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Abstract

Advances in Deep Space Exploration via Simulators and Machine Learning
by

James Craig Bird

The NASA Starlight and Breakthrough Starshot programs conceptualize fast inter-
stellar travel via small relativistic spacecraft that are propelled by directed energy. This
process is radically different from traditional space travel and trades large and slow space-
craft for small, fast, inexpensive, and fragile ones. The main goal of these wafer satellites
is to gather useful images during their deep space journey. We introduce and solve some
of the main problems that accompany this concept. First, we need an object detection
system that can detect planets that we have never seen before, some containing features
that we may not even know exist in the universe. Second, once we have images of exo-
planets, we need a way to take these images and rank them by importance. Equipment
fails and data rates are slow, thus we need a method to ensure that the most important
images to humankind are the ones that are prioritized for data transfer. Finally, the
energy on board is minimal and must be conserved and used sparingly. No exoplanet

images should be missed, but using energy erroneously would be detrimental.
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Chapter 1

Introduction

The NASA Starlight and Breakthrough Starshot programs conceptualize fast interstellar
travel via small relativistic spacecraft that are propelled by directed energy. This process
is radically different from traditional space travel and trades large and slow spacecraft
for small, fast, inexpensive, and fragile ones. The main goal of these wafer satellites
(wafersats) is to gather useful images during their deep space journey. We introduce and
solve some of the main problems that accompany this concept. First, we need an object
detection system that can detect planets that we have never seen before, some containing
features that we may not even know exist in the universe. Second, once we have images of
exoplanets, we need a way to take these images and rank them by importance. Equipment
fails and data rates are slow, thus we need a method to ensure that the most important
images to humankind are the ones that are prioritized for data transfer. Finally, the
energy on board is minimal and must be conserved and used sparingly. No exoplanet
images should be missed, but using energy erroneously would be detrimental.

I begin by introducing the novel concept of simulators and their plausibility. Chapter
2 will introduce a broad concept overview of the problem and some beginning solutions.

Chapter 3 will delve into the ability to analyze knowledge from human experiments and

1



Introduction Chapter 1

implant it into a machine learning model for use in deep space journeys. Chapter 4 will
optimize the modeling process for highest accuracy given the special circumstances in our
astrophysical application. Chapter 5 will solidify the use of advanced modeling processes
by comparing our models to a more approachable and low-energy solution. Finally,
Chapter 6 will upgrade the problem to a multi-object classification problem and analyze

whether state-of-the-art categorizers are the best solution for our unique application.



Chapter 2

Advances in Deep Space Exploration

via Simulators & Deep Learning

2.1 Introduction

Space travel, up until recently, was constrained by chemical propulsion, large space-
craft, and therefore, relatively slow speeds. Since the main objective has been exploration
of our solar system, these methods were sufficient. In contrast, the recent Starlight pro-
gram (Kulkarni et al| [2017) has introduced methods for deep space travel that utilize
small discs, which travel at approximately one-fourth of the speed of light via directed
energy. Alongside the prospect of fast deep space travel comes many new challenges.
The normal model for space travel includes spacecraft capable of housing instruments,
propulsion and navigational equipment, telescopes, energy banks, and much more. Since
the Starlight program will be utilizing small wafersats that are approximately the size of
a coffee can lid, all of these features need to be reworked or discarded. Besides physical
constraints, this new model of space travel introduces feasibility constraints as well. The
star of interest is beyond four light-years away, meaning that transmission of data and re-

3
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sponse command transmissions are a combined eight years or more. Thus, the wafersats
need to be able to make decisions without human intervention, and for that, artificial
intelligence (AI) is paramount. The major hurdles that we will discuss are those con-
cerning computer vision via planetary detection, data and storage blockages via novelty
detection and ranking, and energy management via combining simulator features with
subtraction-algorithm-fed computer vision. For all of these issues, taking advantage of a
universe simulator will introduce solutions that were otherwise ineffective or impossible

to find.

2.1.1 Previous Work

The effectiveness of machine learning, specifically deep learning via TensorFlow and
cuDNN; has been indisputably demonstrated in the last decade (Abadi et al.| (2016),
Chetlur et al.| (2014)), |Canziani et al.|(2016))). The fight over the best model and the most
accurate results, especially between the most popular models like ResNets, DenseNets
(Huang et al.| (2018))), Inception(Szegedy et al. | (2015)), Masks (He et al.| (2018)),
and models that combine some of these together(Szegedy et al. (2016)), is one that has
produced a plethora of potent options to choose from. Models that are more accurate
than human beings at doing extremely difficult tasks are still being discovered (Rajpurkar
et al. (2017)). The areas of deep learning and astronomy have come together in recent
years (Ruffio et al. (2018)), Morad et al.| (2018), |Schaefer et al. (2018), Pearson et al.
(2017)), mostly in the form of light curves (Shallue & Vanderburg (2017), Zucker et
al| (2018]), Carrasco-Davis et al| (2018))). The results and general concepts promote a
healthy symbiosis between deep learning and the problems that arise in astronomy. Yet,
the processes are carried out from Earth, not space, and do not address real images, two

big issues that create a gap in comparability. Outside of astronomy, simulators have been
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used to train data in specific instances where the benefits outweigh the drawbacks. Smyth
et al.| (2018)) outlines some major drawbacks, namely that the process takes a lot of time
and knowledge, as well as a note that simulator-based training may not generalize well to
real images. Alongside those concerns, [McDutff et al.| (2018)) begins with a common issue
in machine learning models, which is that training data sets are often biased. This bias
arises when there are minorities in the training set, which in turn produces poor results
when the model is asked to evaluate a similar entity in the population. These issues
are handled throughout this paper and are shown to not be an issue with the specific
problem at hand. Simulators also introduce a lot of benefits. One large one, also seen
in |(Connor & Leeuwen| (2018)), is that ”the small catalogue of real events is probably not
yet a representative sample of the underlying .. population, nor is it big enough to build
a meaningful training set for machine learning, deep or otherwise.” An important theme
throughout this paper, and an extremely useful aspect of simulators, is that they provide

an untold amount of training data, assuming that one can create realistic simulations.

2.1.2 Unsupervised Learning for Planetary Detection

The intuition behind object detection, in particular planetary detection, might point
toward an unsupervised learning technique. After all, one might reasonably think that
detecting a nearby planet after months of traveling through deep space would be easy.
We test this idea using an unsupervised technique called a Grow When Required (GWR)
Network (Marsland et al., 2002]).

GWR Setup

Using the worldwide telescope, we generated a 9,000 frame series of solar system

images. It begins with Neptune, then it explores Mercury, the Sun, and finally Mars.
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The majority of images contain only background stars.

The images were down-scaled to a 320x180 resolution in order to improve computa-
tional speed. For learning, they were decomposed into red, green, and blue channels and
vectors were constructed of length 320 x 180 x 3 = 172, 800.

Our challenge is to label each image as novel or regular. That is, we wish to generate
a classification n s.t. for each input x, n(z) € {0, 1}, where a 0 indicates regularity and
a 1 indicates novelty. Since the video is composed of 9,000 images, large objects like
planets or the Sun will be in view for a few hundred or thousand consecutive frames.
During these large bins when a planet or the Sun is clearly in view, the algorithm should
hopefully yield a large number of 1’s and should yield very few 1’s when the image is

mostly distant stars.

GWR Algorithm

Define A as the set of nodes in our network and C' as the set of edges between these
nodes. We denote our inputs as £ and the weight vector for any node n as wr30062. Each

node n has a habituation h,, which represents how familiar that node is to the system.

1. Initialize two nodes that represent two random samples from the dataset. We set

their habituations each to 1. The set of edges between nodes begins empty.
2. Iterate through the dataset. For each data sample &:
(a) For each node i in the network, calculate its distance from &, which is ||€ —

wr30057].

(b) Find the node s with the smallest distance and the node ¢ with the second-

smallest distance.

(c) Add an edge between s and t if it does not already exist.

6
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(d)

(2)

Calculate the activity a = exp(— Y (&[j] —w;[j])?/C), where C' = 29,203,200
was chosen to prevent an integer overflow. There are 172,800 fields in each

data vector, and since the average of the quantities in each vector is close to

13, and 132 = 169, we divide by 172,800 x 169 = 29, 203, 200.

If a < ar and s’s habituation hy < hr (where ar is some insertion threshold
and hr is some habituation threshold), then add a new node r. If a new node
is added, data point is considered novel. Set w, = wTJrg Insert edges between

s and r and r and ¢t and remove the edge between s and ¢.

Otherwise, update the weight and habituation of s as follows: Aw, = ¢, x
(& —w,) and Ahg = 7, x 1.05 X (1 — hys) — 73, where €, and 7, are parameters.
Next, update the weight and habituation of s’s neighbors ¢ as follows: Aw; =
€n X (€ —w;) and Ah; = 7, x 1.05 x (1 — h;) — 7, where €, and 7,, are other

parameters.

Remove any nodes without any neighbors.

Our chosen values are: ar = 0.7,hy = 0.1,, = 03,7, = 0.1,¢, = 0.1, and
e, = 0.01.
Results

Figure is a scatter plot that was generated to visualize the novelty detected from

the data. The z-axis is the id of each picture, and the y-axis is the number of novel images

that were detected in each bin of 100 images. Figure is a continuous representation

of the same concept.

Moving along the Image ID axis, we see that novelty was detected in clumps around

0-500, 900, 4000-4500, 6000-6500, 7000-7500, 7700-8000, and 8200-8500. We observed

that novelty was detected first on Neptune, then again on some particularly bright stars.
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Figure 2.1: A scatter plot of the detected novelty of the data.

No novelty is detected during the long period of only stars. Next we see increased novelty

detection when Mercury is plainly in view, and then when the sun appears, and finally

when we zoom into Mars.

We notice that Neptune’s collection of novelty is roughly one quarter the size of the

other three celestial objects that come into view. We also notice a huge spike around

image 8300. This is very interesting because there are no large celestial objects in view

at this time.
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Novelty Binned Plot
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Figure 2.2: A binned scatter plot of the novelty of the data. Image ranges that are salient
to the human eye are labeled on the plot.

GWR Discussion

A deep space exploration mission would come with many challenging objectives. A
small but connected subset of those would involve detecting objects, deciding whether
they are important, extracting key features that we would want to study or observe, and
prioritizing their information retrieval.

GWR wouldn’t be able to decide importance, extract features, or prioritize informa-
tion retrieval, yet if it could detect novel objects in deep space, this would be useful. We

can see from Figure 2.1 and Figure 2.2] that the detection is inconsistent and unreliable.
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Neptune is almost completely missed and the three smaller peaks at the Sun, as seen
in Figure 2.2 are larger than Neptune. The largest peak of all happens while Mars is
minuscule and essentially not in view.

Although GWR had high novelty detection peaks while passing by Mercury and the
Sun, it failed to correctly activate at Mars or Neptune. These observations, paired with
its inability to do anything further with the data, introduce a need for a more advanced

model that can achieve all of the above objectives.

2.1.3 Object Detection vs. Novelty Detection

Throughout this paper, our main goals will constantly be alluding to object detection
and novelty detection. In a general computer science setting, object detection is used to
identify something in an image that has already been trained via some algorithm. For
example, we may feed thousands of images of human beings into a YOLO algorithm, and
then once it is trained, we can walk the streets of New York and see if our algorithm can
identify human beings. In this setting, identifying a human being is a success, and not
identifying a car or stop sign as a human being would also be a success. Yet, identifying
anything non-human as a human being would be a failure. The accuracy of a model,
which is mathematically computed per identification, can be used as a measure of how
sure the algorithm is that the object being identified is the correct type. In this paper,
we will delve into why this is difficult for our specific scenario, and we will test whether
this can benefit severely from the use of simulators.

On the other hand, novelty detection is used to attempt to identify something that
has never been seen before. One powerful example is self-driving cars being able to see
traffic signs that are unique to a certain country, and therefore have never been seen or

used during the training process (Kim et al. 2017)). In this example, the self-driving

10



Advances in Deep Space Exploration via Simulators & Deep Learning Chapter 2

car algorithm has never seen this specific sign before, and so identifying it without any
training data is very difficult. In our paper, unseen planetary features are analogous to
the unseen traffic sign in the example, and we delve into methods of solving this via

simulators.

2.1.4 Simulator Options

Graphical options in the simulator are abundant, which allow for complete control of
the simulated universe. In general, the feature set should be optimally set for realism
while traveling through space, but the ability to tweak these options speaks to greater
breadth for learning and adapting to unique situations that may arise in space. For
example, the image of an exoplanet while traveling at one-fourth of the speed of light
with a nebula in the background is a completely new concept. Yet, two features in the
simulator may be able to deal with that combination. First, the ability to toggle lens flares
will provide the Al with training images that both contain and lack lens flares. Second,
a feature called overbright can drastically adjust how bright the background stars and
nebula appear. Training on images that embrace the entire spectrum of overbright will
allow this machine to deal with novelty detection in a very advanced manner. Having
a plethora of options to enable and tweak can introduce a much larger set of training
images and will let the AI absorb more information before embarking into deep space.

Some other important options, besides those that deal with graphics and rendering,
are diffraction spike intricacy and size, lens effect on stars, and planetary shine. Altering
all of these settings and training on the resulting images enables the capture of more
information.

For these experiments, settings were chosen that were not too extreme in any di-

rection. Stars were kept as they randomly formed in order to have natural deviation

11
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Figure 2.3: Eight lens options applied to the same star

in the image background. All quality parameters were turned to the highest setting to
provide realism and pixel definition. The following table outlines all display and graphics

settings.
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Settings Value
Resolution 3840x2160
Projection Perspective
Auto Exposure Simple
Bloom 0.600
Aurora Quality High
Black Hole Quality High
Ship Warp Quality High
Skybox/Impostors/FB Enabled
Diffraction Spikes Normal
Diffraction Spikes Size 0.1
Lens SE 0.95 Single
Point Sources Sprites
Scale 0.900
Overbright 4.467
Desaturate Dim Stars 0.1995
Landscape LOD -0.6
Planet Shine Super
Planet Shine Bright 2.512
Thermal Emission Shift 0.05
Real Sun Brightness Disabled
Real Planet Brightness Disabled

Table 2.1: Table of simulator settings used throughout the training process.

13
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2.1.5 Overall Simulator Importance

In this paper, we consider three main areas of deep space travel that can be drastically
improved with the use of a simulator.

First, computer vision is an extremely useful tool for detecting objects and making
decisions based on what is seen. The training process consists of tagging images and
providing a label for each tag, feeding those images and tags into a model, and having
that model learn the associations. The model can then be given images, and based on
how successfully it was trained, it may be able to identify parts of the image.

Since we have never photographed exoplanets in detail, training a model using real
images is not feasible. Therefore, we rely on training using images of planets that we have
photographed, which would be those in our own solar system. Yet, detailed photographs
of planets are not very abundant and would only teach the model to look for those specific
features. In realizing that this would not be sufficient, we may move toward novelty
detection, a branch of computer vision that tries to classify data that deviates from the
data used during training. Co-domain embedding (Kim et al., 2017) has proven useful
in some situations, such as those where a template design would resemble a real image
almost exactly, but planetary features do not translate well to use in novelty detection.
This is because planetary features, such as atmospheric patterns, are extremely unique.

Simulators can provide very detailed and randomly generated images of planets that
obey universal physical laws. Therefore, we will be able to generate countless images
of planets that resemble real images of possible exoplanets. Training on these images
and features, the model will learn an exorbitant amount of information. While traveling
through space and faced with an image of a real exoplanet, the model will now have a
much broader knowledge base.

Second, we introduce the notion of novelty ranking. A major hurdle in deep space

14
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wafersat travel is data storage and transmission. On-board memory is limited by physical
constraints of the wafersat and astrophysical exposure, while transmitting data from a
wafersat to a communications hub would be slow and dependent on energy reserves.

A system that can deal with this issue is one that prioritizes the most important
on-board data and sends that first. This not only ensures that the critical images are
sent in descending order of importance in case of some malfunction, but that the most
relevant data is quickly known for the next wafersats in line.

With the overarching goal being the identification and transmission of the most im-
portant data, novelty ranking will quantify the on-board images based on importance.
Simulators will provide the breadth of planetary features that are needed to find out what
importance means, as perceived by humans, and then this information can be applied to
software.

Third and last, sending a small disc into deep space means that on-board energy
reserves will be very small. Yet, the objective of detecting and imaging astronomical

bodies while traveling must still be met.

2.2 Simulator for Planetary Detection

Our main objective here is to identify novel planets while traveling through deep
space. In order to do so, and for subsequent sections, we will require a basic conceptual
understanding of object detection in order to logically progress. We should point out
that the main backbone of object detection, through a few core processes, is the same as
that used by humans when they naturally process information and identify objects. We
will discuss these fundamental core processes.

First, the object that we will try to have the model identify should be seen beforehand

in order to train the model. Unsupervised techniques have their uses and do not require
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this training process, but we will only deal with supervised learning models from here on
out. Mainly, this is done because planetary detection is the simplest task, so we need a
model that can adapt afterwards in order to successfully identify planetary features and
rank novelty.

Second, the model will become more robust with more images. Of course there are
exceptions here, such as feeding poor images or images that do not match the objects
category. We will test this concept thoroughly while we also test the importance of

simulated images.

2.2.1 Setup

Here we will discuss the details of our model, our hypothesis, and how we will go
about testing the importance of simulator images. Our main goals when choosing a
model are finding one that has high accuracy, low to medium computation time, and has
been tested to be a reliable model. Because of this, no new models that haven’t had time
to be tested thoroughly throughout the computer vision community will be used. Also,
the ideal model will sacrifice computation time for accuracy, if needed.

Our hypothesis stems from our second core process and states that simulator images
will not decrease accuracy for planetary detection and planetary features. These two
processes, the detection of planets while traveling through space, as well as the detection
and recognition of features on those planets, are the inspiration for the two main exper-
iments that are set up. Currently, our collection of useful astronomical images is very
limited. Therefore, using only real images of planets would limit us to those found in our
solar system. Also, planetary features would suffer since our solar system contains very
few features out of the set of total planetary feature combinations.

The first experiment will test the validity of simulator images in general. It is set up in

16
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three different stages using the same object detection framework and always testing on the
set of real images of Jupiter. First, we will train on real images of every planet in our solar
system except for Jupiter. These images will be collected from NASA image repositories
and will not include composite images, artist renditions, or any other variations except
for true unaltered images. Second, we will train on only simulator images with the goal
of solidifying whether simulator images alone are useful in detecting real planets. Third,
we will combine the first and second training sets, comprised of simulator images and all
real images (excluding Jupiter),to determine whether simulator images and real images
together provide the best of both worlds.

The second experiment will introduce and test an extremely important feature of using
simulator images - the ability to detect novel planetary features, i.e. those which have
never been seen in any real images. Since simulators can be programmed to emulate
real physics, the outcome can give us an extremely large number of realistic looking
planets with features that have never been observed. In order to proceed, we need
to use a planetary feature that exists in our solar system so that we can train using
simulator images and test using real images. Planetary rings have a solid theoretical
foundation and would easily appear in any physics-based simulator, while also being
present around Saturn. Rings are also fairly complex, as they contain extremely unique
striation patterns, can look wildly different depending on the viewing angle, and can even

co-exist with other rings around the same host planet.

2.2.2 The Model

When using deep learning models for a specific purpose, it is imperative that a model
is chosen that optimizes what it can while prioritizing what it must. For example, an

object detection model that may be implemented on a smart phone for real-time detection
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of human faces might prioritize speed and give up a small amount of accuracy.

For our purposes, a model should be able to identify planets in deep space and features
on that planet. Asseen in Section 1.2.3, this task is not trivial. Experiment #1 will utilize
the model for identifying the existence of a planet with a strong accuracy. Experiment
#2 will utilize the model for identifying novel features, either on planets or near planets,
such as rings. This model does not incorporate bodies other than planets during these
experiments.

For our purposes, accuracy is of the utmost importance, while operation count is also
of some importance. In deep space, we have plenty of time to do calculations, but we
also have very little energy. Therefore, reaching maximum accuracy with a small amount
of operations is the ideal scenario.

As we can see from Figure [2.4] originally presented in [Canziani et al.| (2016]) whereas
the authors compared many models for practical applications like this one, there are
few models that fit into the optimal space of accuracy and operations. The main choice
was ResNet architecture vs. Inception architecture. The accuracy and operations for
both models are almost identical, yet the residual neural network (ResNet) architecture
provides a shortcut in case the training phase introduces the vanishing gradient problem
(He et al., 2015)). Along with this feature, ResNet is a very established model in many
domains, and for these reasons, will be our model of choice going forward.

In terms of ResNet choices, Resnet-34 and ResNet-50 do not provide enough accuracy
for this setting. The best options are ResNet-101 and ResNet-152, and while both provide
approximately the same level of accuracy, ResNet-152 is much more computationally
taxing. Therefore, ResNet-101 is the optimal blend of accuracy and operations, utilizing
101 layers.

Improvements to base ResNet-101 have been achieved via Fast R-CNN (Girshick,

2015) and then Faster R-CNN (Ren et al. [2016)). The final model that we use is a hybrid
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Figure 2.4: Results shown in Canziani et al.(2016) that compare model accuracy vs.
operation count during the ImageNet challenge.

that incorporates the advanced methods of Faster R-CNN with the strong foundations
of ResNet-101, aptly named Faster R-CNN with ResNet-101.

During our experiments, this model was run on a GTX 1080 Ti. In order to achieve
60,000 iterations, the runtime was approximately 24-30 hours. During the testing phase,
each image was evaluated in approximately 1-2 seconds. Again, this was using a GTX
1080 Ti, which is presumably much more powerful than any technology that will be
used to evaluate images on board the wafersat. Faster R-CNN with ResNet-101 is used

throughout the paper, no model changes occur.
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2.2.3 Experiment #1 - Planetary Detection

In this experiment, we tested the theory that simulator images could be used to train
a model that could then detect real objects, and in particular, planets. Our hypothesis
is that simulator images are at least as good as real images in terms of information gain
during training. Although simulator images can be produced in bulk, the idea was to
test the theory using similar image count in order to avoid any bias. The table below

shows the number of images used for each model and for their testing phase.

H Real Sim Real+Sim H
120 122 242

Table 2.2: Experiment #1 training image count for real images, simulated images, and
the combination of both real and simulated images.

Concerning the testing images, the images were broken down into 2 sections. The
first section was comprised of independent images taken at differing angles. The second
section was the exact same frame of reference, including angle and distance, but included
a time-lapsed series of images.

The results of the testing phase produced a detection score. This score is a built-in
function of TensorFlow and represents the mathematical certainty that the model has

identified the correct object. The table below shows the final detection score results.

The table shows quite a few compelling results right off the bat. The most direct

H Section  Real Sim  Real+Sim H

1 99.875 99.375  99.875
2 98.889 100 100
Total  99.353 99.706  99.941

Table 2.3: Experiment #1 detection Score for real images, simulated images, and the
combination of both real and simulated images.
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one being that Real+Sim has achieved equal or better results than Real or Sim alone
did in all categories. Besides Real+Sim, we can also say something about Real vs. Sim.
Although Real achieved slightly better scores in Section 1, Sim not only achieved better
scores in Section 2, the total score of Sim was also higher and Sim contained at least one
section that had perfect scores.

Our initial hypothesis was that using simulator images would be as good as real
images. Different models and training image sets will always produce different results,
but considering the total scores with our two sections, Sim produced equal or better

results when compared to Real.

2.2.4 Experiment #2 - Novel Features

In order to be able to show the importance of using a simulator for novel planetary
features, we use the results from Experiment #1 as proof of concept. Those show that
Sim images do not decrease detection scores on real testing images, with the added
benefit of being able to mass produce them and customize feature information in each
image.

With this in mind, Experiment #2 will gather 65 simulator images of ringed planets
and train a new model with the same framework as Experiment #1. We will then test
novel feature detection on real images of Saturn. The machine will have never seen
any real image and will have never been exposed to prior knowledge of Saturn or our
solar system at all. This experiment is, in theory, identical to training a model with
simulator images on Earth and sending it out into deep space in order to identify novel,
never-before-seen features found on real exoplanets and in real images.

One of the main benefits of simulator images can be observed here. Even a planetary

feature that we can observe will be found once, or perhaps a few times at best. Therefore,
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H Type Accuracy Detection Errors H

Planet 99.22 None
Rings 99.11 None

Table 2.4: Experiment #2 detection score results.

we have limited variability to work with in terms of ring structure, width, pattern, count,
etc.. Yet, if this experiment produces promising results, we can simply build a physics-
based simulator that generates planets, filter by the presence of rings, capture an image,
and repeat the process any amount of times. From Experiment #1, we know that training
on these simulator images will provide approximately-equivalent information gain when
compared to real images of ringed planets. Since our simulator is physics-based, it should
produce many features that we have not even seen before, transforming this problem from
novelty detection into object detection.

The experiment was set up in parallel to what would hypothetically happen during
deep space exploration. The training was done on a small batch of simulated images of
ringed planets. The idea in the experiment is that, in theory, we have never seen a ringed
planet before. Yet, our physics-based models of planet formation dictate that they would
naturally occur. So we collect simulated images, train on that, and then send it deep
into space. Upon finding a ringed planet for the first time, it would need to recognize
those planets. Normally, we wouldn’t be able to do this since we have no ringed planets
to train on (in this hypothetical experiment), but since we used simulated images, we
now have a model to deal with this. The experiment goes through this entire process,
and even tests the model on real images of Saturn. Again, the machine has only seen
a small batch of randomly generated simulated images of hypothetical ringed planets,
never a real image of a planet. The results of the experiment are extremely positive and

can be seen in the table below.
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As we can see, the model is dependably accurate based on solely simulated images.
This experiment shows a key point of using simulators - by combining planet generation
theory and realistic rendering, we have turned a novelty detection problem into an object
detection problem, which is significantly easier to deal with. Now, instead of having to
detect unknown features, we can simply construct planets randomly based on physical
laws and train a model using those simulator images. This would introduce a more

complex model with multiple classifications, increasing its complexity, size, and run-time.

2.3 The Simulator

Although there are quite a few universe simulators available today. Here, we utilized
SpaceEngine (SpaceEngine.org) for its realism, expansive set of options and customiza-

tions, and unique informational tools.

2.3.1 Simulator Features

One of the best features of the simulator is its extremely realistic rendering capabil-
ities. In combination with a 3840x2160 4K monitor and GTX 1080 Ti, the simulator
produces extremely detailed and realistic images.

The simulator also includes the ability to edit any planet, so that instantly rendering
an exoplanet with a very particular feature set is simple. Alongside image features are
astronomical features, which are tracked and shown for every body in the universe. Some

of these features are type, class, orbital period and mass, but most importantly, distance.
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Figure 2.5: Examples of 3D-rendered randomly generated exoplanets

2.4 Foundations for Future Work

2.4.1 Simulator for Novelty Ranking

We have shown previously that simulator images can be used with astounding accu-
racy, and with mass production, can make training via real images unnecessary. There-
fore, we can train using hundreds or thousands of simulated images and when we en-
counter a planet, we can detect it, image it, and send those images back to Earth.

Say, for instance, that the wafer passes and images the five planets in a hypothetical
solar system. Soon after that, it may be on an inevitable course toward that solar
system’s star, which will destroy the wafer and all of the images. One downside to small
wafers is that they are easily destroyed or corrupted. This makes a priority system vitally
important, as it would allow the wafer to possibly send back one or two images from the

five that it collected before it is destroyed. This section is dedicated to figuring out which
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images should be sent back, and discussing the approach in doing so.

The Concept

We will assume that we have a small storage of images that we need to send back
to Earth in an order that is based on importance. Wafers could be destroyed relatively
easily and data transmission rates in space are very slow, so sending data based on a
notion of importance is paramount.

Figure helps show us the extremely abstract definition of importance that we, as
humans, may place on new planets. The top planet is colorful and full of land and different
bodies of liquid, while the bottom planet has a unique double ring, an atmosphere, and
a single large ocean, one that may be assumed to be water by visual inspection alone.
The main question we want to ask here is: If you could only send one of these images
back to humanity, which would you send?

An astrobiologist might choose the top planet since the presence of land and many
differently-composed bodies of liquid exist, giving multiple opportunities for life to possi-
bly flourish. Yet, someone interested in another planet that may be able to accommodate
human existence might choose the bottom planet since it seems to offer two important
features for us, water and an atmosphere. The question of importance to humans is very
subjective, yet we need a solution that would be able to rank these two planets, and

many more, in order of importance.

The Human Experiment

The implausibility of teaching vast conceptual knowledge to a machine in hopes of it

gaining context made us seek out a different approach:

1. Generate simulated images of planets that range in features. This will remove the
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Figure 2.6: Hypothetical storage of two images that need to be ranked based on impor-
tance.

bias that some people may have about our own solar system, since we are not using
any real images of our own planets. It will also allow data to be gathered about
features that do not currently exist in our solar system, but based on astrophysical

theory, could exist in the universe.
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2. Ask experimental subjects to rate each planet by Importance. This is posed via the
question: ”On a scale from 1-7, how important would it be for humankind to see

this image if it were gathered by a spacecraft during deep space exploration?”

3. Ask experimental subjects to rate each planetary feature. This will comprise our
total planetary feature set. For instance: On a scale from 1-7, how much does
this planet exhibit the presence.. of rings? ..of an atmosphere? ..of moons? ..of a

livable environment for humans?

4. Using the data gathered from human thought processes and individual analysis of
importance and interestingness of a planet, train a model to predict importance

given a feature set.

5. Rank all planets in storage based on importance and send them back to Earth via

this priority system.

Essentially, the process would generate a plethora of novel planets via the simulator.
Subjects would participate in the experiment, and in doing so, would give us vital infor-
mation about each planets perceived features and the planets overall importance. This
information would then be fed into a machine learning algorithm, with the output being
importance and the input being feature strength. The wafer would then see a planet,
extract information about each feature via a model like that seen in Experiment #1, plug
it into the machine learning model, and from there, it would have an accurate prediction
of importance.

This process takes in human definitions and thought processes in order to break down
the concept of what we find interesting in planets that we have not even seen before.
Using this method, we can bypass a problem of novelty detection, which is difficult, and
machine contextual learning, which is extremely difficult, and turn it into a problem of
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human information gain via experiments and subject participation, which is easy, and
object detection, which is also easy.

Future work will show experimental results beyond this proof of concept solution.

2.4.2 Simulator for Energy Management

During a deep space voyage, the wafersat will need to be supplied with enough energy
to perform necessary functions, such as imaging, analyzing the images, and transmitting
data. We don’t assume that the system is perfect, nor do we need certain restrictions
on the amount of energy available. We have one goal: minimizing the amount of energy
needed while ensuring planetary detection. At one end of the spectrum is full energy
conservation, which would mean that the camera never turns on and therefore we never
collect any data. On the other end of the spectrum is full energy use, meaning that the
camera never turns off until the energy runs out, which would yield us many images but
most likely none with important findings. Somewhere in between is optimal, but how do

we find it?

The Two Phases

Simulators open a whole new universe that can be utilized in order to make a virtual
interstellar journey to Alpha Centauri hundreds of times in the span of a day. By doing
this process, we can train our models to identify stars, predict distances, swap between
the two possible phases, and in doing so, save energy while capturing meaningful images.

Phase One is essentially comprised of time spent in open-space travel. This would
mean that the probe is beyond a ’fair’ distance away from any nearby star and that
planetary detection would be a fruitless endeavor. Yet, during this phase, the main

objectives would be nearby star detection and star distance predictions.
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Phase Two would be a rare occurrence whereas the probe has traveled within a ’fair’
distance of a star and we no longer need to deal with nearby stars until we have left
that star’s system. Instead, this phase would prioritize planetary detection, imaging,

and ranking.

The Process

The trip from Earth to Alpha Centauri can be done in approximately 20 years. But,
in the simulator, one can travel at any speed and cut out the majority of the time spent
in an uneventful space. This makes it possible to simulate a 20 year journey in a few
hours, or many journeys in just a single day.

Once these are done, we can train a machine learning model using star type, the
section of the image containing the star, and the distance from the probe to the star
(a simulator feature). Combined with a subtraction algorithm, and only using enough
energy to take two images, the machine will be able to identify stars and predict their
distance from the probe.

Using this information, the probe will know the approximate distance to the nearest
star in its forward path. A simple calculation can tell it a safe amount of time to wait
until it should take two more images, confident that the time it has waited has been
uneventful.

Repeating this process is extremely energy efficient, and should eventually lead to
coming within a reasonably ’fair’ distance from a star. When this occurs, we would
change into Phase Two.

Phase Two would use the same intuition except that instead of stars, we substitute
in planets. Once identified, instead of being interested in distances, we would prioritize
imaging. Details on planetary detection, imaging, feature extraction, and ranking have

been detailed in earlier sections.
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An example of Phase One

One extremely difficult concept in this entire process is making sure that the probe
can successfully understand what is close to it versus what is very far away. The concept
used is straight-forward: bodies that are closer will tend to shift more while the probe
travels in a straight path. As an extreme example, a body that is 1 AU away from the
probe will shift from center screen to completely off screen in approximately 33 seconds.
Yet, a very distant star could go without changing position for months or years.

In order to deal with this, a subtraction algorithm is implemented. The probe will
take a photo, wait a certain amount of time, and take another photo. Then, the first will
be subtracted from the second and the resulting image will show any pixels that have
shifted state during the elapsed time. If enough of these pixels shift, we will get a clear
image of something that is relatively close.

The main problem here, again, is that nobody has any concept of the ”wait a certain
amount of time” part of the process. How much time is the right amount of time? If you
do not wait long enough, nothing will move and your subtracted image will be all black.
If you wait too long, even things that are very far away will begin to shift and you will
be left with a large amount of stars, still unsure about which of those are actually close.
This difficult part becomes approachable with the use of simulators.

The example deals with a simulated star that exists 0.08 light-years away from the
probe. We travel at 500c and perform a subtraction algorithm in 10 second intervals,
resetting after each one. This equates to traveling at 0.25¢ and performing a subtraction
algorithm every 20,000 seconds, or approximately every 5.55 hours. So, the first image
is 5.55 hours in real-time, the second image is 11.11 hours in real-time, then 16.66 hours,
and so on. The goal is to see if simulators can be useful, and if so, at what point we would

want to optimally take images in order to ensure we capture bodies that are nearby while
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also saving energy.

Figure 2.7: Subtraction algorithm performed in 20,000 second intervals

As we can see in Figure[2.7] the first few bins produce a hazy image of the target star.
At the fifth image, which would have the probe waiting approximately 28 hours between
images, we can see a full image of the star. By the last image, which is represented by
approximately 50 hours of real time, other nearby stars were showing very hazy signs of
recognition from the subtraction algorithm.

This proof of concept is extremely vital to star recognition and energy management.
Depending how far away from a star we want the probe to be when it is able to recognize

it, this process can be altered and honed easily.
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2.5 Citations
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Chapter 3

A Multidimensional
Thurstone-Coombs Model of
Simultaneous Sensory and Liking

Ratings

3.1 Introduction

Hedonic responses about a novel object are often based on the sensory characteristics
of that object. Is the color pleasing or not? Does the curry have the right amount of
heat? A popular model of such responses, called the unfolding model, was proposed more
than 50 years ago by Coombs (1964). The unfolding model assumes that when judging
one’s hedonic responses to a set of stimuli, the observer imagines his or her ideal stimulus
and then compares each stimulus in the set to this imagined ideal. The stimuli are then
ordered by preference according to their similarity to the ideal. The unfolding model

has been generalized in a variety of different ways (e.g., Borg| (2018)); [DeSarbo & Rao
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(1984); |De Soete et al.| (1986); Schonemann & Wang| (1972))), and applied successfully in
a wide variety of different domains (e.g., Andrich| (1989)); [Davison| (1979); DeSarbo et al.
(1997))).

The unfolding model provides an accurate account of preference orderings, but it is
less successful at identifying the sensory characteristics associated with the ideal stimulus.
Some multidimensional versions of the model produce a multidimensional scaling (MDS)
solution that situates each of the stimuli and the hypothetical ideal as a single point
in a multidimensional space (e.g., De Soete et al. (1986])). However, as in traditional
MDS, no information is provided about the nature of these dimensions. Sometimes, by
noting which stimuli are situated at one extreme on a dimension and which stimuli are
situated at the other extreme, it is possible to speculate about the nature of one or more
dimensions. But this process is not always successful, and whatever inferences are made
are impossible to test.

One popular experimental method for estimating the sensory characteristics of a
stimulus is the concurrent ratings task, in which participants rate each stimulus simul-
taneously on a number of sensory dimensions Hirsch et al. (1982)); |Olzak (1986). The
observed ratings are then used to estimate the participant’s sensory, perceptual, or cog-
nitive impressions of the stimulus. This method is a multivariate generalization of the
rating experiment that is a popular signal-detection theory method for estimating an
ROC curve Green & Swets| (1966); |[Macmillan & Creelman| (2005). As in signal-detection
theory, the resulting data often can be modeled accurately by assuming that (1) the un-
observable perceived values have a trial-by-trial (or participant-by-participant) univariate
normal distribution across the relevant sensory dimension, (2) the participant establishes
a set of criteria or cut-points on the dimension that partitions the dimension into in-
tervals, and (3) a different numerical rating is assigned to each interval |Ashby (1988);

Wickens (1992). This model assumes that on each trial, the participant determines in
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which interval the percept is in and then selects the associated rating.

Ashby & Ennis| (2002) combined the unfolding model and the signal-detection theory
model of the rating experiment to account for simultaneous sensory and liking ratings.
This model used the participants sensory ratings to estimate the sensory representation
of the ideal. However, the model was only developed and applied to situations in which
the various stimuli all varied on a single sensory dimension. This article extends the
model of |Ashby & Ennis| (2002)) to more complex real-world stimuli that vary on many
sensory dimensions. The resulting model estimates the distribution of imagined ideals
(i.e., across trials and participants) by identifying the ideal mean on each rated sensory
dimension and estimating the variance-covariance matrix of the ideal distribution across
all rated dimensions.

The new model, which we call the multivariate Thurstone-Coombs ratings model
(MTCRM), is described in the next section. Section three describes general methods for
applying the model to data from an experiment that collects ratings on multiple sensory
dimensions or attributes and on some hedonic dimension, such as liking. Section four
describes an empirical test of the MTCRM against data from a new experiment. Section

five discusses implications of our results and closes with some brief conclusions.

3.2 The Multivariate Thurstone-Coombs Ratings Model

(MTCRM)

This section develops the MTCRM. Consider an experiment in which participants
are presented with N stimuli (one per trial) and each stimulus varies on D sensory
dimensions. The goal is to collect ratings from 1 to r on each stimulus on the sensory

strength on all D dimensions and on liking or some other hedonic response (with r

38



A Multidimensional Thurstone-Coombs Model of Simultaneous Sensory and Liking Ratings
Chapter 3

representing maximum strength or maximum liking).

The model is illustrated in Figure for a trial in which stimuli vary on two sensory
dimensions and r = 4. The figure depicts events on trials in which the participant is
asked to rate the stimulus on dimension 1 and on liking. In this hypothetical example,
the participant responds with a rating of 3 on sensory magnitude and 2 on liking. The
MTCRM makes the following assumptions.

1) The sensory value on a trial when stimulus ¢ is presented is represented by a
D x 1 random vector &; in which &, = [x, @2, ..., xp], where &, represents the sensory
magnitude on stimulus dimension d. Because of stimulus and perceptual noise and in-
dividual difference, x, varies randomly over trials and participants. We assume z; has
a multivariate normal distribution with mean vector B, and variance-covariance matrix
i

Note that the variance-covariance matrix ¥; contains D(D — 1)/2 covariances and D
variances. For example, in the next section we consider an application of the MTCRM
to an experiment in which participants rate the stimuli on 6 sensory dimensions. In this
case, each 3J; includes 15 covariances and 6 variances. If these are all free parameters then
the model would include 27 parameters for each stimulus (15 covariances, 6 variances,
and 6 means). These would require an enormous amount of data for accurate estimation.
Furthermore, estimation of the covariances would require simultaneous ratings on all
possible pairs of dimensions, plus the assumption that all of these ratings are based on the
same sensory sample of the stimulus. Unfortunately, this assumption seems untenable.
For example, if a participant is asked to rate a stimulus on 6 different dimensions then it
seems likely that the participant would re-examine the stimulus one or more times before
responding with all 6 ratings. According to the model, the sensory representation of the
stimulus after each examination is represented by a new random sample . If ratings on

two dimensions are based on different x; samples then the correlation (e.g., across trials)

39



A Multidimensional Thurstone-Coombs Model of Simultaneous Sensory and Liking Ratings
Chapter 3

>
X3 X2 Ayy, X1

H

Distance to Ideal

Figure 3.1: A schematic illustrating the multivariate Thurstone-Coombs ratings (MTCR)
model for a trial when the participant is presented with stimulus 7 and asked to provide a
rating (from 1 —4) on the first of two sensory dimensions and on liking. The participant’s
responses on this trial are “3” on sensory magnitude and “2” on liking.
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between the ratings will not reflect the correlation between sensory dimensions.

For these reasons, we only consider applications of the model to experimental paradigms
in which a single one of the D + 1 ratings are requested on each trial, and each stim-
ulus is presented to every participant on at least D + 1 different trials to ensure that
all the necessary ratings are collected. In this case, no information about covariances is
available, and as a result, we assume that all covariances equal 0 and therefore that ¥;
is diagonal. Furthermore, we also assume, without loss of generality, that all variances
equal 1. This just serves to set the arbitrary unit of measurement on each dimension.
Collectively, these assumption mean that, for all stimuli, 3; = I, where I is the identity
matrix.

2) When asked to rate the sensory magnitude of the stimulus on dimension d, the
participant constructs r — 1 response criteria, denoted X1, Xg2,...X4,—1, and responds
with rating j if and only if X4, 1 < &4 < Xy, where X 9 = —oo0 and X, = 0o. Note
that in the Figure example, the perceived value of stimulus 7 on dimension 1 of this
hypothetical trial (i.e., x1) lies between X 5 and X 3 and therefore the participant rates
the sensory magnitude of this stimulus on dimension 1 as 3.

3) To generate a liking rating, the participant first imagines an ideal stimulus, which
is represented by the D x 1 random vector y. Because of variability in the imagining
process (e.g., due to variability in memory and affective state) and individual difference,
y varies randomly over trials and participants. We assume y has a multivariate normal
distribution with mean vector By and variance-covariance matrix Xy.

In the Figure [3.1] example, note that the imagined ideal distribution has greater vari-
ance on dimension 1 than dimension 2, and that the values on these two dimensions have
a slight positive correlation. The greater dimension 1 variance indicates that dimension
1 is less critical to liking than dimension 2 because when participants imagine their ideal

they are more consistent in their imagined value on dimension 2 than on dimension 1.
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4) The participant computes the Mahalanobis distance Ay x, between the imagined
ideal y and the sensory value z; (from step 1).

5) The participant constructs r — 1 response criteria, denoted Xp1, Xy, ...X1,_1, and
responds with rating j if and only if X7 ; < Ay x, < Xi;_1, where X7y = oo and X;, = 0.
Note that in the Figure |3.1 example, the distance between the imagined ideal and the
perceived stimulus (i.e., Ay x,) lies between X;, and Xi; and therefore the participant

responds with a liking rating of 2.

3.3 Fitting the Model to Data

For each stimulus, the data can be collected as a (D+1) x r matrix in which the entry
in row d and column j is the frequency that participants assigned rating j to the stimulus
on dimension d, where row D + 1 is liking. Note that each matrix has (D 4+ 1) x (r — 1)
degrees of freedom, since there is one constraint per row (i.e., each row sum equals the
number of trials that participants rated the stimulus on the attribute associated with that
row). There is one such matrix for each of the N stimuli, so overall, the data include
N x (D +1) x (r — 1) degrees of freedom.

The model predicts that the probability that rating j is assigned to stimulus 7 on
sensory dimension d equals the area under the dimension d marginal pdf of x, between
Xgj—1 and Xy ;. Because these marginal distributions are all normal, each of these
probabilities can be computed via straightforward z transformations and appeal to the
cumulative z distribution function.

Computing the predicted probabilities of various liking ratings is considerably more
difficult. The predicted probability that participants assign stimulus ¢ a liking rating of
7 equals

PL(j1S:) = P(X1; < Ayx, < Xyj-1), (3.1)
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where, as before, Ay x, is the Mahalanobis distance between the imagined ideal y and

the sensory value ;. Since Ay x, is nonnegative, note that

PL((]’SJ = P(XLJ' < AY,Xi < XI,jfl) (32)
= P(Xﬁj < A%Xi < Xﬁjfl). (3.3)

Now
Avy, = (y — )5 (y — z), (3.4)

which has the distribution of a weighted sum of D non-central y? random variables, each
with one degree of freedom (e.g., [Paolellal (2018)). In the application described in the
next section, D = 6, which is large enough so that this weighted sum is approximately
normally distributed. Therefore, we need only to compute the mean and variance of
A2

Define the new random vector w = y — ;. Then Eq. becomes
Abx, = w'Sy w. (3.5)

Note that w is multivariate normally distributed with mean vector p., — B, and variance-
covariance matrix >y + 1.

The mean of the Eq. random variable is (e.g., [Khatri| (1980))

a2 = trace(Xy'8y) + H;Z;lﬂw
= trace[X; ! (Dy + )] + (B, — Hi),zﬁ_/l(ﬂy - 1)

= D + trace(Xy') + (B, — H,)'Z;l(ﬁy — ). (3.6)

1

Note that the last term is just the squared Mahalanobis distance between the means
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of the two distributions. The variance of the Eq. random variable is (e.g., [Khatri
(1980))

0% = 2trace(Sy Sy)? + (25, V5 (255 )

= 2[D + trace(Xy1)]? + A(p, — &,)’E;l(zy + I)E;l(gy — )

= 2[D + trace(Xy )2 + 4(py, — p) Sy T+ 25 (B, — ). (3.7)

Therefore, we can approximate the predicted probability that rating j is assigned to
stimulus ¢ on the liking dimension by computing the area between Xﬁ ; and Xﬁ j—1 under
the pdf of a normal distribution with mean and variance specified by Egs. and [3.7]

respectively.

3.4 An Empirical Application

As an empirical test of the model, we ran an experiment in which people rated the
20 images of hypothetical planets shown in Figure on six sensory dimensions and
on liking. Specifically, participants were told to imagine that they were in a spaceship
traveling through deep space, and that their mission was to rate planets they encountered
(from 1 to 7) on the prominence of a number of sensory dimensions (water, clouds, rings,
moons, blue-green, red-yellow) and on how important it was to retain a photograph of

the planet and send it back to earth.

3.4.1 Stimuli

All images were gathered using SpaceEngine (SpaceEngine.org), a universe simulator
that randomly generates a plethora of astronomical objects. The procedural generation

process creates 3-dimensional rendered planets, which are captured with extreme detail
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Figure 3.2: The planets shown to each participant ordered by distance to the ideal (with
planet A closest to the ideal and planet T furthest from the ideal).

using a 3840 x 2160 4K resolution and resulting in over 8 million pixels per image. Due to
the stochastic nature of each planet, the options for planetary features and combinations

are nearly limitless. The stimuli used in this experiment are displayed in Figure [3.2]

3.4.2 Participants

Twenty-nine students at the University of California, Santa Barbara participated in
an (approximately) one-hour experiment in exchange for course credit. All participants
had normal color vision. All relevant ethical regulations were followed and the study pro-
tocol was approved by the Human Subjects Committee at UCSB. Informed consent was
obtained from all participants, and every participant was allowed to quit the experiment

at any time for any reason and still receive credit.
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3.4.3 Procedure

Participants were told to imagine that they were in a spaceship traveling through deep
space and that the ship automatically takes photos of planets that it encounters. They
were also told that their mission was to rate each planet on a number of physical attributes
and on how important they thought it was to send the image back to earth so that the
rest of humanity would know of that planet’s existence. Participants were presented the
images in 5 phases. During each phase, the 20 images were displayed one-at-a-time in a
random order. In phase 1, participants passively observed the images. In phases 2-5, each
image was displayed with a ratings bar that ranged from 1 to 7 and participants were
instructed to move the mouse and click the integer on the ratings bar that agreed with
their rating. During phases 2 and 4, the image and ratings bar were accompanied by a
word cue that specified the physical attribute to be rated, such as "water”. Participants
rated 6 different attributes (or dimensions) and each attribute/image combination was
presented once per phase, resulting in a total of 240 sensory judgments during phases 2
and 4 (2 sensory judgments per planet per dimension). During phases 3 and 5, the image
and ratings bar were accompanied by the word cue "importance”. Prior to each phase
the participants were reminded that their job is to use the mouse to click the value on
the scale that best reflects how prominent the feature is, with 1 being least prominent
and 7 being most prominent and that this feature is indicated by the word presented
above the scale. Each image was presented once during phases 3 and 5, resulting in 2
liking judgments per planet.

A few participants were not sufficiently engaged in some phases of the experiment.
These participants tended to repeat the same rating, over and over. Therefore, any liking
phase (3 and 5) in which the participant emitted 3 or fewer unique ratings was excluded

from analysis. Six liking phases were excluded, leaving 52 liking phases for analysis.
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Additionally, any sensory phase (2 and 4) in which the participant gave the same rating
on any dimension to all images was excluded from analysis. One sensory phase was

excluded resulting in 57 sensory phases for analysis.

3.4.4 Results

The data from this experiment were aggregated across participants and then recorded
in a 20 (planets) x 7 (dimensions) x 7 (ratings) frequency array, where liking was included
as one of the 7 dimensions. The liking ratings for each planet are shown in Figure [3.3
For each planet and dimension, the frequency sum across the 7 ratings equals the number
of trials participants were asked to rate that planet on that dimension. Therefore, the
data include 6 degrees of freedom for each planet and dimension, and so the entire data
set includes 840 degrees of freedom (i.e., 20 x 7 x 6).

The MTCRM model was fit to these data. The model included a total of 183 free
parameters. Without loss of generality, we fixed the mean vector for planet N, p N tO the
zero vector. Additionally, to limit the number of free parameters, we fixed the variance-
covariance matrices of all sensory distributions to 3; = I. The following parameters were
all free to vary:

1) The remaining 19 mean vectors, B, for all ¢ # N. Each B, is 6 x 1, so there were
a total of 114 free mean parameters (i.e., 19 x 6).

2) Six criteria, Xg;, on each of the 6 sensory dimensions, resulting in an additional
36 parameters.

3) Six means for the ideal distribution, By

4) The 6 x 6 ideal variance-covariance matrix, Xy (21 free parameters).

5) Six criteria, Xj;, on the squared-distance-to-ideal dimension.

All parameters were estimated via constrained optimization by linear approximation
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Figure 3.3: Liking ratings for each of the 20 planets.

(COBYLA; Powell (1994))) using SciPy |Virtanen et al| (2020) in Python [Van Rossum
& Drake Jr| (1995)) by minimizing the sum of squared errors between the predicted and
observed response frequencies.

Overall, the MTCRM accounted for 95.19% of the variance in the data (r?). Although
the model included 183 free parameters, because the data had 840 degrees of freedom,
after parameter estimation, there were still 657 degrees of freedom left to test the model
(i.e., 840 — 183). So accounting for 95% of the variance in these 657 proportions seems
impressive. Not surprisingly, however, the model was more successful at accounting for
the sensory ratings than the liking ratings. Specifically, the MTCRM accounted for

96.09% of the variance in the sensory ratings data and 71.89% of the variance in the
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liking ratings.

Figure shows estimated sensory distributions for each planet on each dimension
as well as the estimated criteria. Note that, except for rings, the planets vary fairly con-
tinuously on all sensory dimensions. Not surprisingly, the perceived prominence of rings
is approximately bimodal with some planets displaying prominent rings (e.g., planets A,

F, and C) and other planets showing a prominent absence of rings (e.g., planets B, D,

and S).
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Figure 3.4: Estimated sensory distributions from the best-fitting version of the MTCRM,
along with the estimated criteria on each dimension that participants used to assign
ratings.
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Table 1 shows the variance-covariance matrix of the estimated ideal distribution. The
variances provide an inverse measure of how important each dimension is to the ideal.
Note that the smallest variance is on the clouds dimension and the next smallest is on
water. The small variances suggest that when ideal planets are imagined on different
trials, participants always tend to imagine a planet with similar values on the water and
cloud dimensions. In contrast, the variances on the red-yellow and moons dimensions
are large, suggesting that the different imagined ideals vary widely on the red-yellow and
moons dimensions. Therefore, for example, if the imagined ideal sometimes has a moon
and sometimes does not, then the presence or absence of a moon is not an important

attribute of the ideal planet.

Table 3.1: Variance-covariance matrix of the ideal distribution from the best-fitting ver-
sion of the MTCRM.

Water | Clouds | Rings | Moons | Blue-Green | Red-Yellow
Water 17.82 | -11.33 | -3.92 1.70 13.69 18.93
Clouds 14.11 4.04 -0.59 0.74 -12.60
Rings 203.89 | -1.57 61.24 55.46
Moons 418.06 63.21 207.57
Blue-Green 61.36 76.60
Red-Yellow 706.73

Figure shows the ideal distribution and the mean of each planet distribution
projected onto the plane defined by the two most important dimensions — namely, water
and clouds. The ellipses denote the contours of equal likelihood of the ideal distribution,
so the ideal mean lies at the center of these ellipses. Note from Table 1 that water and
clouds are negatively correlated in the ideal distribution, which is the reason that the
ellipses in Figure have a negative orientation. This makes sense because as cloud
cover increases there is less available surface to display water. Note that planet B is

closest to the ideal mean, closely followed by planets A and C, and that planets R, S,
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and T are furthest (i.e., see Figure . Therefore, these data suggest that the ideal
planet would have about the same cloud cover as planet C but more water than any of

the planets that were shown to participants.

10.0
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25

0.0

Prominence of Clouds

-75 5.0 2.5 0.0 25 5.0 75 10.0 12.5
Prominence of Water

Figure 3.5: Contours of equal likelihood of the ideal distribution from the best-fitting
version of the MTCRM (i.e., the ellipses) and the sensory means of each planet projected
onto the plane defined by the water and cloud dimensions.

o1



A Multidimensional Thurstone-Coombs Model of Simultaneous Sensory and Liking Ratings
Chapter 3

3.5 Discussion

The MTCRM uses sensory ratings to build a probabilistic, multidimensional repre-
sentation of the sensory experiences elicited by exposure to each stimulus. If participants
rate the stimuli on D sensory dimensions then the sensory representations built by the
model will be D dimensional. And the model will also build a representation of the ideal
stimulus in this same space. It then attempts to account for liking ratings by measuring
differences between the presented stimulus and the imagined ideal on each of these D
sensory dimensions. This approach can only hope to account for the hedonic responses
of participants if the rated sensory dimensions include all stimulus attributes that sig-
nificantly affect liking. To take an extreme example, consider an experiment in which
participants rate a set of stimuli on D sensory dimensions but that the participants’
hedonic responses to those stimuli depend exclusively on some other, unrated sensory di-
mension. In this case, their hedonic responses will be independent of the stimulus value
on any of the rated dimensions, and therefore a comparison of the stimulus to the ideal
values on the D rated dimensions will not predict the participant’s hedonic response.
So the efficacy of the MTCRM depends strongly on the ability of the experimenter to
identify all sensory dimensions that could significantly affect the hedonic responses of
participants to the selected stimuli.

Given this, the default expectation should be that the model will account for sensory
ratings better than it accounts for hedonic ratings. In the experiment described here,
the MTCRM accounted for 96% of the variance in the sensory ratings and 72% of the
variance in the hedonic ratings. Therefore, we believe that one plausible account for this
difference is that participants based their hedonic responses, at least in part, on some
unrated dimension or attribute of the planets. Traditional multidimensional unfolding

models that lack any sensory data could just add more unspecified dimensions to the
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model until goodness-of-fit is maximized (e.g., exactly as in MDS). Even so, note that
a better fit by such a model would provide only vague information about the sensory
qualities of the ideal. Given that the MTCRM provides precise estimates of the sensory
qualities of the ideal on all rated sensory dimensions, we believe that accounting for
72% of the variance in the hedonic ratings is impressive, especially since the model was
provided no information about how participants might make these judgments.

As an empirical test of the MTCRM, we chose the planets shown in Figure be-
cause they are interesting, real-world objects. However, the MTCRM could be applied
to any stimuli. Future research could improve on the experimental design by applying
the model to domains that rely on more well defined dimensions selected by experts with
domain specific knowledge. For example, the model could be applied to find the ideal
Merlot and sommeliers could be consulted to choose dimensions, such as sweetness and
acidity, etc. It seems reasonable to suspect that this may ameliorate the problem of par-
ticipants basing their hedonic responses on some unrated dimension. Furthermore, this
experiment could investigate the effect of the development of expertise on the location
and variance-covariance matrix of the ideal. For example, the model could be fit sepa-
rately to experiments conducted on the general population and Master Sommeliers. The
development of expertise may cause the location of the ideal to shift and the variances
of the ideal to shrink. Lastly, because the sensation elicited by a stimulus is related to
an underlying physical quantity (e.g. the sweetness of Merlot is related to residual sugar
content, among other factors), locating the sample Merlots and the ideal Merlot in sen-
sory space can inform product development. Using this information, one could attempt

to physically instantiate the ideal Merlot discovered by the model.
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Chapter 4

Model Optimization for Deep Space
Exploration via Simulators and

Deep Learning

4.1 Introduction

This paper will address some of the challenges and possibilities of exoplanet detec-
tion and classification for future exosolar system missions. Future missions may allow
for travel far outside of our solar system, as well as deep into our own solar system,
where return bandwidth will be severely limited; thus, choices of which data (images
in particular) are important to "send back” (Lubin, P.| (2016), Lubin & Hettel (2020)),
Sheerin et al.| (2020])). The basis for exoplanetary detection via fast interstellar travel is
a combination of The Starlight Program (Kulkarni et al., [2017)) and recent results that
show how exoplanets can be detected, and distinguished from other objects, via Al-based
modeling that utilizes simulated data (Bird et al., 2020). The groundwork has been laid
for an Al-based small spacecraft that can travel long distances in a short amount of time,
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gather information on its surroundings with minimal energy requirements, and detect ex-
oplanets and other targets of interest with excellent accuracy. The same core technology
we discuss here can be applied to a wide range of astrophysics and cosmology where
subtle and often transient phenomenon are critical to retrieve in low SNR situations. In
future papers we will discuss using our techniques in these other application spaces.
The major points that we will discuss and examine here are related to the accuracy of
exoplanetary detection. In our foundational paper (Bird et al., 2020]), we used a robust
model and detection score for proof of concept. Going forward, this paper will compare
a wide array of models using accuracy as our main metric to determine model strength

and reliability.

4.2 Previous Work

The basis for much of our work lies in deep learning via TensorFlow (Abadi et al.,
2016)), as well as the expected additions, such as cuDNN (Chetlur et al.,[2014) and CUDA,
which allows for faster deep neural network processing via a graphics processing unit
(GPU). Although the idea of direct exoplanetary detection and imaging via interstellar
travel is new, astronomy has been attempting the general feat via light curves for years,
and even more recently with deep learning (Shallue & Vanderburg| (2017)), Zucker et al.
(2018)), |Carrasco-Davis et al.| (2018)).

For direct imaging purposes, we test a variety of robust models, including variants of
each model, and analyze factors such as accuracy and computational complexity. Since
deep space is uncharted territory, an extremely large training data set is not possible.
Therefore, we include some simpler models to offset the possibility of having models that
are too advanced for the data. The overall goal of these models is to be able to identify

when a planet is present in an image, while also being capable of not mistaking other
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astronomical objects for planets.

For the simpler models, we will compare MobileNet (Howard et al., [2017)), MobileNet
V2 (Sandler et al., 2018)), DenseNet 121, 169, and 201 (Huang et al.,|2018), and NASNet-
Mobile (Zoph et al., 2017). These provide solid baseline accuracy and low computational
complexity, which may prove to be beneficial for our specific needs. For the intricate
models, we will compare NASNet-Large (Zoph et al.,|2017), Xception (Chollet, F.| 2017,
VGG 16 and VGG19 (Simonyan & Zisserman, [2015]), Inception V3 (Szegedy et al., [2015)),
Inception-ResNet V2 (Szegedy et al., 2016)), and ResNet 50, 50 v2, 101, 101 v2, 152, and
152 v2 (He et al., [2015). In contrast to the simpler models listed above, the training
time and complexity will increase with these. However, that process is done beforehand
while the wafer satellite (wafersat) is still on Earth, so these concerns are negligible when
compared to the possible gains in accuracy from the more robust models.

These models have been tested against each other in the past to some degree. ResNet
has been shown to out-perform VGG (He et al. (2015),Canziani et al.| (2016)) and even
advanced Inception models (Le et al. 2020), while other results show all of these models
being out-performed by the DenseNet and InceptionResNet architectures (Zhen et al.)
2018).

The structure of these models and their performance is dependent on the data that is
being processed. In this case, we are training on simulated images of planets and testing
on real images of planets. This concept was shown to be viable in Bird et al. (2020);
however, optimizing this process will require an in-depth look at advanced deep learning

techniques and models.
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4.3 The Process

4.3.1 Deep Neural Network Architecture

Deep neural networks, including those used for object detection, begin by decon-
structing images into pixel-based groupings that constitute an input layer. This layer,
along with the hidden layer(s) and output layer, is comprised of smaller entities called
neurons. Each layer of neurons is connected to the next via weights, which are learned
through a training process. Gradient descent is a powerful and widely used method that
allows us to minimize the cost function in order to get the most effective learning process.
By taking the negative gradient, we minimize the cost function. After all is done, we are
left with a network that can take an input image and output something of interest based

on the training and model parameters.

»ﬁ—»@ ﬁggaﬁ —— Planet

Input Convolutional Pooling Convolutional Pooling Fully-Connected| Prediction
Image Layer Layer Layer Layer Layer

Figure 4.1: A convolutional neural network decomposed into a simplified diagram.

A more illuminating analogy would be to treat the initial inputs (pixels, or in the case
of a convolutional neural network (CNN), groupings of pixels) as an input tensor. This
input tensor is then essentially acted upon by a function (the neural network), which
outputs a tensor corresponding to the the categorization of the input. This function
initializes with random values, and is then optimized via the methods described above

such that the output tensor has the highest accuracy when identifying inputted data.
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Fully-Connected Fully-Connected

Convolution Convolution

Max-Pooling Max-Pooling

INPUT

Figure 4.2: A convolutional neural network decomposed into a more descriptive diagram.

In Figure [£.2] the general process that occurs within a CNN is shown. First, an
image is inputted. A small filter is placed and moved throughout the image, known as a
convolution, and features are extracted depending on what filter is used. Next, pooling
occurs, which down-samples the data. Many convolution + pooling cycles can occur,
followed by a flattening of the finalized data. This flat data then enters a full-connected
neural network, followed by an output layer, resulting in a prediction. Note that the

output layer in Figure has multiple categories, while our networks are binary.

4.3.2 The Setup

As discussed in detail in Bird et al,| (2020), the simulator (SpaceEngine.org) pro-
vides us with easy access to 4K, 3-D rendered images of exoplanets. Although they are
randomly generated, one could create a specific planet, or filter planets by a set of con-
ditions in order to achieve a subset of planets that have certain traits. All models were
pre-trained on ImageNet (Deng et al 2009) and fine-tuned on simulated images of exo-

planets. This allowed for a robust learning experience for features, and a more specific
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learning experience for our data set. All models were evaluated using an AMD Ryzen
Threadripper 3970X 32-Core Processor @ 3.70 GHz, 128 GB of RAM and an NVIDIA
Titan RTX graphics card.

In most deep learning applications for image analysis, both training sets and testing
sets contain images of the same object. In our deep learning application, the training
set is taken from a universe simulator (SpaceEngine.org), and the testing images are real
images of planets. Without a simulator, we would not have enough images of planets,
and those planets would not constitute a large enough sub-sample of possible exoplanets.
By using a physics-based simulator, we can produce an abundance of realistic novel
exoplanets to train on. Then, we use real planets to test the model’s accuracy. This
translates directly to the wafersats process during an actual interstellar journey. Image

counts for all three sets is shown in Table 1.

H Training Validation Testing H
915 200 284

Table 4.1: Image count for the training, validation, and testing sets.

The process being performed here is unique for two major reasons. First, the entire
training set is simulated images, while the entire testing set is real images. This presents
a particular challenge for neural networks, as they learn in a template space and are then
tested in a real space. Second, deep space provides an enormously large variety of objects.
For example, gas giants vary wildly in many ways, such as size, feature differences, surface
gas formations, colors, temperature, and more. In our solar system alone, we witness two
quite unique gas giants: Saturn with its rings and famous hexigon, and Jupiter with
its eye and dolphin formations. Training on extremely unique objects can cause neural
networks to lose their generality and under-perform. The images in Figure compare

real images taken by NASA against simulated images.
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Figure 4.3: Two examples of real testing images are Jupiter and Saturn, seen on the left,
while the right side shows examples of simulated training images.

4.4 The Results

For each model previously mentioned, we trained, validated, and tested the neural
network in batches of five epochs each. An epoch is when the entire data set is run

through the neural network once.
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H Model Maximum Accuracy Achieved Respective Epoch H
VGG19 0.9964788556 5
VGG16 0.9929577708 5 & 25

ResNet50 0.9894366264 85 & 120
ResNet101 0.9894366264 115
ResNet152 0.9894366264 10 **
MobileNet 0.985915482 5
MobileNet v2 0.9788732529 HA*
DenseNet121 0.9788732529 5
DenseNet169 0.9788732529 5-15
ResNet152 v2 0.9753521085 25 *
DenseNet201 0.9753521085 5-15
Inception v3 0.9683098793 5& 15
ResNet101 v2 0.9647887349 5
ResNet50 v2 0.9612675905 10 - 20
NasNet-Mobile 0.9542253613 10
Inception-ResNet v2 0.950704217 5& 10
Xception 0.950704217 10
NasNet-Large 0.9154929519 5

Table 4.2: Maximum epoch-based accuracy achieved for each model, ordered from highest
to lowest. * denotes continued accuracy for all remaining epoch counts. ** denotes that
maximum accuracy was sporadically achieved again after first occurrence.

From Table 2, as well as Figures and [4.5] it can be seen that VGG19 reached
the highest maximum accuracy at five epochs, while VGG16 reached the second-highest
maximum accuracy at both five and 25 epochs. This result is extremely interesting,
as VGG variants are typically under-performing models when compared to Inception or
ResNet variants. MobileNet performed extremely well, not only in maximum accuracy
achieved, but also in terms of consistency. The remaining models were simply out-
performed and provided no concrete reason why they should be chosen as a viable model

for this specific task.
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Figure 4.4: Accuracy of all models based on epoch count.
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Figure 4.5: Accuracy of all models based on epoch count.

Based on Figure [4.6] ResNet50 and ResNet101 both dipped below 88% accuracy,

and often times bounced from low to high accuracy, showing clear signs of inconsistency.

Despite overall good performance, ResNet152 has large dips in the 5-20 epoch count, the
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main area where most models performed at their best. For these reasons, the ResNet
variants were ultimately rejected as reasonable choices, as their epoch-based accuracy

fluctuated too wildly.

1.00 - VGG19
= VGG16
ResNet50
098 == ResMet101
== ResNet152
== MobileMNet
096

094

Accuracy

0.90

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125

Epoch Count

Figure 4.6: Accuracy of models that reached at least 98% maximum accuracy based on
epoch count.

One very interesting result was concerning the remaining 98% or better maximum
accuracy models, namely VGG19, VGG16, and MobileNet. Pertaining to Figure [4.7], we
can see that VGG19 and VGG16 fluctuate to some degree, while MobileNet acts as a
hedge. While the dependability of VGG19 and VGG16 in certain epoch ranges is vastly

superior, MobileNet grants you a consistently strong choice across all epoch ranges.
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Figure 4.7: Accuracy of dependable models that reached at least 98% maximum accuracy
based on epoch count. These do not include the ResNet variants.

We note that once ResNet variants are removed for their instability, every model
reaches its peak accuracy at the 5-25 epoch range. Conditional on this range, the
strongest models remain VGG19 and VGG16, but we can clearly see that their strength
can fluctuate with small changes to epoch. Yet, MobileNet, MobileNet v2, DenseNet169,
and DenseNet201 respectively perform the most consistently, while preserving most of
the accuracy that we see in VGG19 and VGG16.

Some insight can be obtained by breaking down the accuracy into false negatives,
which occur when a planet is present but the model does not identify it, and false pos-
itives, which occur when a planet is not present but the model identifies one. For our
objective, false negatives are a much more severe error, as finding a planet and missing
it is the worst possible situation. Alternatively, false positives would simply send back a
picture of empty space to Earth, which would result in something mildly interesting, but
nothing lost. Linking this information to our previous findings, ResNet variants continue

to show instability, with some models having as many as 13 false negatives. Both VGG
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variants had no false negatives, meaning that they exhibit both extreme accuracy and
reliability in detecting planets when they are actually present in the image. Lastly, we
noted that DenseNet variants were very reliable in the 5-25 epoch range. In terms of

false negatives, all DenseNet variants continue this stability with no false negatives.
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- VGG16

VGG19
= Inceptionv3
0.98 z == InceplionResNetv2

/ MobileNet

s MobileNetv2
DenseNeti21

036 ——
DenseNgt169
. DenseNet201
R NASNethobile
NASNetLarge

Accuracy

Figure 4.8: Accuracy of dependable models based on the 5-25 epoch range.

These results connect well to the previous section, where we outlined the unique
circumstances that surround this particular problem. We note that we are training
models on extremely specific objects in space, with unique features, patterns, colors, etc.
Advanced models such as ResNet and Inception learn too well and proceed to analyze
the extremely minute details in the training set. Then, when asked about other images
that are unique in different ways, they struggle to find the connection. Meanwhile, less
advanced models, such as VGG and MobileNet variants, do not lose that generality while

learning.
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4.4.1 Implications for future simulator training

Results show quite a few viable models, depending on whether we want extreme
accuracy at the cost of variance (VGG variants), or dependability at the slight cost of
accuracy (MobileNet variants).

Moreover, we note that this approach yields high accuracy with relatively few training
images. With only 900 training images, we have achieved 98% accuracy with multiple
models, giving us a wide variety of options depending on the situation. Thus, for future
work, even small samples of simulated images can successfully train a neural network to

detect real objects in space with extremely high accuracy.

4.5 Foundations for Future Work

We have expanded upon Bird et al| (2020) and have shown that a small subset
of simulated images can produce extremely accurate predictions of real-world planets
during an interstellar journey and beyond. This paper solidifies the overall outlook on
optimization methods for exoplanet detection, while introducing many ideas that will
open new and exciting problems in deep space exploration. The same methodology can
be used in a wide variety of astrophysical (and other) applications, where subtle issues
in both the temporal and spatial domain are critical to access, and make decisions for,
low bandwidth return applications.

An upcoming paper will address categorization, which will expand the ideas of simulator-
based detection to objects beyond exoplanets. In particular, we will further explore
whether simulators can help train neural networks to distinguish between specific types
of planets. What about specific types of stars, comets, asteroids, and even more inter-

estingly, signs of life?
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4.6 Conclusion

In our previous work, we showed how simulator images could be used to successfully
train a neural network to identify real images of planets. In this paper, we delve into
specific model optimization and obtain some fascinating results. First, multiple models
are proven to have above 99% accuracy when trained only on simulator images and tested
on real images of planets. This result completely supports a simulator-based training
model for deep space journeys, allowing us to train large neural networks pre-flight on
Earth. Second, we have shown that extremely high accuracy does not depend on large
data sets in this niche problem. With under 1,000 training images, we have achieved over
98% maximum accuracy with six different models. Finally, we demonstrate that there
exists both high accuracy and high stability models that can perform well with no false

negatives.
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Chapter 5

Novelty detection in deep space:
The plausibility of template sphere
training in place of simulator-based

approaches

5.1 Introduction

Advancements in novelty detection and object detection have led to simpler means
to advanced problems. In the case of space exploration, the main problem to address is a
unique variant of object detection wherein training images do not exist but the difference
between negatives and positives in testing images is seemingly obvious.

Bird et al. (2020]) addresses attacking the problem from a very simply direction via a
Grow When Required (GWR) (Marsland et al., 2002) network. Results show that such
a simple technique is not only unrealistic for other processes that are needed while in

space, but the accuracy is low and unreliable. In order to get cutting-edge results, Bird et
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al.| (2021) uses a plethora of advanced modeling to determine how accurate and reliable
current methods are. Results show that extremely high accuracy can be achieved with
zero real images used, while providing multiple models that sacrifice small accuracy gains
for more dependable predictions.

We return briefly to the original problem, which presents us with deep space ex-
ploration and very few useful real images to use in order to train a model for object
detection. Simulators have proven to be an invaluable resource for solving this problem,
and have led to amazing results for future missions. But, simulators can be expensive to
make and keep up to date, and collecting simulator images is currently a slow process.

In this paper, the need for simulators is tested by suggesting a possible alternative.

5.2 The Process

We test using the same advanced modeling scheme that was used in |Bird et al.| (2021),
except that we not only test on simulator images but also on a much simpler and more
easily produced template called Spheres or Sphere Templates. Note that we expanded
the epoch range from the original in Bird et al. (2021)) to allow for more comparison
opportunities throughout testing. Both training image sets contained the same number
of images at 915.

The background of these Sphere images is generated to imitate empty space as real-
istically as possible. We create a scattered star background, each star being randomly
generated in terms of clustering density and size.

The foreground of these Sphere images is generated by randomly choosing a concept
planet size and overlaying a white circle on the background. After this white circle is
produced, an overlapping black circle is produced and placed randomly on the white

circle to further produce a stochastic light angle from the nearby star.
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The overarching intuition here is that although the very simple techniques that were
tested early on produced poor detection, and advanced techniques produced excellent
model prediction at the cost of computational energy, perhaps there is a middle-ground
with Sphere Templates that can provide great accuracy while being easily reproducible
and computationally inexpensive.

The main goal with this testing is to ensure that if Sphere Templates work, they
provide accuracy and dependability that matches Simulators across models. Since model
accuracy varies significantly depending on the image set, a single great result might not
be reproduced in further experiments or in actual use. Therefore, in analyzing Sphere

Template results, we must consider both accuracy and dependability across all models.

5.3 Results

The results are shown in both Table [5.1] and Figure 1.

Many interesting findings can be deduced from the results of Simulator and Sphere
testing. First, the simulator accuracy has actually increased from including a broader
set of possible epochs. In [Bird et al. (2021), VGG16 & VGG19 were the top models,
and that continues here as well, with the additional epoch ranges providing us with
even more accuracy. In particular, VGG16’s architecture fit the problem so well that
100% accuracy occurred with both training image setups. Since accuracy varies highly
depending on different image sets, we must explore all models for dependability.

As we also found previously, MobileNet provided high accuracy, which held true
for both Simulator and Sphere training sets. The lower accuracy for Spheres using
MobileNetv2 implies that the model is not extremely strong, and we must investigate
other options. DenseNet variants have proven to be quite dependable with Simulator

images, which holds true here again with expanded epochs, but does not hold true for
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Model Accuracy Comparison

Model Simulator Epoch | Simulator Accu- || Sphere Accuracy | Sphere Epoch
racy
Xception 4 93.33 82.5 1
VGG 16 1 100 100 1
VGG 19 1 99.63 85.92 1
ResNet50 2 93.70 62.96 1
ResNet101 4 90.37 70.37 1
ResNet152 1 82.96 63.33 1
ResNetb0V2 4 94.81 92.59 1
ResNet101V2 1 96.66 92.59 1
ResNet152V2 4 97.77 91.85 1
InceptionV3 4 97.77 93.7 1
InceptionResNet V24 93.33 87.40 1
MobileNet 2 97.04 98.14 1
MobileNetV2 3 98.88 95.92 1
DenseNet121 4 98.14 97.40 1
DenseNet169 3 98.14 99.62 4
DenseNet201 4 97.77 93.33 1
NASNetMobile 3 92.59 93.33 2
NASNetLarge 1 92.59 93.70 1

Table 5.1: For each model, maximum epoch-based accuracy is shown alongside the cor-
responding epoch, which is done for both simulator image training and template sphere
image training.

Spheres.

Overall, Simulators provide a plethora of great options that are dependable across
architectures, with VGG variants having 99% or above, DenseNet variants having 97.7%
or above, and MobileNet variants having 97% or above. Yet, Sphere testing proves
that dependability and accuracy are both lacking. Although some ResNet variants have
decent accuracy around 92%, some fall short at about 63%, not much better than a
random guess. The poor performance of VGG19 makes the impeccable performance of
VGG16 seem questionable for future experiments depending on the image set.

Table 5.2 shows a comparison between Simulator and Sphere accuracy. This dif-

ference table shows a stark difference in Simulator and Sphere accuracy, and points to
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Figure 5.1: This graph shows the data from Table 1 in a more approachable and intuitive
setting.

Sphere dependability being at unacceptable levels. For MobileNet, DenseNet169, NAS-
NetMobile, and NASNetLarge, Spheres had better accuracy but only by a very small
amount at approximately 1% difference. If this was consistently the case, an argument
for Spheres being used would be completely viable. Yet, most models not only show a
difference that favors Simulators, but the differences themselves are quite large. With
an average difference of about 9.6% in favor of Simulators, with some models as high as

30.74%, Spheres are simply too inconsistent to defend.
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Model Accuracy Difference

Model Simulator Accuracy - Sphere Ac-
curacy

Xception 10.83

VGG 16 0

VGG 19 13.7

ResNet50 30.74

ResNet101 20

ResNet152 19.63

ResNetb0V2 2.22

ResNet101V2 4.07
ResNet152V2 5.93

InceptionV3 4.08
InceptionResNetV25.93
MobileNet -1.11

MobileNetV2 2.96
DenseNet121 0.74
DenseNet169 -1.48
DenseNet201 4.44
NASNetMobile | -0.74
NASNetLarge -1.11

Table 5.2: For each model, Simulator Accuracy - Sphere Accuracy is shown. Positive
numbers show that Simulator accuracy is better, which negative numbers show that
Template accuracy is better. This is based on max-epoch accuracy.

5.4 Conclusion

We set out to find a middle-ground between our simple GWR network, which pro-
vided poor accuracy and limited functionality, and our optimized models, which provided
stellar accuracy at the cost of computational complexity. A Sphere Template concept
was introduced, which would make image collection easier and provide simpler template
training images for the neural networks to learn.

Results show that Sphere Templates did not provide enough dependability or ac-
curacy amongst the set of all models to be realistic. Some Sphere Template models

produced an accuracy that barely exceeded a random guess. Despite some Sphere-based
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models minimally out-performing Simulator-based models, the overall results for Sphere
Templates were inconsistent and significantly worse than their Simulator counterpart.
As discussed in Bird et al.| (2020), even a small loss in accuracy can be extremely
detrimental to a deep space mission. We therefore must conclude that Sphere Templates
are not a suitable alternative to Simulators, and the slight increase in computational
complexity must be dealt with in a different way in order to provide a system that

maximizes accuracy.
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Chapter 6

Deep Neural Network Categorizer
vs. Binary Decision Tree for Deep

Space Object Detection

6.1 Introduction

In this paper, we will delve into a more complicated version of the concepts introduced
in Bird et al. (2020) and Bird et al.| (2021), namely the categorization of objects that
might be seen during the NASA Starlight and Breakthrough Starshot program interstellar
journeys. Previously, simulator images were shown to provide high accuracy and ease
of training in a binary setting. Although the particular binary situation tested was the
most important of all (planets vs. negatives), the remaining problem was to combine all
astronomical objects during training and testing phases.

We introduce other objects besides planets, namely asteroids, comets, and stars. We
also include three large planet subcategories, which are gas giants, rocky planets without

water, and planets with water or liquid that resembles water, respectively referred to
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throughout this paper as gas giants, rocky planet, and water planet.
The goal moving forward is to provide a system of models that can take in an image

and output a categorical label with the highest accuracy across all astronomical object

types.

6.2 The Process

For the binary decision tree, we began by breaking the images down into two main
chunks, planets and not planets. Planets are comprised of gas giants, rocky planets, and
water planets, while asteroids, comets, stars, and negatives are considered not planets.

If the model determined the astronomical object to be a planet, we then test the same
image for classification as a gas giant. If it is not a gas giant, the last step is determining
if it is a rocky planet or water planet.

If the model determined the astronomical object to be a not planet, we then test to
see if it is an asteroid. If it is not, we then continue the binary decision tree to test if it is
a comet. If it is not a comet, it will be run through the final stage, which will determine
if it is a star or a negative.

For the categorizer, we ran three different setups. First, the complete categorizer
simply took in all images at once through a single model. Second, the planets only
categorizer took in only planetary images, which consisted of all gas giants, rocky planets,
and water planets. Third, the not planets only categorizer took in only images of objects
that are not planets, which consisted of asteroids, comets, stars, and negatives, and
evaluated them with a single model.

Each model was evaluated at epochs 1-5, as well as every multiple of 5 up until 100.
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6.3 Results

The main results are shown in table format via Table [6.1] and in decision tree format
via Figure 1. The split between Planets vs. Not Planets gave us similar accuracy to
that found in Bird et al.|(2021) while testing Planets against Negatives. In this case, our
displayed testing accuracy is a more complicated problem of Planets vs. Not Planets.

Understandably, the most difficult part of this problem is distinguishing between
planet types, which is confirmed by the accuracy of Gas vs. Rocky+Water and Rocky
vs. Water. Conditional on making it to the Planet section, the Categorizer: Planets
Only had an accuracy of 67.3611%, while making it to a gas giant (or possibly-habitable
planet type) can be done via a binary decision tree with an accuracy of 84.7222%, and
making it to a specific rocky or water planet can be done via a binary decision tree with
an accuracy of 72.1020%. Essentially, no matter how deep into the Planet section of the

decision tree you go, binary decision tree accuracy beats a categorizer.

Binary Decision Tree Accuracy
‘ Image Segmentation ‘ Accuracy ‘ Model

Planets vs. Not Planets 98.0198 DenseNet169

Gas vs. Rocky+Water 84.7222 DenseNet169

Rocky vs. Water 85.1063 VGG 19

Asteroid vs. | 99.4219 ResNet152-v2

Comet+Star+Negative

Comet vs. Star+Negative 91.4728 InceptionResNet-
v2

Star vs. Negative 97.7011 InceptionResNet-
v2

Categorizer: Complete 76.3406 InceptionResNet-
v2

Categorizer: Planets Only 67.3611 NASNetLarge

Categorizer: Not Planets Only 87.2832 ResNet152-v2

Table 6.1: Results are shown for each image segmentation section. Accuracy column
describes the highest accuracy achieved across all models, while Model column describes
the respective model that achieved highest accuracy.
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When dealing with Not Planets, the accuracy is significantly higher than we saw with
Planets. In general, investigation further into the top tree section in Figure 1 deals with a
low probability of finding something of interest, and investing energy into a Not Planet is
not an efficient or optimal process. Assuming a Not Planet is detected, the Categorizer:
Not Planet Only achieved an accuracy of 87.2832%, while the binary decision tree had an
accuracy of 99.4219% to identify an asteroid, 90.9441% to identify a comet correctly, and
88.8534% to make it all the way to the end with a correct star vs. negative prediction.

This shows that binary decision tree is the optimal setup for the Not Planets section as

well.
P Negative
Star vs. ’NOI Star
_~  Negative: <
- 97.7011% ~gtar
Comet vs. /h_l/ot Comet ~— <
- Star+Negative: < &
Asteroid vs Not Asteroid | 14128 Comet
Comet+Star+ T~ Comet
Negatives:
- 99 4219% Asteroid
Not Planet .
Asteroid
Planet vs. Not
Planet: <
98.0198% \\\ P Water
~ Rocky vs. Mot Rocky
Planet ~ Waler, =
- - —
. Not Gas Giant | 89-1063% Rocky_
~._ Gas Giant vs. - —~ Rocky

~ Rocky+Water: <_

847222% | us Giant

T~ (Gas Giant

Figure 6.1: Results are shown in a binary decision tree diagram. FEach binary model
provides a small description and its respective accuracy.

As a finalization, we see if the Categorizer: Complete is worth using despite the
Categorizer: Planets Only and Categorizer: Not Planets Only having worse accuracy in
all situations when compared to a binary decision tree. The last part of each tree segment
will have the most reduced accuracy, so if the Categorizer: Complete is worse than both
of those, it is automatically the worse option. The non-conditional accuracy of star vs.

negative is 87.0939%, while the non-conditional accuracy of rocky vs. water is 70.6762%.
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Since both of these are greater than the 67.3611% achieved by Categorizer: Complete,
we have exhausted all combinations and find that a custom binary decision tree is the

optimal choice is all situations for this application.

6.4 Conclusion

We set out to test the general acceptance that deep learning has evolved to a point
where a general categorizer is an acceptable solution to any object categorization problem.
In our application, the astronomical objects were either very distance or very close to one
another in likeness. For example, asteroids and rocky are extremely similar for detail-
oriented filters, while gas giants and comets differ is almost every way imaginable. The
separation of planet and not planet categories also served other functions, such as a not
planet categorization automatically stopping the process to save energy.

Our results show that a custom binary decision tree gave us access to specific com-
mands along the tree process, as well as the best accuracy for any and all astronomical

objects that may be encountered during the journey.
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Chapter 7

Conclusion

We began with a set of new challenges that arose from the Starlight program and the
ability to perform fast interstellar travel. These included identifying stars, identifying new
planets, extracting never-before-seen features, conceptually ranking these new planets
against each other in terms of importance, understanding what importance means in the
context of planets, and conserving energy while performing necessary tasks.

We started off by showing that a simple classification model would not suffice. Not
only does it perform poorly, but it does not come with the range of tools that are needed
for further processes down the line. We showed that while training on simulated images,
accuracy on real images does not suffer, which is an amazing concept for such an applica-
tion. Along with this, we provided results and justifications as to why simulators enable
us to identify features that we have yet to observe in actual images. We also demon-
strated how simulators can be utilized to save energy while ensuring that all necessary
functions are completed.

Once the foundation for simulators had been laid, we introduced the concept that
human knowledge gain can instruct machine learning algorithms to prioritize certain

planetary features over others. This lead to the construct of planetary importance, which
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raised questions about which planetary images should be prioritized. In chapter 3, we
showed that feature space can be a strong predictor of planetary importance, solidifying
the idea that human experiments can be used to gain knowledge, which can in turn fuel
an accurate model that sends the more "important” images back first.

Once the idea of using simulators had been verified and we knew that contextual
knowledge could be used to inform a machine, model optimization was done to show
that accuracy can get extremely high. Multiple models reached above 98% accuracy for
Planet vs. Negative comparisons.

The remaining two chapters pertain to the uniqueness of the application and challenge
current concepts in deep learning and object detection. Chapter 4 tested the theory that
simple classification, yet something more advanced than that seen via GWR in chapter 1,
can be used to replace simulators during classification. Our modeling tests confirmed that
simulator training almost always achieved higher accuracy, but more importantly, it got
high accuracy in a more dependable and robust fashion. Chapter 5 challenged the current
deep learning method of categorization as the default method for multi-object models.
As we showed, a categorizer was underwhelming compared to a custom binary decision
tree for our application. Higher accuracy was achieved for all astronomical objects via a
binary decision tree method.

Next steps for this research path include star detection phases and navigation, energy
gain and management systems, and optical flyby correction software. Future research
needs to ensure that the wafersats have the ability to check their positions, navigate via
small course corrections, optimize energy use and gain energy while traveling, and correct

possible image distortion due to their extremely high velocities.
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