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ABSTRACT

Galaxy-galaxy lensing is a powerful probe of the connection between galaxies and their host dark matter halos, which

is important both for galaxy evolution and cosmology. We extend the measurement and modeling of the galaxy-galaxy

lensing signal in the recent Dark Energy Survey Year 3 cosmology analysis to the highly nonlinear scales (∼ 100 kpc).

This extension enables us to study the galaxy-halo connection via a Halo Occupation Distribution (HOD) framework

for the two lens samples used in the cosmology analysis: a luminous red galaxy sample (redMaGiC) and a magnitude-

limited galaxy sample (MagLim). We find that redMaGiC (MagLim) galaxies typically live in dark matter halos of

mass log10(Mh/M�) ≈ 13.7 which is roughly constant over redshift (13.3−13.5 depending on redshift). We constrain

these masses to ∼ 15%, approximately 1.5 times improvement over previous work. We also constrain the linear galaxy

bias more than 5 times better than what is inferred by the cosmological scales only. We find the satellite fraction

for redMaGiC (MagLim) to be ∼ 0.1 − 0.2 (0.1 − 0.3) with no clear trend in redshift. Our constraints on these

halo properties are broadly consistent with other available estimates from previous work, large-scale constraints and

simulations. The framework built in this paper will be used for future HOD studies with other galaxy samples and

extensions for cosmological analyses.

Key words:

cosmology: dark matter – cosmology: large-scale structure of Universe – galaxies: haloes – gravitational lensing: weak
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1 INTRODUCTION

Understanding the connection between galaxies and dark
matter, i.e. how the galaxy properties relate to the proper-
ties of their dark matter halo hosts, is essential in forming a
comprehensive interpretation of the observed Universe. Cos-
mological analyses of Large-scale Structure (LSS) in modern
galaxy surveys have reached a point where ignoring the de-
tails of this connection (McDonald & Roy 2009; Baldauf et al.
2012), can lead to significant biases in the inferred cosmolog-
ical constraints (Krause et al. 2017). To avoid this problem,
typically we remove data points on the smallest scales until
the remaining data is in the linear to quasilinear regime, and
a simple prescription of the galaxy-halo connection (e.g. lin-
ear galaxy bias) is sufficient (such as Abbott et al. 2018a).
Alternatively, one can invoke more complicated galaxy bias
models on small scales (such as Heymans et al. 2021) and
marginalise over the model parameters. For either approach,
a data-driven model of the galaxy-halo connection on scales
below a few Mpc could allow us to significantly improve
the cosmological constraints achievable by a given dataset.
It should be stressed, however, that galaxy bias has inher-
ently non-linear characteristics (as discussed, for example, in
Dvornik et al. 2018), and should therefore be treated accord-
ingly. Thus, accurate galaxy-halo connection models provide
a wealth of crucial information when modeling galaxy bias.
On the other hand, understanding the connection between
different galaxy samples and their host halos also has impli-
cations for galaxy evolution (see Wechsler & Tinker 2018, for
a review of studies for galaxy-halo connection).

A powerful probe of the galaxy-halo connection is galaxy-
galaxy lensing. Galaxy-galaxy lensing refers to the measure-
ment of the cross-correlation between the positions of fore-
ground galaxies and shapes of background galaxies. Due to
gravitational lensing, the images of background galaxies ap-
pear distorted due to the deflection of light as it passes by
foreground galaxies and the dark matter halos they are in. As
a result, this measurement effectively maps the average mass
profile of the dark matter halos hosting the foreground galaxy
sample. This is one of the most direct ways to connect the ob-
servable properties of a galaxy (brightness, color, size) to its
surrounding invisible dark matter distribution (Tyson et al.
1984; Hoekstra et al. 2004; Mandelbaum et al. 2005; Seljak
et al. 2005). A common approach to modeling this measure-
ment is to invoke the Halo Model (Seljak 2000; Cooray &
Sheth 2002) and the Halo Occupation Distribution (HOD)
framework (Zheng et al. 2007; Zehavi et al. 2011). In this
framework, we consider dark matter halos to be distinct en-
tities with a large luminous central galaxy in their centers and
smaller, less luminous satellite galaxies distributed within the
halo, which are also surrounded by their own sub-halos. The
particular way that central and satellite galaxies occupy the
dark matter halo is parametrised by a small number of HOD
parameters, while all the dark matter halos contribute sep-
arately to the total galaxy-galaxy lensing signal according
to the Halo Model. In this paper, we will invoke this HOD
framework to model a new set of galaxy-galaxy lensing mea-
surements using the Dark Energy Survey (DES) Year 3 (Y3)
dataset.

Several previous studies have used galaxy-galaxy lensing to
constrain the galaxy-halo connections for particular samples
of galaxies. Mandelbaum et al. (2006a) performed an analysis

with the MAIN spectroscopic sample from the Sloan Digital
Sky Survey (SDSS) DR4, characterising the HOD parame-
ters for galaxies split in stellar mass, luminosity, morphology,
colors and environment. The study was followed up by Zu &
Mandelbaum (2015) using SDSS DR7 with a more sophisti-
cated HOD model. The fact that all lens galaxies used in these
studies have measured spectra allowed for good determina-
tion of the stellar mass and other galaxy properties. More
recently, rapid development of large galaxy imaging surveys
provide much more powerful weak lensing datasets to perform
similar analyses. Gillis et al. (2013); Velander et al. (2013);
Hudson et al. (2014) used measurements from the Canada-
France-Hawaii Telescope Lensing Survey (CFHTLenS, Hey-
mans et al. 2012; Erben et al. 2013), while Sifón et al. (2015);
Viola et al. (2015); van Uitert et al. (2016) used data from
the Kilo Degree Survey (KiDS, de Jong et al. 2013; Kuijken
et al. 2015) to study the galaxy-halo connection for a range
of different galaxy samples. Noticeably, these studies extend
to higher redshifts as well as lower mass (including Ultra-
Diffused Galaxies at low redshift). Furthermore, Bilicki et al.
(2021) used photometry from KiDS, exploiting some over-
lap with Galaxy And Mass Assembly (GAMA, Driver et al.
2011) spectroscopy, to derive accurate galaxy-galaxy lensing
measurements, split in red and blue bright galaxies, to con-
strain the stellar-to-halo mass relation by fitting the data
with a halo model. All together these studies provide us with
pieces of information to constrain models of galaxy forma-
tion. In parallel, Clampitt et al. (2017) derived constraints
on the halo mass of a luminous red galaxies sample, the red-
sequence Matched-filter Galaxy Catalog (redMaGiC) galax-
ies (Rykoff et al. 2014), using DES Science Verification data.
The redMaGiC sample is particularly interesting as it is
used heavily in many cosmological studies of LSS due to
its excellent photometric redshift precision. For that reason,
redMaGiC is one of the two samples we study in this work.
From the studies above, it becomes evident that the basic
HOD framework is capable of successfully describing the halo
occupation statistics for a wide variety of galaxy samples, as
long as it is modified accordingly to account for the specific
features of the dataset at hand.

The Clampitt et al. (2017) study was later combined with
galaxy clustering to constrain cosmological models in Kwan
et al. (2016), illustrating how understanding the small-scale
galaxy-halo connection (and effectively marginalizing over
them) could improve the cosmological constraints. Similar
studies include Mandelbaum et al. (2013); Cacciato et al.
(2013); Park et al. (2016); Krause & Eifler (2017); Singh et al.
(2020). In particular, Park et al. (2016) demonstrated that
to obtain robust constraints from combining large and small
scale information, it is necessary to consistently model the
full range of scales, and to have good priors on the HOD
parameters due to degeneracies between HOD and cosmo-
logical parameters. When including the small-scale modeling
from HOD in a cosmology analysis using galaxy clustering
and weak lensing, Krause & Eifler (2017) showed that the
statistical constraints on the dark energy equation of state
w improves by up to a factor of three compared to standard
analyses using only large-scale information. We leave for fu-
ture work the exploration of gain in cosmological constraints
including our HOD modeling in the DES Y3 cosmology anal-
ysis.

Many studies (e.g. Leauthaud et al. 2017; Lange et al. 2019;
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Singh et al. 2019; Wibking et al. 2019; Yuan et al. 2020; Lange
et al. 2021) have shown that fitting galaxy clustering mea-
surements with small-scale galaxy-halo connection models,
at fixed cosmology, provides precise predictions of the lens-
ing amplitude which is higher than the measured signal. This
is the so-called ”lensing is low” problem, which becomes es-
pecially evident when small scales are considered in the anal-
ysis. Figuring out whether this discrepancy can be explained
by new physics, cosmology or by reconsidering our galaxy
formation models is an open question. A better understand-
ing of the galaxy-halo connection can play a crucial role in
solving this mystery. For example, Zu (2020) found that the
”lensing is low” tension can be resolved on small scales; how-
ever, the satellite fraction has to be very high, which is not
in agreement with observations (e.g. Reid et al. 2014; Guo
et al. 2014; Saito et al. 2016).

In this paper we make use of data from Y3 of DES to
study the galaxy-halo connection of two galaxy samples: red-
MaGiC and an alternative magnitude-limited galaxy sample
defined in Porredon et al. (2021). These two samples are used
in the DES Y3 cosmological analysis combining galaxy clus-
tering, galaxy-galaxy lensing and cosmic shear (commonly re-
ferred to as the 3×2pt analysis as it combines three two-point
functions, DES Collaboration 2021). We measure the galaxy-
galaxy lensing signal to well within the 1-halo regime, demon-
strating the extremely high signal-to-noise coming from the
powerful, high-quality dataset. We model the measurements
by combining the Halo Model and the HOD framework, fix-
ing the background cosmology to be consistent with the DES
Y3 cosmology analysis. This work presents one of the most
powerful datasets for studying the galaxy-halo connection in
a photometric survey and includes two main advances com-
pared to previous work of similar nature: First, we include
a number of model components that were previously mostly
ignored in studies of the galaxy-halo connection via galaxy-
galaxy lensing. Second, we borrow heavily from the tools used
in cosmological analyses and carry out a set of rigorous tests
for systematic effects in the data and modeling, making our
results very robust. Both of these advances were driven by the
supreme data quality – as the statistical uncertainties shrink,
previously subdominant systematic effects in both the mea-
surements and the modeling become important.

With our analysis, we place constraints on the HOD param-
eters, and derive the average halo mass, galaxy bias and satel-
lite fraction of these samples. Our analysis provides comple-
mentary information from the small-scales to the large-scale
cosmological analysis in Prat et al. (2021) and informs future
cosmology analyses using these two galaxy samples. As shown
in Berlind & Weinberg (2002); Zheng et al. (2002); Abazajian
et al. (2005), combining HOD with cosmological parameter
inference can greatly improve the cosmological constraints.
Our results can also be incorporated into future simulations
that include similar galaxy samples.

The structure of the paper is as follows. In Section 2 we
describe the baseline formalism for the HOD and Halo Model
framework used in this paper. In Section 3 we detail the dif-
ferent components that contribute to the galaxy-galaxy lens-
ing signal that we model. In Section 4 we describe the data
products used in this paper. In Section 5 we describe the
measurement pipeline, covariance estimation and the series
of diagnostics tests performed on the data. In Section 6 we
describe the model fitting procedure and the model param-

eters that we vary. We also describe how we determine the
goodness-of-fit and quote our final constraints. In Section 7
we show the final results of our analysis. We conclude in Sec-
tion 8 and discuss some of the implications of our results.

2 TWO THEORETICAL PILLARS

In this section we describe the two fundamental elements in
our modeling framework: the halo occupation distribution
model and the halo model. As we discuss later, the com-
bination of the two allows us to predict the observed galaxy-
galaxy lensing signal to very small scales given a certain
galaxy-halo connection.

2.1 Halo Occupation Distribution

The halo occupation distribution (HOD) formalism describes
the occupation of dark matter halos by galaxies. There are
two types of galaxies that can occupy the halo: central and
satellite galaxies. A central galaxy is the large, luminous
galaxy which resides at the center of the halo. The HOD
model does not allow for more than one central galaxy to
exist inside the halo. On the other hand, the HOD allows for
many satellite galaxies to exist in a halo. The higher the mass
of the halo the more satellites are expected to exist around
the central. Satellite galaxies are smaller and less luminous
than the central. They orbit around the center of the halo and
give rise to the non-central part of the galaxy-galaxy lensing
signal, as we discuss in more detail later. In what follows, we
define the HOD of a galaxy sample which has a minimum
luminosity threshold, similarly to Clampitt et al. (2017).

The central galaxy is assumed to be exactly at the center of
the halo, i.e. our model does not account for effects that might
come from mis-centering of the central galaxy in its dark mat-
ter halo. The number of centrals in our HOD framework is
given by a log-normal mass-luminosity distribution (Zehavi
et al. 2004; Zheng et al. 2005; Zehavi et al. 2011) and its
expectation value is denoted by 〈Nc(Mh)〉. The scatter in
the halo mass-galaxy luminosity relation is parametrised by
σlogM . The mass scale at which the median galaxy luminos-
ity corresponds to the threshold luminosity will be denoted
as Mmin. A third parameter is the fraction of occupied halos,
fcen, which is introduced specifically for redMaGiC and ac-
counts for the number of central galaxies that did not make
it into our sample due to how the galaxies are selected. In
more detail, due to the selection process of the redMaGiC
algorithm, for halos of a fixed mass, not all the central galax-
ies associated with those halos will be selected into the lens
sample. More specifically, the redMaGiC selection depends
on the photometric-redshift errors, which could result in ex-
cluding some galaxies even though they are above the mass
limit for observation 1. For most galaxy samples that are

1 Our model is slightly different from Clampitt et al. (2017) in
that fcen is multiplied to both the centrals and the satellites. This

choice results in better matching to the MICE simulations (see

Appendix A2) and therefore facilitates our testing. Since fcen and
M1 are fully degenerate, this difference does not alter the physical

form of the model, although we have adjusted the prior ranges on

M1 to account for that.

MNRAS 000, 000–000 (0000)
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Figure 1. The HOD prediction for the expectation number of cen-

tral (dashed), satellite (dash-dotted) and the total (solid) number

of galaxies as a function of the mass of the dark matter halo inside
of which they reside. The HOD parameters used to produce this

plot are: Mmin = 1012 M�, M1 = 1013 M�, fcen = 0.2, α = 0.8,

σlogM = 0.25.

selected via properties intrinsic to the sample (luminosity,
stellar mass, etc.), however, fcen = 1 is a natural choice.

The expectation value for the number of centrals is the
smooth step function

〈Nc(Mh)〉 =
fcen

2

[
1 + erf

(
logMh − logMmin

σlogM

)]
, (1)

where erf is the error function. Note that Mmin in this expres-
sion essentially sets the mass of the lens halos, which makes
it a crucial parameter to constrain.

The expectation number of satellites is modeled using a
power-law of index α and normalization mass-scale M1, and
is written as

〈Ns(Mh)〉 = 〈Nc(Mh)〉
(
Mh

M1

)α
. (2)

This relation implies a power-law behaviour for the satellite
galaxies at high halo masses only, as 〈Ns(Mh)〉 is coupled
to 〈Nc(Mh)〉. The total number of galaxies in a dark matter
halo is 〈N(Mh)〉 = 〈Nc(Mh)〉 + 〈Ns(Mh)〉. Figure 1 shows
the number of galaxies as a function of halo mass as cal-
culated by the HOD model described above. We note that
significant modifications on top of our model have been de-
veloped for samples specifically defined by stellar mass or
colors (Singh et al. 2020). Also, simple variants of the HOD
we have adopted have been used in the literature, but given
the nature of the two samples we study in this work we do
not expect these modifications to be necessary as we discuss
in Section 7.3.4.

2.2 Halo model

In the framework of the current cosmological model the large-
scale structure in the universe follows a hierarchy based on
which smaller structures interact and merge to give rise to
structure of larger scale. The abundance of dark matter ha-
los is described by the halo mass function (HMF) which is
denoted by dn/dM and is a function of the halo mass Mh at
redshift z. In this work we utilise analytic fitting functions to
model the HMF following Tinker et al. (2008).

The root-mean-square (rms) fluctuations of density inside
a sphere that contains on average mass Mh at the initial time,
σ(Mh), is defined as the square root of the variance in the
dark matter correlation function and is written as

σ2(Mh) ≡
∫
k2dk

2π2
|W̃ (kR)|2P (k) , (3)

where P (k) is the dark matter power spectrum and k de-
notes the wave number. In Equation (3) the variance in the
initial density field has been smoothed out with a top-hat
filter W (R) over scales of R = (3Mh/4πρm)1/3, where ρm
is the mean matter density of the universe, and W̃ is the
Fourier transform of the top-hat filter. We use this expres-
sion to calculate σ8, the rms density fluctuations in a sphere
of radius R = 8 Mpc/h, which we use as the normalization
of the matter power spectrum.

For computing the distribution of the dark matter within a
halo we assume a NFW density profile (Navarro et al. 1996)
with characteristic density ρs and scale radius rs. To calculate
the concentration parameter of the dark matter distribution,
cdm(Mh, z), we follow Bhattacharya et al. (2013).

In order to calculate the linear matter power spectrum,
P lin

m (k, z), we make use of accurate fitting functions from
Eisenstein & Hu (1998) (EH98 hereafter). These fitting func-
tions are accurate to ∼ 5% and we use them instead of
other numerical codes that calculate the power spectrum,
such as CAMB (Lewis et al. 2000), to make our numer-
ical code more efficient. We have performed the necessary
numerical tests to show that this modeling choice does not
affect the final results. The linear power spectrum, however,
poorly describes the power at the small, nonlinear scales. In
our modeling we correct for this by using the nonlinear mat-
ter power spectrum, P nl

m (k, z), by adopting the Halofit ap-
proximation based on Takahashi et al. (2012) to modify the
EH98 linear spectrum. To account for massive neutrinos in
the power spectrum, we have modified the base Takahashi
et al. (2012) prediction using the corrections from Bird et al.
(2012). Note that our method is different from the implemen-
tation in CAMB where the Bird et al. (2012) corrections use
as base the Takahashi et al. (2012) model. For further discus-
sion on the different Halofit versions see also Appendix B
in Mead et al. (2021). We also note that more accurate non-
linear corrections exist, for example HMCode2, but they are
not necessary given the required accuracy in our analysis.

3 MODELLING THE OBSERVABLE

Building on Section 2, we now describe our model for the
galaxy-galaxy lensing signal. We first describe the individual

2 https://github.com/alexander-mead/HMcode
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terms in the matter-cross-galaxy power spectrum Pgm(k, z)
(Section 3.1), then we project the 3D Pgm(k, z) into the 2D
lensing power spectrum Cgm(`) and finally into the observ-
able, the tangential shear γt(θ) (Section 3.2). In Sections 3.3
through 3.6 we describe additional astrophysical components
that are considered in our model. In Appendix A, we perform
a series of tests on our model with simulations and external
codes to check for the validity of our code.

Throughout this paper we fix the cosmological parameters
to the σ8 and Ωm values from the DES Y3 analysis, and use
Planck 2018 (Planck Collaboration 2020) for remaining pa-
rameters. The cosmological analyses on the two lens samples
in DES Y3 give consistent results (DES Collaboration 2021),
albeit slightly different, with Ωm and σ8 being the best con-
strained parameters. For this reason, we choose to only use
the DES Y3 results for these two cosmological parameters and
use the values as constrained for each lens galaxy sample sep-
arately. For redMaGiC we use Ωm = 0.341 and σ8 = 0.735,
while for MagLim we use Ωm = 0.339 and σ8 = 0.733. For
the remaining cosmological parameters we set Ωb = 0.0486,
H0 = 67.37, ns = 0.9649, Ωνh

2 = 0.0006, where h is the
Hubble constant in units of 100 km/s/Mpc. Since we con-
sider the Λ-Cold Dark Matter (ΛCDM) cosmological model,
we set w = −1 for the dark energy equation of state param-
eter. In addition, all the halo masses use the definition of
M200c, based on the mass enclosed by radius R200c so that
the mean density of a halo is 200 times the critical density at
the redshift of the halo. We note that the choice of cosmolog-
ical parameters mostly affects the inferred large-scale galaxy
bias, as we show in Section 7.3.1.

In the DES Y3 3× 2pt cosmological analysis (DES Collab-
oration 2021) using the redMaGiC lens sample, it was found
that the best-fit galaxy clustering amplitude, bw, is system-
atically higher than that of galaxy-galaxy lensing, namely
bγt . To account for this a de-correlation parameter Xlens was
introduced, that is defined as the ratio of the two biases,
Xlens ≡ bγt/bw. This parameter varies from 0 to 1 and al-
lows for the two biases to vary independently, thus enabling
the model to achieve simultaneously good fits to both γt and
w. Nevertheless, the impact of Xlens on the main 3 × 2pt
cosmological constraints, especially on S8 ≡ σ8(Ωm/0.3)1/2,
were negligible. The exact origin of this inconsistency in red-
MaGiC, caused by some measurable unknown systematic ef-
fect, is still an open question. Given that we do not know if
this systematic is affecting the galaxy clustering or galaxy-
galaxy lensing signal, or both to some degree, in our galaxy-
galaxy lensing analysis we choose to use the fiducial cosmo-
logical results from the 3×2pt analysis and assume Xlens = 1
throughout. However, we briefly discuss the impact on our
derived halo properties from changing to the 3× 2pt best-fit
value of roughly Xlens ≈ 0.877 when we present our results
in Section 7.2. We do note, however, that this is the most
pessimistic case where the systematic is completely found in
γt. Given that γt is a cross-correlation, while e.g. w is an
auto-correlation of the lenses, it is likely that clustering is
the most affected by the systematic and not galaxy-galaxy
lensing. In our case, this means that the shift in constraints
we quote later would not be as dramatic in reality.

3.1 Correlations between galaxy positions and the
dark matter distribution

The galaxy-cross-matter power spectrum, Pgm(k, z), is com-
posed two terms. The 1-halo term, P 1h

gm(k, z), quantifies cor-
relations between dark matter and galaxies inside the halo.
The 2-halo term, P 2h

gm(k, z), quantifies correlations between
the halo and neighboring halos. Each of these terms receives
a contribution from central and satellite galaxies. Below we
summarise the formalism for these four terms separately. The
modeling we follow below is similar to what is being com-
monly used in the literature; for example, see Seljak (2000);
Mandelbaum et al. (2005); Park et al. (2015).

The central 1-halo term describes how the dark matter
density distribution inside the halo correlates with the central
galaxy, and is thus written as

P c1h
gm (k, z) =

1

ρmn̄g

∫
dMh

dn

dMh

×Mh〈Nc(Mh)〉udm(k|Mh) , (4)

where udm(k|Mh) is the Fourier transform of the dark matter
density distribution as a function of wavenumber k given a
halo of mass Mh.

The satellite 1-halo term describes how the satellite galax-
ies are spatially distributed within the dark matter host halo,
and can be written as:

P s1h
gm (k, z) =

1

ρmn̄g

∫
dMh

dn

dMh

×Mh〈Ns(Mh)〉udm(k|Mh)usat(k|Mh) (5)

with usat being the Fourier transform of the satellite distri-
bution in the halo. For both udm and us we assume NFW
profiles with concentration parameters cdm and csat, respec-
tively. The distribution of satellite galaxies is typically less
concentrated than that of the dark matter (Carlberg et al.
1997; Nagai & Kravtsov 2005; Hansen et al. 2005; Lin et al.
2004). To account for this we allow csat to be smaller than
cdm by introducing the free parameter a = csat/cdm, which
is allowed to take values between 0 and 1. The total 1-halo
power spectrum is then given by

P 1h
gm(k, z) = P c1h

gm (k, z) + P s1h
gm (k, z) . (6)

To introduce the 2-halo terms, we define the following
quantities: the average linear galaxy bias and the average
satellite fraction of our sample.

The average linear galaxy bias is given by:

b̄g =

∫
dMh

dn

dMh
bh(Mh)

〈N(Mh)〉
n̄g

. (7)

The halo bias relation bh(Mh) quantifies the dark matter clus-
tering with respect to the linear dark matter power spectrum,
and we adopt the functions in Tinker et al. (2010) for it. In
the above equation we define the average number density of
galaxies as

n̄g =

∫
dMh

dn

dMh
〈N(Mh)〉 , (8)

and is thus also determined by the HOD.
The satellite galaxy fraction is expressed as:

αsat =

∫
dMh

dn

dMh

〈Ns(Mh)〉
n̄g

. (9)
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With b̄g and αsat defined, the 2-halo central galaxy-dark
matter cross power spectrum is then given by:

P c2h
gm (k, z) = P nl

m (k, z)

×
∫
dMh

dn

dMh

Mh

ρm
bh(Mh)udm(k|Mh)

×
∫
dM ′h

dn

dM ′h

〈Nc(M ′h)〉
n̄g

bh(M ′h) . (10)

At large scales, where udm(k|Mh) → 1, the first integral in
the above equation must go to unity, which implies that the
halo bias relation must satisfy the consistency relation that
the dark matter is unbiased with respect to itself (Scocci-
marro et al. 2001). Furthermore, at the same limit, the sec-
ond integral approaches (1 − αsat)b̄g. Therefore, the k → 0
limit of Equation (10) reduces to P c2h

gm (k → 0, z) ≈ (1 −
αsat)b̄gP

lin
m (k, z).

Similarly, we can express the 2-halo matter-cross-satellite
power spectrum as:

P s2h
gm (k, z) = P nl

m (k, z)

×
∫
dMh

dn

dMh

Mh

ρm
bh(Mh)udm(k|Mh)

×
∫
dM ′h

dn

dM ′h

〈Ns(M ′h)〉
n̄g

bh(M ′h)usat(k|M ′h) . (11)

Similar as above, Equation (11) reduces to P s2h
gm (k → 0, z) ≈

αsatb̄gP
lin
m (k, z). Therefore, putting it all together, at the

large-scale limit the 2-halo galaxy-dark matter cross power
spectrum reduces to

P 2h
gm(k, z) = P c2h

gm (k, z) + P s2h
gm (k, z)

≈ b̄gP lin
m (k, z) , (12)

which is what is used in cosmological analyses.
In the 2-halo central galaxy-dark matter cross power spec-

trum of Equation (10), in order to avoid double-counting
of halos sometimes the halo exclusion (HE) technique is
used. Based on the HE principle (see, e.g. Tinker et al.
(2005)), given a halo of mass Mh1 we only consider nearby
halos of mass Mh2 that satisfy the relation R200c(Mh1) +
R200c(Mh2) ≤ r12, where R200c(Mh) is the radius of a halo of
mass Mh, and r12 represents the distance between the cen-
ters of the two halos. However, accounting for halo exclusion
this way is computationally expensive. For this reason, many
effective descriptions have been suggested in the literature to
bypass this restriction. After performing tests using a simpli-
fied HE model in Appendix C, we find that in our case HE
has little to no impact on our model, and we thus decide to
neglect it in our fiducial framework.

Finally, in order to get the total power spectrum, Pgm(k, z),
we combine the 1-halo and 2-halo components. We do so by
taking the largest of the two contributions at each k. We per-
form this operation in real space by transforming the power
spectrum to its corresponding 3D correlation function ξ(r, z)
and taking the maximum:

ξgm(r, z) =

{
ξ1h
gm(r, z) if ξ1h

gm ≥ ξ2h
gm

ξ2h
gm(r, z) if ξ1h

gm < ξ2h
gm

. (13)

We then transform ξgm(r, z) back to the total galaxy-cross-
matter power spectrum Pgm(k, z). This is the same approach
followed by Hayashi & White (2008); Zu et al. (2014) and
is also utilised by Clampitt et al. (2017). We note here that

modeling the transition regime from 1-halo to 2-halo scales
is not straightforward, and different prescriptions of how to
combine the 1-halo and 2-halo components have been sug-
gested. Furthermore, we note that having adopted the com-
mon way of modeling the 2-halo component, we have made
the assumption that halos are linearly biased tracers of the
underlying dark matter distribution, and we make use of a
scale-independent halo bias model. As stressed by Mead &
Verde (2021), a linear halo bias is not necessarily a good
description of the clustering relation between the halos and
matter, especially on the transition scales. It could thus be
important to incorporate a non-linear halo bias model into
the halo model. Implementing such a ”beyond-linear” halo
bias model, as described in that paper, into our framework
would change the shape of the 2-halo component as a func-
tion of k, especially around the scales corresponding to the
size of individual dark matter halos. We leave this aspect of
the model to be investigated in future work.

3.2 Modeling the tangential shear γt

Armed with the HOD-dependent galaxy-cross-matter power
spectrum, we can now follow the standard procedure in de-
riving the tangential shear γt as done in other large-scale cos-
mological analyses (Cacciato et al. 2009; Mandelbaum et al.
2013; Clampitt et al. 2017; Prat et al. 2017; Prat et al. 2021).
We first construct the lensing angular power spectrum, Cgm,
and then transform it to real space. Under the Limber ap-
proximation we define the projected, two-dimensional lensing
power spectrum as

Cgm(`|z`, zs) =
ρmΣ−1

c (z`, zs)

a2(z`)χ2(z`)
Pgm

(
`+ 1/2

χ(z`)
, z`

)
, (14)

where the critical surface density at lens redshift z` and
source redshift zs is given by:

Σc(z`, zs) =
c2

4πG

a(z`)χ(zs)

χ(z`)χ(z`, zs)
. (15)

Here a(z) is the scale factor of the universe at redshift z.
In the above expression, χ(z`) and χ(zs) are the comoving
distances to the lens and source galaxies, while χ(z`, zs) is the
comoving distance between the lens and source redshifts. The
a(z`) factor comes from the use of comoving distances, while
c and G are the speed of light and Newton’s gravitational
constant, respectively.

The expressions we have introduced above are for specific
lens and source galaxy redshift pairs; however, in practice
we are working with distribution of galaxies in redshift. We
denote the probability density functions (PDF) of the lens
and source redshift by n`(z`) and ns(zs), respectively. The
observed lensing spectrum is given by

Cgm(`) =

∫
dz` n`(z` −∆zi`)

×
∫
dzs ns(zs −∆zjs)Cgm(`|z`, zs)

=
3

2

H2
0 Ωm
c2

∫
dz` n`(z` −∆zi`)

× g(z`)(1 + z`)

χ(z`)
Pgm

(
`+ 1/2

χ(z`)
, z`

)
, (16)
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Figure 2. This plots illustrates the theory prediction for the shear

(solid black) and how the various components contribute to it. The

1- and 2-halo components from the central and satellite galaxies
are labeled ’Cen-1h’, ’Cen-2h’, ’Sat-1h’ and ’Sat-2h’, respectively.

We also show the contribution from IA, lens magnification (’Lens-

mag’), satellite strip (’Sat-Strip’) and point mass (’PM’). The HOD
parameters used are the same as in Figure 1; the stellar mass we

used is M? = 2 × 1010 M�; for IA we used the amplitude and

power-law parameters AIA = 0.1 and ηIA = −0.5, respectively; for
the lens magnification coefficient we set the value to αlmag = 1.3.

where the projection kernel is

g(z) =

∫ ∞
z

dz′ns(z
′ −∆zs)

χ(z′)− χ(z)

χ(z′)
. (17)

The parameters ∆z` and ∆zs in this equation represent the
bias of the mean of the lens and source redshift distributions,
similar to that used in Krause et al. (2021).

The tangential shear, under the flat-sky approximation,
then becomes:

γt(θ) = (1 +m)

∫
`d`

2π
Cgm(`)J2(`θ) , (18)

where J2(x) is the second-order Bessel function of the first
kind. Again following Krause et al. (2021), the multiplicative
bias parameter m in this expression quantifies uncertainties
in the shear estimation. We note here that, our analysis differs
from that of Krause et al. (2021), as well as Prat et al. (2021),
which does no make the flat-sky approximation. We have
checked that this makes a negligible difference in our analysis
over the angular scales we use.

3.3 Tidal stripping of the satellites

In addition to the four components described in Section 3.1,
corresponding to the 1- and 2-halo, satellite and central com-
ponent of Pgm, as we get to higher accuracy in the measure-
ments higher-order terms in the halo model could become
important. The next-order term in the Halo Model is com-
monly referred to as the satellite strip component, which we

denote by γstrip
t . This term is effectively a 1-halo term cor-

relating the satellite galaxies and its own subhalo. As tidal
disruptions in the outskirts of the host halo strips off the dark
matter content of the satellite subhalo, the density profile of
the subhalos drops off at large scales. Therefore, we model
this term as a truncated NFW profile which is similar to that
of the central 1-halo, γc1h

t , out to the truncation radius R
and falls off as ∝ r−2 at larger radii r. The truncation radius
is set to R = 0.4R200c and thus does not introduce free pa-
rameters to our model. Additionally, since this is a satellite
term, it needs to be multiplied by αsat, therefore resulting in

γstrip
t (θ) = αsat ×


γc1h
t (θ) if r ≤ R

γc1h
t (R)

(
R

r

)2

if r > R
, (19)

where r = r(θ; z`) is the radius from the center of the
(sub-)halo at redshift z` that corresponds to angular scale
θ. Note that this is similar to what is used in Mandelbaum
et al. (2005); Velander et al. (2013), but is using a mass def-
inition based on ρ200c = 200ρc for the halos.

3.4 Point-mass contribution

An additional term to γt is the contribution to lensing by the
baryonic content of the central galaxy (e.g. Velander et al.
2013). This term is simply modelled as a point-source term
given by

γPM
t (θ) =

∫
dz`n`(z`)

M?

πr2(θ, z`)

×
∫
dzsns(zs)Σ

−1
c (z`, zs) . (20)

Here, M? is an effective mass parameter that quantifies the
amplitude of the point mass component.

In practice, the amplitude parameter would be allowed to
vary as a free parameter or be set to the average stellar mass
inside the redshift bin of interest. When let to vary, it ac-
counts for any imperfect modeling of the galaxy-matter cross-
correlation on scales smaller than the smallest measured scale
used in the model fit. This is similar to the point-mass term
derived in MacCrann et al. (2020a) and used in Krause et al.
(2021).

3.5 Lens magnification

We now consider the effects of weak lensing magnification on
the estimation of our observable. In addition to the distor-
tion (shear) of galaxy shapes, weak lensing also changes the
observed flux and number density of galaxies – this effect is
referred to as magnification. Following Prat et al. (2021), here
we only consider the magnification in flux for the lens galax-
ies, as that is the dominant effect for galaxy-galaxy lensing.

Similar to shear, magnification is expected to be an in-
creasing function of redshift. In the weak lensing regime, the
magnification power spectrum involves an integration of the
intervening matter up to the lens redshift and is given by
(Unruh et al. 2020)

C lmag
gm (`) =

9H3
0 Ω2

m

4c3

∫
dz`n`(z`)

×
∫ z`

0

dz
χ(z, z`)glmag(z)

χ(z)a2(z)
P nl

m

(
`+ 1/2

χ(z)
, z

)
, (21)
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where we have defined

glmag(z) =

∫
dzsns(zs)

χ(z, zs)

χ(zs)
. (22)

The contribution to the tangential shear can then be writ-
ten as

γlmag
t (θ) = 2(αlmag − 1)

∫
`d`

2π
C lmag

gm (`)J2(`θ) , (23)

where αlmag is a constant that can be estimated from simula-
tions (Elvin-Poole et al. 2021) and C lmag

gm (`) is the average of
(21) over the redshift distributions of the lenses and sources.
In this work we fix αlmag following the Y3 3×2pt analysis and
use the values computed in Elvin-Poole et al. (2021), which
are αlmag = {1.31,−0.52, 0.34, 2.25} for our redMaGiC and
αlmag = {1.21, 1.15, 1.88, 1.97} for our MagLim lens redshift
bins.

3.6 Intrinsic alignment

Galaxies are not randomly oriented even in the absence of
lensing. On large scales, galaxies can be stretched in a prefer-
able direction by the tidal field of the large scale structure. On
small scales, other effects such as the radial orbit of a galaxy
in a cluster can affect their orientation. This phenomenon,
where the shape of the galaxies is correlated with the density
field, is known as intrinsic alignment (IA); for a review see
Troxel & Ishak (2015).

The contamination of shear by IA can become important in
some cases, especially when the source galaxies are physically
close to the lenses and gravitational interactions can modify
the shape of the galaxies. IA is commonly modeled using the
non-linear linear alignment (NLA) model proposed by Hirata
& Seljak (2004); Bridle & King (2007); Joachimi et al. (2013).
In NLA, the galaxy-cross-matter power spectrum receives an
additional term

PNLA(k, z) =−AIAC1ρcΩmD
−1
+ (z)

× bP lin
m (k, z)

(
1 + z

1 + z0

)ηIA
. (24)

In the above equation D+(z) is the linear structure-growth
factor at redshift z normalised to unity at z = 0, b is the
linear bias, AIA determines the overall amplitude, C1 = 5 ×
10−14h−2M−1

� Mpc
3

is a constant, and the power-law index
ηIA models the redshift evolution defined so that the pivot
redshift is set to z0 = 0.62.

The IA contribution to galaxy-galaxy lensing simply de-
pends on the galaxy density and has a different projection
kernel than Equation (16). The projected 2D power spectrum
for NLA is then given in the Limber approximation by

CNLA(`) =

∫
dz`

n`(z`)ns(z`)

χ2(z`)(dχ/dz)|z`
PNLA

(
`+ 1/2

χ(z`)
, z(χ`)

)
,

(25)

where (dχ/dz)|z` is the derivative of the comoving distance
with respect to redshift at z = z`. To obtain the NLA con-
tribution to the tangential shear, we perform a Hankel trans-
form on CNLA(`) using J2(`θ), as in Equation (18).

A simple extension of NLA in our HOD framework will be
to use our HOD-based Pgm instead of bgP

nl
m in Equation (24).

However, the IA modeling near the 1-halo term is likely more
complex and would warrant more detailed studies such as

those carried out in Blazek et al. (2015). In this paper, we
avoid the complex modeling by choosing redshift bin pairs
that are sufficiently separated so that they have significantly
low IA contribution (see Section 5.1) and we thus choose not
to include this component in our fiducial model. However,
in Section 7.3.4 we test the full model that includes this IA
contribution and show that the results are consistent with
our fiducial which does not include IA. We show an example
of what all the γt components look like in Figure 2.

Although we have ignored IA in this paper, given that it is
negligible for our purposes, we emphasize that its contribu-
tion to lensing can be of high importance to future cosmolog-
ical studies, as it can produce biases in the inference of the
cosmological parameters (e.g. Samuroff et al. 2019). In addi-
tion, if not properly accounted for, IA can affect the inference
of the lens halo properties in lensing analyses. In this case,
a halo-model description of IA would be necessary to cap-
ture its sample dependence. Fortuna et al. (2021) described a
halo model for IA on small and large scales from central and
satellite galaxies which is capable of incorporating the galaxy
sample characteristics. We leave the further investigation of
IA and its modeling for future work.

4 DATA

For this work we make use of data from the Dark Energy
Survey (DES, Flaugher 2005). DES is a photometric sur-
vey, with a footprint of about 5000 deg2 of the southern sky,
that has imaged hundreds of millions of galaxies. It employs
the 570-megapixel Dark Energy Camera (DECam, Flaugher
et al. 2015) on the Cerro Tololo Inter-American Observatory
(CTIO) 4m Blanco telescope in Chile. We use data from the
first three years (Y3) of DES observations. The basic DES
Y3 data products are described in Abbott et al. (2018b);
Sevilla-Noarbe et al. (2020). Below we briefly describe the
source and galaxy samples used in this work. By construc-
tion, all the samples are the same as that used in Prat et al.
(2021) and in the DES Y3 3×2pt cosmological analysis (DES
Collaboration 2021).

4.1 Lens galaxies - redMaGiC

For our first lens sample we use redMaGiC galaxies. These
are red luminous galaxies which provide the advantage of
having small photometric redshift errors. The algorithm used
to extract this sample of luminous red galaxies is based on
how well they fit a red sequence template, calibrated using the
red-sequence Matched-filter Probabilistic Percolation cluster-
finding algorithm (redMaPPer, Rykoff et al. 2014, 2016).

To maintain sufficient separation between lenses and
sources, we only use the lower four redshift bins used
in Prat et al. (2021). The first three bins at z =
{[0.15, 0.35], [0.35, 0.5], [0.5, 0.65]} consist of the so-called
“high-density sample”. This is a sub-sample which corre-
sponds to luminosity threshold of Lmin = 0.5L?, where
L? is the characteristic luminosity of the luminosity func-
tion, and comoving number density of approximately n̄ ∼
10−3 (h/Mpc)3. The fourth redshift bin of z = [0.65, 0.8] is
characterised by Lmin = L? and n̄ ∼ 4 × 10−4 (h/Mpc)3,
and is referred to as the “high-luminosity sample”. The
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Figure 3. Redshift distribution of the lenses (solid filled) and of

the source (dashed) galaxies, for redMaGiC (upper) and MagLim

(lower).

redshift distributions for all these bins are shown in Fig-
ure 3. As we will discuss in Section 6 we use the num-
ber density values as an additional data point in our fits,
which helps constrain the fcen HOD parameter. The data
we used to derive the mean of n̄ig and its variance in each
lens bin i is the same as what is used in Pandey et al.
(2021), and the specific values we used are the following:
n̄ig ≈ {9.8±0.6, 9.6±0.3, 9.6±0.2, 3.8±0.02}×10−4 (h/Mpc)3,
respectively for i = 1, 2, 3, 4. We note here that we have also
fit our data without the addition of n̄ig and our main conclu-
sions hold, except that fcen becomes unconstrained.

4.2 Lens galaxies - MagLim

The second sample we use for lens galaxies is MagLim which
is defined with a redshift-dependent magnitude cut in i-band.
This results in a sample with ∼ 4 times more galaxies com-
pared to redMaGiC and is divided into 6 bins in redshift
with ∼ 30% wider redshift distributions, also compared to the
redMaGiC sample. In this sample, galaxies are selected with
a magnitude cut that evolves linearly with the photometric
redshift estimate: i < azphot + b. The optimization of this
selection, using the DNF photometric redshift estimates (De
Vicente et al. 2016), yields a = 4.0 and b = 18. This optimiza-
tion was performed taking into account the trade-off between
number density and photometric redshift accuracy, propagat-
ing this to its impact in terms of cosmological constraints
obtained from galaxy clustering and galaxy-galaxy lensing in
Porredon et al. (2021). Effectively this selects brighter galax-
ies at low redshift while including fainter galaxies as redshift
increases. Additionally, we apply a lower cut to remove the

most luminous objects, i > 17.5. Single-object fitting (SOF)
magnitudes (a variant of multiobject fitting (MOF) described
in Drlica-Wagner et al. (2018)) from the Y3 Gold Catalog
were used for sample selection and as input to the photo-
metric redshift codes. See also Porredon et al. (in prep.) for
more details on this sample. The redshift distributions of the
MagLim sample are shown in Figure 3.

4.3 Source galaxies

We use the DES Y3 shear catalog presented in Gatti, Shel-
don et al. (2020). The galaxy shapes are estimated using the
Metacalibration (Huff & Mandelbaum 2017; Sheldon &
Huff 2017) algorithm. The shear catalog has been thoroughly
tested in Gatti, Sheldon et al. (2020), and tests specifically
tailored for tangential shear have been presented in Prat
et al. (2021). In this paper we perform additional tests on
this shear catalog for tangential shear measurement on small
scales (Section 5.3).

Following Prat et al. (2021) we bin the source galaxies into
four redshift bins, where details of the redshift binning and
calibration is described in Myles, Alarcon et al. (2020). The
redshift distributions for the source samples are shown in
Figure 3.

5 MEASUREMENTS

Our γt measurements are carried out using the fast tree code
TreeCorr3 (Jarvis et al. 2004). We use the same measure-
ment pipeline as that used in Prat et al. (2021), where details
of the estimator, including the implementation of random-
subtraction and Metacalibration are described therein.
The main difference is we extend to smaller scales and add 10
additional logarithmic bins from 0.25 arcmin to 2.5 arcmin.
The full data vector in our analysis contains 30 logarithmic
bins from 0.25 arcmin to 250 arcmin.

Figures 4 and 5 show the final measurements using
the redMaGiC and MagLim samples as lenses, respec-
tively. The six panels represent the six lens-source red-
shift bin pairs. The total signal-to-noise for the six red-
shift bins [Lens, Source]={[1, 3], [1, 4], [2, 3], [2, 4], [3, 4], [4, 4]}
are ∼ {65.5, 59.9, 58.2, 65.5, 55.2, 36.6} for redMaGiC and
∼ {104.4, 100.9, 76.6, 99.2, 60.5, 45.5} for MagLim num-
bers. For comparison, the signal-to-noise for the same
bin pairs, only accounting for the scales used in the
cosmological analysis in Prat et al. (2021) are ∼
{25.1, 26.8, 18.7, 22.1, 18.5, 12.3} for the redMaGiC sam-
ple, and ∼ {41.2, 35.9, 29.4, 30.4, 21.1, 15.7} for the MagLim
galaxies. The additional small-scale information from this
work increases the signal-to-noise by a factor of 2-3. This
again demonstrates that if modelled properly, there is signif-
icant statistical power in this data to be harnessed.

Below we briefly describe two elements specifically rele-
vant for this work, the boost factor (Section 5.1) and the
Jackknife covariance matrix (Section 5.2). We also describe
briefly the additional data-level tests that we perform to iden-
tify any observational systematic effects (Section 5.3). Our
shear estimator, which includes the boost-factor correction

3 https://github.com/rmjarvis/TreeCorr
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Figure 4. Best-fit model (solid black) to redMaGiC for each lens-source redshift bin combination and the residuals with respect to the

data (points) attached below each panel. The various components of the model are also shown: central 1-halo (solid blue) and 2-halo
(dashed blue), satellite 1-halo (solid red) and 2-halo (dashed red), satellite strip (dash-dotted orange), point mass (dash-dotted cyan) and

lens magnification (dash-dotted green). The blue shaded area marks the scales used in cosmological analyses, while the rest corresponds to

the additional small-scale points used in this work. In each panel we also show the total χ2 of the fit, after applying the Hartlap correction
to the inverse covariance matrix, and the number of degrees of freedom.

and random-point subtraction (i.e. removing the measured
tangential shear measured around isotropically distributed
random points in the survey footprint; see Prat et al. (2021)
for a more in-depth discussion), is written as (Prat et al. 2021;

Pandey et al. 2021):

γt(θ) =
1

〈R〉

[∑
k wrk∑
i w`i

∑
ij w`iwsj e

LS
t,ij(θ)∑

kj wrkwsj

−
∑

kj wrkwsj e
RS
t,kj(θ)∑

kj wrkwsj

]
, (26)

where w`i , wrk = 1 and wsj are the weights associated with
the lens galaxy i, random point k and source galaxy j, respec-
tively. Furthermore, the weighted average Metacalibration
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Figure 5. Same as Figure 4 but for the MagLim sample.

response is 〈R〉 =
∑
j wsjRsj/

∑
j wsj , averaging over the re-

sponses Rsj of each source galaxy j, while eLS
t,ij and eRS

t,kj are,
respectively, the measured tangential ellipticity of the source
galaxy j around the lens galaxy i and random point k.

5.1 Boost factors

While computing the lensing signal we need to take into ac-
count that, since galaxies follow a distribution in redshift,
namely n`(z`) and ns(zs) for lenses and sources respectively,
their spatial distributions may overlap. This is something
that is naturally accounted for in Equation (17) as the lens-
ing efficiency is set to zero when the source is in front of
the lens. However, by using fixed n`(z`) and ns(zs) in Equa-

tion (16), we implicitly assume there is no spatial variation in
the lens and source redshift distribution across the footprint.
In reality, galaxies are clustered, and the number of sources
around a lens can be larger than what we would expect from
a uniform distribution. This is usually quantified by the boost
factor (Sheldon et al. 2004), B(θ), estimator which is the ex-
cess in the number of sources around a lens with respect to
randoms. The difference in our γt measurements with and
without boost factors are shown in Figures B1 and B2 (for
the full figures, with all lens-source bin combinations, see Prat
et al. 2021). As can be seen from the plots, the contribution
from this effect can be large at small scales, especially when
the bins are more overlapped in redshift. In our analysis we
take the boost factors into account by correcting for it before
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carrying out the model fit. That is, the measurements shown
in Figures 4 and 5 have already been corrected for the boost
factor. In addition, since large boost factors will also signal
potential failures in parts of our modeling (specifically IA and
magnification), we choose to work only with bins that have
small boost factors, for which we set a maximum threshold
of ∼ 20% deviation from unity, that result in lens and source
redshift bin combinations that are largely separated in red-
shift. We carry out our analysis with 6 lens-source pairs for
both lens samples: [Lens 1, Source 3], [Lens 1, Source 4], [Lens
2, Source 3], [Lens 2, Source 4], [Lens 3, Source 4], [Lens 4,
Source 4].

5.2 Covariance matrix

We use a Jackknife (JK) covariance in this work defined as

Cij ≡ C(γt(θi), γt(θj)) =
NJK − 1

NJK

NJK∑
k=1

∆γki ∆γkj , (27)

where γkt (θi) is the shear in the i’th angular bin for the k’th
JK resampling, 〈γt(θi)〉k is the average over all NJK realiza-
tions of the shear for the i’th angular bin and we have defined
∆γki ≡ γkt (θi)− 〈γt(θi)〉k.

We use NJK = 150 JK patches for this work defined via
the kmeans4 algorithm. NJK is chosen so that the individual
JK regions are at least as large as the maximum angular
scale we need for our measurements. See Prat et al. (2021)
for a comparison between the JK diagonal errors and the
halo-model covariance errors, which are in good agreement.

When inverting the covariance matrix in the likelihood
analysis, a correction factor is needed to account for the bias
introduced from the noisy covariance (Friedrich et al. 2016).
This correction is often referred to as the Hartlap (Hartlap
et al. 2007) correction. When inverting the JK covariance
matrix C we multiply it by a factor H to get the unbiased
covariance (Kaufman 1967)

C−1
H = HC−1 =

(
NJK −Nθ − 2

NJK − 1

)
C−1 , (28)

where the number of angular bins we use is Nθ = 30, since we
analyze each lens-source redshift bin combination indepen-
dently. As shown in Hartlap et al. (2007), for Nθ/NJK < 0.8
the correction produces an unbiased estimate of the inverse
covariance matrix; in our case we find Nθ/NJK = 0.2. How-
ever, it is also shown in Hartlap et al. (2007) that as this
factor increases, Nθ/NJK → 0.8, the Bayesian confidence in-
tervals can erroneously grow by up to 30%. Furthermore, it
was shown that in order for the confidence intervals to not
grow more than 5% the factor Nθ/NJK . 0.12. For our results
this means that, although our covariance matrix gets unbi-
ased, our error bars increase and our constraints can thus
look less significant than they actually are.

We finally discuss our choice of a Jackknife covariance
matrix in this work. The fiducial covariance used in the
3× 2pt analysis in DES Y3 is derived from an analytic halo-
model formulation presented in Friedrich et al. (2020). Since
our halo model implementation is different from that work
(e.g. the modeling of the 1-to-2 halo regime and the HOD

4 https://github.com/esheldon/kmeans radec

parametrization), we cannot use the same framework. Fur-
thermore, since our goal is to model very small scales, where
the HOD is needed to model the galaxy bias, using as input
to the covariance calculation the HOD would lead to a circu-
lar process. Therefore, we opt to use the JK covariance which
is not relying on halo-model assumptions.

5.3 Systematics diagnostic tests

Similar to Prat et al. (2021), we carry out a series of data-
level tests to check for any systematic contamination in the
data products. As this work extends from Prat et al. (2021)
in terms of the scales used for the analysis, we extend the
following tests to the 0.25-2.5 arcmin scales. The tests we
performed are the following:

(i) Cross component: The tangential shear, γt, is one of
the two components when we decompose a spin-2 shear field.
The other component is γ×, which is defined by the projec-
tion of the field onto a coordinate system which is rotated
by 45◦ relative to the tangential frame. For isotropically ori-
ented lenses, the average of γ× due to gravitational lensing
alone should be zero. It is thus a useful test to measure this
component in the data and make sure that it is consistent
with zero for all angular scales. To be able to decide whether
this is the case, we report the total χ2 calculated for γ× when
compared with the null signal.

(ii) Responses: In this work, to measure the shear we make
use of the Metacalibration algorithm (Sheldon & Huff
2017; Zuntz et al. 2018). Based on this, a small known shear
is applied to the images and then the galaxy ellipticities e are
re-measure on the sheared images to calculate the response
of the estimator to shear. This can be done on every galaxy,
and the average response over all galaxies is 〈Rγ〉. Then, the
average shear is 〈γt〉 = 〈Rγ〉−1〈e〉. Moreover, the Metacal-
ibration framework allows us to also correct for selection
responses, 〈RS〉, produced due to selection effects (e.g. by
applying redshift cuts). The final response would then be
the sum of the two effects, 〈R〉 = 〈Rγ〉 + 〈RS〉. In practice,
this procedure can be performed in an exact, scale-dependent
way or be approximated by an average scale-independent re-
sponse, 〈Rγ〉. In this test, we show that this approximation
is sufficiently good by comparing the measured shear derived
from both of these methods.

(iii) LSS weights: Photometric surveys are subject to
galaxy density variations throughout the survey footprint due
to time-dependent observing conditions. This variation in the
density of the lenses must be accounted for by applying the
LSS-weights, which removes this dependence on observing
conditions, such as exposure time and air-mass. In galaxy-
galaxy lensing, since it is a cross-correlation probe, the impact
of observing conditions is small compared to e.g. galaxy clus-
tering. Therefore, in this test we compare the shear measure-
ments with and without the application of the LSS-weighting
scheme and report the difference between the two.

We show in Appendix B the results of these tests, where
we do not find significant signs of systematic effects in our
data vector.
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6 MODEL FITTING

In this section we discuss how we have performed the fit-
ting of the HOD model introduced in Section 2 to our data.
We have five HOD parameters (Mmin, σlogM , fcen, M1, α),
two parameters that correspond to the additional contribu-
tions to lensing from point-mass (M?) and the different satel-
lite spatial distribution compared to that of the dark matter
(a = csat/cdm), and three parameters to account for system-
atic uncertainties (∆zi`, ∆zis, m

i). For the MagLim sample
we have additional parameters (Σi`) that correspond to the
stretching factors of the lens redshift distributions, which are
further discussed in Porredon et al. (2021).

Our priors on these parameters are shown in Table 1.
We will discuss in Section 7 the effects of these priors and
whether they are appropriate in fitting all redshift bins. The
choice of priors on the HOD parameters was based on pre-
vious works on red galaxies (Brown et al. 2008; White et al.
2011; Rykoff et al. 2014, 2016), and is similar to the pri-
ors in Clampitt et al. (2017) but modified to better suit our
HOD parametrization. As for the ∆zi and mi parameters,
our Gaussian priors on them are the same as in Myles, Alar-
con et al. (2020) and in MacCrann et al. (2020b). The priors
we apply on M? and a = csat/cgm are derived from our tests
in Section 7.3.3.

Our full data vector for the redMaGiC sample consists
of the γt measurements to which we append the additional
data point n̄ig, the average number density of galaxies in each
lens redshift bin i, as mentioned in Section 4.1. As we discuss
in Section 7.1, the addition of this information helps control
some of the model parameter constraints. To account for this
in the covariance, we formed the full covariance matrix of
our data vector by appending to Cij the variance of n̄ig on
the diagonal, with zero off-diagonal entries. Our usage of n̄ig
effectively serves as a prior in our fits. We note here that we
do not add n̄ig in the data vector of MagLim, as we discuss
in Section 7.1.

Finally, for reasons we will discuss in more detail in Sec-
tion 7.1, we apply a prior on the satellite fraction specifically
in the highest-redshift bin we fit, namely [Lens 4, Source 4],
for the redMaGiC sample. In summary, this prior is based
on the observation that most of the galaxies in that redshift
range are expected to be central and thus we choose to use
the flat prior range [0, 0.2] for αsat. Note that a similar ap-
proach is adopted in van Uitert et al. (2011) (see Appendix C
therein) and Velander et al. (2013) for high-redshift red galax-
ies.

To sample the posterior of each data set we utilise the
Multinest5 sampler, which implements a nested sampling
algorithm (see for example Feroz et al. 2009). In our analysis
we assume that our data is generated by an underlying Gaus-
sian process, thus making its covariance Gaussian in nature.
Therefore, for data vector d of length Nd and model predic-
tion vector m of the same length we express the log-likelihood
as

lnL(θ) = −1

2
(d−m)T C−1

H (d−m) ≡ −χ
2

2
, (29)

where θ is the parameter vector of our model M and C−1
H is

the Hartlap-corrected data covariance matrix (see discussion

5 https://github.com/JohannesBuchner/MultiNest

Parameter Prior (redMaGiC) Prior (MagLim)

log(Mmin/M�) U [11, 13] U [11, 12.5]
log(M1/M�) U [12, 14.5] U [11.5, 14]

σlogM U [0.01, 0.5] U [0.01, 0.5]
fcen U [0.0, 0.3] –

α U [0.8, 3] U [0.1, 2.5]

log(M?/M�) U [9, 12] U [9, 12]

a = csat/cdm U [0.1, 1.1] U [0.1, 1.1]

∆z1
` N (0.006, 0.004) N (−0.009, 0.007)

∆z2
` N (0.001, 0.003) N (−0.035, 0.011)

∆z3
` N (0.004, 0.003) N (−0.005, 0.006)

∆z4
` N (−0.002, 0.005) N (−0.007, 0.006)

∆z3
s N (0.0, 0.006) N (0.0, 0.006)

∆z4
s N (0.0, 0.013) N (0.0, 0.013)

m3 N (−0.0255, 0.0085) N (−0.0255, 0.0085)

m4 N (−0.0322, 0.0118) N (−0.0322, 0.0118)

Σ1
` – N (0.975, 0.062)

Σ2
` – N (1.306, 0.093)

Σ3
` – N (0.870, 0.054)

Σ4
` – N (0.918, 0.051)

αsat U [0, 0.2] –

Table 1. Priors on model and uncertainty parameters. If the prior

is flat we present its range, while for Gaussian priors we list the
mean and variance.

in Section 5.2). Notice that we have neglected the constant
factors which are not useful while sampling the likelihood.

For our model fits, we report the total χ2 of our best-fit
model to the data, as a measure of the goodness of fit. Along-
side this we report the number of degrees of freedom (dof),
which we calculate as the effective number of parameters that
are constrained by the data, Neff = tr

[
C−1

Π CH
]
, subtracted

from the number of data points, Nd:

Ndof = Nd − tr
[
C−1

Π CH
]
, (30)

where the prior covariance is CΠ. We should note here that a
goodness-of-fit estimation based on finding an effective num-
ber of parameters is not always straightforward when the
parameters do not enter the model linearly, as discussed in
Section 6.3 of Joachimi et al. (2021). Therefore, our approach
of calculating a reduced χ2 using Equation (29) based on the
Ndof from (30) yields a conservative answer if model under-
fitting is the main concern.

7 RESULTS

In this section we present the results from our analysis6 Be-
fore unblinding we performed several validation tests of our
pipeline using simulations and simulated data vectors. Af-
ter the tests were successfully passed, and after unblinding
of the data, we applied our full methodology to the unblind
measurements to derive our main results. We first present
in Section 7.1 the model fits to the data and the parame-
ter constraints. We then show in Section 7.2 several derived
quantities from our model fits: the average halo mass, galaxy
bias and satellite fraction for our samples. We compare these
quantities with literature as well as estimations using only

6 In what follows we discuss our results after unblinding the data

(see Muir et al. (2020) for details on the data blinding procedure).
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Figure 6. Parameter constraints for redMaGiC using the fiducial cosmology. Combinations with the same lens bin but different source

bins are presented with the same colors (solid versus dashed).

the large, cosmological scales. Finally in Section 7.3 we per-
form a series of tests to demonstrate the robustness of our
results to various analysis choices.

7.1 Model fits

Best-fit models for all the lens-source redshift bin combi-
nations for the redMaGiC and MagLim lens samples are
shown in Figures 4 and 5 respectively, with the χ2 of the fits
and the corresponding number of degrees of freedom listed on
the plots. We show the decomposition of the different com-
ponents that contribute to the final model as described in
Section 3. The parameter constraints are shown in Figures 6
and 7, respectively. These plots only show the parameters
that are constrained by the data. The best-fit parameters are
listed in Tables D1 and D2.

From Figures 4 and 5 we observe that our model gener-
ally describes the data well between the measured scales of
0.25–250 arcmin. The χ2 per degree-of-freedom is close to 1
for most bins, with the largest value ∼ 2 for redMaGiC bin

[Lens 2, Source 4] and MagLim bin [Lens 1, Source 4], and
the smallest value ∼ 0.5 for redMaGiC bin [Lens 2, Source
3]. We do not consider this very problematic given that there
is no apparent trends in the model residuals and that these
datasets are much more constraining compared to previous
work. Nevertheless, the slightly high χ2 values could moti-
vate additional modeling improvements beyond this work.
We also note that not all the components in our model are
contributing significantly to the fit. For a detailed discussion
on how different components contribute to the model see Sec-
tion 7.3.4.

From Figures 6 and 7, we observe that the mass param-
eters Mmin and M1 are well-constrained, with Mmin for the
fourth redMaGiC bin being higher than the first three as a
result of the luminosity threshold being higher in that red-
shift bin. The satellite power-law index parameter α is also
constrained mainly by the inclusion of small scales (see dis-
cussion in Section 7.3.2). The tight degeneracy between M1

and α is expected based on Equation (2), since a higher nor-
malization M1 requires a larger α to keep αsat the same, and
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Figure 7. Same as Figure 6 but for the MagLim sample.

vice versa. The point-mass parameter, M?, is not constrained,
which means that it is not needed to improve the χ2 of the
fits. This implies that our current model for the mass distri-
bution below the scales we measure (∼ 0.25 arcmin) is not
significantly different from what the data prefers.

As a side note, we have found that the inclusion of n̄ig values
in the redMaGiC data vector (see Section 6) constrains the
fcen parameter to low values, which indicates that the model
prefers a significant number of centrals not being included
in our redMaGiC lens sample by the selection algorithm.
Without this additional information, fcen is not constrained7.
On the other hand, for MagLim since fcen = 1 we do not see

7 To understand this we need to look at Equations (7) and (9)

which define the average galaxy bias and satellite fraction, respec-
tively. Since in our HOD parametrization both the expectation

number for centrals and satellites (Equations (1) and (2)) are pro-

portional to fcen, and since n̄g ∝ fcen as well, fcen cancels out in
b̄g and αsat. It is, therefore, only through n̄g that we can constrain

fcen.

this effect and there is no need to incorporate n̄ig into the
data vector of that sample.

7.2 Halo properties

Given the model fit, we can derive a number of quantities that
describe the properties of the halos hosting the lens galaxies.
Specifically, we discuss the average lens halo mass as esti-
mated by:

〈Mh〉 =
1

n̄g

∫
dMh Mh

dn

dMh
〈N(Mh)〉 , (31)

the average satellite fraction using Equation (9) and the av-
erage galaxy bias calculated from Equation (7).

Figures 8 and 9 show the average halo mass (top panel), the
average linear galaxy bias (middle panel), and the satellite
fraction (bottom panel) for the redMaGiC and MagLim lens
samples in the four redshift bins. The points represent the
best-fit maximum posterior and the error bars represent the
68% confidence intervals from the MCMC chain. To derive
these constraints, we calculate Equations (31), (7) and (9)
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Figure 8. Redshift evolution of redMaGiC properties. Bin com-
binations with the same lenses but different sources are shown in

different markers (square for source bin 3 and circle for source bin

4) and a small offset of 0.005 between the two has been applied in
the horizontal axis to make the plot easier to read. As we discuss

in Section 3, these results assume the de-correlation parameter

Xlens = 1. Top panel: The average halo mass, compared with re-
sults from Clampitt et al. (2017) (red pentagon). Middle panel: The

average galaxy bias, compared to constraints from DES Collabo-
ration (2021) (cyan diamond). Bottom panel: The average satellite

fraction; the dashed horizontal line shows the prior on αsat applied

to the last redshift bin.

at each step of our chains to build the distributions of these
three quantities and then estimate the reported constraints.

We first focus on redMaGiC. For the average halo mass,
we compare our results with that derived in the DES Science
Verification (SV) data in Clampitt et al. (2017). The SV sam-
ple is broadly similar to the first three lens bins in terms of
the luminosity selection and number density. Note, however,
that there are some differences in the lens samples between
SV and our three lower redshift bins. In particular, the pho-
tometry pipeline and the redMaGiC code have both been
updated since SV, and the redshift bins are not identical.
With these differences in mind, our results appear broadly
consistent with Clampitt et al. (2017) in the HOD-inferred
halo mass, with roughly ∼ 2 times tighter error bars on av-
erage. We point out, however, that due to adding more free
parameters to our model compared to Clampitt et al. (2017),
our error bars should not be directly compared. Rather, we
should take into account that our error bars would be roughly
an additional factor of ∼ 1.5 tighter, had we considered the
simplified model in Clampitt et al. (2017), as illustrated in
Figure E2.

The halo mass in the first three redshift bins appears to de-
crease with redshift. A big part of this is the pseudo-evolution
of halo mass due to the mass definition we use. This effect
is also mentioned in Clampitt et al. (2017) and is studied
in Diemer et al. (2013). In short, since we use the critical
(or mean in our plots and tables) density of the universe at

Figure 9. Same as Figure 8 but for the MagLim sample.

every redshift to define the halo mass, we observe a pseudo-
evolution of our mass constraints over redshift as the refer-
ence density evolves. According to Diemer et al. (2013), from
z ∼ 0.2 to z ∼ 0.6 the pseudo-evolution of the 200ρm mass,
namely M200m, corresponds to ∆ log(M200m/M�) ∼ 0.11 for
a halo of 200ρm mass ∼ 1013.8 M� at z = 0. This can ac-
count for most of the difference between the first two bins and
the third one. Therefore, we do not find significant change in
mass beyond this pseudo-evolution. For the last redshift bin,
in addition to the pseudo-evolution in mass, we note that the
sample is more luminous (see Section 4.1) compared to the
first three bins and thus we are looking at more massive halos,
which acts opposite to the trend from the pseudo-evolution.
We point out here that the overall trend we observe in red-
shift for the mass is consistent with that seen in simulations
(see Appendix A2). As a further test, we note that we have
roughly calculated the ratio of halo mass to stellar mass for
the redMaGiC sample and found it to be a few ×102. This
result is reasonable for ∼ 3 × 1013 M�-mass galaxies, based
on stellar-to-halo mass relation constraints (for a review see
Wechsler & Tinker (2018)).

For the average galaxy bias we first compare our results
with constraints from large-scale cosmology for the same sam-
ple presented in DES Collaboration (2021). The large-scale
constraints come from combining galaxy-galaxy lensing and
two other two-point functions (galaxy density-galaxy density
correlation and shear-shear correlation) to form the so-called
3×2pt probes, so they are not expected to agree trivially.
We find that the DES Y3 3×2pt constraints on galaxy bias
is quite consistent with our HOD-inferred galaxy bias. The
main additional information that our HOD analysis adds to
the picture here is the small-scale information, which is con-
sistent with the large-scale information in galaxy-galaxy lens-
ing only (see cyan points in Figure 8) – as we will show later in
Section 7.3.2, most of the constraining power comes from the
1-halo regime and our galaxy bias constraints does not change
whether or not we include the large cosmological scales. The
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small-scale constraints are tighter than the large-scale only
constraints by a factor of roughly 5. In particular, we note
that the main improvement is not coming from the increased
signal to noise. Rather, it is the wealth of information in the 1-
halo regime that improves the constraints. The higher galaxy
bias measured for the last redshift bin, compared to the first
three bins, is mainly a result of the different selection criteria.
We remind the reader here that the galaxies which form the
last bin are selected using a higher luminosity threshold, as
discussed in Section 4.1.

For the satellite fraction, we find that our redMaGiC sam-
ple prefers a low (∼ 0.2) satellite fraction in all redshift bins
we consider. We note that this trend and the values appear
quite different from that observed in the MICE simulations
(see Appendix A2). They are, however, in good agreement
with the high-resolution Buzzard simulations (discussed also
in Appendix A2) which show an average satellite fraction of
redMaGiC which is ∼ 0.2 in all three bins. When looking at
a red galaxy sample that is likely to share characteristics with
redMaGiC, Velander et al. (2013) constrained the satellite
fraction to be small and decreasing with redshift to ∼ 0.2
or less, which broadly confirms that our constraints on the
redMaGiC satellite fraction appear reasonable.

As we have discussed in Section 3, throughout our anal-
ysis we assume the de-correlation parameter Xlens = 1. If
we were to use the best-fit value of Xlens ≈ 0.877 from the
3×2pt analysis with free Xlens our constraints would change.
Specifically, given that the galaxy-galaxy lensing signal’s am-
plitude, being multiplied by Xlens, would decrease, our bias
constraints would increase by ∼ 10%. This would also in-
crease the average lens halo mass by the same factor, and
our satellite fractions would increase too as a result. Given
our little understanding of what is causing the inconsistency
between clustering and galaxy-galaxy lensing in redMaGiC
we choose to keep Xlens fixed to 1 and have these results be-
ing our fiducial. Further investigating this issue is out of the
scope of this paper.

Next we turn our attention to the MagLim sample. By
construction, the MagLim sample is designed to be close to
a luminosity-selected sample, while maximizing the cosmo-
logical constraints when using it as lenses in galaxy cluster-
ing and galaxy-galaxy lensing. Compared to redMaGiC, this
sample does not include additional selection on color or pho-
tometric redshift. On the other hand, since it is not exactly
a luminosity selection, the physical interpretation of the red-
shift trends of this sample is not straightforward. There is
also no previous literature for comparison.

As shown in Figure 9, we find the average halo mass of
the MagLim sample to be on average lower than that of
redMaGiC, with the lower two redshift bins appear more
massive than the higher redshift bins by ∼ 30%. Contrary
to intuition, the uncertainties on the halo masses are larger
compared to redMaGiC even though the error bars on the
measurements are ∼ 4 times smaller. This is because the
priors in the nuisance parameters for MagLim is larger than
that of redMaGiC – this trend has also been seen in DES
Collaboration (2021). The galaxy bias appears quite similar
to that of redMaGiC, with the first and last bins somewhat
lower. Compared to the 3x2pt constraints we find overall good
agreement with our results, with the last bin having a slightly
higher bias in our HOD fits. Finally, we find the satellite
fraction for the MagLim sample to be ∼ 0.1 − 0.2 for all

bins, except for the third one which is significantly higher at
∼ 0.35 and not as well-constrained.

Overall, we also observe that for bin combinations that
share the same lens bin, the derived halo properties are con-
sistent when using different source bins. This is assuring and
a useful check that our model is indeed capturing properties
of the lens samples instead of fitting systematic effects.

7.3 Robustness tests

In this section we study the robustness of our results to a
number of analysis choices: cosmology, scale cuts, parameter
priors, and the addition of higher-order model components. In
particular, we are interested in how the average lens halo mass
〈Mh〉, average galaxy bias b̄gal and average satellite fraction
αsat change under the different analysis choices. We show all
the tests in this section for redMaGiC only, but we expect
similar results with the MagLim sample.

7.3.1 Robustness to cosmology

In this paper we present our main results assuming a specific
fixed cosmology, namely our fiducial cosmological values in-
troduced in Section 3. We study here the sensitivity to this
assumption. The top panel of Figure 10 shows how our results
change when two alternative assumptions for cosmology: (1)
best-fit ΛCDM parameters from Planck 2018 (Planck Collab-
oration 2020) (2) freeing σ8.

The average mass of redMaGiC galaxies and the fraction
of satellite galaxies are robust to changing the cosmological
parameters to Planck 2018. Given that these quantities are
best constrained by the small-scale information (the points
below the 1-halo to 2-halo transition), this implies that vary-
ing the cosmology, to a small degree with respect to our fidu-
cial one, leaves the 1-halo central model prediction almost
unchanged. We remind the reader here that our fiducial cos-
mology is similar to Planck with the difference that σ8 we use
is slightly lower and our Ωm is slightly higher compared to
Planck. The average galaxy bias, on the other hand, is degen-
erate with σ8 on the large scales. This means that changing
to the Planck 2018 cosmology directly changes the inferred
galaxy bias as seen in Figure 10 – using the Planck 2018 cos-
mology with a higher σ8 value results in lower values for the
galaxy bias.

Next, we allow for σ8 to freely vary within the prior range
[0.4, 1.2], fixing all other cosmological parameters to our fidu-
cial cosmology. Figure 11 presents our results for the σ8 and
galaxy bias constraints from this test for the redMaGiC
galaxy sample. In addition, we have compared the average
halo mass, galaxy bias and satellite fraction from these chains
in Figure 10 to the fiducial results. As we can see, our con-
straints on σ8 from the first three lens bins recover the fiducial
value of σ8 quite well. The last bin prefers a lower value of
σ8, and a slightly higher galaxy bias – these are still consis-
tent within 1σ though. Overall, the constraints on all these
quantities remain consistent with our fiducial ones. We can,
therefore, conclude that freeing the matter power spectrum’s
amplitude does not alter our constraints in a meaningful way.
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Figure 10. Testing the robustness of the halo properties for different cosmologies (upper panels), to applying angular scale cuts (middle
panels), and to changing the prior range on our parameters (lower panels) on the redMaGiC sample . The vertical bands correspond to

the fiducial constraints and we added them for an easier comparison with the rest of our results. Note that, to reduce the size of this figure

we have combined bins with the same lenses and different sources by presenting the mean of the best-fit values and, to be conservative,
the maximum of the error bars.

7.3.2 Angular scale cuts

Next we study how removing data points on different scales
from the fits affects our results. For these tests we first cut out
small scales by setting the minimum θ to the threshold values
θt = {2.5, 1, 0.6,−} arcmin for each lens redshift bin, after
which we find the data is not constraining enough and this
leads to nonphysical constraints and projection effects8. This
happens because using only the θ > θt scales in our fits the
total central component of γt, namely γcen

t , becomes identical
to γsat

t , the total satellite term. These two are then identical

8 Projection effect here means that when we project a multidi-
mensional parameter space to the one-dimensional posterior dis-

tributions sometimes the constraints could appear biased.

to the total shear and, therefore, the fit cannot distinguish
between the two. This means the satellite fraction cannot
be determined accurately and the other two halo properties
suffer too as a result.

To determine the maximum scale cut we can use in each
redshift bin without being dominated by projection effects we
perform the following analysis using simulated data vectors.

The simulated data vectors are produced with our model
using parameters that correspond to the best-fit maximum
posterior values from our fiducial runs on the redMaGiC
data, as they are presented in Section 7.1. We first fit all
angular scales and confirmed our pipeline can recover the
input. Next, we remove data points from the smallest scales
and repeat the fitting and analysis. We then compared both
the constraints on the model parameters and the inferred halo

MNRAS 000, 000–000 (0000)



Galaxy-halo Connection in DES Y3 19

Figure 11. Robustness to freeing σ8 for redMaGiC galaxies. We

present the joint constraints on σ8 and the derived average galaxy
bias for all redshift bins we consider. The vertical dashed line shows

the fixed value of σ8 used in our fiducial cosmology.

properties from all these runs with different scale cuts. From
this comparison we were able to identify the scale cut with
the maximum θmin which was still able to give us results
consistent with the full-scale simulated-data runs. At high
redshift the threshold θ was found to be lower since the same
angular scale corresponds to higher physical scale. This is
especially evident in the last redshift bin where we cannot
remove any of the scales since they are all needed to constrain
the HOD parameters, and it even requires the additional prior
on the satellite fraction, as discussed in Section 6, in order to
keep αsat under control.

We also test the case where we remove scales used in the
cosmological analysis, derived in Krause et al. (2021), which
we refer to as cosmological scales and we denote by θ3×2. Since
small scales are expected to provide most of the constraining
power, we put that to test by comparing our constraints from
fitting only the small scales, excluding the cosmology scales.

The middle panels of Figure 10 present our results for the
derived halo properties from applying the above angular scale
cuts on redMaGiC data. For comparison, in the same plots
we have included the vertical bands that correspond to the
fiducial chains which use the full range of angular scales. As
we can see, using the scale cuts discussed above, all our re-
sults stay consistent with our fiducial constraints. In addition
to this, we can see that the small scales-only fits are also con-
sistent with all other points. Furthermore, these fits, despite
using fewer points, can constrain all halo properties almost
as well as the full-scale runs, showcasing the rich information
contained in the small scales.

7.3.3 Effect of the priors

In our main analysis we have performed various tests on how
and whether the priors on our model parameters can have
an impact on our results. Here we demonstrate that our pa-
rameter priors are not too restrictive and informing the con-
strained parameters. For our tests in this section, we test the
sensitivity of our results when we use roughly 2 times wider
priors than that used in the fiducial analysis for all model
parameters, keeping the prior center the same.

The bottom row of panels of Figure 10 shows the inferred
halo property constraints with the widened priors compared
to the fiducial, for the redMaGiC sample. We see that the
derived parameters appear consistent. We note here, however,
that during our tests we found that small shifts in the best-
fit points can occur if the prior range changes or if it is kept
the same but the sampler starts at a different position in
parameter space. These effects are not significant, though, in
our runs and thus our results stay robust, as discussed above.

7.3.4 Model complexity

In Section 3 we described the details of the various model
components. In this section, we explain the process we have
used to decide whether or not a component has been included
in our fiducial model based on how each of them affects the
fits and the inferred halo properties.

Our fiducial framework starts with the basic HOD mod-
eling where γt is composed of the following four terms: the
1-halo central and satellite contributions γc1h

t and γs1h
t , re-

spectively, and their 2-halo counterparts γc2h
t and γs2h

t . We
will refer to the combination of these four components as
the HOD-only model. As a first step we like to see if HOD-
only can describe our data well. For the six bin combina-
tions, we find that the HOD-only model achieves reduced χ2

of {0.585, 1.144, 1.019, 2.101, 0.879, 1.119}. These fits are al-
ready good, but there is room for improvement on bin [Lens
2, Source 4] which has noticeably the worst χ2. Our fiducial
model improves the reduced χ2 over the HOD-only model by
{0.055, 0.094, 0.023, 0.030, 0.066, 0.181} for redMaGiC.

The procedure we use to determine our fiducial framework
is discussed in detail in Appendix E and goes as follows: Us-
ing the HOD-only model as a baseline we systematically in-
clude additional components and test whether the fits to the
data improve, by calculating and comparing the reduced χ2

of the corresponding data fits. In addition to a change in the
reduced χ2, we also check in each case if the inferred halo
properties change significantly as a result of adding a con-
tribution to γt. This step is intended to check if omitting a
term would introduce a bias in our constraints. Finally, we
consider whether it makes physical sense to include a com-
ponent. If a component is physically well-motivated, we may
decide to keep it even if it does not significantly improve the
fit. On the other hand, if a contribution is not well motivated
and its modeling is uncertain, we may decide to discard it
even if it makes a difference in the goodness-of-fit.

From Appendix E we decide to include the following addi-
tional modeling components to γt from the HOD-only model:
(1) Point-mass contribution; (2) Tidal stripping of the satel-
lites; (3) A concentration parameter for the satellites which
is different from that of the dark matter’s distribution; (4)
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Magnification of the lenses. This is the fiducial model which
we used to derive the main results in Section 7.

As a further note, the particular choice of the HOD model
itself is another aspect of the full model that can be much
more complex than, or different from, what we used in this
work as described in Section 2.1. To that end, we experi-
mented with various treatments of the galaxy-halo connec-
tion and did not find that adding additional parameters to
it or modifying its parametrization made a significant differ-
ence to our results. Specifically, we have tested the following
modifications to our fiducial HOD. We modified the satel-
lite HOD, 〈Ns(Mh)〉 of Equation (2), by multiplying it by an
exponential cutoff exp(Mh/Mcut), with mass cutoff Mcut, fol-
lowing, for example, Leauthaud et al. (2011); Zu & Mandel-
baum (2015) where the authors expanded the standard HOD
to include the stellar mass function in a robust framework
to study the galaxy-halo connection. Another similar vari-
ance of the HOD model we tested was to modify the satellite
terms by replacing (Mh/M1)α by [(Mh − M0)/M1]α, as in
Guo et al. (2016) for instance where the HOD was compared
to subhalo matching in order to determine which describes
better the clustering statistics in SDSS DR7, where we in-
troduce the additional mass cutoff parameter M0, setting
〈Ns(Mh)〉 to zero if Mh/M0 < 1. We, furthermore, tested
altering the satellite term by not multiplying 〈Ns(Mh)〉 by
fcen, considering this parameter only through 〈Ns(Mh)〉, as
in Clampitt et al. (2017). Finally, we modified our model
by decoupling the satellites from the central galaxies, setting
〈Ns(Mh)〉 = (Mh/M1)α, thus not multiplying the satellite
term by the number of central galaxies. These variants of
the HOD framework we tested did not significantly alter our
results.

We also compare our HOD modeling choices to previous
literature. For instance, Clampitt et al. (2017), which per-
formed an HOD study on redMaGiC galaxies from the DES
SV data, used a basic HOD model that was sufficient to fit
their data, given that their statistical uncertainties were much
larger compared to this work and the range of scales used
was narrower. In another study, Velander et al. (2013) used
154 deg2 of CFHTLenS lensing data, splitting galaxies into
blue and red, and considered a more complex model where
they included the effects from baryons as a point-mass source
and satellite stripping, similarly to our work, although they
did not use the full five-parameter HOD model we employ
here but rather one similar to Mandelbaum et al. (2005) that
fixes the satellite power-law index. Therefore, compared to
both Velander et al. (2013) and Clampitt et al. (2017) we
have used a more complex model which, although increased
our error bars on the parameter constrains, was required to
capture the features of our more constraining data. In ad-
dition to that, we have taken into account systematic uncer-
tainties by introducing the ∆zi and mi parameters (discussed
in Section 6) which further increased our error bars.

8 SUMMARY AND DISCUSSION

In this work, we have carried out a detailed analysis on mod-
elling the small-scale galaxy-galaxy lensing measurements for
the two lens samples redMaGiC and MagLim using a Halo
Occupation Distribution (HOD) framework. Our lens sam-
ples were divided into four tomographic bins each spanning a

redshift range about 0.2–0.9. In this work we have extended
the measurements in Prat et al. (2021) to smaller scales, to-
talling 30 logarithmic bins in angular scales from 0.25 to 250
arcmin (physical scales from ∼ 70 kpc in the lowest redshift
bin to ∼ 110 Mpc in the highest redshift bin). Our main
findings are:

• These measurements increase the signal-to-noise of our
measurements by a factor of 2-3 compared to the signal-to-
noise from scales used by cosmology analyses.
• We constrain the average halo mass of our redMaGiC

(MagLim) sample to ∼ 1013.6 M� (1013.4 M�) in the low-
est redshift bin and ∼ 1013.3 M� (1013.3 M�) at the high-
est redshift bin. The uncertainty on these mass constraints
are about ∼ 15%. The redMaGiC constraints are consistent
with previous work in Clampitt et al. (2017). The halo masses
of MagLim are overall lower compared to redMaGiC, espe-
cially at lower redshift.
• We constrain the average linear galaxy bias for the red-

MaGiC (MagLim) sample to be ∼ 1.7 (1.5) at low redshift
and ∼ 2.1 (2) at high redshift. Our results are consistent with
those inferred only from the large scales from DES Collabo-
ration (2021), but with about 5 times smaller uncertainties
due to the small-scale information.
• We constrain the satellite fraction for the redMaGiC

(MagLim) sample to be 0.1 − 0.2 (0.1 − 0.3) with no clear
redshift trend. Our redMaGiC results appear to be in agree-
ment with other studies which measured the satellite fraction
of red galaxies, e.g. in Velander et al. (2013). Our results for
MagLim, which consists of a more wide variety of galaxies
than redMaGiC, also appear reasonable and in agreement
with studies like Mandelbaum et al. (2006b); Coupon et al.
(2012); Velander et al. (2013). In these studies, the authors
concluded that the fraction of satellite galaxies is reducing
with increasing halo mass and that αsat is roughly what our
constraints point to.

Motivated by the increased signal-to-noise, we consider ad-
ditional model complexity on top of the basic HOD frame-
work: a point-mass component, stripping of the satellites of
their outer dark matter, magnification of the lenses, and mod-
ifying the spatial distribution of the satellite galaxies by vary-
ing its concentration parameter with respect to the distribu-
tion of dark matter in the lens halos. Using this model we
were able to obtain good fits to the measurements over all an-
gular scales and for all redshift bins we considered. We note
that two out of twelve bin combinations show a best-fit χ2

per degree-of-freedom ∼ 2, which could motivate additional
modeling developments for the future, or indicate some resid-
ual systematic effect that is not well understood.

To further test our analysis, we have preformed various
tests where we vary parts of our modeling and fitting pro-
cedure to make sure that our results remain robust under
small changes around the fiducial framework. We tested the
sensitivity of our results to the assumption of cosmology, the
angular scales used in the model fit, and the width of our
priors – we find that our results are robust to these changes.

There are a number of limitations in our analyses that we
point out here for the readers to appropriately interpret our
findings. First, in Appendix A2 we showed a series of tests
that we performed using available simulations. However, the
resolution of these simulations were insufficient for us to con-
clusively validate our model and methodology on scales deep
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in the 1-halo regime. That is, it is plausible that our fidu-
cial model, although well-fitted to the data, is not the true
description of the galaxy-halo connection. Higher resolution
simulations exist (Nelson et al. 2019, Illustris TNG), but the
simulation volume is much smaller and to exactly match our
sample we would require running the redMaPPer algorithm
on the simulations. We point these out both as caveats for
interpreting our results and as inspirations for future studies.
The second element that would benefit from future advances
is the modeling of the covariance matrix. An analytic covari-
ance model on this large range of scales is possible to calcu-
late, but there are differences in the halo-model assumptions
and HOD parametrization between the existing covariance
modeling (Friedrich et al. 2020) and our assumptions. Fur-
thermore, we would need to find a sophisticated way of treat-
ing the HOD in the analytic covariance calculations, given
that the HOD is what we are constraining in our analysis and
we thus should avoid the resulting circularity. As a result, we
have adopted a data-based Jackknife covariance, which has its
own issues of being noisy and often overestimated (Friedrich
et al. 2016). This is an area of active research and it would
be interesting for future studies to re-analyze this data using
a more advanced covariance model. Finally, as we mention in
Section 3.6, in our analysis an accurate and tested model for
IA is missing in the 1-halo regime. Therefore, although we
found that our simple IA model to contribute insignificantly
in our analysis (see relevant discussion in Section 7.3.4), it is
plausible that a more accurate IA model could have a larger
effect on the full model fit. This again can serve as a starting
point for exploration of better IA models in the 1-halo regime,
now that our data is becoming sufficiently constraining.

In this work we established a framework to systematically
explore a number of modeling choices in the galaxy-galaxy
lensing signal from deep in the 1-halo regime to the cosmo-
logical 2-halo regime. Many of these effects were ignored in
earlier work as the statistical uncertainties were large relative
to these effect. In the final DES Y6 dataset we expect 1.5-
2 times more source galaxies and a reach to higher redshift
for the lens sample, which will allow us to further test the
different model components. What we learn will feed into fu-
ture analyses with the Rubin Observatory’s Legacy Survey of
Space and Time, the Nancy Roman Space Telescope and the
ESA’s Euclid mission. We expect these future datasets to be
qualitatively different in terms of data quantity and quality,
and a combination of modeling techniques (HOD models like
what we studied here, hydrodynamical simulations and emu-
lator approaches) will be needed to understand how galaxies
and dark matter halos are connected at the very small scales.

APPENDIX A: MODEL VALIDATION

In this appendix, we present tests validating our modeling
code using both external code and numerical simulations.

A1 Comparison with DES cosmology pipeline

As part of validating our code we have done thorough com-
parisons with CosmoSIS (Zuntz et al. 2015). CosmoSIS is
the official code basis for DES cosmological analyses. As a re-
sult, it is important to establish consistency with CosmoSIS
on the regimes used for cosmology analysis, effectively the

2-halo regime. We compare the galaxy-cross-matter power
spectrum Pgm, the projected lensing power spectrum Cgm

and the tangential shear γt. For this purpose we used con-
stant galaxy bias values within a redshift bin to match the
predictions from CosmoSIS at large scales, θ & 30 arcmin.
In Figure A1 we present the residuals between what our code
produces and CosmoSIS. For our comparisons we have used
the same n(z) distributions and cosmological parameters in
both CosmoSIS and our code. The parameter and bias val-
ues we used for this comparison are listed in the caption of
Figure A1. We note here that the cosmology, bias and red-
shift distributions we used are not the same as what is used
or derived from the main analysis of this work.

The first panel of Figure A1 validates that our implemen-
tation of the Eisenstein & Hu (1998) fitting functions for the
linear matter power spectrum and our usage of Halofit to
calculate the nonlinear spectrum is in good agreement with
the results from CosmoSIS which uses CAMB for the linear
spectrum prediction and Halofit to apply non-linear correc-
tions to it. Going from Pgm to Cgm in the second panel we are
also testing whether our treatment of the redshift distribu-
tions in our averaging procedure works as expected. Finally,
to translate Cgm into γt and thus go from the second to the
third panel we are confirming that our code is in agreement
with CosmoSIS when transforming to real space. Note also
that CosmoSIS is using the full-sky formalism to calculate
the tangential shear, while we opt for the Hankel transform,
i.e. flat-sky approximation, approach to gain in speed. How-
ever, for the angular scales we are interested in we have tested
both approaches to confirm that the flat-sky approximation
is sufficient, which is what the last panel of Figure A1 essen-
tially demonstrates.

The upper and middle panels of Figure A1 show that our
galaxy-dark matter cross power spectrum and, as a result, the
projected lensing power spectrum, respectively, appear to be
systematically lower than the CosmoSIS output. We trace
that to a difference in the matter power spectrum from the
two codes, as we are utilizing the Eisenstein-Hu fitting func-
tions to calculate the dark matter transfer function whereas
CosmoSIS is calling CAMB to evolve the primordial spec-
trum. Moreover, the presence of baryonic acoustic oscilla-
tions complicate the spectrum and the residuals appear worse
around the scales that correspond to these wiggles. In addi-
tion to that, the calculation of Cgm involves the multiplication
of Pgm by geometrical factors (Equation (14)). CosmoSIS is
using a constant value in each redshift bin for Σ−1

c , while we
are calculating that quantity as a function of redshift within
a given bin, which leads to more differences in the resulting
lensing power spectra when averaging over the n(z) distri-
butions. Overall, we find a non-significant ∼ 2% deviation
in Cgm and we also find a good overall agreement to within
∼ 2% for the tangential shear outputs.In order to quantify
the impact on our the derived halo properties from using the
EH98 functions instead of CAMB we have produced a sim-
ulated data vector using CAMB which we then fitted with
our fiducial model. From this test we found that the galaxy
bias is recovered to ∼ 1% accuracy, while the halo mass and
satellite fraction is unchanged. To take this into account we
have incorporated this uncertainty into our error bars on the
galaxy bias from our main analysis.
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Figure A1. CosmoSIS code comparison residuals for Cgm(`) and γt(θ) for 6 bins of interest. The bias values per each of the four lens
bins [1, 2, 3, 4] are b̄g = [1.2, 1.6, 1.7, 1.7] respectively. For the first panel we have used the mean redshift of each lens redshift bin to

calculate and compare the galaxy-matter cross power spectra. The other two panels show the projected power spectrum and tangential

shear comparison for the average over the redshift distributions. These comparisons are done using the following parameters for a flat
ΛCMD cosmology: Ωm = 0.25, Ωb = 0.044, σ8 = 0.8, n5 = 0.95, H0 = 70 km/s/Mpc and Ων = 0. Furthermore, note that the redshift

distributions, n(z), are not the same as what we used throughout this paper, but both our and the CosmoSIS results used the same n(z)
for lenses and sources.

A2 Validation against simulations

Although a full end-to-end simulation test is not possible due
to the limitations of existing simulations (resolution in mass,
spatial resolution in ray-tracing, galaxy selection, etc.), we
can validate different components of our analysis pipeline
with simulations to ensure robustness of our results.

First, we test whether our fiducial HOD model (Equa-
tions (1) and (2)) is sufficiently flexible to describe the un-
derlying HOD of the lens galaxy sample. We note that this is
not trivial especially for redMaGiC given the particular se-
lection used in the algorithm (see Section 4.1). We check this
by measuring the HOD from a set of high-resolution Buz-
zard mock galaxy catalog (DeRose et al. 2019), and fit the
HOD with our fiducial model. A redMaGiC sample is con-
structed from the mocks using the same algorithm as applied
to data, and should capture qualitatively the characteristics
of the redMaGiC sample. Figure A2 shows the measurement
from the mocks together with our fit using Equations (1)
and (2). We find that our model describes qualitatively the
redMaGiC HOD well. The inferred satellite fraction from
the fits to the Buzzard HOD is ∼ 0.2.

Next, we perform a series of tests with the MICE simula-
tions (Fosalba et al. 2015; Fosalba et al. 2015; Crocce et al.
2015; Carretero et al. 2015). The galaxies in the MICE simu-
lations are populated according to a given HOD. This makes
a similar a priori test as what was described above for Buz-

zard slightly circular. We can, however, perform a number of
other tests. First, for given HOD of galaxy samples, we check
if our derived halo mass, galaxy bias, satellite fraction and
galaxy number density agrees with what is measured directly
from the simulations. Figure A3 shows these comparisons.
As we can see, our calculations are in good agreement with
the MICE measurements, although they differ slightly. The
trends followed by the points as a function of redshift, how-
ever, are always in very good agreement.

Second, for given HOD parameters and redshift distribu-
tions, we can compare our model prediction for γt with the
measurements from the mock galaxy catalog. This is shown
in Figure A4 for six lens-source redshift bin combinations,
as indicated in each panel. The large-scale measurements are
generally in good agreement compared to the model predic-
tion, especially for the higher lens redshifts. The small scales
in each panel, however, are always in tension. Specifically,
the measured γt is consistently lower than the model. Part of
the explanation for this is the mass resolution in MICE which
limits what we can measure, thus leading to lower signal. This
could also explain why the large-scale agreement is worse at
the lowest redshift bin (Lens 1), since the same angular scale
corresponds to smaller objects at low redshifts compared to
higher redshifts. However, we do not expect this to be a big
limitation in our case, given the big masses of redMaGiC
galaxies. More importantly, the dominant factor of the small-
scale disagreement is that in MICE the galaxy positions do
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Figure A2. Fits to the HOD measured from Buzzard high-
resolution. Each panel corresponds to a different redshift bin. We

fit the HOD directly using our model for central (magenta squares)
and satellite (orange triangles) galaxies, as well as the total number

of galaxies (blue points). The three panels, from top to bottom, cor-

respond respectively to the following redshift bins: z ∈ [0.0, 0.32],
[0.32, 0.84], [0.84, 2.35].

Figure A3. Comparison between average halo mass, galaxy bias,

satellite fraction and galaxy number density from our model pre-
diction (blue points) and the corresponding measured quanti-

ties from MICE (orange squares) for the first four lens redshift
bins. The HOD parameter vector (log10 Mmin, log10 M1, α, fcen,
σlogM ) used in the calculations are, for all 4 redshift bins respec-
tively, (12.38, 12.61, 0.73, 0.18, 0.5), (12.15, 12.74, 0.84, 0.16, 0.22),

(12.16, 12, 72, 0.85, 0.17, 0.27), (12.51, 13.3, 0.82, 0.2, 0.26).

Figure A4. Comparison of the measured γt as a function of θ

in MICE simulations (points) and our model prediction (lines) for

the lens-source redshift bins indicated in each panel. The HOD pa-
rameters used for each model line are the input to the simulations

and are listed in the panels of Figure A3.

not correlate exactly with the underlying dark matter distri-
bution. Instead, galaxies and dark matter trace each other
on the mean, which could lead to small 1-halo power spec-
trum, and thus γ1h

t , measurements. We have checked that the
scales where we see the largest disagreement correspond to
the 1-halo regime in each redshift bin.

APPENDIX B: RESULTS FROM SYSTEMATICS
DIAGNOSTICS TESTS

In this appendix we present the results from the diagnostic
tests we describe in Section 5.3, following the methodology
from Prat et al. (2021). Figures B1 and B2 show a summary
of all these tests for redMaGiC and MagLim respectively,
which include: the cross component, LSS weights and the
responses. We also include the boost factor on this plot as
discussed in Section 5.1. In the figures we also list the χ2

between each curve, and the null hypothesis, using the co-
variance matrix of our γt measurements. We discuss below
our findings for each test.

Cross component: The measurements of γ× at large scales
are consistent with zero. At smaller scales, below a few ar-
cmin, γ× fluctuates around zero, roughly within the error
bars. The most noticeable exception is bin [Lens 1, Source
4] for which the smallest-scale measurements for the cross
component get close approaches ∼ 0.004. Considering that
at small scales the level of noise increases, we do not find the
behavior of γ× worrisome. Furthermore, the reduced χ2, even
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Figure B1. Systematics tests, as discussed in Section 5.3, for
the redMaGiC sample. Boosts: Comparison of γt with and with-

out applying the boost factor correction; Cross component: The

cross-component of shear; Responses: Effect from using the scale-
dependent responses compared to applying the average responses

in each angular bin; No LSS weights: Effect from not applying the

LSS weights to correct for observing conditions; Gray area: The
error bars on the shear measurement. In each panel we also list the

χ2 between each test and the null, using the covariance of our γt
measurements. The number of points for each of the lines is 30.

for bin [Lens 1, Source 4], is close to 1, which indicates the
absence of significant problems.

Responses: Based on our results, when we compare our
fiducial measurements which use a scale-averaged response
per bin versus the same measurements when the exact scale-
dependent responses are utilised, we find no strong evidence
for disagreement between the two methods. In all the bins
that we use in this work, this difference is subdominant to
the statistical uncertainties, and the reduced χ2 values always
very small. We, therefore, conclude that our analysis based on
the scale-averaged responses is good enough for our purposes.

LSS weights correcting for observing conditions: Compar-
ing the measured shear with and without applying the LSS
weights leads to no significant differences, as also indicated
by the very small reduced χ2 of each panel. This is shown by
the fact that the difference between the two is always close
to zero and smaller than our error bars. Thus, we find no
problems with this test.

APPENDIX C: HALO EXCLUSION

In this appendix we discuss the effect of incorporating Halo
Exclusion (HE) into our modeling. Based on HE, halos that

Figure B2. Same as Figure B1 but for the MagLim sample.

overlap with each other are excluded from the 2-halo compo-
nents of the galaxy-galaxy lensing model prediction, in order
to avoid double counting. There are many different prescrip-
tions for HE in the literature, some of which can be very
computationally expensive. Some authors (e.g. Zheng 2004;
Tinker et al. 2005; Yoo et al. 2006) adopt the approach of
choosing the appropriate upper limits to the halo masses
when integrating over the mass function in Equations (10)
and (11). The maximum masses, namely Mh1 and Mh2, in
these models, under the spherical-halo assumption, satisfy
the requirement that the distance between the centers of
the halos, r12, is at least equal to the sum of their radii,
R200c(Mh1) + R200c(Mh2) ≤ r12. Since this prescription is
usually very computationally intensive, simplified versions of
HE have been suggested (e.g. Magliocchetti & Porciani 2003;
Cacciato et al. 2009) which capture the effects of HE while
making the computations more efficient.

We follow a simplified approach in this appendix based
on the following prescription. For a given redshift bin of our
lens sample and a set of HOD parameters, we estimate the
average lens halo mass, 〈Mh〉, based on Equation (31) and
the radius 〈Rh〉 ≡ R200c(〈Mh〉) it corresponds to. When then
set the correlation function of the central 2-halo component,
ξc2h
gm (r), to −1 for r < 〈Rh〉. Since the HE effect is stronger

in the central 2-halo term (Cacciato et al. 2009), compared
to the satellite 2-halo component ξs2hgm , we did not apply HE
on ξs2h

gm . Figure C1 shows the fractional differences between
the fiducial constraints on the average lens halo mass, galaxy
bias and satellite fraction, and the constraints from fits that
take halo exclusion, as described above, into account. We find
that our results do not change significantly between the two
cases. We also did not find a significant difference in the χ2
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Figure C1. Effect on our average lens halo mass, galaxy bias
and satellite fraction constraints when halo exclusion is considered

in our fits. This plot presents the fractional differences between

the constraints from our fiducial fits and runs where we take into
account halo exclusion, denoted by the ”HE” superscript.

of our fits. We therefore do not include halo exclusion in our
fiducial model.

APPENDIX D: CONSTRAINTS FOR ALL
MODEL PARAMETERS

In Tables D1 and D2 we summarise the best-fit parameters
and derived quantities for the redMaGiC and MagLim sam-
ples, respectively. We report the best-fit model parameters
and the constraints on the average halo mass, linear galaxy
bias and satellite fraction. The error bars show the 1σ poste-
riors.

APPENDIX E: MODEL COMPLEXITY

In Section 7.3.4 we discuss how adding complexity to our
model changes our results. In this appendix we provide de-
tails on our tests that led us to deciding what our fiducial
framework is in this paper.

In Figure E1 we show for all redMaGiC redshift bins the
fractional differences between the best-fit γt using the HOD-
only model and the HOD-only model plus one additional con-
tribution at a time. This plot shows how adding various terms
to γt changes the best-fit model as a function of θ, providing
more information than the difference in χ2. Figure E2 shows
the constraints on the average halo mass, galaxy bias and
satellite fraction corresponding to these fits, with the vertical
bands representing the constraints from our fiducial runs and
each point shows the constraints from adding an additional
contribution to the model. In the same plot we also report

in parenthesis the difference in goodness-of-fit as the differ-
ence in the reduced χ2 between each tested model and the
HOD-only fits.

Although adding complexity to the basic HOD-only model
is informative, we point out that interactions between addi-
tional terms, when more than one of them are considered, can
have a much different net effect. Due to the large number of
combinations we could explore, it was not feasible to do this
full analysis, but we also note that we did not have strong
indications that specific combinations of model components
lead to radically different results in our fits or halo property
constraints. To test for that, as a complement to our tests in
Figure E2, we have performed a test where we start from the
full model which includes all additional contributions from
Section 3, removing one component at a time and re-fitting
the data. Figure E3 presents our findings from this test.

Below we discuss the effect of each contribution to the
model fits separately when we simply add it to the basis of
only HOD or remove it from the full model with all γt terms.

Point mass (PM): We find that the PM component mostly
affects the small scales in the first lens bin, with the largest
effect being ∼ 10% at the smallest angular scales. This is
due to the fact that the smallest angular bins of that redshift
bin correspond to the smallest physical scales we consider in
this work. We have included PM in our fiducial model as a
conservative approach to account for modeling uncertainties
at scales below what we measure.

Satellite strip: The effect from striping of satellite galaxies
to γt can make a quite significant change on the constraints in
some redshift bins, especially in the last one. This component
also introduces a nice physical picture to our modeling – it
captures the tidal interactions between the central galaxy and
the substructure in the lens halos. We have included this term
in our fiducial model.

Satellite galaxy concentration parameter: Allowing for the
concentration parameter for the spatial distribution of the
satellite galaxies to vary mostly affects the bias constraints.
This is because a = csat/cdm modifies the shape of the satel-
lite terms in the 1-halo regime making the model more flexible
and able to better fit small and large scales at the same time,
which forces the large-scale bias to change and adjust accord-
ingly. Furthermore, as discussed in Section 3.1, there is good
motivation to allow the concentration of the satellite-galaxy
distribution to be different from that of the dark matter’s dis-
tribution. We have included this term in our fiducial model.

Lens magnification: The effect of lens magnification be-
comes stronger at higher redshift bins. Especially in the [Lens
4, Source 4] bin it can have a large impact on the final con-
straints, even on the halo mass, which is overall the most ro-
bust to changes in the model. Furthermore, magnification of
lenses is well-motivated and its modeling is straightforward.
Our magnification model only depends on fixed coefficients,
as discussed in Section 3.5 and therefore does not introduce
free parameters. We have included this term in our fiducial
model.

Intrinsic alignment: Despite the uncertainty in the IA
model in the 1-halo term (see discussion in Section 3.6), we
test here this term’s contribution to our fits. We find that
the change in the best-fit model can be heavily impacted as a
function of angular scale by this component. The constraints
can also be significantly affected by IA. In particular, lens bin
2 is mostly affected by the addition of IA to our basis HOD
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redMaGiCredMaGiCredMaGiC

Redshift bin log(Mmin/M�) log(M1/M�) σlog M α fcen log(M?/M�) csat/cdm log(Mh/M�) b̄gal αsat

Lens 1

Source 3
11.97+0.08

−0.07 13.51+0.16
−0.17 0.26+0.15

−0.15 1.88+0.26
−0.27 0.12+0.02

−0.02 11.18+0.74
−0.75 1.09+0.28

−0.29 13.66+0.06
−0.06 1.73+0.03

−0.03 0.16+0.05
−0.05

Lens 1

Source 4
12.13+0.09

−0.08 13.64+0.16
−0.15 0.50+0.15

−0.16 2.06+0.26
−0.25 0.13+0.02

−0.02 11.09+0.70
−0.79 0.99+0.27

−0.29 13.67+0.06
−0.05 1.71+0.03

−0.04 0.13+0.04
−0.04

Lens 2

Source 3
12.03+0.08

−0.08 13.79+0.17
−0.16 0.34+0.14

−0.16 2.61+0.34
−0.33 0.13+0.02

−0.02 9.77+0.63
−0.61 1.08+0.25

−0.26 13.59+0.07
−0.07 1.83+0.03

−0.03 0.08+0.03
−0.04

Lens 2

Source 4
12.08+0.08

−0.08 13.73+0.12
−0.11 0.49+0.14

−0.16 2.48+0.25
−0.25 0.13+0.01

−0.01 9.48+0.64
−0.62 1.08+0.22

−0.23 13.59+0.05
−0.05 1.81+0.03

−0.03 0.09+0.02
−0.02

Lens 3

Source 4
11.86+0.09

−0.08 13.18+0.12
−0.11 0.42+0.14

−0.15 1.65+0.18
−0.17 0.08+0.01

−0.01 10.92+0.62
−0.62 0.65+0.22

−0.21 13.36+0.04
−0.04 1.86+0.03

−0.03 0.18+0.03
−0.03

Lens 4

Source 4
12.16+0.12

−0.11 13.26+0.19
−0.19 0.46+0.12

−0.13 1.59+0.24
−0.24 0.06+0.03

−0.02 11.01+0.58
−0.59 0.71+0.24

−0.23 13.27+0.09
−0.07 2.12+0.06

−0.06 0.19+0.06
−0.06

Table D1. Statistical analysis summary of the chains for Y3 unblind redMaGiC data (30 data points) using the fiducial cosmology; the
average halo masses shown here use the 200ρm-based definition. The error bars correspond to the 1σ posteriors.

MagLimMagLimMagLim

Redshift bin log(Mmin/M�) log(M1/M�) σlog M α log(M?/M�) csat/cdm log(Mh/M�) b̄gal αsat

Lens 1

Source 3
11.74+0.05

−0.05 13.32+0.19
−0.20 0.27+0.12

−0.12 1.66+0.31
−0.30 11.26+1.09

−1.10 0.41+0.23
−0.22 13.44+0.07

−0.07 1.57+0.03
−0.03 0.14+0.04

−0.04

Lens 1

Source 4
11.76+0.08

−0.07 13.41+0.20
−0.21 0.29+0.15

−0.15 1.74+0.30
−0.31 9.38+0.86

−0.89 0.76+0.27
−0.27 13.43+0.09

−0.10 1.54+0.03
−0.03 0.12+0.06

−0.05

Lens 2

Source 3
11.96+0.07

−0.06 13.44+0.12
−0.11 0.26+0.14

−0.14 1.82+0.22
−0.21 10.83+1.08

−1.12 0.63+0.30
−0.28 13.46+0.04

−0.04 1.84+0.04
−0.04 0.14+0.03

−0.03

Lens 2

Source 4
11.91+0.08

−0.07 13.42+0.12
−0.13 0.30+0.15

−0.15 1.85+0.17
−0.18 8.50+0.94

−0.94 1.07+0.28
−0.26 13.45+0.04

−0.04 1.82+0.05
−0.04 0.13+0.05

−0.04

Lens 3

Source 4
11.88+0.09

−0.09 12.84+0.31
−0.30 0.21+0.14

−0.14 1.24+0.24
−0.23 8.59+0.96

−0.96 0.21+0.25
−0.24 13.27+0.06

−0.05 1.99+0.04
−0.04 0.37+0.13

−0.13

Lens 4

Source 4
11.82+0.10

−0.10 13.44+0.17
−0.15 0.31+0.14

−0.15 2.29+0.24
−0.24 8.53+1.06

−1.04 1.19+0.29
−0.31 13.31+0.05

−0.05 2.01+0.04
−0.05 0.09+0.03

−0.04

Table D2. Similar to Table D1 but for the MagLim sample.

model, and the largest effect is noticed on large scales. This
is caused by a combination how much overlap in the n(z)
distributions of the lenses and sources there is and how much
of the 1-halo component we can observe in lens bin 2. Since
a significant number of points in that bin’s measurements
belong to the 1-halo regime, if the HOD-only model cannot
describe both small and large scales well at the same time,
the added model flexibility from the inclusion of IA essen-
tially accounts for that and improves the model fit. However,
after adding other needed model complexity, besides IA, this
effect is ameliorated and IA becomes negligible for the spe-
cific lens-source bin combinations we consider in this work.
Therefore, and given that we do not trust that our modeling
of IA is accurate at small scales, we decide to not take this
term into account as part of our fiducial framework.

As a general note, we find that the constraints in the fourth
bin are mostly affected by additional contributions to γt,
while overall the bias constraints are the most sensitive to
changes in our model. We note that our fiducial framework
is effectively the “All-IA” model.
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Figure E2. Testing the robustness of the halo properties to adding complexity to our model. We begin from our basic HOD-only model

and we add one additional component to it at a time. In parenthesis we report the difference in the reduced χ2 between the best-fit
HOD-only and the tested model fit. The vertical bands correspond to our constraints from the fiducial model and are added here for a

direct comparison with our tests. Note that, to reduce the size of this figure we have combined bins with the same lenses and different

sources by presenting the mean of the best-fit values and, to be conservative, the maximum of the error bars.
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Figure E3. Testing the robustness of the halo properties to adding complexity to our model. We begin from our basic HOD-only model
and we add one additional component to it at a time. In parenthesis we report the difference in the reduced χ2 between the best-fit from

the runs with all components included and each tested model. The vertical bands correspond to our constraints from the fiducial model
and are added here for a direct comparison with our tests. Note that, to reduce the size of this figure we have combined bins with the

same lenses and different sources by presenting the mean of the best-fit values and, to be conservative, the maximum of the error bars.
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Heymans, C., Tröster, T., Asgari, M., et al. 2021, A&A, 646, A140

Hirata, C. M. & Seljak, U. 2004, Phys. Rev. D, 70, 063526

Hoekstra, H., Yee, H. K. C., & Gladders, M. D. 2004, ApJ, 606,

67

Hudson, M. J., Gillis, B. R., Coupon, J., et al. 2014, MNRAS, 447,

298

Huff, E. & Mandelbaum, R. 2017, arXiv e-prints, arXiv:1702.02600

Jarvis, M., Bernstein, G., & Jain, B. 2004, MNRAS, 352, 338

Joachimi, B., Semboloni, E., Hilbert, S., et al. 2013, MNRAS, 436,
819

Joachimi, B., Lin, C. A., Asgari, M., et al. 2021, A&A, 646, A129

Kaufman, G. M. 1967, Center for Operations Research and Econo-
metrics Discussion Paper, 44

Krause, E. & Eifler, T. 2017, MNRAS, 470, 2100

Krause, E., Eifler, T. F., Zuntz, J., et al. 2017, arXiv e-prints,
arXiv:1706.09359

Krause, E. et al. 2021, To be submitted to MNRAS

Kuijken, K., Heymans, C., Hildebrandt, H., et al. 2015, MNRAS,
454, 3500

Kwan, J., Sánchez, C., Clampitt, J., et al. 2016, MNRAS, 464,
4045

Lange, J. U., Leauthaud, A., Singh, S., et al. 2021, MNRAS, 502,
2074

Lange, J. U., Yang, X., Guo, H., Luo, W., & van den Bosch, F. C.
2019, MNRAS, 488, 5771

Leauthaud, A., Tinker, J., Behroozi, P. S., Busha, M. T., & Wech-
sler, R. H. 2011, ApJ, 738, 45

Leauthaud, A., Saito, S., Hilbert, S., et al. 2017, MNRAS, 467,
3024

Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473

Lin, Y.-T., Mohr, J. J., & Stanford, S. A. 2004, ApJ, 610, 745

MacCrann, N., Blazek, J., Jain, B., & Krause, E. 2020a, MNRAS,
491, 5498

MacCrann, N., Becker, M. R., McCullough, J., et al. 2020b, arXiv

e-prints, arXiv:2012.08567

Magliocchetti, M. & Porciani, C. 2003, MNRAS, 346, 186

Mandelbaum, R., Seljak, U., Cool, R. J., et al. 2006a, MNRAS,

372, 758

Mandelbaum, R., Seljak, U., Kauffmann, G., Hirata, C. M., &
Brinkmann, J. 2006b, MNRAS, 368, 715

Mandelbaum, R., Slosar, A., Baldauf, T., et al. 2013, MNRAS,
432, 1544

Mandelbaum, R., Tasitsiomi, A., Seljak, U., Kravtsov, A. V., &
Wechsler, R. H. 2005, MNRAS, 362, 1451

McDonald, P. & Roy, A. 2009, Journal of Cosmology and Astropar-

ticle Physics, 2009, 020
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