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New Kernel-based Methods for High-dimensional Inferences

Abstract

As we are entering the big data era with technological advances of data collection, high-dimensional

and complex data is becoming prevalent and the development of effective analysis is gaining more attention

to researchers in statistics and data science. Many approaches are usually parametric, but they are highly

context specific.

Kernel-based methods are widely used as a nonparametric approach and they have the potential to

capture changes in the distribution. This dissertation aims to develop novel kernel-based methods for high-

dimensional data on two problems: (i) two-sample testing and (ii) change-point analysis.

Kernel two-sample tests have been widely used for high-dimensional data as an elegant nonparametric

framework of testing equal distribution. However, existing tests based on kernel embeddings of probability

distributions into reproducing kernel Hilbert spaces (RKHS) do not work well for a wide rage of alternatives

when the dimension of the data is moderate to high due to the curse of dimensionality. We propose a new test

statistic that makes use of patterns under high dimension and achieves substantial power improvement over

existing kernel two-sample tests for general alternatives. We also propose an alternative testing procedure

that maintains high power with little computational cost, offering easy off-the-shelf tools for large datasets.

We also consider the testing and estimation of change-points, locations where the distribution abruptly

changes in a sequence. Compared with two-sample testing problems, kernel-based methods in change-

point analysis have not been well explored. We propose a new kernel-based framework that exhibits high

power in detecting and estimating the location of the change-point under general alternatives. Analytic

approximations to the significance of the new test statistics for both single change-point and changed-interval

alternatives are derived and fast tests are proposed, offering easy off-the-shelf tools for large datasets.
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CHAPTER 1

Introduction

1.1. Problem statements

Statistics has become one of the fastest growing fields among the sciences and recent developements

in statistics have been motivated by the need to analyze increasingly large and complex data. Advanced

technologies in producing and collecting vast amoung of data leads to rapidly growing demand for new

statistical methodology. For example, many fundamental topics in statistics are re-adressed in the face of

new types of data. Motivated by these challenges, this dissertation aims to develop novel methods and

practical tools for two testing problems: two-sample testing and change-point analysis.

Two-sample hypothesis testing plays a significant role in a variety of scientific applications, such as

bioinformatics, social sciences, and image analysis. Formally speaking, given samples X1, X2, . . . , Xm
iid∼

P and Y1, Y2, . . . , Yn
iid∼ Q where P and Q are distributions in Rd, one wants to test H0 : P = Q against

H1 : P 6= Q.

Change-point analysis is regaining attention as we enter the big data era. High-dimensional complex

data sequences are becoming prevalent and the development of efficient change-point detection method is

gaining more attention for this new setting. Given a sequence of independent observations {yi}1,...,n, we

consider testing the null hypothesis

(1.1) H0 : yi ∼ F0, i = 1, . . . , n

against the single change-point alternative

(1.2) H1 : ∃ 1 ≤ τ < n, yi ∼


F0, i ≤ τ

F1, otherwise

1



or the changed interval alternative

(1.3) H2 : ∃ 1 ≤ τ1 < τ2 < n, yi ∼


F0, i = τ1 + 1, . . . , τ2

F1, otherwise

where F0 and F1 are two different disbtributions.

1.2. Overview

1.2.1. Generalized kernel two-sample tests. Kernel two-sample tests have been widely used for mul-

tivariate data in testing equal distribution. However, existing tests based on mapping distributions into a

reproducing kernel Hilbert space are mainly targeted at specific alternatives and do not work well for some

scenarios when the dimension of the data is moderate to high due to the curse of dimensionality. We propose

a new test statistic that makes use of a common pattern under moderate and high dimensions and achieves

substantial power improvements over existing kernel two-sample tests for a wide range of alternatives. We

also propose alternative testing procedures that maintain high power with low computational cost, offering

easy off-the-shelf tools for large datasets. The new approaches are compared to other state-of-the-art tests

under various settings and show good performance. The new approaches are illustrated on two applications:

The comparison of musks and non-musks using the shape of molecules, and the comparison of taxi trips

started from John F.Kennedy airport in consecutive months. All proposed methods are implemented in an R

package kerTests.

1.2.2. New kernel-based change-point detection. Change-point analysis plays a significant role in

various fields as it can reveal the discrepancies in the relational information in the sequence. While many

algorithms have been proposed, kernel-based methods have not been well explored due to difficulties in

offering false positive controls and mediocre performance. In this paper, we propose a new kernel-based

framework that makes use of an important pattern of data in high dimensions to boost power. Analytic

approximations to the significance of the new statis- tics are derived and fast tests based on the asymptotic

results are proposed, offering easy off-the-shelf tools for large datasets. The new tests show superior perfor-

mance for a wide range of alternatives when comparing with other state-of-the-art methods. We illustrate

these new approaches through an analysis of a phone-call network data.
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CHAPTER 2

Generalized Kernel Two-Sample Tests

2.1. Introduction

2.1.1. Background. Nonparametric two-sample hypothesis testing received a lot of attention as chal-

lenging data, both in dimension and size, are produced in many fields. Formally speaking, given samples

X1, X2, . . . , Xm
iid∼ P and Y1, Y2, . . . , Yn

iid∼ Q where P and Q are distributions in Rd, one wants to test

H0 : P = Q against H1 : P 6= Q. When d is large, such as in hundreds or thousands or even more, it is

common that one has little or no clue of P or Q, which makes parametric tests unrealistic in many appli-

cations. Several nonparametric tests have been proposed for high-dimensional data, including rank-based

tests [3, 33, 44, 50], inter-point distances-based tests [4, 38, 60], graph-based tests [10, 20, 32, 49, 55], and

kernel-based tests [17, 26, 27, 29]. They all have succeeded in many applications. In this paper, we focus on

kernel-based tests.

The most well-known kernel two-sample test was proposed by [26]. They first map the observations into

a reproducing kernel Hilbert space (RKHS) generated by a given kernel k(·, ·) and consider the maximum

mean discrepancy (MMD) between two probability distributions P and Q,

MMD2(P,Q) = EX,X′ [k(X,X ′)]− 2EX,Y [k(X,Y )] + EY,Y ′ [k(Y, Y ′)],(2.1)

where X and X ′ are independent random variables drawn from P and Y and Y ′ are independent random

variables drawn from Q. [26] considered two empirical estimates of MMD2(P,Q):

MMD2
u =

1

m(m− 1)

m∑
i=1

m∑
j=1,j 6=i

k(Xi, Xj) +
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

k(Yi, Yj)−
2

mn

m∑
i=1

n∑
j=1

k(Xi, Yj),

MMD2
b =

1

m2

m∑
i=1

m∑
j=1

k(Xi, Xj) +
1

n2

n∑
i=1

n∑
j=1

k(Yi, Yj)−
2

mn

m∑
i=1

n∑
j=1

k(Xi, Yj).

3



Here, MMD2
u is an unbiased estimator of MMD2(P,Q) and is in general preferred over MMD2

b . When

the kernel k is characteristic, such as the Gaussian kernel or the Laplacian kernel, the MMD behaves as a

metric [59].

[26] studied asymptotic behaviors of MMD2
u and found that MMD2

u degenerated under the null hy-

pothesis of equal disrtribution. They then considered mMMD2
u when m = n and showed that mMMD2

u

converged to
∑∞

l=1 λl(z
2
l − 2) under H0. Here zl

iid∼ N(0, 2) and λl’s are the solutions of the eigenvalue

equation ∫
X
k̃(X,X ′)ψl(X)dP (X) = λlψl(X

′),

with k̃(Xi, Xj) = k(Xi, Xj)− EXk(Xi, X)− EXk(X,Xj) + EX,X′k(X,X ′) the centred RKHS kernel.

Since the limiting distribution
∑∞

l=1 λl(z
2
l −2) is an infinite sum, a few approaches were proposed to approx-

imate it: a moment matching approach using Pearson curves [26], a spectrum approximation approach, and

a Gamma approximation approach [29]. However, they have some drawbacks. For example, [29] mentioned

that the performance of the tests based on the moment matching method and the Gamma approximation are

not guaranteed. In addition, all these approaches only work for the balanced sample design, i.e, the sample

sizes of the two samples are the same. Hence, in terms of guaranteed performance of the test and for possi-

bly unbalanced sample sizes, a bootstrap approach is usually preferred in many applications to approximate

the p-value, despite a high computational cost.

[28] studied the choice of the kernel and the bandwidth parameter to maximize the power of the test

from the set of a linear combination of Gaussian kernels in a training set. More recently, [47] found that the

power of the test based on the Gaussian kernel is independent of the kernel bandwidth, when the bandwidth is

greater than the median of all pairwise distances among observations. Therefore, in the following, without

further specification, we use the most popular characterstic kernel, the Gaussian kernel, with the median

heuristic as the bandwidth parameter.

2.1.2. A problem of MMD2
u. Even though MMD2

u works well under many settings, it has some weird

behaviors under some common alternatives. Consider a toy example for Gaussian data: X1, . . . , X50
iid∼

Nd(0d,Σ); Y1, . . . , Y50
iid∼ Nd(a1d, bΣ), where the (i, j)th element of Σ is Σi,j = 0.4|i−j|, 0d is a d

dimensional vector of zeros, 1d is a d dimensional vector of ones, and d = 50. Three settings are considered:

• Setting 1: a = 0.21, b = 1.
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• Setting 2: a = 0.21, b = 1.04.

• Setting 3: a = 0, b = 1.1.

Table 2.1 presents the estimated power of the MMD2
u test based on 1,000 simulation runs. In each simulation

run, 10,000 bootstrap replicates are used to approximate the p-value. We refer to this test ‘MMD-Bootstrap’

for simplicity. We see that MMD-Boostrap performs well for the mean difference in setting 1, but it has

slightly lower power in setting 2 than in setting 1, despite the additional variance difference in setting 2.

When the difference is only in the variance (setting 3), MMD-Boostrap performs poorly.

TABLE 2.1. Estimated power (by 1,000 trials) of MMD-Bootstrap at 0.05 significance level

Setting 1 Setting 2 Setting 3
0.912 0.886 0.071

To explore the underlying reason why this happens, we examine the empirical distributions of α − γ

and β − γ, where α = 1
m(m−1)

∑m
i=1

∑m
j=1,j 6=i k(Xi, Xj), β = 1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i k(Yi, Yj), γ =

1
mn

∑m
i=1

∑n
j=1 k(Xi, Yj) (MMD2

u = α + β − 2γ). This is shown in Figure 2.1. We see that, in setting

1, the distributions of α − γ and β − γ shift to the right compared to those under the null. Hence, MMD2
u

tends to be large in setting 1, and the power of the test in setting 1 in 0.912. In setting 2, with the additional

variance change, we see that the empirical distribution of α − γ indeed shift to further right. However, the

empirical distribution of β − γ is similar to that under the null. As a result, the effects of α − γ and β − γ

offset in setting 2, and the power of setting 2 is lower than that under setting 1. This phenomenon gets

severer in setting 3 where β − γ is mainly negative and almost completely offsets α − γ. From Figure 2.1,

in setting 3, α− γ and β − γ do display their derivations from the null (purple versus pink). The amount of

derivations in setting 3 is larger than that in setting 1 for α − γ and β − γ. It is just that the derivations are

in oppposite directions that the test statistic MMD2
u cannot capture the signal.

2.1.3. Our contribution. With the observations in Section 2.1.2, we explore further the behavior of

α and β under the permutation null distribution and propose a new statistic (GPK) that takes into account

derivations in both directions. This new test works for a wider range of alternatives that are common in high

dimesions than MMD2
u. We also work out a test statistic (fGPK) that works similar to GPK but with fast type

I error control. Using a similar technique, we further work out fGPKM that has power on par and sometimes

much better than prevailing MMD-based tests and at the same time with fast type I error control. All these

5



FIGURE 2.1. Empirical distributions of α− γ and β − γ based on 10,000 simulation runs
under settings 1,2,3 and the null of no distribution difference (a = 0, b = 1).

new tests, GPK, fGPK, and fGPKM, work for both equal and unequal sample sizes. The new methods are

implemented in an R package kerTests.

2.2. A New Test Statistic

2.2.1. A pattern under moderate/high dimension. To better understand the behavior of MMD2
u under

setting 2 in Section 2.1.2, we explore more on α and β. We compare them with their expected values under

the permutation null distribution, which places 1/
(
N
m

)
probability on each of the

(
N
m

)
permutations of the

sample lables (N = m + n). With no further specification, P, E, Var, and Cov denote the probability, the

expectation, the variance, and the covaraince, repectively, under the permutation null distribution.

Figure 2.2 shows boxplots of α − E(α) and β − E(β) from 10,000 simulated datasets under the three

settings in Section 2.1.2 as well as under the null hypothesis (a = 0, b = 1). In setting 1, we see that both α

and β tend to be larger than their null expectations, which is consistent with MMD2
u being large. In setting

2, α still tends to be larger than its null expectation, while β tends to be smaller than its null expectation,

which could cause the effect of α and β in MMD2
u to offset. This phenomenon gets severer in setting 3.

The reason this happens lies in the curse of dimensionality: The volume of a d-dimensional space increases

exponentially in d. Then, many observations from the distribution with a larger variance can be spasely

separated and they tend to be closer to the observations from the distribution with a smaller variance, which

6



FIGURE 2.2. Boxplots of α− E(α) and β − E(β) of 10,000 simulated datasets under null
(a = 0, b = 1), setting 1 (a = 0.21, b = 1), setting 2 (a = 0.21, b = 1.04), and setting 3
(a = 0, b = 1.1).

could lead to one of α or β smaller than its expectation under the null, depending on which sample has a

smaller variance.

2.2.2. A generalized permutation-based kernel two-sample test statistic. Based on the findings in

Section 2.2.1, we segregate α and β and propose the following statistic:

(2.2) GPK =
(
α− E(α), β − E(β)

)
Σ−1
α,β

 α− E(α)

β − E(β)

 ,

where Σα,β = Var((α, β)T ). The analytic expressions of E(β), E(β), and Σα,β can be derived and are

provided in Theorem 2.2.1. The new test statistic designed in this way aggregates deviations of α and β from

their expectations under the permutation null in both directions, so it can cover more general alternatives

than MMD2
u.

We briefly check how GPK works for Gaussian data Nd(0d,Σ) vs. Nd(a1d, bΣ), where Σi,j = 0.4|i−j|

and m = n = 50, under location and/or scale alternatives. The estimated power and empirical sizes

of GPK and MMD-Bootstrap are presented in Figure 2.3 and Table 2.2, respectively. We see that GPK

has comparable power to MMD2
u for location alternatives. However, when the change is in scale, MMD-

Bootstrap performs poorly and GPK has much higher power. When both the mean and the variance differ,

7



GPK in general outperforms MMD-Bootstrap. We also see that GPK controls the type I error well (Table

2.2). Here, we briefly check the performance of GPK for illustration and more simulation studies are in

Section 2.4.

FIGURE 2.3. Estimated power (by 1,000 trials) of MMD-Bootstrap (o) and GPK (4) at
0.05 significance level for multivariate Gaussian data: (a) a = 0.15, b = 1, (b) a = 0,
b = 1.1, (c) a = 0.1, b = 1.1.

TABLE 2.2. Empirical size at 0.05 significance level estimated by 1,000 trials for MMD-
Bootstrap and GPK under different dimensions

d 10 30 50 70 90 100
MMD-Bootstrap 0.045 0.044 0.038 0.043 0.026 0.028

GPK 0.045 0.045 0.056 0.060 0.051 0.051

For notation simplicity, we pool observations from the two samples together and denote them by

z1, . . . , zN . Let k(zi, zj) = kij for i, j = 1, . . . , N . Then, the analytic formulas for E(α), E(β), and

Σα,β(i,j), the (i, j) element of Σα,β , are provided in the following theorem.

THEOREM 2.2.1. Under the permutation null distribution, we have

E(α) =
1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

kij , E(β) =
1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

kij ,

Σα,β(1,1) =
1

m2(m− 1)2

(
2A

m(m− 1)

N(N − 1)
+ 4B

m(m− 1)(m− 2)

N(N − 1)(N − 2)

+ C
m(m− 1)(m− 2)(m− 3)

N(N − 1)(N − 2)(N − 3)

)
− E(α)2,

8



Σα,β(2,2) =
1

n2(n− 1)2

(
2A

n(n− 1)

N(N − 1)
+ 4B

n(n− 1)(n− 2)

N(N − 1)(N − 2)

+ C
n(n− 1)(n− 2)(n− 3)

N(N − 1)(N − 2)(N − 3)

)
− E(β)2,

Σα,β(1,2) = Σα,β(2,1) =
C

N(N − 1)(N − 2)(N − 3)
− E(α)E(β),

where

A =
N∑
i=1

N∑
j=1,j 6=i

k2
ij , B =

N∑
i=1

N∑
j=1,j 6=i

N∑
u=1,u6=j,u6=i

kijkiu,

C =

N∑
i=1

N∑
j=1,j 6=i

N∑
u=1,u 6=j,u6=i

N∑
v=1,v 6=u,v 6=j,v 6=i

kijkuv.

To prove this theorem, we rewrite α and β in the following way. For each z1, . . . , zN , let gi = 0 if

observation zi is from sample X and gi = 1 if observation zi is from sample Y . Then,

α =
1

m(m− 1)

m∑
i=1

m∑
j=1,j 6=i

k(Xi, Xj) =
1

m(m− 1)

N∑
i=1

N∑
j=1,j 6=i

k(zi, zj)Igi=gj=0,(2.3)

β =
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

k(Yi, Yj) =
1

n(n− 1)

N∑
i=1

N∑
j=1,j 6=i

k(zi, zj)Igi=gj=1.(2.4)

Hence, computing E(α) boils down to E(Igi=gj=0) and similar for E(β). Computing the variance of α and

the covariance of α and β under the permutation null distribution needs more careful analysis on different

combinations. The detailed proof of the theorem is in Appendix A.1.

To assure that the new test statistic is well-defined, the covariance matrix Σα,β needs to be invertible.

THEOREM 2.2.2. For m,n ≥ 2, the proposed statistic GPK is well-defined when kij’s do not satisfy

either of the following two corner cases:

(C1)
∑N

j=1,j 6=i kij are all the same for i = 1, . . . , N .

(C2)
∑N

j=1,j 6=i kij − (N − 2)kiN are all the same for i = 1, . . . , N − 1.

This theorem can be proved through mathematical induction. The complete proof is in Appendix A.2. It

is difficult to simplify the descriptions of (C1) and (C2) further. We briefly illustrate this and its simulation

results are provided in Appendix A.3.

9



2.3. Asymptotics and Alternative Tests

2.3.1. Outline. Given the new test statistic GPK, the next question is to compute the p-value of the

test. In Figure 2.3 and Table 2.2 in Section 3.2, we use 10,000 random permutations to approximate the

p-value, but this is time consuming. To this end, we attempt to study the asymptotic distribution of GPK

under the permutation null distribution. We first notice that GPK can be decomposed to the squares of two

uncorrelated quantities with one quantity asymptotically normally distributed under some mild conditions

and the other quantity closely related to MMD2
u. Moreover, the quantity closely related to MMD2

u after

some modifications is also asymptotically normally distributed under some mild conditions. Based on these

findings, we propose two tests, fGPK and fGPKM, whose p-values can be approximated by analytic formulas

with the former closely related to the test based on GPK and the latter related to the test based on MMD2
u.

2.3.2. A decomposition of GPK and asymptotic results.

THEOREM 2.3.1. The statistic GPK can be decomposed as

GPK = Z2
W + Z2

D,

where

ZW =
W − E(W )√

Var(W )
, ZD =

D − E(D)√
Var(D)

,(2.5)

with W = m
Nα+ n

N β and D = m(m− 1)α− n(n− 1)β.

The proof to this theorem is in Appendix A.4.

REMARK 2.3.1. The quantity ZW is closely related to MMD2
u. Notice that

m(m− 1)α+ n(n− 1)β + 2mnγ =

N∑
i=1

N∑
j=1,j 6=i

kij .

Hence,

MMD2
u = α+ β − 2γ = α+ β −

∑N
i=1

∑N
j=1,j 6=i kij −m(m− 1)α− n(n− 1)β

mn

= α

(
1 +

m− 1

n

)
+ β

(
1 +

n− 1

m

)
−
∑N

i=1

∑N
j=1,j 6=i kij

mn

10



=
N(N − 1)

mn

(m
N
α+

n

N
β
)
−
∑N

i=1

∑N
j=1,j 6=i kij

mn

=
N(N − 1)

mn
W −

∑N
i=1

∑N
j=1,j 6=i kij

mn
.

Here, the quantity
∑N

i=1

∑N
j=1,j 6=i kij/mn does not change under permutation. Therefore, ZW is equivalent

to MMD-Permutation, the MMD2
u test with its p-value computed under the permutation null distribution.

Since ZW is closely related to MMD2
u, GPK could in general deal with the alternatives that MMD2

u

covers. In addition, ZD covers a new region of alternatives that could be missed by MMD2
u, making GPK

work for more general alternatives.

REMARK 2.3.2. From the proof of Theorem 2.2.2, the determinant of Σα,β can be expressed as

|Σα,β| =
1

mn(m− 1)2(n− 1)2N(N − 1)(N − 2)

(
(4A+ 4B)− 4(2A+ 4B + C)

N

)
×
(

(N − 2)2A+
2

N − 1
(2A+ 4B + C)− (4A+ 4B)

)
.

Also, in the proof of Theorem 2.3.1, we have that

Var(W ) =
mn(m− 1)(n− 1)

N(N − 1)(N − 2)(N − 3)
× (N − 2)

N2(m− 1)2(n− 1)2

×
(

(N − 2)2A+
2

N − 1
(2A+ 4B + C)− (4A+ 4B)

)
,

Var(D) =
mn(m− 1)(n− 1)

N(N − 1)(N − 2)(N − 3)
× (N − 2)(N − 4)

(m− 1)(n− 1)

×
(

(4A+ 4B)− 4(2A+ 4B + C)

N

)
.

When the corner case (C1) happens, the first product term in |Σα,β| is zero and ZD is not well defined; when

the corner case (C2) happens, the second product term in |Σα,β| is zero and ZW is not well defined.

We now examine the asymptotic permutation null distribution in the usual limiting regime, which is

defined as N →∞, m/N → p with p a constant and 0 < p < 1. Let ki· =
∑N

j=1,j 6=i kij for i = 1, . . . , N

and k̇ =
∑N

i=1 ki·/N .
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THEOREM 2.3.2. With the characteristic kernels, when kij = O(1) ∀i, j and
∑N

i=1 k
2
i· − Nk̇2 =

O
(∑N

i=1 k
2
i·
)
, in the usual limiting regime, under the permutation null,

ZD
D→ N (0, 1).

The proof to this theorem is in Appendix A.5.

REMARK 2.3.3.
∑N

i=1 k
2
i·−Nk̇2 =

∑N
i=1(ki.−k̇)2 can be seen as the variability of ki· and the condition∑N

i=1 k
2
i· −Nk̇2 = O

(∑N
i=1 k

2
i·
)

ensures GPK to be well-defined in the usual limiting regime.

Let Wr = rmNα+ n
N β be an weighted version of W , where r is a constant. Note that W1 = W .

THEOREM 2.3.3. With the characteristic kernels, when kij = O(1) ∀i, j and
∑N

i=1 k
2
i· − Nk̇2 =

O
(∑N

i=1 k
2
i·
)
, in the usual limiting regime, under the permutation null,

ZW,r
∆
=
Wr − E(Wr)√

Var(Wr)

D→ N (0, 1),

when r 6= 1.

The proof to this theorem is in Appendix A.6.

REMARK 2.3.4. From Remark 2.3.1 and 2.3.2, it is easy to see thatZW is of the same order ofmMMD2
u.

[26] showed that mMMD2
u converges to the intractable distribution under the true null and they thus relied

on other approaches to approximate it. Similarly, ZW may also converge to some distributions, but instead

we propose to use ZW,r which is applicable in practice.

Figure 2.4 shows the normal quantile-quantile plots for ZD, ZW,1.0, ZW,1.1, and ZW,1.2 from 10,000

permutations under different choices of m and n for Gaussian data with d = 100. We see that, when m,n

are in hundreds, the permutation distributions can already be well approximated by the standard normal

distributions for ZD and for ZW,r, when r is away from 1, such as r = 1.2. Similarly, for r < 1, such as

r = 0.8, the permutation distributions can be well approximated by the standard normal distributions, when

m,n are in hundreds or more.

2.3.3. Fast test: fGPK. Although ZW,r, r 6= 1, converges to the standard normal distribution under

mild conditions, the performance of the test decreases as r goes away from 1 under the location alternative.
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FIGURE 2.4. Normal quantile-quantile plots (red dots) of ZD, ZW,1.0, ZW,1.1, ZW,1.2 with
the gray dashed line the baseline goes through the origin and of slope 1.

TABLE 2.3. Estimated power (by 100 simulation runs) of ZW,r at 0.05 significance level.
m = n = 100 and ∆ = ‖µ1 − µ2‖2

Location Alternatives
d 10 30 50 70 90 100
∆ 0.3 0.5 0.7 0.8 0.9 1.0

r = 1.4 0.10 0.21 0.29 0.21 0.38 0.37
r = 1.3 0.11 0.24 0.36 0.36 0.49 0.50
r = 1.2 0.15 0.28 0.43 0.50 0.68 0.63
r = 1.1 0.10 0.42 0.55 0.70 0.83 0.84
r = 1.0 0.25 0.52 0.60 0.77 0.90 0.86
r = 0.9 0.22 0.47 0.41 0.77 0.76 0.78
r = 0.8 0.16 0.36 0.27 0.49 0.57 0.54
r = 0.7 0.15 0.23 0.20 0.37 0.32 0.33

Table 2.3 shows the estimated power of ZW,r for Gaussian data Nd(µ1, Id) vs. Nd(µ2, Id), with the mean

difference ∆ = ‖µ1 − µ2‖2. The p-value of each test is approximated by 10,000 permutations for fair

comparison. We see that the power of the test decreases as r goes away from 1.
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To make use of asymptotic results and maximize power, we propose to use a Bonferroni test on ZW,1.2,

ZW,0.8, and ZD. We choose ZW,1.2 and ZW,0.8 since they cover different regions of alternatives. Let pW,1.2,

pW,0.8, and pD be the approximated p-value of the test that rejects for large values of ZW,1.2, ZW,0.8, and

|ZD|, respectively, based on their limiting distributions, i.e., if the values of ZW,1.2, ZW,0.8, and ZD are

bW,1.2, bW,0.8, and bD, respectively, then pW,1.2 = 1 − Φ(bw,1.2), pW,0.8 = 1 − Φ(bw,0.8), and pD =

2Φ(−|bD|). Then, we propose the fast test, fGPK, that is defined to reject the null if 3 min(pD, pW,1.2, pW,0.8)

is less than the significance level. Hence, as long as ZW,1.2, ZW,0.8, and ZD are computed, the p-value of

fGPK can be obtained instantly.

REMARK 2.3.5. r = 1.2 and 0.8 are determined empirically based on the fact that r’s are away from 1

enough so that the normal approximation is reasonable and not too away to maintain a good power.

REMARK 2.3.6. We adopt the Bonferroni procedure for the fast test to combine the advantages of each

test statistic. To improve the power of the fast test, other global testing methods, such as the Simes procedure,

can be used since the Bonferroni procedure is a bit conservative. (see Section 2.6.2).

2.3.4. Fast test: fGPKM. Based on the limiting distribution of ZW,r, r 6= 1, the same technique can

also be applied to approximate the MMD test. That is, we propose the fast test, fGPKM, that is defined to

reject the null if 2 min(pW,1.2, pW,0.8) is less than the significance level.

Since the test ofZW is equivalent to MMD-Permutation, we expect fGPKM to be powerful for locational

alternatives. Moreover, according to the simulation results, it turns out that fGPKM can also detect variance

differences to some extent as r = 1.2, 0.8 cover more types of alternatives than r = 1.

To check the effectiveness of fGPKM, we compare fGPKM with tests based on MMD. According to the

simulation results, fGPKM exhibits comparably high power for location alternatives, while fGPKM shows

better performance than other MMD-based tests for scale alternatives in high dimensions. The details of the

simulation results are provided in Appendix A.7.

Additionally, we compare the computational cost of these tests as well as fGPK. Both samples are

drawn from the standard 100-dimensional Gaussian distribution and the sample sizes are the same (m = n).

Table 2.4 reports the time cost of the methods implemented in Matlab. For MMD-Pearson and MMD-

Bootstrap, we use the Matlab codes released by Arthur Gretton, publicly available at http://www.

gatsby.ucl.ac.uk/˜gretton/mmd/mmd.htm. Time comparison for these methods implemented
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in R is in Appendix A.8. We see that fGPKM is the fastest to run as its computation cost is O(N2d), while

MMD-Bootstrap is the slowest as it is O(N2dR) time test with R bootstrap replicates. fGPK is also faster

than the existing tests. The Pearson approximation test is fairly fast in the Matlab implementation, but it

would become slow when the sample size is quite large as it costs O(N3d) [26]. To sum, compared to other

tests of MMD2
u, fGPKM exhibits good performance with better computational efficiency.

TABLE 2.4. Average computation time in seconds (standard deviation) from 10 simulations
for each m. All experiments were run by Matlab on 2.2 GHz Intel Core i7

m 50 100 250 500 1000
fGPKM 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.03 (0.00) 0.09 (0.00)
fGPK 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.03 (0.00) 0.11 (0.01)

MMD-Pearson 0.00 (0.00) 0.00 (0.00) 0.09 (0.00) 0.76 (0.05) 12.70 (0.31)
MMD-Bootstrap 0.43 (0.02) 1.51 (0.05) 8.39 (0.22) 37.44 (5.13) 251.9 (16.1)

2.4. More Numerical Experiments

In this section, we compare the three new tests (GPK, fGPK, fGPKM) with two commonly used MMD-

based tests (MMD-Pearson and MMD-Bootstrap) on more diverse examples in moderate/high dimensions.

We also include other nonparametric tests using the ball divergence (BT) [46], classifier (CT) [41], and

graphs (GT) [10], which can be implemented by R packages ball, Ecume, and gTests, respectively.

Here, we use a 5-MST (minimum spanning tree) for GT. We consider the following settings:

• Multivariate Gaussian data: Nd(0d,Σ) vs. Nd(a1d, σ2Σ), where ∆ = ‖a1d‖2 and Σi,j = 0.4|i−j|.

• Multivariate t-distributed data: t20(0d,Σ) vs. t20(a1d, σ2Σ), where ∆ = ‖a1d‖2 and Σi,j =

0.4|i−j|.

• Chi-square data: Σ1/2uχ
2
3,d vs. (σ2Σ)1/2uχ

2
3,d + a1d, where ∆ = ‖a1d‖2, Σi,j = 0.4|i−j|, and

χ2
3,d is a length-d vector with each component i.i.d. from the centered χ2

3 distribution.

For the multivariate Gaussian data, we also compare the tests under the unbalanced setting (m 6= n). Notice

that MMD-Pearson cannot be applied to the unbalanced setting.

In each simulation setting, we consider various dimensions. For each dimension, we simulate 1,000

datasets. The parameters of the distributions are chosen so that the tests are of moderate power to be

comparable. The significance level is set to be 0.05 for all tests.
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TABLE 2.5. Estimated power of the tests for multivariate Gaussian data. The balanced
two-sample sizes setting (m = n = 50). Top 1 method and those higher than 95% of the
top 1 are in bold

Location Alternatives (∆)
d 50 100 500 1000

∆ | σ2 1.13 1.50 2.23 2.84
MMD-Pearson 0.177 0.155 0.006 0.002

MMD-Bootstrap 0.651 0.801 0.516 0.334
GPK 0.567 0.761 0.772 0.891
fGPK 0.527 0.704 0.747 0.868

fGPKM 0.578 0.749 0.800 0.905
BT 0.362 0.384 0.216 0.222
CT 0.367 0.464 0.525 0.635
GT 0.193 0.282 0.303 0.388

Scale Alternatives (σ2)
50 100 500 1000

1.11 1.09 1.05 1.04
0.001 0.001 0.000 0.000
0.065 0.042 0.001 0.000
0.472 0.611 0.843 0.913
0.460 0.605 0.848 0.900
0.317 0.432 0.612 0.702
0.534 0.686 0.890 0.941
0.074 0.040 0.023 0.018
0.370 0.418 0.659 0.706

TABLE 2.6. Estimated power of the tests for multivariate Gaussian data. The unbalanced
two-sample sizes setting (m = 100, n = 50)

Location Alternatives (∆)
d 50 100 500 1000

∆ | σ2 0.98 1.30 2.01 2.84
MMD-Pearson - - - -

MMD-Bootstrap 0.612 0.632 0.132 0.085
GPK 0.620 0.733 0.817 0.979
fGPK 0.529 0.673 0.770 0.964

fGPKM 0.592 0.731 0.832 0.980
BT 0.316 0.342 0.190 0.303
CT 0.271 0.309 0.395 0.617
GT 0.162 0.249 0.302 0.516

Scale Alternatives (σ2)
50 100 500 1000

1.11 1.09 1.04 1.04
- - - -

0.044 0.014 0.000 0.001
0.624 0.761 0.867 0.980
0.604 0.747 0.863 0.972
0.451 0.574 0.710 0.875
0.628 0.773 0.887 0.982
0.055 0.050 0.029 0.014
0.372 0.442 0.522 0.745

TABLE 2.7. Estimated power of the tests for multivariate t-distributed data (m = n = 50)

Location Alternatives (∆)
d 50 100 500 1000

∆ | σ2 0.8 1.2 1.9 2.5
MMD-Pearson 0.075 0.121 0.685 0.829

MMD-Bootstrap 0.454 0.721 0.993 1.000
GPK 0.397 0.690 1.000 1.000
fGPK 0.238 0.341 0.654 0.683

fGPKM 0.292 0.430 0.772 0.801
BT 0.101 0.079 0.082 0.078
CT 0.243 0.408 0.787 0.796
GT 0.164 0.301 0.932 0.980

Scale Alternatives (σ2)
50 100 500 1000

1.15 1.13 1.08 1.08
0.006 0.007 0.024 0.095
0.131 0.248 0.249 0.564
0.359 0.581 0.641 0.883
0.356 0.573 0.633 0.875
0.380 0.613 0.677 0.900
0.460 0.689 0.690 0.910
0.062 0.017 0.010 0.000
0.272 0.376 0.292 0.408
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TABLE 2.8. Estimated power of the tests for chi-square data (m = n = 50)

Location Alternatives (∆)
d 50 100 500 1000

∆ | σ2 2.05 2.90 5.36 7.90
MMD-Pearson 0.072 0.043 0.006 0.011

MMD-Bootstrap 0.352 0.467 0.450 0.633
GPK 0.330 0.437 0.738 0.988
fGPK 0.224 0.280 0.543 0.912

fGPKM 0.265 0.347 0.615 0.952
BT 0.131 0.104 0.091 0.120
CT 0.206 0.294 0.444 0.665
GT 0.150 0.164 0.259 0.586

Scale Alternatives (σ2)
50 100 500 1000

1.12 1.11 1.06 1.06
0.042 0.029 0.001 0.000
0.247 0.369 0.068 0.013
0.344 0.563 0.657 0.919
0.338 0.557 0.681 0.932
0.375 0.605 0.698 0.939
0.344 0.547 0.698 0.937
0.149 0.130 0.054 0.034
0.193 0.272 0.372 0.565

TABLE 2.9. Empirical size of the tests at 0.05 significance level (m = n = 50)

Multivariate Gaussian
d 50 100 500 1000

MMD-Pearson 0.000 0.000 0.000 0.000
MMD-Bootstrap 0.045 0.029 0.002 0.000

GPK 0.044 0.051 0.048 0.046
fGPK 0.042 0.038 0.041 0.043

fGPKM 0.047 0.043 0.056 0.054
BT 0.043 0.047 0.050 0.047
CT 0.054 0.055 0.075 0.059
GT 0.045 0.053 0.048 0.041

Chi-square
50 100 500 1000

0.002 0.000 0.000 0.000
0.042 0.022 0.002 0.000
0.046 0.040 0.044 0.054
0.042 0.025 0.038 0.044
0.048 0.039 0.050 0.055
0.049 0.046 0.050 0.055
0.055 0.056 0.044 0.058
0.045 0.052 0.045 0.044

Tables 2.5 and 2.6 show results for multivariate Gaussian distributions with different means and/or

variances. We see that MMD-Pearson has considerably lower power than other tests in all settings. We

thus compare the other seven tests in more details. Under the location alternatives, when d = 50 or 100,

MMD-Bootstrap does very well and followed immediately by fGPKM and GPK, and then by fGPK; when

d is larger (d = 500 or 1000), MMD-Bootstrap is outperformed by the new tests with fGPKM exhibiting the

hightest power. Under the unbalanced sample design, both GPK and fGPKM exhibit high power. Under scale

alternatives, MMD-Bootstrap has much lower power than the new tests. Among the new tests, GPK and

fGPK are doing similar and they are both better than fGPKM. BT exhibits high power for scale alternatives

and the new tests also have comparable power, while BT is outperformed by the new tests under location

alternatives.

Table 2.7 shows results for multivariate t-distributed data. We see that MMD-Bootstrap and GPK are

very sensitive to the mean change and fGPKM also shows good performance. However, MMD-Bootstrap
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performs poorly for the scale alternatives, while the new tests still perform well. CT and GT exhibit high

power for the location alternatives, but they lose power for the scale alternatives. BT shows the opposite

pattern.

Tables 2.8 shows results for chi-square data. Similar to results of multivariate Gaussian data, the new

tests with GPK and fGPKM dominate in power for the location alternatives when d is larger (d = 500 or

1000). Under scale alternatives, when d = 50 or 100, fGPKM outperforms other tests, while BT and fGPK

also exhibit high power when d is larger (d = 500 or 1000). These results show that the new tests work well

for both symmetric and asymmetric distributions under moderate to high dimensions.

Table 2.9 shows empirical size of the tests at 0.05 significance level for the multivariate Gaussian and

chi-square data. We see that the new tests control the type I error rate well.

The overall pattern of the power tables shows that the new tests exhibit good performance for a wide

range of alternatives. GPK performs well for a wide range of alternatives and fGPK maintains high power

with computational advantage. Unlike MMD tests, fGPKM is computationally efficient and can also capture

the variance difference to some extent. In practice, fGPK and fGPKM would be preferred as they are fast

and highly effective to a wide range of alternatives. If further investigation is needed, the permutation test

based on GPK would also be useful.

2.5. Real Data Examples

2.5.1. Musk data. We first illustrate the new tests on Musk data [5], which is publicly available at

https://archive.ics.uci.edu/ml/datasets.php. The Musk dataset consists of molecule

structure data. The features indicate the shape of the molecule constructed by the rotation of bonds. This

dataset describes a set of 476 molecules of which 269 are judged by human experts to be musks and the

remaining 207 molecules are judged to be non-musks, where d = 166.

We utilize this dataset to illustrate how the new tests distinguish musks versus non-musks from the shape

of the molecule. To this end, we conduct the testing procedures on subsets of the whole data to compare

their empirical power. For each m, we randomly draw m observations from these 269 musk observations

and m observations from these 207 non-musk observations. We repeat this for 1,000 times and conduct the

test with the significance level set to be 0.01.
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TABLE 2.10. Estimated power of the tests

m 30 40 50 60 70
MMD-Pearson 0.058 0.121 0.190 0.270 0.402

MMD-Bootstrap 0.091 0.167 0.275 0.388 0.568
GPK 0.133 0.265 0.434 0.606 0.780
fGPK 0.260 0.445 0.618 0.742 0.865

fGPKM 0.077 0.215 0.301 0.437 0.639

The results are shown in Table 2.10. We see that the new tests in general outperform the existing tests

for any m, indicating the consistent improvement of the new test.

2.5.2. New York City taxi data. We illustrate the new tests on New York City taxi data, which is pub-

licly available on the NYC Taxi & Limousine Commission (TLC) website (https://www1.nyc.gov/

site/tlc/about/tlc-trip-record-data.page). The data contains latitude and longitude co-

ordinates of pickup and drop-off locations, taxi pickup and drop-off date, driver-reported passenger counts,

fares, and so on. The data is very rich, and we use it to illustrate the three new tests by testing travel patterns

in consecutive months. In particular, we consider the trips that start from the John F.Kennedy (JFK) inter-

national airport. We preprocessed the data in the same way as in [13] such that we set the boundary of JFK

airport to be 40.63 to 40.66 latitude and -73.80 to -73.77 longitude. We split this area into a 30×30 grid with

equal size and count the number of trips whose drop-off location fall in each cell for each day. Then, we use

these 30×30 matrices to test whether there is a difference in travel patterns between January and February

in 2015. To do this, we let the distance of two matrice be the Frobenius norm of the difference of the two

matrices, and use the Gaussian kernel with the median of all pairwise distances as the bandwidth.

Table 2.11 shows the results of the tests. Notice that MMD-Pearson cannot be applied due to the

unbalanced sample sizes. We see that the new tests reject the null hypothesis of equal distributions at 0.05

significance level, while MMD-Bootstrap does not.

TABLE 2.11. p-values of the tests

MMD-Bootstrap GPK fGPK fGPKM
Jan vs. Feb 0.141 0.027 0.027 0.020

We investigate the test statistics in more detail for this comparison where the four tests have different

conclusions. Table 2.12 shows α − γ and β − γ values and p-values of the test based on ZW,1.2, ZW,0.8,
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and ZD. For this testing, α − γ is negative, so it offsets with β − γ and MMD-Boostrap is insignificant.

Also, the amount of |α − γ| and |β − γ| is relatively large. This implies that there is a significant variance

difference. We see that pD is very small. pW,0.8 is also very small as it covers this specific alternative here.

As a result, GPK, fGPK, and fGPKM are all significant.

TABLE 2.12. Values and p-values of each test

Jan vs. Feb α− γ β − γ MMD-Bootstrap ZW,1.2 ZW,0.8 ZD
Value -0.061 0.070 0.009 -1.164 2.481 -2.547
p-value - - 0.141 0.904 0.010 0.009

2.6. Discussion

2.6.1. A Brief Discussion on Bandwidth. In this section, we briefly discuss the bandwidth choice

in Gaussian kernels. MMD behaves as a metric when the kernel is characteristic ( [59]) and the most

popular characterstic kernel is the Gaussian kernel with the median heuristic as a bandwidth parameter [56].

[47] found that the performance of the test based on MMD using Gaussian kernel is independent of the

bandwidth when the bandwidth is greater than the median heuristic. We used the median heuristic in the

earlier implements of the new tests, and we here briefly check whether this heuristic is reasonable for the

new tests through numerical studies.

The simulation setup is as follows: we use Gaussian data and examine the average median heuristic in

each setting by 100 trials (the averaged median heuristic is around 10 when d = 100 and 14 when d = 200

in our settings). We then choose 8 bandwidths that differ by 2 from each other, starting from the averaged

median heuristic -8 to the averaged median heuristic +8 so as to check bandwidths in a wide range. We

then check the performance of GPK for each bandwidth choice for four different settings (Figure 2.5). The

results of fGPK and fGPKM are provided in Appendix A.9.

We see that there is no significant difference in the performance unless the bandwidth is too small. This

result coincides with argument in [47] that the power of the test is independent of the kernel bandwidth, as

long as it is greater than the choice made by the median heuristic. Through this numerical study, we see that

the median heuristic would be a reasonable choice for our new tests under the permutation null distribution.

2.6.2. The fast tests with the Simes procedure. Instead of the Bonferroni test, the Simes test may

be used to improve the performance of the fast tests. It has been shown that the Simes procedure is exact

20



FIGURE 2.5. Estimated power based on 100 trials of GPK vs. bandwidth when 100 sam-
ples are generated from Nd(0, Id) and 100 samples are drawn from Nd(µ, σ

2Id) with
∆ = ‖µ‖2, α = 0.05. ‘Median’ on the X axis indicates the averaged median heruistic
in each simulation run.

under independent distributions, while it becomes conservative under positively dependent distributions and

slightly liberal under negatively dependency. There have been a lot of works to prove the validity of the

Simes test under dependency [6, 7, 19, 24, 25, 34, 52, 53, 54], but they are restricted to special cases. Never-

theless, the Simes test is widely used in many applications. [48] proved that the overall relative deviation of

the Simes p-value from the true p-value is strongly bounded and showed that, although the Simes procedure

may be liberal, it cannot be consistently. It is therefore reasonably expected that the Simes p-value will be

asymptotically valid in most practical cases.

Let p(1) ≤ p(2) ≤ p(3) be the ordered p-values of pW,1.2, pW,0.8, and pD. Then, the fast test, fGPK-

Simes, is defined to reject the null if min(3p(1), 1.5p(2), p(3)) is less than the significance level. Similarly,

let p′(1) ≤ p
′
(2) be the ordered p-values of pW,1.2 and pW,0.8. Then, the fast test, fGPKM-Simes, is defined to

reject the null if min(2p′(1), p
′
(2)) is less than the significance level.
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Table 2.13 shows the empirical size of the tests for Gaussian data and chi-square data used in Section

2.4. We see that the Simes procedure also controls the type I error well. Hence, if we want to focus on the

performance of the test and improve the power of the fast tests, the Simes procedure would be useful for the

fast tests.

TABLE 2.13. Empirical size of the tests at 0.05 significance level (m = n = 50)

Multivariate Gaussian
d 50 100 500 1000

fGPK 0.051 0.045 0.034 0.044
fGPK-Simes 0.052 0.046 0.039 0.049

fGPKM 0.055 0.045 0.042 0.051
fGPKM-Simes 0.055 0.045 0.042 0.052

Chi-square
50 100 500 1000

0.052 0.053 0.045 0.037
0.048 0.050 0.042 0.035
0.055 0.058 0.041 0.043
0.055 0.058 0.041 0.043
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CHAPTER 3

New Kernel-Based Change-Point Detection

3.1. Introduction

3.1.1. Problem statement. Recent technological advances have facilitated the collection of high-dimensional

data sequence in various high-impact applications, including social sciences, neuroscience, molecular chem-

istry, and computer graphics. High-dimensional complex data sequences are becoming prevalent and the

development of efficient change-point detection method is gaining more attention for this new setting. In

this paper, we consider the offline change-point detection problem where a sequence of independent obser-

vations {yi}1,...,n is given at the time when data analysis is conducted. Specifically, we consider testing the

null hypothesis

(3.1) H0 : yi ∼ F0, i = 1, . . . , n

against the single change-point alternative

(3.2) H1 : ∃ 1 ≤ τ < n, yi ∼


F0, i ≤ τ

F1, otherwise

or the changed interval alternative

(3.3) H2 : ∃ 1 ≤ τ1 < τ2 < n, yi ∼


F0, i = τ1 + 1, . . . , τ2

F1, otherwise

where F0 and F1 are two different disbtributions. Following are some motivating examples.

• Abnormality in biological system: Abrupt changes in biological activity by internal or external

events may cause serious health problems and it is important to detect such changes as early as

possible. For example, detecting changes in gene expression, normally called differential gene
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expression (DGE), can reveal chromosomal aberrations in the genomic DNA and this is critical to

the early diagnosis of cancer [65]. Change-point detection can also be used in neurophysiological

studies of the brain to analyze the synchrony between neural activity and external event [61] and

hypothesis testing on changes in dynamic brain networks [37].

• Image Analysis: The detection of changes in a sequence of images is an important task as image

data is becoming increasingly prevalent in many applications, including video surveillance [1,22],

driver assistance systems [18], and medical diagnosis and treatment [8]. In these applications,

each observation consists of a number of pixels and detecting unusual events in the sequence is

very challenging.

• Speech Recognition: Speech recognition represents the process of converting spoken language to

words or text and it is often of interest to capture abrupt changes in the audio composition. For

example, audio segmentation is an important task in many audio processing applications and this

significantly impacts on the performance of speech recognition [51]. An audio signal is super-

imposed and of high dimensions [66]. Change-point detection methods can be applied for audio

segmentation by recognizing boundaries between sentences, silence, and noise.

Many approaches for change-point detection are usually parametric [12, 63, 64, 68], but they rely on

strong assumptions on the sequence. The challenging problems of parametric methods have been addressed

in the nonparametric setting, including the methods using marginal rankings [42], interpoint distances [39,

43], similarity graphs [11,13], and Fréchet mean changes [15]. For example, [43] proposed the method based

on U-statistics and a divisive hierarchical estimation algorithm, but it is time-consuming due to an intensive

permutation use. [11] and [13] proposed nonparametirc methods using graphs, such as a k-MST (minimum

spanning tree), which is the union of the 1st, . . ., kth MSTs, where a kth MST does not contain edges in the

1st, . . ., (k-1)th MSTs. They provided analytical p-value approximations and showed good performance for

general alternatives. [15] recently proposed test statistics for detecting change-points in Fréchet mean and/or

Fréchet variance. However, this approach is not versatile to use since it needs to compute Fréchet mean and

variance changes differently depending on the data structure.

3.1.2. Kernel change-point detection methods and their limitations. Recently, kernel methods are

widely used in the two-sample comparison as a nonparametric approach and they have the potential to

capture any change in the distribution. This framework began with the test based on mapping distributions
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into a reproducing kernel Hilbert space (RKHS) generated by a given kernel k(·, ·) and the most well-known

kernel two-sample test statistic, the maximum mean discrepancy (MMD), proposed by [26].

Compared with kernel methods in two-sample testing problems, kernel-based change-point analysis has

not been well explored since it is in general difficult to conduct theoretical analysis, such as controlling the

type I error, and it is computationally inefficient to use. The first practical offline change-point detection

method using kernels was proposed by [30]. They incorporated kernels into dynamic programming algo-

rithms for detecting jumps in the sequence. A kernel-based test statistic, called the maximum kernel Fisher

discriminant ratio, was also proposed by [31]. However, the test statistic has O(n3d) time complexity and

the approach relies on the bootstrap resampling method for computing the decision threshold, making the

test impractical in reality. [40] proposed MMD-based test statistic by adopting a strategy developed by [67].

Though it is computationally efficient when the amount of data is large, the method specifies a block that

could have a potential change-point in the sequence and requires a large amount of reference data before

the changes happens. Some other kernel-based methods also do not guarantee on estimating the location

of change-points when detected [9, 35]. Recently, [2] developed a kernel change-point detection procedure

(KCP) that extends the method proposed by [30]. KCP utilizes a model-selection penalty that allows to se-

lect the number of change-points, while the work of [30] assumes a fixed known number of change-points.

However, a major disadvantage is that KCP heavily depends on the penalty constant and it is very difficult to

control the type I error. Table 3.1 shows the empirical size of KCP under different dimensions and penalty

constants for Gaussian data when n = 200. We see that the empirical size of the test is very sensitive to the

penalty constant, particularly for high-dimensional data.

3.1.3. Generalized kernel two-sample tests. The most well-known kernel two-sample test is based on

an unbiased estimate of MMD2 defined as

MMD2
u =

1

m(m− 1)

m∑
i=1

m∑
j=1,j 6=i

k(Xi, Xj) +
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

k(Yi, Yj)

− 2

mn

m∑
i=1

n∑
j=1

k(Xi, Yj)(3.4)

4
= α+ β − 2γ,(3.5)
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TABLE 3.1. Empirical size of KCP under different dimensions and penalty constants for
Gaussian data

Penalty constants 0.360 0.355 0.350 0.345 0.340 0.335 0.330 0.325 0.320 0.315
d = 100 0.010 0.014 0.029 0.041 0.056 0.084 0.117 0.159 0.204 0.207

Penalty constants 0.0605 0.0600 0.0595 0.0590 0.0585 0.0580 0.0575 0.0570 0.0565
d = 500 0.000 0.008 0.019 0.028 0.051 0.081 0.132 0.186 0.242

Penalty constants 0.0302 0.0297 0.0292 0.0287 0.0282 0.0277 0.0272 0.0267 0.0262
d = 1000 0.000 0.000 0.001 0.009 0.036 0.159 0.392 0.716 0.932

Penalty constants 0.0139 0.0138 0.0137 0.0136 0.0135
d = 2000 0.006 0.027 0.071 0.135 0.252

where X1, X2, . . . , Xm
iid∼ F0 and Y1, Y2, . . . , Yn

iid∼ F1. Asymptotic behaviors of MMD2
u were studied

in [26] and it was revealed that MMD2
u degenerated under the null hypothesis of equal distributions. Several

approaches for approximating the limiting distribution of MMD2
u were provided in [26], [29], and [27]. [28]

and [47] studied the choice of the kernel and the bandwidth parameter, and the most popular characterstic

kernel, the Gaussian kernel, with the median heuristic (the median of all pairwise distances among observa-

tions) is recommended.

Though MMD is widely used and it works well under many settings, it could have low power under some

common alternatives for high-dimensional data [58]. Moreover, existing testing procedures for MMD2
u have

other drawbacks, such as the large computational cost or the assumption for the balanced sample design, i.e,

the two samples are of the same size. To address this, [58] proposed generalized kernel two-sample tests

which allow a great versatility in use. They also proposed testing procedures that maintain high power with

low computational cost.

3.1.4. Our contribution. To the best of our knowledge, all existing kernel change-point detection

methods are either restricted to specific settings and/or computationally intensive. Starting from the mo-

tivation of the two-sample version in [58], we propose new kernel-based test statistics for the single change-

point alternative (3.2) and the changed-interval alternative (3.3). The new tests are easy to implement and

have no tuning parameter. The new test statistic performs well for a wide range of alternatives and achieves

high power in detecting and estimating change-points in the high-dimensional sequence compared to other
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state-of-the-art methods. We also derive analytic formulas for type I error control and propose fast tests

based on the asymptotic results, making the tests instantly applicable for large datasets.

The organization of the paper is as follows. In Section 3.2, we propose new scan statistics for the

single change-point and changed-interval alternatives. The asymptotic behavior of the new test statistics,

the analytical p-value approximations, and fast tests are provided in Section 3.3. Section 3.4 examines the

performance of the new tests under various simulation settings. The new approaches are illustrated by a real

data application on a phone-call network data in Section 3.5. We conclude with discussion in Section 3.6.

3.2. New scan statistics

In this section, the new scan statistics for testing the null H0 (3.1) against the single change-point alter-

native H1 (3.2) (Section 3.2.1) and the changed-interval alternative H2 (3.3) (Section 3.2.2) are presented.

We work under the permutation null distribution, which places 1/n! probability on each of the n! permu-

tations of {yi}1,...,n. With no further specification, P, E, Var, and Cov denote the probability, expectation,

variance, and covaraince, repectively, under the permutation null distribution. In addition, without further

specification, we use the Gaussian kernel with the median heuristic as the bandwidth parameter.

3.2.1. Scan statistics for the single change-point alternative. Let gi(t) = Ii>t, Ix be the indicator

function and kij = k(yi, yj) (i, j = 1, . . . , n). The quantity of α, β in testing the two samples {y1, . . . , yt}

and {yt+1, . . . , yn} can be written as

α(t) =
1

t(t− 1)

n∑
i=1

n∑
j=1,j 6=i

kijIgi(t)=gj(t)=0,(3.6)

β(t) =
1

(n− t)(n− t− 1)

n∑
i=1

n∑
j=1,j 6=i

kijIgi(t)=gj(t)=1.(3.7)

[58] proposed the new kernel two-sample test statistic that makes use of a common pattern under mod-

erate and high dimensions. They showed that the new test statistic consists of two uncorrelated quantities

and they cover different regions of alternatives, making the new test versatile for a wide range alternatives.

Starting from the motivation of the two-sample version in [58], we consider two basic quantities for

detecting the change-point as follows:

D(t) = t(t− 1)α(t)− (n− t)(n− t− 1)β(t),(3.8)
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W (t) =
n− t
n

t(t− 1)α(t) +
t

n
(n− t)(n− t− 1)β(t).(3.9)

It is expected that D(t) would be sensitive to scale alternatives and W (t) would be sensitive to location

alternatives.

Since the null distributions of D(t) and W (t) depend on t, we standardize D(t) and W (t) so that

they are comparable across t. Let E(D(t)), Var(D(t)), E(W (t)), and Var(W (t)) be the expectations and

variances of D(t) and W (t), respectively, under the permutation null distribution. Then,

ZD(t) =
D(t)− E(D(t))√

Var(D(t))
, ZW (t) =

W (t)− E(W (t))√
Var(W (t))

.(3.10)

Finally, we define the test statistic for detecting and estimating the change-point in the sequence as

(3.11) GKCP(t) = Z2
D(t) + Z2

W (t),

to utilize the advantages of ZD(t) and ZW (t).

Under the permutation null, the analytic expressions for the expectation and the variance of D(t) and

W (t) can be calculated through combinatorial analysis. They are provided in Theorem 3.2.1 (proof in

Appendix B.2).

THEOREM 3.2.1. Under the permutation null, we have

E (α(t)) = E (β(t)) =
1

n(n− 1)
R0,

Var (α(t)) =
1

t2(t− 1)2
(2R1p1(t) + 4R2p2(t) +R3p3(t))− E (α(t))2 ,

Var (β(t)) =
1

(n− t)2(n− t− 1)2
(2R1q1(t) + 4R2q2(t) +R3q3(t))− E (β(t))2 ,

Cov (α(t), β(t)) =
R3

n(n− 1)(n− 2)(n− 3)
− E (α(t)) E (β(t)) ,

where

R0 =
n∑
i=1

n∑
j=1,j 6=i

kij , R1 =
n∑
i=1

n∑
j=1,j 6=i

k2
ij , R2 =

n∑
i=1

n∑
j=1,j 6=i

n∑
u=1,u 6=j,u6=i

kijkiu,

R3 =

n∑
i=1

n∑
j=1,j 6=i

n∑
u=1,u6=j,u6=i

n∑
v=1,v 6=u,v 6=j,v 6=i

kijkuv,
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p1(t) =
t(t− 1)

n(n− 1)
, p2(t) = p1(t)

t− 2

n− 2
, p3(t) = p2(t)

t− 3

n− 3
,

q1(t) =
(n− t)(n− t− 1)

n(n− 1)
, q2(t) = q1(t)

n− t− 2

n− 2
, q3(t) = q2(t)

n− t− 3

n− 3
.

To test H0 (3.1) versus H1 (3.2), the following scan statistic is used:

max
n0≤t≤n1

GKCP(t),(3.12)

where n0 and n1 are pre-specified constraints on the region where the change-point τ is searched. By default,

we can set n0 = [0.05n]1 and n1 = n − n0. If there are prior information on the range of the potential

change-point, then n0 and n1 can be specified accordingly. The null hypothesis H0 (3.1) is rejected if the

scan statistic is greater than a threshold. Detail strategies about how to choose the threshold to control the

type I error are discussed in Section 3.3.

FIGURE 3.1. The profile of GKCP(t) against t for Gaussian data. In the left panel, the first
25 observations are generated fromNd(0d, Id), d = 100, and the second 25 observations are
drawn from Nd(µ, Id) with ‖µ‖2 = 3. In the right panel, all 50 observations are generated
from Nd(0d, Id).

Figure 3.1 illustrates the GKCP(t) process for a toy example, where the left panel consists of the first

25 observations generated from Nd(0d, Id), d = 100, and the second 25 observations drawn from Nd(µ, Id)

with ‖µ‖2 = 3 (a change-point in the middle of the sequence) and the right panel consists of 50 observations

generated from Nd(0d, Id) (no change-point). It is clear that max GKCP(t) in the left panel is much larger

than that in the right panel and GKCP(t) peaks at the true change-point 25 in the left panel.

1[x] denotes the largest integer that is no larger than x.
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3.2.2. Scan statistics for the changed-interval alternative. Here, we define the test statistic for test-

ing H0 (3.1) against the changed-interval alternative H2 (3.3). Similar to the singe change-point alter-

native, each possible interval (t1, t2] divides the data sequence into two groups. Then, for any candi-

date interval (t1, t2], the test statistics ZD(t1, t2) and ZW (t1, t2) can be defined in the similar manner to

the single change-point alternative. Under the permutation null, the analytic expression for E(D(t1, t2)),

E(W (t1, t2)), Var(D(t1, t2)), and Var(W (t1, t2)) can be obtained similary as in the single change-point

setting and details are provided in Appendix B.1. The scan statistic involves a maximization over t1 and t2,

max
1<t1<t2≤n
n0≤t2−t1≤n1

GKCP(t1, t2),(3.13)

where n0 and n1 are constraints on the window size.

3.3. Analytical p-value approximations and fast tests

Given the test statistic, the next step is to determine how large the test statistic needs to provide sufficient

evidence to reject the null hypothesis of homogeneity. That is, we are concerned with the tail probabilities

of the scan statistic under H0 (3.1),

(3.14) P
(

max
n0≤t≤n1

GKCP(t) > b

)
for the single change-point alternative, and

(3.15) P

 max
1<t1<t2≤n
n0≤t2−t1≤n1

GKCP(t1, t2) > b


for the changed-interval alternative.

The threshold can be approximated by drawing random permutations of the sequence. This is, however,

time consuming. We thus aim to obtain analytical expressions to approximate these tail probabilities.

[58] showed that the test of the two-sample version of ZW (t) is equivalent to the test based onmMMD2
u

when m = n, but [26] showed that mMMD2
u converges to very complicated distibution under the true null.

Hence, we first define an weighted version of W (t) to obtain the tractable asymptotic results:

Wr(t) = r
n− t
n

t(t− 1)α(t) +
t

n
(n− t)(n− t− 1)β(t).(3.16)
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ZW,r(t) is the standardized Wr(t), where r is a constant. Note that W1(t) = W (t).

In the rest of this chapter, we first study the asymptotic properties of the stochastic processes {ZD([nu]) :

0 < u < 1}, {ZW,r([nu]) : 0 < u < 1}, {ZD([nu], [nv]) : 0 < u < v < 1}, and {ZW,r([nu], [nv]) :

0 < u < v < 1}, and then make adjustments for finite samples (Section 3.3.1). We then derive analytic

approximations to the tail probabilities under the Gaussian field approximation (Section 3.3.2). We improve

our approximations by correcting the skewness in the marginal distributions (Section 3.3.3) and these ap-

proximations are checked by numerical studies in Section 3.3.4. Finally, we propose fast tests based on the

asymptotic results in Section 3.3.5.

3.3.1. Asymptotic distributions of the basic processes. In this section, we derive the limiting distri-

butions of {ZD([nu]) : 0 < u < 1} and {ZW,r([nu]) : 0 < u < 1} for the single change-point alternative

and {ZD([nu], [nv]) : 0 < u < v < 1} and {ZW,r([nu], [nv]) : 0 < u < v < 1} for the changed-interval

alternative.

In the following, we write an = o(bn) when an has order smaller than bn. Let ki· =
∑n

j=1,j 6=i kij for

i = 1, . . . , n and k̇ =
∑n

i=1 ki·/n.

THEOREM 3.3.1. With the characteristic kernels, when kij = O(1) ∀i, j and
∑N

i=1 k
2
i· − Nk̇2 =

O
(∑N

i=1 k
2
i·
)
, as n→∞,

(1) {ZD([nu]) : 0 < u < 1} converges to a Gaussian process in finite dimensional distributions,

which we denote as {Z∗D(u) : 0 < u < 1}.

(2) {ZD([nu], [nv]) : 0 < u < v < 1} converges to a two-dimensional Gaussian random field in

finite dimensional distributions, which we denote as {Z∗D(u, v) : 0 < u < v < 1}.

The proof for this theorem is in Appendix B.2.

THEOREM 3.3.2. With the characteristic kernels, when kij = O(1) ∀i, j and
∑N

i=1 k
2
i· − Nk̇2 =

O
(∑N

i=1 k
2
i·
)

and r 6= 1, as n→∞,

(1) {ZW,r([nu]) : 0 < u < 1} converges to a Gaussian process in finite dimensional distributions,

which we denote as {Z∗W,r(u) : 0 < u < 1}.

(2) {ZW,r([nu], [nv]) : 0 < u < v < 1} converges to a two-dimensional Gaussian random field in

finite dimensional distributions, which we denote as {Z∗W,r(u, v) : 0 < u < v < 1}.
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The proof for this theorem is in Appendix B.2.

REMARK 3.3.1. To prove the convergence of stochastic processes indexed by a continuous variable, we

also need a tightness condition of the process. Here, we do not explicitly show the tightness theoretically.

However, our simulation results show that the approximation seems quite accurate in practice, particularly

for high-dimesional cases (see Tables 3.2, 3.3, and 3.4). We also briefly check this by simulations for

Gaussian data used in Figure 3.1 when n = 1000 and d = 500. Figure 3.2 illustrates 10 processes of ZD(t)

under the null (left pannel) and 10 permuted sequences of one case of the null (right pannel). We see that

huge spikes are rare to occur in the middle of the sequences except at the two ends. We plan to study the

tightness of the processes theoretically and leave this for post-graudate works.

FIGURE 3.2. The profile of ZD(t) against t for Gaussian data.

Let ρ∗D(u, v) = Cov (Z∗D(u), Z∗D(v)) and ρ∗W,r(u, v) = Cov
(
Z∗W,r(u), Z∗W,r(v)

)
. The explicit covari-

ance functions of the limiting Gaussian processes, {Z∗D(u) : 0 < u < 1} and {Z∗W,r(u) : 0 < u < 1} are

stated in the following theorem.

THEOREM 3.3.3. The exact expression for ρ∗D(u, v) and ρ∗W,r(u, v) are

ρ∗D(u, v) =
(u ∧ v) (1− (u ∨ v))√
u(1− u)v(1− u)

,
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ρ∗W,r(u, v) =
2R1{r2(u ∧ v) (1− (u ∧ v)) (1− (u ∨ v))2}

(u ∨ v) (1− (u ∧ v))σ∗W,r(u)σ∗W,r(v)

+
2R1{r(u ∨ v) (1− (u ∧ v)) (u+ v − uv) + uv (2− (u ∧ v)) (1− (u ∨ v))}

(u ∨ v) (1− (u ∧ v))σ∗W,r(u)σ∗W,r(v)

+
4R2uv(1− u)(1− v)

(u ∨ v) (1− (u ∧ v))σ∗W,r(u)σ∗W,r(v)
,

where u ∧ v = min(u, v), u ∨ v = max(u, v), and

σ∗W,r(u) =
√

2R1{r(1− u) + u}2 + (4R1 + 4R2)u(1− u)(r − 1)2.

The above theorem is proved through combinatorial analysis and the details are in Appendix B.2. From

the above theorem, we see that the limiting process {Z∗D(u) : 0 < u < 1} does not depend on kernel values,

while {Z∗W,r(u) : 0 < u < 1} depends on kernel values.

3.3.2. Asymptotic p-value approximations. We now examine the asymptotic behavior of two tail

probabilities (3.14) and (3.15). Following similar arguments in the proof for Proposition 3.4 in [11], when

n0, n1, n, b→∞ in a way such that for some 0 < x0 < x1 < 1 and b0 > 0, n0/n→ x0, n1/n→ x1, and

b/
√
n→ b0, as n→∞, we have

P
(

max
n0≤t≤n1

|Z∗D(t/n)| > b

)
∼ 2bφ(b)

∫ x1

x0

h∗D(x)ν
(
b0

√
2h∗D(x)

)
dx,(3.17)

P
(

max
n0≤t2−t1≤n1

|Z∗D(t1/n, t2/n)| > b

)
(3.18)

∼ 2b3φ(b)

∫ x1

x0

(
h∗D(x)ν

(
b0

√
2h∗D(x)

))2

(1− x)dx,

P
(

max
n0≤t≤n1

Z∗W,r(t/n) > b

)
∼ bφ(b)

∫ x1

x0

h∗W,r(x)ν
(
b0

√
2h∗W,r(x)

)
dx,(3.19)

P
(

max
n0≤t2−t1≤n1

Z∗W,r(t1/n, t2/n) > b

)
(3.20)

∼ b3φ(b)

∫ x1

x0

(
h∗W,r(x)ν

(
b0

√
2h∗W,r(x)

))2
(1− x)dx,

where the function ν(·) can be numerically estimated as

ν(s) ≈ (2/s) (Φ(s/2)− 0.5)

(s/2)Φ(s/2) + φ(s/2)
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[57] with Φ(·) and φ(·) being the standard normal cumulative density function and probability density

function, respectively, and

h∗D(x) = lim
s↗x

∂ρ∗D(s, x)

∂s
= − lim

s↘x

∂ρ∗D(s, x)

∂s
,

h∗W,r(x) = lim
s↗x

∂ρ∗W,r(s, x)

∂s
= − lim

s↘x

∂ρ∗W,r(s, x)

∂s
.

REMARK 3.3.2. In practice, when using (3.17)–(3.20) for finite sample, we use

P
(

max
n0≤t≤n1

|ZD(t)| > b

)
∼ 2bφ(b)

∑
n0≤t≤n1

CD(t)ν
(
b
√

2CD(t)
)
,

P
(

max
n0≤t2−t1≤n1

|ZD(t1, t2)| > b

)
∼ 2b3φ(b)

∑
n0≤t≤n1

(
CD(t)ν

(
b
√

2CD(t)
))2

(n− t),

P
(

max
n0≤t≤n1

ZW,r(t) > b

)
∼ bφ(b)

∑
n0≤t≤n1

CW,r(t)ν
(
b
√

2CW,r(t)
)
,

P
(

max
n0≤t2−t1≤n1

ZW,r(t1, t2) > b

)
∼ b3φ(b)

∑
n0≤t≤n1

(
CW,r(t)ν

(
b
√

2CW,r(t)
))2

(n− t),

where

CD(t) =
∂ρD(s, t)

∂s

∣∣∣
s=t
, CW,r(t) =

∂ρW,r(s, t)

∂s

∣∣∣
s=t

with ρD(u, v) = Cov (ZD(u), ZD(v)) and ρW,r(u, v) = Cov (ZW,r(u), ZW,r(v)). The explicit expressions

for CD(t) and CW,r(t) can be calculated in the similar manner to the proof of Theorem 3.3.3.

3.3.3. Skewness correction. The analytical p-value approximations based on the asymptotic results

provide a practical tool for large datasets. However, they become less precise if we set n0 and n1 close to

the two ends since the convergence of ZD(t) and ZW,r(t) to the Gaussian process is slow as t/n is close to

0 or 1. As illustrated in Figure 3.3, the skewness is a bit severe when t is close to the two ends.

Hence, we improve the accuracy of the analytical p-value approximations for finite sample sizes by

skewness correction. As the skewness depends on the value of t, we adopt a similar treatment discussed

in [11] and we add extra terms in the analytic formulas to correct skewness.
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FIGURE 3.3. Plots of skewness of ZD(t), ZW,1.2(t) and ZW,0.8(t) against t for a sequence
of 1000 points generated from N1000(0, I1000).

After skewness correction, the analytical p-value approximations are

P
(

max
n0≤t≤n1

|Z∗D(t/n)| > b

)
∼ 2bφ(b)

∫ x1

x0

SD(x)h∗D(x)ν
(
b0

√
2h∗D(x)

)
dx,(3.21)

P
(

max
n0≤t2−t1≤n1

|Z∗D(t1/n, t2/n)| > b

)
(3.22)

∼ 2b3φ(b)

∫ x1

x0

SD(x)

(
h∗D(x)ν

(
b0

√
2h∗D(x)

))2

(1− x)dx,

P
(

max
n0≤t≤n1

Z∗W,r(t/n) > b

)
∼ bφ(b)

∫ x1

x0

SW,r(x)h∗W,r(x)ν
(
b0

√
2h∗W,r(x)

)
dx,(3.23)

P
(

max
n0≤t2−t1≤n1

Z∗W,r(t1/n, t2/n) > b

)
(3.24)

∼ b3φ(b)

∫ x1

x0

SW,r(x)
(
h∗W,r(x)ν

(
b0

√
2h∗W,r(x)

))2
(1− x)dx,

where

SD(t) =
exp

{
1
2(b− θ̂b,D(t))2 + 1

6γD(t)θ̂3
b,D(t)

}√
1 + γD(t)θ̂b,D(t)

,

SW,r(t) =
exp

{
1
2(b− θ̂b,W,r(t))2 + 1

6γW,r(t)θ̂
3
b,W,r(t)

}√
1 + γW,r(t)θ̂b,W,r(t)

,
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with

θ̂b,D(t) =

√
1 + 2γD(t)b− 1

γD(t)
, γD(t) = E

(
Z3
D(t)

)
,

θ̂b,W,r(t) =

√
1 + 2γW,r(t)b− 1

γW,r(t)
, γW,r(t) = E

(
Z3
W,r(t)

)
.

To obtain γD(t) and γW,r(t), we need to figure out E
(
D3(t)

)
and E

(
W 3
r (t)

)
. The exact analytic expres-

sions of E
(
D3(t)

)
and E

(
W 3
r (t)

)
are complicated and they are provided in Appendix B.3.

REMARK 3.3.3. When the marginal distribution is highly left-skewed, the skewness is so small that

1 + 2γ(t)b could be negative. Since this problem usually happens when t/n is close to 0 or 1, we apply a

heuristic fix discussed in [11], the extrapolation for θb(t) using its values outside the problematic region.

3.3.4. Checking p-value approximations under finite n. In this section, we check how the analytical

p-value approximations work for finite samples. To this end, we compare the critical values for 0.05 p-

value threshold obtained from doing 10,000 permutations and the critical values obtained in Section 3.3.2

and 3.3.3 under various simulation settings. Here, we focus on the single-change-point alternative, and the

results for the changed-interval alternative are provided in Appendix B.5.

We consider three distributions (multivariate Gaussian (C1), multivariate t5 (C2), multivariate log-

normal (C3)) under various dimensions (d = 100, 500, 1000). In each simulation, two randomly simulated

n = 1, 000 sequences are generated. The analytic approximations depend on constraints n0 and n1. To

make things simple, we set n1 = n− n0.

Since the asymptotic p-value approximation of ZD(t) without skewness correction does not depend on

kernel values, the critical value is determined by n, n0, and n1 only. On the other hand, the asymptotic

p-value approximation of ZW,r(t) without skewness correction and the skewness corrected p-value approx-

imations of ZD(t) and ZW,r(t) depend on certain kenel values.

Table 3.2 shows the results of the scan statistic of ZD(t). The critical values without skewness cor-

rections are presented labeld by ‘A1’. ‘A2’ denotes the skewness-corrected analytical critical values and

‘Per’ presents the critical values obtained from 10,000 permutation. We see that the asymptotic p-value

approximation performs well in all cases, even without the skewness correction.

Table 3.3 shows the results of the scan statistic of ZW,1.2(t). Here, since the convergence of ZW,r(t)

to the Gaussian process becomes slow as r is close to 1, r is set to 1.2 (see Section 3.3.5). We see that the
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TABLE 3.2. Critical values for the single change-point scan statistic maxn0≤t≤n1 ZD(t) at
0.05 significance level. n = 1000

n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 3.00 3.05 3.10 3.16

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A2 Per A2 Per A2 Per A2 Per
Gaussian 3.00 3.01 3.05 3.04 3.10 3.09 3.16 3.14
d = 100 3.00 3.01 3.05 3.03 3.10 3.11 3.16 3.15
Gaussian 3.00 3.01 3.05 3.04 3.10 3.10 3.16 3.16
d = 500 3.00 3.01 3.05 3.05 3.10 3.10 3.16 3.16
Gaussian 3.00 3.01 3.05 3.04 3.10 3.10 3.16 3.14
d = 1000 3.00 2.99 3.05 3.06 3.10 3.10 3.16 3.15

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A2 Per A2 Per A2 Per A2 Per
MV-t5 3.00 3.02 3.05 3.03 3.10 3.10 3.16 3.16
d = 100 3.00 3.00 3.05 3.04 3.10 3.10 3.16 3.16
MV-t5 3.00 2.99 3.04 3.04 3.10 3.09 3.16 3.16
d = 500 3.00 2.99 3.04 3.03 3.10 3.09 3.16 3.16
MV-t5 3.00 2.99 3.05 3.04 3.10 3.08 3.17 3.18
d = 1000 3.00 2.99 3.05 3.05 3.10 3.09 3.17 3.16

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A2 Per A2 Per A2 Per A2 Per
Log-normal 3.00 2.98 3.05 3.02 3.10 3.08 3.16 3.16
d = 100 3.00 2.99 3.05 3.04 3.10 3.04 3.16 3.15

Log-normal 3.00 3.00 3.04 3.04 3.10 3.09 3.16 3.16
d = 500 3.00 2.99 3.04 3.03 3.10 3.09 3.16 3.16

Log-normal 3.00 2.99 3.05 3.06 3.10 3.07 3.17 3.15
d = 1000 3.00 2.99 3.05 3.02 3.10 3.09 3.17 3.14

asymptotic p-value approximation performs reasonably well when n0 ≥ 50. However, the asymptotic p-

value approximation with skewness correction is doing much better than the critical values without skewness

correction, even when n0 ≥ 25. In particular, we see that the asymptotic p-value approximation works better

as the dimension increases.
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TABLE 3.3. Critical values for the single change-point scan statistic maxn0≤t≤n1 ZW,1.2(t)
at 0.05 significance level. n = 1000

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
Gaussian 2.79 2.87 2.88 2.84 2.93 2.95 2.90 3.00 3.02 2.99 3.11 3.12
d = 100 2.79 2.86 2.86 2.85 2.93 2.94 2.91 3.00 3.03 2.99 3.10 3.08
Gaussian 2.79 2.82 2.83 2.85 2.88 2.89 2.91 2.94 2.93 2.99 3.04 3.02
d = 500 2.79 2.82 2.78 2.85 2.88 2.88 2.91 2.94 2.94 2.99 3.04 3.04
Gaussian 2.79 2.81 2.79 2.84 2.87 2.84 2.91 2.94 2.93 2.99 3.04 3.04
d = 1000 2.79 2.81 2.78 2.84 2.87 2.87 2.91 2.94 2.93 2.99 3.03 3.00

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
MV-t5 2.76 2.88 2.91 2.81 2.94 2.93 2.87 3.02 3.05 2.95 3.13 3.14
d = 100 2.76 2.88 2.92 2.81 2.94 2.97 2.87 3.02 3.03 2.96 3.13 3.13
MV-t5 2.76 2.81 2.82 2.81 2.86 2.86 2.87 2.94 2.93 2.95 3.04 3.04
d = 500 2.75 2.81 2.80 2.81 2.87 2.86 2.87 2.93 2.92 2.95 3.03 3.02
MV-t5 2.75 2.79 2.79 2.81 2.86 2.86 2.87 2.92 2.90 2.95 3.01 3.00
d = 1000 2.75 2.79 2.79 2.81 2.85 2.85 2.87 2.91 2.91 2.95 3.01 3.01

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
Log-normal 2.74 3.01 3.14 2.80 3.08 3.22 2.85 3.18 3.29 2.93 3.31 3.48
d = 100 2.74 3.01 3.12 2.80 3.08 3.23 2.85 3.18 3.30 2.93 3.32 3.49

Log-normal 2.74 2.91 2.97 2.79 2.98 3.05 2.85 3.06 3.11 2.93 3.18 3.24
d = 500 2.74 2.90 2.96 2.79 2.97 3.04 2.85 3.05 3.09 2.93 3.17 3.24

Log-normal 2.74 2.88 2.90 2.79 2.94 2.97 2.85 3.02 3.04 2.92 3.13 3.17
d = 1000 2.74 2.88 2.92 2.79 2.94 2.98 2.85 3.02 3.07 2.92 3.13 3.17

We also check for ZW,0.8(t) and the results are presented in Table 3.4. The pattern is similar to that

for ZW,1.2(t): the skewness corrected asymptotic p-value approximation shows better accuracy than that

without skewness correction and the approximation becomes more accurate as the dimension increases.

3.3.5. Fast tests. Although ZW,r(t) (r 6= 1) converges to the Gaussian process under mild conditions,

the performance of the test decreases as r goes away from 1. Table 3.5 shows the estimated power ofZW,r(t)

under various r for Gaussian data where the first 100 observations are generated from from Nd(µ1, Id) and

the second 100 observations are generated from Nd(µ2, Id), where ∆ = ‖µ1 − µ2‖2. The p-values of each
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TABLE 3.4. Critical values for the single change-point scan statistic maxn0≤t≤n1 ZW,0.8(t)
at 0.05 significance level. n = 1000

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
Gaussian 2.77 2.84 2.84 2.82 2.89 2.88 2.89 2.97 2.98 2.97 3.07 3.04
d = 100 2.78 2.84 2.84 2.83 2.90 2.90 2.89 2.97 2.99 2.98 3.07 3.06
Gaussian 2.78 2.80 2.80 2.82 2.85 2.84 2.89 2.92 2.91 2.97 3.01 2.99
d = 500 2.78 2.80 2.80 2.83 2.85 2.87 2.89 2.92 2.92 2.98 3.01 3.00
Gaussian 2.77 2.79 2.79 2.83 2.85 2.85 2.89 2.92 2.89 2.97 3.01 2.96
d = 1000 2.77 2.80 2.80 2.82 2.85 2.82 2.89 2.91 2.91 2.97 3.00 2.99

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
MV-t5 2.77 2.85 2.88 2.81 2.91 2.94 2.86 2.99 2.99 2.94 3.09 3.11
d = 100 2.77 2.85 2.87 2.80 2.91 2.95 2.87 2.99 3.00 2.95 3.09 3.06
MV-t5 2.75 2.79 2.79 2.80 2.85 2.84 2.86 2.92 2.92 2.94 3.01 3.01
d = 500 2.75 2.80 2.80 2.80 2.85 2.83 2.86 2.92 2.92 2.94 3.01 3.00
MV-t5 2.75 2.79 2.79 2.80 2.85 2.84 2.86 2.92 2.92 2.94 3.00 3.01
d = 1000 2.75 2.80 2.80 2.80 2.85 2.83 2.86 2.92 2.92 2.94 2.99 2.99

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
Log-normal 2.74 2.96 3.04 2.79 3.04 3.11 2.85 3.13 3.24 2.93 3.25 3.39
d = 100 2.74 2.96 3.05 2.79 3.04 3.12 2.85 3.13 3.21 2.93 3.26 3.40

Log-normal 2.74 2.88 2.92 2.79 2.94 2.96 2.85 3.02 3.04 2.92 3.13 3.19
d = 500 2.74 2.88 2.93 2.79 2.94 2.97 2.85 3.02 3.06 2.92 3.13 3.19

Log-normal 2.73 2.84 2.84 2.79 2.92 2.97 2.85 2.99 3.01 2.92 3.10 3.12
d = 1000 2.73 2.85 2.86 2.79 2.92 2.94 2.85 2.99 3.01 2.92 3.10 3.13

test are approximated by 10,000 permutations for fair comparison. We see that the performance of the test

decreases as r goes away from 1.

To make use of the asymptotic result of ZW,r(t) and maximize the power of the test, we propose to use

ZW,1.2(t) and ZW,0.8(t) together. The power of the test is compromised by using both test statistics together

as they cover different regions of alternatives and their r’s are far enough away from 1 so that the Gaussian

approximation is reasonable while maintaing a good power.
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TABLE 3.5. Estimated power (by 100 simulation runs) of ZW,r(t) at 0.05 significance
level. The first 100 observations are generated from Nd(µ1, Id) and the second 100 ob-
servations are generated from Nd(µ2, Id), where ∆ = ‖µ1 − µ2‖2

Location Alternatives
d 10 30 50 70 100
∆ 0.31 0.60 0.77 0.96 1.13

r = 1.3 0.13 0.16 0.21 0.24 0.31
r = 1.2 0.13 0.22 0.34 0.40 0.47
r = 1.1 0.11 0.33 0.46 0.67 0.72
r = 1.0 0.12 0.43 0.56 0.80 0.88
r = 0.9 0.11 0.34 0.45 0.66 0.80
r = 0.8 0.12 0.25 0.27 0.38 0.49
r = 0.7 0.11 0.14 0.16 0.20 0.26

We now define two fast tests based on the asymptotic results. Let pD , pW,1.2, and pW,0.8 be the approx-

imated p-values of the test that reject for large values of |ZD(t)|, ZW,1.2(t), and ZW,0.8(t), respectively.

• fGKCP1: rejects the null hypothesis of homogeneity if 3 min(pD, pW,1.2, pW,0.8) is less than the

significance level.

• fGKCP2: rejects the null hypothesis of homogeneity if 2 min(pW,1.2, pW,0.8) is less than the sig-

nificance level.

It is expected that fGKCP1 performs well for a wide range of alternatives, especially for scale alternatives

due to ZD(t). Since ZW (t) is sensitive to location alternatives, we expect fGKCP2 to be powerful for loca-

tion alternatives. Furthermore, according to the simulation results, it turns out that fGKCP2 can also detect

variance changes to some extent as r = 1.2, 0.8 cover more types of alternatives than r = 1. When the null

hypothesis is rejected, the location of change-point can be estimated by maxn0≤t≤n1 GKCP(t) so that the ef-

fects of ZD(t) and ZW (t) are fully utilized. Hence, as long as maxn0≤t≤n1 ZD(t), maxn0≤t≤n1 ZW,1.2(t),

and maxn0≤t≤n1 ZW,0.8(t) are computed, the tests can be conducted instantly.

REMARK 3.3.4. We adopt the Bonferroni procedure for the fast tests to combine the advantages of each

test statistic. To improve the power of the tests, the Simes procedure can be used and this also controls type

I error well empirically (see Section 3.6).
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3.4. Performance of the new tests

We examine the performance of the new tests under various simulation settings. Each data sequence in

the simulation is of length n = 200 with various dimensions d, where y1, . . . , yτ
iid∼ F0 and yτ+1, . . . , yn

iid∼

F1. Here, τ is the change-point. We consider the following setting:

• Multivariate Gaussian data Type I: F0 ∼ Nd(0d,Σ) vs. F1 ∼ Nd(a1d, σ2Σ), where ∆ = ‖a1d‖2

and Σi,j = 0.4|i−j|.

• Multivariate Gaussian data Type II: F0 ∼ Nd(0d,Σ) vs. F1 ∼ Nd(aνd, σ
2Σ), where ∆ = ‖aνd‖2,

d-dimensional vector νd with half of it being zeros and half of it being 1’s, and Σi,j = 0.4|i−j|.

• Multivariate log-normal data: F0 ∼ exp(Nd(0d,Σ)) vs. F1 ∼ exp(Nd(a1d,Σ)), where ∆ =

‖a1d‖2 and Σi,j = 0.4|i−j|.

In addition, we consider the multivariate Gaussian distribution with different structures and results are in

Appendix B.4.

We simulate 100 datasets to estimate the power of the tests and the significance level is set to be 0.05

for all tests. To examine the empirical size of the test, we simulate 1,000 datasets. We also examine the

accuracy of the estimated change-point location and the count where the location of estimated change-point

is within 20 from the true change-point is provided in parentheses when the null is rejected.

It is usually hard to offer false positive controls as well as the estimation of the location of change-points.

We compare the results for the new tests to the recent feasible kernel-based method, KCP [2], which can

be implemented by R package ecp [36]. We also compare the new tests with other feasible nonparametric

methods using interpoint distances (ECP) [43] and similarity graphs (GCP) [13], which can be implemented

by R packages ecp and gSeg, respectively. Here, we approximate the p-value by 1,000 permutation for

ECP and use the max-type method with 5-MST for GCP, following the suggestion in [11]. Lastly, we include

the method using Fréchet means and variances (FCP) [15].

Table 3.6 and 3.7 show results for the multivariate Gaussian data with different means and/or variances.

We see that KCP and ECP perform well for location alternatives, while they have considerable low or no

power for scale alternatives. On the other hand, the new test GKCP performs very well for both location and

scale alternatives and the fast tests, fGKCP1 and fGKCP2, also perform well. Other tests, GCP and FCP, do

not work well for Gaussian settings.
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TABLE 3.6. Estimated power of the tests for multivariate Gaussian data Type I. n = 200.
Top 1 method and those higher than 95% of the top 1 are in bold

Mean Change (τ at center) Mean Change (τ at three quarter)
d 100 500 1000 2000 100 500 1000 2000
∆ 1.20 1.90 2.40 3.13 1.30 2.12 2.68 3.39

fGKCP1 50 (43) 68 (62) 78 (76) 96 (95) 45 (38) 67 (63) 82 (78) 93 (92)
fGKCP2 58 (49) 73 (67) 84 (80) 97 (96) 51 (44) 73 (68) 87 (84) 94 (94)
GKCP 75 (63) 88 (82) 95 (91) 99 (98) 64 (55) 84 (79) 95 (91) 97 (96)
KCP 71 (61) 85 (79) 93 (90) 98 (97) 59 (50) 81 (77) 92 (90) 97 (96)
ECP 76 (65) 89 (79) 96 (90) 99 (95) 61 (54) 84 (77) 93 (87) 98 (94)
GCP 22 (9) 27 (14) 34 (20) 46 (32) 20 (10) 26 (15) 28 (20) 38 (28)
FCP 6 (1) 1 (0) 0 (0) 0 (0) 14 (4) 2 (0) 1 (0) 0 (0)

Variance Change (τ at center) Variance Change (τ at three quarter)
d 100 500 1000 2000 100 500 1000 2000
σ2 1.07 1.04 1.03 1.03 1.08 1.05 1.03 1.03

fGKCP1 46 (30) 68 (52) 79 (64) 93 (81) 46 (35) 69 (56) 75 (62) 89 (78)
fGKCP2 40 (25) 58 (43) 68 (54) 85 (73) 37 (28) 58 (47) 62 (51) 80 (71)
GKCP 41 (27) 67 (51) 79 (63) 93 (80) 44 (33) 69 (55) 74 (61) 88 (78)
KCP 18 (2) 15 (3) 12 (2) 7 (1) 18 (6) 13 (3) 8 (3) 12 (2)
ECP 5 (2) 6 (2) 6 (2) 6 (2) 5 (1) 5 (1) 4 (1) 6 (2)
GCP 27 (11) 40 (21) 49 (27) 64 (41) 13 (3) 19 (6) 20 (6) 26 (10)
FCP 13 (5) 0 (0) 0 (0) 0 (0) 9 (5) 0 (0) 0 (0) 0 (0)

Both Change (τ at center) Both Change (τ at three quarter)
d 100 500 1000 2000 100 500 1000 2000
∆ 0.65 0.69 0.70 0.71 1.00 1.23 1.42 2.01
σ2 1.06 1.04 1.03 1.03 1.06 1.04 1.03 1.03

fGKCP1 52 (36) 66 (49) 80 (63) 98 (91) 59 (49) 76 (67) 80 (70) 99 (95)
fGKCP2 53 (37) 63 (46) 75 (61) 96 (89) 61 (51) 76 (68) 80 (69) 99 (95)
GKCP 50 (35) 63 (47) 78 (64) 98 (91) 62 (51) 76 (67) 80 (70) 99 (95)
KCP 11 (7) 3 (1) 2 (1) 1 (0) 24 (20) 9 (7) 9 (6) 10 (9)
ECP 21 (13) 8 (5) 9 (4) 9 (4) 29 (24) 19 (15) 18 (14) 29 (24)
GCP 24 (10) 34 (16) 43 (22) 78 (56) 14 (4) 16 (4) 19 (5) 35 (16)
FCP 16 (7) 1 (0) 0 (0) 0 (0) 10 (4) 0 (0) 0 (0) 0 (0)

Table 3.8 shows results for the multivariate log normal data. Here, alternatives yield the changes in both

the mean and variance of distributions. We see that the new tests exhibit high power not only for symmetric

distributions but also for asymmetric distributions under moderate to high dimensions. However, KCP and

GCP lose power in this case, while ECP still performs well. Compared with Gaussian settings, FCP exhibits

high power, but it is outperformed by the new tests.
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TABLE 3.7. Estimated power of the tests for multivariate Gaussian data Type II. n = 200

Mean Change (τ at center) Mean Change (τ at three quarter)
d 100 500 1000 2000 100 500 1000 2000
∆ 0.99 2.37 2.46 3.16 0.99 2.05 2.90 3.64

fGKCP1 17 (10) 39 (31) 57 (51) 84 (81) 22 (15) 49 (44) 82 (79) 97 (96)
fGKCP2 21 (13) 46 (36) 64 (57) 89 (87) 27 (19) 55 (50) 87 (84) 98 (97)
GKCP 34 (24) 64 (52) 81 (72) 97 (94) 33 (24) 66 (61) 94 (90) 99 (99)
KCP 31 (22) 59 (49) 78 (70) 94 (92) 32 (24) 65 (61) 90 (87) 98 (98)
ECP 32 (21) 63 (52) 85 (75) 98 (90) 27 (21) 67 (60) 98 (92) 99 (92)
GCP 12 (3) 18 (6) 24 (11) 31 (20) 12 (3) 19 (10) 41 (30) 45 (35)
FCP 4 (0) 0 (0) 0 (0) 0 (0) 6 (1) 1 (0) 0 (0) 0 (0)

Both Change (τ at center) Both Change (τ at three quarter)
d 100 500 1000 2000 100 500 1000 2000
∆ 0.65 0.69 0.70 0.71 0.70 0.87 1.00 1.42
σ2 1.06 1.04 1.03 1.03 1.06 1.04 1.03 1.03

fGKCP1 46 (30) 63 (46) 79 (63) 99 (90) 39 (29) 65 (52) 75 (61) 98 (93)
fGKCP2 43 (27) 58 (43) 72 (56) 96 (88) 40 (30) 61 (49) 71 (59) 96 (91)
GKCP 42 (27) 61 (45) 78 (61) 90 (90) 41 (30) 64 (51) 73 (59) 98 (93)
KCP 5 (2) 2 (1) 1 (0) 1 (0) 11 (7) 5 (2) 4 (2) 4 (3)
ECP 11 (5) 7 (3) 5 (2) 7 (2) 14 (8) 9 (4) 10 (5) 10 (6)
GCP 23 (9) 34 (17) 47 (27) 77 (54) 12 (2) 15 (4) 17 (4) 33 (15)
FCP 12 (6) 0 (0) 0 (0) 0 (0) 6 (2) 0 (0) 0 (0) 0 (0)

TABLE 3.8. Estimated power of the tests for multivariate log-normal data. n = 200

Mean Change (τ at center) Mean Change (τ at three quarter)
d 100 500 1000 2000 100 500 1000 2000
∆ 1.20 1.90 2.30 3.04 1.35 2.12 2.65 3.42

fGKCP1 47 (35) 70 (57) 81 (71) 96 (90) 47 (38) 67 (58) 83 (77) 95 (92)
fGKCP2 55 (41) 76 (63) 85 (75) 97 (91) 53 (43) 73 (63) 86 (80) 97 (94)
GKCP 63 (48) 83 (68) 91 (80) 99 (93) 65 (53) 86 (75) 95 (88) 99 (96)
KCP 20 (16) 6 (5) 10 (9) 5 (4) 20 (16) 5 (4) 12 (9) 7 (5)
ECP 69 (52) 85 (72) 91 (80) 98 (91) 62 (54) 81 (70) 90 (82) 97 (90)
GCP 32 (12) 33 (7) 32 (6) 36 (8) 17 (3) 12 (0) 10 (0) 12 (0)
FCP 32 (18) 57 (40) 69 (53) 83 (70) 36 (24) 55 (41) 66 (55) 77 (67)

The empirical size of the tests at 0.05 significance level for the multivariate Gaussian and log-normal

data is presented in Table 3.9. We see that the new tests control the type I error rate well. However, KCP

relies on a cumbersome method, such as the line search, to find the suitable penalty constant and this step is

very sensitive, so it is difficult to control the type I error well.
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TABLE 3.9. Empirical size of the tests at 0.05 significance level. n = 200

Multivariate Gaussian Multivariate log-normal
d 100 500 1000 2000 100 500 1000 2000

fGKCP1 0.032 0.047 0.047 0.037 0.038 0.039 0.041 0.036
fGKCP2 0.043 0.057 0.055 0.052 0.051 0.050 0.050 0.055
GKCP 0.052 0.049 0.053 0.049 0.049 0.051 0.038 0.056
KCP 0.067 0.045 0.060 0.040 0.093 0.040 0.081 0.067
ECP 0.054 0.043 0.056 0.045 0.054 0.057 0.051 0.042
GCP 0.072 0.073 0.069 0.077 0.090 0.132 0.098 0.113
FCP 0.018 0.001 0.000 0.000 0.053 0.051 0.036 0.027

TABLE 3.10. Average runtimes in seconds from 10 simulations for each length n. All
experiments were run by R on 2.2 GHz Intel Core i7

n 200 400 600 800 1000 2000
fGKCP1 0.034 0.177 0.642 1.507 2.997 24.07

KCP 0.218 3.282 17.27 53.32 132.0 2161.83
ECP 1.440 5.053 12.00 19.22 30.25 144.38
GCP 0.009 0.041 0.095 0.185 0.342 2.008
FCP 26.57 94.37 209.1 369.5 544.0 2251.7

We also compare the computational cost of the tests and check runtimes of the tests for Gaussian data

under various n. Table 3.10 shows average runtimes for each length nwhen d = 100. Although KCP utilizes

a dynamic programming, we see that the fast test based on the new scan statistics is faster than KCP. Notice

that the average runtimes of KCP in Table 3.10 only present the actual testing runtimes. If we consider the

runtime for the parameter optimization procedure simultaneously, KCP is computationally infeasible to run.

FCP is as slows as KCP. ECP relies on the permutation approach, so it is slower than the new tests. Though

GCP is the fastest, the new test is comparably faster than other tests with great performance.

The overall pattern of the simulation results shows that the new tests exhibit high power for a wide

range of alternatives. Unlike the existing kernel change-point detection method, the new tests are effective

and easy to implement without any time-consuming procedures, such as parameter tuning, as long as the

kernel matrix is computed. In practice, fGKCP1 and fGKCP2 would be preferred as the fast tests. If the test

result is ambiguous and further investigation is needed, the permuation test of GKCP would also be useful.
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3.5. A real data example

We apply the new tests to the phone-call network dataset. The MIT Media Laboratory studied with 87

subjects who used mobile phones with a pre-installed device that can record call logs. The study lasted for

330 days from July 2004 to June 2005 [16]. We use it to illustrate the new tests by detecting any change in

the phone-call pattern among subjects over time. This can be viewed as the change of friendship along time.

We bin the phone-calls by day and we construct n = 330 of networks in total with 87 subjects as nodes.

We encode each network by the adjacency matrix with value 1 for element (i, j) if subject i called j on day

t and 0 otherwise. We then construct the Gaussian kernel matrix with the median heuristic.

We apply the single change-point detection method to the phone-call network dataset recursively in

order to detect all possible change-points. Since this dataset has a lot of noise, we focus on the estimated

change-points with p-value less than 0.001.

TABLE 3.11. Estimated change-points

Days (t)
Estimated change-points 53 90 141 251 293

Table 3.11 shows the estimated change-points until the new tests do not reject the null. In this analysis,

all new tests yield the same results about whether to reject the null or not in each iteration and the estimated

locations of change-point. Since the underlying distribution of the dataset is unknown, we perform a more

sanity check with the kernel matrix of the whole period (Figure 3.4). It is evident that there are some changes

occuring in the period and they match the results of the new test fairly well.

We also compare the results of the new tests with their nearby academic events (Table 3.12). We see that

the new tests detect change-points at around the beginning of the Fall term, family weekend, and the end

of the Fall term that could cause phone-call pattern changes among subjects. The new tests also detect the

Spring break and the end of the Spring term. These are all reasonable times when there are some significant

changes in phone-call pattern.

3.6. Discussion and conclusion

We proposed the new kernel-based scan statistic, GKCP, for the testing and estimation of change-points.

The new tests are versatile and effective for a wide range of alternatives. Analytical p-value approximations
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FIGURE 3.4. The heatmap of the kernel matrix corresponding to 330 networks. Purple
triangles in the heatmap indicate estimated change-points.

TABLE 3.12. Estimated change-points and nearby academic events. The dates of the aca-
demic events are from the 2011-2012 academic calendar of MIT that is the closest academic
calendar of MIT to 2004-2005 available online

Estimated change-points Nearby academic events
n = 53: 2004/09/10 2004/09/07: Fall classes begin
n = 90: 2004/10/17 2004/10/14: Family weekend
n = 141: 2004/12/07 2004/12/14: Last day of Fall classes
n = 251: 2005/03/27 2005/03/26: Spring break begins
n = 293: 2005/05/08 2005/05/17: Last day of Spring classes

based on the limiting distributions were derived and the skewness-corrected versions were proposed. We

also proposed two fast tests, fGKCP1 and fGKCP2, based on asymptotic results. The new tests exhibit

superior power and work well particularly for high-dimensional settings. In practice, we recommend to use

fGKCP1 and fGKCP2 as they are fast to implement. When the results are ambiguous, the permutation test

based on GKCP could be run for the final conclusion.

Since the Bonferroni procedure is a bit conservative, the Simes procedure may be used to improve the

power of the fast tests (fGKCP1, fGKCP2). Let p(1) ≤ p(2) ≤ p(3) be the ordered p-values of pD, pW,1.2,

and pW,0.8 and p′(1) ≤ p
′
(2) be the ordered p-values of pW,1.2 and pW,0.8. Then, the fast tests are defined that
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• fGKCP1-Simes: rejects the null hypothesis of homogeneity if min(3p(1), 1.5p(2), p(3)) is less than

the significance level.

• fGKCP2-Simes: rejects the null hypothesis of homogeneity if min(2p′(1), p
′
(2)) is less than the

significance level.

It has been shown that the Simes procedure is exact under independent distributions, while it becomes con-

servative under positively dependent distributions and slightly liberal under negatively dependency. There

have been a lot of works to prove the validity of the Simes test under dependency [6, 7, 19, 24, 25, 34, 52,

53, 54], but they are restricted to special cases. Nevertheless, the Simes test is widely used in many appli-

cations. [48] proved that the overall relative deviation of the Simes p-value from the true p-value is strongly

bounded and showed that, although the Simes procedure may be liberal, it cannot be consistently. It is

therefore reasonably expected that the Simes p-value will be asymptotically valid in most practical cases.

Table 3.13 shows the empirical size of the tests for the multivariate Gaussian and log-normal data used in

TABLE 3.13. Empirical size of the tests at 0.05 significance level. n = 200

Multivariate Gaussian Multivariate log-normal
d 100 500 1000 2000 100 500 1000 2000

fGKCP1 0.032 0.047 0.047 0.037 0.030 0.039 0.036 0.035
fGKCP1-Simes 0.036 0.048 0.048 0.038 0.031 0.040 0.036 0.036

fGKCP2 0.043 0.057 0.055 0.052 0.051 0.052 0.055 0.052
fGKCP2-Simes 0.044 0.057 0.057 0.052 0.051 0.052 0.055 0.052

Section 3.4. We see that the Simes procedure also controls type I error well. Hence, if we want to focus on

the performance of the test and improve the power of the fast tests, the Simes procedure would be useful for

the fast tests.

The new methods detect the most significant single change-point or changed-interval in the sequence.

If two or more changes are presented in the sequence, the new methods can be applied recursively with their

own advantages using techniques, such as binary segmentation, circular binary segmentation, or wild binary

segmentation [23, 45, 62].
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APPENDIX A

Appendix for Chapter 2

A.1. Proof to Theorem 2.2.1

Under the permutation null distribution, we have

E(α) =
1

m(m− 1)

N∑
i=1

N∑
j=1,j 6=i

kijP(gi = gj = 1)

=
1

m(m− 1)

N∑
i=1

N∑
j=1,j 6=i

kij
m(m− 1)

N(N − 1)

=
1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

kij ,

E(α2) =
1

m2(m− 1)2

N∑
i=1

N∑
j=1,j 6=i

kij

N∑
u=1

N∑
v=1,v 6=u

kuvP(gi = 1, gj = 1, gu = 1, gv = 1)

=
2

m2(m− 1)2

N∑
i=1

N∑
j=1,j 6=i

k2
ijP(gi = 1, gj = 1)

+
4

m2(m− 1)2

N∑
i=1

N∑
j=1,j 6=i

N∑
u=1,u6=i,u 6=j

kijkiuP(gi = 1, gj = 1, gu = 1)

+
1

m2(m− 1)2

N∑
i=1

N∑
j=1,j 6=i

N∑
u=1,u6=i,u 6=j

N∑
v=1,v 6=i,v 6=j,v 6=u

kijkuvP(gi = 1, gj = 1, gu = 1, gv = 1)

=
2

m2(m− 1)2
A
m(m− 1)

N(N − 1)
+

4

m2(m− 1)2
B
m(m− 1)(m− 2)

N(N − 1)(N − 2)

+
1

m2(m− 1)2
C
m(m− 1)(m− 2)(m− 3)

N(N − 1)(N − 2)(N − 3)

=
1

m2(m− 1)2

(
2A

m(m− 1)

N(N − 1)
+ 4B

m(m− 1)(m− 2)

N(N − 1)(N − 2)
+ C

m(m− 1)(m− 2)(m− 3)

N(N − 1)(N − 2)(N − 3)

)
.
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Then, Σα,β(1,1) = E(α2) − E(α)2 follows readily. The expectation and variance of β can be done in a

similar manner. For the covariance between α and β, we have

E(αβ) =
1

mn(m− 1)(n− 1)

N∑
i=1

N∑
j=1,j 6=i

N∑
u=1

N∑
v=1,v 6=u

kijkuvP(gi = gj = 1, gu = gv = 2)

=
1

mn(m− 1)(n− 1)

N∑
i=1

N∑
j=1,j 6=i

N∑
u=1,u6=i,u 6=j

N∑
v=1,v 6=i,v 6=j,v 6=u

kijkuv
m(m− 1)n(n− 1)

N(N − 1)(N − 2)(N − 3)

=
C

N(N − 1)(N − 2)(N − 3)
.

Then, Σα,β(1,2) = E(αβ)− E(α)E(β) follows readily.

A.2. Proof to Theorem 2.2.2

The components in Σα,β can be rewritten as

Σα,β(1,1) =
1

m2(m− 1)2
· mn(m− 1)(n− 1)

N(N − 1)(N − 2)(N − 3)

×
(

2A +
m− 2

n− 1

(
(4A + 4B) − 4(2A + 4B + C)

N

)
− 2

N(N − 1)
(2A + 4B + C)

)
,

Σα,β(2,2) =
1

n2(n− 1)2
· mn(m− 1)(n− 1)

N(N − 1)(N − 2)(N − 3)

×
(

2A +
n− 2

m− 1

(
(4A + 4B) − 4(2A + 4B + C)

N

)
− 2

N(N − 1)
(2A + 4B + C)

)
,

Σα,β(1,2) =
1

mn(m− 1)(n− 1)
· mn(m− 1)(n− 1)

N(N − 1)(N − 2)(N − 3)

×
(

2A−
(

(4A + 4B) − 4(2A + 4B + C)

N

)
− 2

N(N − 1)
(2A + 4B + C)

)
.

Hence, the determinant of Σα,β can be computed as

|Σα,β| =
1

mn(m− 1)2(n− 1)2N(N − 1)(N − 2)

(
(4A+ 4B)− 4(2A+ 4B + C)

N

)
×
(

(N − 2)2A+
2

N − 1
(2A+ 4B + C)− (4A+ 4B)

)
.

Notice that A = tr(K̃2), A + B =
∑N

i=1

∑N
j=1(K̃2)ij , and 2A + 4B + C =

(∑N
i=1

∑N
j=1 K̃ij

)2, where

K̃ = K − I with K being the kernel matrix.
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We first figure out the term

(A+B)− (2A+ 4B + C)

N
=

N∑
i=1

N∑
j=1

(K̃2)ij −

(∑N
i=1

∑N
j=1 K̃ij

)2

N
.

It is not hard to show that

N∑
i=1

N∑
j=1

(K̃2)ij −

(∑N
i=1

∑N
j=1 K̃ij

)2

N
=

N∑
i=1

N∑
j=1

(K2)ij −

(∑N
i=1

∑N
j=1Kij

)2

N
.

Let M = K − h1N1tN , where h is the mean of all elements in K. Then,
∑N

i=1

∑N
j=1Mij = 0. Since

K2 =
(
M + h1N1tN

)2
= M2 + 2hNV 1tN + h2N1N1tN ,

where V = (M̄1·, . . . , M̄N ·)
t and M̄i· =

1
N

∑N
j=1Mij for i = 1, . . . , N . We have

N∑
i=1

N∑
j=1

(K2)ij =
N∑
i=1

N∑
j=1

(M2)ij + h2N3,

N∑
i=1

N∑
j=1

(K)ij = hN2.

Hence,

(A+B)− (2A+ 4B + C)

N
=

N∑
i=1

N∑
j=1

(M2)ij .

From the Cauchy−Schwarz inequality, we have

N∑
i=1

N∑
j=1

(M2)ij =

N∑
i=1

 N∑
j=1,j 6=i

Mij

2

−N(1− h)2

≥ 1

N

 N∑
i=1

N∑
j=1,j 6=i

Mij

2

−N(1− h)2 = 0.

Here, the equality holds only when
∑N

j 6=1M1j =. . .=
∑N

j 6=N MNj , which leads to the first condition that∑N
j=1,j 6=i kij is constant for all i = 1, . . . , n.

We next figure out the term

(N − 2)2A+
2

N − 1
(2A+ 4B + C)− (4A+ 4B)
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= (N − 2)2tr(K̃2) +
2

N − 1

 N∑
i=1

N∑
j=1

K̃ij

2

− 4
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(K̃2)ij
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(
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)
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It is not hard to show that
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N∑
i=1

N∑
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where M̄i· =
1

N−1

∑N
j 6=iMij , M̄·i = 1

N−1

∑N
j 6=iMji, and M̄·· = 1

N

∑N
i=1Mi·. Notice that

N∑
i=1

N∑
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2 =

N∑
i=1

N∑
j=1,j 6=i
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N∑
j=1,j 6=i

(Mij − M̄·j) = (N − 1)M̄i· − (NM̄·· − M̄i·) = N(M̄i· − M̄··),

since M̄i· = M̄·i. Hence,

N∑
j=1,j 6=i

(Mij − M̄·j)2 =

N∑
j=1,j 6=i

(
Mij − M̄·j −
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)2

+
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N − 1

=

N∑
j=1,j 6=i

(Mij − M̄·j − M̄i· + M̄··)
2 + (N + 1)(M̄i· − M̄··)2.

Then (A.1) is equivalent to

N∑
i=1

N∑
j=1,j 6=i

(Mij − M̄·j − M̄i· + M̄··)
2 − 2
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4
=
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Q2
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2

N − 2
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R2
i ,(A.2)

where Qij = Qji and
∑N

i=1Ri =
∑N

i=1

∑N
j=1,j 6=iQij = 0.
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Now, we use the method of induction to show

(A.3)
N∑
i=1

N∑
j=1,j 6=i

Q2
ij −

2

N − 2

N∑
i=1

R2
i ≥ 0.

It is easy to check that (A.3) holds for N = 3. Assume that (A.3) holds for N and consider the N + 1 case.

Define ei = Qi,N+1 and H = 1
N

∑N
i=1 ei. Let Q̃ij = Qij + 2H

N−1 and R̃i =
∑N

j 6=i Q̃ij . Since

N∑
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N∑
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N∑
j=1,j 6=i

Q̃ij =
N∑
i=1

N∑
j=1,j 6=i

Qij + 2NH = 0− 2
N∑
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and Q̃ij = Q̃ji, we have

(A.4)
N∑
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N∑
j=1,j 6=i

Q̃2
ij −

2

N − 2

N∑
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R̃2
i ≥ 0.

as Q̃ij and R̃i satisfy the conditions for (A.3).

For the N + 1 case, we have
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we have
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Hence, for N + 1 case, we have
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i=1

N+1∑
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=
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i=1

R̃2
i −

4

N − 1

N∑
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1
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=
2
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1

N

(
(N − 2)NH

)2
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where the first inequality comes from (A.4) and the second inquality comes from the Cauchy−Schwarz

inequality.

The condition that makes the second inequality an equal sign holds only when R̃i − (N − 2)ei are all

the same for i = 1, . . . , N . This is equivalent to that

(A.5)
N∑

j=1,j 6=i
kij − (N − 2)kiN

are the same for all i = 1, . . . , N − 1.

A.3. Illustration on conditions in Theorem 2.2.2

It is difficult to simplify the descriptions of (C1) and (C2) in Theorem 2.2.2 further. However, these two

corner cases are rare to happen. To illustrate this, we simulate data from the standard multivariate Gaussian

distribuion for different N ’s and dimension d’s. For each combination of N and d, we randomly generate

10,000 datasets; and for each datasets, we compute the range of {
∑N

j=1,j 6=i kij}i=1,...,N and the range of

{
∑N

j=1,j 6=i kij− (N −2)kiN}i=1,...,N−1. The corner cases happen when this range is 0. The boxplots of the

ranges over 10,000 randomly simulated datasets are shown in Figure A.1. We see that none of the ranges
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reaches 0, and the range becomes larger as N increases. In practice, when applying the method, it is easy to

check whether any of these two corner cases happen by plugging in the values of kij’s directly.

d = 50 :

d = 1000 :

FIGURE A.1. Boxplots of the ranges of {
∑N

j=1,j 6=i kij}i=1,...,N (C1) and {
∑N

j=1,j 6=i kij −
(N − 2)kiN}i=1,...,N−1 (C2) in 10,000 simulation runs under different N ’s and d’s.

A.4. Proof to Theorem 2.3.1

Let U = (α, β)T and V =

 m/N n/N

m(m− 1) −n(n− 1)

. It is easy to show that V is invertible when

N > 2. Then,

GPK = (U − E(U))T Σ−1
α,β (U − E(U)) = (V (U − E(U)))T

(
V Σα,βV

T
)−1

(V (U − E(U))) .

It is not hard to show that V Σα,βV
T is a 2×2 diagonal matrix with the first and the second diagonal elements

m2

N2 Σα,β(1,1) + 2mn
N2 Σα,β(1,2) + n2

N2 Σα,β(2,2) and m2(m − 1)2Σα,β(1,1) − 2mn(m − 1)(n − 1)Σα,β(1,2) +
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n2(n− 1)2Σα,β(2,2), respectively. Then,

GPK =

(
m
Nα+ n

N β −
(
E(mNα) + E( nN β)

)√
Var(mNα+ n

N β)

)2

+

(
m(m− 1)α− n(n− 1)β − (E(m(m− 1)α)− E(n(n− 1)β))√

Var(m(m− 1)α− n(n− 1)β)

)2

=Z2
W + Z2

D.

A.5. Proof to Theorem 2.3.2

First, we observe that D can be expressed as a double-indexed permutation statistic as follows:

(A.6) D = m(m− 1)α− n(n− 1)β =

N∑
i=1

N∑
j=1,j 6=i

kijbij ,

where

bij =


1 if observations i and j are from Sample X ,

-1 if observations i and j are from Sample Y ,

0 otherwise.

We define the mean-centered k′ij and b′ij for i 6= j,

k′ij = kij −
1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

kij , b′ij = bij −
1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

bij ,

and let k′ii = b′ii = 0 for i = 1, . . . , N . Then,
∑N

i,j=1 k
′
ij =

∑N
i,j=1 b

′
ij = 0. Also,

N∑
i=1

N∑
j=1,j 6=i

kijbij =
N∑
i=1

N∑
j=1,j 6=i

(
k′ij +

1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

kij

)(
b′ij +

1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

bij

)

=
N∑
i=1

N∑
j=1,j 6=i

k′ijb
′
ij + E,

where E is a constant that does not change under permutation. Hence, it is sufficient to show the asymptotic

normality of
∑N

i,j=1 k
′
ijb
′
ij .

The asymptotic distribution of the double-indexed permutation statistic of the form (A.6) has been stud-

ied in [14]. Later [21] claimed that Daniels’ conditions for the asymptotic normality can be weakened and
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proposed relexed conditions. However, Zhu and Chen (2021) recently study the conditions for the asymp-

totic normality and they claim the conditions presented in [21] are not sufficient. Instead, they show the

following conditions are sufficient for the asymptotic normality of
∑N

i,j=1 k
′
ijb
′
ij :

N∑
i,j=1

k′ij =
N∑

i,j=1

b′ij = 0,(A.7)

N∑
i,j,k=1

k′ijk
′
ik = O(N3k′max)(A.8)

N∑
i,j,k=1

b′ijb
′
ik = O(N3b′max),(A.9)

where k′max and b′max are the largest order of k′ij and b′ij , respectively.

Equation (B.9) directly holds by the definiton. Let

ki· =

N∑
j=1,j 6=i

kij , k̇ =
1

N

N∑
i=1

ki·, k
′
i· =

N∑
j=1

k′ij ,

bi· =
N∑

j=1,j 6=i
bij , ḃ =

1

N

N∑
i=1

bi·, b
′
i· =

N∑
j=1

b′ij .

Then,

k′i· = ki· − k̇,

b′i· = bi· − ḃ.

We have
N∑

i,j,k=1

k′ijk
′
ik =

N∑
i=1

k2
i· −Nk̇2 −

N∑
i,j=1

k2
ij +

N

N − 1
k̇2.

Note that k′max = kmax. When kij = O(1) ∀i, j, we have ki. = O(N), k̇ = O(N), and kmax = O(1).

Since the term
∑N

i=1 k
2
i· −Nk̇2 dominates others, equation (A.8) holds when

(A.10)
N∑
i=1

k2
i· −Nk̇2 = O

(
N∑
i=1

k2
i·

)
.
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Let m/N → p and n/N → q with p, q constants and 0 < p, q < 1, p + q = 1 as N → ∞. Similarly,

since bmax = O(1), we have

lim
N→∞

∑N
i,j,k=1 b

′
ijb
′
ik

N3
= p3 + q3 − (p2 − q2)2 = pq.

Hence, equation (A.9) also holds.

A.6. Proof to Theorem 2.3.3

We start from W ′ = umNα + v nN β, where u and v are constants. Similar to the proof in Supplement

A.5, since

bij =


u

N(m−1) if observations i and j are from Sample X ,

v
N(n−1) if observations i and j are from Sample Y ,

0 otherwise,

Since bmax = O(1/N2), we only need to show equation (A.9):

N∑
i,j,k=1

b′ijb
′
ik = O(1/N).

We have

lim
N→∞

∑N
i,j,k=1 b

′
ijb
′
ik

1/N
= (up+ vq)(1− up− vq).

Hence, equation (A.9) holds unless u = v, that is, r = 1.

A.7. Numerical studies on fGPKM

To check the effectiveness of fGPKM, we compare fGPKM with tests based on MMD. We use the same

simulation setup in [27], and include in the comparison the Pearson approximation test (MMD-Pearson) and

the bootstrap test (MMD-Bootstrap), which exhibited the best performance in [27]. In all the following ex-

periments, the significance level is set to be 0.05 and 10,000 bootstrap replicates are used for approximating

the p-value in MMD-Bootstrap.

Following the simulation setup in [27], for each dimension d ∈ {e3, e4, e5, e6, e7}, we randomly draw

250 observations from Nd(0, Id) and 250 observations from Nd(µ1d/
√
d, Id) for location alternatives,

where 10 different values of µ’s equally spaced from 0.05 to 40 are used. Each simulation setup is repeated
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for 100 trials, that is, a total of 1,000 trials for each dimension d. For scale alternatives, we randomly draw

250 observations from Nd(0, Id) and 250 observations from Nd(0, σ
2Id), where 10 different σ2 equally

spaced from 1.05 to 100 are used (a total of 1,000 trials for each dimension d).

FIGURE A.2. Estimated power of fGPK (o), MMD-Pearson (4), and MMD-Bootstrap (+)
at 0.05 significance level. m = n = 250.

FIGURE A.3. Empirical size of fGPKM (o), MMD-Pearson (4), and MMD-Bootstrap (+),
at 0.05 significance level. m = n = 250.
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The estimated power is shown in Figure A.2. We see that, since the signal is quite strong, these three

tests are doing very well in this simulation setups, while fGPKM exhibits better performance than the other

two tests for scale alternatives in high dimensions.

We also check the empirical size of the test and the results are plotted in Figure A.3. We see that all tests

control the type I error well. However, MMD-Pearson is very conservative and MMD-Bootstrap becomes

fairly conservative as dimension increases, which may lead to loss of efficiency of the test.

A.8. Runtimes implemented in R

Similar to Table 2.4 in Section 2.3.4, we also compare the computational cost of fGPKM, MMD-Pearson,

and MMD-Boostrap with their R implementations and the results are presented in Table A.1. We see that

all methods are slower than their corresponding Matlab equivalents since Matlab is a programming

language especially developed for numerical linear algebra (matrix manipulations). Unlike the results under

Matlab, MMD-Pearson is very slow since it is of O(N3d) time complexity and the matrix calculation in

R is less effective than Matlab. However, for both Matlab and R, fGPKM is the fastest to run and fGPK

is faster than the existing methods.

TABLE A.1. Average computation time in seconds from 10 simulations for each m. All
experiments were run by R on 2.2 GHz Intel Core i7

m 50 100 250 500 1000
fGPKM 0.002 0.005 0.033 0.132 0.605
fGPK 0.001 0.005 0.036 0.149 0.688

MMD-Pearson 0.225 1.882 29.207 235.243 2023.701
MMD-Bootstrap 0.993 4.209 27.595 80.226 443.024

A.9. Additional Results for Bandwidth Discussion

Here, we present the performance of fGPK and fGPKM for each bandwidth choice for four different

settings used in Section 2.6.1.

The results are presented in Figure A.4. We see the results are consistent to the results of GPK and there

is no significant difference in the performance of fGPK and fGPKM unless the bandwidth is too small.
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FIGURE A.4. Estimated power based on 100 trials of fGPK and fGPKM vs band-
width when 100 samples are generated from Nd(0, Id) and 100 samples are drawn from
Nd(µ, σ

2Id) with ∆ = ‖µ‖2, α = 0.05. ‘Median’ on the X axis indicates the averaged
median heruistic in each simulation run.
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APPENDIX B

Appendix for Chapter 3

B.1. Test statistics for the changed-interval alternative

Here, we propose the new test statistic for testing the null hypothesis H0 (3.1) against the changed-

interval alternative H2 (3.3). The test statistics can be derived in a similar manner to the single change-point

case. Since each possible interval (t1, t2] divides the data sequence into two groups, we define

α(t1, t2) =
1

(t2 − t1)(t2 − t1 − 1)

n∑
i=1

n∑
j=1,j 6=i

kijIgi(t1,t2)=gj(t1,t2)=1,(B.1)

β(t1, t2) =
1

(n− (t2 − t1))(n− (t2 − t1)− 1)

n∑
i=1

n∑
j=1,j 6=i

kijIgi(t1,t2)=gj(t1,t2)=0,(B.2)

where gi(t1, t2) = It1<i≤t2 . Then, two basic quantities are defined as

D(t1, t2) = (t2 − t1)(t2 − t1 − 1)α(t1, t2)(B.3)

− (n− (t2 − t1))(n− (t2 − t1)− 1)β(t1, t2),

W (t1, t2) =
n− (t2 − t1)

n
(t2 − t1)(t2 − t1 − 1)α(t1, t2)(B.4)

+
(t2 − t1)

n
(n− (t2 − t1))(n− (t2 − t1)− 1)β(t1, t2).

Similarly, D(t1, t2) and W (t1, t2) are standardized:

ZD(t1, t2) =
D(t1, t2)− E (D(t1, t2))√

Var (D(t1, t2))
, ZW (t1, t2) =

W (t1, t2)− E (W (t1, t2))√
Var (W (t1, t2))

.(B.5)

Under the permutation null, the analytic expressions for the expectation and the variance of D(t1, t2) and

W (t1, t2) can be obtained similarly as in the single change-point setting.

E(α(t1, t2)) = E(β(t1, t2)) =
1

n(n− 1)
R0,

61



Var(α(t1, t2)) =
1

(t2 − t1)2(t2 − t1 − 1)2
(2R1p1(t1, t2) + 4R2p2(t1, t2) +R3p3(t1, t2)) ,

Var(β(t1, t2)) =
1

(n− (t2 − t1))2(n− (t2 − t1)− 1)2
(2R1q1(t1, t2) + 4R2q2(t1, t2) +R3q3(t1, t2)) .

Then, we define the following test statistic for detecting and estimating the change-interval in the sequence

as

(B.6) GKCP (t1, t2) = Z2
D(t1, t2) + Z2

W (t1, t2).

The scan statistic involves a maximization over t1 and t2,

max
1<t1<t2≤n
n0≤t2−t1≤n1

GKCP (t1, t2),(B.7)

where n0 and n1 are constraints on the window size. For example, we can set n1 = n− n0.

B.2. Proofs for Lemmas and Theorems

B.2.1. Proof of Theorem 3.2.1. Under the permutation null distribution, we have

E (α(t)) =
1

t(t− 1)

n∑
i=1

n∑
j=1,j 6=i

kijP(gi(t) = gj(t) = 1) =
1

t(t− 1)

n∑
i=1

n∑
j=1,j 6=i

kijp1(t) =
1

n(n− 1)
R0,

E
(
α2(t)

)
=

1

t2(t− 1)2

n∑
i=1

n∑
j=1,j 6=i

kij

n∑
u=1

n∑
v=1,v 6=u

kuvP(gi(t) = 1, gj(t) = 1, gu(t) = 1, gv(t) = 1)

=
2

t2(t− 1)2

n∑
i=1

n∑
j=1,j 6=i

k2
ijP(gi(t) = gj(t) = 1)

+
4

t2(t− 1)2

n∑
i=1

n∑
j=1,j 6=i

n∑
u=1,u6=i,u 6=j

kijkiuP(gi(t) = gj(t) = gu(t) = 1)

+
1

t2(t− 1)2

n∑
i=1

n∑
j=1,j 6=i

n∑
u=1,u6=i,u 6=j

n∑
v=1,v 6=i,v 6=j,v 6=u

kijkuvP(gi(t) = gj(t) = gu(t) = gv(t) = 1)

=
2

t2(t− 1)2
R1p1(t) +

4

t2(t− 1)2
R2p2(t) +

1

t2(t− 1)2
R3p3(t)

=
1

t2(t− 1)2
(2R1p1(t) + 4R2p2(t) +R3p3(t)) .
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Then, Var(α(t)) = E
(
α2(t)

)
− E (α(t))2 follows readily. The expectation and the variance of β(t) can be

done in a similar manner. For the covariance between α and β, we have

E (α(t)β(t)) =
1

t(t− 1)(n− t)(n− t− 1)

n∑
i=1

n∑
j=1,j 6=i

n∑
u=1

n∑
v=1,v 6=u

kijkuvP(gi(t) = gj(t) = 1, gu(t) = gv(t) = 2)

=
1

t(t− 1)(n− t)(n− t− 1)
R3
t(t− 1)(n− t)(n− t− 1)

n(n− 1)(n− 2)(n− 3)

=
R3

n(n− 1)(n− 2)(n− 3)
.

Then, Cov (α(t), β(t)) = E(αβ)− E(α)E(β) follows readily.

B.2.2. Proof of Theorem 3.3.1. Here, we prove {ZD([nu]) : 0 < u < 1} converges to a Gaussian

process in finite dimensional distributions. The proof for the convergence of {ZD([nu], [nv]) : 0 < u <

v < 1} to two-dimensional Gaussian random fields can be done in a similar manner.

To prove {ZD([nu]) : 0 < u < 1} converges to a Gaussian process, we only need to show that

(ZD([nu1]), ZD([nu2]), . . . , ZD([nuQ])) coverges to a multivariate Gaussian distribution as n → ∞ for

any 0 < u1 < · · · < uQ < 1 and fixed Q under the permutation distribution. For notation simplicity, let

tq = [nuq], q = 1, . . . , Q.

To prove (ZD(t1), ZD(t2), . . . , ZD(tQ)) coverges to a multivariate Gaussian distribution, by Cramér-

Wold device, it suffices to show that
∑Q

q=1 a
′
qZD(tq) is asymptotically Gaussian distributed for any fixed a′q

with non-degenerating case that Var
(∑Q

q=1 a
′
qZD(tq)

)
> 0.

First, based on the definition of D(t), we observe that
∑Q

q=1 aqD(tq) can be expressed as a double-

indexed permutation statistic as follows:

(B.8)
Q∑
q=1

aqD(tq) =
n∑
i=1

n∑
j=1,j 6=i

kijbij ,

where bij =
∑Q

q=1 bij(tq) and

bij(tq) =


aq if gi(tq) = gj(tq) = 0,

−aq if gi(tq) = gj(tq) = 1,

0 otherwise,
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where gi(t) = Ii>t and Ix is the indicator function. We define the mean-centered k′ij and b′ij for i 6= j,

k′ij = kij −
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

kij , b′ij = bij −
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

bij ,

and let k′ii = b′ii = 0 for i = 1, . . . , n. Then,
∑n

i,j=1 k
′
ij =

∑n
i,j=1 b

′
ij = 0. Also,

n∑
i=1

n∑
j=1,j 6=i

kijbij =

n∑
i=1

n∑
j=1,j 6=i

(
k′ij +

1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

kij

)(
b′ij +

1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

bij

)

=

n∑
i=1

n∑
j=1,j 6=i

k′ijb
′
ij + E,

where E is a constant that does not change under permutation. Hence, it is sufficient to show the asymptotic

normality of
∑n

i,j=1 k
′
ijb
′
ij .

The asymptotic distribution of the double-indexed permutation statistic of the form (B.8) has been stud-

ied in [14]. Later [21] claimed that Daniels’ conditions for the asymptotic normality can be weakened and

proposed relexed conditions. However, Zhu and Chen (2021) recently study the conditions for the asymp-

totic normality and they claim the conditions presented in [21] are not sufficient. Instead, they show the

following conditions are sufficient for the asymptotic normality of
∑n

i,j=1 k
′
ijb
′
ij :

n∑
i,j=1

k′ij =
n∑

i,j=1

b′ij = 0,(B.9)

n∑
i,j,k=1

k′ijk
′
ik = O(n3k′max)(B.10)

n∑
i,j,k=1

b′ijb
′
ik = O(n3b′max),(B.11)

where k′max and b′max are the largest order of k′ij and b′ij , respectively.

Equation (B.9) directly holds by the definiton. Let

ki· =

n∑
j=1,j 6=i

kij , k̇ =
1

n

n∑
i=1

ki·, k
′
i· =

n∑
j=1

k′ij ,

bi· =

n∑
j=1,j 6=i

bij , ḃ =
1

n

n∑
i=1

bi·, b
′
i· =

n∑
j=1

b′ij .
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Then,

k′i· = ki· − k̇,

b′i· = bi· − ḃ.

We have
n∑

i,j,k=1

k′ijk
′
ik =

n∑
i=1

k2
i· − nk̇2 −

n∑
i,j=1

k2
ij +

n

n− 1
k̇2.

Note that k′max = kmax. When kij = O(1) ∀i, j, we have ki. = O(n), k̇ = O(n), and kmax = O(1).

Since the term
∑n

i=1 k
2
i· − nk̇2 dominates others, equation (B.10) holds when

(B.12)
n∑
i=1

k2
i· − nk̇2 = O

(
n∑
i=1

k2
i·

)
.

Let limn→∞ tq/n = uq. Since bmax = O(1) and

n∑
i=1

b2i· =

Q∑
q=0

(tq+1 − tq)

(
Q∑
r=1

ar(tr − 1) + (2− n)

q∑
s=0

as

)2
 ,

ḃ =
1

n

Q∑
q=0

[
(tq+1 − tq)

(
Q∑
r=1

ar(tr − 1) + (2− n)

q∑
s=0

as

)]
,

where a0 = t0 = 0 and tQ+1 = n, it is easy to show that
∑n

i=1 b
2
i· − nḃ2 is of order n3 unless a1 = · · · =

aQ = 0.

Since

lim
n→∞

Var (D(tq)) =
(
2R1u

2
q + 4R2u

3
q +R3u

4
q

)
− u4

qR
2
0

+
(
2R1(1− uq)2 + 4R2(1− uq)3 +R3(1− uq)4

)
− (1− uq)4R2

0

− u2
q(1− uq)2R3 − u2

q(1− uq)2R2
0,

for all i = 1, . . . , Q, all Var (D(tq)) are of the same order and this leads to the asymptotic normality of∑Q
q=1 aqZD(tq).
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B.2.3. Proof of Theorem 3.3.2. Similar to the proof in B.2.2,

(B.13)
Q∑
q=1

aqWr(tq) =
n∑
i=1

n∑
j=1,j 6=i

kijbij ,

where bij =
∑Q

q=1 bij(tq) and

bij(tq) =


aqr(n− tq)/n if gi(tq) = gj(tq) = 0,

aqtq/n if gi(tq) = gj(tq) = 1,

0 otherwise.

Since bmax = O(1), we only need to show equation (B.11):

n∑
i,j,k=1

b′ijb
′
ik = O(n3).

Since,

n∑
i=1

b2i· =

Q∑
q=0

(tq+1 − tq)

(
Q∑
h=1

ahr
(n− th)(th − 1)

n
+

q∑
s=0

as
ts(n− ts − 1)− r(n− ts)(ts − 1)

n

)2
 ,

ḃ =
1

n

Q∑
q=0

[
(tq+1 − tq)

(
Q∑
h=1

ahr
(n− th)(th − 1)

n
+

q∑
s=0

as
ts(n− ts − 1)− r(n− ts)(ts − 1)

n

)]
,

it is easy to show that
∑n

i=1 b
2
i· − nḃ2 is of order n3 unless

∑q
s=0 as (us(1− us)− r(1− us)us) are all the

same for q = 0, . . . , Q, that is, r = 1.

B.2.4. Proof of Theorem 3.3.3. Here, we show the derivation of ρ∗D(u, v), and that for ρ∗W,r(u, v) can

be done in similar way.

Let ρD(u, v) = Cov (ZD([nu]), ZD([nv])). Then, ρ∗D(u, v) = limn→∞Cov (ZD([nu]), ZD([nv])).

We first show for u ≤ v. Let s = [nu] and t = [nv]. Then, s < t and limn→∞ s/n = u, limn→∞ t/n =

v.

Since Cov (ZD(s), ZD(t)) = numerator/denominator, where

numerator = E
((
s(s− 1)α(s)− (n− s)(n− s− 1)β(s)

)(
t(t− 1)α(t)− (n− t)(n− t− 1)β(t)

))
− E (s(s− 1)α(s)− (n− s)(n− s− 1)β(s)) E (t(t− 1)α(t)− (n− t)(n− t− 1)β(t))
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denominator =
√

Var (s(s− 1)α(s)− (n− s)(n− s− 1)β(s)) Var (t(t− 1)α(t)− (n− t)(n− t− 1)β(t)).

Other terms follow easily from E (α(t)), E (β(t)), and Cov (α(t), β(t)) provided in Section 3.2. Hence, we

only need to figure out

E
((
s(s− 1)α(s)− (n− s)(n− s− 1)β(s)

)(
t(t− 1)α(t)− (n− t)(n− t− 1)β(t)

))
= s(s− 1)t(t− 1)E (α(s)α(t))− s(s− 1)(n− t)(n− t− 1)E (α(s)β(t))

− (n− s)(n− s− 1)t(t− 1)E (β(s)α(t)) + (n− s)(n− s− 1)(n− t)(n− t− 1)E (β(s)β(t)) .

(i) s(s− 1)t(t− 1)E (α(s)α(t))

=

n∑
i=1

n∑
j=1,j 6=i

kij

n∑
u=1

n∑
v=1,v 6=u

kuvP(gi(s) = gj(s) = 0, gu(t) = gv(t) = 0).

Since

P
(
gi(s) = gj(s) = 0, gu(t) = gv(t) = 0

)

=



s(s−1)
n(n−1) := a1(s) if

 i = u, j = v

i = v, j = u

s(s−1)(t−1)
n(n−1)(n−2) := a2(s, t) if



i = u, j 6= v

i = v, j 6= u

j = u, i 6= v

j = v, i 6= u

s(s−1)(t−2)(t−3)
n(n−1)(n−2)(n−3) := a3(s, t) if i 6= j 6= u 6= v

we have

s(s− 1)t(t− 1)E (α(s)α(t)) = 2R1(t)a1(s) + 4R2a2(s, t) +R3a3(s, t).

(ii) s(s− 1)(n− t)(n− t− 1)E (α(s)β(t))
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=

n∑
i=1

n∑
j=1,j 6=i

kij

n∑
u=1

n∑
v=1,v 6=u

kuvP(gi(s) = gj(s) = 0, gu(t) = gv(t) = 1).

Since

P
(
gi(s) = gj(s) = 0, gu(t) = gv(t) = 1

)
=
s(s− 1)(n− t)(n− t− 1)

n(n− 1)(n− 2)(n− 3)
:= b1(s, t)

we have

s(s− 1)t(t− 1)E (α(s)α(t)) = R3b1(s, t).

(iii) (n− s)(n− s− 1)t(t− 1)E (β(s)α(t))

=

n∑
i=1

n∑
j=1,j 6=i

kij

n∑
u=1

n∑
v=1,v 6=u

kuvP(gi(s) = gj(s) = 1, gu(t) = gv(t) = 0).

Since

P
(
gi(s) = gj(s) = 1, gu(t) = gv(t) = 0

)

=



(t−s)(t−s−1)
n(n−1) := c1(s, t) if

 i = u, j = v

i = v, j = u

(t−s)
(

(t−s−1)(t−2)+(t−1)(n−t)
)

n(n−1)(n−2) := c2(s, t)) if



i = u, j 6= v

i = v, j 6= u

j = u, i 6= v

j = v, i 6= u

(t−s)(n−s−2)
(

(t−s−1)(n−s−3)+2s(n−s−1)
)

n(n−1)(n−2)(n−3)

+ s(s−1)(n−s)(n−s−1)
n(n−1)(n−2)(n−3) := c3(s, t) if i 6= j 6= u 6= v

we have

(n− s)(n− s− 1)t(t− 1)E (β(s)α(t)) = 2R1c1(s, t) + 4R2c2(s, t) +R3c3(s, t).
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(iv) (n− s)(n− s− 1)(n− t)(n− t− 1)E (β(s)β(t))

=
n∑
i=1

n∑
j=1,j 6=i

kij

n∑
u=1

n∑
v=1,v 6=u

kuvP(gi(s) = gj(s) = 1, gu(t) = gv(t) = 1).

Since

P
(
gi(s) = gj(s) = 1, gu(t) = gv(t) = 1

)

=



(n−t)(n−t−1)
n(n−1) := d1(t) if

 i = u, j = v

i = v, j = u

(n−t)(n−t−1)(n−t−2)
n(n−1)(n−2) := d2(s, t) if



i = u, j 6= v

i = v, j 6= u

j = u, i 6= v

j = v, i 6= u

(n−t)(n−t−1)(n−s−2)(n−s−3)
n(n−1)(n−2)(n−3) := d3(s, t) if i 6= j 6= u 6= v

we have

(n− s)(n− s− 1)(n− t)(n− t− 1)E (β(s)β(t)) = 2R1d1(t) + 4R2d2(s, t) +R3d3(s, t).

To sum, after tedious calculation, we have

E
((
s(s− 1)α(s)− (n− s)(n− s− 1)β(s)

)(
t(t− 1)α(t)− (n− t)(n− t− 1)β(t)

))
= 2R1 (a1(s)− c1(s, t) + d1(t)) + 4R2 (a2(s, t)− c2(s, t) + d2(s, t))

+R3 (a3(s, t)− b1(s, t)− c3(s, t) + d3(s, t)) .

Since

E (s(s− 1)α(s)− (n− s)(n− s− 1)β(s)) E (t(t− 1)α(t)− (n− t)(n− t− 1)β(t))

= R2
0 (p1(s)p1(t)− p1(s)q1(t)− q1(s)p1(t) + q1(s)q1(t)) ,
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by plugging in and simplifying the expressions, we have

E
((
s(s− 1)α(s)− (n− s)(n− s− 1)β(s)

)(
t(t− 1)α(t)− (n− t)(n− t− 1)β(t)

))
− E (s(s− 1)α(s)− (n− s)(n− s− 1)β(s)) E (t(t− 1)α(t)− (n− t)(n− t− 1)β(t))

=
4s(n− t)
n(n− 1)

(
R1 +R2 −

1

n
R2

0

)
.

Since

Var (s(s− 1)α(s)− (n− s)(n− s− 1)β(s)) =
4s(n− s)
n(n− 1)

(
R1 +R2 −

1

n
R2

0

)
,

we have

Cov (ZD(s), ZD(t))

=

4s(n−t)
n(n−1)

(
R1 +R2 − 1

nR
2
0

)√
4s(n−s)
n(n−1)

(
R1 +R2 − 1

nR
2
0

)4t(n−t)
n(n−1)

(
R1 +R2 − 1

nR
2
0

)
=

√
s(n− t)
t(n− s)

.

Hence, for u ≤ v,

ρ∗D(u, v) = lim
n→∞

Cov (ZD(s), ZD(t)) =

√
u(1− v)

v(1− u)
.

Similarly, for v ≤ u,

ρ∗D(u, v) =

√
v(1− u)

u(1− v)
,

and the result in the proposition follows.

B.3. Analytic expressions for the third moments

Since

E
(
Z3
D(t)

)
=

E
(
D3(t)

)
− 3E (D(t)) Var (D(t))− E3 (D(t))

Var3/2 (D(t))
,
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E
(
Z3
W,r(t)

)
=

E
(
W 3
r (t)

)
− 3E (Wr(t)) Var (Wr(t))− E3 (Wr(t))

Var3/2 (Wr(t))
,

and the analytic expressions for the expectations and variances ofZD(t) andZW,r(t) can be found in Section

3.2, we only need to figure out the analytic expressions for the expectations of E
(
D3(t)

)
and E

(
W 3
r (t)

)
and they can be obtained based on the following theorem.

THEOREM B.3.1. Let kii = 0 for all i = 1, . . . , n. We have

E
(
α3(t)

)
=

1

t3(t− 1)3

n∑
i=1

n∑
j=1,j 6=i

kij

n∑
u=1

n∑
v=1,v 6=u

kuv

n∑
r=1

n∑
s=1,s 6=r

krs

× P (gi(t) = gj(t) = gu(t) = gv(t) = gr(t) = gs(t) = 0)

=
1

t3(t− 1)3

(
4

n∑
i,j=1

k3
ijp1(t) + 24

n∑
i,j,u=1

k2
ijkiup2(t) + 8

n∑
i,j,u=1

kijkjukuip2(t)

+ 6

n∑
i,j,u,v=1

k2
ijkuvp3(t) + 8

n∑
i,j,u,v=1

kijkiukivp3(t) + +24

n∑
i,j,u,v=1

kijkjukuvp3(t)

+ 12

n∑
i,j,u,v,r=1

kijkjukvrp4(t) +

n∑
i,j,u,v,r,s=1

kijkuvkrsp5(t)

)
,

E
(
α2(t)β(t)

)
=

1

t2(t− 1)2(n− t)(n− t− 1)

n∑
i=1

n∑
j=1,j 6=i

kij

n∑
u=1

n∑
v=1,v 6=u

kuv

n∑
r=1

n∑
s=1,s 6=r

krs

× P (gi(t) = gj(t) = gu(t) = gv(t) = 0, gr(t) = gs(t) = 1)

=
1

t2(t− 1)2(n− t)(n− t− 1)

(
2

n∑
i,j,u,v=1

k2
ijkuvp

′
1(t) + 4

n∑
i,j,u,v,r=1

kijkjukvrf
′
2(t)

+
n∑

i,j,u,v,r,s=1

kijkuvkrsf
′
3(t)

)
,

E
(
α(t)β2(t)

)
=

1

t(t− 1)(n− t)2(n− t− 1)2

n∑
i=1

n∑
j=1,j 6=i

kij

n∑
u=1

n∑
v=1,v 6=u

kuv

n∑
r=1

n∑
s=1,s 6=r

krs

× P (gi(t) = gj(t) = 0, gu(t) = gv(t) = gr(t) = gs(t) = 1)

=
1

t(t− 1)(n− t)2(n− t− 1)2

(
2

n∑
i,j,u,v=1

k2
ijkuvq

′
1(t) + 4

n∑
i,j,u,v,r=1

kijkjukvrq
′
2(t)

+

n∑
i,j,u,v,r,s=1

kijkuvkrsq
′
3(t)

)
,
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E
(
β3(t)

)
=

1

t3(t− 1)3

n∑
i=1

n∑
j=1,j 6=i

kij

n∑
u=1

n∑
v=1,v 6=u

kuv

n∑
r=1

n∑
s=1,s 6=r

krs

× P (gi(t) = gj(t) = gu(t) = gv(t) = gr(t) = gs(t) = 1)

=
1

t3(t− 1)3

(
4

n∑
i,j=1

k3
ijq1(t) + 24

n∑
i,j,u=1

k2
ijkiuq2(t) + 8

n∑
i,j,u=1

kijkjukuiq2(t)

+ 6

n∑
i,j,u,v=1

k2
ijkuvq3(t) + 8

n∑
i,j,u,v=1

kijkiukivq3(t) + +24

n∑
i,j,u,v=1

kijkjukuvq3(t)

+ 12
n∑

i,j,u,v,r=1

kijkjukvrq4(t) +
n∑

i,j,u,v,r,s=1

kijkuvkrsq5(t)

)
,

where

p4(t) = p3(t)
t− 4

n− 4
, p5(t) = p4(t)

t− 5

n− 5
, q4(t) = q3(t)

n− t− 4

n− 4
, q5(t) = q4(t)

n− t− 5

n− 5
,

p′1(t) =
t(t− 1)(n− t)(n− t− 1)

n(n− 1)(n− 2)(n− 3)
, p′2(t) = p′1(t)

t− 2

n− 4
, p′3(t) = p′2(t)

t− 3

n− 5
,

q′1(t) = p′1(t), q′2(t) = q′1(t)
n− t− 2

n− 4
, q′3(t) = q′2(t)

n− t− 3

n− 5
.

B.4. More Experiment Results

Here, we consider the multivariate Gaussian data with the following structures: We simulate 100 datasets

TABLE B.1. Three toy problems

DATA F0 F1

LOCATION ALTERNATIVE Nd(0d, Id) Nd((1.6, 0, . . . , 0)T , Id)
SCALE ALTERNATIVE Nd(0d, Id) Nd(0d, DIAG(15, 1, . . . , 1))

to estimate the power of the tests and the significance level is set to be 0.05 for all tests.

The results are shown in Table B.2. Here, it becomes harder to detect changes as d increases since

the signal gets weaker. We first see that FCP has lower or no power in all settings. KCP and ECP exhibit

high power for the location alternatives, but they lose power for the scale alternatives. However, the new

tests perform well for both location and scale alternatives. GCP also works well for both location and scale

alternatives, but it is outperformed by the new tests.
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TABLE B.2. Estimated power of the tests for multivariate Gaussian data. n = 200

Mean Change (τ at center) Variance Change (τ at center)
d 100 500 1000 2000 100 500 1000 2000

fGKCP1 98 (98) 47 (44) 37 (23) 16 (9) 98 (77) 45 (28) 22 (13) 12 (5)
fGKCP2 99 (99) 55 (50) 44 (29) 24 (13) 96 (76) 38 (20) 23 (12) 16 (7)
GKCP 100 (100) 73 (67) 61 (43) 25 (17) 95 (75) 45 (28) 17 (10) 15 (4)
KCP 100 (100) 78 (71) 54 (42) 22 (14) 33 (22) 9 (0) 4 (1) 7 (1)
ECP 100 (98) 85 (77) 57 (45) 38 (23) 15 (9) 10 (2) 9 (5) 10 (4)
GCP 72 (61) 24 (9) 14 (4) 7 (1) 94 (82) 33 (15) 19 (6) 17 (4)
FCP 18 (8) 0 (0) 0 (0) 0 (0) 87 (74) 0 (0) 0 (0) 0 (0)

B.5. Checking analytic p-value approximations for the changed-interval

Here, we examine the performance of the analytical p-value approximations of the new tests for the

changed-interval alternative. The simulation setting and notation are identical to the single change-point

alternative in Section 3.3.4.

The results are shown in Table B.3, B.4, and B.5. According to the tables, conclusions similar to

the single change-point alternative can be drawn. The analytical p-value approximation with skewness

correction performs better than the p-value apprpoximation without skewness correction, especially when

the window size increases. In general, the skewness-corrected p-value approximation works well when

n0 ≥ 50.
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TABLE B.3. Critical values for the single change-point scan statistic
maxn0≤t2−t1≤n1 ZD(t1, t2) at 0.05 significance level. n = 1000

n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 3.91 3.98 4.07 4.20

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A2 Per A2 Per A2 Per A2 Per
Gaussian 3.90 3.85 3.97 3.95 4.05 4.01 4.17 4.18
d = 100 3.91 3.87 3.97 3.95 4.05 4.01 4.20 4.18
Gaussian 3.91 3.87 3.98 3.93 4.07 4.02 4.19 4.15
d = 500 3.91 3.87 3.98 3.93 4.07 4.02 4.20 4.18
Gaussian 3.91 3.87 3.97 3.94 4.06 4.03 4.19 4.17
d = 1000 3.91 3.87 3.97 3.94 4.06 4.04 4.23 4.18

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A2 Per A2 Per A2 Per A2 Per
MV-t5 3.86 3.87 3.92 3.93 3.97 4.06 3.99 4.26
d = 100 3.85 3.86 3.90 3.93 3.95 4.06 4.02 4.32
MV-t5 3.88 3.87 3.94 3.94 3.97 4.04 4.02 4.21
d = 500 3.87 3.88 3.91 3.94 4.01 4.06 4.08 4.22
MV-t5 3.87 3.86 3.90 3.92 3.95 4.03 4.00 4.21
d = 1000 3.86 3.87 3.93 3.96 3.99 4.05 4.01 4.28

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A2 Per A2 Per A2 Per A2 Per
Log-normal 3.85 3.88 3.89 3.95 3.93 4.08 3.98 4.29
d = 100 3.85 3.86 3.89 3.95 3.94 4.09 3.98 4.30

Log-normal 3.82 3.85 3.86 3.95 3.90 4.10 3.94 4.37
d = 500 3.83 3.87 3.87 3.96 3.91 4.11 3.96 4.41

Log-normal 3.83 3.87 3.87 3.95 3.94 4.09 3.98 4.37
d = 1000 3.85 3.88 3.89 3.96 3.91 4.04 3.95 4.31
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TABLE B.4. Critical values for the single change-point scan statistic
maxn0≤t2−t1≤n1 ZW,1.2(t1, t2) at 0.05 significance level. n = 1000

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
Gaussian 3.79 3.97 3.97 3.88 4.10 4.10 3.99 4.26 4.27 4.16 4.53 4.55
d = 100 3.78 4.00 3.98 3.89 4.11 4.10 3.99 4.27 4.27 4.17 4.55 4.59
Gaussian 3.80 3.88 3.86 3.88 3.98 3.96 4.00 4.12 4.10 4.17 4.34 4.31
d = 500 3.80 3.88 3.86 3.88 3.98 3.96 4.00 4.12 4.09 4.17 4.34 4.34
Gaussian 3.79 3.85 3.84 3.88 3.95 3.92 3.99 4.09 4.05 4.16 4.30 4.30
d = 1000 3.79 3.86 3.86 3.88 3.95 3.94 3.99 4.07 4.05 4.16 4.28 4.27

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
MV-t5 3.74 4.02 4.02 3.82 4.12 4.12 3.93 4.27 4.27 4.10 4.53 4.58
d = 100 3.74 3.98 3.96 3.82 4.10 4.07 3.93 4.25 4.25 4.10 4.50 4.53
MV-t5 3.73 3.86 3.84 3.82 3.94 3.92 3.93 4.07 4.06 4.09 4.29 4.27
d = 500 3.73 3.85 3.84 3.82 3.95 3.93 3.92 4.06 4.05 4.09 4.25 4.25
MV-t5 3.73 3.81 3.78 3.81 3.90 3.87 3.92 4.01 3.99 4.08 4.16 4.16
d = 1000 3.73 3.80 3.77 3.81 3.88 3.85 3.92 3.98 3.97 4.08 4.20 4.19

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
Log-normal 3.71 4.38 4.46 3.79 4.52 4.64 3.89 4.73 4.92 4.05 5.12 5.49
d = 100 3.71 4.39 4.45 3.79 4.52 4.64 3.89 4.73 4.92 4.05 5.11 5.44

Log-normal 3.70 4.07 4.06 3.78 4.18 4.19 3.88 4.35 4.37 4.03 4.61 4.65
d = 500 3.70 4.08 4.08 3.78 4.20 4.21 3.87 4.33 4.36 4.03 4.63 4.65

Log-normal 3.70 3.97 3.96 3.78 4.09 4.08 3.88 4.23 4.23 4.03 4.48 4.49
d = 1000 3.70 4.02 4.03 3.78 4.12 4.13 3.88 4.26 4.27 4.03 4.54 4.57
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TABLE B.5. Critical values for the single change-point scan statistic
maxn0≤t2−t1≤n1 ZW,0.8(t1, t2) at 0.05 significance level. n = 1000

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
Gaussian 2.77 2.84 3.91 2.82 2.89 4.01 2.89 2.97 4.15 2.97 3.07 4.37
d = 100 2.78 2.84 3.93 2.83 2.90 4.00 2.89 2.97 4.15 2.98 3.07 4.40
Gaussian 2.78 2.80 2.80 2.82 2.85 2.84 2.89 2.92 2.91 2.97 3.01 2.99
d = 500 2.78 2.80 2.80 2.83 2.85 2.87 2.89 2.92 2.92 2.98 3.01 3.00
Gaussian 2.77 2.79 2.79 2.83 2.85 2.85 2.89 2.92 2.89 2.97 3.01 2.96
d = 1000 2.77 2.80 2.80 2.82 2.85 2.82 2.89 2.91 2.91 2.97 3.00 2.99

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
MV-t5 3.72 4.00 4.01 3.80 4.12 4.12 3.90 4.28 4.36 4.05 4.55 4.68
d = 100 3.72 4.01 4.02 3.80 4.13 4.13 3.90 4.29 4.36 4.05 4.57 4.72
MV-t5 3.72 4.00 4.00 3.80 4.12 4.12 3.90 4.28 4.36 4.05 4.33 4.34
d = 500 3.72 4.01 4.02 3.80 4.13 4.13 3.90 4.29 4.36 4.05 4.39 4.45
MV-t5 3.72 3.84 3.84 3.79 3.94 3.92 3.89 4.07 4.06 4.04 4.31 4.32
d = 1000 3.72 3.85 3.84 3.79 3.96 3.95 3.89 4.11 4.09 4.04 4.37 4.41

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
Log-normal 3.70 4.31 4.42 3.78 4.45 4.61 3.88 4.66 4.97 4.03 5.02 5.62
d = 100 3.70 4.31 4.42 3.78 4.45 4.61 3.88 4.66 4.98 4.03 5.02 5.63

Log-normal 3.70 4.13 4.15 3.78 4.27 4.32 3.87 4.48 4.59 4.02 4.76 5.13
d = 500 3.70 4.13 4.14 3.78 4.27 4.32 3.87 4.48 4.58 4.02 4.83 5.26

Log-normal 3.70 4.05 4.08 3.78 4.18 4.22 3.87 4.37 4.39 4.02 4.70 5.01
d = 1000 3.70 4.05 4.08 3.78 4.16 4.20 3.87 4.34 4.38 4.02 4.65 4.89
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