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Abstract

The paper presents theoretical propositions for modeling the
expert radiologist. The propositions are twofold. First, a basic
model is given to complement a recent connectionist symbolic
framework (Raufaste, Eyrolle, & Mariné, 1998). Empirical
data have showed dissociation between two kinds of experts
(“basic™ and “super”) with regard to cognitive flexibility. The
difference is conceived as a kind of perseveration in basic
experts. Hence, the basic model was combined with a
Supervisory Attentional System (Norman & Shallice, 1986)
into an “extended model”. An analysis of cognitive activity is
then presented within this framework, along with a new
theoretical explanation of cognitive flexibility.

Modeling the expert radiologist

The Need for a Connectionist-Symbolic Approach

A well-documented ability in expert physicians is early
selection of pertinent diagnostic hypotheses (Elstein,
Schulman & Sprafka, 1978). In radiology, perceptual
processes have a dramatic importance (Lesgold et al., 1981),
However, a search time study suggested the existence of
two components, the earlier rapid, and the latter slow
(Christensen et al., 1981). It has been proposed that a
“visual concept” shapes perception (Kundel & Nodine,
1983). Hence, the first component might be more plausibly
described by a connectionist approach. But medical
diagnosis is a complex task that requires a lot of deliberate
reasoning, so it seems also necessary to have a symbolic
layer. Empirically, Lesgold et al. (1988) found a
nonmonotonic performance curve on some films: Novices
(1- and 2-year residents in radiology) sometimes performed
better than intermediates (3- and 4-year residents in
radiology). Experts performed the best. To explain this
nonmonotonicity, the authors proposed a three-stage
framework. In the first stage, novices would acquire basic
subsymbolic abilities such as recognizing the normal
anatomy on the film. On a second stage, intermediates
would develop ‘“cognitive” (i.e., symbolic) abilities. For
some cases, however, the cognitive processing would
conflict with previously developed perceptual processing,
resulting in a decreased performance. In experts, cognitive
processing would have reached its plain development so that
conflict no longer spoils performance. Thus, a
connectionist-symbolic approach (Holyoak, 1991) seemed
to be appropriate for modeling diagnosis.
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Basic and super experts

In their experiments, Lesgold et al. used expert radiologists
who were recognized as “outstanding” by peers. But only a
few radiologists become outstanding. Moreover, such
radiologists often have professional attributions that are
substantially different from “normal” radiologists. These
attributions induce more “deliberate practice” (Ericsson,
Krampe, & Tesh-Romer, 1993) and more symbolic
reasoning. In a recent study of expertise in radiological
diagnosis, Raufaste, Eyrolle, and Mariné (1998) called
“basic experts” the common radiology practitioners, and
“super experts” the outstanding radiologists. The distinction
appeared to be empirically fruitful and allowed us to
reinterpret classical results by Lesgold et al. (1988).
Raufaste et al. tested a framework that was initially devised
to account for both subsymbolic and symbolic aspects of
medical reasoning. Since subsymbolic and symbolic
processes are integrated, they should not generate a conflict.
Hence, there should not be nonmonotonicity. We found that
performance curves on typical features was monotonically
increasing from novices to basic experts. In contrast,
performance curves on atypical features was monotonically
decreasing from novices to basic experts. Such a result was
in accord with our framework. However, super experts
exhibited several features that could not stem from our
model. In particular, they always had a better performance
than the other groups, even on atypical features. This
replicated the apparent non-monotonicity in the results of
Lesgold ct al. (1988) and showed a dramatic distinction
between basic- and super-expertise: the former is
accompanied with growing dependence on automatic
processes whereas the latter allows a better independence
from automatisms. A key point here is the fact that super
experts were better than basic experts at detecting an
inconspicuous feature thar could not be awaited from the
hypotheses associated with salient features. Such an effect
could not be attributed to better perceptual abilities but
rather to a better cognitive flexibility in super experts.

The present paper proposes an extension of the initial
framework in order to model cognitive flexibility in super
experts. After a new formulation of the model, a new level
is added in the model. An original analysis of cognitive
activity is conducted and explanatory mechanisms are
proposed.
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The basic model: a new formulation

The initial model had to account for previously known
results about general expertise (e.g., Lesgold et al, 1988)
and for what we called pertinence generation, that is the
acquisition through experience —and the use, of the ability 10
select rapidly pertinent hypotheses. We present here a
refined version of the model: The basic model. The basic
model is grounded on the concept of Long-Term Working-
Memory, that is, W-M is viewed as a more activated part of
LTM (Anderson, 1983, Ericsson & Kintsch, 1995).
Schemas. Categories, called schemata, may be represented
at two levels: They may be symbols (in the sense of Hinton,
1990) and/or they may be patterns that are distributed within
subsymbolic networks. A symbol may or not be associated
with a subsymbolic pattern. A subsymbolic pattern may or
not be associated with a symbol.

Activating Attention postulate: any symbol in Working
Memory is a source of activation. Although restricted to a
single symbol, a similar postulate can be found in Collins
and Loftus (1975).

Inferences and Reasoning. Inferences in the basic model
may occur through two distinct processes. The first is
spreading activation from a node to another node. For
example, if a radiologist detects a cue, the corresponding
visual pattern lends activation to its symbol (e.g., a specific
syndrome) and activation can spread towards the symbols of
the pathologies that are associated with the syndrome. The
second process is activation of a production rule in
procedural memory, We define a focal threshold as the
quantity of activation that a symbol must reach for being
consciously processed: A category can be symbolically
processed (e.g. verbally reported) only if it is associated
with a symbol whose activation is above the focal threshold.

As conscious attention works with limited resources, a
plausible mechanism for conflict resolution is a competition
based on the level of activation (e.g., “‘contention
scheduling”, Norman & Shallice, 1986). Thus, we add a
new postulate:
Captivating _Activation _postulate: the most activated
symbols tend to obtain the focus of attention.

Those premises entail several interesting consequences:
(1) a distributed pattern that was implicitly acquired cannot
be symbolically processed until it has been associated with a
symbol. (2) When the activation of a category increases, its
probability to be symbolically processed also increases. (3)
If the symbol of a category is inhibited, its probability of
being symbolically processed decreases. (4) Through
conscious call, activation may spread from a symbol to an
associated subsymbolic pattern. Thus, some “substance” can
be given to abstract concepts. Reciprocally, (5) activation
may spread to a symbol from a distributed pattern that was
activated by environmental stimuli. (6) The conscious
representation can be defined as the set of categories having
a symbol whose activation is above the focal threshold.
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Initial Learning and Effects of Experience. The basic
model is essentially a spreading-activation model of
memory. Conscious processing takes place at the symbolic
level and can initially generate theoretical knowledge by
creating nodes (canonical schemata) in the network, and
links (canonical links) between the nodes. In our view,
experience has two main effects. The first effect is the
classical view of connectionist networks: acquiring new
nodes and/or new links; modifying the strengths of the links
and the base-levels of the nodes. The second effect is to
complement the knowledge base with examples that are
encoded in episodic memory. In other words, declarative
knowledge acquired through University learning, constitutes
a pre-structured network of canonical schemata and
canonical links around which further subsymbolic
acquisitions will be arranged. Indeed, symbolic reasoning
may still create new nodes and links after the medical
degree course is over, through further reading, reflection on
the results of actions, and so on...

Low accessibility postulate: without reinforcements from
experience, the weak accessibility of symbols only allows a
deliberate access to canonical schemata.

This postulate explains why sometimes novices were
found not to use knowledge which they have (Custers,
Boshuizen, & Schmidt, 1996). Until the link between
symbols and subsymbolic background becomes enough
strengthened by experience, only deliberate reasoning may
trigger a schema. For example, a novice detects an abnormal
feature on a film but does not know how to evoke pathology
from the feature. The pathology, however, may be activated
by a procedural rule whose action part provides activation to
its symbol. The more the subject encounters simultaneously
a context and a symbol, the more the link between both is
strengthened and the more further encountering of the
context will automatically activate the symbol. Thus, with
experience, rule-based reasoning is replaced by spreading
activation. From the same context, the expert will be able to
activate more symbols with more links between them, that
is, to generate a richer representation. Due to lateral
inhibition effects, pertinent symbols will receive more
activation from the context and, therefore, are more likely to
win the competition for attentional resources. Hence,
because they are more integrated, expert representations
should also be more pertinent. Because the representation is
richer, complex productions rules may also be triggered and
so complex reasoning also becomes available in experts.

Basically, our results as well as the literature fit the
model. However, one result was clearly not in agreement
with the basic model, even in its current form.

A reduced SOS phenomenon in Super Experts

The Satisfaction of Search phenomenon (SOS, Berbaum et
al., 1990) is a well-known effect in the literature about
observer performance in radiology: an inconspicuous
feature (e.g., a lung nodule) has a lower probability to be
detected when the film also presents with a more salient
unrelated feature. By itself, this phenomenon is clearly



“predicted” by the basic model: (1) the most salient features
naturally receive first the focus of attention. (2) Due to
spreading activation, the symbols that wre strongly
associated with this initial context receive more activation
other symbols; (3) Due to the captivating attention postulate,
those symbols are reinforced by conscious attention and (4)
they become activation sources. From this moment, they
control behavior, and rules that relate to those symbols are
more likely to fire. In particular, rules for hypothesis testing
will lead further exploration of the film, and features that are
non-directly relevant to those hypotheses may be missed. As
the model predicted, the SOS phenomenon increased with
basic expertise, from novices to basic experts. In novices,
SOS is reduced by the lower strength of the links between
subsymbolic context and symbols. Indeed, other causes for
rigidifying effects may be found (e.g., Feltovich, Spiro &
Coulson, 1997). On some cases, however, super experts
avoided the SOS phenomenon. This is clearly not
compatible with the basic model because they should have
been even more subject to SOS than basic experts. One
might suggest that they might have a better visual ability
but an eye-recording study showed that cognitive processes
were responsible for the SOS phenomenon (Samuel et al.,
1995): most missed nodules were fixated and erroneously
categorized as variants of normal. Structural properties of
specific knowledge cannot account for the SOS
phenomenon because the same diagnosticians do detect the
same nodules when no independent salient feature is
present. Because neither perceptual abilities nor specific
knowledge can be responsible for the better performance we
observed in super experts, we need to turn to general
mechanisms of control. Thus, we need to extend the basic
model.

An Extended Model of Expertise

From a neuropsychological standpoint, it has been argued
that an activation-based competition between schemata is
not sufficient to model a normal human subject. It can only
model a patient with prefrontal lesions (e.g., Shallice &
Burgess, 1993). In our attempt to model basic and super
expertise, it seems interesting to view the SOS phenomenon
as a particular case of perseveration. In such a view, a major
difference between basic- and super-expertise is the relative
weight of the specific-knowledge base. Basic experts may
be modeled by a contention-scheduling process in a
knowledge base whereas modeling super experts requires, in
addition, the existence of an instance that modulates
contention-scheduling. We adopt here, the concept of
Supervisory Attentional System (SAS, Norman & Shallice,
1986).

Adding a modulation process to the basic model is not
sufficient by itself to explain super-expert flexibility: We
also need to model cognitive activity. First, we call mental
state (Smolensky, 1988) a particular pattern of activation in
the network. We call cognitive flow the sequence of mental
states. Now, attentional control has a heavy cognitive cost.
Therefore, the SAS is not expected to function actively
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without a good reason. We consider that the SAS may be in
two states: (1) We call intervention the state where the SAS
actively modifies the course of contention scheduling. (2) In
contrast, we call survey the state during which the SAS is
not active. We call natural flow the cognitive flow when the
SAS is in a survey position. Thus, the cognitive flow can be
analyzed as a sequence of natural flows which, sometimes,
is interrupted by SAS interventions (Figure 1), Natural flow
sequences are guided by the procedural schemata associated
with the dominant declarative schema (i.e., only the rules
that are associated with this schema are activated enough to
fire).

Within such an analysis, two questions must be solved:
(1) How arc the SAS interventions triggered? and (2) How
do interventions work ? To answer those questions, and in
addition to the previous descriptive approach to cognitive
activity, we need a general principle that orients the activity:

Principle of coherence maximizing: Cognitive activity is
intended to maximize the overall coherence of the cognitive
system. At a symbolic level, the principle gives the
orientation of cognitive activity. At a subsymbolic level, the
principle enables computation in neural nets (for
justifications, see Thagard, 1989 and related works).

How are interventions triggered? Because of their
importance in daily activity, for both experts and ordinary
people, we expect interventions to be a very low-level
process. Because cognitive flexibility seems to differ from
basic to super experts, and because the two kinds of experts
mainly differ by their daily activity, we assume that the low-
level procedure can be triggered by procedural schemata
which can be learned:

We define a ruptor as a schema that operates a
categorization on mental states and that activates a low-level
procedure of intervention on the cognitive flow. Because of
the maximizing coherence principle, ruptors should take as
input a kind of information that embodies an estimate of the
overall (and/or local) coherence of the network. For
example, detecting a deadlock i1s a good reason for
triggering an intervention (See Holyoak, 1991).

With regard to the specific problem of basic and super
expertise, we must also justify how interventions explain
why super experts are less prone to the SOS phenomenon.
The concept of ruptor provides a simple explanation in
terms of differential intervention triggering.

_ Because ruptors are schemas, they are subject to the
contention-scheduling process. This explains why a basic
expert becomes more and more dependent on automatisms.
As the automatisms become more efficient, they are more
likely to win the competition. With experience they are
more and more refined so deadlocks become sparse. Finally,
because basic expert daily activity does not include much
deliberate practice, ruptors are not systematically trained.
Thus, with experience, Basic expertise tends to be more and
more in agreement with the basic model because the weight
of the SAS is continuously decreasing,.
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Figure 1 : An analysis of the flow of cognitive operations

_ In super experts, daily activity is accompanied with
much more explicit reasoning. As researchers, they have to
make their reasoning explicit in order to publish, whereas
basic experts only have to provide a diagnosis. As teachers
of internists, they have to justify their reasoning, to make
their implicit inferences explicit. In addition, super experts
are often called for diagnosing those cases that were deemed
too much difficult by other radiologists. For all those
reasons, they are trained to commit high levels of attention
in diagnosis. They are more familiar with the fact that
automatisms may lead to wrong solutions. The factors that
favor cognitive flexibility (For a review, see Feltovich et al.,
1997) are construed in the extended model as generating and
training new ruptors. Super expert's SASs are more trained
to intervene and their ruptors probably have a higher base-
level than basic expert ruptors. Thus we may expect them to
be more independent from automatisms than basic experts.

Now, we have a basis for an explanation of the difference
between basic- and super-experts with regard to cognitive
flexibility. Nevertheless, for the explanation to be complete,
we should be able to explain how an intervention may
reduce the likelihood of the SOS phenomenon,

How interventions work? The SOS phenomenon can be
regarded as a kind of perseveration induced by a positive
feedback loop. This loop results from to the combination of
captivating activation and activating attention postulates.
Then, to avoid the SOS, interventions must be able to break
the loop. As we stated earlier, interventions are expected to
be a low-level process. In our analysis, interventions are
short actions from the SAS. After the intervention, new
schemata can gain the control over the cognitive flow.
Hence, a minimal action of the SAS is to inhibit the current
dominating schema (see McCarthy & Warrington, 1990) so
that a new sequence of natural flow can begin. More
sophisticated explanations based on concepts like Harmony
Optimization (Smolensky, 1986) can be found in the theory
of stochastic neural nets. However, they are beyond the
scope of the present paper.

575

A Preliminary Test of the Extended Model

A complete test of the extended model is not out of reach,
but it requires such methods as eye-movement recording
because in order to observe a real SOS phenomenon, one
has to ensure that the critical cue was actually seen. We just
want to verify the plausibility of the main idea of the
model—the SOS phenomenon might be related to a slight
form of perseveration, which accompanies basic expertise
and can be avoided in super experts by SAS interventions.

If the explanation we proposed is correct, we should be
able to find some traces of interventions in verbal protocols.
In particular, we should be able to find more interventions in
super experts than in basic experts.

With regard to novices and intermediates, a lot of explicit
reasoning, and even of deliberate practice (Ericsson et al.,
1993) is likely because they have to acquire a vast specific
knowledge-base within few years. Moreover, they are
trained to learn because before being internists in a
specialty, like radiology, they were selected among the best
students in general medicine courses. Nevertheless, as their
specific knowledge-base grows, they should depend more
on automatisms and less on general mechanisms such as
weak heuristics and SAS interventions. Only the few who
will some day become super experts can be expected to
maintain a high level of deliberate activity. As a
consequence, we can expect a monotonely decreasing curve
in the number of interventions from novices to basic
experts, and a higher number of interventions in super
experts than in basic experts.

The next question is how can we measure interventions?
The main consequence of interventions is to change the
schema that guides the reasoning process. Therefore, we can
trace those changes in verbal protocols. We call line of
thought the verbal trace of a sequence of natural flow. A
sequence of natural flow is not observable, whereas a line of
thought can be traced in the verbal protocols. The basic idea
behind the test is that interventions change line of thoughts
and, therefore, tracing the changes in the line of thoughts



give some indications on the number of interventions,
However, not only interventions change lines of thought:
The dominating schema can be inhibited because a crucial
new information gives a strong posilive support to a
concurrent hypothesis or a strong negative support to the
dominant schema. In other words, we should not count as
interventions the changes that can be attributed to a new
information arrival. Another important factor in the changes
1s the use of a systematic strategy of exploration. Radiology
residents are taught to explore the films according to a
topographical schema that enables them (o explore
systematically every important zone. Therefore, when a
diagnostician uses such a strategy, the dominant schema is
not pathology but the topographic exploration schema.
Hence we should not count changes in the dominant schema
that can be attributed to the use of such a strategy.

In order to give a preliminary testing of these ideas, the
verbal protocols that were used in Raufaste et al. (1998)
were coded. It should be noted that the new coding was
completely independent and different from the original
coding. Thus, the number of interventions could be obtained
(Figure 2). The test involved 8 novices, 6 intermediates, 4
basic experts, and 4 super experts.

6
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Mean Number of Interventions
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basic experts

Intermediates

Novices

super expens
Figure 2: Interventions as a function of expertise

As expected, one can observe a monotonic decrease in the
curve: The mean number of interventions is maximal in
novices (5.38, s;=3.16), it decreases down lo 4.33
(5,=2.07) in intermediates, to 0.75 (s,=0.96) in basic
experts. Moreover, the relation is significant (F5,17) = 4.63;
p=.0135). Also expected, with 3.75 interventions on
average (s;=2.22), the mean number of interventions is
significantly higher in super experts than in basic experts
(16)=-2,48; p=.024). The graph presented in Figure 2 is
typically of the same kind as the graph one can draw with
regard to performance on atypical cases.

When examining the whole curve of planed-triggering,
which can be produced from the four groups, we obtain a
significant decreasing monotonic relation (F317) = 5.684;
p = .006) ranging from 3.63 (sd = 1.85) in novices down to
0.50 (sd = 0.58) in super experts. The latter result confirms
that the better performance of super experts in the detection
of an inconspicuous feature cannot be explained by the use
of a more systematic exploration procedure.
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Discussion

The model of cognitive flexibility proposed here should be
considered as complementary to the prescriptions of
Cognitive Flexibility Theory (e.g., Feltovich et al., 1997).
Explaining differences between basic and super experts
might also have been approached through Rasmussen's
model of control (e.g., Olsen & Rasmussen, 1989) which
construes cognitive flexibility in terms of the ability to adapt
the control mode (skill-, rule-, or knowledge-based) to the
specificity of the situation, However, if a radiologist devotes
most of his attentional resources to an abstract reflection,
the control is knowledge-based with regard to the reflection
while, at the same time, there is place for a skill-based
control of the film exploration. More generally, automated
processes can operate in parallel to attentional processes.
Hence, the control is not skill-based only, rule-based only,
or knowledge-based only. To the contrary, our model uses
two mutually exclusive categories: a state of survey and a
state of intervention. In many respects, our model could
also be compared to a hybrid model of abduction like
UEcho (e.g. Wang, Johnson, & Zhang, 1997). In a recent
study (Raufaste & Da Silva-Neves, 1998), basic expert
radiologists were found to conform to Possibility Theory
(Zadeh, 1978; Dubois & Prade, 1988). UEcho, however, is
not compatible with nonstandard approaches, which require
two measures of uncertainty. Our model, in contrast, is
compatible with these results as well as with results in the
literature where subjects tend to conform to bayesian rules
of reasoning (Raufaste, Da Silva-Neves, & Manné,
submitted manuscript). Moreover, UEcho combines ECHO
and the SOAR architecture whereas our model resembles a
hybrid form of the ACT-R architecture and Norman &
Shallice’ theory of action.

This paper presented a refined version of a model of
expertise in radiological diagnosis (Raufaste et al., 1998).
The model is now twofold. The “basic model” embodies the
previous model as well as two new postulates that relate to
attention. In its current version, it is sufficient to model the
basic expert. The paper also presented an “extended model”.
In addition to the basic model, it includes a Supervisory
Attentional System (Norman & Shallice, 1986) that
accounts for super expert’s behavior. The extended model
can account for a wide range of results about radiological
expertise. Being within the frame of symbolic
connectionism, it has the potential to deal with purely
perceptual aspects of diagnosis as well as attentional
deliberate reasoning. Indeed, much work will now be
necessary to test the model. It is expressed in a general
form, and might serve for many other domains of expertise.
Therefore, it could be useful to any researcher who studies
abductive reasoning and/or reflective experts.
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