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EPIGRAPH

Statistics is the grammar of science.

Karl Pearson

The essence of statistics is to uncover simple truths from the complex and
derive clear conclusions from the obscure.

Morris Wu

Statistical thinking will one day be as necessary for
efficient citizenship as the ability to read and write.

H.G. Wells
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This dissertation develops new and advanced statistical methods to address complex

challenges in modeling and inference for between-subject attributes in biomedical research,

illustrating their applications with both real and simulated data. The work is presented in three

papers, each targeting a specific set of problems within this broad theme.

Chapter 1 examines the asymptotic distribution of the empirical area under the receiver

operating characteristic curve (AUROC) when parameters from class probability models are

estimated by maximum likelihood estimators. Traditional methods relying on Taylor series

expansions are inapplicable due to the non-differentiability of the empirical AUROC. To address
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this, we leverage empirical processes to derive the asymptotic distribution. We evaluate the

asymptotic properties of the empirical AUROC through Monte Carlo simulations. Our findings

show that the variability of the empirical AUROC is well-described by the derived asymptotic

distribution, even for small sample sizes.

In Chapter 2, we address two critical issues in semiparametric and random forest re-

gression models. First, traditional semiparametric regression models for analyzing functional

responses may yield inaccurate estimates if posited parametric assumptions are violated. Sec-

ond, although random forest regression offers flexibility in modeling complex relationships for

functional responses, it is susceptible to outliers just as semiparametric regression for between-

subject attributes is. We propose an outlier-robust nonparametric approach using random forest

regression to address both issues simultaneously. Our findings demonstrate that the proposed

method offers accurate estimates even when parametric assumptions in semiparametric models

are violated and/or outliers are present.

Chapter 3 tackles the statistical challenges of inferring transitivity in viral genetic linkage

(VGL) networks, particularly with longitudinal data. Transitivity involves modeling connections

among three individuals based on similar viral genetic sequences, which presents challenges

for traditional statistical paradigms for within-subject attributes. We present a semiparametric

approach leveraging functional response models to estimate transitivity, demonstrating accurate

point and interval estimates of transitivity in both cross-sectional and longitudinal VGL networks.

Applied to HIV surveillance data from San Diego County, our analysis reveals a significant

increase in transitivity over time, indicating shorter delays between infection and diagnosis.

These insights are important for assessing effects of HIV intervention and prevention programs

and understanding disease dynamics.
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Introduction

In modern biomedical research and statistical methodology, the development and evalua-

tion of models that involve multi-subject-based functional responses and account for complex

dependencies in such functional responses are essential for advancing our understanding of

critical phenomena, ranging from diagnostic accuracy to the dynamics of infectious disease

transmission. Across various biomedical and public health research domains, the traditional

statistical paradigm for modeling within-subject attributes often falls short in capturing the

complex relationships of interest arising in real-world data, particularly when these relationships

extend beyond simple within-subject attributes to involving more complex between-subject

interactions [1, 2]. This dissertation addresses these challenges through a series of studies that

introduce robust and theoretically grounded methodologies for modeling such complexities.

Chapter 1 focuses on estimating the area under the receiver operating characteristic

curve (AUROC), a widely used metric for assessing the performance of binary classifiers in

diagnostic testing. The popular empirical AUROC estimator arising from modeling binary

classifiers using class probability models presents significant statistical challenges for deriving its

asymptotic properties. This study leverages empirical processes to develop an approach to derive

the asymptotic properties of the empirical AUROC estimator when the parameters of the class

probability model are estimated by maximum likelihood estimators (MLEs). The established

asymptotic results ensure reliable statistical inference and facilitate applications of AUROC in

biomedical and public health research.

Chapter 2 extends the scope of statistical modeling to scenarios where the underlying

parametric assumptions of semiparametric regression models for the mean response are violated.
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Semiparametric regression models for between-subjects have become increasingly popular, as

they address complex functional responses involving multiple subjects to capture relationships

of interest in biomedical and public health research [1, 2]. Although robust against distributional

assumptions, these models require the knowledge of the correct parametric relationship between

the response function and features, resulting in biased estimates and inaccurate inference when

the parametric form assumptions are incorrectly specified. Additionally, data containing outliers

in the response variable is a common problem for mean-based estimation in regression models

[3]. To address these limitations, this study develops an outlier-robust, nonparametric approach

by building upon recent asymptotic results for random forest regression, a popular machine

learning method for nonparametric regression models for within-subject attributes. This proposed

approach significantly improves the resilience of regression estimates to extreme values and

thereby provides accurate and reliable estimates for nonparametric regression for between-subject

attributes.

Chapter 3 focuses on the analysis of a network-based metric, transitivity, within the

context of viral genetic linkage (VGL) networks. These networks are instrumental in understand-

ing the transmission dynamics of infectious diseases and in evaluating the efficacy of public

health interventions [4]. However, traditional statistical models are not amenable to capturing the

intricate relationships defined by transitivity. By employing semiparametric functional response

models (FRMs), this study introduces a novel approach to estimating transitivity and its temporal

changes in growing networks over time, thereby facilitating the evaluation of HIV intervention

and prevention programs.

Collectively, these studies contribute to the advancement of statistical methodologies for

analyzing complex biomedical and public health research data. They underscore the necessity of

sophisticated modeling techniques that transcend traditional paradigms, offering new insights

and tools for both theoretical research and practical applications in biomedical and public health

research.

This dissertation is organized as follows. Chapter 1 derives the asymptotic properties of
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the empirical AUROC with the parameters of the class probability model estimated by the MLE.

Chapter 2 introduces the outlier-robust random forest regression for between-subject attributes

and establishes its asymptotic properties. It also illustrates the approach with simulated data.

Chapter 3 develops the FRMs and the asymptotic properties of estimators of transitivity in both

cross-sectional and longitudinal VGL networks, and illustrates its application with HIV data

from San Diego County, which motivated this methodological research project. We present our

conclusions and future work in Chapter 4. Appendix A states the existing theorems used in the

first three chapters, and Appendix B provides proofs for the main theorems stated in the first

three chapters.
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Chapter 1

Asymptotic Properties of Empirical Area
Under Receiver Operating Characteristic
Curve with Parameter Estimator of Gener-
alized Linear Models

1.1 Introduction

A receiver operating characteristic (ROC) curve is widely used to describe the diagnostic

ability of a two-level classifier in biomedical and biostatistical research [5, 6]. It is a probability

curve that plots sensitivity (true positive rate, TPR) against 1 - specificity (false positive rate, FPR)

at various threshold values. The performance of the classifier can be quantified by the area under

the ROC curve (AUROC). The AUROC measures the classifier’s ability to distinguish between

two classes, such as the presence or absence of a disease of interest. By defining one class as

positive and the other as negative, the AUROC provides the probability that a classifier will

rank a randomly chosen positive sample higher than a randomly chosen negative sample [7]. A

higher AUROC indicates better ranking performance. An AUROC of 1 signifies perfect ranking,

whereas an AUROC of 0 indicates that the classifier ranks all samples incorrectly. An AUROC

of 0.5 suggests that the classifier performs no better than random guessing. Therefore, achieving

an AUROC between 0.5 and 1 represents a fundamental objective in classifier modeling.

In practice, the AUROC of a classifier for a given population of interest is estimated by
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calculating the empirical AUROC (see Equation 1.1 in Section 1.2.2 for details) from observed

data. This empirical AUROC can be represented as a two-sample*-statistic, a nonparametric

statistic that imposes no parametric assumptions on the class probability model (see Section 1.2.1

for details) [8, 9, 10]. According to the theory of*-statistics [11, 12], the asymptotic normality

of the empirical AUROC can be established. However, class probabilities are typically unknown

and are required to compute the empirical AUROC. Therefore, they must be estimated from

the data. For two-level classification, it is common to model the relationship between subject

features and their class labels using parametric models such as generalized linear models (GLMs)

[13] with a link function like the logit or probit link for binary responses. Consequently, when

deriving the asymptotic properties of the empirical AUROC, it is crucial to consider the predictors

of class probabilities, which involves model parameters.

Traditionally, the asymptotic distribution of a statistic with estimated parameters is

derived using a Taylor series expansion around the true parameters, involving differentiation of

the objective function with respect to the unknown parameters. However, since the indicator

functions induce discontinuities in the empirical AUROC, rendering this conventional approach

inapplicable because of a differentiability issue. One common method to address this challenge

is to approximate the discontinuous objective function with a smooth function. Ma and Huang

[14] proposed a model parameter estimator that maximizes a sigmoid approximation to the

empirical AUROC. They were able to derive the consistency and asymptotic normality of

this parameter estimator due to the continuity of the sigmoid function. Similarly, Heller et al.

[15] derived the asymptotic distributions of the difference in AUROC statistics from nested

models by smoothing the objective function by approximating the indicator functions with

the standard normal distribution. Since the model parameter estimators in these studies are

derived directly from the empirical AUROC, rather than the class probability model, these

smoothing-approximation-based approaches do not address the issue of AUROC with a plug-

in estimator from the model of interest, which is the focus of the current study. To perform

valid inference, it is crucial to derive the proper asymptotic distribution of the estimator of

5



AUROC from class probability models, such as when comparing AUROCs between two class

models. Inferences about the underlying AUROC, such as p-values and confidence intervals,

may be biased without accounting for sampling variability of estimators of parameters from the

class probability model, giving rise to potentially misleading conclusions in practice. Hence,

understanding the correct asymptotic properties is essential for reliable statistical inference and

for making valid comparisons of AUROCs between different class probability models.

In this study, we propose to leverage empirical processes to derive the asymptotic

distribution of the empirical AUROC with estimated parameters from class probability models.

This approach allows the empirical AUROC to achieve differentiability in Banach space, enabling

the application of the functional delta method to establish its asymptotic distribution [11, 16].

Ghoudi and Rémillard [17] laid the groundwork for analyzing the asymptotic behavior of

empirical processes constructed from the estimated distribution function of a non-observable

random variable \ (&, -), which depends on an observable random variable - and its unknown

law &. Their results can be utilized to generalize the Mann-Whitney statistic [18], which is

closely related to the empirical AUROC, to the Mann-Whitney process. Van Der Vaart and

Wellner [19] extended the results from Ghoudi and Rémillard [17] beyond indicator functions

and reformulated them within the context of empirical process theory. These developments have

inspired our approach to establish the asymptotic distribution of the empirical AUROC with

estimated parameters from class probability models.

We focus on the asymptotic properties of the empirical AUROC using parameter estima-

tors derived from GLM-based class probability models. In practice, the parameters in GLM are

typically estimated using maximum likelihood estimators (MLEs). Although it is possible to

estimate parameters by directly maximizing the empirical AUROC [14, 15], MLEs are among

the most commonly used estimators in biomedical research and thus the focus of this work.

This paper is organized as follows. Section 1.2 introduces the two-level class probability

model and the probabilistic interpretation of the ROC curve. Section 1.3 reviews the existing

asymptotic results for the empirical AUROC with a fixed parameter. Section 1.4 presents
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our main findings on the asymptotic properties of the empirical AUROC using the MLE. In

Section 1.5, we conduct simulation studies to evaluate the results of the asymptotic theories

established in Section 1.4. We present our concluding remarks in the discussion in Section 1.6.

1.2 Preliminaries

1.2.1 Class Probability Model

Consider a two-class classification study where one class comprises of diseased subjects

and the other comprises of non-diseased subjects. Suppose there are = subjects, each characterized

by 3 features. Let (-8,.8), 8 = 1, . . . , =, denote a set of independent and identically distributed

(i.i.d.) samples, where .8 ∈ {0,1} represents a binary outcome for the 8-th subject, with .8 = 1

indicating the presence of the disease and .8 = 0 indicating the absence of the disease. The

continuous feature vector for the 8-th subject is denoted by X8 ∈ R3 .

To classify the disease status of each subject based on X8, it is essential to model the

probability of. = 1 given X. Let ?0 :R3→ [0,1] denote the true conditional probability function.

We model ?0 using a GLM with %(. = 1 | X) = 6−1(#>X), where 6 : [0,1] → R is an unknown

strictly increasing link function, and # ∈ R3 is a vector of unknown regression parameters. Let #0

represent the true parameter vector. We can express ?0(X) as ?0(X) = %(. = 1 | X) = 6−1(#>0 X).

To estimate #0, we employ the MLE, denoted by #̂=. For convenience, we define

?̂(X) = 6−1( #̂>= X) as the MLE estimator of ?0(X). After modeling ?0, a cutoff point is selected

to classify subjects. For example, using a cutoff value of 0.5, we classify the 8-th subject as

diseased if ?̂(X8) > 0.5 and as non-diseased if ?̂(X8) ≤ 0.5.

1.2.2 ROC Curve

An ROC curve can be plotted by examining the TPR and FPR at various cutoff values.

For the GLM, the TPR and FPR are defined as
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TPR6 (2) = %(6−1(#>X) > 2 | . = 1)

and

FPR6 (2) = %(6−1(#>X) > 2 | . = 0),

respectively, for a cutoff 2 ∈ [0,1]. The two-dimensional space formed by the TPR and FPR

is referred to as ROC space. By varying 2 from 1 to 0, the ROC curve {(FPR6 (2),TPR6 (2)) :

0 ≤ 2 ≤ 1} is plotted in the ROC space. Let X�
9
∈ R3 , 9 = 1, . . . , =0, and X�

:
∈ R3 , : = 1, . . . , =1,

denote two sequences of i.i.d. random vectors representing feature vectors from the non-diseased

and diseased classes, respectively, where =0 is the number of subjects in the non-diseased class

and =1 is the number of subjects in the diseased class (= = =0 +=1). The AUROC, denoted by \,

is obtained by integrating the ROC curve between the limits of FPR, 0 and 1:

\ (#) =
∫ 1

0
TPR6 (FPR−1

6 (C))3C =
∫ 0

1
TPR6 (2)FPR6 (32)

=

∫ 1

0

∫ 1

0
� (2′ > 2) (1−TPR6) (32′) (1−FPR6) (32)

= %(6−1(#>X�) > 6−1(#>X�))

= %(#>X� > #>X�),

where FPR−1
6 (C) := inf{2 ∈ [0,1] : FPR6 (2) ≤ C} and � is the indicator function. Note that

common link functions 6 for a binary outcome include the logit and probit functions, but the

AUROC is independent of the choice of link functions as long as the link function is strictly

increasing.
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The empirical AUROC, denoted by \̂=, is defined as

\̂= (#) =
1

=0=1

=0∑
9=1

=1∑
:=1

� (#>X�
: > #>X�

9 ). (1.1)

Note that \̂= is a two-sample *-statistic that is proportional to the Mann-Whitney *-

statistic, allowing the application of*-statistics theory to derive the asymptotic properties of \̂=.

The details are provided in the following section.

1.3 Detailed Derivations and Theoretical Foundations

In this section, we provide a complete set of detailed derivation and relevant results of

the asymptotic distributions for the empirical AUROC with a fixed parameter #0. While the

textbooks Van der Vaart [11] and Van der Vaart and Wellner [16] offer the fundamental theories

and partial derivations, they do not provide complete and explicit derivations of the relevant

results. This section aims to present these results in a comprehensive manner and provide two

different approaches for this derivation. Note that the theorems and lemmas in this section are

stated in Appendix A.

1.3.1 Mann-Whitney*-Statistic

From Equation (1.1), \̂= represents a two-sample *-statistic with the kernel function

ℎ(#>X�; #>X�) := � (#>X� > #>X�) (see Section A.2). It follows that

\ (#) = �
[
� (#>X� > #>X�)

]
,

so \̂= is an unbiased estimator of \ for a fixed #. The statistic =0=1\̂= is commonly referred to as

the Mann-Whitney*-statistic [11, 12]. For convenience, we denote \̂= as*= in relation to the

*-statistic.

For the kernel ℎ, we define
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ℎ1,0(#>X�) = �
[
ℎ(#>X�; #>X�) | #>X�

]
,

ℎ0,1(#>X�) = �
[
ℎ(#>X�; #>X�) | #>X�

]
and their centered versions

ℎ̃1,0(#>X�) = ℎ1,0(#>X�) − \ (#),

ℎ̃0,1(#>X�) = ℎ0,1(#>X�) − \ (#).

Then, the Hájek projection [11] *̂= of*=− \ onto the set of all functions of the form

=0∑
9=1
0 9 (#>X�

9 ) +
=1∑
:=1

1: (#>X�
: ),

is given by

*̂= (#) =
1
=0

=0∑
9=1
ℎ̃1,0(#>X�

9 ) +
1
=1

=1∑
:=1

ℎ̃0,1(#>X�
: ),

where 0 9 and 1: are arbitrary measurable functions with �
[
02
9
(#>X�

9
)
]
, �

[
12
:
(#>X�

:
)
]
<∞.

Since ℎ(#>X� , #>X�) is square-integrable, by Theorem A.4, the difference between *̂=

and*=− \ is asymptotically negligible. Consequently,

√
=(\̂= (#) − \ (#)) =

√
=(*= (#) − \ (#))

3→N
(
0,
f2
�

_0
+
f2
�

_1

)
, (1.2)

where
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=ℓ

=
→ _ℓ ∈ (0,1) as =0, =1→∞, ℓ ∈ {0,1},

f2
� = Var

(
ℎ̃1,0(#>X�)

)
, f2

� = Var
(
ℎ̃0,1(#>X�)

)
.

It follows from (1.2) that \̂= is a
√
=-consistent estimator of \.

1.3.2 Functional Delta Method

Although the empirical AUROC is not differentiable in the traditional calculus sense due

to the presence of indicator functions, differentiability in the sense of empirical processes can

still be achieved. Without loss of generality, define

TPR(2) = %(#>X > 2 | . = 1)

and

FPR(2) = %(#>X > 2 | . = 0)

for a cutoff 2 ∈ R := [−∞,∞].

Let �0(2) = 1−FPR(2) and �1(2) = 1−TPR(2). Note that
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\ (#) =
∫ 1

0
TPR(FPR−1(C))3C =

∫ −∞

∞
TPR(2)FPR(32)

=

∫ ∞

−∞
(1−�1(2)) �0(32)

= 1−
∫ ∞

−∞
�1(2)�0(32)

= �0(2)�1(2)
����∞
−∞
−

∫ ∞

−∞
�1(2)�0(32)

=

∫ ∞

−∞
�0(2)�1(32)

=

∫ 1

0
�0(�−1

1 (C))3C,

where FPR−1(C) := inf{2 ∈ R : FPR(2) ≤ C} and �−1
1 (C) := inf{2 ∈ R : �1(2) ≥ C}. Hence, the

ROC curve can be expressed as a process
{
�0(�−1

1 (C)) : C ∈ [0,1]
}
, and \ (#) can be written as

q(�0, �1) :=
∫
�03�1.

Similarly, let F=0 (2) = 1
=0

∑=0
9=1 � (#

>X�
9
≤ 2) denote the empirical distribution function

of #>X�
1 , . . . , #

>X�
=0 with respect to �0 and F=1 (2) = 1

=1

∑=1
:=1 � (#

>X�
:
≤ 2) denote the empirical

distribution function of #>X�
1 , . . . , #

>X�
=1 with respect to �1. The empirical ROC curve is then

represented as the process

{
F=0 (F−1

=1 (C)) : C ∈ [0,1]
}
,

where F−1
=1 (C) := inf{2 ∈ R : F1(2) ≥ C}. Additionally, \̂= (#) can be expressed as

∫
F=0 (F−1

=1 (C))3C =
∫
F=03F=1 = q(F=0 ,F=1).

Let � [0, 1] denote the Banach space of all cadlag functions (right continuous with

left limits) I : [0, 1] → R on an interval [0, 1] ⊆ R, equipped with the uniform norm. Let

BV" [0, 1] represent the set of all cadlag functions I : [0, 1] → [−","] ⊂ R with total variation

12



bounded by " . Then, q can be viewed as a map from the domain BV1 [−∞,∞]×BV1 [−∞,∞] ⊂

� [−∞,∞]×BV1 [−∞,∞] intoR, equipped with the product norm. From Lemma A.11, it follows

that q is Hadamard differentiable [11, 16] at (�0, �1). Specifically, there exists a continuous

linear map q′(�0,�1) : � [−∞,∞] ×BV1 [−∞,∞] → R such that

q(�0 + C�0C , �1 + C�1C) −q(�0, �1)
C

→ q′(�0,�1) (�0, �1) as C→ 0,

for all converging sequences (�0C , �1C) → (�0, �1) such that

(�0 + C�0C , �1 + C�1C) ∈ BV1 [−∞,∞] ×BV1 [−∞,∞] .

From the same lemma, the derivative q′(�0,�1) is given by

q′(�0,�1) (�0, �1) =
∫
�03�1 +

∫
�03�1 = �0�1

����∞
−∞
−

∫
(�1)−3�0 +

∫
�03�1,

where (�1)− denotes the left-continuous version of a cadlag function �1.

By Donsker’s theorem (see Theorem A.7) and Slutsky’s theorem (see Theorem A.3),

√
=(F0−�0,F1−�1)

3→
(
G�0√
_0
,
G�1√
_1

)
,

where G�0 and G�1 are independent Brownian bridges (see Section A.3.1). It follows that the

asymptotic distribution of the empirical AUROC can alternatively be derived using the functional

delta method (see Theorem A.10):

√
=(\̂= (#) − \ (#)) =

√
=(q(F=0 ,F=1) −q(�0, �1))

3→ q′(�0,�1)

(
G�0√
_0
,
G�1√
_1

)
= − 1
√
_1

∫
(G�1)−3�0 +

1
√
_0

∫
G�03�1.

13



By Theorem A.8, we have −
∫
(G�1)−3�0 ∼ (G�1)−(�0) and

∫
G�03�1 ∼ −G�0 (�1), where

G� (�) denotes a �–Brownian bridge process indexed by the function �. Thus, we obtain

√
=(\̂= (#) − \ (#))

3→
(G�1)−(�0)√

_1
−
G�0 (�1)√

_0
.

The limit distribution of
√
=(\̂= (#) − \ (#)) can be deduced from its finite-dimensional

distributions as follows:

√
=(\̂= (#) − \ (#))

3→N
(
0,

Var
(
�0(#>X�)

)
_1

+
Var

(
�1(#>X�)

)
_0

)
. (1.3)

The result (1.3) obtained from the empirical processes argument matches the result shown

in (1.2), which is derived using the*-statistics theory.

1.4 Main Results of the Current Work

In this study, we extend the existing asymptotic analysis from \̂= (#0), as presented

in Section 1.3, to the more complex case of \̂= ( #̂=). The key innovation of our work lies in

addressing the challenge posed by the sampling variability inherent in the estimator #̂=, as

opposed to the fixed parameter #0. To establish the asymptotic properties of \̂= ( #̂=), we begin

by demonstrating the consistency of \̂= ( #̂=).

Theorem 1.1. If #̂=
?
→ #0, then \̂= ( #̂=)

?
→ \ (#0) as =→∞.

Proof. From Section 1.3, we have \̂= (#0)
?
→ \ (#0) as =→∞. Hence, it suffices to prove that

\̂= ( #̂=)
?
→ \̂=

(
#0

)
for any = if #̂=

?
→ #0. Note that \̂= is a step function with at most =0 × =1

(countable) discontinuity points, so the discontinuity set of \̂= has measure zero. Therefore, by

the continuous mapping theorem (see Theorem A.1), \̂= ( #̂=)
?
→ \̂= (#0) for any = if #̂=

?
→ #0.

Thus, for any n > 0,

14



%

(
|\̂= ( #̂=) − \ (#0) | ≥ n

)
≤ %

(
|\̂= ( #̂=) − \̂= (#0) | + |\̂= (#0) − \ (#0) | ≥ n

)
≤ %

(
|\̂= ( #̂=) − \̂= (#0) | ≥ n/2

)
+%

(
|\̂= (#0) − \ (#0) | ≥ n/2

)
→ 0 as =→∞ and #̂=

?
→ #0.

�

From Theorem 1.1, we see that \̂= ( #̂=) is a consistent estimator of \ (#0), similar to

\̂= (#0). We next demonstrate the asymptotic normality of \̂= ( #̂=).

Theorem 1.2. If #̂= is the MLE for #0, then

√
=(\̂= ( #̂=) − \ (#0))

3→N
(
0,

Var
(
�0(#>0 X�)

)
_1

+
Var

(
�1(#>0 X�)

)
_0

)
as =→∞,

where
=ℓ

=
→ _ℓ ∈ (0,1) as =0, =1→∞.

Proof. We begin by decomposing
√
=(\̂= ( #̂=) − \ (#0)) into three terms:

√
=(\̂= ( #̂=) − \̂= (#0) − \ ( #̂=) + \ (#0)) +

√
=(\̂= (#0) − \ (#0)) +

√
=(\ ( #̂=) − \ (#0)). (1.4)

The second term captures the variability associated with the empirical estimator of AUROC, the

third term accounts for the variability introduced by the MLE, and the first term represents the

residual.

Focusing on the first term in (1.4), we note that
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√
=(\̂= ( #̂=) − \̂= (#0))

=

√
=

=0=1

=0∑
9=1

=1∑
:=1

(
� ( #̂>= X�

: > #̂
>
= X�

9 ) − � (#>0 X�
: > #>0 X�

9 )
)

=

√
=

=0=1

=0∑
9=1

=1∑
:=1

(
� ( #̂>= (X�

9 −X�
: ) < 0) − � (#>0 (X

�
9 −X�

: ) < 0)
)

=
1

=0=1

=0∑
9=1

=1∑
:=1

(
−X(#>0 (X

�
9 −X�

: )) (X
�
9 −X�

: )
>√=( #̂=− #0) + >? (1)

)
,

(1.5)

where X(#>0 (X� −X�)) denotes the Dirac delta function, which is zero almost everywhere

except at #>0 X� = #>0 X� , where it is theoretically infinite. The last equation in Equation (1.5)

results from a linear approximation approach. Although the indicator function is indeed non-

differentiable at the point where its argument is zero and the Dirac delta function is not a classical

derivative, it is used here as a tool to approximate the impact of small deviations within an

asymptotic framework. While
√
=( #̂=− #0) converges in distribution to a normal distribution (see

Theorem A.9), the Dirac delta function is highly localized. Therefore, for almost all realizations,

X(#>0 (X� −X�)) is zero unless #>0 X� = #>0 X� , which implies that X(#>0 (X� −X�)) = 0 almost

surely. By Theorem A.2, Slutsky’s theorem, and the continuous mapping theorem, Equation (1.5)

converges to 0 in probability. Consequently, the first term in (1.4) can be rewritten as:

√
=(\̂= ( #̂=) − \̂= (#0) − \ ( #̂=) + \ (#0)) = −

√
=(\ ( #̂=) − \ (#0)) + >? (1). (1.6)

Notice that Equation (1.6) implies that the sum of the first and the third terms in (1.4)

converges to 0 in probability. Hence,
√
=(\̂= ( #̂=) − \ (#0)) converges to the second term in (1.4)

in probability:

√
=(\̂= ( #̂=) − \ (#0)) =

√
=(\̂= (#0) − \ (#0)) + >? (1).
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From the argument in Section 1.3.2, the second term in (1.4) converges in distribution to

a Gaussian process:

√
=(\̂= (#0) − \ (#0))

3→
(G�1)−(�0)√

_1
−
G�0 (�1)√

_0
.

Thus, the limit distribution of
√
=(\̂= ( #̂=) − \ (#0)) can be deduced from the finite-

dimensional distributions of this Gaussian process:

√
=(\̂= ( #̂=) − \ (#0))

3→N
(
0,

Var
(
�0(#>0 X�)

)
_1

+
Var

(
�1(#>0 X�)

)
_0

)
.

�

Surprisingly, the variability introduced by the MLE of class probability models diminishes

as the sample size increases. The main cause of this result is from the use of indicator functions

in this particular case. If the indicator functions were replaced by functions that possess non-zero

derivatives on a set of non-zero measure, Equation (1.5) would converge to a non-degenerate

distribution. In such a scenario, the first term in (1.4) would converge to 0 in probability, and the

entire expression in (1.4) would converge to a distribution determined by the joint distribution of

the second and third terms in (1.4) [19].

1.5 Simulation Studies

In this section, we evaluate the validity of the asymptotic results presented in Section 1.4

using simulated data. We investigate the bias between \̂= ( #̂=) and \ (#0) and compare the

asymptotic variance of \̂= ( #̂=) with its empirical variance across varying sample sizes. The

analyses are conducted using code developed on the R software platform [20].

17



1.5.1 Simulation Method

We perform " = 1000 Monte Carlo (MC) simulation replicates for each sample size. We

report results for 20 sample sizes, starting from = = 100 and increasing in increments of 100 to

= = 2000, to evaluate the trend of asymptotic properties. For each MC replication, we simulate

data (X8,.8), 8 = 1, . . . , =, from the following marginal and conditional distributions:

X8 =
©«
G18

G28

ª®®¬ ∼ N (-,�) , - =
©«
2

1

ª®®¬ , � =
©«
3 0

0 1

ª®®¬ ,
.8 ∼ Bernoulli(?0(X8)), ?0(X8) =

1
1+ exp (−(V0 + G18V1 + G28V2))

, #0 =

©«
V0

V1

V2

ª®®®®®¬
=

©«
−3

0.2

1

ª®®®®®¬
.

Given the simulated data, we apply logistic regression (a GLM with the logit link) to

obtain the MLE #̂= of #0. The asymptotic variance of \̂= ( #̂=) is estimated using the consistent

estimator provided below:

f̂2
�

=1
+
f̂2
�

=0
, (1.7)

where

f̂2
� = Var

(
F=0 ( #̂

>
= X�)

)
=

1
=1−1

=1∑
:=1

©« 1
=0

=0∑
9=1
� ( #̂>= X�

9 < #̂
>
= X�

: ) − \̂= ( #̂=)
ª®¬

2

,

f̂2
� = Var

(
F=1 ( #̂

>
= X�)

)
=

1
=0−1

=0∑
9=1

(
1
=1

=1∑
:=1

� ( #̂>= X�
: ≤ #̂

>
= X�

9 ) −
(
1− \̂= ( #̂=)

))2

=
1

=0−1

=0∑
9=1

(
1
=1

=1∑
:=1

� ( #̂>= X�
9 < #̂

>
= X�

: ) − \̂= ( #̂=)
)2

.
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We compare the estimated asymptotic variance (1.7) with the empirical variance:

1
" −1

"∑
<=1

(
\̂
(<)
= ( #̂=) − \̂= ( #̂=)

)2
,

where \̂= ( #̂=) = 1
"

∑"
<=1 \̂

(<)
= ( #̂=) and \̂ (<)= ( #̂=) denotes the<-th MC replication. To demonstrate

that the variability introduced by the MLE decreases as the sample size increases, we also

calculate the estimated asymptotic variance of \̂= (#0) across these 20 sample sizes. This

variance is computed using the consistent estimator given in (1.7), with #0 substituted for

#̂=. We present the results in terms of standard errors (SEs) rather than variances to facilitate

interpretation, as SEs are in the same units as the biases. Additionally, we use standard deviations

(SDs) of
√
=(\̂= ( #̂=) − \ (#0)) and

√
=(\̂= (#0) − \ (#0)) instead of SEs (without multiplying

√
=)

when comparing the asymptotic variances of \̂= ( #̂=) and \̂= (#0) to eliminate the effect of sample

size, thereby more clearly revealing the reduction in variability induced by MLE estimation.

1.5.2 Simulation Results

It can be shown from Figure 1.1 that as the sample size increased, the bias \̂= ( #̂=) −\ (#0)

generally decreased. The consistency of the estimator \̂= ( #̂=) is supported by this trend, as

a consistent estimator should exhibit bias reduction with an increasing sample size. When

compared to \̂= (#0) − \ (#0), this bias is typically larger, suggesting the presence of variation

induced by estimating the MLE. In terms of variance analysis, Figure 1.2 shows that the

asymptotic and empirical SEs are aligned, indicating reliable estimation under both theoretical

conditions and practical simulation scenarios. The differences between the asymptotic and

empirical SEs tended to decrease as the sample size increased, which is consistent with the

theoretical expectation that the asymptotic variance approximation improves with larger sample

sizes. The decrease in the discrepancy between the asymptotic SDs of \̂= ( #̂=) and \̂= (#0),

as shown in Figure 1.3, indicates that the impact of variation due to the MLE weakened as

the sample size grew. It is noteworthy that the SDs of the empirical AUROC with MLE are
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consistently smaller than the SDs of the empirical AUROC with the true parameter. This implies

that the covariance between the empirical AUROC estimator and the MLE-based AUROC

estimator is negative, according to (1.4) and the following:

Var(�+�) = Var(�) +Var(�) +2Cov(�, �) < Var(�)

⇒ Cov(�, �) < −1
2

Var(�) ≤ 0,

where � =
√
=(\̂= (#0) −\ (#0)) and

√
=(\̂= ( #̂=) − \̂= (#0)). Negative covariance indicates that the

empirical AUROC and MLE-based AUROC estimators are inversely related in their variability.

Specifically, when empirical AUROC estimates are high, their MLE-based counterparts tend

to be lower, and vice versa. Based on the results shown in Figure 1.1, we can conclude that

although the MLE-based AUROC has greater bias compared to the empirical AUROC with

the true parameter, the smaller asymptotic variance of empirical AUROC with the estimated

parameter compared to that with the true parameter is a common phenomenon [21].

It is important to note that the decreased discrepancy in SDs is not directly attributed

to increased sample size. As SE = SD/
√
=, the discrepancy between the two SEs naturally

decreases as sample size increases due to the
√
= term. However, if the discrepancy between

the two SDs also decreases, this suggests a reduction in the sampling variability of #̂=, which

is independent of the effect of sample size. If the variation from the MLE were not negligible

(i.e., did not converge to 0 in probability), one would expect a roughly constant discrepancy

between the asymptotic standard deviations of \̂= ( #̂=) and that of \̂= (#0) regardless of sample

size. Neither Figure 1.1 nor Figure 1.2 provides conclusive evidence regarding whether this

variation is negligible, as the reduction in discrepancy for both bias and standard errors could be

attributed to either increasing sample size or MLE estimation effects. Figure 1.3 shows the plot

of the two SDs as a function of sample size. Unlike Figure 1.1 and Figure 1.2, this plot shows

the change of the variability of the two AUROCs independent of the impact of sample size.
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Figure 1.1. Comparison of the bias between \̂= ( #̂=) − \ (#0) and \̂= (#0) − \ (#0) across varying
sample sizes.

These results demonstrate how sample size affects the reliability of parameter estimates

in the context of AUROC evaluation. Larger sample sizes reduce the variation associated with the

MLE estimator, revealing how sample size impacts the stability of the estimates and supporting

the robustness of the asymptotic variance.

1.6 Discussion

In this paper, we examined the asymptotic properties of empirical AUROC by accounting

for the sampling variability of the MLE from the GLM-based class probability model and derived

the consistency and asymptotic normality of the AUROC. We focused on all continuous variables
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Figure 1.2. Comparison of asymptotic and empirical standard errors for \̂= ( #̂=) across varying
sample sizes.

in the feature vector in the class probability model. If the feature vector contains categorical

variables, one-hot encoding [22] can be applied to represent them using dummy variables so that

the established asymptotic properties can be applied to this setting as well.

While it is important to acknowledge the inherent limitation of the asymptotic results–

their dependency on large sample size–our comparison of asymptotic and empirical SEs provides

valuable insight. As shown in Figure 1.2, the asymptotic SEs appear to approximate the empirical

SEs reasonably well overall even for smaller sample sizes. This suggests that the asymptotic SEs

offer a reliable approximation even for small to moderate sample sizes.

Future research could address the limitation that the established asymptotic properties
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Figure 1.3. Comparison of asymptotic standard deviations for \̂= ( #̂=) and \̂= (#0) across varying
sample sizes.

for MLE-based AUROC estimators are applicable only to binary classification. Hand and

Till [23] extended the definition to multi-class scenarios by averaging the AUROC values for

each pair of classes. Building on this work, our derivation could be extended to this multi-class

AUROC. Another direction for future research could involve exploring the use of other estimators,

including those from regularization techniques such as ridge regression [24] and Lasso [25].

Models built with these techniques may also be evaluated using AUROC as a performance

metric.

In conclusion, this study enhances our understanding of how sampling variability of the

MLE influences the asymptotic properties of empirical AUROCs based on GLM class probability
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models. The findings may extend beyond MLE to all consistent estimators such as those from

semiparametric GLM to improve the asymptotic variance of empirical AUROC with these

estimators.
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Chapter 2

Outlier-Robust Random Forest Regres-
sion: Application to Between-Subject At-
tributes

2.1 Introduction

Between-subject attributes refer to characteristics or variables that differ among individual

subjects. Inferences about parameters defined by between-subject attributes are of interest in

many biomedical studies. Examples of quantities that relate to between-subject attributes are

beta-diversity, which measures the distance between taxonomic counts of two individuals in

microbiome studies [1]; viral genetic linkage, defined by the distance between genetic sequences

of two individuals in epidemiological studies [2]; and the area under the receiver operating

characteristic curve, used to evaluate the diagnostic accuracy of biomarkers [14]. For between-

subject attributes, the relationships between the 8-th and 9-th subjects and the 8-th and :-th

subjects introduce dependencies between these attributes. Statistical models such as generalized

linear models [13] fail to take dependencies among outcomes involving multiple subjects into

account, which presents a major challenge when modeling these attributes. Consequently,

theories that establish asymptotic properties, such as the central limit theorem and the law

of large numbers, become inapplicable. Models with functional responses involving multiple

subjects are necessary for appropriate analysis in order to address this issue.
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Semiparametric regression models are typically used to handle functional responses

involving multiple subjects. For instance, Liu, Zhang, et al. [1] proposed a semiparametric regres-

sion approach using functional response models (FRMs) [12] to analyze beta-diversity. These

models, however, may provide inaccurate estimates if the underlying parametric assumptions

for the mean response are violated. An alternative to this limitation is offered by nonparametric

methods using random forest regression [26], which model complex relationships between func-

tional responses and features of between-subject attributes without relying on strict parametric

assumptions. This approach allows for more flexible and robust modeling of between-subject

attributes [27].

Despite its advantages, random forest regression is not immune to the influence of

outliers in the dependent variable [28, 29, 30], similar to other regression methods that handle

continuous responses, such as linear models. As shown in M. Brence and Brown [28], unbounded

outliers and heteroscedastic conditions can affect the performance of the traditional random

forest algorithm, which relies on mean-based predictions and mean-squared error (MSE). J. R.

Brence [29] proposed a variant that uses median-based predictions and mean absolute deviation

and demonstrated improved performance with datasets containing outliers. Li and Martin [30]

introduced a general framework for incorporating robust loss functions into forest-type regression

and showed increased insensitivity to outliers. Inspired by this framework, we propose a new

approach to employ the response function ℎ(.8,. 9 ) = � (.8 ≤ . 9 ), where .8 and . 9 represent the

outcomes of the data. This is inherently less sensitive to outliers. Chen et al. [3] has demonstrated

that this outlier-insensitive response function performs effectively against outliers within the

framework of the FRMs. However, this FRM-based semiparametric approach relies on a correct

(parametric) specification of the mean response function to provide valid inference. In this study,

we extend this approach to a nonparametric mean response function using the random forest

framework to ensure more reliable modeling of between-subject attributes in the presence of

extreme values.

Strong predictive performance has been demonstrated by machine learning methods,
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including random forests, which are widely utilized for modeling high-dimensional data [26].

However, many of these methods lack theoretical justification for their asymptotic properties.

Recent work by Wager and Athey [31] has established the consistency and asymptotic normality

of random forests in nonparametric regressions. Furthermore, T. Lin [32] extended these results

by demonstrating the asymptotic properties of estimators for the Mann-Whitney-Wilcoxon type

of causal effect, marking it the very first successful attempt to extend random forest regression

from within-subject attributes to between-subject attributes.

In this study, we introduce an outlier-robust nonparametric approach for modeling

between-subject attributes by building upon the work of T. Lin [32] to develop our outlier-

robust random forest regression setting by extending estimates calculated from within-leaf to

between-leaves. As in T. Lin [32], we adapt the classical random forest regression [26], originally

designed for within-subject attributes, to accommodate modeling between-subject attributes. By

incorporating outlier-robust adjustments, we propose a different extension to the between-subject

attributes for random forest. This newly developed method improves resilience against extreme

values in our setting to provide more accurate and reliable estimates.

This paper is organized as follows. Section 2.2 provides a brief introduction to classical

random forest regression, FRMs, and the outlier-robust response function employed in this study.

Section 2.3 introduces the outlier-robust random forest regression for between-subject attributes.

In Section 2.4, we establish asymptotic properties of our proposed random forest regression.

Section 2.5 presents simulation studies to evaluate the performance of the proposed random

forest regression under deviations from parametric assumptions of the semiparametric model and

to assess the robustness of the model against outliers. In Section 2.6, we provide our concluding

remarks and discuss future directions.

27



2.2 Background

2.2.1 Classical Random Forest Regression

Consider a sample of = subjects and 3 features in the study. Let /8 = (-8,.8), where

8 = 1, . . . , =, denote an independent and identically distributed (i.i.d.) training sample with

continuous responses .8 ∈ R and continuous feature vectors -8 ∈ [0,1]3 . Let G ∈ [0,1]3 represent

a test point, and define the true conditional mean function

`(G) = � [. | - = G] .

Let ) (G;b, /1, . . . , /=) be a regression tree using the classification and regression tree

(CART) methodology [33] constructed using {/1, . . . , /=}, where b ∼ Ξ introduces auxiliary

randomness from some unknown distribution Ξ (see Wager and Athey [31] for details). The

tree ) can be used to estimate ` at G through the following process. First, the feature space is

recursively split until it is partitioned into a set of leaves !, with each containing a small number

of training subsamples. For a given test point G, the estimator ̂̀(G) is determined by identifying

the leaf ! (G) that contains G and setting

̂̀(G) = 1
|{8 : -8 ∈ ! (G)}|

∑
8∈{8:-8∈! (G)}

.8 .

By aggregating multiple trees, we can form a random forest estimator and estimate `

nonparametrically by averaging estimates from trees trained on all possible subsamples of size B

from the training data (without replacement), while marginalizing over the auxiliary noise b:

RF (G;/1, . . . , /=) =
(
=

B

)−1 ∑
(81,...,8B)∈((=B )

�b∼Ξ [) (G;b, /81 , . . . , /8B )],

where (= := {1, . . . , =}.
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2.2.2 Functional Response Models

Using FRMs is one approach of using semiparametric regression to model between-

subject attributes. Let /8 = (-8,.8), where 8 = 1, . . . , =, be an i.i.d. random sample, with -8 as a

3×1 vector of independent variables and .8 as a response. The definition of the general form of

an FRM is as follows [12]:

� [ℎ(.81 , . . . ,.8@ ) | -81 , . . . , -8@ ] = 5 (-81 , . . . , -8@ ; V), (81, . . . , 8@) ∈
(
(=

@

)
, (2.1)

where ℎ is a real-valued function, 5 is a smooth function with continuous second-order derivatives,

and V is a 3 ×1 vector of unknown parameters.

2.2.3 Outlier-Robust Response Function

If there are outliers (extremely large in absolute values) in the response, we make the

model less vulnerable to outliers in the response by using the response function

ℎ
(
.8,. 9

)
= �

(
.8 ≤ . 9

)
, (8, 9) ∈

(
(=

2

)
,

where � denotes the indicator function. Note that ℎ depends solely on the ranks of the responses

.8 and . 9 . Unlike |.8 −. 9 |, which varies with changes in .8 and . 9 , ℎ remains invariant as long

as the rank order of .8 and . 9 is preserved. Thus, models employing ℎ are rank-preserving and

robust to outliers [3].

2.3 Outlier-Robust Random Forest Regression for Between-
Subject Attributes

Under the setting described in Section 2.2.1, consider two test points G (1) , G (2) ∈ [0,1]3 .

We define the conditional mean outlier-robust functional response between two subjects with
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feature vectors at (G (1) , G (2)) as

\ (G (1) , G (2)) = � [ℎ(.8,. 9 ) | (-8, - 9 ) = (G (1) , G (2))]

= � [� (.8 ≤ . 9 ) | (-8, - 9 ) = (G (1) , G (2))]

= %(.8 ≤ . 9 | (-8, - 9 ) = (G (1) , G (2))), (8, 9) ∈
(
(=

2

)
.

To extend classical random forest regression to an outlier-robust random forest regression

for between-subject attributes in our setting, we propose the following tree-growing procedure,

which employs the double-sample trees method [31]. This method involves dividing the training

sample into two parts: one part is used to estimate the conditional mean function \, while the

other is used to determine the splits when growing the trees.

Procedure 2.1. (Outlier-Robust Regression Tree for Between-Subject Attributes)

Input: Training samples {/1, . . . , /=} and a minimum leaf size : .

1. Draw a random subsample of size B from {/1, . . . , /=} without replacement.

2. Divide this random subsample into two disjoint sets I and J with sizes |I | = bB/2c and

|J | = dB/2e, respectively, where b·c denotes the floor function and d·e denotes the ceiling

function. The notation for the sets I and J follows the conventions used in Wager and

Athey [31].

3. Grow a tree using recursive partitioning (the algorithm used in CART trees). For each

node, evaluate potential splits by randomly selecting a feature vector from the whole

sample, I ∪J , and calculating the MSE of predictions for each candidate split using

responses in the J -sample only. The best split is chosen based on minimizing the weighted

MSE of the child nodes. Splits are constrained so that each leaf of the tree must contain at

least : I-sample observations.
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4. Identify the leaves ! (G (1)) and ! (G (2)) that contain G (1) and G (2) , respectively.

5. Estimate \ using only the responses from the I-sample by calculating

\̂tree(G (1) , G (2)) =



1
|! (1) | |! (2) |

∑
8∈! (1)
9∈! (2)

� (.8 ≤ . 9 ) if ! (G (1)) ≠ ! (G (2)),

1
|! (1) | ( |! (1) |−1)

∑
8, 9∈! (1)
8≠ 9

� (.8 ≤ . 9 ) if ! (G (1)) = ! (G (2)),
(2.2)

where ! (1) = {8 : -8 ∈ ! (G (1))} and ! (2) = {8 : -8 ∈ ! (G (2))}.

A random forest estimate of \ (G (1) , G (2)) can then be obtained by averaging all
(
=

B

)
possi-

ble tree estimates \̂tree(G (1) , G (2)) derived from trees built using Procedure 2.1, while integrating

over the auxiliary noise b:

\̂forest(G (1) , G (2);/1, . . . , /=) =
(
=

B

)−1 ∑
(81,...,8B)∈((=B )

�b∼Ξ [\̂tree(G (1) , G (2);b, /81 , . . . , /8B )] . (2.3)

However, computing \̂forest directly for large = is often impractical. Instead, we generally

approximate \̂forest using Monte Carlo averaging:

\̂ (G (1) , G (2);/1, . . . , /=) =
1
�

�∑
1=1

\̂tree(G (1) , G (2);b∗1, /
∗
11, . . . , /

∗
1B), (2.4)

where {/∗
11, . . . , /

∗
1B
} are subsamples of size B drawn from {/1, . . . , /=}, b∗1 is a random sample

from Ξ, and � denotes the number of Monte Carlo replicates. This method provides a practical

alternative for computing random forest estimators, as
(
=

B

)
is large and computing \̂forest directly

is not only computationally expensive but also infeasible with large =. The effects of choosing

a finite number of Monte Carlo samples � on the accuracy of the approximation have been

discussed by Mentch and Hooker [34].
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Notice that from Equation (2.2), \̂tree(G (1) , G (2)) is always equal to 0.5 if G (1) and G (2) are

in the same leaf, but \̂forest(G (1) , G (2)) and \̂ (G (1) , G (2)) may not be 0.5 since G (1) and G (2) may not

always be in the same leaf across all different trees.

2.4 Asymptotic Theory

Our asymptotic theory for outlier-robust random forest regression extends the work of

Wager and Athey [31] on the asymptotic analysis of random forest regression for within-subject

attributes. Although earlier research has explored the convergence and consistency of within-

subject random forests [35, 36, 37], the seminal work of Wager and Athey [31] is crucial in

demonstrating their asymptotic normality. Building on this, our research extends these results by

establishing the consistency and asymptotic normality of outlier-robust random forest regression

for between-subject attributes within our context.

2.4.1 Preliminary Conditions

Before delving into the details, we first outline the preliminary conditions required to

establish our asymptotic results. The following condition, referred to as honesty (Definition 2.2)

and originating from Wager and Athey [31], must be satisfied by each tree.

Definition 2.2. A tree is considered honest if, for each training sample /8, the response .8 is

used exclusively either to estimate the true conditional mean function \ using Equation (2.2) or

to determine the placement of splits, but not for both purposes.

Growing trees using Procedure 2.1 always satisfies the honesty condition, as the responses

in the I-sample are used exclusively for estimation, while those in the J -sample are used solely

for splitting.

As the sample size = increases, it is essential that the range of the feature values within

the leaves becomes more refined (i.e., smaller) in each dimension of the feature space to ensure

consistency in the random forest regression. We follow the approach from Wager and Athey
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[31], which builds upon the methodology introduced by Meinshausen and Ridgeway [38] and

involves incorporating randomness into the process of selecting variables for tree splits, to

achieve this. Specifically, a variable is chosen with a probability of at least c/3, where 0 < c ≤ 1

(Definition 2.3). This randomness induced by choosing splits for features is contained in the

auxiliary random variable b.

Definition 2.3. A tree is considered a random-split tree if, at every step where a feature is

selected for splitting during the tree-growing process, the probability of choosing the 9-th feature,

after marginalizing over the random variable b, is at least c/3 for some 0 < c ≤ 1, for all

9 = 1, . . . , 3.

Next, we adopt the regularity condition (Definition 2.4) from Wager and Athey [31] to

control the shape of the tree leaves, ensuring an appropriate number of observations in each leaf

for accurate estimation, and the symmetry condition (Definition 2.5) to apply classical tools in

proving asymptotic normality.

Definition 2.4. A tree grown by recursive partitioning is U-regular for some U > 0 if the tree in

Procedure 2.1 satisfies the following condition for the I-sample: At each split, at least a fraction

of U of the available training samples are allocated to each side of the split and, moreover, the

tree is fully grown until there are between : and 2: −1 observations in each leaf for some : ∈ N.

Definition 2.5. A tree is symmetric if the (possibly randomized) estimated values \̂tree defined in

Equation (2.2) do not depend on the order in which the training samples are indexed.

Note that our targeted response � (.8 ≤ . 9 ) changes value if the order of .8 and . 9 is

switched. Therefore, to satisfy Definition 2.5, the order can be permuted only within leaves, not

between leaves.

2.4.2 Consistency

To establish the consistency of outlier-robust random forest estimators, it is sufficient

to show their asymptotic unbiasedness with vanishing variance. We achieve this by deriving
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asymptotic unbiasedness through bounding the bias of regression trees, using an approach that

relies on the Lipschitz continuity of the true conditional mean function and honesty, following

the framework provided by Wager and Athey [31]. Specifically, we leverage Lemma 1 in Wager

and Athey [31] (restated in Lemma A.12 in Appendix A.4 of the Relevant Existing Theorems

section) as a tool to bound the bias of a single regression tree. Since a random forest is the

sample mean of independently generated trees, its bias is of the same order as that of a single

tree. The consistency of the outlier-robust random forest estimator is stated in the following

theorem, which extends their Theorem 3.2 to fit our nonparametric regression for between-subject

attributes.

Theorem 2.6. Suppose that we have = i.i.d. training samples /8 = (-8,.8) ∈ [0,1]3 ×R. Assume

further that the features -8 are sampled i.i.d. from Unif
(
[0,1]3

)
, and that the function

\ (G (1) , G (2)) = � [ℎ(.8,. 9 ) | (-8, - 9 ) = (G (1) , G (2))], (8, 9) ∈
(
(=

2

)
is Lipschitz continuous, where ℎ(.8,. 9 ) = � (.8 ≤ . 9 ). Let ) be an honest, U-regular with U ≤ 0.2,

and random-split tree according to Definitions 2.2, 2.3, and 2.4, and let \̂forest(G (1) , G (2)) be the

estimate for \ (G (1) , G (2)) given by a random forest with base learner ) and a subsample size

B. Then, for sufficiently large B, the bias of the random forest estimator at (G (1) , G (2)) can be

bounded by

���� [\̂forest(G (1) , G (2))] − \ (G (1) , G (2))
��� ≤  √23 (1+23) B

− 1
2

log( (1−U)−1)
log(U−1)

c
3

,

where  is the Lipschitz constant for \ (G (1) , G (2)).

Proof. See Appendix B.2.1 for a proof. �

Note that, although Theorem 2.6 assume uniformity for the feature vectors -8, this

assumption is primarily for simplifying the presentation. The results are applicable to any

continuous distribution, thanks to the probability integral transformation [12].
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2.4.3 Asymptotic Normality

In this section, we prove the asymptotic normality of outlier-robust random forest regres-

sion (Theorem 2.7). To avoid any confusion, Theorem 2.7 is stated using notation that explicitly

indicates the dependence of \̂forest, = and B= on =. Although inspired by the Theorem 3.1 of Wager

and Athey [31], this theorem presents new results that involve a major overhaul of their original

framework to account for the specific setting of the outlier-robust nonparametric regression.

Theorem 2.7. Suppose that we have = i.i.d. training samples /8 = (-8,.8) ∈ [0,1]3 ×R. Assume

further that the features -8 are sampled i.i.d. from Unif
(
[0,1]3

)
, and that the function

\ (G (1) , G (2)) = � [ℎ(.8,. 9 ) | (-8, - 9 ) = (G (1) , G (2))], (8, 9) ∈
(
(=

2

)
is Lipschitz continuous, where ℎ(.8,. 9 ) = � (.8 ≤ . 9 ). Additionally, suppose for (8, 9) ∈

(
(=

2

)
,

Var(ℎ(.8,. 9 ) | -8 = G (1)) > 0,

and

�

[ ���� [ℎ(.8,. 9 ) | .8] −� [ℎ(.8,. 9 ) | -8 = G (1)]���2+X����-8 = G (1)] ≤ "
for some positive constants X and ", uniformly across all G (1) ∈ [0,1]3 . Given this data-

generating process, let ) be an honest, U-regular with U ≤ 0.2, and symmetric random-split

tree according to Definitions 2.2, 2.3, 2.4, and 2.5, and let \̂forest, = (G (1) , G (2)) be the estimate

for \ (G (1) , G (2)) given by a random forest with base learner ) and a subsample size B=. If the

subsample size B= scales as

B= � =W for some Wmin := 1−
(
1+

log
(
U−1)

log
(
(1−U)−1) 3c

)−1

< W < 1, (2.5)
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then the random forest estimators are asymptotically normal:

\̂forest, = (G (1) , G (2)) − \ (G (1) , G (2))
f= (G (1) , G (2))

3→N(0,1) for a sequence f= (G (1) , G (2)) → 0. (2.6)

Proof. See Appendix B.2.2 for a proof. �

When the subsampling rate meets the criterion in (2.5), the bias decreases at a faster

rate than the variance, thereby establishing the asymptotic normality result (2.6) as stated in

Theorem 2.7.

2.5 Simulation Studies

In Section 2.5.1, we assess the performance of the proposed random forest regression by

comparing it with the FRM-based semiparametric model approach, introduced in Section 2.2.2,

under the scenarios where the parametric mean response function is incorrectly specified. In

Section 2.5.2, we evaluate the performance of the outlier-robust random forest regression on data

containing outliers. The analyses are conducted using the code developed on the R software

platform [20] and the generalized random forests from the grf package [31, 39], which support

honest estimation as defined in Definition 2.2.

2.5.1 Comparison of Random Forest Regression and FRM under
Parametric Assumption Violations

2.5.1.1 Simulation Methods

To assess the performance of random forest regression versus FRM-based semiparametric

regression under violations of parametric assumptions in the latter approach, we first simulate
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data from the following linear model:

.8 = -18 + Y8,
©«
-18

-28

ª®®¬
8.8.3.∼ N

©«
©«
0

0

ª®®¬ ,
©«
1 0

0 1

ª®®¬
ª®®¬ ,

Y8
8.8.3.∼ N

(
0,f2

Y

)
, f2

Y = 1/2, 1 ≤ 8 ≤ = = 500.

(2.7)

Subsequently, to examine the impact of violations of parametric assumptions on model perfor-

mance, we simulate data from the following model using the hyperbolic tangent function:

.8 = tanh(-18) + Y8,
©«
-18

-28

ª®®¬
8.8.3.∼ N

©«
©«
0

0

ª®®¬ ,
©«
1 0

0 1

ª®®¬
ª®®¬ ,

Y8
8.8.3.∼ N

(
0,f2

Y

)
, f2

Y = 1/2, 1 ≤ 8 ≤ = = 500.

(2.8)

Note that in both models, .8 is only related to -18 and is unrelated to -28; however, both covariates

will be included in the models when fitting them. Adding an additional feature can increase

the flexibility of FRM-based semiparametric regression and facilitate convergence when the

parametric assumption for the conditional mean function is violated.

For the random forest regression, we utilized Equation (2.4) to construct the random

forest estimator for \ (-8, - 9 ), where -8 = (-18, -28). The forest was grown using 100 trees.

Bootstrap methods [40], with a bootstrap sample size of 1000, were applied to construct 95%

confidence intervals (CIs) for the random forest estimates.

For the FRM, consider the following classic linear model:

.8 = -8V+ Y8, V ∈ R2, Y8
8.8.3.∼ N

(
0,f2

Y

)
, 1 ≤ 8 ≤ =. (2.9)

Thus, we have
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� [� (.8 ≤ . 9 ) | -8, - 9 ] = %
(
Y8 − Y 9 ≤ −(-8 − - 9 )V | -8, - 9

)
= %

(
1
√

2fY
(Y8 − Y 9 ) ≤ −

1
√

2fY
-8 − - 9 )V | -8, - 9

)
= Φ

(
− 1
√

2fY
(-8 − - 9 )V

)
, (8, 9) ∈

(
(=

2

)
, (2.10)

where Φ denotes the cumulative distribution function of the standard normal distribution. No-

tice that since we simulate the data with f2
Y = 1/2 according to Equations (2.7) and (2.8),

Equation (2.10) can be simplified to

� [� (.8 ≤ . 9 ) | -8, - 9 ] = Φ
(
−(-8 − - 9 )V

)
, (8, 9) ∈

(
(=

2

)
. (2.11)

to avoid scaling in V when modeling. By setting ℎ(.8,. 9 ) = � (.8 ≤ . 9 ) and 5 (-8, - 9 ; V) =

Φ
(
−(-8 − - 9 )V

)
, it is evident that the model in Equation (2.11) is an FRM defined in Equa-

tion (2.1).

To obtain estimates of %(.8 ≤ . 9 | -8, - 9 ), we first estimate V using the *-statistics

based generalized estimating equations (UGEE) for FRM [12]. The UGEE for the FRM in

Equation (2.11) is given by:

*= (V) =
∑

(8, 9)∈((=2 )
�8 9 (V)>+8 9 (V)−1(8 9 (V),

where

(8 9 (V) = ℎ(.8,. 9 ) − 5 (-8, - 9 ; V),

�8 9 (V) =
3

3V
5 (-8, - 9 ; V),

+8 9 (V) = 5 (-8, - 9 ; V) (1− 5 (-8, - 9 ; V)).
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We compute the estimate V̂ by solving*= (V) = 0 using the Gauss-Newton method [41]. Estimates

of %(.8 ≤ . 9 | -8, - 9 ) are then obtained by substituting V̂ for V into Equation (2.11).

Additionally, a consistent estimator Σ̂V of the asymptotic variance of
√
=( V̂− V) can be

constructed by replacing V with V̂ in the expression for the asymptotic variance, as derived in

Chen et al. [3]. Specifically,

Σ̂V = �̂
−1Σ̂* �̂

−1,

where

Σ̂* =
4
=

=∑
8=1
D̂8D̂
>
8 , D̂8 =

1
=−1

∑
9∈(=\{8}

�8 9 ( V̂)>+8 9 ( V̂)−1(8 9 ( V̂),

�̂ =

(
=

2

)−1 ∑
(8, 9)∈((=2 )

�8 9 ( V̂)>+8 9 ( V̂)−1�8 9 ( V̂).

We can therefore construct 95% CIs for the FRM estimates using the above variance estimates.

2.5.1.2 Simulation Results

To present the results effectively, we plot estimates of %(.8 ≤ . 9 |-8, - 9 ) by fixing - 9 =

(2, 0) and varying -18 (ranging from -2 to 1.98), while keeping -28 = 0 fixed, as it should not

contribute any predictive power according to Equations (2.7) and (2.8). When the parametric

form of the model assumption aligns with the data generation process, FRM accurately estimates

the true %(.8 ≤ . 9 |-8, - 9 ), as shown in Figure 2.1. Although random forest regression also

predicts the true probability reasonably well, a discernible difference remains between the

performances of the random forest and FRM, with larger bias and CIs of the former and the

smaller bias and CIs of the latter. Conversely, when the model assumption does not align with

the data, Figure 2.2 illustrates that the random forest captured the true values with relatively

small bias whereas FRM failed to accurately capture these values and exhibited larger bias.
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The nonlinear characteristics of the hyperbolic tangent function became apparent when -18 got

closer to -1 9 = 2, leading to poorer FRM performance. In contrast, the random forest regression

continued to perform well even when the nonlinear trend is apparent. The CIs of the random

forest regression were generally larger than those of FRM, indicating that while nonparametric

models offer greater robustness to model regression relationships with less bias estimates, these

advantage comes at the cost of increased variance.
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Figure 2.1. Comparison of predicted %(.8 ≤ . 9 |-8, - 9 ) between random forest regression and
FRM with correct parametric assumptions.
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Figure 2.2. Comparison of predicted %(.8 ≤ . 9 |-8, - 9 ) between random forest regression and
FRM under violated parametric assumptions.

2.5.2 Assessing the Performance of Outlier-Robust Random Forest
Regression in the Presence of Outliers

2.5.2.1 Simulation Methods

To assess the robustness of the proposed random forest regression against outliers, we

first simulate data based on the model specified in Equation (2.7) and then we introduce outliers

by replacing the 50 (10% of =) largest .8 values with new outlying observations. Specifically, we

order the simulated .8 values from smallest to largest:

.(1) ≤ .(2) ≤ . . . ≤ .(500) .
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We generate 50 outliers {*1,*2, . . . ,*50} from a uniform distribution, Unif (10,100), and order

them in ascending order as:

*(1) ≤ *(2) ≤ . . . ≤ *(50) .

These ordered outliers replace the largest 50 .8 values, such that

.(451)→*(1) , .(452)→*(2) , . . . , .(500)→*(50) .

With the exception of the top 10% of the largest observations, which have been replaced

with outliers, the dataset thus remains identical to the one generated from the model in Equa-

tion (2.7). We then compare the performance of two random forest regression models with one

using the sigmoid response function:

ℎ(.8,. 9 ) =
1

1+ exp(−|.8 −. 9 |)

and the other using ℎ(.8,. 9 ) = � (.8 ≤ . 9 ) on both the originally simulated data and the data

containing outliers. The sigmoid response function approaches 1 when |.8 −. 9 | is large and

tends to 0.5 when |.8 −. 9 | is small, allowing us to compare its performance with the response

function � (.8 ≤ . 9 ). As discussed in Section 2.2.3, the sigmoid response function is expected to

be sensitive to outliers, as |.8 −. 9 | varies with changes in .8 and . 9 .

2.5.2.2 Simulation Results

As in Section 2.5.1.2, we present results by fixing - 9 = (2,0) and plotting the estimate

for varying values of -18 (ranging from -2 to 1.98), while keeping -28 = 0 constant. As shown in

Figure 2.3, it is evident that outliers significantly impacted estimates for the random forest model

with the sigmoid response function. Notably, as we replace the top 10% of the largest .8 values

generated from Equation (2.7), -1 9 = 2 should correspond to an outlier in our simulated data.

Consequently, we observe that the estimated values remained close to 1 when -18 is near -1 9 ,
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indicating that outliers biased the estimates, as |.8 −. 9 | is much larger in the presence of outliers

than in their absence. In contrast, Figure 2.4 shows that estimates from the random forest model

with the response function � (.8 ≤ . 9 ) were not affected by outliers, as the order of .8 remained

preserved even with the outliers. Therefore, our proposed outlier-robust random forest approach

effectively captured the regression relationship of interest, while remaining robust to outliers in

the response variable.
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Figure 2.3. Comparison of predicted � [(1+ exp(−|.8 −. 9 |))−1 |-8, - 9 ] between random forest
regression with and without outliers in the response.
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Figure 2.4. Comparison of predicted %(.8 ≤ . 9 |-8, - 9 ) between random forest regression with
and without outliers in the response.

2.6 Discussion

In this paper, we proposed an outlier-robust nonparametric regression approach for

modeling between-subject attributes by leveraging the work of random forest regression for

within-subject attributes by Wager and Athey [31]. Our method is designed to address two critical

issues in current statistical practices: the parametric assumption in FRM-based semiparametric

regression models for between-subject attributes and robust response functions against outliers

within random forest regression models.

The primary contributions of our work are the development of 1) a class of random

forest regression models for between-subject attributes to address the limitations of FRM-based
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semiparametric regression models, 2) a response function that mitigates the impact of outliers and

enhances the robustness of random forest models in the presence of outliers, and 3) asymptotic

properties for the random forest regression models. Our simulation results demonstrate that while

random forest regression generally performs well, particularly when the parametric assumption

of the FRM-based semiparametric model is violated, its estimates are significantly impacted by

outliers when using a response function that is not robust against outliers. In contrast to this,

even in the presence of extreme outliers, the proposed rank-based response function effectively

resolves this issue and yields reliable estimates. The asymptotic results extend the work by T. Lin

[32] on random forest estimators for the Mann-Whitney-Wilcoxon type causal models to the

current random forest regression models.

The nonparametric nature of our approach, which allows for greater flexibility and

robustness in modeling complex regression relationships between variables without making any

parametric assumptions on the mean response, is one of its key strengths. Our method provides

more reliable estimates by focusing on outlier robustness, especially in datasets where outliers

are present. This robustness is particularly valuable in biomedical and psychosocial research,

where outlying observations are not only fairly common, but also should not be discarded, as

they are not simply the results of errors in data collection.

Some limitations must be taken into account when using our proposed methods. Although

estimations can be more flexible and less susceptible against outliers, they may also exhibit

higher variance compared to their semiparametric counterpart. A parametric or semiparametric

model should be preferable when responses and predictors have a clear parametric relationship,

such as in the simulation example shown in Figure 2.1, since it not only reduces variances

but also facilitates interpretation of estimates. Additionally, when there are not enough data

points in the leaves to support complex interactions, the model can have trouble capturing the

underlying relationships, which can result in poor performance because of data sparsity. Another

consideration is that random forest regression can sometimes overfit the data, particularly when

the number of trees is excessively large or if individual trees are too deep. Methods such as
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pruning may help mitigate this issue. These limitations emphasize the importance of carefully

evaluating the context and characteristics of the data when applying random forest models in

general and our proposed method in particular.

Future research could explore numerous paths to expand upon our findings. One possible

approach is to combine our outlier-robust method with other nonparametric techniques to take

advantage of these models. Changing the response functions to adapt to different types of data or

research questions is also a plausible way to further modify the models. Due to the generalization

of our model framework, it not only works on outlier-robust estimation but can also be extended

to other types of between-subject attribute problems.

To summarize, our outlier-robust method offers improved accuracy and robustness when

handling outliers, making it a significant advancement in random forest regression for biomedical

research. Our study offers a solution to address important weaknesses in current methods for

nonparametric regression, which helps build more reliable statistical tools for analyzing complex,

real-world data.
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Chapter 3

Estimating Longitudinal Change in Net-
work Transitivity: Application to Viral
Genetic Linkage Networks

3.1 Introduction

Connections among individuals drive innovation [42], spread infectious diseases [43],

and influence policy decisions [44]. Mathematically, our connections can be represented as a

network, where individuals are nodes and connections between two individuals are edges [45].

The structure of the network has been shown to influence the rate of spread of these processes [4].

Therefore, there is a need to understand the network structure and how the structure changes over

time. A phenomenon in social behavior that has been shown to influence processes operating on

networks is the tendency of individuals to gather, interact, and form cohesive groups [46]. One

metric that can be used to quantify this tendency is the level of transitivity in a network, that is,

the propensity of two individuals that share a common neighbor to also be connected [47].

Estimates of transitivity have the potential to provide key insights into infectious disease

epidemics. Epidemic simulation models have shown that transitivity has the potential to provide

insight about epidemic dynamics–and thereby provide evidence of effectiveness of mitigation

strategies [4]. Recently, there has been research investigating transitivity in networks constructed

based on viral molecular sequence data–referred to as viral genetic linkage (VGL) networks [48].
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VGL networks are constructed by connecting individuals with similar viral genetic sequences

[49]. Because of ongoing evolution of the virus–within hosts over time and across hosts–the

sequences of pairs of individuals who are closer in a transmission chain and are sequenced more

closely in time are more likely to be more similar than those of pairs who are further away in

the chain or in times of sequencing. Therefore, the level of transitivity can provide insight into

the delay between infection and diagnosis (diagnosis delay) [48]. Evaluating diagnosis delay is

important for the estimation of incidence [50, 51]. It also provides a metric for evaluating the

performance of public health infrastructure with regard to the goal of rapid testing and diagnosing

individuals. Doing so can both decrease disease spread [52] and improve the outcomes of infected

individuals through the timely provision of treatment [53].

Inference on the level of transitivity in a network, as well as changes in transitivity over

time, poses statistical challenges. Transitivity involves modeling the connections among three

individuals, which typically cannot be accommodated by traditional statistical models such

as generalized linear models (GLMs) [13], generalized estimating equations (GEEs) [54], or

generalized linear mixed-effect models (GLMMs) [55]. Moreover, relationships among subjects

(such as transitivity) cannot be modeled using the predominant paradigm for within-subject

attributes, i.e., models that focus on relationships between an individual’s characteristics and

their outcome.

This issue becomes more challenging when assessing changes over time. A unique

aspect of modeling VGL networks is that they are a type of growing network where links and

nodes are added but never removed. As new individuals are sequenced over time, the VGL

network grows. Therefore, estimates of transitivity–which are based on all subjects sequenced

by that time–change, creating difficulty for inference about transitivity. For example, when

comparing transitivity between two time points in a longitudinal study, the transitivity at the

later time point involves all subjects sequenced at both time points, making the network at

the earlier time a subgraph of the network at the later time. Traditional statistical models for

within-subject attributes do not apply to transitivity, even for cross-sectional data, because of
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the interlocked and correlated transitivity outcomes. To overcome this difficulty, we leverage

semiparametric functional response models (FRMs) [12] to estimate transitivity and model its

changes over time. FRMs have been applied to similar between-subject outcomes, such as

microbiome beta-diversity data [1]. We develop a new approach to address the challenge of

evolving samples when modeling changes in transitivity in VGL networks.

This paper is organized as follows. Section 3.2.1 introduces VGL in greater detail as we

use VGL networks as the primary area of interest; however, the statistical methods developed

can be applied to many applications. In Section 3.2.2, we introduce notation and formally define

transitivity. In Section 3.3.1, we develop the proposed model and its asymptotic properties

of model parameters for cross-sectional networks. The extension to longitudinal networks is

presented in Section 3.3.2. In Section 3.4, we illustrate both the cross-sectional and longitudinal

approaches using simulated data. The simulation study provides information on the performance

of the proposed approach for varying network sizes. Section 3.5 presents an analysis using

HIV data from San Diego County. Finally, concluding remarks are addressed in the discussion

presented in Section 3.6.

3.2 Background

3.2.1 Viral Genetic Linkage Networks

Let + = {E1, . . . , E=} be a set of viral genetic sequences. The pairwise distance between

these sequences are denoted by �8 9 , where (8, 9) ∈
(
(=

2

)
, (= := {1, . . . , =}, and

(
(

@

)
represents

the set of all @-combinations from set (. Additionally, we define (∞ := {1,2, . . .}. Note that

�8 9 = � 98. We consider two individuals to be linked if the pairwise distance between their viral

genetic sequences is less than some given threshold 2. Based on + , we can construct a VGL

network �. Since the direction of transmission is generally unknown, we assume that � is an

undirected network.
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3.2.2 Transitivity

We use the global clustering coefficient [56], denoted as \, as our metric for transitivity,

which is defined as the ratio of the number of closed triads (or triangles) to the total number of

two-path (either open or closed) in the network. A triad consists of three individuals connected

by either two (open triad) or three (closed triad) links [56]. Therefore, a triad among {E8, E 9 , E: }

is open if there are exactly two linked pairs such as (E8, E 9 ) and (E8, E: ), and closed if all three

links (E8, E 9 ), (E8, E: ), and (E 9 , E: ) are present; see Figure 3.1 for an illustration.

Figure 3.1. Types of triads.

In this paper, our interest is in infinite population inference, that is, we estimate \ based on

a network consisting of a subset of individuals = from an infinite population [57]. We model the

viral genetic sequences {E1, . . . , E=} as random variables. The distances �8 9 are then considered

random variables that denote the pairwise distances between these sequences. The transitivity \

can be defined as follows:

\ =
3×%

(
max{�8 9 , �8: , � 9 : } ≤ 2

)
%

(
max{�8 9 , �8: } ≤ 2

)
+%

(
max{�8 9 , � 9 : } ≤ 2

)
+%

(
max{�8: , � 9 : } ≤ 2

) , (3.1)

where (8, 9 , :) ∈
(
(∞
3

)
.

We estimate \ using a ratio of two *-statistics, which are a class of statistics that is

defined as the average value of a kernel function calculated over all possible subsets of a fixed
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size (size 3 in our case) of a given set [11]. The kernel functions associated with our two

*-statistics are the following:

ℎ1
(
E8, E 9 , E:

)
= �

(
max

{
�8 9 , �8: , � 9 :

}
≤ 2

)
,

ℎ2
(
E8, E 9 , E:

)
=

1
3

(
�
(
max

{
�8 9 , �8: ≤ 2

})
+ �

(
max

{
�8 9 , � 9 : ≤ 2

})
+ �

(
max

{
�8: , � 9 : ≤ 2

}) )
.

Therefore, the estimate of \ can be presented as follows:

\̂ =

(
=

3

)−1 ∑
(8, 9 ,:)∈((=3 ) ℎ1

(
E8, E 9 , E:

)
(
=

3

)−1 ∑
(8, 9 ,:)∈((=3 ) ℎ2

(
E8, E 9 , E:

) .
In this study, we leverage FRMs to facilitate inferences on \.

3.2.3 Functional Response Models

To estimate transitivity, we leverage a class of semiparametric FRMs. Let (x1, H1), . . . ,

(x=, H=) be = pairs of independently and identically distributed (i.i.d.) random samples, where

x8 is a ?×1 vector of independent variables and H8 is a response. Then, the general form of an

FRM can be defined as follows:

�
[
ℎ(H81 , . . . , H8@ ) | x81 , . . . ,x8@

]
= 5 (x81 , . . . ,x8@ ; #), (81, . . . , 8@) ∈

(
(=

@

)
, (3.2)

where ℎ is a real-valued function, 5 is a smooth function that has continuous second-order deriva-

tives, and # is a ?×1 vector of unknown parameters. While we recognize the limitation of FRMs

assuming i.i.d. random sampling of nodes–which may not fully capture the network dependence

structure–their semiparametric nature offers significant advantages over fully parametric models.

Despite this limitation, FRMs provide a valuable alternative to modeling network data, especially
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in contexts where interactions can be effectively captured under the i.i.d. assumption through

random sampling. A detailed discussion is in Section 3.6.

3.3 Methods

We develop a regression modeling approach using FRMs and its asymptotic properties

for conducting inference on transitivity for both cross-sectional and longitudinal network data.

We start with cross-sectional network.

3.3.1 Cross-Sectional Network

Let

h8 9 : =
©«
ℎ1(E8, E 9 , E: )

ℎ2(E8, E 9 , E: )

ª®®¬ .
We define q to be the expectation of ℎ2(E8, E 9 , E: ), i.e.,

q = �
[
ℎ2(E8, E 9 , E: )

]
, (8, 9 , :) ∈

(
(=

3

)
. (3.3)

Using Equations (3.1) and (3.3), the expectation of ℎ1(E8, E 9 , E: ) is the following:

�
[
ℎ1(E8, E 9 , E: )

]
= \�

[
ℎ2(E8, E 9 , E: )

]
= \q. (3.4)

To apply the FRM framework in Equation (3.2) and ensure that the range restrictions for

\ and q (0 ≤ \, q ≤ 1) are satisfied, we can employ the expit, or inverse logit, transformation as

follows:

\ =
exp (V1)

exp (V1) +1
, q =

exp (V2)
exp (V2) +1

, (3.5)

where V1, V2 ∈ R. Consequently, estimating \ corresponds to estimating V1 via the expit
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transformation.

Substituting the formulas for \ and q in Equation (3.5) into Equations (3.3) and (3.4),

we can write an FRM in the form of Equation (3.2) using the responses (E8, E 9 , E: ) and the

parameters # = (V1, V2)>:

�
[
h8 9 :

]
= f (#) =

©«
51(#)

52(#)

ª®®¬ , (8, 9 , :) ∈
(
(=

3

)
, (3.6)

51(#) =
exp (V1)

exp (V1) +1
exp (V2)

exp (V2) +1
, 52(#) =

exp (V2)
exp (V2) +1

.

For inference about #, we leverage the*-statistics based generalized estimating equations

(UGEE) for FRM [12]. The UGEE for the FRM above has the form:

U= (#,") =
∑

(8, 9 ,:)∈((=3 )
D8 9 : (#)>V8 9 : (#,")−1S8 9 : (#), (3.7)

where

S8 9 : (#) = h8 9 : − f (#),

D8 9 : (#) =
3

3#
f (#),

V8 9 : (#,") = A(#)1/2R(")A(#)1/2,

A(#) =
©«
51(#) (1− 51(#)) 0

0 52(#) (1− 52(#))

ª®®¬ ,
and R(") represents a working correlation matrix depending on a A × 1 vector of unknown

parameters ". As in the case of GEE for within-subject attributes, choices for the working

correlation R(") include independent, exchangeable, and autoregressive structures, among
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others [54]. Within the current setting of binary responses, we may impose the Fréchet bounds

on the elements of R("), so they logically satisfy the bounds of the variances of binary outcomes

such as modeling R(") through odds ratios with logistic models and estimate " and # jointly

[58]. The choice of R will not affect consistency and asymptotic distribution of #̂, even if none

of the elements of R satisfy the Fréchet bounds as long as the estimator for " is
√
=-consistent

[59]. It will only affect the efficiency of #̂ [21]. For this reason, we choose independent working

correlation to reduce the computational burden for estimating ".

Although similar in appearance, Equation (3.7) is not a GEE for GLM, since the sum-

mands for U= (#,"), i.e., D8 9 : (#)>V8 9 : (#,")−1S8 9 : (#), are not independent. However, like

GEE, the UGEE estimator #̂ has the same asymptotic properties, as summarized in Theorem 3.1

[1, 60].

Theorem 3.1. Let #̂ denote the estimate of the parameter # obtained by solving the UGEE in

Equation (3.7). Under mild regularity conditions and assuming that "̂ is
√
=-consistent, we have

the following:

1. #̂ is consistent.

2. #̂ is asymptotically normal:

√
=( #̂− #) 3→N

(
0,�#

)
,

where

�# = B−1�*B−1,

�* = 32 Var (u8) , u8 = �
[
D8 9 : (#)>V8 9 : (#,")−1S8 9 : (#) | E8

]
,

B = �
[
D8 9 : (#)>V8 9 : (#,")−1D8 9 : (#)

]
, (8, 9 , :) ∈

(
(=

3

)
.
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3. #̂ is asymptotically efficient.

Proof. See Appendix B.3, or Liu, Zhang, et al. [1] and Liu, T. Lin, et al. [60] for a proof. �

By assuming independent working correlation, we compute #̂ by solving U= (#) = 0

using the Gauss-Newton method [41]. A consistent estimator of �# can then be constructed by

substituting #̂ for # in the results of Theorem 3.1. Specifically,

�̂# = B̂−1�̂*B̂−1,

where

�̂* =
9
=

=∑
8=1

û8û>8 , û8 =
(
=−1

2

)−1 ∑
( 9 ,:)∈((=\{8 }2 )

D8 9 : ( #̂)>V8 9 : ( #̂)−1S8 9 : ( #̂),

B̂ =
(
=

3

)−1 ∑
(8, 9 ,:)∈((=3 )

D8 9 : ( #̂)>V8 9 : ( #̂)−1D8 9 : ( #̂).

Since our goal is to estimate \, we can readily use the marginal asymptotic distribution of

#̂ for inference about V1 to obtain the asymptotic distribution of \̂. A consistent estimate of the

asymptotic variance of
√
=(\̂ − \) can be derived by applying the Delta method, as shown below:

�̂\ =
(
�̂#

)
1,1
·
(
3

3V1

(
51
52

)
(#)

����
V1=V̂1

)2

.

3.3.2 Longitudinal Networks

It is common for a viral sequence to be only collected once per individual. In our simula-

tion study and application to San Diego County, a link between two individuals is established if

the difference of their first sequences are below a threshold. In particular, a link indicates that

two individuals at some point in time had a viral sequences below a threshold. Therefore, in our
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analyses, once a link is established, it remains in the analysis for all subsequent time points, i.e.,

our study population and connections only grows over time. In conventional analyses, growing

samples generally do not pose new challenges. For example, analysis of population statistics

(e.g., mean outcome) for a longitudinal study with =1 subjects at time 1 and =2 new subjects

added at time 2 can be estimated independently for the two samples. However, for our study of

network transitivity, this is not possible, as there can be links across the samples. Since we are

interested in changes in transitivity over time, i.e., comparing the transitivity at distinct times,

such analyses do create new statistical challenges.

For our longitudinal analysis, we identify a discrete series of ) VGL networks, denoted as

{�1, . . . ,�) }. A network � C consists of all sequences collected up to time C. For our application

using HIV molecular data from San Diego, we identify a series of networks such that the

networks consist of all sequences up to a given year. Let E8 denote the viral genetic sequence

of the 8-th subject sequenced. Let C8, where 8 ∈ (= and 1 ≤ C8 ≤ ) , index the first network � C8 in

which sequence E8 appears. As described earlier, if E8 is present in � C8 , E8 will be present in all

subsequent networks � C (C8 < C ≤ )). Let =C denote the total number of E8 in network � C . Note

that =) = =. Without loss of generality, we index the sequences such that E1, . . . , E∑C
<=1 =<

∈ � C

for all C.

Because HIV sequences mutate rapidly over time, � [�8 9 ] is more likely to be less than

� [�8: ] if sequences E8 and E 9 are sequenced more closely in time than E8 and E: . For instance,

pairs of sequences sequenced within a year may have more similar mutations than pairs whose

time of sequencing is separated by more than a year. Thus, �) consists of ) groups from a

growing population, whose distribution of sequences is evolving over time.

We use a time-dependent indicator F8C to indicate the presence or absence of E8 in � C ,

i.e.,

F8C = �
(
8 ∈ (=C

)
, 8 ∈ (=, 1 ≤ C ≤ ).
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Let

qC = �
[
ℎ2(E8, E 9 , E: ) | F8C = F 9 C = F:C = 1

]
, (8, 9 , :) ∈

(
(=C

3

)
, 1 ≤ C ≤ ),

represent the probability of a two-path among three individuals at time C. Note that, unlike

the cross-sectional case in Equation (3.3), qC is defined conditional on the indicators F8C , F 9 C ,

and F:C . Similar to Equation (3.4) for the cross-sectional case, we can express the conditional

expectation of ℎ1 in terms of transitivity \C at time C and qC as:

�
[
ℎ1(E8, E 9 , E: ) | F8C = F 9 C = F:C = 1

]
= \C�

[
ℎ2(E8, E 9 , E: ) | F8C = F 9 C = F:C = 1

]
= \CqC ,

where (8, 9 , :) ∈
((=C

3
)

and 1 ≤ C ≤ ) . To address the range restrictions for \C and qC , we transform

them using the expit function:

\C =
exp (V1C)

exp (V1C) +1
, qC =

exp (V2C)
exp (V2C) +1

, 1 ≤ C ≤ ),

where V1C , V2C ∈ R for all C.

V1C and V2C for each C can be estimated independently for each network � C using our

method of cross-sectional networks (Equation (3.6)); however, this approach would not incor-

porate the correlation among the networks �1, . . . ,�) , where �B ⊆ � C for B < C. Therefore, we

adapt our UGEE framework to the evolving longitudinal sample, which is complicated by the

nested networks � C (1 ≤ C ≤ )).

In order to formulate the FRM necessary to estimate V1C and V2C for each C, we define the

following:
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3 = (V11, . . . , V1) , V21, . . . , V2) , c1, . . . , c)−1)>, cC = � [F8C] (in particular, c) = 1),

51C (3) =
exp (V1C)

exp (V1C) +1
exp (V2C)

exp (V2C) +1
c3
C , 52C (3) =

exp (V2C)
exp (V2C) +1

c3
C , and 53C (3) = cC .

In addition, we use the law of iterated expectations (LIE) [61] to eliminate the need to condition

on (F8C ,F 9 C ,F:C) as random variables, thereby rendering the inference about \C and qC more

tractable:

�
[
F8CF 9 CF:Cℎ1(E8, E 9 , E: )

]
= �

[
F8CF 9 CF:C�

[
ℎ1(E8, E 9 , E: ) | F8C ,F 9 C ,F:C

] ]
= \CqC%

(
F8C = F 9 C = F:C = 1

)
= 51C (3).

Similarly, we have the following:

�
[
F8CF 9 CF:Cℎ2(E8, E 9 , E: )

]
= qC%

(
F8C = F 9 C = F:C = 1

)
= 52C (3).

By considering the contributions of the triad, observed at time C, as their proportion

58



within the mixture distribution at time ) , we specify the following FRM:

�
[
h8 9 :

]
:= �



©«

F81F 91F:1ℎ1(E8, E 9 , E: )
...

F8()−1)F 9 ()−1)F: ()−1)ℎ1(E8, E 9 , E: )

ℎ1(E8, E 9 , E: )

F81F 91F:1ℎ2(E8, E 9 , E: )
...

F8()−1)F 9 ()−1)F: ()−1)ℎ2(E8, E 9 , E: )

ℎ2(E8, E 9 , E: )
1
3 (F81 +F 91 +F:1)

...

1
3 (F8()−1) +F ()−1) +F8()−1))

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬



=

©«

511(3)
...

51()−1) (3)

51) (3)

521(3)
...

52()−1) (3)

52) (3)

531(3)
...

53()−1) (3)

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

= f (g), (3.8)

Using Equation (3.8), inference about 3 can be readily performed using the following UGEE:

U= (3,") =
∑

(8, 9 ,:)∈((=3 )
D8 9 : (3)>V8 9 : (3,")−1S8 9 : (3), (3.9)

where
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S8 9 : (3) = h8 9 : − f (3), D8 9 : (3) =
m

m3
f (3), V8 9 : (3,") = A(3)1/2R(")A(3)1/2,

A(3) = diag(a(3)), a(3) =

©«

511(3)
(
c3

1 − 511(3)
)

...

51()−1) (3)
(
c3
)−1− 51()−1) (3)

)
51) (3) (1− 51) (3))

521(3)
(
c3

1 − 521(3)
)

...

52()−1) (3)
(
c3
)−1− 52()−1) (3)

)
52) (3) (1− 52) (3))

531(3) (1− 531(3))
...

53()−1) (3) (1− 53()−1) (3))

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

.

As in the cross-sectional network, we can choose R(") as the independent working

correlation to reduce the computational burden for estimating " and apply the Gauss-Newton

method to estimate 3. The UGEE estimator 3̂ has similar nice asymptotic properties as the one

for the cross-sectional data case, as summarized by the following theorem.

Theorem 3.2. Let 3̂ denote the estimate of the parameter 3 obtained by solving the UGEE

in Equation (3.9). We assume that lim
=→∞

=
=C
< ∞ for 1 ≤ C ≤ ) −1. Then, under mild regularity

conditions and assuming that "̂ is
√
=-consistent, we have:

1. 3̂ is consistent.

2. 3̂ is asymptotically normal:

√
=(3̂−3) 3−→N (0,�3) ,
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where

�3 = B−1�*B−1,

�* = 32 Var (u8) , u8 = �
[
D8 9 : (3)>V8 9 : (3,")−1S8 9 : (3) | E8,F81, . . . ,F8()−1)

]
,

B = �
[
D8 9 : (3)>V8 9 : (3,")−1D8 9 : (3)

]
, (8, 9 , :) ∈

(
(=

3

)
.

3. 3̂ is asymptotically efficient.

Proof. See Appendix B.3 for a proof. �

As in the case of cross-sectional network, a consistent estimator of �3 can be read-

ily obtained based on the results in Theorem 3.2, assuming independent working correlation.

Specifically,

�̂3 = B̂−1�̂*B̂−1,

where

�̂* =
9
=

=∑
8=1

û8û>8 , û8 =
(
=−1

2

)−1 ∑
( 9 ,:)∈((=\{8 }2 )

D8 9 : (3̂)>V8 9 : (3̂)−1S8 9 : (3̂),

B̂ =
(
=

3

)−1 ∑
(8, 9 ,:)∈((=3 )

D8 9 : (3̂)>V8 9 : (3̂)−1D8 9 : (3̂).

Similar to the cross-sectional case, we can obtain the asymptotic distribution of )̂ :=

(\̂1, . . . , \̂) )> following the marginal asymptotic distribution of 3̂. A consistent estimate of the

asymptotic variance of
√
=()̂ − )) can be derived by applying the Delta method:

�̂) =

(
m

m#1
g(3)

����
#1=#̂1

)
·
(
�̂3

)
1:),1:)

·
(
m

m#1
g(3)

����
#1=#̂1

)>
,
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where M1:),1:) denotes the ) ×) submatrix consisting of the first ) rows and first ) columns of

a matrix M, g :=
(
511
521
, . . . ,

51)
52)

)>
, and #1 := (V1C , . . . , V1) )>.

3.4 Simulation Studies

In this section, we illustrate the validity of the proposed approach with simulated data.

We investigate the performance of FRM for cross-sectional and longitudinal networks of varying

network sizes. The analyses are carried out using code developed on the R software platform

[20]. Section 3.5 investigates VGL network data from San Diego County.

3.4.1 Simulation Method

3.4.1.1 Data Generation for Cross-Sectional Analysis

We propose the following approach to generate data to investigate our approach for

estimating transitivity for cross-sectional network data. First, we generate a population of size =.

For ease of presentation, instead of simulating viral sequences, we generate a latent variable I8

for each individual 8 ∈ (=. We sample I8 from a generalized extreme value (GEV) distribution:

I8 ∼ GEV (`,f, b) , ` ∈ R, f ∈ R>0, b ∈ R, 8 ∈ (=,

where ` is the location parameter, f is the scale parameter, and b is the shape parameter. The

GEV distribution represents a heavy-tailed distribution that combines the Gumbel, Frechet, and

Weibull distributions [62]. The pairwise distance between individuals 8 and 9 , �8 9 , is set as

|I8 − I 9 |.

In order to simulate networks closely resembling San Diego County VGL network in

terms of the degree distribution, we use the following specifications for `,f, and b.

• `: As �8 9 always has a mean of 0 regardless of the value of `, we can assume ` = 0 in

this simulation setting without a loss of generality.
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• f and b: By tuning the f and b parameters for the GEV distribution, we can achieve

transitivity values similar to those calculated from the San Diego molecular epidemiology

data. Specifically, we choose f = 2 and b = −0.5 to produce a transitivity similar to that of

the real network from 2018. Note that b determines the tail behavior of the distribution:

for b < 0, the distribution has a heavy right tail, and for b > 0, it has a heavy left tail. In

our setting, we assume that the values of I8 can be any positive numbers, so we choose

negative b values.

We use the kernel functions ℎ1(I8, I 9 , I: ) = � (max{�8 9 , �8: , � 9 : } ≤ 2) and ℎ2(I8 .I 9 , I: ) =(
� (max{�8 9 , �8: } ≤ 2) + � (max{�8 9 , � 9 : } ≤ 2) + � (max{�8: , � 9 : } ≤ 2)

)
/3 to identify whether

a triad {I8, I 9 , I: } forms an open triad, closed triad, or neither (i.e., not a two-path).

3.4.1.2 Data Generation for Longitudinal Analysis

For longitudinal network, we analyze only the first viral sequence collected for each

individual; therefore, once a link is established, it will remain over time. This implies that the

network grows larger over time, with the networks in previous time periods forming an induced

subgraph of the current network. We generate a population of size =C at each time C. Similar to

the cross-sectional case, we also generate a latent variable I8C for each individual 8 ∈ (=C\(=C−1

(assuming (=0 is the empty set) for ease of presentation. We sample I8C from a time dependent

GEV distribution in chronological order:

I8C ∼ GEV (`C ,fC , bC) , `C ∈ R, fC ∈ R>0, bC ∈ R, 8 ∈ (=C\(=C−1 , 1 ≤ C ≤ ).

The specifications for `C ,fC , and bC are as follows:

• `C: Similar to the cross-sectional analysis, we assume `C = 0 for all C in our simulation.

The parameters fC and bC are used to modify transitivity across the longitudinal networks

(see below).
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• fC and bC : For the second and third time points, we set f2 = 3, b2 = −1; f3 = 2, b3 = −0.5

to ensure that the resulting transitivity values are close to the transitivity value in 2022.

For the first time point, we select parameters f1 = 12 and b1 = −3 to generate sufficiently

higher transitivity, allowing us to evaluate the performance of our method in detecting

differences in transitivity.

The pairwise distance between individuals 8 and 9 , �8 9 , is set as |I8C − I 9 B |, where

8 ∈ (=C\(=C−1 and 9 ∈ (=B\(=B−1 , respectively. Then, we establish genetic similarity between

individuals in the same way as in the cross-sectional case.

3.4.1.3 Simulation Assessment

We perform " = 1000 Monte Carlo (MC) simulation replicas for each network size. For

each MC replication, the transitivity \ (\C for the longitudinal case) and its associated asymptotic

variance �\ (�\C ) are estimated based on the marginal asymptotic distribution of FRM estimates

#̂ (̂3). A key focus is on evaluating whether the FRM model provides an accurate estimate of \

(\C), which is assessed by testing the following hypotheses at a statistical significance level of

0.05:

Cross-sectional: �0 : \ = \ (0) vs. �0 : \ ≠ \ (0) ,

Longitudinal: �0 : \C = \ (0)C vs. �0 : \C ≠ \ (0)C ,

where \ (0) (\ (0)C) denotes the “true transitivity” generated from a given GEV distribution (mixture

GEV distribution). To assess the estimation of our variance, we compare the estimated asymptotic

variance, 1
=
�̂\ or 1

=
�̂\C (longitudinal), to the empirical variance:

64



Cross-sectional:
1

" −1

"∑
<=1

(
\̂ (<) − \̂

)2
,

Longitudinal:
1

" −1

"∑
<=1

(
\̂
(<)
C − \̂C

)2
,

where \̂ = 1
"

∑"
<=1 \̂

(<) and \̂C = 1
"

∑"
<=1 \̂

(<)
C . We present the results in terms of standard errors

rather than variances to facilitate interpretation, as standard errors share the same units as the

estimated transitivity.

In the longitudinal case, we are also interested in testing whether \C changes over time at

a statistical significance level of 0.05 using the following hypothesis:

�0 : \1 = . . . = \) vs. �0 : There exists C1 and C2 such that \C1 ≠ \C2 .

If the above omnibus test is rejected at the significance level of 0.05, we can further

apply multiple comparisons to test which pairs are different from the others. False discovery rate

(FDR) correction is applied to avoid the Type I error inflation issue for multiple comparisons.

Wald statistics are calculated for each of the hypotheses listed above and are compared

with the corresponding Chi-square distribution to compute the empirical Type I error and examine

the coverage.

3.4.1.4 Network Sizes and Threshold

For cross-sectional networks, results are reported for three network sizes: = = 150, 250,

and 500, representing small, medium, and large sizes, respectively. To simulate longitudinal

network, we assume that we observe the network at three time points, with the final observation

contains either 150, 250, and 500 nodes. The percentage of additional nodes included at each of

the three time points correspond to: 40%, 30%, and 30% of the final network size, respectively.

We use a sequence similarity cutoff of 2 = 1.5 in all the simulation cases.
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3.4.2 Simulation Results

For the cross-sectional networks, the simulated transitivity was 0.8068 (see Table 3.1).

The estimated transitivity values (based on the presented approach) approximate this value closely.

The alignment of asymptotic and empirical standard errors indicates reliable estimation under

theoretical assumptions and simulation conditions. Type I error rates demonstrate acceptable

levels of false positives across different node sizes, underscoring the robustness of the statistical

approach used. These findings suggest that the method effectively captures network transitivity

at the fixed time point, supporting its applicability in studying real networks where accurate

estimation of transitivity is crucial for understanding network properties.

Table 3.1. Estimated transitivity, standard errors, and Type I errors in simulated cross-sectional
networks.

Simulated Number of Estimated Asymp. Emp. Type I
Transitivity Nodes (n) Transitivity Std. Err. Std. Err. Error

150 0.8054 0.0156 0.0144 0.074

0.8068 250 0.8061 0.0116 0.0111 0.041

500 0.8066 0.0080 0.0079 0.067

For the longitudinal networks, the estimated transitivity values approximate the simulated

transitivity values across varying population sizes and recruitment rates (see Table 3.2). In

terms of variance analysis, both asymptotic and empirical standard errors decrease as node

sizes increase, indicating robust estimation under various conditions. Larger node sizes reduce

the discrepancy between asymptotic and empirical standard errors, especially when nodes are

sampled from a more complex mixture distribution. Type I error rates remain close to the

significance level as population sizes increase, indicating that the statistical approach maintains

reliable performance in controlling false positives. These findings underscore the method’s

ability to effectively capture and estimate network transitivity over time, highlighting its utility in

analyzing longitudinal network data where understanding temporal changes in network properties

66



is crucial.

Table 3.2. Estimated transitivity, standard errors, and Type I errors in simulated longitudinal
networks.

Time (t) Simulated Total Recruit- Number of Estimated Asymp. Emp. Type I
Transitivity ment Rate Nodes (=C ) Transitivity Std. Err. Std. Err. Error

60 0.8784 0.0506 0.0509 0.106

1 0.8853 40% 100 0.8829 0.0379 0.0381 0.077

200 0.8848 0.0263 0.0266 0.073

105 0.7819 0.0257 0.0196 0.044

2 0.7820 70% 175 0.7816 0.0161 0.0132 0.057

350 0.7827 0.0094 0.0080 0.038

150 0.7829 0.0187 0.0159 0.058

3 0.7816 100% 250 0.7830 0.0132 0.0121 0.058

500 0.7837 0.0087 0.0082 0.048

Table 3.3 shows the performance of our method in detecting differences in transitivity

by assessing the power of the omnibus test detailed in the previous section. For a transitivity

difference of approximately 0.1, a sample size of = = 500 achieves an 84.2% power. This

indicates that our method is highly effective at detecting significant differences in transitivity

with a sufficiently large sample size, demonstrating its robustness and reliability for network

analysis.

Table 3.3. Power of the omnibus test for determining whether the transitivity changes over time
in simulated longitudinal networks.

Number of Power for
Total Nodes Omnibus Test

150 0.200

250 0.486

500 0.842
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3.5 HIV Transmission in San Diego County

We apply our proposed approach to the San Diego molecular epidemiology data to infer

transitivity and examine changes in the transitivity index over time. The study utilized HIV

molecular data from people with HIV in San Diego County between 1985 and 2022. In this

dataset, genetic distance between individuals is defined based on sequence similarity, with a

cutoff of 1.5% used to establish genetic similarity between individuals [49, 63]. To ensure an

adequate sample size for forming both closed and opened triads and to maintain the power of our

methodology, we analyze the VGL network starting from 2013, which includes data spanning

from 1985 to 2013. We investigate changes in transitivity over time until 2022, covering 10

time points (in years). Nodes with cluster sizes smaller than 3 are excluded from the analysis,

as they do not affect the calculation of transitivity, thus reducing the computational burden.

After this removal, the total number of nodes in the 2022 network is 1811. Table 3.4 presents

the results of applying our method to the longitudinal network data. Our approach accurately

estimates transitivity according to the regular definition (Equation (3.1) with finite population).

The asymptotic standard errors are small and decrease over time, indicating the robustness of our

method. This is further supported by the 95% confidence intervals shown in Figure 3.2. The

omnibus test reveals that there are at least two time points where the transitivity values differ

significantly at the 0.05 significance level (p-value ≈ 5.32×10−76). Additionally, the change in

transitivity between 2013 and 2022 is also significant (p-value ≈ 1.06×10−31).

3.6 Discussion

In this paper, we provide a rigorous method for estimating the level of transitivity in

both cross-sectional and longitudinal networks. Our method extends the FRM framework to

accommodate longitudinal data, specifically data with evolving samples. Simulation studies

demonstrate that our approach provides accurate estimates of both point estimates and variances.

When modeling transitivity in longitudinal network data, Exponential Random Graph
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Table 3.4. Estimated transitivity and asymptotic standard errors for the San Diego molecular
epidemiology data.

Year Number of Total Recruit- Transitivity Estimated Asymp.
Nodes ment Rate (regular definition) Transitivity Std. Err.

2013 602 33.24% 0.5388 0.5388 0.0206
2014 765 42.24% 0.6643 0.6643 0.0139
2015 914 50.47% 0.7238 0.7238 0.0103
2016 1108 61.18% 0.7881 0.7881 0.0076
2017 1257 69.41% 0.8096 0.8096 0.0064
2018 1388 76.64% 0.8066 0.8066 0.0054
2019 1513 83.55% 0.7950 0.7950 0.0050
2020 1633 90.17% 0.7967 0.7967 0.0047
2021 1733 95.69% 0.7847 0.7847 0.0046
2022 1811 100.00% 0.7807 0.7807 0.0045

Models (ERGMs) have been widely used due to their flexibility in capturing complex depen-

dencies between nodes, including transitivity [64]. However, ERGMs rely on fully parametric

assumptions [65], which can be limiting when the true data-generating process does not conform

to these specified distributions [66]. In contrast, our method, FRMs, adopts a semiparametric

approach, allowing for greater flexibility in capturing the underlying structure of the data without

strict adherence to a predetermined parametric form. Alternative network models, such as the

congruence class model [67], do not require a parameter assumption and may offer a promising

direction.

Nevertheless, the use of FRMs for effective inference requires the assumption that viral

genetic sequences are i.i.d. random samples. While this assumption simplifies the modeling

process by assuming independent sampling from a superpopulation, it may not fully account

for the complex dependencies inherent in infectious disease data. This limitation highlights

the importance of carefully considering the underlying population structure to ensure that the

parameters of interest (targets or estimands) effectively capture the true dependency relationships

within the network while providing reliable variance estimates.
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Figure 3.2. Temporal changes in transitivity for the San Diego molecular epidemiology data,
with 95% confidence intervals.

We applied our approach to investigate HIV disease dynamics in San Diego County. Our

analysis demonstrates the effectiveness of our proposed method in estimating transitivity and

detecting significant changes in the transitivity index from 2013 to 2022 within the San Diego

HIV cohort. Our approach provides asymptotic standard errors, which are crucial for making

robust inferences. This added capability allows us to not only estimate transitivity with precision

but also to assess the statistical significance of changes over time. Our results indicate that

transitivity is increasing over time, suggesting that the delay between infection and diagnosis is

decreasing. However, if only a subset of the HIV-positive population is sequenced, our data may

not fully represent the overall transmission dynamics, potentially leading to skewed results.
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Although HIV disease dynamics in San Diego County is the primary motivation for

developing our statistical approach, it might also be profitably applied in a variety of other

contexts. One such application is the investigation of the evolution of scientific paper citation

networks over time. Such analyses aim to reveal temporal changes in the extent to which

investigators cite primarily those who share their perspectives on contentious issues, as opposed

to including citations from those with differing views. It has been widely noted that developments

in communication technology appear to intensify partisanship by enabling individuals to virtually

inhabit “echo chambers” [68]. However, to our knowledge, the impact of this phenomenon on

scientific literature has not received equivalent attention. While the phenomenon of publication

bias is well understood, the concept of “citation network bias” is less thoroughly explored,

although it may similarly inhibit the dissemination of knowledge to contexts where it could be

most beneficial.

Promising extensions of the approach include controlling for covariates in the FRMs used

to estimate transitivity. This adjustment would enable us to account for potential confounding

variables and isolate the specific effects of interest on transitivity. By incorporating covariates

such as demographic characteristics, geographic factors, or specific intervention types, we

can mitigate the influence of external factors that might otherwise skew our results. Another

potential extension is the incorporation of incomplete*-statistics theory [69] when solving the

UGEE in Equations (3.7) and (3.9). This approach could alleviate the computational burden

associated with large network sizes. For networks containing over a thousand nodes, calculating

all combinatorial arrangements of triads becomes impractical due to significant computational

demands and limited storage capacity. Incomplete*-statistics address this challenge by utilizing

a subset of combinatorial terms while preserving essential information through appropriate

subsampling. However, a potential drawback is that some connections may be omitted in the

incomplete*-statistics approach, which could distort the underlying dependency structure of the

network. While our current framework provides a robust foundation for estimating transitivity

in dynamic networks, these extensions represent important avenues for further refinement. By
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accounting for confounding variables and addressing the computational challenges, we can

enhance the accuracy and applicability of our methods across diverse network settings.
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Chapter 4

Conclusions and Future Work

This dissertation presents a series of new advanced statistical methods aimed at addressing

complex challenges associated with modeling and inference for between-subject attributes in

biomedical and public health research. Through three distinct yet interconnected projects, we

have made significant contributions to the fields of statistical methodological research and the

biomedical and public health domains that have motivated the development of the new statistical

methods.

In Chapter 1, we have developed a rigorous approach to derive the asymptotic distribution

of the empirical area under the receiver operating characteristic (AUROC) curve when parameters

of class probability models are estimated by maximum likelihood estimators (MLEs). Our results

demonstrate that the variability introduced by MLE diminishes asymptotically, indicating that the

distribution of the empirical AUROC with MLE substituting in place of the true parameters, or

plug-in estimator, closely approximates that of the AUROC with the true values of the parameters.

The findings show that the impact of the sampling variability from the MLE on the empirical

AUROC diminishes to zero as the sample size increases. The established asymptotic results offer

a reliable approximation for small to moderate sample sizes to facilitate inference in practice.

Future research could extend this work to multi-class AUROC and other types of consistent

estimators such as those from regularization techniques to further enhance the robustness of

AUROC estimation.
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Chapter 2 introduces an outlier-robust nonparametric regression approach for modeling

between-subject attributes, enhancing the robustness of random forest models against outliers

and improving estimation accuracy in the presence of outliers. The key contributions include

the development of a rank-based response function for better outlier handling, the extension of

random forest regression models to between-subject attributes, and the derivation of asymptotic

properties for the model estimators. Future research could focus on integrating this method with

other nonparametric techniques and applying it to diverse domains of biomedical and public

health research to improve estimation accuracy and inference validity.

In Chapter 3, we address the challenges of estimating transitivity in evolving networks,

particularly within the context of longitudinal data. By extending the semiparametric functional

response models (FRMs) framework to network settings, our approach effectively addresses

the complex population-mixture distribution of the FRM-based transitivity estimator due to

evolving samples over time, offering insights into HIV transmission dynamics in San Diego

County when applied to the viral genetic linkage data from the County. The results revealed

significant temporal variations in transitivity, reflecting changes in the transmission network

structure over time. Future research could enhance this method by incorporating covariates

to account for potential confounding factors and by addressing computational challenges with

incomplete*-statistics when applied to large samples. Additionally, application of this approach

to other contexts, such as citation network analysis, could provide valuable insights into the

dynamics of information dissemination and potential biases in scientific literatures.

Overall, the findings of this dissertation have not only significantly advanced statistical

methodological research for complex biomedical and public health data modeling, but also paved

the way for future research that can build upon the foundations of the work to explore extensions

to tackle new challenges arising from biomedical and public health research.
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Appendix A

Relevant Existing Theorems

In this appendix, we state the existing theorems we have used in the previous chapters.

A.1 Stochastic Convergence

The following theorems are stated in Van der Vaart [11].

Theorem A.1. (Continuous mapping). Let 6 : R: → R< be continuous at every point of a set �

such that P(- ∈ �) = 1.

(i) If -=
3→ - , then 6 (-=)

3→ 6(-);

(ii) If -=
?
→ - , then 6 (-=)

?
→ 6(-);

(iii) If -=
0.B.→ - , then 6 (-=)

0.B.→ 6(-).

Proof. See Theorem 2.3 in Van der Vaart [11]. �

Theorem A.2. Let -= and - be random vectors. Then

(i) -=
0.B.→ - implies -=

?
→ -;

(ii) -=
?
→ - implies -=

3→ -;

(iii) -=
?
→ 2 for a constant 2 if and only if -n

3→ 2.
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Proof. See Theorem 2.7 in Van der Vaart [11]. �

Theorem A.3. (Slutsky). Let -=, - and .= be random vectors or variables. If -=
3→ - and

.=
3→ 2 for a constant 2, then

(i) -= +.=
3→ - + 2;

(ii) .=-=
3→ 2-;

(iii) .−1
= -=

3→ 2−1- provided 2 ≠ 0.

Proof. See Lemma 2.8 in Van der Vaart [11]. �

A.2 Two-Sample*-Statistics

The following statements and theorem are stated in Van der Vaart [11].

Suppose the observations consist of two independent samples -1, . . . , -< and .1, . . . ,.=,

i.i.d. within each sample, from possibly different distributions. Let ℎ(G1, . . . , GA ; H1, . . . , HB)

be a known function that is permutation symmetric in G1, . . . , GA and H1, . . . , HB separately. A

two-sample*-statistic with kernel ℎ has the form

* =
1(<

A

) (=
B

) ∑
U

∑
V

ℎ(-U1 , . . . , -UA ;.V1 , . . . ,.VB ),

where U and V range over the collections of all subsets of A different elements from {1,2, . . . ,<}

and of B different elements from {1,2, . . . , =}, respectively. Clearly,* is an unbiased estimator

of the parameter

\ = � [ℎ(-1, . . . , -A ;.1, . . . ,.B)] .

If # = < += is the total number of observations, we assume that, as <,=→∞,

<

#
→ _,

=

#
→ 1−_, 0 < _ < 1.
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The projection of*− \ onto the set of all functions of the form
∑<
8=1 :8 (-8) +

∑=
9=1 ; 9 (. 9 ),

for arbitrary measurable functions :8 and ; 9 with �
[
:2
8
(-8)

]
, �

[
;2
9
(. 9 )

]
<∞, is given by

*̂ =
A

<

<∑
8=1
ℎ1,0(-8) +

B

=

=∑
9=1
ℎ0,1(. 9 ),

where the functions ℎ1,0 and ℎ0,1 are defined by

ℎ1,0(G) = � [ℎ(G, -2, . . . , -A ,.1, . . . ,.B)] − \,

ℎ0,1(H) = � [ℎ(-1, . . . , -A , H,.2, . . . ,.B)] − \.

If the kernel is square-integrable, then the sequence *̂ is asymptotically normal by the

central limit theorem. The difference between *̂ and* − \ is asymptotically negligible.

Theorem A.4. If �
[
ℎ2 (-1, . . . , -A ;.1, . . . ,.B)

]
<∞, then the sequence

√
# (*−\−*̂) converges

in probability to zero. Consequently, the sequence
√
# (* − \) converges in distribution to the

normal law with mean zero and variance A2Z1,0/_ + B2Z0,1/(1−_), where, with -8 being i.i.d.

variables independent of the i.i.d. variables . 9 ,

Z2,3 = Cov
(
ℎ(-1, . . . , -A ;.1, . . . ,.B), ℎ(-1, . . . , -2, -

′
2+1, . . . , -

′
A ;.1, . . . ,.3 ,.

′
3+1, . . . ,.

′
B)

)
.

Proof. See Theorem 12.6 in Van der Vaart [11]. �

A.3 Empirical Processes

The following statements, definitions, theorems, and lemma are stated in Van der Vaart

[11] and Van der Vaart and Wellner [16].
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Let P= be the empirical distribution of an i.i.d. sample -1, . . . , -= from a probability

distribution % on a measurable space (X,A). The empirical distribution P= is the discrete

uniform measure that puts mass 1/= at each observation if points are measurable. We express

the empirical distribution as the linear combination P= = =−1 ∑=
8=1 X-8 of the Dirac measures at

the observations. Given a measurable function 5 :X→ R, we write P= 5 for the expectation of 5

under the empirical distribution, and % 5 for the expectation under %. Thus

P= 5 =
1
=

=∑
8=1

5 (-8) , % 5 =

∫
5 3%.

The empirical process evaluated at 5 is defined as G= 5 =
√
= (P= 5 −% 5 ). We mention some

definitions before delving into the empirical process theorems.

Definition A.5. A Borel probability measure ! is tight if for every Y > 0 there exists a compact set

 with ! ( ) ≥ 1−Y. A Borel measurable map - :Ω→D is called tight if its lawL(-) = %◦-−1

is tight. This is equivalent to there being a countable union of compact sets that has probability

1 under ! or - .

Definition A.6. A Borel probability measure ! is separable if there is a separable [70], measur-

able set with probability 1. A Borel measurable map - : Ω→ D is called separable if its law

L(-) = % ◦ -−1 is separable.

Since a countable union of compact sets in a metric space is separable, separability is

slightly weaker than tightness.

A.3.1 Brownian Bridge

To discuss a uniform version of the central limit theorem, let F be a class of measurable

functions such that

sup
5 ∈F
| 5 (G) −% 5 | <∞, for every G.
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Under this condition the empirical process {G= 5 : 5 ∈ F } can be viewed as a map in ℓ∞(F ) :={
I : F → R | ‖I‖F := sup 5 ∈F |I( 5 ) | <∞

}
. Consequently, it makes sense to investigate condi-

tions under which

G= =
√
= (P=−%)

3→ G, in ℓ∞(F ), (A.1)

where the limit G is a tight Borel measurable element in ℓ∞(F ). A class F for which this is

true is called a Donsker class, or %-Donsker class to be more complete (with (A.1) known as the

uniform central limit theorem).

The nature of the limit process G follows from consideration of its finite-dimensional

distributions. The finite-dimensional distributions G= 5 converge if and only if the functions 5

are square-integrable. In that case the multivariate central limit theorem yields that for any finite

set 51, . . . , 5: of functions,

(G= 51, . . . ,G= 5: )
3→N: (0,�),

where the : × :-matrix � has (8, 9)-th element % ( 58 −% 58)
(
5 9 −% 5 9

)
. Since convergence in

ℓ∞(F ) implies finite-dimensional convergence, it follows that the limit process {G 5 : 5 ∈ F }

must be a zero-mean Gaussian process with covariance function

�G 5G6 = % ( 5 −% 5 ) (6−%6) = % 5 6−% 5 %6,

for any 5 , 6 ∈ F , and we call {G 5 : 5 ∈ F } the %–Brownian bridge. Note that the sample paths

of the Brownian bridge are zero at the endpoints −∞ and∞. This is a consequence of the fact

that the difference of two distributions is zero at these points. A class of measurable functions is

called pre-Gaussian if the tight limit process G in the uniform central limit theorem (A.1) exists.
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Now, assume that 5 (G) = � (G ≤ C), then

G= 5 =
√
= (%= 5 −% 5 ) =

√
= (F= (C) −� (C))

3→N(0, � (C) (1−� (C))), (A.2)

where F= (C) = 1
=

∑=
8=1 � (-8 ≤ C) and � (C) = %(-1 ≤ C). Note that the right side of (A.2) is because

Var( 5 (-1)) = �
[
( 5 (-1) −� (C))2

]
= �

[
5 2(-1)

]
− �2(C) = %(-1 ≤ C) − �2(C) = � (C) − �2(C).

Moreover, for any finite set of points C1, . . . , C: , let 58 (G) = � (G ≤ C8). Then

(G= 51, . . . ,G= 5: ) =
√
= (F= (C1) −� (C1), . . . ,F= (C: ) −� (C: ))

3→N: (0,�),

where � =
(
� (C8 ∧ C 9 ) −� (C8)� (C 9 )

)
1≤8, 9≤: by noting that

Cov
(
58 (-1), 5 9 (-1)

)
= �

[
( 58 (-1) −� (C8)) ( 5 9 (-1) −� (C 9 ))

]
= �

[
58 (-1) 5 9 (-1)

]
−� (C8)� (C 9 )

and if C8 < C 9 ,

�
[
58 (-1) 5 9 (-1)

]
= �

[
58 (-1) ( 58 (-1) + 5 9 (-1) − 58 (-1))

]
= �

[
5 2
8 (-1)

]
+�

[
58 (-1) ( 5 9 (-1) − 58 (-1))

]
= � (C8) +�

[
� (-1 ≤ C8) (� (-1 ≤ C 9 ) − � (-1 ≤ C8))

]
= � (C8) +�

[
� (-1 ≤ C8)� (C8 < -1 ≤ C 9 )

]
= � (C8).

Hence, in general, �
[
58 (-1) 5 9 (-1)

]
= � (C8 ∧ C 9 ), and therefore

Cov
(
58 (-1), 5 9 (-1)

)
= � (C8 ∧ C 9 ) −� (C8)� (C 9 ).
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Thus, G= converges in distribution to a Brownian bridge G� with mean zero and covariance

function

� (B∧ C) −� (B)� (C) (A.3)

for any B, C ∈ R.

Theorem A.7. (Donsker). If -1, -2, . . . are i.i.d. random variables with distribution function

�, then the sequence of empirical processes
√
= (F=−�) converges in distribution in the space

� [−∞,∞] to a tight random element G� , whose finite-dimensional distributions are zero-mean

normal with covariance function (A.3).

Proof. See Theorem 19.3 and Theorem 19.5 in Van der Vaart [11]. �

Theorem A.8. If G� is a �-Brownian bridge process indexed by the half-lines (−∞, C], then

−
∫
G�3� ∼ G� (�),

where the right side of both equality denotes a �–Brownian bridge process indexed by the single

function �.

Proof. This theorem is stated as an exercise in Van der Vaart and Wellner [16]. See Section B.1

for a proof. �

A.3.2 Maximum Likelihood Estimators

If -1, . . . , -= are a random sample from a density ?\ , then the maximum likelihood

estimator \̂= maximizes the function \ ↦→ P= log ?\ . Hence, it is an "-estimator with the score

function ¤ℓ\ = m
m\

log ?\ .

Theorem A.9. Suppose that there exists a measurable function ¤ℓ with %\0
¤ℓ2 <∞ such that, for

every \1 and \2 in a neighborhood of \0 ∈ Θ ⊂ R: ,
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��log ?\1 (G) − log ?\2 (G)
�� ≤ ¤ℓ(G) ‖\1− \2‖ .

Furthermore, suppose that there exists a measurable vector-valued function ¤ℓ\0 such that, as

\→ \0,

∫ [
√
?\ −
√
?\0 −

1
2
(\ − \0)> ¤ℓ\0

√
?\0

]2
3` = >

(
‖\ − \0‖2

)
. (A.4)

If the Fisher information matrix I\0 = %\0
¤ℓ\0
¤ℓ>
\0

is nonsingular and \̂= is consistent, then

√
=

(
\̂=− \0

)
= I−1

\0
G= ¤ℓ\0 (-8) + >? (1).

In particular, the sequence
√
=

(
\̂=− \0

)
is asymptotically normal with mean zero and covariance

matrix I−1
\0

.

Proof. See Theorem 5.39 in Van der Vaart [11]. �

Note that m
m\

√
?\ =

1
2√?\

m
m\
?\ =

1
2

(
m
m\

log ?\
)√
?\ , so if the map \ ↦→ %\0 log ?\ is twice

continuously differentiable at \0, then the condition (A.4) holds from the Taylor expansion.

A.3.3 Functional Delta Method

A map q :Dq→ E, defined on a subset Dq of a normed space D that contains \, is called

Hadamard differentiable at \ if there exists a continuous, linear map q′
\

: D→ E such that

q (\ + CℎC) −q(\)C
−q′\ (ℎ)


E

→ 0, as C ↓ 0,

for every ℎC → ℎ such that \ + CℎC is contained in Dq for all small C > 0. The definition of

Hadamard differentiable as given requires that q′
\

: D→ E exists as a map on the whole space D.

If this is not the case, but q′
\

exists on a subset D0 and the sequences ℎC → ℎ are restricted to

converge to limits ℎ ∈ D0, then q is called Hadamard differentiable tangentially to this subset.
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Theorem A.10. (Delta method). Let D and E be normed linear spaces. Let q : Dq ⊂ D→ E be

Hadamard differentiable at \ tangentially toD0. Let -= :Ω=→Dq be maps with A= (-=− \)
3→ -

for some sequence of numbers A=→∞, where - is separable and takes its values in D0. Then

A= (q (-=) −q(\))
3→ q′

\
(-). If q′

\
is defined and continuous on the whole space D, then the

sequence A= (q (-=) −q(\)) = q′\ (A= (-=− \)) + >? (1).

Proof. See Theorem 3.9.4 in Van der Vaart and Wellner [16]. �

Given a cadlag function � and a function of bounded variation � on an interval [0, 1] ⊂ R,

define

q(�, �) =
∫
(0,1]

�3�.

This map is Hadamard differentiable if the domain is restricted to pairs (�, �) such that � is of

total variation bounded by some fixed constant.

Lemma A.11. For each fixed ", the map q : �q ⊆ � [0, 1] ×BV" [0, 1] → R is Hadamard

differentiable at each (�, �) ∈ �q such that
∫
|3�| <∞. The derivative is given by

q′�,� (U, V) =
∫

�3V+
∫
U3� = �V

����1
0

−
∫

V−3�+
∫
U3�,

where V− is denoted as the left-continuous version of a cadlag function V.

Proof. See Lemma 3.9.17 in Van der Vaart and Wellner [16]. �

A.4 Trees

The following statements, lemmas, and definition are stated in Wager and Athey [31].

Lemma A.12. Let ) be a regular, random-split tree and let ! (G) denote its leaf containing G.

Suppose that -1, . . . , -B ∼ Unif
(
[0,1]3

)
independently. Then, for any 0 < [ < 1, and for large

enough B,
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%
©«diam 9 (! (G)) ≥

( B

2: −1

)− 0.99(1−[) log( (1−U)−1)
log(U−1)

c
3 ª®¬ ≤

( B

2: −1

)− [2
2

1
log(U−1)

c
3

,

where diam 9 (! (G)) denotes the length of the longest such segment that is parallel to the 9-th

axis.

Proof. See Lemma 1 in Wager and Athey [31]. �

To address the challenges associated with analyzing greedy tree models such as CART

trees, Wager and Athey [31] followed the approach of Lin and Jeon [71] and investigated

potential nearest neighbor predictors, which is a more general class of predictors performing a

nearest-neighbor search over rectangles.

Definition A.13. Consider a set of points -1, . . . , -B ∈ R3 and a fixed G ∈ R3 . A point -8 is a

potential nearest neighbor (PNN) of G if the smallest axis-aligned hyperrectangle with vertices G

and -8 contains no other points - 9 . Extending this notion, a PNN :-set of G is a set of points

Λ ⊆ {-1, . . . , -B} of size : ≤ |! | < 2: −1 such that there exists an axis-aligned hyperrectangle !

with vertex G containing Λ and no other training points. A training sample -8 is called a :-PNN

of G if there exists a PNN :-set of G containing -8. Finally, a predictor ) is a :-PNN predictor

over {/} if, given a training set

{/} = {(-1,.1) , . . . , (-B,.B)} ∈
{
R3 ×Y

}B
and a test point G ∈ R3 , ) always outputs the average of the responses .8 over a :-PNN set of G.

Definition A.13 allows us to describe a wide variety of tree predictors. For example,

Lin and Jeon [71] showed that any decision tree that makes axis-aligned splits and has leaves

containing between : and 2: − 1 points is a :-PNN predictor. In particular, the CART trees
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grown up to a leaf size : are :-PNN predictors. The predictions made by :-PNN predictors can

always be expressed as

) (G;b, /1, . . . , /B) =
B∑
8=1
,8.8,

where

,8 =


1

|{8:-8∈! (G)}| if 8 ∈ {8 : -8 ∈ ! (G)},

0 otherwise.

If the tree is honest, then,8 is independent of .8 given -8 for each 8. A crucial characteristic of

:-PNN predictors is their ability to indicate whether,8 is likely to be non-zero, even if only /8

is observed. This feature is essential in showing the incrementality of :-PNNs.

Lemma A.14. Suppose that the observations -1, -2, . . . are i.i.d. on [0,1]3 with a density 5

that is bounded away from infinity, and let ) be any symmetric :-PNN predictor. Then, there is a

constant � 5 ,3 depending only on 5 and 3 such that, as B gets large,

BVar (� [,1 | /1]) &
� 5 ,3

: log(B)3
, (A.5)

where,8 is the indicator for whether the observation is selected in the subsample. When 5 is

uniform over [0,1]3 , the bound holds with � 5 ,3 = 2−(3+1) (3 −1)!.

Proof. See Lemma 4 in Wager and Athey [31]. �

Note that (A.5) can be interpreted as a lower bound on how much information /1 contains

about the selection event,1. This result allows for the proof of the incrementality of all honest

and regular random-split trees. Notice that any symmetric U-regular tree following Definition 2.4

is also a symmetric :-PNN predictor.
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Appendix B

Proofs of the Theorems

In this appendix, we provide proofs for the main theorems stated in the previous chapters.

B.1 Theorem on Empirical AUROC Asymptotics

Theorem A.8 is stated as an exercise in Van der Vaart and Wellner [16] without a proof.

We provide a proof for it below.

Proof of Theorem A.8. Note thatG� has mean zero and covariance function� (B∧ C) −� (B)� (C)

for any B, C ∈ R. Hence, −
∫
G�3� has mean zero and covariance function

∫ ∫
(� (B∧ C) −� (B)� (C)) 3� (B)3� (C). (B.1)

It can be shown that the covariance function (B.1) has an alternative expression as:
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∫
C∈R

(∫
B∈(−∞,C]

(� (B) −� (B)� (C)) 3� (B) +
∫
B∈[C,∞)

(� (C) −� (B)� (C)) 3� (B)
)
3� (C)

=

∫
C∈R

[∫
B∈(−∞,C]

� (B)3� (B)
]
(1−� (C)) 3� (C) +

∫
C∈R

[∫
B∈[C,∞)

(1−� (B)) 3� (B)
]
� (C)3� (C)

=

∫
C∈R

[∫
B∈(−∞,C]

� (B)3� (B)
]
(1−� (C)) 3� (C) +∫

C∈R

[
1−

∫
B∈R

� (B)3� (B) −
∫
B∈(−∞,C]

(1−� (B)) 3� (B)
]
� (C)3� (C)

=

∫
B∈R

[∫
C∈[B,∞)

3� (C)
]
� (B)3� (B) +

∫
�3� −

(∫
�3�

)2
−

∫
C∈R

[∫
B∈(−∞,C]

3� (B)
]
� (C)3� (C)

=

∫
(1−�)�3� +

∫
�3� −

(∫
�3�

)2
−

∫
��3�

= 2
∫
�3� −2

∫
��3� −

(∫
�3�

)2

= 2
(
��

����∞
−∞
−

∫
�3�

)
−

(
��2

����∞
−∞
−

∫
�23�

)
−

(
��

����∞
−∞
−

∫
�3�

)2

=

∫
�23� −

(∫
�3�

)2
.

The integral −
∫
G�3� can be understood as the limit of finite linear combinations of Gaussian

processes in the sense of the Riemann–Stieltjes integral, so it is also a Gaussian process. It can

be demonstrated that both G� (�) and −G� (�) satisfy all the conditions mentioned above. To

determine the correct process, observe that

∫
�3� = 1−

∫
�3�,

so the resulting process should have the opposite sign of −
∫
G�3�. Thus, −

∫
G�3� ∼ G� (�).

�
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B.2 Outlier-Robust Random Forest Regression for Between-
Subject Attributes

B.2.1 Asymptotic Unbiasedness

Proof of Theorem 2.6. Since a random forest averages independently generated trees, its bias is

of the same order as that of a single tree. Thus, it suffices to prove the bound for the tree estimator.

Assume that ! (G (1)) ≠ ! (G (2)). By the honesty assumption (Definition 2.2), the estimation of \

is independent of the tree construction process. Consequently, \̂tree is an unbiased estimator, and

we have:

� [) (G (1) , G (2);/)] − \ (G (1) , G (2))

=� [\̂tree(G (1) , G (2))] − \ (G (1) , G (2))

=�

[
� [ℎ(.8,. 9 ) | (-8, - 9 ) ∈ ! (G (1)) × ! (G (2))] −� [ℎ(.8,. 9 ) | (-8, - 9 ) = (G (1) , G (2))]

]
.

(B.2)

Since \ (G (1) , G (2)) is Lipschitz continuous, it follows that:

���� [ℎ(.8,. 9 ) | (-8, - 9 ) ∈ ! (G (1)) × ! (G (2))] −� [ℎ(.8,. 9 ) | (-8, - 9 ) = (G (1) , G (2))]���
≤  � (! (G (1)), ! (G (2))),

where  is the Lipschitz constant and � (! (G (1)), ! (G (2))) =
√

diam(! (G (1)))2 +diam(! (G (2)))2.

Thus, to bound (B.2), it is necessary to bound the average diameters of ! (G (1)) and ! (G (2))

simultaneously.

To achieve this, let [ =
√

log
(
(1−U)−1) . Since U ≤ 0.2, it follows that [ ≤ 0.48, ensuring

0.99 · (1−[) ≥ 0.51. By applying the Pythagorean theorem, we obtain the following:
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{
� (! (G (1)), ! (G (2))) ≥

√
23�(B,0.51)

}
⊆

3⋃
9=1

({
diam 9 (! (G (1))) ≥ �(B,0.51)

}
∪

{
diam 9 (! (G (2))) ≥ �(B,0.51)

})
,

where �(B, Z) =
(

B
2:−1

)−Z log( (1−U)−1)
log(U−1)

c
3

.

Using Lemma A.12 and Boole’s inequality [72], we find that for sufficiently large B,

%

(
� (! (G (1)), ! (G (2))) ≥

√
23�(B,0.51)

)
≤ 23�(B,0.5).

Thus, for sufficiently large B, the bias can be bounded as follows:

���� [) (G (1) , G (2);/)] − \ (G (1) , G (2))���
≤�

[���� [ℎ(.8,. 9 ) | (-8, - 9 ) ∈ ! (G (1)) × ! (G (2))] −� [ℎ(.8,. 9 ) | (-8, - 9 ) = (G (1) , G (2))]���]
≤ � [� (! (G (1)), ! (G (2)))]

< 

(√
23�(B,0.51) +

√
23 ·23�(B,0.5)

)
≤ 
√

23 (1+23) �(B,0.5).

�
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B.2.2 Asymptotic Normality

Given a regression tree ) and independent training samples /1, . . . , /=, the Hájek projec-

tion [11] of ) is defined as

)̂Hájek = � [)] +
=∑
8=1
(� [) | /8] −� [)]) . (B.3)

According to classical *-statistics theory, the variance of Hájek projection satisfies

Var()̂Hájek) ≤ Var()). However, for ) , the following asymptotic condition does not hold:

lim
=→∞

Var()̂Hájek)
Var()) = 1 implies that lim

=→∞

�

[
‖)̂Hájek−) ‖22

]
Var()) = 0.

This indicates that the classical Hájek projection framework cannot be directly employed

to establish the asymptotic normality of ) . To address this limitation, we introduce a weaker

criterion termed a-incrementality for between-subject attributes. This criterion is adapted from

the work of Wager and Athey [31].

Definition B.1. The predictor ) is said to be a(B)-incremental at (G (1) , G (2)) if it satisfies

Var()̂Hájek(G (1) , G (2);/1, . . . , /B))
Var() (G (1) , G (2);/1, . . . , /B))

& a(B),

where )̂Hájek represents the Hájek projection of) as defined in (B.3), and the notation 5 (B) & 6(B)

indicates that

liminf
B→∞

5 (B)
6(B) ≥ 1.

To achieve the asymptotic normality of ) , our method involves two main steps. First,

we derive lower bounds for the incrementality of regression trees (Theorem B.2). Following

this, we demonstrate that by applying subsampling, weakly incremental predictors ) can be

transformed into 1-incremental ensembles (Lemma B.3), thereby aligning the problem with
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classical theoretical frameworks. This approach is based on the framework originally developed

by Wager and Athey [31].

Theorem B.2. Assume that the conditions of Lemma A.14 are satisfied and that ) is a double-

sample tree as described in Procedure 2.1 that meets the criteria of honesty (Definition 2.2),

U-regularity (Definition 2.4) with U ≤ 0.2, and symmetry (Definition 2.5). Further, assume

that the conditional moment \ (G (1) , G (2)) is Lipschitz continuous at the test point (G (1) , G (2)).

Additionally, suppose that the variance Var(� (.1 ≤ .2) | -1 = G
(1)) is positive. Then ) is a(B)-

incremental at (G (1) , G (2)), where

a(B) =
� 5 ,3

16log(B)3
,

and � 5 ,3 is the constant from Lemma A.14.

Proof. We first prove the case where the tree is grown using /1, . . . , /B without using the

responses .1, . . . ,.B to determine where to place its splits, in contrast to the double-sample trees

considered in the theorem. Note that the tree grown in this manner also satisfies honesty.

Assume that ! (G (1)) ≠ ! (G (2)). According to Lemma A.14, we have

Var(� [,1 | /1]) = Ω
(

1
B log(B)3

)
. (B.4)

Consider the truncated tree predictor defined by

) ′(G (1) , G (2);/) = ) (G (1) , G (2);/) · �
(
� (! (G (1)), ! (G (2))) ≤ B−^(0.51)

)
,

where

� (! (G (1)), ! (G (2))) =
√

diam(! (G (1)))2 +diam(! (G (2)))2 and ^(Z) = Z c
3

log
(
(1−U)−1)

log
(
U−1) .
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Similarly, define the truncated selection variables as

,′8 =,8 · �
(
� (! (G (1)), ! (G (2))) ≤ B−^(0.51)

)
.

Applying the ANOVA decomposition (as described by Efron and Stein [73]), we obtain

Var
(
� [) (G (1) , G (2);/) | /1] −� [) ′(G (1) , G (2);/) | /1]

)
= Var

(
�

[
) (G (1) , G (2);/)�

(
� (! (G (1)), ! (G (2))) > B−^(0.51)

)���/1

] )
≤ 1
B

Var
(
) (G (1) , G (2);/)�

(
� (! (G (1)), ! (G (2))) > B−^(0.51)

))
≤ 1
B |! (1) | |! (2) |

∑
8∈! (1)
9∈! (2)

� [� (.8 ≤ . 9 )2 | (-8, - 9 ) ∈ ! (G (1)) × ! (G (2))] ×

%

(
� (! (G (1)), ! (G (2))) > B−^(0.51)

)
≤

sup(G (1) ,G (2) )∈[0,1]3×[0,1]3
{
%(.8 ≤ . 9 | (-8, - 9 ) = (G (1) , G (2)))

}
B

×

%

(
� (! (G (1)), ! (G (2))) > B−^(0.51)

)
≤ 1
B
%

(
� (! (G (1)), ! (G (2))) > B−^(0.51)

)
≤ 1
B
%
©«
3⋃
9=1

({
diam 9 (! (G (1))) >

1
√

23
B−^(0.51)

}
∪

{
diam 9 (! (G (2))) >

1
√

23
B−^(0.51)

})ª®¬
≤
√

23B−(^(0.5)+1) by Lemma A.12 and Boole’s inequality.

Note that since logarithmic growth is slower than polynomial growth, the variance of the

difference between � [) | /1] and � [) ′ | /1] decays faster than the rate specified in (B.4).

Additionally, for random variables � and �, we have:

92



Var(�−�) = Var(�) +Var(�) −2Cov(�, �)

≥ Var(�) +Var(�) −2
√

Var(�)Var(�) by Cauchy-Schwarz inequality [74]

=

(√
Var(�) −

√
Var(�)

)2
.

Therefore,

(√
Var(�) −

√
Var(�)

)2
≤ Var(�−�) → 0

implies that

Var(�) −Var(�) → 0.

Thus, as B→∞,

Var
(
� [) (G (1) , G (2);/) | /1]

)
−Var

(
� [) ′(G (1) , G (2);/) | /1]

)
→ 0. (B.5)

Similarly, by a similar argument, we also have:

Var(� [,1 | /1]) −Var(� [,′1 | /1]) → 0. (B.6)

Since (B.5) holds, we shift our focus from analyzing ) to analyzing ) ′. Our objective

is to establish a lower bound for the variance of the conditional expectation of ) ′(G (1) , G (2);/)

given /1. We begin by noting that, for random variables �, �, and �, and applying the law of

iterated expectations [61], we obtain:
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Var (� [� | �,�] −� [� | �]) = �
[
(� [� | �,�] −� [� | �])2

]
= �

[
� [� | �,�]2

]
+�

[
� [� | �]2

]
−2� [� [� | �,�]� [� | �]]

= �
[
� [� | �,�]2

]
−�

[
� [� | �]2

]
= Var(� [� | �,�]) −Var(� [� | �]).

Thus, we have:

Var
(
� [) ′(G (1) , G (2);/) | /1]

)
= Var

(
� [) ′(G (1) , G (2);/) | -1]

)
+

Var
(
� [) ′(G (1) , G (2);/) | /1) −� [) ′(G (1) , G (2);/) | -1]

)
≥ Var

(
� [) ′(G (1) , G (2);/) | /1] −� [) ′(G (1) , G (2);/) | -1]

)
.

Therefore, it is sufficient to find a lower bound for the latter term. Next, we observe that, given

the honesty condition and the i.i.d. sampling assumption,

� [) ′(G (1) , G (2);/) | /1] −� [) ′(G (1) , G (2);/) | -1]

=

=∑
9=2
� [,′1(G

(1)),′9 (G (2))� (.1 ≤ . 9 ) | -1,.1] −
=∑
9=2
� [,′1(G

(1)),′9 (G (2))� (.1 ≤ . 9 ) | -1]

= � [,′1(G
(1)) | -1]

©«�

=∑
9=2
,′9 (G (2))� (.1 ≤ . 9 )

������.1

 −�

=∑
9=2
,′9 (G (2))� (.1 ≤ . 9 )

������-1

ª®¬
= � [,′1(G

(1)) | -1] (� [� (.1 ≤ .2) | .1] −� [� (.1 ≤ .2) | -1]) .

Given the honesty condition and Lipschitz continuity assumption, it follows that
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Var
(
� [) ′(G (1) , G (2);/) | /1] −� [) ′(G (1) , G (2);/) | -1]

)
= Var

(
� [,′1(G

(1)) | -1]
(
� [� (.1 ≤ .2) | .1] −

(
� [� (.1 ≤ .2) | -1 = G

(1)] +$
(
B−^(0.5)

))))
= Var

(
� [,′1(G

(1)) | -1]
(
� [� (.1 ≤ .2) | .1] −� [� (.1 ≤ .2) | -1 = G

(1)]
))
+

$

(
�

[
� [,′1(G

(1)) | -1]2
]
B−2^(0.5)

)
, (B.7)

where it is noteworthy that the error term in Equation (B.7) decays at the order of B−(1+2^(0.5))

since �
[
� [,′1(G

(1)) | -1]2
]
=$ (1/B) by the proof in Lemma A.14. Finally, by utilizing the law

of iterated expectations, the principal term in Equation (B.7) can be expressed as

Var
(
� [,′1(G

(1)) | -1]
(
� [� (.1 ≤ .2) | .1] −� [� (.1 ≤ .2) | -1 = G

(1)]
))

= �

[
� [,′1(G

(1)) | -1]2�
[(
� [� (.1 ≤ .2) | .1] −� [� (.1 ≤ .2) | -1 = G

(1)]
)2

����-1

] ]
−

�

[
� [,′1(G

(1)) | -1]�
[(
� [� (.1 ≤ .2) | .1] −� [� (.1 ≤ .2) | -1 = G

(1)]
)���-1

] ]2
.

(B.8)

Given that the first conditional moment of � (.1 ≤ .2) given (-1, -2) satisfies a Lipschitz

condition, we can deduce:

�

[
� [,′1(G

(1)) | -1]2�
[(
� [� (.1 ≤ .2) | .1] −� [� (.1 ≤ .2) | -1 = G

(1)]
)2

����-1

] ]
−

�

[
� [,′1(G

(1)) | -1]2
]
Var(� (.1 ≤ .2) | -1 = G

(1)) → 0.

The second term in the expansion (B.8) can be shown to be of order 1/B2 since the expected

value �
[
� [,′1(G

(1)) | -1]
]

is$ (1/B), as established in the proof in Lemma A.14. Consequently,

both this term and the error term in Equation (B.7) are negligible compared to the first term in

the expansion (B.8), leading to the conclusion that
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Var
(
� [) ′(G (1) , G (2);/) | /1]

)
& Var

(
� [,′1(G

(1)) | -1]
)
Var(� (.1 ≤ .2) | -1 = G

(1)).

By applying the results from (B.5) and (B.6), we can establish that

Var
(
� [) (G (1) , G (2);/) | /1]

)
& Var

(
� [,1(G (1)) | -1]

)
Var(� (.1 ≤ .2) | -1 = G

(1)). (B.9)

Building on (B.9) and Lemma A.14, it follows that

Var
(
� [) (G (1) , G (2);/) | /1]

)
&

� 5 ,3

:B log(B)3
Var(� (.1 ≤ .2) | -1 = G

(1)).

Furthermore, according to Theorem 2.6 and the continuous mapping theorem, we have

� [� (.1 ≤ .2) | -1 ∈ ! (G (1);/)]
?
→ � [� (.1 ≤ .2) | -1 = G

(1)],

which, in conjunction with*-statistics theory [11] implies that

:Var() (G (1) , G (2));/)) ≤ |{8 : -8 ∈ ! (G (1);/)}| ·Var() (G (1) , G (2));/))

= 4Var() (G (1) , G (2));/) | -1)
?
→ 4Var(� (.1 ≤ .2) | -1 = G

(1))

as : remains constant and the range of the feature values within the leaves continues to decrease
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in each dimensions of the feature space. Consequently, we can conclude that

Var()̂Hájek(G (1) , G (2);/))
Var() (G (1) , G (2);/))

& :
BVar

(
� [) (G (1) , G (2);/) | /1]

)
4Var(� (.1 ≤ .2) | -1 = G (1))

&
� 5 ,3

4log(B)3
. (B.10)

We now turn to the case of the double-sample tree. To begin, note that for random

variables � and � with Cov(�, �) < 0, we observe that:

Var(�+�) = Var(�) +Var(�) +2Cov(�, �)

≥ Var(�) +Var(�) −2
√

Var(�)Var(�) by Cauchy-Schwarz inequality

≥ Var(�) +Var(�) −2
(
1
4

Var(�) +Var(�)
)

by the inequality of arithmetic and geometric means

=
1
2

Var(�) −Var(�).

Then, we have:

Var()̂Hájek) = BVar (� [) | /1]) = BVar(� [� (1 ∈ I)) | /1) +� [� (1 ∉ I)) | /1])

≥ B
2

Var(� [� (1 ∈ I)) | /1]) − BVar(� [� (1 ∉ I)) | /1])

≈ B
8

Var(� [) | /1] | 1 ∈ I) −
B

4
Var(� [) | /1] | 1 ∉ I),

where the approximation in the final line stems from the fact that the probability % (1 ∈ I | /1)

is approximately 1/2 regardless of the value of /1. Applying the result from (B.10), we obtain

bB/2cVar (� [) | /1] | 1 ∈ I) &
� 5 ,3

4log(B)3
Var()).
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Moreover, by leveraging classical results such as those found in Hoeffding [75], we can assert

that

dB/2eVar (� [) | /1] | 1 ∉ I) ≤ Var(� [) | {/ 9 : 9 ∉ I}] | I);

then, invoking Lemma A.12 and the reasoning used in proving Theorem 2.6, we deduce that

Var(� [) | {/ 9 : 9 ∉ I}] | I) =$ ©«B
−

log( (1−U)−1)
log(U−1)

c
3 ª®¬ ,

As a result, the contribution from the condition where 1 ∉ I can be considered negligibly small

compared to the contribution from the condition where 1 ∈ I for sufficiently large B. Thus, we

have:

Var()̂Hájek) &
B

8
Var(� [) | /1] | 1 ∈ I)

&
� 5 ,3

16log(B)3
Var()).

�

A double-sample tree serves as an honest, symmetric :-PNN predictor for the I-sample,

while the data from the J -sample can be effectively integrated into the auxiliary noise term b.

Lemma B.3. Consider \̂forest(G (1) , G (2)) as the estimate of \ (G (1) , G (2)) provided by a random

forest with base learner ) as defined in Equation (2.3). Let \̂forest,Hájek denote the Hájek

projection of \̂forest as specified in Equation (B.3). Then, we have

�

[(
\̂forest(G (1) , G (2)) − \̂forest,Hájek(G (1) , G (2))

)2
]
≤

( B
=

)2
Var

(
) (G (1) , G (2);b, /1, . . . , /B)

)
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for all 2 ≤ B ≤ =, assuming that the variance Var()) of the base learner is finite.

Proof. Using the ANOVA decomposition approach introduced by Efron and Stein [73] for

individual trees ) , a random forest estimator \̂forest(G (1) , G (2)), as specified in Equation (2.3), can

be expressed as

\̂forest(G (1) , G (2);/1, . . . , /=) = � [)] +
B

=

=∑
8=1
)1 (/8) +

B(B−1)
=(=−1)

∑
(8, 9)∈((=2 )

)2
(
/8, / 9

)
+ . . .

+
∏B−1
8=0 (B− 8)∏B−1
8=0 (=− 8)

∑
(81,...,8B)∈((=B )

)B
(
/81 , . . . , /8B

)
.

Based on Equation (B.3), the Hájek projection of \̂forest,Hájek can be expressed as

\̂forest,Hájek(G (1) , G (2);/1, . . . , /=) = � [)] +
B

=

=∑
8=1
)1 (/8) . (B.11)

In the case of projections [11] , we have

�

[(
\̂forest(G (1) , G (2)) − \̂forest,Hájek(G (1) , G (2))

)2
]

= Var
(
\̂forest(G (1) , G (2)) − \̂forest,Hájek(G (1) , G (2))

)
.

Given that the functions ): (·) are pairwise uncorrelated, it follows that:
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�

[(
\̂forest(G (1) , G (2)) − \̂forest,Hájek(G (1) , G (2))

)2
]
=

B∑
:=2

(∏:−1
8=0 (B− 8)∏:−1
8=0 (=− 8)

)2 (
=

:

)
Var(): (/1, . . . , /: ))

=

B∑
:=2

∏:−1
8=0 (B− 8)∏:−1
8=0 (=− 8)

(
B

:

)
Var(): (/1, . . . , /: ))

≤ B(B−1)
=(=−1)

B∑
:=2

(
B

:

)
Var(): (/1, . . . , /: ))

≤ B(B−1)
=(=−1)

=∑
:=1

(
=

:

)
Var(): (/1, . . . , /: ))

=
B(B−1)
=(=−1) Var())

≤ B
2

=2 Var()),

for all 2 ≤ B ≤ =. �

The asymptotic normality result in Theorem B.4 follows from combining Theorem B.2

with Lemma B.3.

Theorem B.4. Consider the random forest estimator \̂forest, = (G (1) , G (2)) trained under the condi-

tions specified in Theorem B.2. Additionally, assume that the subsample size B= adheres to the

following conditions:

lim
=→∞

B= =∞ and lim
=→∞

B= log(=)3
=

= 0,

and that for pairs (8, 9) ∈
(
(=

2

)
,

�

[ ���� [ℎ(.8,. 9 ) | .8] −� [ℎ(.8,. 9 ) | -8 = G (1)]���2+X����-8 = G (1)] ≤ "
for some positive constants X and " , uniformly across all G (1) ∈ [0,1]3 . Under these assumptions,
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there exists a sequence f= (G (1) , G (2)) → 0 such that

\̂forest, = (G (1) , G (2)) −� [\̂forest, = (G (1) , G (2))]
f= (G (1) , G (2))

3→N(0,1), (B.12)

where N(0,1) denotes the standard normal distribution.

Proof. By Equation (B.11), the variance of \̂forest,Hájek can be expressed as

f2
= =

B2

=
Var()1(/1)) =

B

=
Var()̂Hájek) ≤

B

=
Var()) → 0.

Furthermore, using Theorem B.2 in conjunction with Lemma B.3, we derive the follow-

ing:

1
f2
=

�

[(
\̂forest(G (1) , G (2)) − \̂forest,Hájek(G (1) , G (2))

)2
]
≤

( B
=

)2 Var())
f2
=

=
B

=

Var())
Var()̂Hájek)

.
16B log(B)3
=� 5 ,3

→ 0.

As a result, by applying Slutsky’s theorem, it is sufficient to verify that result (B.12) is satisfied

for the Hájek projection of the random forest, \̂forest,Hájek(G (1) , G (2)).

Given the definition of f=, it reduces to establishing the asymptotic normality of

\̂forest,Hájek(G (1) , G (2)). This can be accomplished by employing the Lyapunov central limit

theorem (CLT) [76]. Specifically, by writing the Hájek projection of the random forest as

\̂forest,Hájek(G (1) , G (2)) −� [\̂forest(G (1) , G (2))] =
B

=

=∑
8=1
(� [) | /8] −� [)]) ,

101



the Lyapunov CLT states that if Lyapunov’s condition

lim
=→∞

=∑
8=1

�
[
|� [) | /8] −� [)] |2+X

](∑=
9=1 Var

(
� [) | / 9 ]

) )1+X/2 = 0 (B.13)

holds for some X > 0, then

=∑
8=1

� [) | /8] −� [)](∑=
9=1 Var

(
� [) | / 9 ]

) )1/2
3→N(0,1).

Thus, it suffices to verify Lyapunov’s condition (B.13) holds.

Assuming that ! (G (1)) ≠ ! (G (2)), we can express ) as:

) =
∑

(8, 9)∈((=2 )
,8 (G (1)), 9 (G (2))� (.8 ≤ . 9 ),

following the notations defined in Section A.4. Based on the honesty condition, the law of

iterated expectations, and the assumption of i.i.d. sampling, we have:

�


∑

(8, 9)∈((=\{1}2 )
,8 (G (1)), 9 (G (2))� (.8 ≤ . 9 )

�������/1


= �

�


∑
(8, 9)∈((=\{1}2 )

,8 (G (1)), 9 (G (2))� (.8 ≤ . 9 )

�������-8, /1


�������/1


= �


∑

(8, 9)∈((=\{1}2 )
,8 (G (1))� [, 9 (G (2))� (.8 ≤ . 9 ) | -8]

�������/1

 .
Thus,
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� [) | /1] −� [)]

= �

,1(G (1))
©«
=∑
9=2
, 9 (G (2))� (.1 ≤ . 9 ) −

=∑
9=2
� [, 9 (G (2))� (.1 ≤ . 9 ) | -1]

) ������/1

 +
�


∑

(8, 9)∈((=2 )
,8 (G (1))� [, 9 (G (2))� (.8 ≤ . 9 ) | -8]

������/1

 −� [)] . (B.14)

Note that the two right-hand-side terms in Equation (B.14) are both mean-zero. By

invoking Jensen’s inequality [77], we know that for any random variables � and �,

�����+�2

����2+X ≤ |�|2+X + |� |2+X2
.

Applying this inequality in our context, we obtain the following bound:

2−(1+X)�
[
|� [) | /1] −� [)] |2+X

]
≤ �


�������

,1(G (1))
©«
=∑
9=2
, 9 (G (2))� (.1 ≤ . 9 ) −

=∑
9=2
� [, 9 (G (2))� (.1 ≤ . 9 ) | -1]

ª®¬
������/1


������
2+X +

�


�������


∑

(8, 9)∈((=2 )
,8 (G (1))� [, 9 (G (2))� (.8 ≤ . 9 ) | -8]

������/1

 −� [)]
������
2+X . (B.15)

Furthermore, due to the honesty condition, where � [,1(G (1)) | /1] = � [,1(G (1)) | -1],

and under the uniform (2+ X)-moment bounds on the conditional distribution of � (.8 ≤ . 9 ) given

-8, we deduce:
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�


�������

,1(G (1))
©«
=∑
9=2
, 9 (G (2))� (.1 ≤ . 9 ) −

=∑
9=2
� [, 9 (G (2))� (.1 ≤ . 9 ) | -1]

ª®¬
������/1


������
2+X

= �

[
� [,1(G (1)) | -1]2+X�

[
|� [� (.1 ≤ .2) | .1] −� [� (.1 ≤ .2) | -1] |2+X

��-1
] ]

≤ "�
[
� [,1(G (1)) | -1]2+X

]
≤ "�

[
� [,1(G (1)) | -1]2

]
since,1(G (1)) ≤ 1. (B.16)

Meanwhile, recognizing that � [� (.8 ≤ . 9 ) | -8] ≤ 1 for all (8, 9) ∈
(
(=

2

)
, and leveraging the i.i.d.

sampling assumption along with the law of iterated expectations, we can deduce the following

variance bound:

Var
©«�


∑

(8, 9)∈((=2 )
,8 (G (1))� [, 9 (G (2))� (.8 ≤ . 9 ) | -8]

������/1


ª®®¬

= Var

(
� [,1(G (1)) | -1]� [� (.1 ≤ .=) | -1] +

=−1∑
8=2
�

[
,8 (G (1))� [� (.8 ≤ .=) | -8]

] )
= Var

(
� [,1(G (1)) | -1]� [� (.1 ≤ .=) | -1]

)
+ (=−2)Var

(
�

[
,2(G (1))� [� (.2 ≤ .=) | -2]

] )
≤ Var

(
� [,1(G (1)) | -1]

)
≤ �

[
� [,1(G (1)) | -1]2

]
.

Subsequently, we can establish the following bound:
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�


�������


∑

(8, 9)∈((=2 )
,8 (G (1))� [, 9 (G (2))� (.8 ≤ . 9 ) | -8]

������/1

 −� [)]
������
2+X

≤ 2XVar
©«�


∑

(8, 9)∈((=2 )
,8 (G (1))� [, 9 (G (2))� (.8 ≤ . 9 ) | -8]

������/1


ª®®¬

≤ 2X�
[
� [,1(G (1)) | -1]2

]
. (B.17)

Thus, by combining inequalities (B.15), (B.16), and (B.17), Lyapunov’s condition (B.13)

reduces to

lim
=→∞

=�
[
� [,1(G (1)) | -1]2

]
(=Var (� [) | /1]))1+X/2

= 0. (B.18)

From (B.9), we have

Var (� [) | /1]) = Ω
(
�

[
� [,1(G (1)) | -1]2

]
Var(� (.1 ≤ .2) | -8 = G (1))

)
.

Given that Var(� (.8 ≤ . 9 ) | -8 = G (1)) > 0 by assumption, we can derive the following using

Lemma A.14:

=�
[
� [,1(G (1)) | -1]2

]
(=Var (� [) | /1]))1+X/2

.
(
=�

[
� [,1(G (1)) | -1]2

] )−X/2 (
Var(� (.1 ≤ .2) | -8 = G (1))

)−(1+X/2)
.

(
=� 5 ,3

2:B log(B)3

)−X/2 (
Var(� (.1 ≤ .2) | -8 = G (1))

)−(1+X/2)
→ 0.

Note that the factor of 2 arises from the application of a double-sample tree in the analysis. Thus,
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Lyapunov’s condition (B.18) holds and we can conclude the result (B.12). �

It is important to highlight that honesty is required to achieve pointwise centered asymp-

totic normality results, as demonstrated in Theorem B.4. Wager and Athey [31] conducted a

simulation study showing that honest forest estimators remain unbiased for any sample size =,

while classical forest estimators exhibit bias. This bias arises because CART trees often isolate

outliers from the main data, resulting in an over-representation of outliers at the corners of the

feature space. As = increases, classical forests tend to push outliers further into these corners,

intensifying the bias. In contrast, honest trees avoid this issue since they do not know the location

of the I-sample outliers when making splits with only the J -sample.

Proof of Theorem 2.7. Given the results from Theorem B.4, the remaining task is to demonstrate

that

� [\̂forest, = (G (1) , G (2))] − \ (G (1) , G (2))
f= (G (1) , G (2))

→ 0

in order to establish (2.6); the rest will follow by applying Slutsky’s theorem. According to

Theorem 2.6, it holds that

���� [\̂forest, = (G (1) , G (2))] − \ (G (1) , G (2))
��� =$ ©«B

− 1
2

log( (1−U)−1)
log(U−1)

c
3 ª®¬ =$ ©«=

− W

2
log( (1−U)−1)

log(U−1)
c
3 ª®¬ .

Moreover, Theorem B.2 and the proof of Theorem B.4 imply that

f2
= (G (1) , G (2)) &

B

=

� 5 ,3

16log(B)3
Var()).

Given that ) is honest, we have
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Var()) & 4Var(� (.1 ≤ .2) | -1 = G
(1))��{8 : -8 ∈ ! (G (1))

}�� ≥ 4Var(� (.1 ≤ .2) | -1 = G
(1))

2: −1
,

which leads to

f2
= (G (1) , G (2)) &

B

=

� 5 ,3

4log(B)3
Var(� (.1 ≤ .2) | -1 = G

(1))
2: −1

= Ω

(
=W−1−Y

)
for any Y > 0. Consequently, we have

� [\̂forest, = (G (1) , G (2))] − \ (G (1) , G (2))
f= (G (1) , G (2))

=$
©«=

1
2

(
1+Y−W

(
1+

log( (1−U)−1)
log(U−1)

c
3

))ª®¬ .
The bound on the right-hand side converges to 0 for sufficiently small Y > 0, provided that

W >

(
1+

log
(
(1−U)−1)

log
(
U−1) c

3

)−1

= 1−
(
1+

log
(
U−1)

log
(
(1−U)−1) 3c

)−1

=: Wmin.

�

B.3 UGEE-based FRMs for Longitudinal Networks

In this section, we provide a proof of Theorem 3.2, as Theorem 3.1 is a special case of

Theorem 3.2.

Let x8 = {E8,w8}, where w8 =
(
F81, . . . ,F8()−1)

)>, and let xi =
{
x81 ,x82 ,x83

}
, with 1 ≤

8 ≤ = and i = (81, 82, 83) ∈
((=

3
)
. We assume that 3 is a ?-dimensional vector. Then, U= (3) =(

*=,1(3), . . . ,*=,? (3)
)> is also a ?-dimensional random vector. Let U=i(3) denote the summands

of U= (3). Without loss of generality, we consider the normalized quantity
(=
3
)−1 ∑

i
U=i(3) and

continue to denote this normalized quantity as U= (3) for notational brevity.
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B.3.1 Consistency of 3̂

We first assume that " is known. Consider a neighborhood # (3) of 3. We assume that

U= (3) has continuous second-order partial derivatives, and that there exists an integrable function

6 (xi) with Var (6 (xi)) <∞ such that

���� m2

(m_: )W (m_ℓ)2−W
*=i, 9 (,)

���� ≤ 6 (xi) for all , ∈ # (3), W ∈ {0,1,2}, 1 ≤ :, ℓ, 9 ≤ ?, (B.19)

where*=i, 9 denotes the 9-th component of U=i(3). Under the regularity conditions (B.19), the

UGEE estimator 3̂ is consistent and asymptotically normal.

Under the regularity conditions (B.19), Var
(
*=i, 9 (,)

)
<∞ for all , ∈ # (3) and 1 ≤ 9 ≤ ?.

According to the theory of multivariate*-statistics [12], U= (3) is consistent and asymptotically

normal, i.e.,

U= (3)
?
→ 0,

√
=U= (3)

3→N (0,�*) , (B.20)

where �* is the ?× ? asymptotic variance of U= (3).

Let

6= =

(
=

3

)−1 ∑
i
6 (xi) , B(3) = �

[
mU=i(3)
m,>

]
.

Again, by the theory of multivariate*-statistics, we have:

6= = � [6 (xi)] + >? (1),
mU= (3)
m,>

= B(3) +o? (1), (B.21)

where >? (1) and o? (1) denote stochastic scalars and matrices, respectively [12]. By the mean-
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value theorem for vector-valued functions [78] and the regularity conditions (B.19), we have:

U= (,) = U= (3) +
m

m,>
U= (3) (,−3) +R(2)= (,−3,/)

= U= (3) +B(3) (,−3) +R(2)= (,−3,/) +o? (1),
(B.22)

where

R(2)= (,−3,/) =
(
'
(2)
=,1 (,−3,/1) , . . . , '

(2)
=,?

(
,−3,/ ?

))>
,

'
(2)
=, 9

(
,−3,/ 9

)
=

1
2

?∑
ℓ=1

?∑
:=1

2∑
W=0

(
2
W

)
m2

(m_: )W (m_ℓ)2−W
*=, 9

(
/ 9

)
(_: − g: )W (_ℓ − gℓ)2−W ,

/ =
{
/ 9 : 1 ≤ 9 ≤ ?

}
, / 9 ∈ # (3), 1 ≤ 9 ≤ ?.

By the regularity conditions (B.19) and Equation (B.21), we can express '(2)
=, 9

(
,−3,/ 9

)
as:

'
(2)
=, 9

(
,−3,/ 9

)
=

1
2

?∑
ℓ=1

?∑
:=1

2∑
W=0

(
2
W

)
Z:,ℓ,W, 9

(
� [6 (xi)] + >? (1)

)
(_: − g: )W (_ℓ − gℓ)2−W

=
1
2

?∑
ℓ=1

?∑
:=1

2∑
W=0

(
2
W

)
Z:,ℓ,W, 9� [6 (xi)] (_: − g: )W (_ℓ − gℓ)2−W + >? (1)

= � 9

(
,−3, ' 9

)
+ >? (1),��Z:,ℓ,W, 9 �� < 1, W ∈ {0,1,2}, 1 ≤ :, ℓ, 9 ≤ ?,
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where ' =
{
' 9 ;1 ≤ 9 ≤ ?

}
and ' 9 =

{
Z:,ℓ,W, 9 ;1 ≤ :, ℓ ≤ ?

}
. Further, for 1 ≤ 9 ≤ ?, we have:

���� 9

(
(,−3), ' 9

)��� ≤ 1
2

?∑
;=1

?∑
:=1

2∑
W=0

(
2
W

) ��Z:,ℓ,W, 9 �� ��� [6 (xi)] (_: − g: )W (_ℓ − gℓ)2−W
��

=
1
2

?∑
ℓ=1

?∑
:=1

2∑
W=0

(
2
W

)
|� [6 (xi)] |

��(_: − g: )W (_ℓ − gℓ)2−W �� . (B.23)

Let

H(,−3, ') =
(
�1 (,−3, '1) , . . . , �?

(
,−3, ' ?

))>
.

Then we can express R(2)= (,−3,/) as:

R(2)= (,−3,/) =H(,−3, ') +o? (1). (B.24)

By Equations (B.20), (B.22) and (B.24), we have:

U= (,) = B(3) (,−3) +H(,−3, ') +o? (1). (B.25)

Multiplying both sides of Equation (B.25) by F(3) = B−1(3), we obtain:

W= (,) = F(3)U= (,) = ,−3 +F(3)H(,−3, ') +o? (1)

= ,−3 +G(,,3, ') + z=,
(B.26)

where G(,,3, ') = F(3)H(,−3, ') and z= = o? (1). Below we construct a consistent estimator

3̂ of 3 based on W= (,) = 0, which implies that 3̂ is also a consistent estimator of 3 based on

U= (,) = 0.
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Let

,1< = 3− 1
<
, ,2< = 3 + 1

<
,

Ω=, 1
<
=

{
l;max

��I= 9 (l)�� < 1
4<

,1 ≤ 9 ≤ ?
}
,

� = max
1≤8, 9≤?

���8 9 (3)�� , < ≥ 1,

(B.27)

where 1? denotes a ?×1 column vector of 1’s, I= 9 is the 9-th component of z=, and �8 9 (3) is the

(8, 9)-th element of F(3). For ,B< (B = 1,2), by inequality (B.23), we have for each component

� 9

(
,B<,3, ' 9

)
of G (,B<,3, '):

���� 9

(
,B<,3, ' 9

)��� ≤ � ?∑
9=1

����� 9

((
± 1
<

)
1?, ' 9

)����
≤ �

2

?∑
9=1

?∑
ℓ=1

?∑
:=1

2∑
W=0

(
2
W

)
|� [6 (xi)] |

(
1
<

)2

= �

(
1
<

)2
,

where

� =
�

2

?∑
9=1

?∑
ℓ=1

?∑
:=1

2∑
W=0

(
2
W

)
|� [6 (xi)] | .

Thus, for sufficiently large < (e.g., < > 4�), we have

���� 9

(
,B<,3, ' 9

)��� < 1
4<

, B = 1,2, 1 ≤ 9 ≤ ?, ,B< ∈ # (3). (B.28)

Since z= = o? (1), for such <, we can find # 1
<

such that

%

(
Ω=, 1

<

)
≥ 1− 1

<
, for all = ≥ # 1

<
. (B.29)
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For l ∈ Ω=, 1
<

, it follows from Equations (B.26), (B.27) and (B.28) that for all 1 ≤ 9 ≤ ?:

,=, 9 (,1<) = −
1
<
+� 9

(
,1<,3, ' 9

)
+ I= 9 < −

1
<
+ 1

4<
+ 1

4<
= − 1

2<
< 0,

,=, 9 (,2<) =
1
<
+� 9

(
,2<,3, ' 9

)
+ I= 9 >

1
<
− 1

4<
− 1

4<
=

1
2<

> 0.

Since W= (,) is continuous in ,, there exists (< ∈ # (3) such that W=

(
(<

)
= 0 by the intermediate

value theorem.

For = ≥ # 1
<

, let

3̂(<) = inf
{(< :

{
(< ∈ # (3)

}
∩

{
w=

(
(<

)
= 0

}}
.

Then, {3̂(<) : < ≥ 1} is a sequence of random vectors. Further, by inequality (B.29), we have:

%

(3̂(<) −3 ≥ 1
<

)
≤ %

(
Ω2
=, 1

<

for = ≥ # 1
<

)
≤ 1
<
→ 0. (B.30)

Thus, 3̂ := lim
<→∞

3̂(<) is a consistent estimate of 3.

We now consider the case where ", a A-dimensional vector, is unknown and is estimated

by a
√
=-consistent estimator, "̂, i.e.,

√
=("̂−") =O? (1), where O? (1) denotes a vector of the

same dimension as " with all its components stochastically bounded [12]. We consider ,1 to be

the ?-dimensional vector corresponding to 3 and ,2 to be the A-dimensional vector corresponding

". We assume that the regularity conditions (B.19) hold with respect to the augmented vector

(,>1 ,,
>
2 )>. Similar to Equations (B.22) and (B.25) for the case of known ", we have:

U= (,1,,2) = U= (3,") +
m

m,>1
U= (3,") (,1−3) +

m

m,>2
U= (3,") (,2−") +H (,1−3,,2−", ')

= B(3,") (,1−3) +
m

m,>2
U= (3,") (,2−") +H (,1−3,,2−", ') +o? (1),

(B.31)
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where B(3,") and H (,1−3,,2−", ') in this case are given by:

B(3,") = �
[
mU=i(3,")
m,>1

]
,

H (,1−3,,2−", ') =H1 (,1−3, ') +H2 (,1−3,,2−", ') +H3 (,2−", ') ,

�1, 9

(
,1−3, ' 9

)
=

1
2

?∑
ℓ=1

?∑
:=1

2∑
W=0

(
2
W

)
Z:,ℓ,W, 9

(
� [6 (xi)] + >? (1)

)
(_1: − g: )W (_1ℓ − gℓ)2−W ,

�2, 9

(
,1−3,,2−", ' 9

)
=

A∑
ℓ=1

?∑
:=1

2∑
W=0

(
2
W

)
Z:,ℓ,W, 9

(
� [6 (xi)] + >? (1)

)
(_1: − g: )W (_2ℓ −Uℓ)2−W ,

�3, 9

(
,2−", ' 9

)
=

1
2

A∑
ℓ=1

A∑
:=1

2∑
W=0

(
2
W

)
Z:,ℓ,W, 9

(
� [6 (xi)] + >? (1)

)
(_2: −U: )W (_2ℓ −Uℓ)2−W .

(B.32)

By substituting "̂ for ,2, we have:

�2, 9

(
,1−3, "̂−", ' 9

)
=

?∑
:=1

>? (1) (_1: − g: ) , �3, 9

(
"̂−", ' 9

)
= >? (1). (B.33)

Thus, by Equations (B.32) and (B.33), H (,1−3,,2−", ') can be expressed as:

H (,1−3, "̂−", ') =H1 (,1−3, ') +o? (1). (B.34)

By the definition of U=i(3,"), we have:

m

m,>2
U= (3,") =

(
=

3

)−1 ∑
i

m

m,>2
U=i(3,") =

(
=

3

)−1 ∑
i

m

m,>2

(
Di(3)V−1

i (3,")Si(3)
)
.

Note that by the law of iterated expectations, we have:
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�

[
m

m,>2

(
Di(3)Vi(3,")−1Si(3)

)]
= �

[
�

[
m

m,>2

(
Di(3)Vi(3,")−1Si(3)

)����xi

] ]
= �

[
�

[
m

m,>2

(
Di(3)V−1

i (3,")
)
Si(3)

����xi

] ]
= �

[
m

m,>2

(
Di(3)V−1

i (3,")
)
� [Si(3) | xi]

]
= 0.

Therefore, by the theory of multivariate*-statistics,

m

m,>2
U= (3,") = o? (1). (B.35)

It follows from Equations (B.31), (B.34) and (B.35) that

U= (,1, "̂) = B(3,") (,1−3) +H1 (,1−3, ') +o? (1).

The term H1 (,1−3, ') has the same properties as H(,− 3, ') in Equation (B.25). Thus, the

consistency of 3̂ follows from the same argument applied in the steps between Equations (B.26)

and (B.30) for the case of known ".

�

B.3.2 Asymptotic Normality of 3̂

Multiplying both sides of Equation (B.31) by
√
= and using Equation (B.35), we obtain:
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√
=U= (,1,,2) =

√
=U= (3,") +

√
=
m

m,>1
U= (3,") (,1−3) +

+
√
=
m

m,>2
U= (3,") (,2−") +

√
=H (,1−3,,2−", ')

=
√
=U= (3,") +B(3,")

√
=(,1−3) +

√
=H (,1−3,,2−", ')

+o? (1)
√
= (,2−") +o? (1). (B.36)

By substituting 3̂ for ,1 and "̂ for ,2, along with the fact that U= (3̂, "̂) = 0 and that both 3̂

and "̂ are
√
=-consistent, Equation (B.36) can be expressed as follows after some rearrangement:

√
= (3̂−3) = −B−1(3,")

√
=U= (3,") +o? (1). (B.37)

Since
√
=U= (3,") has the same asymptotic distribution as its projection

√
=Û= (3,"):

√
=Û= (3,") =

√
=

=

=∑
8=1

Û=,8 (3,") =
√
=

=

=∑
8=1

3�
[
U=,i(3,") | x8

]
,

we can rewrite Equation (B.37) as:

√
= (3̂−3) = −B(3,")−1√=Û= (3,") +o? (1).

As
√
=Û= (3,") converges to a normal distribution, specificallyN (0,9�(3,")), it follows

from Slutsky’s theorem that

√
= (3̂−3) 3→N

(
0,9B−1(3,")�(3,")B−1(3,")

)
.

�
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B.3.3 Asymptotic Efficiency of 3̂

Under the regularity conditions (B.19), 3̂ is an asymptotically linear (AL) estimator of 3,

and it can be expressed as follows:

√
= (3̂−3) =

√
=

(
=

3

)−1 ∑
i
> (xi;3) +o? (1),

where > (xi;3) is a measurable influence function with mean zero and a finite, nonsingular

covariance matrix � [>>>]. The asymptotic variance of 3̂ is given by:

�3 = 9Var (� [> (xi;3) | x8]) .

As in the case of conventional semiparametric models for within-subject attributes, we

restrict our consideration of asymptotic efficiency to regular and asymptotically linear (RAL)

estimators [21]. Under the regularity conditions (B.19), 3̂ is a RAL estimator [60].

For two RAL estimators of 3 with influence functions > (xi;3) and 7 (xi;3) ,> (xi;3) is

more efficient than 7 (xi;3) if

Var (� [7 (xi;3) | x8]) −Var (� [> (xi;3) | x8])

is positive semi-definite. By considering parametric submodels, akin to conventional semipara-

metric models for within-subject attributes, we can similarly define an efficiency-bound UGEE

estimator, 3̂, and show that the 3̂ obtained by solving the UGEE achieves the efficiency bound if

the working variance, Vi, equals the true variance [60]. Note that Liu, T. Lin, et al. [60] consider

FRMs defined by two subjects, but the theory can be extended to FRMs defined by three subjects.

�
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