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ABSTRACT: Existing air pollution metabolomics studies showed
inconsistent results, often limited by small sample size and
individual air pollutants effects. We conducted a metabolome-
wide association study among 1096 women (68.2 ± 5.7 years) who
provided blood samples (1998−2001) within the Cancer
Prevention Study-II Nutrition Cohort. Annual average individual
exposures to particulate matter, nitrogen dioxide, ozone, sulfur
dioxide, and carbon monoxide in the year of blood draw were used.
Metabolomics profiling was conducted on serum samples by
Metabolon. We evaluated the individual air pollutants effects using
multiple linear regression and the mixture effect using quantile g-
computation, adjusting for confounders and false discovery rate
(FDR). Ninety-five metabolites were significantly associated with at
least one air pollutant or mixture (FDR < 0.05). These metabolites were enriched in pathways related to oxidative stress, systemic
inflammation, energy metabolism, signals transduction, nucleic acid damage and repair, and xenobiotics. Sixty metabolites were
confirmed with level 1 or 2 evidence, among which 21 have been previously linked to air pollution exposure, including taurine,
creatinine, and sebacate. Overall, our results replicate prior findings in a large sample and provide novel insights into biological
responses to long-term air pollution exposure using mixture analysis.
KEYWORDS: air pollution, mixture, high-resolution metabolomics, metabolome-wide association study, oxidative stress, inflammation

■ INTRODUCTION
The associations between exposure to ambient air pollution
and a range of adverse health outcomes are well established.1−5

Findings from the Cancer Prevention Study (CPS)-II cohort
have contributed substantially to the scientific evidence
associating increasing levels of specific air pollutants with
higher mortality from respiratory disease, cardiometabolic
disease, and lung cancer.6−9 Despite these well-recognized
health impacts of ambient air pollution, uncertainty remains
regarding the specific biological pathways mediating observed
responses,10−13 and how these potential mechanisms may lead
to individual susceptibility.1,2,4,5 Detailed characterizations of
internal biological responses are critical to further clarifying
which specific mechanisms underlie ambient air pollution
toxicity. This task is complicated given the lack of sensitive and
specific air pollution exposure biomarkers to measure internal
exposures and corresponding physiological responses.14,15

High-resolution metabolomics (HRM), an innovative
analytical platform that couples high-resolution mass spec-
trometry with various chromatographic separation strategies,
has emerged as a promising tool to identify air pollution-

related biomarkers by identifying thousands of metabolic
features associated with exogenous exposures and endogenous
processes.16−19 We previously demonstrated the applicability
of HRM in linking air pollution exposure and internal
biological responses in several panel and cohort studies of
specific subpopulations.20−29 Despite the growing interest in
HRM applications involving air pollution and health,30−33 the
field remains nascent, with ongoing questions concerning the
coherence and generalizability of the findings across study
cohorts and analytical platforms.34 One potential cause of the
inconsistency is that most existing air pollution HRM studies
were conducted in relatively small study settings (i.e., N <
200), which may result in increased risks of false positive
findings likely due to insufficient statistical power.22,24,35,36
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Second, while air pollution is a complex mixture consisting of
heterogeneous and highly correlated components, few studies
have examined the joint effects of air pollution mixtures on the
human metabolome. Given that individuals are exposed to
various air pollutants simultaneously, it is critical to obtain a
better understanding on how air pollution mixtures collectively
impact human metabolome. Finally, over 80% of the significant
metabolic features previously reported to be associated with
ambient air pollution cannot be annotated or verified, resulting
in uncertainties and inconsistencies in the downstream
biological pathway analyses. All of these challenges necessitate
further research using HRM in larger, well-characterized
general population cohorts, with consideration of overall air
pollution mixture to understand the potential joint effects and
enhanced chemical annotation processes to examine consis-
tencies and provide additional verification.
To address these critical knowledge gaps, we conducted a

large-scale cross-sectional metabolomics study to evaluate the
individual and potential joint effects of multiple air pollutants
on serum metabolome in 1096 women enrolled in the CPS-II
Nutrition Cohort.37 We followed an established untargeted
metabolome-wide association study (MWAS) framework to
evaluate metabolites and their metabolic pathways associated
with long-term exposure to ambient air pollution.23 Here, we
present the MWAS results, compare and summarize the
findings from both individual air pollutant models and overall
air pollution mixture models, and evaluate the consistency of
our findings with other studies examining the metabolic
response to ambient air pollution exposure.

■ METHODS
Study Design and Population. The CPS-II Cohort is a

U.S. prospective cohort established by the American Cancer
Society in 1982 and enrolled nearly 1.2 million participants in
50 states, the District of Columbia, and Puerto Rico.38

Participants in this study were drawn from the CPS-II
Nutrition Cohort, a subset of the larger CPS-II Cohort
established between 1992 and 1993. The CPS-II Nutrition
Cohort included over 180,000 men and women aged 50−74
years residing in 21 U.S. states with high-quality population-
based cancer registries. Participants completed a self-
administered questionnaire at baseline including demographic,
medical, lifestyle, and other information. 39,200 participants of
the CPS-II Nutrition Cohort also provided nonfasting blood
samples between 1998 and 2001 that were stored at a central
repository for future analysis. The cohort and sample collection
process are described in detail elsewhere.39 The study
protocols were approved by the Emory University (Atlanta,
GA) Institutional Review Board.
We retrieved data from 782 postmenopausal breast cancer

cases and 782 matched controls in a previous nested case-
control study on metabolomics and breast cancer risk within
the CPS-II Nutrition Cohort. The cases included all instances
of breast cancers that occurred among postmenopausal women
who provided nonfasting blood samples from 1998 to 2001. All
women were cancer-free (except nonmelanoma skin cancer) at
the time of blood draw. The healthy controls were 1:1 matched
to the cases by date of birth (±6 months), race/ethnicity
(Caucasian, African American, or other/unknown), and time at
blood draw (±6 months) by incidence density sampling.
Details on the study design and population characteristics can
be found elsewhere.37 Since metabolomics profiles were only

available for this population, we included all participants
initially.
For this air pollution metabolomics analysis, a set of

exclusion criteria was applied (Figure S1). To reduce potential
misclassification and enhance temporal alignment among
residential history, blood sampling, and air pollution data, we
excluded women without matchable residential air pollution
data (N = 284), those with different residential states at
enrollment and at the time of blood draw (N = 10), and those
missing annual average air pollution exposure data in the year
of blood draw (those provided a blood sample in 1998; N =
85). We also excluded women without complete covariate data
for statistical analyses (N = 72). A total of 1096 women were
included in the subsequent analyses.

Retrospective Residential Air Pollution Assessment.
We retrieved air pollution assessments for each participant
based on the residential address from the Center for Clean Air
Climate Solution (CACES) database.40 Briefly, ambient air
pollution exposure for the contiguous U.S. was estimated using
integrated empirical geographic regression models.40 The
prediction models were based on land use regression,
employing variable selection and data reduction techniques
to include a set of geographic characteristics from measures of
traffic, land use, land cover, and satellite-based estimates of air
pollution. Residential addresses were collected in 1982 when
CPS-II was established. The residential addresses were
geocoded and were used to link with outdoor air pollution
data at the census block group level. Detailed information on
the geocoding of participant residences can be found
elsewhere.41 We included six air pollutants, which were fine
particulate matter (PM2.5), coarse particulate matter (PM10),
nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and
carbon monoxide (CO). Our study aims to examine
associations between long-term air pollution exposure and
serum metabolomics. Although multiple critical exposure time
windows are plausible, there is currently no evidence indicating
which window may hold greater significance.29,42 Since the
CACES database provides only annual average exposure data,
we selected annual average exposure levels as the exposure
time window to align with both our research interests and data
availability. The Pearson correlation among air pollutants was
examined. A detailed description of the exposure assignment
methodology and corresponding associations with mortality
can be found elsewhere.7−9,43

Metabolomics Profiling. Metabolomics profiling on
serum samples was conducted by Metabolon, Inc. (Durham,
NC) using ultrahigh-performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS) as described
elsewhere.44 Briefly, the serum samples were treated with
methanol to precipitate proteins. Four sample fractions were
dried and reconstituted in different solvents for measurement
using four different platforms: (1) two fractions were analyzed
by two separate reverse-phase UPLC-MS/MS methods with
positive-ion-mode electrospray ionization (ESI); (2) one
fraction was analyzed by reverse-phase UPLC-MS/MS with
negative-ion-mode ESI; and (3) one fraction was analyzed by
hydrophilic interaction chromatography UPLC-MS/MS with
negative-ion-mode ESI. Samples from each case and its
matched control were measured within the same batch, with
pairs randomly assigned across batches. Individual metabolites
were identified by comparison with a chemical library
consisting of >5400 commercially available purified standard
compounds.
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A total of 1384 metabolites were detected. Triplicates of 46
samples were used as quality control samples to evaluate the
reproducibility of the platform. Any missing values were
assigned the minimum detection value. We excluded
metabolites with a detection rate below 10% of samples (n =
109) and metabolites with intraclass correlation coefficient
(ICC) < 0.5 (n = 89). As a result, 1186 metabolites were
included in the analysis. The median ICC was 0.91 with an
IQR of 0.82−0.96, suggesting a very high reproducibility of the
platform. The median between-batch coefficient of variation
(CV%) was 17% with an IQR of 11−27%. To correct for day-
to-day variation from the platform, account for non-normal
distribution, and allow comparison on the same scale, the
relative concentration of each metabolite (“intensity”) was
divided by its daily median, then log-transformed followed by
autoscaled.

Covariates Selection and Definition. Based on the
existing literature, data availability, and a directed acyclic graph
(Figure S2), the selected covariates were age at blood draw
(continuous), body mass index (BMI; continuous), diet score
(continuous), race (categorical: white and nonwhite), smoking
status (categorical: never, former, and current smoker), year of
blood draw (categorical: 1999, 2000, and 2001), and hours
since last meal (categorical: <2 h ago, 2−4 h ago, and >4 h
ago). Race was collected at baseline in 1982. Age at blood
draw, BMI, smoking status, and hours since the last meal were
collected in the survey at the blood draw. The diet score
(ranges from 0−9) was derived using food items reported in
the 1999 survey based on the 2006 ACS guidelines on
nutrition and physical activity for cancer prevention, previously
described elsewhere.45 Briefly, the diet score was based on the
consumption of a variety of vegetables and fruits, the
percentage of grains consumed as whole grains, and the
consumption of processed and red meats. A higher diet score
indicates higher concordance with the ACS guideline.

Statistical Analysis. We employed two approaches to
investigate the association between air pollution exposure and
the serum metabolome. First, we utilized multiple linear
regression models to examine the impacts of individual air
pollutants on each metabolite. Specially, the natural log-
transformed standardized intensity of each metabolite was
regressed on the annual average level of each air pollutant,
adjusting for the selected covariates. The effect estimates were
expressed as the percent change in standardized metabolite
intensities per interquartile range (IQR) increase in air
pollution exposure levels, controlling for covariates. For each
air pollutant, the general form of models are expressed as

Yln( ) Pollutant Age BMI

Race Smoking status

Dietary score Year of blood draw

Time since last meal

ij j j i j i j i

j i j i

j i j i
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where Yij denotes the intensity of metabolites j for participants
i. Pollutanti refers to the annual average levels for participants i.
εij denotes residual random normal error.
Second, we applied quantile g-computation models to

examine the overall effect of air pollution mixtures on each
metabolite. Quantile g-computation provides a single effect
estimate for an exposure mixture, simplifying interpretation
and computational process without assuming directional

homogeneity.46 Additionally, it provides a set of weights that
describe the contribution of each exposure (positive or
negative partial effect) to the overall effect estimate. The
natural log-transformed standardized intensity of each
metabolite was regressed on the annual average level of all
air pollutants, adjusting for the selected covariates. The effect
estimates were expressed as percent changes in standardized
metabolite intensities per two quartiles (50%) increase in all air
pollutant levels, controlling for covariates. The general models
are expressed as
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Where Yij denotes the intensity of metabolites j for participants
i. d indicates the total number of air pollutants (d = 1, 2,..., 6).
Pollutantikq refers to the quantiles of air pollutants k for
participants i. εij denotes residual random normal error.This
analysis was conducted using the “qgcomp.noboot” function
from the “qgcomp” package. To correct for multiple
comparisons, we applied the Banjamini−Hochberg procedure,
and a false discovery rate (FDR) < 0.05 is considered
statistically significant. All analyses were conducted using R
(version 4.1.0).
We conducted several sensitivity analyses. Specifically, we

used the annual average level 1 year prior to the time of blood
draw as exposure indicator (N = 772). To examine whether
future breast cancer status would affect the results, we (1)
further included breast cancer status (2-level factor, case, or
control) in the models; and also (2) reran the analysis using
control participants only (N = 528). We also ran analysis
among never-smokers only (N = 606), to address potential
residual confounding by smoking status of air pollution-
metabolite associations.

■ RESULTS
A total of 1096 women were included in the analysis. The
mean age and BMI were 68.2 ± 5.7 and 25.7 ± 4.6 kg/m2,
respectively (Table 1). The majority (98%) of participants
were white. Never-smokers, former-smokers, and current-
smokers accounted for 55, 41, and 4%, respectively. Of all
participants, 30, 65, and 6% contributed blood samples in
1999, 2000, and 2001, respectively. Participants were from 19
states, with the proportions of participants from each state
ranging from 1.0 to 13.0% (Figure S3). The annual mean ±
standard deviation concentrations of PM2.5, PM10, NO2, O3,
SO2, and CO of the year of blood sample collection were 12.8
± 3.1 μg/m3, 21.6 ± 6.5 μg/m3, 13.8 ± 5.9 ppb, 48.1 ± 7.0
ppb, 3.60 ± 1.8 ppb, and 0.48 ± 0.18 ppm, respectively (Table
2). The air pollutants were weakly to strongly correlated with
one another (ρ = 0.06 for O3 and CO and ρ = 0.73 for PM2.5
and PM10) (Figure S4).
For the individual air pollutant MWAS models, 92 unique

metabolites (58 confirmed metabolites with known identities
and 34 unknown) were significantly associated with at least
one air pollutant (FDR < 0.05) (Table S1). We observed 31,
55, 6, and 8 metabolites significantly associated with PM10, O3,
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SO2, and CO, respectively (Figure 1 and Tables S1 and S2).
We did not observe any metabolites significantly associated
with PM2.5 and NO2 at FDR < 0.05. Eight metabolites were
associated with two pollutants, four of which were xenobiotics

and four unknown metabolites. Among them, three metabo-
lites were significantly associated with both PM10 and O3 with
consistent direction of effect, which were 2-pyrrolidinone and
two unknown metabolites (X-18899 and X-21442). Addition-
ally, three metabolites, including 2,8-quinolinediol sulfate,
stachydrine, and an unknown metabolite X-19183, were
significantly associated with both PM10 and CO exposure
with a consistent direction of effect. One metabolite,
homostachydrine, was positively associated with PM10 and
negatively associated with SO2. One unknown metabolite, X-
24241, is negatively associated with both O3 and SO2.
For the air pollution mixture MWAS models, we observed

three metabolites significantly associated with the air pollution
mixture (FDR < 0.05), which were S-1-pyrroline-5-carboxylate,
methyl-4-hydroxybenzoate sulfate, and X-24556 (Figure 1 and
Tables S1 and S2). The weights of each air pollutant to the
overall effect estimate for these three metabolites are shown in
Figure S5. According to quantile g-computation weights, SO2
and PM10 contributed the most to the overall mixture effect for
S-1-pyrroline-5-and X-24556, while PM10 and CO contributed
the most to the overall mixture effect for methyl-4-

Table 2. Air Pollutant Assessments of the Study Population
(N = 1096)a

air pollutant
assessments

overall (N = 1096) mean
(SD)

Q1
median

Q5
median

PM2.5 (μg/m3) 12.821 (3.065) 9.498 15.794
PM10 (μg/m3) 21.558 (6.538) 14.978 28.382
NO2 (ppb) 13.822 (5.886) 7.496 20.617
O3 (ppb) 48.074 (6.984) 41.276 58.903
SO2 (ppb) 3.580 (1.761) 1.691 6.074
CO (ppm) 0.475 (0.179) 0.303 0.694

aNote: PM2.5, fine particulate matter; PM10, coarse particulate matter;
NO2, nitrogen dioxide; O3, ozone; SO2, sulfur dioxide; CO, carbon
monoxide. SD, standard deviation; Q1, the first quintile of exposure
levels of study population; Q5, The fifth quintile of exposure levels of
study population.

Figure 1. Volcano plots of associations between metabolite intensities and individual air pollutants or air pollution mixture. The x-axis denotes the
coefficients of metabolite-pollutant associations. For individual air pollutant model, the coefficient is the change in natural log-transformed
standardized metabolite intensity per interquartile range increase in air pollutant exposure levels. For the air pollution mixture model, the coefficient
is the change in natural log-transformed standardized metabolite intensity per two quartiles (50%) increase in all air pollutant exposure levels. The
y-axis denotes the negative natural log of false discovery rate (FDR) in metabolite-pollutant association. Different colors were used to represent
different pathways where the metabolites are involved. The black solid line represents FDR = 0.05 and the black dashed line represents FDR = 0.2.
For individual air pollutant model, the labeled metabolites were associated with two air pollutants. For the air pollution mixture model, the labeled
metabolites were those meeting FDR < 0.05. PM2.5, fine particulate matter; PM10, coarse particulate matter; NO2, nitrogen dioxide; O3, ozone; SO2,
sulfur dioxide; CO, carbon monoxide; Mixture, air pollution mixture. *A compound that has not been confirmed based on a standard, but
Metabolon is confident in its identity (not tier 1).
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hydroxybenzoate sulfate. The number of significant metabo-
lites identified in mixture models was much smaller than that
identified in individual air pollutant models (Table S2). We did
not observe any overlapping metabolites identified by both
individual air pollutant models and mixture models at FDR <
0.05. However, several overlapping metabolites were identified
by both individual air pollutant models and mixture models at
FDR < 0.2 and unadjusted P < 0.05 (Figure S6).
All of the MWAS results are provided in the Supporting

Information (Tables S1−S7).
Notably, when comparing to the known metabolites with

level 1 or level 2 confidence reported in previous air pollution
metabolomics studies,47 we were able to replicate 21
metabolites using both individual air pollutant models and
air pollution mixture model, including taurine, creatinine,
sebacate, oleoyl ethanolamide, palmitoyl ethanolamide (PEA),
sphingomyelin (d18:2/18:1), and γ-glutamylvaline, and several
others, in our study (Table S8).
Considering both individual air pollutant models and air

pollution mixture models, the greatest percentage of the 60
significant confirmed metabolites with known identities was
those involved in xenobiotic metabolism-related pathways
(33%). The remaining confirmed metabolites were those
enriched in lipids (28%) and amino acids (22%) metabolic
pathways (Table S1 and Figure 1). Further, the known
metabolites were closely linked to pathways involved in
oxidative stress and systemic inflammation (e.g., urea cycle;
arginine and proline metabolism; tryptophan metabolism;

leucine, isoleucine, and valine metabolism, ascorbate, and
aldarate metabolism), energy metabolism (e.g., fatty acid
metabolism, TCA cycle), signals transduction (e.g., sphingo-
lipid metabolism, lysophospholipid, endocannabinoid), nucleic
acid damage and repair (i.e., purine and pyrimidine
metabolism), and xenobiotic pathways, which collectively
reveal the potential molecular mechanisms underlying air
pollution toxicity on human metabolome (Figure 2).
To test the robustness of our results with respect to

adjustments for potential confounding and temporal misalign-
ment, we conducted several sensitivity analyses. In general, we
observed consistent findings with robust effect estimates across
different sets of sensitivity analyses. For individual air
pollutants models, after including breast cancer status in the
models, the number and identities of most air pollutants
associated features remained the same, except for three
metabolites that were previously significantly associated with
O3 became insignificant (Table S9). Additionally, the effect
coefficients remained robust and consistent (Figure S7). When
using the annual average exposures in the previous year of
blood draw as exposure indicators (N = 772), the number of
significant metabolites reduced from 92 to 31, with 20
overlapping metabolites consistently identified (Figure S8
and Table S10). As for the separate analyses among never-
smokers (N = 606) and controls (N = 528), the effect
estimates from linear models were similar and correlated with
those from the main analyses (Figures S9 and S10). The
number of significant features among never-smokers decreased

Figure 2. Potential molecular mechanism underlying the ambient air pollution toxicity using high-resolution metabolomics in the Cancer
Prevention Study-II Nutrition cohort. Colored molecules are those identified in our study, with different colors corresponding to different
biomolecule categories. Green molecules are amino acids/peptides; yellow molecules are cofactors/vitamins; gray molecules are lipids. The red
arrow denotes the metabolite in positive association with air pollution exposure level, while the dark green arrow denotes the metabolite in negative
association with air pollution exposure level. The solid black arrow indicates a single-step reaction between the molecule at the arrow’s end and the
molecule at the arrow’s top, while the dashed black arrow indicates multiple steps between the molecule at the arrow’s end and the molecule at the
arrow’s top. The gray arrow indicates the reaction between molecules and their corresponding receptors. TCA: citric acid cycle; GLR: glycine
receptor α-1; TRPV1: transient receptor potential cation channel subfamily V member 1. *Three lysophospholipids were found positively
associated with ozone, which were 1-linoleoyl-GPG (18:2), 1-oleoyl-GPE (18:1), and 2-stearoyl-GPE (18:0). ∧Two sphingomyelins were
associated with air pollution: sphingomyelin (d18:2/18:1) was in positive association with coarse particulate matter, while sphingomyelin (d18:1/
24:1, d18:2/24:0) was in negative association with ozone.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.4c09592
Environ. Sci. Technol. 2025, 59, 212−223

217

https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09592/suppl_file/es4c09592_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09592/suppl_file/es4c09592_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09592/suppl_file/es4c09592_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09592/suppl_file/es4c09592_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09592/suppl_file/es4c09592_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09592/suppl_file/es4c09592_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09592/suppl_file/es4c09592_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09592/suppl_file/es4c09592_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09592/suppl_file/es4c09592_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09592/suppl_file/es4c09592_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c09592?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c09592?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c09592?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c09592?fig=fig2&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c09592?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


from 92 to 76, with 41 overlapping metabolites (Table S11).
Only one metabolite, 1-linoleoyl-GPG (18:2), remained
significantly associated with the occurrence of O3 among
controls (Table S12). For air pollution mixture models, three
additional significant metabolites were identified after further
including breast cancer status, which were taurine, sphinga-
dienine, and choline (Table S13). We did not find any
significant metabolites among never-smokers, controls, and
when using the annual average exposures in the previous year
of blood draw as exposure indicators, which was possibly due
to the smaller sample size resulting in less statistical power.
The effect coefficients remained robust and consistent (Figure
S11).

■ DISCUSSION
In this large-scale cross-sectional metabolome-wide association
study among 1096 women within the well-established CPS-II
Nutrition Cohort, we evaluated the effects of individual air
pollutants and overall air pollution mixture on serum
metabolome. Our study findings added additional novel
insights to the very limited number of existing air pollution
mixture analyses investigating the potential joint effects of air
pollution on human metabolome.48,49 We detected numerous
metabolites significantly associated with long-term exposure to
air pollution and verified metabolites that were closely linked
and connected in key inflammatory, redox, energy metabolism,
signal transduction, and nucleic acid damage and repair
pathways. Among the current results, we successfully replicated
21 metabolites previously reported in other independent panel
and cohort studies,20−34 and identified an additional 39 novel
metabolites that have not been reported in air pollution studies
previously, all of which have been confirmed with level 1 or 2
evidence and may potentially be further developed as sensitive
biomarkers for assessing internal exposures to air pollution.
Collectively, these findings point to several potential molecular
mechanisms of ambient air pollution toxicity.
Our group recently published a state-of-the-science review

on high-resolution metabolomics applications in air pollution
health research,42 which summarizes current progress,
analytical challenges, and directions for future research. The
review included 47 articles published between January 1, 2005,
and March 31, 2022. By comparing our findings with
previously reported known metabolites with level 1 or level 2
confidence in air pollution metabolomics studies, we replicated
21 metabolites, including taurine, creatine, and sebacate.42 A
detailed list of metabolites associated with various air
pollutants can be found in the Supporting Information of
Liang et al.42 Many of the identified air pollution-associated
metabolites in our study were involved in biological pathways,
including the urea cycle; alanine and aspartate metabolism,
tryptophan metabolism, leucine, isoleucine, and valine
metabolism, fatty acid metabolism, TCA cycle, purine and
pyrimidine metabolism, and sphingolipid metabolism, which
were closely linked to oxidative stress, inflammatory responses,
energy metabolism, signal transduction, and nucleic acid
damage effect. Importantly, these specific pollution-mediated
pathways have also been reported in other panel studies and
cohorts to be associated with various air pollution components
and adverse health effects, including respiratory and
cardiovascular diseases, and adverse reproductive and birth
outcomes.22−24,27,28,42,50,51 Nevertheless, it is worth noting that
for a certain number of metabolite-air pollutant associations,
discrepancies exist in the association direction between the

present study and previous studies. Several important factors
may contribute to the discrepancies across studies.42 First, the
type of biospecimen used for metabolomics profiling, such as
serum, plasma, urine, and exhaled breath, can impact the
detection of metabolic changes associated with air pollution
exposures as different biospecimens may reflect distinct
metabolic processes. Second, differences in the exposure time
window, such as short-term versus long-term exposures, could
reveal different metabolic responses because the half-life of
metabolites varies widely, with some changes detectable only
immediately after exposure and others persisting over a long
period. Third, variations in the protocols, including analytic
platforms, chemical annotation, and confirmation, could
significantly affect the detected metabolic changes linked to
air pollution exposure. Fourth, our study population was
mostly elderly white, limiting the generalizability and
potentially contributing to differences in metabolic responses
compared with more diverse populations, as age and race can
significantly influence both baseline metabolomics profiles and
responses to air pollution exposures. Notably, we identified 39
novel metabolites associated with chronic air pollution
exposure that have not been reported before. However, the
documentation of functions of these metabolites were limited.
Future studies should validate our results and further explore
the roles of these metabolites.
Of particular note were pathways associated with lipid

metabolism, including fatty acid, lysophospholipid, endocan-
nabinoid, and sphingolipid metabolism. Fatty acid metabolism
has previously been associated with near-roadway air pollution,
NO2, O3, and PM exposure,52,53 specifically monohydroxy fatty
acid metabolism.53 Three lysophospholipids, also known as
lysolipids, were positively associated with exposure to O3 in
our analysis. This is consistent with a previous study that also
found that lysophospholipids were elevated in serum samples
following O3 exposure.

53 These lysophospholipids interact with
lysophospholipid membrane receptors, impacting inflamma-
tion and energy production.53,54 Two endocannabinoids,
oleoyl ethanolamide and palmitoyl ethanolamide, were
negatively associated with exposure to O3. Endocannabinoids
have been found to have anti-inflammatory and immune-
suppressive properties and act as neuronal protection.
Specifically, metabolomic changes in palmitoyl ethanolamide
was positively associated with exposure to mixed gasoline and
diesel emissions.55 Another study demonstrated the use of
endocannabinoids as protection against neuroinflammation
relating to SO2 exposure.56 Additionally, endocannabinoid
synthesis had a significant fold enrichment value for O3
exposure.53 The decreased intensities of the endocannabinoid
metabolites in relation to the increased air pollutant exposure
level may demonstrate a protective role in reducing
inflammation. Consistently in our study, we also observed a
positive association between PM10 and a negative association
between O3 and metabolites involved with sphingolipid
metabolism. Sphingolipids are a class of lipids primarily
functioning as structural molecules within cellular membranes
and regulators of biological processes within cancer cell signal
transduction.57 Previous studies have also found associations
between perturbations in sphingolipid metabolism and NO2,
O3, and PM2.5 exposure.

53,58−60

Our results also revealed several metabolites involved in
oxidative stress and systemic inflammation-related pathways
that were associated with ambient air pollution exposures.
Oxidative stress is caused by chemical imbalances between
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oxidative and antioxidative systems in the body, which may
cause an excess production of free radicals, such as reactive
oxygen or nitrogen species.61 Many amino acids act as
modifiers for reactive species, leading to oxidative stress in
the body. In our study, we identified multiple pathways of
amino acid metabolism that were significantly associated with
exposure to PM10 and O3, including the urea cycle, tryptophan
metabolism, methionine, cysteine, SAM, and taurine metabo-
lism. Metabolites involved in tryptophan metabolism were
positively associated with PM10 exposure and negatively
associated with CO exposure. Tryptophan is an amino acid
metabolized through kynurenine and serotonin pathways,
contributing to various pathophysiological pathways, including
inflammation, immune responses, and neurological func-
tion.62,63 Previous studies have associated exposure to traffic-
related air pollution with tryptophan metabolism, specifically
in-vehicle particulate metals, which make up PM10 and PM2.5
mixtures, as well as O3 exposure.22,64,65 We also observed a
negative association between taurine and exposure to O3.
Taurine is an antioxidant that can help scavenge reactive
oxygen species.66,67 However, the results are not consistent
across the existing air pollution metabolomics studies. A study
of healthy adults found that short-term O3 was positively
associated with taurine levels in bronchioalveolar lavage fluid.65

Energy disruption and nucleic acid damage-related pathways
and metabolites were found to be associated with chronic
exposure to ambient air pollution in our study. Specifically, we
observed a positive association between a metabolite in the
TCA cycle with O3. TCA cycle is the major energy-producing
metabolic pathway in cells, by oxidating acetyl-coenzyme A
derived from carbohydrates, proteins, and fatty acids.68 In cell
stress conditions, TCA cycle intermediates may be released
from the mitochondrial membrane into the cytosol due to the
disruption of the mitochondrial membrane, which has an
impact on the cellular immunity.68 In addition, we observed
changes in metabolites in purine and pyrimidine metabolism in
association with long-term exposure to PM10. Purine and
pyrimidine metabolism are essential mechanisms in DNA
damage and repair pathways and have also been associated
with multiple air pollutants including PM and PM components
in other studies.24,50,69

Additionally, we observed a substantial proportion of air
pollution-associated metabolites in xenobiotic pathways,
encompassing four chemical metabolites and 12 metabolites
derived from food components/plants, which may suggest
potential coexposures to other pollutants or the influence of
residual confounding. For instance, 4-hydroxychlorothalonil
found in our study is a metabolite of chlorothalonil, a widely
used fungicide on both crop protection and wood preserva-
tives.70 Several food-related metabolites (e.g., alliin, erythritol,
and theanine) implicated the potential confounding effects of
dietary factors, despite our control of a diet score and time
since the last meal in the main analysis. Thus, our results
should be interpreted with caution and future studies should
consider investigating the coexposures of environmental
pollutants and collecting fasting blood samples for metabolic
profiling.
We did not observe any associations with PM2.5 but did

identify PM10-associated metabolites at FDR < 0.05. This
finding contrasts with extensive evidence of PM2.5 health
impacts. While we could not identify the real cause for this
observation, several factors may account for this null finding.
First, our analysis relied on annual average PM2.5 mass

exposure levels, which do not account for the variation in
the chemical composition and corresponding carcinogenic
potential across different locations. A recent study has reported
the differences in contributions to the oxidative potential of
different components in particles.71 The participants in our
study were from diverse states across the U.S., likely
experiencing heterogeneous PM compositions, which may
lead to variations in toxicity. Future PM2.5 metabolomics
studies will likely benefit from validated prediction models for
PM components. Second, the prediction model used for PM10
is less accurate than that for PM2.5, potentially introducing
uncertainty in exposure estimates.40 Third, the relatively low
concentration and limited variability of the PM2.5 exposure
levels among participants may not have been sufficient to
detect any metabolic changes associated with PM2.5.
In general, we identified fewer significant metabolites

associated with air pollution mixtures than individual air
pollutants, contrary to our expectation. Building on previous
evidence, we hypothesized potential additive or synergic effects
among air pollutants,72 which might enable us to detect more
extensive metabolic perturbation. While there is no clear
explanation for this observation, one potential cause may be
that using prediction models with varying performance for
exposure assessment on different air pollutants may lead to
uncertainties in the exposure characterization, which could, in
turn, introduce and amplify uncertainties when assessing the
joint effects of all air pollutants. Moreover, the findings
revealed limited consistency between individual air pollutant
models and air pollution mixture models using quantile g-
computation, as demonstrated by no overlapping significant
metabolites at FDR < 0.05, although some overlap was
observed at looser thresholds of FDR < 0.2 and unadjusted P <
0.05. Future large-scale metabolomics studies are warranted to
continue examining air pollution as a mixture to better assess
the potential joint effects on human metabolome.
This study has several strengths, including a large sample

size, consideration of the overall air pollution mixture effect,
use of a well-established cohort with documented long-term air
pollution-related mortality, covariate control, stringent false
discovery rate correction to adjust for multiple testing, and
advanced metabolic profiling and chemical annotation with
over 70% of metabolites confirmed with level 1 or 2 evidence.
Despite this, certain limitations deserve specific attention. First,
the cross-sectional study design reduced our ability to explore
temporal variation of air pollution and trajectories in
metabolomic perturbations, which is an important determinant
in establishing causal inference. Additionally, temporal
misalignment was possible, meaning that part of the exposure
measurement period occurs after biosample collection. Future
studies should consider repeated measurements to compre-
hensively characterize longitudinal metabolomics responses to
air pollution exposure. Second, although we used validated
spatiotemporal models to estimate air pollution exposure at
participants’ residential addresses, we lacked data on their
time-activity patterns and indoor exposures (e.g., cooking
activities). Consequently, this is still an imperfect proxy of
personal exposure, which would likely result in nondifferential
exposure misclassification.73,74 Third, nonfasting blood sam-
ples may introduce variation in the metabolomics profiles given
the potential introduction of diet-related metabolites. Yet, to
mitigate this effect, we included hours since the last meal as a
covariate in our analyses, as shown in various air pollution
metabolomics investigations. Additionally, we utilized pool
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standards and internal references in the metabolic profiling,
and followed a thorough metabolomics workflow to mitigate
the potential effects of nonfasting status, as successfully
demonstrated in previous studies.75−77 Fourth, among the
numerous metabolites that we identified, there is a substantial
risk of false positives due to multiple comparisons and Type 1
errors. To minimize this, we applied a stringent significance
cutoff at 0.05 after the multiple comparison correction, and
several significant metabolites identified in our study have been
consistently reported in previous studies. Finally, this study was
conducted among older females that were mostly white and
generally of a higher socioeconomic status. Caution is
warranted when extrapolating the findings to other more
diverse populations.
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