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A B S T R A C T   

Extreme precipitation poses a major challenge for local governments, including the City and County of San 
Francisco, California, as flooding can damage and destroy infrastructure and property. As the climate continues 
to warm, reliable future precipitation projections are needed to provide the best possible information to decision 
makers. However, future changes in the magnitude of extreme precipitation are uncertain, as current state-of- 
the-art global climate models are typically run at relatively coarse horizontal resolutions that require the use 
of convective parameterization and have difficulty simulating observed extreme rainfall rates. Here, we per
formed ensembles of convection-permitting regional climate model simulations to investigate how five histori
cally impactful extreme precipitation events over the San Francisco Bay Area could change if similar events 
occurred in future climates. We found that changes in storm-total precipitation depend strongly on storm type. 
Precipitation associated with an atmospheric river (AR) accompanied by an extratropical cyclone (ETC) is 
projected to increase at a rate exceeding (by up to 1.5 times) the theoretical Clausius Clapeyron scaling of 6–7% 
per ◦C warming. On the other hand, future precipitation changes are weak or negative for events characterized 
by an AR only, despite increases in precipitable water and integrated vapor transport that are similar to those of 
the co-occurring AR and ETC events. The differences in the sign of future precipitation change between AR-only 
events and co-occurring AR and ETC events is instead linked with changes in mid-tropospheric vertical velocity. 
Given that the majority of observed ARs are associated with an ETC, this research has important implications for 
future precipitation impacts over the Bay Area, as it indicates that storm-total precipitation associated with the 
most common type of storm event may increase by up to 26–37% in 2100 relative to historical.   

1. Introduction 

Water is both a necessary resource and a potential hazard for society. 
Too little water creates challenges for agricultural, residential, and 
municipal activities, whereas too much water can lead to property and 
infrastructure damage from flooding and landslides. The San Francisco 
Bay Area is susceptible to water as a hazard, as its proximity to the ocean 
makes it vulnerable to storm surge and sea-level rise, challenges 
currently under investigation as part of the San Francisco Sea Level Rise 

Action Plan (Kelley et al., 2016). An additional compounding problem is 
extreme precipitation, which is typically associated with multi-day at
mospheric river events and extratropical cyclones, and is the focus of 
this study. 

Atmospheric rivers (ARs) are long, narrow filaments of atmospheric 
water vapor transport often associated with an extratropical cyclone (e. 
g., Gimeno et al., 2014; Zhang et al., 2019) and are capable of producing 
heavy precipitation over land lasting for several days. Given the 
importance of ARs to precipitation over the western US (e.g., Dettinger, 

* Corresponding author. Iowa State University, 3017 Agronomy Hall, 716 Farm House Ln, Ames, IA, 50011, USA. 
E-mail address: cmp28@iastate.edu (C.M. Patricola).  

Contents lists available at ScienceDirect 

Weather and Climate Extremes 

journal homepage: www.elsevier.com/locate/wace 

https://doi.org/10.1016/j.wace.2022.100440 
Received 19 July 2021; Received in revised form 25 February 2022; Accepted 5 April 2022   

mailto:cmp28@iastate.edu
www.sciencedirect.com/science/journal/22120947
https://www.elsevier.com/locate/wace
https://doi.org/10.1016/j.wace.2022.100440
https://doi.org/10.1016/j.wace.2022.100440
https://doi.org/10.1016/j.wace.2022.100440
http://crossmark.crossref.org/dialog/?doi=10.1016/j.wace.2022.100440&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Weather and Climate Extremes 36 (2022) 100440

2

2011; Lamjiri et al. 2018), there is great interest in improving their 
sub-seasonal to seasonal prediction and understanding how they are 
influenced by climate variability, such as the El Niño - Southern Oscil
lation (ENSO), Madden-Julian Oscillation (MJO), and quasi-biennial 
oscillation (QBO) (e.g., Baggett et al. 2017; Mundhenk et al. 2018; 
Zhou and Kim 2018; DeFlorio et al., 2019; Huang et al., 2021; Nardi 
et al., 2020; Patricola et al., 2020; Hagos et al., 2021). Furthermore, any 

future changes in ARs will have important implications for precipitation. 
There is a consensus that western US AR frequency is expected to in
crease in the future, accompanied by increased precipitation (review 
paper by Payne et al., 2020; Dettinger, 2011; Dominguez et al., 2018; 
Espinoza et al., 2018; Gao et al., 2015, 2016; Gershunov et al., 2017, 
Gershunov et al., 2019; Hagos et al., 2016; Payne and Magnusdottir 
2015; Pierce et al., 2013; Polade et al., 2017; Shields and Kiehl 2016; 
Swain et al., 2018; Warner et al., 2015), although the magnitude of the 
increase can depend on AR tracking algorithm (Shields et al., 2018). 
Projected increases in future extreme precipitation over western North 
America have been linked almost entirely to ARs (Gershunov et al., 
2019), highlighting the importance of understanding these types of 
storms. Furthermore, using the recently developed impacts-relevant AR 
category scale (Ralph et al., 2019), Rhoades et al. (2020) found that 
future increases in the integrated vapor transport (IVT) of ARs leads to a 
shift in AR category from predominantly “mostly or primarily benefi
cial” to “mostly or primarily hazardous.” However, despite the 
connection between ARs and extreme precipitation, a simulation of a 
particular AR event in the current and a warmer climate revealed that 
future increases in IVT did not lead to generalized increases in regional 
precipitation (Dominguez et al., 2018), indicating the utility of inves
tigating both ARs and the precipitation they deliver to more fully un
derstand future impacts. 

Although future change in precipitation is a topic of global concern 
and has been the focus of substantial research, projections remain un
certain for several reasons. First is the possibility that extreme precipi
tation can change in a way that deviates from simple theory. Based 
solely on thermodynamic principles, a fully saturated atmosphere can 
hold 6–7% more moisture per oC of warming at observed near-surface 
air temperatures of the Earth, as established by the Clausius-Clapeyron 
(CC) relationship. This property of the saturation specific humidity 
provides a starting point to estimate extreme precipitation changes in 
the future. However, the change in extreme precipitation with temper
ature (hereon called “precipitation scaling”) can deviate from the CC 
rate due to factors including changes in atmospheric relative humidity, 
storm dynamics, and cloud physics. For example, precipitation scaling 
that exceeds CC may be explained by positive feedbacks associated with 
convection, latent heat release, vertical motion, convergence, and large- 
scale circulation (Lenderink et al., 2017). Therefore, using CC as a 
“back-of-the-envelope” estimate for future changes in extreme precipi
tation may be insufficient to inform decisions intended to mitigate the 
impacts of climate change. 

Several studies have investigated the scaling of precipitation with 
temperature, with results ranging from below to above the CC scaling 
rate (or “sub-CC” to “super-CC”) and often depending on the temporal 
resolution of precipitation (e.g., Haerter et al., 2010). Global climato
logical mean precipitation has been found to scale below CC, increasing 
by about 1–3% per oC of atmospheric warming due to energy budget 

Fig. 1. The two regional climate model domain configurations that were tested 
for this study, namely (a) domain 1 and (b) domain 2. The regions marked d01, 
d02, and d03 use 27 km, 9 km, and 3 km horizontal resolution, respectively. 
Domain 1 was selected to perform the full set of simulations. 

Table 1 
List of storm events and dates with initial condition dates for the historical 
simulations.  

Storm 
number 

Storm 
type 

Event dates Simulation initial condition dates 

Storm 1a AR and 
ETC 

Dec 2–6, 
2014 

Nov 28, 2014: 00z, 03z, 06z, 09z, 12z, 
15z, 18z, 21z; Nov 29, 2014: 00z, 03z  

Storm 1b AR and 
ETC 

Dec 11–12, 
2014 

Dec 7, 2014: 00z, 03z, 06z, 09z, 12z, 
15z, 18z, 21z; Dec 8, 2014: 00z, 03z  

Storm 2 AR Jan 3–5, 
1982 

Dec 30, 1981: 00z, 03z, 06z, 09z, 12z, 
15z, 18z, 21z; Dec 31, 1981: 00z, 03z  

Storm 3 AR Nov 4–7, 
1994 

Oct 31, 1994: 00z, 03z, 06z, 09z, 12z, 
15z, 18z, 21z; Nov 1, 1994: 00z, 03z  

Storm 4 AR and 
ETC 

Jan 31 - Feb 
8, 1998 

Jan 27, 1998: 00z, 03z, 06z, 09z, 12z, 
15z, 18z, 21z; Jan 28, 1998: 00z, 03z  

Storm 5 AR and 
ETC 

Dec 10–13, 
1995 

Dec 6, 1995: 00z, 03z, 06z, 09z, 12z, 
15z, 18z, 21z; Dec 7,, 1995: 00z, 03z   

Table 2 
List of physical parameterizations and model domains tested to optimize the 
regional model configuration. X denotes a test that was performed. Planetary 
boundary layer schemes include Mellor-Yamada-Janjic (MYJ) and Yonsei Uni
versity (YSU). WSM6 denotes the WRF Single-Moment 6-Class Microphysics 
Scheme.  

Parameterization 
test 

Microphysics Planetary 
boundary layer 

Domain 
1 

Domain 
2 

1 Goddard MYJ X  
2 Goddard YSU X X 
3 Kessler MYJ X  
4 Kessler YSU X X 
5 Morrison MYJ X  
6 Morrison YSU X X 
7 Purdue Lin MYJ X  
8 Purdue Lin YSU X  
9 WSM6 MYJ X X  
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Fig. 2. Storm-total precipitation (mm) for storm 4 from (a) gridMET observations and WRF historical simulations on the 3 km resolution domain from tests of 
parameterizations (param) as in Table 2 and domains in Fig. 1: (b) param 1, domain 1, (c) param 2, domain 1, (d), param 2, domain 2, (e) param 3, domain 1, (f) 
param 4, domain 1, (g) param 4, domain 2, (h) param 5, domain 1, (i) param 6, domain 1, (j) param 6, domain 2, (k), param 7, domain 1, (l) param 8, domain 1, (m) 
param 9, domain 1, and (n) param 9, domain 2. Grey shading indicates no data. 
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constraints (e.g., Allen and Ingram 2002; Held and Soden 2006). On the 
other hand, extreme precipitation at daily and hourly timescales typi
cally scales at or above the CC rate of 6–7% per oC for significant 
amounts of warming (Kharin et al., 2013). For example, the scaling for 
hourly extreme precipitation (high percentiles) is double the CC rate in 
station observations over Hong Kong, the Netherlands, Belgium, and 
Switzerland for daily mean temperatures of at least 14 ◦C (Lenderink and 
van Meijgaard 2008, 2010; Lenderink et al., 2011). However, a global 
analysis of in-situ data reveals that CC scaling applies to daily extreme 
precipitation in only some regions, with CC scaling typical for sub-daily 
precipitation extremes (Utsumi et al., 2011). At the hourly scale, 
extreme precipitation from global rain gauge data follows at least CC 
scaling at a regional scale, with super-CC often found at the gauge-level 
(Ali et al., 2021.) Other studies found a temperature dependence of 
precipitation scaling, with extreme sub-daily precipitation scaling at CC 
for temperatures between 20◦C-26◦C, but decreasing for warmer tem
peratures, in station observations over Australia (Hardwick Jones et al., 
2010). Precipitation scaling conditional on temperature has been 
termed “apparent scaling” (Fowler et al., 2021) and tends to indicate 
super CC scaling for sub-daily extremes within some temperature ranges 
(Westra et al., 2014), however scaling with temperature near the time of 
precipitation occurrence is not a reliable predictor for future changes in 
precipitation extremes in a climate model simulation (Sun et al., 2021). 
Precipitation scaling has also been investigated in climate model simu
lations, with extreme daily precipitation scaling at the CC rate (Allen 
and Ingram 2002), particularly in the mid-latitudes (Pall et al., 2007). 

Daily and hourly extreme precipitation exhibit scaling at the CC rate in 
convection-permitting climate model simulations (Ban et al., 2015), 
whereas 3-hourly extreme precipitation scaling exceeds CC in other 
model simulations (Wood and Ludwig 2020). The large variations in 
observed and simulated precipitation scaling rate have been linked with 
whether the environment is moist and energy-limited or dry and mois
ture limited (Prein et al., 2017). 

In addition to dependence on precipitation frequency, data source (i. 
e., observations or models), and temperature, precipitation scaling can 
depend on storm type. Stratiform precipitation generally scales with CC, 
whereas convective precipitation scaling can exceed CC in radar and 
rain gauge data over Germany (Berg et al., 2013). Similarly, the in
tensity of extreme precipitation events increases at CC for 
non-convective events and above CC for convective events, identified as 
occurring without and with lightning, respectively, in station observa
tions over Switzerland (Molnar et al., 2015). Finally, and of particular 
relevance to this study, the intensity of extreme precipitation events 
associated with AR type storms lasting longer than 10 h exceeds CC 
scaling in station data over Japan (Hatsuzuka et al., 2021), whereas the 
atmospheric moisture of ARs scales at about CC in historical observa
tions (Algarra et al., 2020) and simulations of future climate (Zhao 
2020). Altogether, previous studies on the scaling of extreme precipi
tation with temperature paint an uncertain picture of the magnitude of 
extreme precipitation change in a future warmer climate, highlighting 
the need for research that focuses on the storm type and precipitation 
timescale of interest. 

Fig. 3. Observed and simulated characteristics of storm 1a. Storm total precipitation (mm) from the (a) gridMET observations and (b) ensemble mean of the his
torical simulations on the 3 km resolution domain. Precipitable water (mm; shaded) and wind speed at 10-m (m/s; contour) from the (c) NARR and (d) ensemble 
mean of the historical simulations on the 27 km resolution domain. Wind speed contour interval is 5 m/s starting at 10 m/s. Sea-level pressure (mb; shaded) and 10-m 
wind (m/s; vectors) from the (c) NARR and (d) ensemble mean of the historical simulations on the 27 km resolution domain. Storm total precipitation is calculated 
over 00z 1 December - 00z December 7, 2014. Precipitable water, sea-level pressure, and 10-m wind are shown at the peak of the event, 00z December 3, 2014. 
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The second reason that future precipitation projections are uncertain 
is that many climate model simulations have difficulty reproducing 
extreme precipitation rates. The typical horizontal resolution for global 
climate model simulations is currently 1◦-2.5◦, with 0.25◦ considered 
relatively high-resolution. Nonetheless, even the current relatively high- 
resolution global climate models struggle to simulate the extreme pre
cipitation rates observed at the spatial scales relevant for decision 
making (e.g., Wehner et al., 2014; 2020), as the grid spacing is too 
coarse to directly resolve convective processes. 

The purpose of this study is to quantify future changes in the 
magnitude of extreme precipitation events over the San Francisco Bay 
Area (hereafter the Bay Area) and to understand the scaling of precipi
tation with temperature in AR and ETC events. In order to better 
simulate extreme precipitation magnitudes and to eliminate the uncer
tainty associated with the use of climate model parameterization of 
convection, we performed hindcasts of selected historical storms with a 
horizontal resolution of 3 km (~0.027◦) over the Bay Area and simu
lations with imposed future warming (Schär et al., 1996). This research 
provides very high-resolution extreme precipitation projections using 
state-of-the-art climate modeling methods along with a physical un
derstanding of the future changes in ARs and ETCs. It is motivated by the 
needs of the project’s stakeholder working group, which is composed of 
members from the City and County of San Francisco (CCSF), and led by 
the San Francisco Public Utilities Commission (SFPUC), with support 
from the San Francisco International Airport (SFO), the Office of Resil
ience and Capital Planning, and the Port of San Francisco. 

2. Data and methods 

2.1. Convection-permitting regional climate model simulations 

Regional climate model simulations were performed with the 
Weather Research and Forecasting (WRF) model version 3.8.1 (Ska
marock and Klemp 2008), which is developed and maintained by the 
National Center for Atmospheric Research (NCAR). A regional climate 
model is best suited for this study because it allows computational re
sources to be used for higher-resolution focused over the region of in
terest, namely the Bay Area. The model is configured using one-way 
nested domains, so that in addition to simulating the Bay Area at 
high-resolution, ARs and ETCs that are approaching land from the North 
Pacific Ocean can also be simulated, albeit at a coarser but sufficient 
resolution. The domains include a 27 km resolution parent domain, a 9 
km nested domain, and a 3 km innermost domain (Fig. 1a). 
High-resolution is crucial for this study, as coarse-resolution 
(~100–250 km) climate models poorly represent the observed 
extreme precipitation characteristic of impactful Bay Area storms 
(Wehner et al., 2014; 2020). WRF is configured with 44 levels in the 
vertical. Model output for 3D variables is saved every 3-h, and selected 
surface variables are saved at a frequency of 5 min. 

The simulations are based on five historically-impactful extreme 
precipitation events ranging from several days to over a week in dura
tion (Table 1). The events were selected with input from the stakeholder 
working group. In particular, stakeholders from the CCSF completed a 
survey to provide input on past storm events that impacted their 
agencies by causing flooding, physical damage, or operational 

Fig. 4. Similar to Fig. 3, but for storm 1b. Storm total precipitation is calculated over 00z 10 December - 00z December 13, 2014. Precipitable water, sea-level 
pressure, and 10-m wind are shown at the peak of the event, 12z December 11, 2014. 
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challenges. The storm events identified using the survey focused on 
recent history (2004 to present); however, some of the most severe 
events in the Bay Area occurred in the 1980s and 1990s. Therefore, we 
performed a systematic analysis of the observational record to identify 
storm events that were extreme in terms of storm-total precipitation, 1- 
h, 3-h, 12-h, and 24-h maximum precipitation, storm duration, hourly 
wind speed and gusts, and sea-level pressure. We note that of the 14 
candidate storm events, 13 of the events occurred with an AR (and 
sometimes an ETC). Due to the high computational cost of the simula
tions, we were unable to include all impactful events in this study. 
However, by selecting storm events with different characteristics, (i.e., 
AR only or AR with an ETC), we attempt to represent the typical types of 
extreme precipitation events that impact the Bay Area. 

Five events were selected, as this was the greatest number of events 
that could be simulated with the available supercomputing resources, 
while meeting simulation design requirements (e.g., 3 km resolution 
over the Bay Area and a multi-member ensemble). Note that storm 1 
consisted of two distinct periods of precipitation with a break in be
tween, therefore separate simulations of this event were performed for 
the two precipitation periods, named storm 1a and storm 1b, to allow for 
an improved quality hindcast of the latter portion of the event enabled 
by reinitializing the model. Initial conditions, lateral boundary condi
tions, and sea-surface temperatures (SSTs) were prescribed from the 
North American Regional Reanalysis (NARR; Mesinger et al., 2006). The 
quality of the input data influences the ability of the climate model to 
represent the observed historical storm events, with higher spatial res
olution and temporal frequency tending to improve the simulations. For 
this reason, the NARR was chosen for its relatively high spatial 

resolution of 32 km × 32 km and a temporal frequency of 3-h and for its 
spatial coverage over the parent domain region. Model initialization is a 
few days before the start of precipitation over the Bay Area (Table 1) to 
permit the model to adjust to climate change perturbations described 
below. We performed a 10-member ensemble of each simulation to 
provide a range for future precipitation estimates, allowing us to eval
uate statistical significance by comparing the climate change signal to 
noise associated with internal atmospheric variability. Each ensemble 
member was generated by initializing the simulation at different times 
at three-hourly intervals (e,g., 00z, 03z, 06z; Table 1). We found that a 
10-member ensemble is suitable for this study, as discussed in section 
3.2. 

For each of the five storm events, we performed three sets of simu
lations for different climate states including the historical period (i.e., 
the time in which the storm event actually occurred) and two future 
periods (2040–2060 and 2080–2100) under the Representative Con
centration Pathway (RCP) 8.5 greenhouse gas emissions scenario 
(Meinshausen et al., 2011). The purpose of the simulations is to estimate 
how climate change could influence precipitation events similar to 
known historically impactful events. We emphasize that it is not 
necessary for the historical simulation hindcasts to precisely reproduce 
the timing and location of the events. Specifically, we cannot expect the 
historical simulations to better reproduce observations than a weather 
forecast model would. For example, it is reasonable to expect that a 
weather forecast model would predict that a storm will occur in a gen
eral region such as the Bay Area, but unreasonable to expect that a 
weather forecast model would predict storm-total precipitation at a 
specific location within a few mm (tenths of inches). 

Fig. 5. Similar to Fig. 3, but for storm 2. Storm total precipitation is calculated over 00z 2 January - 00z January 6, 1982. Precipitable water, sea-level pressure, and 
10-m wind are shown at the peak of the event, 18z January 4, 1982. 

C.M. Patricola et al.                                                                                                                                                                                                                            



Weather and Climate Extremes 36 (2022) 100440

7

Initial conditions, lateral boundary conditions, and SSTs for the 
future simulations were based on those from the historical simulations, 
with adjustments to impose the thermodynamic component of anthro
pogenic climate change (e.g., Schär et al., 1996; Patricola and Cook 
2010, 2013). Dynamic variables remained unchanged, which is 
reasonable for this hypothetical event-based approach that focuses on 
future changes in precipitation magnitude, however we note that 
changes in dynamic variables (e.g., the jet stream) should be considered 
for studies that investigate future changes in AR and/or ETC frequency 
in long-term climate simulations. The future initial and boundary con
dition changes were based on simulations from the CESM large ensemble 
(Kay et al., 2015). The climate change perturbations for the RCP8.5 
experiment for the mid-21st century (2050) and late-21st century 
(2100) for storm 1 were calculated as the December climatology of 
2040–2060 and 2080–2100, respectively, from the RCP8.5 simulation 
minus the 1980–2000 December climatology from the historical simu
lation. This perturbation was then added to the historical boundary 
conditions. The perturbations for all other storms were calculated in the 
same way, but for the month in which the event occurred. This meth
odology has been used to study anthropogenic influences on AR, tropical 
cyclone, tornadic storm, and flood events, as well as seasonal snowpack 
and associated runoff (e.g., Rasmussen et al., 2011; Lackmann 2015; 
Takayabu et al., 2015; Ito et al., 2016; Nakamura et al., 2016; Pall et al., 
2017; Dominguez et al., 2018; Patricola and Wehner 2018; Gutmann, 
2018; Wehner et al., 2019; Bercos-Hickey et al. 2021; Ikeda et al., 2021, 
and others). Using the climate perturbation that corresponds to the 
month of the storm event is a good balance between precision and 
implementation. Greenhouse gas concentrations including CO2, CH4, 

N2O, CFC-11, CFC-12 and CCl4, were prescribed according to Tsutsumi 
et al. (2009) and Bullister (2015). 

2.2. Regional climate model optimization 

We performed tests on two known aspects of regional climate model 
configuration that can influence the outcome of the simulation, namely 
physical parameterizations and model domain. The purpose of the 
model testing was to select a model configuration that is optimized to 
provide the best quality data to assess future change in Bay Area extreme 
precipitation. 

There are many parameterization options to choose from in WRF. 
The primary variables of interest for the stakeholder working group are 
precipitation and 10-m wind, therefore we tested parameterizations 
most relevant for these variables, specifically microphysics and plane
tary boundary layer. Convection parameterization is also relevant for 
precipitation, however testing was not performed because the parame
terization was not needed at the convection-permitting resolution of the 
3 km domain over the Bay Area, and due to limited supercomputing 
resources. We note that nested domains that explicitly resolve convec
tion can be sensitive to the convective parameterization choice in outer 
domains that do not resolve convection due to the influence on vertical 
temperature and humidity profiles (Di Luca et al., 2021). The parame
terizations for atmospheric radiation and land-surface model were 
selected based on previous experience simulating the climate of Cali
fornia (e.g. Patricola et al., 2020) and included the Rapid Radiative 
Transfer Model for General Circulation Models (RRTMG) shortwave and 
longwave radiation scheme (Mlawer et al., 1997), the Noah Land 

Fig. 6. Similar to Fig. 3, but for storm 3. Storm total precipitation is calculated over 00z 3 November - 00z November 8, 1994. Precipitable water, sea-level pressure, 
and 10-m wind are shown at the peak of the event, 00z November 5, 1994. 
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Surface Model (Chen and Dudhia 2001), and the Kain-Fritsch convective 
parameterization (Kain and Fritsch 1990; Kain 2004) for the outer 27 km 
domain. 

We performed simulations to test nine sets of parameterizations 
(Table 2) on two model domains (Fig. 1). The test simulations were run 
for storm event 4 because it was characterized by the greatest storm- 
total precipitation of the selected events. We compared simulated pre
cipitation with observations from the daily 4 km resolution gridMET 
dataset (Abatzoglou 2013). All of the test simulations on domain 1 are 
able to reproduce relatively greater storm-total precipitation observed 
over regions of higher elevation (Fig. 2). Storm-total precipitation was 
calculated over the storm event shown in Table 1 and averaged over the 
Bay Area region shown in Fig. 9a. The simulated differences among the 
parameterization options are relatively small (Fig. 2), and any of the 
options would be suitable for this study. Parameterization sets 8 and 9 
slightly better represent the magnitude of storm-total rainfall 
area-averaged over the Bay Area compared with the other options. 
Therefore, we selected parameterization set 9 for the full set of model 
experiments (i.e., the Yonsei University (YSU) planetary boundary layer 
scheme, the WRF Single-Moment 6-Class Microphysics (WSM6) scheme, 
and the other parameterizations discussed above). 

Regional climate models require the user to choose one or more 
geographic regions for simulation, called “domains.” A configuration 
with multiple domains within each other is called a “nested domain.” 
Each domain has a corresponding model resolution. In the nested 
domain configuration, the resolution is coarsest on the largest outer 
domain and is finer by a factor of three for each nested inner domain. We 
tested the climate model using two different domain configurations, 

described below. Both domains use 3 km resolution over the Bay Area. 
The two domain configurations are different in how geographically 
extensive the outer 27 km domain is. 

The nested domains are updated at the lateral boundaries at a fre
quency corresponding to the model time step of the coarser surrounding 
domain. For example, the lateral boundaries for the 9 km domain are 
updated at a frequency of 90 s, which corresponds to the 27 km domain 
time step. Likewise, the lateral boundaries for the 3 km domain are 
updated at a frequency of 30 s, which corresponds to the 9 km domain 
time step. The variables updated at the lateral boundaries of the nested 
domains include the variables prescribed on the outermost domain by 
the NARR reanalysis, such as temperature, zonal and meridional winds, 
humidity, and geopotential height, as well as hydrometeor variables 
calculated by the WRF model. 

The rationale for testing different domain configurations is that the 
simulation can depend on how far the edges of the outer domain are 
from the region of interest, in this case the Bay Area. Regional climate 
models need information about the observed state of the atmosphere at 
the domain edges. A smaller outer model domain with edges closer to 
the Bay Area means the observational products more tightly constrain 
the simulation, which tends to produce a model simulation that more 
closely represents what was observed. A model simulation that repre
sents the observed storms well is desirable, however the primary pur
pose of the simulations is to estimate how the storms respond to climate 
change, therefore our optimization process focuses not on producing a 
“perfect” hindcast (which would be an unrealistic expectation for the 
model), but instead on producing a reasonable hindcast within a simu
lation design that permits climate change experiments. If the outer 

Fig. 7. Similar to Fig. 3, but for storm 4. Storm total precipitation is calculated over 00z 30 January - 00z February 9, 1998. Precipitable water, sea-level pressure, 
and 10-m wind are shown at the peak of the event, 00z February 3, 1998. 
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domain is too small, the climate model simulation will be over- 
constrained and may not capture the climate change response well. 
For example, if an AR is approaching, the outer domain should be 
extensive enough that it contains the AR and permits it to respond to the 
climate change imposed on the model. On the other hand, an outer 
domain that is too large may not reproduce an observed storm event as 
well. 

We tested two domain configurations, which represent medium and 
large sized outer domains, domain 1 (Fig. 1a) and domain 2 (Fig. 1b) 
respectively. In addition to the parameterization testing for domain 1 
described above, we tested a subset of parameterization options (sets 2, 
4, 6, and 9) for domain 2. Regardless of the parameterization options 
selected, the regional model better simulates the storm-total rainfall for 
domain 1 compared with domain 2 (Fig. 2). The storm-total rainfall for 
domain 2 is substantially less than observed, indicating that an outer 
domain of this size is too large for this study. Therefore, we selected 
domain 1 to perform the full set of model experiments, as it contains 
sufficient space for ARs and ETCs to develop as they approach the Cal
ifornia coast and reproduces observed precipitation reasonably well, as 
described in the following section. 

3. Results 

3.1. Historical storm events 

For each of the historical events, we identified the type of storm (i.e., 
atmospheric river and/or extratropical cyclone), so that we can deter
mine any dependence of future changes in precipitation on storm type. 

In addition, we compared the observed and ensemble-mean simulated 
storm-total precipitation, sea-level pressure, and precipitable water to 
evaluate how well the model reproduced each event. Historical storm 
events that were reasonably reproduced by the model may have less 
uncertainty associated with their corresponding projected future change 
in precipitation, whereas events that were more difficult for the model to 
represent may inspire less confidence in their future projections. 

The historical storm events considered in this study are characterized 
by two main types of synoptic conditions, namely, an AR only or an AR 
accompanied by an ETC. These are the primary types of storms that 
deliver extreme precipitation to the Bay Area in the historical climate, 
and are expected to continue as such into the future (e.g., Gershunov 
et al., 2019). To identify the type of storm event, we examined sea-level 
pressure, precipitable water, and 10-m winds throughout the evolution 
of each storm, with these variables shown at the peak of the event (i.e., 
approximately the time of strongest precipitation observed over the Bay 
Area) in Figs. 3–8. To summarize our findings, the historical simulations 
reproduced the observed synoptic conditions (AR and ETC location and 
magnitude) and spatial pattern of storm-total precipitation very well for 
all storm events, and underestimated, but still reasonably simulated, the 
magnitude of storm-total precipitation (i.e., simulated storm-total pre
cipitation is within about half to double the observed rate, and simulated 
AR and ETC timing and location is close to observed). Storm events 1, 4, 
and 5 were characterized by an AR accompanied by an ETC, whereas 
storm events 2 and 3 were characterized by only an AR. A detailed 
description of each storm event follows. 

Fig. 8. Similar to Fig. 3, but for storm 5. Storm total precipitation is calculated over 00z 9 December - 00z December 14, 1995. Precipitable water, sea-level pressure, 
and 10-m wind are shown at the peak of the event, 06z December 12, 1995. 

C.M. Patricola et al.                                                                                                                                                                                                                            



Weather and Climate Extremes 36 (2022) 100440

10

3.1.1. Storm 1 
Storm 1 consisted of two distinct periods of Bay Area precipitation 

over December 2–6, 2014 (storm 1a) and December 11–12, 2014 (storm 
1b), with about a five-day break in between. Storm 1a was characterized 
by precipitation reaching up to, and in some places over, 6 inches (~152 
mm) according to the gridMET observations (Fig. 3a). The ensemble- 
mean historical simulation produced storm-totals that are weaker than 
observed, but reproduced the spatial pattern of precipitation reasonably 
well with greater amounts over high-terrain regions (Fig. 3b). Precipi
table water was moderate over the Bay Area and offshore region, with a 
landfalling AR further south over southern California and northwestern 
Mexico (Fig. 3c), and a weak offshore ETC (Fig. 3e), both of which were 
reproduced well in the historical simulation (Fig. 3d and f). 

Like storm 1a, storm 1b was characterized by storm-total precipita
tion reaching over 6 inches, although the duration of rainfall was shorter 
(Fig. 4a). The historical simulation reproduced the precipitation 
magnitude relatively well (Fig. 4b), especially compared with storm 1a. 
The ETC that was offshore on December 3, 2014 intensified and moved 
northeastward toward the coast of northern California and Oregon in 
both the NARR (Fig. 4e) and historical simulation (Fig. 4f). In addition, 
the precipitable water and 10-m winds indicate a clearly defined AR 
making landfall directly over the Bay Area and oriented from southwest 
to northeast (Fig. 4c and d). 

3.1.2. Storm 2 
Storm 2 was a relatively short duration but strong magnitude event, 

with up to 8 inches (~203 mm) of precipitation falling over the Bay Area 
from January 3–5, 1982 (Fig. 5a), which was reproduced well by the 
historical simulation (Fig. 5b). Unlike storm 1, storm 2 was character
ized by only an AR oriented southwest to northeast (Fig. 5c and d), 
without an accompanying ETC (Fig. 5e and f). The magnitude of pre
cipitable water was comparable between storm 2 (Fig. 5c) and storm 1b 
(Fig. 4c). 

3.1.3. Storm 3 
Storm 3 produced up to 6 inches of precipitation over the Bay Area 

over November 4–7, 1994 (Fig. 6a), which was simulated with a weaker 
magnitude in the historical hindcast (Fig. 6b). Like storm 2, this event 
was characterized by only an AR (Fig. 6c) without an accompanying ETC 
(Fig. 6e). The AR was oriented from west-southwest to east-northeast 
with strong precipitable water. The historical simulation reproduced 
the AR location and magnitude, as well as the lack of an ETC, very well 
(Fig. 6d and f). 

3.1.4. Storm 4 
Storm 4 was characterized by the greatest magnitude of storm-total 

precipitation and longest duration of the events considered, with over 
14 inches (~356 mm) falling over the Bay Area between January 31 - 

Fig. 9. Future change in storm total precipitation (mm) from the ensemble mean of the 2100 minus historical simulations on the 3 km resolution domain for (a) 
storm 1a, (b) storm 1b, (c) storm 2, (d) storm 3, (e) storm 4, and (f) storm 5. Storm total precipitation is calculated over (a) 00z 1 Dec - 00z Dec 7, 2014, (b) 00z 10 
Dec - 00z Dec 13, 2014, (c) 00z 2 Jan - 00z Jan 6, 1982, (d) 00z 3 Nov - 00z Nov 8, 1994, (e) 00z 30 Jan - 00z Feb 9, 1998, and (f) 00z 9 Dec - 00z Dec 14, 1995, as in 
Figs. 3–8. The blue box in (a) shows the averaging region used in the calculations for Table 3. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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February 8, 1998 (Fig. 7a). It occurred during a strong El Niño event, 
which often drives wetter than average winter precipitation over Cali
fornia (e.g., Patricola et al., 2020). The historical simulation reproduced 
the storm-total precipitation reasonably well (Fig. 7b), albeit with a 
weaker magnitude than observed. This event was characterized by an 
AR oriented from the southwest to northeast accompanied by an ETC 

(Fig. 7c–f). 

3.1.5. Storm 5 
Storm 5 delivered up to 8–10 inches (~203–254 mm) of precipita

tion over parts of the Bay Area during December 10–13, 1995 (Fig. 8a). 
As with several other storm events, the historical simulation reproduced 

Table 3 
Percent change in storm-total precipitation between the future and historical simulations ((future minus historical)/historical) on the 3 km and 27 km (in parentheses) 
domains, the theoretical change if precipitation were to scale at the CC rate (6.5% per ◦C, where temperature is the average 2-m temperature over ocean only in the 
offshore region of 30◦N-40◦N and 130◦W-120◦W), the ratio of the simulated precipitation scaling to the CC scaling rate, and positive vertical velocity at 500 hPa. 
Simulated changes in storm-total precipitation that are statistically significant (p = 0.01; two-tailed t-test) are bold. Storm-total precipitation and vertical velocity are 
calculated over the same days as in Fig. 9 and are averaged over land only over approximately the San Francisco Bay Area (36.5◦N-39◦N and 124◦W-121◦W, i.e., the 
region in the blue box in Fig. 9a).  

Storm total precipitation Storm 1a Storm 1b Storm 2 Storm 3 Storm 4 Storm 5 

Storm type AR & ETC AR & ETC AR only AR only AR & ETC AR & ETC 
2050 WRF 17% (25%) 11% (12%) 5% (4%) − 8% (− 10%) 7% (9%) 15% (12%) 
2100 WRF 37% (44%) 26% (19%) 2% (0%) ¡11% (-15%) 31% (35%) 34% (22%) 
2050 CC 12% 12% 11% 12% 10% 12% 
2100 CC 24% 25% 23% 25% 21% 25% 
2050 WRF/CC 1.4 0.9 0.4 − 0.7 0.7 1.2 
2100 WRF/CC 1.5 1.1 0.1 − 0.4 1.4 1.4 
Precipitable water Storm 1a Storm 1b Storm 2 Storm 3 Storm 4 Storm 5 
2050 WRF/CC 1.4 1.4 1.2 1.7 1.2 1.5 
2100 WRF/CC 1.5 1.5 1.2 1.7 1.5 1.6 
IVT Storm 1a Storm 1b Storm 2 Storm 3 Storm 4 Storm 5 
2050 WRF/CC 1.2 1.5 1.2 1.4 1.2 1.7 
2100 WRF/CC 1.5 1.6 1.3 1.6 1.7 1.8 
500 hPa vertical velocity Storm 1a Storm 1b Storm 2 Storm 3 Storm 4 Storm 5 
2050 WRF 0.5% 5.9% − 0.1% − 1.9% 3.5% 4.3% 
2100 WRF 7.3% 18.3% − 4.3% − 1.5% 10.6% 8.3%  

Fig. 10. Boxplots of storm-total precipita
tion (mm) averaged over the San Francisco 
Bay Area region (Fig. 9a) from the 10-mem
ber ensemble of the historical (blue), 2050 
(yellow), and 2100 (red) simulations from 
(a) storm 1a, (b) storm1b, (c) storm 2, (d) 
storm 3, (e) storm 4, and (f) storm 5. The x 
denotes the ensemble-average, and the lines 
that make up the box denote the 25th, 50th, 
and 75th percentiles. (For interpretation of 
the references to color in this figure legend, 
the reader is referred to the Web version of 
this article.)   
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the spatial pattern of precipitation well, with a reasonable but weaker 
than observed magnitude (Fig. 8b). Like storm 1 and 4, storm 5 was 
characterized by an AR accompanied by an ETC (Fig. 8c and e), both of 
which were the strongest of the events considered and were reproduced 
well in the historical simulation (Fig. 8d and f). 

3.2. Future changes in precipitation 

Having identified the storm type for each historical event in the 
previous section, we now quantify future changes in storm-total pre
cipitation, calculate the simulated precipitation scaling and compare it 
with the theoretical CC scaling rate, and analyze any dependence on 
storm type. Maps of the projected future changes (2100 minus histori
cal) in ensemble-mean storm-total precipitation from the 3 km model 
domain are shown in Fig. 9, with percentage changes ((future - histor
ical)/historical) for the 2100 and 2050 simulations averaged over the 
Bay Area (blue box in Fig. 9a) from both the 3 km and 27 km model 
domains shown in Table 3. We calculated the percentage changes in 
storm total precipitation for each storm event by (1) calculating the total 
precipitation over the storm life time for each ensemble member (listed 
under “event dates” in Tables 1) and (2) then taking the area-average of 
this quantity over the San Francisco Bay Area region shown in Fig. 9a 
over land only, (3) then computing the 10-member ensemble mean of 
this quantity, for each climate scenario, and finally (4) calculating the 
percentage change using these ensemble-mean quantities for ((future - 
historical)/historical). The calculation is performed with this order of 
operations so that the percentage change is appropriate, rather than 
calculating the percentage change for each ensemble member and then 
averaging them. We verified that any spatial shifts in the location of 

precipitation between the historical and future simulations for a given 
event were relatively small (i.e., confined within the Bay Area region of 
interest), therefore we are able to make a fair comparison between the 
storm events in the different climate states. The ensemble-mean storm- 
total precipitation from the 3 km model domain increases over the Bay 
Area from the historical to the 2100 simulations for storms characterized 
by an AR accompanied by an ETC (i.e., storms 1a, 1b, 4, and 5), whereas 
the precipitation change is a mix of increases and decreases for storms 
characterized by an AR only (i.e., storms 2 and 3) (Fig. 9 and Table 3). 
These changes correspond to statistically significant (1% level, two- 
tailed t-test) increases in Bay Area precipitation of 7–17% for 2050 
relative to historical and 26–37% for 2100 relative to historical, for co- 
occurring AR and ETC events (Table 3). For AR-only events, Bay Area 
precipitation changes span zero, ranging from − 8% to 5% for 2050 and 
-11%–2% for 2100 (Table 3). The magnitude of storm-total precipitation 
increases for events characterized by an AR accompanied by an ETC is 
similar to that projected by WRF simulations that downscaled simulated 
AR events from a global climate model (Huang et al., 2020). 

We examined the ensemble spread in storm-total precipitation in the 
historical and future climate scenarios to verify that the ensemble size is 
sufficient using boxplots containing the storm-total precipitation for 
each ensemble member for a given climate scenario and storm event 
(Fig. 10). In the storms characterized by a co-occurring AR and ETC 
(Fig. 10 a-b, e-f), the range of simulated storm-total precipitation within 
an ensemble typically shows little-to-no overlap between climate sce
narios, suggesting that the climate change signal is much greater than 
noise due to internal atmospheric variability within the ensemble. This 
analysis indicates that a 10-member ensemble is suitable for this study. 
Finally, the projected precipitation changes vary by about ± 12% 

Fig. 11. Future change in precipitable water (mm) from the ensemble mean of the 2100 minus historical simulations on the 27 km resolution domain for (a) storm 
1a, (b) storm 1b, (c) storm 2, (d) storm 3, (e) storm 4, (f) storm 5. Precipitable water for each event is calculated over the same days as in Fig. 9. 
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depending on model resolution, although the difference is not system
atic (i.e., the 3 km resolution domain does not always simulate higher or 
lower changes relative to the 27 km resolution domain). For the 
remainder of the analysis, we focus on precipitation from the 3 km 
domain. 

We next investigated the simulated precipitation scaling rate, that is, 
the percent change in future precipitation per ◦C of warming (Table 3). 
The magnitude of simulated temperature change was calculated using 
the average 2-m temperature over the ocean only in the region offshore 
from the Bay Area (30◦N-40◦N and 130◦W-120◦W) for the 2100 minus 
historical and the 2050 minus historical simulations, for each storm 
event. In addition, we used the corresponding simulated temperature 
change to estimate the hypothetical precipitation change according to 
the CC scaling rate of a 6.5% increase in precipitation per ◦C of tem
perature warming (Table 3). Finally, we calculated the ratio of simulated 
precipitation scaling to CC scaling to determine whether the simulated 
precipitation scaling is less than (ratio <1), approximately equal to 
(ratio equals 1), or exceeds (ratio >1) the CC scaling rate (Table 3). 

The future Bay Area storm-total precipitation changes exhibit a 
strong dependence on storm type, with the caveat that the sample size 
includes five events. Focusing on the 2100 simulations, storms charac
terized by an AR accompanied by an ETC (i.e., storms 1, 4, and 5) exhibit 
precipitation scaling that exceeds the CC rate (1.1–1.5 times CC), 
whereas precipitation scaling is below CC or negative, indicating a 
decrease in precipitation, for storms 2 and 3, which were characterized 
by an AR only (Table 3). Our findings may be consistent with observed 
precipitation scaling rates for AR-type events in the historical climate, 
which were found to exceed CC (Hatsuzuka et al., 2021), although in
formation is unavailable on whether the AR-type events were 

accompanied by an ETC. If our discovery that precipitation scaling with 
future warming exceeds the CC scaling rate for the storms characterized 
by an AR accompanied by an ETC generalizes to all such storms, there 
are important implications for projected future precipitation impacts, as 
the majority of observed AR events (82%) are associated with an ETC 
(Zhang et al., 2019). 

In addition to strong dependence on storm type, the simulated pre
cipitation scaling rate itself exhibits a moderate dependence on the 
magnitude of future warming. For storms characterized by an AR 
accompanied by an ETC, the future precipitation scaling is near or above 
the CC rate (0.7–1.4 times CC) for the 2050 simulations and above the 
CC rate (1.1–1.5 times CC) for the 2100 simulations (Table 3). This in
crease in precipitation scaling as the magnitude of warming increases 
from the 2050 to the 2100 climates is consistent with the temperature 
dependence of precipitation scaling found by Kharin et al. (2013) in the 
much lower resolution Coupled Model Intercomparison Project Phase 5 
(CMIP5) experiments. 

Since each of the storm events is characterized by an AR, we inves
tigate how future changes in precipitable water and integrated water 
vapor transport (IVT) may contribute to the future precipitation 
changes. Interestingly, the projected future changes in precipitation 
have little correlation with future changes in precipitable water or IVT. 
Precipitable water not only increases in the future for all storm events, 
but increases at a rate exceeding CC (Fig. 11 and Table 3), despite weak 
or negative future changes in precipitation for storms characterized by 
an AR only (i.e., storms 2 and 3). The projected decrease in storm-total 
precipitation for storm 3, despite the increase in precipitable water, 
suggests that dynamical effects are dominating the thermodynamic 
changes. The same is true for IVT (Fig. 12 and Table 3), consistent with 

Fig. 12. Future change in IVT (km m− 1 s− 1) from the ensemble mean of the 2100 minus historical simulations on the 27 km resolution domain for (a) storm 1a, (b) 
storm 1b, (c) storm 2, (d) storm 3, (e) storm 4, (f) storm 5. IVT for each event is calculated over the same days as in Fig. 9. 
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Dominguez et al. (2018), indicating that to fully understand future 
climate change impacts associated with ARs it is necessary to consider 
not only IVT but also the actual precipitation. Although this may seem 
surprising, as large values of precipitable water and IVT are often 
associated with extreme precipitation, they alone are insufficient con
ditions for precipitation, which also requires a lifting mechanism. This 
may explain why ARs accompanied by ETCs, which are associated with 
strong surface convergence, rather than ARs alone, are preferentially 
projected to experience increased precipitation in the future. 

We investigate the hypothesis that the sign of the future precipitation 
change is linked with dynamical, rather than thermodynamic, changes 
in the storm events by evaluating the future change in vertical velocity at 
500 hPa. We considered the vertical velocity over the Bay Area region 
shown in Fig. 9a and over land only, to be consistent with the evaluation 
of precipitation changes. The vertical velocity is also considered over the 
entire lifetime of the storm event (Table 1). To calculate the vertical 
velocity change, we set any negative vertical velocity values (i.e., 
descent) at each point in time and space and for each ensemble member 
to zero, as the purpose is to evaluate changes in ascent only, which 
would relate to precipitation. Maps of the future change (2100 minus 
historical) for the ensemble average of each storm event are shown in 
Fig. 13, and the Bay Area averaged percent changes are included in 
Table 3, to help quantify the changes in this relatively noisy variable. For 
storm events characterized by an AR only, there are areas of substantial 
decreases in ascent at 500 hPa over the Bay Area (Fig. 13 c and d) in the 
2100 simulation relative to the historical, which correspond to future 
changes of − 4.3% and − 1.5% for storm 2 and storm 3, respectively, over 
the Bay Area region (Table 3). On the other hand, there are widespread 

(Fig. 13a–b and e-f) and substantial (Table 3) increases in ascent at 500 
hPa in the 2100 simulations relative to the historical for storm events 
characterized by a co-occurring AR and ETC. Specifically, for storm 
events 1, 4, and 5, mid-tropospheric ascent in the 2100 simulation in
creases by 7.3%–18.3% relative to the historical (Table 3). This supports 
the idea that the differences in the sign of future precipitation change 
between AR-only events and co-occurring AR and ETC events are linked 
with dynamical changes in the storm events (i.e., mid-tropospheric 
ascent) rather than thermodynamic changes (i.e., precipitable water). 

In addition to considering future changes in storm-total precipita
tion, we evaluated changes in the probability of extreme 3-hourly pre
cipitation rates, which are also important for climate change impacts 
such as flash flooding. We calculated probability density functions 
(PDFs) using 3-hourly precipitation data from all model grid points over 
the Bay Area region and over the lifetime of each storm event, and for 
each ensemble member (i.e., no spatial, temporal, or ensemble aver
aging was applied). The calculation is intentionally different from that 
used for the storm-total precipitation, so that we can retain information 
regarding extreme rainfall rates, rather than smoothing them out by 
using area-averaging and ensemble-averaging. We note that the PDFs 
are plotted for values corresponding to 0.1 inches/3-h (or 2.54 mm/3-h) 
and greater, in order to be able to clearly see the tails of the extremes, 
which would otherwise be difficult to see given that near-zero 3-hourly 
precipitation rates occurred relatively frequently within the region and 
time considered. The 3-hourly precipitation rates shift toward stronger 
values in the 2100 simulations for individual ensemble members and the 
full 10-member ensemble for all storm events, regardless of whether the 
storm-total precipitation changes were positive or negative (Fig. 14). 

Fig. 13. Future change in positive values only of vertical velocity at 500 hPa (m s− 1) from the ensemble mean of the 2100 minus historical simulations on the 3 km 
resolution domain for (a) storm 1a, (b) storm 1b, (c) storm 2, (d) storm 3, (e) storm 4, (f) storm 5. Vertical velocity for each event is averaged over the same days as 
in Fig. 9. 
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This suggests that the precipitation scaling rate with future temperature 
warming may be different for storm-total precipitation compared with 
3-hourly precipitation. This may be related to differences in the way in 
which storm-total precipitation and 3-hourly precipitation were 
considered, with the former quantity area-averaged over the Bay Area 
domain and ensemble-averaged, and the latter considered using each 
model gridpoint within the Bay Area domain and each ensemble mem
ber. We plan an in-depth analysis of future changes in sub-daily pre
cipitation rates in future work. 

4. Discussion and conclusions 

Reliable projections of future changes in extreme precipitation are 
urgently needed to provide decision makers with the best possible in
formation as the climate continues to warm. Future projections are 
uncertain from state-of-the-art global climate models, as such models 
require the use of convective parameterization and are typically run at 
resolutions insufficient to reproduce observed extreme precipitation 
rates and to properly represent topography, which provides an impor
tant lifting mechanism. In this study, with input from stakeholders of the 
City and County of San Francisco, California, we designed and per
formed 10-member ensembles of 3 km resolution regional climate model 
simulations to provide extreme precipitation projections over the San 
Francisco Bay Area. The simulations consist of hindcasts of five histor
ically impactful extreme precipitation events, which were characterized 
by either an atmospheric river (AR) alone, or an AR accompanied by an 
extratropical cyclone (ETC). We then adjusted the greenhouse gas con
centrations and prescribed sea-surface temperature and initial and 
lateral boundary conditions to simulate the historical storm events in 
future climates, specifically the years 2050 and 2100 under the RCP8.5 
emissions scenario. These “storyline” experiments are designed to 
inform how the magnitude of events like the historical storms could 
change if similar events occurred in a warmer world. The assumption 
behind this methodology is that the Bay Area would continue to be 

impacted by ARs and ARs with ETCs in the future, which is reasonable 
given the prevalence of such storms. We note that this experimental 
design does not address future changes in event frequency or shifts in 
storm tracks, which requires multi-decadal global climate model simu
lations. Therefore, while this study can provide information on changes 
in the magnitude of precipitation associated with individual storm 
events, it is unable to address how precipitation will change overall. 

We found that future storm-total precipitation changes depend 
strongly on storm type, with increases for events associated with an AR 
accompanied by an ETC (storms 1, 4, and 5) and weak or negative 
changes for events associated with an AR only (storms 2 and 3). The 
future precipitation increases in co-occurring AR and ETC events scale at 
a rate that exceeds the theoretical Clausius Clapeyron scaling of ~6.5% 
per ◦C warming, by up to 1.5 times the CC rate. Given that the majority 
of observed ARs are associated with an ETC, this has important impli
cations for future precipitation impacts over the Bay Area, as it indicates 
that storm-total precipitation associated with the most common type of 
storm event may increase by 26–37% in 2100 relative to historical, i.e., 
up to 9.75% per ◦C warming. Another interesting finding is that pre
cipitable water and integrated vapor transport increase at similar per
centage rates for all storm events, despite the weak or negative 
precipitation changes for the AR-only events. Although this may seem 
surprising, as large values of precipitable water and strong IVT are often 
associated with extreme precipitation, they alone are insufficient con
ditions for extreme AR precipitation, which also requires a lifting 
mechanism. Indeed, we found that instead, changes in mid-tropospheric 
vertical velocity can explain the differences in future storm-total pre
cipitation changes between AR-only compared with co-occurring AR 
and ETC events. This result highlights that future changes in precipitable 
water and IVT associated with ARs may not alone be accurate indicators 
of future changes in precipitation. 

For future work it would be useful to consider additional storm 
events in order to better understand how generalizable the extreme 
precipitation scaling rates are. In addition, we note that the projections 

Fig. 14. Probability density functions of 3-hourly precipitation rates (mm/3-h) for precipitation over the San Francisco Bay Area during the storm life time for (a) 
storm 1a, (b) storm 1b, (c) storm 2, (d) storm 3, (e) storm 4, and (f) storm 5 from the 2100 (red) and historical (black) simulations at 3 km resolution. Dashed lines 
represent individual ensemble members and solid lines represent the full 10-member ensemble. Note that the x-axis is plotted on the log-scale, and that values are 
shown for precipitation rates of 2.54 mm/3-h (0.1 inches/3-h) and above only. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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presented here used one global climate model to provide the future 
changes in SST and lateral boundary conditions for the 2050 and 2100 
experiments. However, this is not as significant a limitation on our 
findings as it may appear. Changes in extreme precipitation are clearly 
linked to temperature changes in regions of storm moisture sources. 
These future temperature changes are highly dependent on emissions 
scenario, the time frame of interest, and climate sensitivity. If these 
factors are external to the extreme precipitation scaling rules presented 
here, decision makers and practitioners can use the scaling rates simu
lated in this study to estimate local future extreme storm-total precipi
tation percent changes by simply applying estimated regional warmings 
at a desired time under a desired emissions scenario for each type of 
storm event (i.e., AR-only or co-occurring AR and ETC). We note that the 
scaling rates may be different for daily and sub-daily precipitation ex
tremes, a topic planned for future research. As confidence in future 
regional temperature projections obtained from downscaled CMIP ex
periments is significantly higher than for precipitation from such ex
periments, we maintain that confidence in projected extreme 
precipitation changes obtained from application of these scaling rules 
should be considered as higher, subject to the assumption that storm 
frequency and types does not change. 
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Warner, M.D., Mass, C.F., Salathé, E.P., 2015. Changes in winter atmospheric rivers 
along the North American west coast in CMIP5 climate models. J. Hydrometeorol. 
16, 118–128. 

Wehner, M., Gleckler, P., Lee, J., 2020. Characterization of long period return values of 
extreme daily temperature and precipitation in the CMIP6 models: Part 1, model 
evaluation. Weather Clim. Extrem. 30, 100283. 

Wehner, M.F., Reed A., K., Li, F., et al., 2014. The effect of horizontal resolution on 
simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. 
Earth Syst. 6, 980–997. 

Wehner, M.F., Zarzycki, C., Patricola, C.M., 2019. In: Collins, J.M., Walsh, K. (Eds.), 
Estimating the Human Influence on Tropical Cyclone Intensity as the Climate 
Changes. Hurricane Risk. Springer International Publishing, pp. 235–260. 

Westra, S., Fowler J., H., Evans P., J., Alexander V., L., Berg, P., Johnson, F., 
Kendon J., E., Lenderink, G., Roberts M., N., 2014. Future changes to the intensity 
and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555. 
https://doi.org/10.1002/2014RG000464. 

Wood, R.R., Ludwig, R., 2020. Analyzing internal variability and forced response of 
subdaily and daily extreme precipitation over Europe. Geophys. Res. Lett. 47 
https://doi.org/10.1029/2020gl089300. 

Zhang, Z., Ralph, F.M., Zheng, M., 2019. The relationship between extratropical cyclone 
strength and atmospheric river intensity and position. Geophys. Res. Lett. 46, 
1814–1823. 

Zhao, M., 2020. Simulations of atmospheric rivers, their variability, and response to 
global warming using GFDL’s new high-resolution general circulation model. 
J. Clim. 33, 10287–10303. 

Zhou, Y., Kim M., H., 2018. Prediction of atmospheric rivers over the North Pacific and 
its connection to ENSO in the North American multi-model ensemble (NMME). 
Climate Dynamics 51, 1623–1637. https://doi.org/10.1007/s00382-017-3973-6. 

C.M. Patricola et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S2212-0947(22)00027-5/sref26
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref26
https://doi.org/10.1029/2020jd034053
https://doi.org/10.1029/2020jd034053
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref28
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref28
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref28
https://doi.org/10.1007/s00382-021-05805-w
https://doi.org/10.1007/s00382-021-05805-w
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref30
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref30
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref30
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref31
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref31
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref32
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref32
https://doi.org/10.1175/bams-d-13-00255.1
https://sfpublicworks.org/sites/default/files/2%20160309_SLRAP_Executive%20Summary_ED_0.pdf%2016
https://sfpublicworks.org/sites/default/files/2%20160309_SLRAP_Executive%20Summary_ED_0.pdf%2016
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref35
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref35
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref36
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref36
https://doi.org/10.15447/sfews.2018v16iss4art1
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref37
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref37
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref38
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref38
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref38
https://doi.org/10.1175/jcli-d-16-0808.1
https://doi.org/10.1175/jcli-d-16-0808.1
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref41
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref41
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref42
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref42
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref43
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref43
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref43
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref44
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref44
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref44
https://doi.org/10.1038/s41612&hyphen;017&hyphen;0008&hyphen;2
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref46
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref46
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref46
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref47
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref47
https://doi.org/10.1016/j.wace.2017.03.004
https://doi.org/10.1016/j.wace.2017.03.004
https://doi.org/10.1007/s00382-009-0623-7
https://doi.org/10.1007/s00382-012-1605-8
https://doi.org/10.1038/s41586-018-0673-2
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref52
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref52
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref52
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref54
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref54
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref54
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref53
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref53
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref53
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref55
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref55
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref55
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref56
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref56
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref56
https://doi.org/10.1038/nclimate3168
https://doi.org/10.1175/bams-d-18-0023.1
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref59
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref59
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref59
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref59
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref59
https://doi.org/10.1029/2020gl089096
https://doi.org/10.1029/96gl00265
https://doi.org/10.1029/96gl00265
https://doi.org/10.1002/2016gl070470
https://doi.org/10.1002/2016gl070470
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref63
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref63
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref63
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref64
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref64
https://doi.org/10.1175/JCLI-D-19-0892.1
https://doi.org/10.1038/s41558-018-0140-y
https://doi.org/10.1038/s41558-018-0140-y
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref68
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref68
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref68
https://www.wmo.int/pages/prog/arep/gaw/documents/TD_1473_GAW184_web.pdf
https://www.wmo.int/pages/prog/arep/gaw/documents/TD_1473_GAW184_web.pdf
https://doi.org/10.1029/2011gl048426
https://doi.org/10.1029/2011gl048426
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref72
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref72
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref72
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref73
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref73
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref73
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref74
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref74
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref74
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref75
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref75
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref75
https://doi.org/10.1002/2014RG000464
https://doi.org/10.1029/2020gl089300
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref78
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref78
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref78
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref79
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref79
http://refhub.elsevier.com/S2212-0947(22)00027-5/sref79
https://doi.org/10.1007/s00382-017-3973-6

	Future changes in extreme precipitation over the San Francisco Bay Area: Dependence on atmospheric river and extratropical  ...
	1 Introduction
	2 Data and methods
	2.1 Convection-permitting regional climate model simulations
	2.2 Regional climate model optimization

	3 Results
	3.1 Historical storm events
	3.1.1 Storm 1
	3.1.2 Storm 2
	3.1.3 Storm 3
	3.1.4 Storm 4
	3.1.5 Storm 5

	3.2 Future changes in precipitation

	4 Discussion and conclusions
	Author contributions
	Declaration of competing interest
	Acknowledgements
	References




