collision energy 

for CID MS2 experiments was set to 30%.

Solvent A consisted of 2% DMSO (LC-MS-grade, Life Technologies), 0.125% formic 

acid (98%+, TCI America) in water (LC-MS-grade, OmniSolv, VWR), solvent B of 80% 

acetonitrile (LC-MS-grade, OmniSolv, Millipore Sigma), 2% DMSO and 0.125% formic 

acid in water. The following 120 min-gradient with percentage of solvent B were applied 

at a constant flow rate of 350 nL/min after thorough equilibration of the column to 0% B: 
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0% – 6% in 5 min; 6 – 25% in 160 min; 25% –100% in 10 min; 100% for 5 min. For 

electrospray ionization, 2.6 kV were applied between minutes 1 and 113 (or minutes 1 and 

83 for fractionated samples) of the gradient through the column. To avoid carry-over of 

peptides, 2,2,2-trifluoroethanol (>99% Reagent plus, Millipore Sigma) was injected in a 30 

min wash between each sample.

Proteomics data analysis.—The data was analyzed using GFY software licensed 

from Harvard (Nusinow et al., 2020). Thermo Fisher Scientific. raw files were 

converted to mzXML using ReAdW.exe. MS2 spectra assignment was performed 

using the SEQUEST algorithm v.28 (rev. 12) by searching the data against the 

combined reference proteomes for Mus Musculus, Bos Taurus, and all the abundant 

bacterial families detected in 16S rRNA gene amplicon sequencing (Bacteroidaceae, 
Porphyromonadaceae, Prevotellaceae, Rikenellaceae, Muribaculaceae, Lachnospiraceae, 
Ruminococcaceae, Erysipelotrichaceae, Oscillospiraceae, Clostridiaceae, Eubacteriaceae, 
Lactobacillaceae and Verrucomicrobiaceae) acquired from Uniprot on Jan 2021 (SwissProt 

+ Trembl) along with common contaminants such as human keratins and trypsin. The 

target-decoy strategy was used to construct a second database of reverse sequences that were 

used to estimate the peptide false discovery rate (Elias and Gygi, 2007). A 20-ppm precursor 

ion tolerance with the requirement that both N- and C- terminal peptide ends are consistent 

with the protease specificities of LysC and Trypsin was used for SEQUEST searches, two 

missed cleavage was allowed. NEM was set as a static modification of cysteine residues 

(+125.047679 Da). An MS2 spectral assignment false discovery rate of 0.5% was achieved 

by applying the target decoy database search strategy. Linear Discriminant analysis was used 

for filtering with the following features: SEQUEST parameters XCorr and unique ΔXCorr, 

absolute peptide ion mass accuracy, peptide length and charge state. Forward peptides within 

three standard deviations of the theoretical m/z of the precursor were used as positive 

training set. All reverse peptides were used as negative training set. Linear Discriminant 

scores were used to sort peptides with at least seven residues and to filter with the desired 

cutoff. Furthermore, we performed a filtering step on the protein level by the “picked” 

protein FDR approach (Savitski et al., 2015). Protein redundancy was removed by assigning 

peptides to the minimal number of proteins which can explain all observed peptide, with 

above-described filtering criteria.

To quantify the intensities of all the isotopic peaks of the peptides, we used raw intensity. 

Missed cleavage peptides (more than one K or R in the peptide) and low signal to FT-noise 

peptides (M0 S/N < 20) were removed. Peptide phylogenetic assignment was performed 

using Unipept 4.0 (Gurdeep Singh et al., 2019), ‘Equate I and L’ and ‘Advanced missed 

cleavage handling’ were not selected. Only peptides that are specific at a genus level were 

used for further analysis.

Quantification of newly-synthesized fraction of peptide.—To determine the newly 

synthesized fraction of a bacterial peptide in D2O drinking water experiment, we first 

measured the cecal content free amino acids deuterium labeling pattern using metabolomics. 

Then, for each peptide, we simulated the expected isotope envelope pattern if the peptide 

were old, i.e., unlabeled with deuterium (Iold), versus if it were newly synthesized by taking 
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up free amino acids from the cecal content (Inew). Iold was calculated based on the peptide’s 

molecular formula and 13C, 15N, 2H, 17O, 18O, 32S, 33S and 36S natural abundance. Inew 

was calculated based on the peptide’s sequence and experimentally observed labeling of 

the corresponding cecal free amino acids (after natural isotope correction), and the natural 

isotope abundance of the unlabeled atoms in the peptide’s formula. The simulation of 

expected peptide isotope distribution and fitting was performed using a MATLAB code: 

https://github.com/xxing9703/pepMID_simul. Exact mass isotopic peaks with appreciable 

abundances were bundled by nominal mass into fraction M+0, M+1, …M+n, constituting 

the final simulated spectrum. A least square fit was used to find the scalar θ that best fit the 

measured peptide isotopic distribution (Imeasured) to a linear combination of Iold and Inew:

Imeasured = Iold × (1 − θ) + Inew × θ

The root mean square error was determined for each peptide fitting, and any fitting with 

a root mean square error > 1% was removed. For genus-level turnover quantification, only 

genera with more than two measurements were kept in the analysis, with the median value 

across peptides reported.

Quantification of contribution of labeled nutrient to peptide.—To determine the 

contribution of a 13C- or 15N-labeled nutrient to a bacterial peptide, similar to the above 

approach, we first measured the cecal content free amino acids 13C- or 15N-labeling using 

metabolomics. Then, for each peptide, we simulated the expected isotope envelope pattern 

if the peptide were unlabeled (Iunlabeled) versus if it were synthesized from free cecal amino 

acids (Ifree). A scalar γ (analogous to θ above) can then be determined by fitting the 

measured peptide isotope distribution (Imeasured) to a linear combination of Iunlabeled and 

Ifree. Note that γ will exceed 1 when a bacterial genus uses a particular nutrient in excess 

of that nutrient contribution’s to cecal free amino acids. Because the 13C- and 15N-labeling 

patterns are simpler than the D2O labeling patterns, in lieu of carrying out this fitting, we 

instead determined γ (with the same conceptual and mathematical meaning) using simple 

algebraic equations.

Specifically, we measured γ for each peptide as follows:

γ =
φmeasured − φunlabeled

φfree  − φunlabeled

where (with the exception of 13C-protein feeding data, discussed immediately below) φ is 

the average number of extra neutrons in a given peptide (or simulated peptide), relative to 

the M+0 form. This was calculated based on the experimentally observed (or simulated, as 

above) fraction of M+0, M+1, M+2, and M+3, which account for > 90% of the isotopes for 

each peptide (with more heavily labeled forms too low abundance and noisy to contribute 

productively to the measurements):
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φ =
∑i = 0

3 i ⋅ Mi
∑i = 0

3 Mi

For the 13C-protein feeding experiments, the most readily detected labeled forms involve 

incorporation of a single midsized U-13C-amino acid, which manifests as M+5 or M+6 

peptide labeling. Other isotopic forms were sufficiently noisier, as to render their inclusion 

unhelpful. Accordingly, we calculated γ based on φ′:

φ′ =
M5 + M6

M0 + M5 + M6

The above equations give nearly identical values for γ as fitting (as done to determine θ).

For genus-level measurements of feedstock contributions, only genera with more than 3 

peptides measured per mouse was kept in the analysis, with the median value across peptides 

reported as γgenus. Only genera that were consistently detected in proteomics, and the family 

of that genera detected (> 0.5%) in 16S rRNA gene amplicon sequencing were analyzed. 

The product of γgenus and the contribution of each nutrient to cecal free amino acids 

(LAA_avg←nutrient) was used to determine the contribution of each nutrient to bacterial genus 

(fgenus←nutrient):

fgenus nutrient  = γgenus × LAA_avg nutrient  

where the contribution of each nutrient to bacterial protein pool (LAA_avg←Nutrient) was 

calculated as the average labeling across amino acids, weighted based on their abundance in 

that genus’ protein and corrected for fraction of the nutrient interest labeled (T):

LAA_avg nutrient  = ∑fCecal_AA nutrient × w%AA, bacteria T

with w%AA,bacteria taken from literature (Purser and Buechler, 1966).

Quantification and statistical analysis.—A two-tailed, unpaired student’s t-test was 

used to calculate P values, with P<0.05 used to determine statistical significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Gut microbiome feedstocks mapped by isotope tracing into bacteria-specific 

peptides

• Major contributors are dietary fiber and protein, and host lactate, urea, and 

mucins

• Microbiome composition shifts towards bacteria fed their preferred nutrients

• Microbial metabolites’ systemic levels reflect dietary precursors reaching 

microbiome
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Figure 1. Circulating lactate and 3-hydroxybutyrate feed the gut microbiome. See alsoFigure S2.
(A) Schematic of intravenous infusion of isotope-labeled nutrients to identify circulating 

metabolites that feed gut microbiome.

(B) Circulating lactate rapidly enters the feces. Mice were infused with 13C-lactate and 

serum and fresh feces enrichment were compared. Mean±s.e., N = 3.

(C) Circulating citrate does not enter the feces. As in (B), for 13C-citrate. Mean±s.e., N = 3.

(D) Passage of circulating 13C-labeled nutrients into the feces. Mice were infused with 

labeled nutrients for 2.5 h, and labeling fraction in feces was normalized to labeling fraction 

in serum. Mean±s.e., N = 3 except for lactate (N = 8) and 3-hydroxybutyrate (N = 7).

(E) Pharmacological inhibition of MCT1 transporter decreases the passage of circulating 

lactate to feces. Mice were injected i.p. with saline or 100 mg/kg AZD3965, and fresh 
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feces lactate enrichment measured. Mean±s.e. N = 6 for saline and N = 5 for AZD3965. 

***P<0.001 by two-sided Student’s t-test.

(F) Passage of circulating 15N-labeled nutrients into the feces. As in (D), for 15N-lableing. 

Mean±s.e. N = 3 except for urea (N = 4) and ammonia (N = 5).
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Figure 2. Quantitative analysis of dietary and circulating nutrient contributions to gut 
microbiome. See alsoFigure S3,S4.
(A) Experimental design. Mice were fed chow containing 13C-protein, 13C-inulin, 13C-

fatty acids, or 15N-protein for 24 h. Alternatively, mice were intravenously infused with 
13C-lactate, 13C-3-hydroxybutyrate or 15N-urea for 24 h. The labeling of cecal content 

metabolites was analyzed by LC-MS.

(B) Contribution of dietary and circulating nutrients to carbohydrate fermentation pathways 

in gut microbiome. Mean ± s.e. N = 4.

(C) Contribution of dietary and circulating nutrients to cecal amino acid carbon. The names 

of essential amino acids (EAA) are written in blue and non-essential amino acids (NEAA) in 

black. Mean ± s.e. N = 4.

(D) Contribution of dietary and circulating nutrients to cecal amino acid nitrogen. As in (C), 

for nitrogen.

(E) Positive correlation, across amino acids in the cecal contents, of carbon contribution 

from dietary inulin and nitrogen contribution from circulating urea. Mean ± s.e. N = 4.
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Figure 3. Circulating levels of microbiota metabolites depend on protein reaching the 
microbiome.
(A) Compositions of diets used in the figure. “Protein” is casein. “Amino acids” are 

composition-matched free amino acids.

(B) Concentration of circulating amino acids in systemic circulation after two weeks test diet 

relative to free amino acids diet. Serum was taken at ad lib fed state. Each metabolite is a 

line. Mean, N = 4 mice.

(C) As in (B), for phenols. Mean, N = 4 mice.

(D) As in (B), for indoles. Mean, N = 4 mice.

(E) As in (B), for acylglycines. Mean, N = 4 mice.

(F) As in (B) for benzoic acid. Mean ± s.e., N = 4 mice.

(G) As in (F), for serotonin. Mean ± s.e., N = 4 mice.

(H) As in (F), for valerylglycine. Mean ± s.e., N = 4 mice.

(I) Correlation between dietary protein (as opposed to free amino acid) fraction in diet 

and metabolite abundances (relative to amino acid diet). The volcano plot shows Pearson 

coefficient and P value of correlation between metabolite levels to casein abundance in diet.
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Figure 4. Growth rate of different gut bacterial genera quantified by isotope tracing. See 
alsoFigure S5.
(A) Experimental approach for isotope tracing into specific gut bacteria. Only peptides that 

are specific to a particular bacterial genus were examined.

(B) Growth rate quantification using D2O. Mice received D2O by i.p. injection followed by 

D2O drinking water and cecal content labeling was measured over time by proteomics and 

metabolomics. Mice were fed ad lib; tissues were harvested at 9am.

(C) Calculation of newly synthesized peptide fraction (θ). The experimentally observed 

peptide mass isotope distribution was fit to a linear combination of unlabeled peptide (“old,” 

heavy forms from natural isotope abundance) and newly synthesized peptide (“new,” heavy 

forms from isotope labeling pattern of free cecal amino acids and from natural isotope 

abundance).

(D) Different cellular compartments from the same bacterial genus show similar labeling 

rate. Mean, N = 5 mice for each time point.

(E) Genus-specific growth rates were determined by a single exponential fitting, as a 

function of time, of θ (mean across both different peptides measured from that genus and 

replicate mice). Mean±s.e., N = 5 mice for each time point.

(F) Bacterial replication half time of different gut bacteria. Data are exponential fits ±s.e.

(G) The gut bacteria synthesize protein in sync with the physiological feeding patterns of 

the host. The figure shows the average newly synthesized peptide fraction (θ) for different 

gut bacterial genera after D2O labeling during daytime vs nighttime. Each line connects the 
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daytime and nighttime measurements for one genus. Mean, N = 5 mice for daytime and for 

nighttime.
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Figure 5. Preferred carbon sources differ across gut bacteria. See alsoFigure S6.
(A) Calculation of peptide relative 13C-enrichment (γ) and carbon contribution from the 

tracer to a bacterial genus (fgenus←nutrient). First, the experimentally observed peptide mass 

isotope distribution was fit to a linear combination of unlabeled peptide (heavy forms from 

natural isotope abundance) and a peptide made from free cecal amino acids (heavy forms 

from isotope labeling pattern of free cecal amino acids and from natural isotope abundance), 

yielding. Then, fgenus←nutrient was determined by correcting for the fractional contribution of 

that tracer to the cecal free amino acid pools.

(B) Carbon contribution of dietary inulin across bacterial genera. Mean±s.e., N = 4 mice.

(C) Carbon contribution of dietary algal protein across bacterial genera. Mean±s.e., N = 6 

mice.
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(D) Carbon contribution of circulating lactate across bacterial genera. Mean±s.e., N = 7 

mice.

(E) Experimental scheme of high-inulin diet feeding followed by 16S rRNA gene amplicon 

sequencing.

(F) Genus-level microbiota composition changes after high-inulin diet. The genera increased 

after high-inulin diet prefer inulin in (B). Mean±s.e., N=3 mice. *P<0.05 and **P<0.01 by 

two-sided Student’s t-test.

(G) Correlation between genera abundance changes and carbon-source preference.

(H- J) As in (E - G), for algal protein-supplemented diet.
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Figure 6. Firmicutes favor dietary protein while Bacteroidetes prefer secreted host protein. See 
alsoFigure S6,S7.
(A) Nitrogen contribution of dietary algal protein across bacterial genera. Mean±s.e., N = 6 

mice.

(B) Nitrogen contribution of circulating urea across bacterial genera. Mean±s.e., N = 6 mice.

(C) Experimental scheme of 72 hr urea infusion followed by 16S rRNA gene amplicon 

sequencing.

(D) Urea infusions increased urea concentration in systemic circulation. N = 5 mice. 

***P<0.001 by two-sided Student’s t-test.

(E) Genus-level microbiota composition changes after urea infusion. The genera increased 

after urea infusion prefer urea in (B). Mean±s.e., N=5 mice. *P<0.05 by two-sided Student’s 

t-test.
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(F) Correlation between genera abundance changes and nitrogen-source preference.

(G) Experimental schematic of long-term 15N-lysine and 15N-arginine infusion to probe the 

contribution of secreted host proteins to different bacterial genera.

(H) Nitrogen contribution of secreted host proteins across bacterial genera. Mean±s.e., N = 5 

mice.

(I) Negative correlation between fgenus←dietary proteins N and fgenus←secreted proteins N.

(J) Summary of carbon and nitrogen inputs to different gut bacteria. Firmicutes prefer 

dietary carbon sources (fiber and protein) and nitrogen from host circulating urea. 

Bacteroidetes heavily use dietary fiber, while using on host secreted proteins for nitrogen. 

Verrucomicrobia prefers host secreted nutrients, both protein and circulating small 

molecules (lactate, urea).
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Table 1.
Absolute concentrations and sources of microbiota-associated metabolites. See 

alsoTable S1,Figure S1,S4.

Data are from ad lib fed state (ZT0); for ad lib fasted state (ZT12), see Supplementary Table S1. Absolute 

concentration is mean, N = 5 mice. Portal/systemic = fold-change in concentration between the portal vein 

and tail vein (median, N = 5 mice). Abx/Conv refers to fold-change in portal blood concentration between 

mice treated with antibiotics cocktail versus not (median, N = 5 mice/group). Source bar indicates the relative 

contribution to the indicated metabolite from dietary inulin, algal protein and circulating lactate (based on 
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isotope tracing). Percentages indicate quantitative relative contributions from those nutrients (median, N = 4). 

Numbers typically add up to less than 100%, as other sources (e.g., mucins) contribute.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

DEUTERIUM OXIDE (D, 99.9%) Cambridge Isotope 
Laboratories

Cat# DLM-4-PK

D-GLUCOSE (U-13C6, 99%) Cambridge Isotope 
Laboratories

Cat# CLM-1396-PK

SODIUM L-LACTATE (13C3, 98%) 20% W/W in H2O Cambridge Isotope 
Laboratories

Cat# CLM-1579-PK

L-GLUTAMINE (13C5, 99%) Cambridge Isotope 
Laboratories

Cat# CLM-1822-H-PK

L-GLUTAMINE (ALPHA-15N, 98%) Cambridge Isotope 
Laboratories

Cat# NLM-1016-PK

L-GLUTAMINE (AMIDE-15N, 98%+) Cambridge Isotope 
Laboratories

Cat# NLM-557-PK

SODIUM D-3-HYDROXYBUTYRATE (13C4, 99%) 97% 
CHEMICAL PURITY

Cambridge Isotope 
Laboratories

Cat# CLM-3853-PK

LINOLEIC ACID, POTASSIUM SALT (U-13C18, 98%) Cambridge Isotope 
Laboratories

Cat# CLM-8835-PK

OLEIC ACID, SODIUM SALT (U-13C18, 98%) Cambridge Isotope 
Laboratories

Cat# CLM-8763-PK

SODIUM PALMITATE (U-13C16, 98%+) Cambridge Isotope 
Laboratories

Cat# CLM-6059-PK

SODIUM ACETATE (1,2–13C2, 99%) Cambridge Isotope 
Laboratories

Cat# CLM-440-PK

CITRIC ACID (13C6, 99%) Cambridge Isotope 
Laboratories

Cat# CLM-9021-PK

SUCCINIC ACID (13C4, 99%) Cambridge Isotope 
Laboratories

Cat# CLM-1571-PK

L-MALIC ACID (13C4, 99%) Cambridge Isotope 
Laboratories

Cat# CLM-8065-PK

ALPHA-KETOGLUTARIC ACID, DISODIUM SALT 
(1,2,3,4–13C4, 99%)

Cambridge Isotope 
Laboratories

Cat# CLM-4442-PK

L-ALANINE (13C3, 99%) Cambridge Isotope 
Laboratories

Cat# CLM-2184-H-PK

L-ALANINE (15N, 98%) Cambridge Isotope 
Laboratories

Cat# NLM-454-PK

L-VALINE (13C5, 99%) Cambridge Isotope 
Laboratories

Cat# CLM-2249-H-PK

L-VALINE (15N, 98%) Cambridge Isotope 
Laboratories

Cat# NLM-316-PK

L-LEUCINE (13C6, 99%) Cambridge Isotope 
Laboratories

Cat# CLM-2262-H-PK

L-LEUCINE (15N, 98%) Cambridge Isotope 
Laboratories

Cat# NLM-142-PK

L-ISOLEUCINE (13C6, 99%) Cambridge Isotope 
Laboratories

Cat# CLM-2248-H-PK

L-ISOLEUCINE (15N, 98%) Cambridge Isotope 
Laboratories

Cat# NLM-292-PK
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REAGENT or RESOURCE SOURCE IDENTIFIER

L-SERINE (13C3, 99%; 15N, 99%) Cambridge Isotope 
Laboratories

Cat# CNLM-474-H-PK

GLYCINE (13C2, 97–99%) Cambridge Isotope 
Laboratories

Cat# CLM-1017-PK

GLYCINE (13C2, 99%; 15N, 99%) Cambridge Isotope 
Laboratories

Cat# CNLM-1673-H-PK

L-TYROSINE (13C9, 99%) Cambridge Isotope 
Laboratories

Cat# CLM-2263-H-PK

UREA (15N2, 98%+) Cambridge Isotope 
Laboratories

Cat# NLM-233-PK

AMMONIUM CHLORIDE (15N, 99%) Cambridge Isotope 
Laboratories

Cat# NLM-467-PK

L-LYSINE:2HCL (ALPHA-15N, 98%) Cambridge Isotope 
Laboratories

Cat# NLM-143-PK

L-ARGININE:HCL (ALPHA-15N, 98%+) Cambridge Isotope 
Laboratories

Cat# NLM-1267-PK

ALGAL STARCH (U-13C, 98%+) Cambridge Isotope 
Laboratories

Cat# CLM-1699-PK

INULIN (FROM CHICORY) (U-13C, 97%+) 97% 
CHEMICAL PURITY

Cambridge Isotope 
Laboratories

Cat# CLM-9181-PK

Algal crude protein extract-13C Sigma-Aldrich Cat# 642878

Algal crude protein extract-15N Sigma-Aldrich Cat# 586773

Algal crude protein extract-13C,15N Sigma-Aldrich Cat# 608254

Algal amino acid mixture-13C Sigma-Aldrich Cat# 426199

Algal fatty acid mixture-13C Sigma-Aldrich Cat# 487937

AZD 3965 AstraZeneca Cat# AZD3965

Ampicillin Sigma-Aldrich Cat# A0166

Neomycin trisulfate salt hydrate Sigma-Aldrich Cat# N6386

Metronidazole Sigma-Aldrich Cat# M1547

Vancomycin hydrochloride from Streptomyces orientalis Sigma-Aldrich Cat# V1130

Trypsin Promega Cat# V5113

Lysyl endopeptidase R Wako Chemicals USA Cat# 12902541

Aspartame Sigma-Aldrich Cat# 47135

GAM Broth Modified HyServe Cat# 5433

LB Broth (Miller, Luria Broth) Sigma Cat# L3522

MRS Broth Sigma Cat# 69966

TSB (Tryptic Soy Broth) Bacto Cat# 211825

Experimental Models: Organisms/Strains

Mouse: C57BL/6 Charles River Laboratories Cat #027

Strain: Bacteroides dorei (CL02T00C15) BEI #HM-717

Strain: Clostridium sporogenes (ATCC 15579) ATCC 15579

Strain: Escherichia coli (ATCC 25922) ATCC 25922

Strain: Lactobacillus reuteri (CF-48–34A) BEI #HM-102

Strain: Staphylococcus aureus subsp. Aureus Rosenbach ATCC 29213
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

El-MAVEN software Elucidata https://resources.elucidata.io/elmaven

AccuCor GitHub https://github.com/XiaoyangSu/AccuCor

PepMID GitHub https://github.com/xxing9703/
pepMID_simul

MATLAB R2021b MathWorks N/A

Others

PicoLab Rodent Diet 20 LabDiet Cat# 5053

20% Diet premix Research Diets Cat# D11112201Npx2i

20% Amino acids diet Research Diets Cat# A11112201Bi
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