
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Machine Learning Strategies for Improved Phenotype Prediction in Underrepresented 
Populations.

Permalink
https://escholarship.org/uc/item/5xs6t8d5

Authors
Bonet, David
Levin, May
Montserrat, Daniel
et al.

Publication Date
2024
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5xs6t8d5
https://escholarship.org/uc/item/5xs6t8d5#author
https://escholarship.org
http://www.cdlib.org/


Machine Learning Strategies for Improved Phenotype Prediction 
in Underrepresented Populations

David Bonet1,2, May Levin1, Daniel Mas Montserrat1, Alexander G. Ioannidis1,3

1Stanford University, Stanford, CA, US

2Universitat Politècnica de Catalunya, Barcelona, Spain

3University of California Santa Cruz, Santa Cruz, CA, US

Abstract

Precision medicine models often perform better for populations of European ancestry due 

to the over-representation of this group in the genomic datasets and large-scale biobanks 

from which the models are constructed. As a result, prediction models may misrepresent or 

provide less accurate treatment recommendations for underrepresented populations, contributing 

to health disparities. This study introduces an adaptable machine learning toolkit that integrates 

multiple existing methodologies and novel techniques to enhance the prediction accuracy for 

underrepresented populations in genomic datasets. By leveraging machine learning techniques, 

including gradient boosting and automated methods, coupled with novel population-conditional 

re-sampling techniques, our method significantly improves the phenotypic prediction from single 

nucleotide polymorphism (SNP) data for diverse populations. We evaluate our approach using 

the UK Biobank, which is composed primarily of British individuals with European ancestry, 

and a minority representation of groups with Asian and African ancestry. Performance metrics 

demonstrate substantial improvements in phenotype prediction for underrepresented groups, 

achieving prediction accuracy comparable to that of the majority group. This approach represents 

a significant step towards improving prediction accuracy amidst current dataset diversity 

challenges. By integrating a tailored pipeline, our approach fosters more equitable validity and 

utility of statistical genetics methods, paving the way for more inclusive models and outcomes.
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1. Introduction

In recent years, genome-wide association studies (GWAS) have provided many insights into 

the genetic basis of complex traits and diseases. However, these findings predominantly 

benefit populations of European descent due to their over-representation in genomic 
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datasets. Individuals with Asian, African, and other ancestries only represent a small fraction 

of the available datasets.1 Although individuals of European descent constitute ∼79% of 

GWAS participants,2 they account for less than a quarter of the global population. This 

disproportionate representation creates a limitation in precision medicine, because statistical 

models built to infer disease risks or health-related traits can perform poorly for individuals 

from populations that were underrepresented when creating the model, exacerbating health 

disparities. Despite initiatives to include a broader range of populations in genetic studies 

and biobanks,3–7 the proportion of non-European individuals in GWAS studies has stagnated 

in the last decade.2,8 This imbalance has a direct impact on Polygenic Risk Score (PRS) 

prediction for underrepresented populations,9 making clinical applications based on PRS 

significantly more accurate for individuals of European descent, but less effective for 

other populations.10–12 This disparity has raised ethical concerns within the scientific and 

clinical community.1,3,8,13 While most studies only use European individuals and European-

derived statistics to build predictive models,8,11,14 recent studies have explored including 

non-European training data in PRS construction, but this has only proven effective when a 

large number of training samples of non-European target populations are available.15

Phenotype prediction utilizes genetic information to forecast an organism’s observable 

characteristics, known as phenotypes. These traits can range from disease susceptibility 

to other attributes, enabling personalized treatments based on individual genetic profiles. 

Machine learning (ML) and deep learning (DL) models used to predict phenotype and 

population structure from genomic data14,16–20 are similarly negatively impacted by 

imbalanced datasets. Vokinger et al.21 highlighted the presence of bias in ML-based 

medicine prediction pipelines. Specifically, they revealed how a naive application of simple 

ML methods can showcase an overall good performance, yet still produce biased predictions 

favoring the majority population at the cost of lower accuracy for underrepresented groups. 

Efforts to mitigate this bias exist, such as Afrose et al.22 who created a double prioritized 

bias correction technique that involves training customized prediction models for specific 

subpopulations. However, this approach is limited to binary classification tasks and is not 

generalizable to other prediction problems.

Conventionally, the statistical methods that are applied for genomic prediction problems 

linearly combine the effects of different genetic variants on an individual’s risk of disease. 

Some of the most widely used regression models include Lasso,23 a linear method with 

ℓ1 penalty, Elastic net24 with ℓ1 and ℓ2 penalty, and efficient implementations of both.14 

Although being the routine choice in most studies, linear models are not able to capture 

non-linear genetic interactions that can contribute to a phenotype.25 The ability of non-

linear predictive models to capture genetic interactions could help improve performance 

generalization across populations.26,27 Neural networks, a complex non-linear method, have 

recently gained traction in computational biology,28,29 but require vast amounts of data 

for training. Large-scale biobanks, such as the UK Biobank,30 provide such expansive 

datasets. However, the small proportion of samples from minority populations hinders robust 

generalization across different genetic backgrounds. In contrast, gradient boosting (GB) 

algorithms,31 such as eXtreme Gradient Boosting (XGBoost)32 and LightGBM,33 have 

frequently demonstrated superior performance for tabular data and small-sized datasets,34,35 
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and have already been explored in biological studies for tasks such as local ancestry 

inference,36 protein-protein interactions,37 and drug-gene interactions.38 In the realm of 

genotype-to-phenotype prediction, recent research has also highlighted the potential benefits 

of using such nonlinear predictive models.39,40

In this paper, we aim to improve phenotype prediction for diverse and underrepresented 

populations. We propose a more inclusive genomic research approach that uses multi-

ancestry data together with advanced machine learning techniques to boost the predictability 

of complex traits across a broader range of populations. Our method leverages several 

machine learning techniques such as boosting, and ensembling, and we propose population-

conditional weighting and re-sampling techniques to generate more accurate models for 

underrepresented populations without requiring large sample sizes of non-European training 

data. Fig. 1 illustrates the workflow of our approach, starting with the formation of 

the data set through the application of various machine learning techniques and data 

de-biasing methods. We compare our approach with state-of-the-art statistical genetics 

models on the UK Biobank, conducting a systematic evaluation across 12 phenotypes 

in European (British), African, East Asian, and South Asian individuals. Given that the 

majority population is of European descent, we observe a large gap in phenotype prediction 

accuracy for minority populations when using classical linear methods. This disparity 

only grows when European-only data is used to train any of the prediction models. We 

demonstrate how the application of our method helps narrow this accuracy gap, balance the 

performance across populations, and obtain state-of-the-art phenotype prediction results for 

multi-ancestry datasets.

2. Methods

2.1. Dataset preparation

We utilize a dataset extracted from the UK Biobank30 that includes European (British), 

South Asian, African, and East Asian individuals (see Fig. 2). We use the pre-computed 

population labels from the Global Biobank Engine (GBE),41 inferred based on genetic 

clustering with ADMIXTURE software42 results, which provides a maximum likelihood 

estimation of an individual’s genetic ancestry clustering from multilocus genotype datasets.

Single nucleotide polymorphism (SNP) sequences are encoded using a ternary system, 

where at each genomic position, an individual i has nij ∈ 0, 1, 2  copies of the minority SNP 

j. To address high dimensionality and retain the most informative SNPs, we apply a SNP 

selection process. Minor allele frequency (MAF) filtering is applied with a 1.25% threshold, 

keeping a set Sp of 10000 SNPs for each population p ∈ P , such that Sp = 10000. After SNP 

selection for each population, we computed the union of these sets. It is important to note 

that not all sets necessarily overlap with every other set. The union is represented by:

Sunion = ∪
p ∈ P

Sp

(1)
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This resulted in a unified set of SNPs where Sunion = 31153, which is then used for all 

individuals, creating a dataset of 66032 individuals and 31153 features. Fig. 2 shows the 

intersection size of the sets of selected SNPs Sp for all intersections of populations p ∈ P . 

We observe that the highest overlap is between South Asian, East Asian, and European 

populations, while the selected set of SNPs for the African population has practically no 

overlap with the others. Any subsequent missing SNPs within the samples underwent mode 

imputation to ensure data completeness.

To conduct our experiments, we study a set of phenotypes included in the GBE,41 listed 

in Table 1. Details regarding the correspondence of the GBE to the UK Biobank can be 

found in the GBE paper. We selected the available phenotypes with minimal missing data for 

the minority populations, and that also showed good predictive performance from genotype 

features.43 We analyze both binary phenotypes (absence or presence of the phenotype) 

and continuous phenotypes to evaluate model performance across both classification and 

regression tasks.

Additionally, we ensured there is no missing data and filter samples that have missing 

phenotypic information. The dataset is partitioned into a training set and a testing set, 

comprising 80% and 20% of the data, respectively. We applied stratified sampling, ensuring 

the proportion of samples from each population closely mirrors their proportion in the 

overall dataset.

2.2. Algorithmic models

We explore a wide range of machine learning methods to improve phenotype prediction 

on underrepresented populations. Some algorithms serve as standalone models, capable of 

making predictions without supplementary techniques. Other algorithms we describe in this 

section, such as boosting, are techniques that can be used to further improve the performance 

of a base machine learning model. Finally, we explore complex machine learning systems 

that combine multiple models and automate the process of machine learning.

Linear models—We include the Least Absolute Shrinkage and Selection Operator 

(Lasso),23 a linear regression method that performs variable selection (i.e., identifies the 

most important predictors) and regularization, which prevents overfitting by constraining 

the model parameters. It does this by imposing an ℓ1 penalty, effectively reducing some 

coefficients to zero. We also use Elastic Net,24 a regularized method that combines ℓ1 and ℓ2

penalties, allowing coefficient shrinkage and feature selection.

Boosting—We consider boosting,44 a powerful ensemble machine learning technique that 

constructs a strong predictive model by combining multiple weak learners—simple models

— that are trained sequentially. In each iteration of the boosting process, a new weak 

learner is trained giving more importance to the instances that were poorly predicted by the 

previous models, meaning the model attempts to correct the errors of its predecessors. This 

procedure is repeated sequentially, with each new model targeting the instances where the 

combined ensemble has performed the worst. The final model is a weighted combination 

of all the weak models, which often yields a strong predictive performance by aggregating 
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the strengths of all individual models. Decision trees are the most common type of weak 

learners used in boosting algorithms. However, we also study how boosting can help 

improve predictive performance when traditional linear methods used in the field, such as 

Elastic Net, are used as weak learners.

Gradient boosting machines—A specific implementation of the boosting techniques 

are gradient boosting machines (GBM). The key idea behind GBMs is the use of the 

gradient descent algorithm to minimize a loss function, which quantifies how well the 

model predicts the target variable. In each iteration, rather than directly focusing on the 

poorly predicted instances, a new decision tree is fit to the negative gradient (residuals) of 

the loss function with respect to the prediction of the ensemble model from the previous 

stage. This new decision tree provides a direction in which the prediction should be 

adjusted to minimize the loss function. The predictions are then updated by taking a 

step in this direction. Extreme Gradient Boosting (XGBoost)32 and LightGBM33 are two 

optimized implementations of GBMs that have gained significant popularity due to their 

efficiency and performance. XGBoost offers several advanced features such as regularized 

boosting, handling of missing values, and tree-pruning that makes it faster and more robust. 

LightGBM also offers high performance and efficiency but is particularly notable for its 

effectiveness with large datasets and high-dimensional data, due to its innovative histogram-

based algorithm that reduces memory usage and speeds up training.

AutoML—Automated Machine Learning (AutoML)45 refers to the automated process of 

end-to-end model development, encompassing steps from feature engineering to model 

selection, hyperparameter tuning, and model evaluation. AutoML methods have been 

developed to streamline the machine learning pipeline while reducing time and expertise 

required to develop effective predictive models. In particular, we consider AutoGluon46 

(AG), a state-of-the-art AutoML framework known for its robust performance, efficiency 

and ease of use. AutoGluon automatically trains and optimizes multiple models such 

as neural networks, nearest neighbors, linear models, and gradient boosting machines, 

combining them into a stacked ensemble.

2.3. Population-conditional re-sampling solutions

We introduce a set of population-conditional re-sampling techniques to address population 

imbalance in datasets. These techniques serve as auxiliary methods designed to reduce 

model bias towards the majority population and can be integrated with any predictive model. 

While we focus on human populations in this work, these techniques can also be applied 

to any data where samples can be grouped into different populations, groups, or categories. 

Moreover, they are suitable for tasks beyond single-target classification, such as regression, 

and they can also be extended to multi-output tasks.

Population-conditional oversampling and undersampling—We modify the 

traditional oversampling and undersampling techniques used in imbalanced classification 

tasks, and adapt them to address imbalances at the population level, regardless of the 

target variables (both categorical and continuous). We organize the training dataset as 

X ∈ ℝN × d such that each row represents an individual, and the target variable or variables 
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are concatenated to the rest of the input features as the final attributes. The population label 

is then used as a downstream label y′ ∈ ℝN for the oversampling or undersampling rule, 

originally designed to work with single-target imbalanced classification datasets, such that 

the “minority” samples are those pertaining to the populations with lowest representation in 

the dataset. After this procedure, we discard the population labels and split the columns of 

the re-sampled training dataset as features and targets and fit the prediction models.

We explore population-conditional random oversampling (OS) by picking samples at 

random with replacement from the minority populations. We also adapt the Synthetic 

Minority Over-sampling Technique (SMOTE),47 which is commonly used to address class 

imbalances by generating synthetic samples. Our modification enables us to synthetically 

increase the number of instances from the minority populations in the training set. Note 

that in the case of regression tasks, our approach differs from existing SMOTE variations 

for regression,48,49 which involve identifying “minority” samples based on the distribution 

of the target values rather than external categorical labels associated with the samples. 

Finally, we also consider adapting the SMOTE-Edited Nearest Neighbours (SMOTE-ENN) 

algorithm,50 a method that combines both oversampling and undersampling techniques. 

Our proposed population-conditional variation can also be applied to any other re-sampling 

technique originally designed to address class imbalance in classification problems.

Population-conditional weighting—In a similar fashion, traditional class-based sample 

weighting techniques for class imbalance give more importance to underrepresented classes 

in the target variable. In contrast, we propose to emphasize the individual instances 

from underrepresented populations given the population labels each sample has assigned, 

regardless of their target variable. We calculate Np, the size (i.e. number of samples) of 

each population p ∈ P  in the training set, and assign a weight wp = N
Np

 to each sample 

corresponding to population p, inversely proportional to the size of its population, where N
is the total size of the training dataset.

2.4. Evaluation setup

For training, data is either filtered to only contain European ancestry individuals, mirroring 

the typical bias seen in many genetic studies, or contain the complete, multi-ethnic 

dataset that includes individuals from underrepresented populations. The testing data is 

fixed and contains samples from each population group, allowing the assessment and 

model performance comparison across each population in all the experiments. Model 

hyperparameters are adjusted by 5-fold cross validation, with hyperparameter configurations 

drawn from comprehensive search spaces until 1000 configurations are explored or a search 

budget of 120 hours is reached. Then, the model is fitted on the full training set with the 

chosen hyperparameter configuration, and evaluated on the held out test set (20% of the 

data).

Predictive performance is evaluated using the coefficient of determination (R2) for 

regression tasks, and the Area Under the Receiver Operating Characteristic Curve (ROC 

AUC) for classification tasks. R2 represents the proportion of variance in the predicted 
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phenotype that is explained by the genotype, and its value lies between 0 and 1. An R2

nearing 1 signifies the model’s high accuracy in phenotype prediction using the given 

genetic data. In contrast, values approaching 0 highlight the model’s limited predictive 

capability. ROC AUC measures the model’s ability to distinguish between the positive and 

negative classes. The value ranges from 0 to 1, with 0.5 indicating performance equivalent to 

random chance, and values approaching 1 indicating high predictive accuracy.

3. Results

3.1. Continuous phenotypes

We first analyze the use of multi-ethnic data and the predictive performance of several 

linear and non-linear models, including Lasso, Elastic Net, LightGBM, and XGBoost, for 

the 10 continuous phenotypes described in Table 1. Fig. 3 shows the increase in R2 when 

training the models with multi-ethnic data, compared to training with only with European 

individuals on a linear model (Lasso), which is the common practice in the field. Note 

that relative performance (ratio) cannot be computed per population, as the baseline model 

obtains an R2 of 0 for some population groups when predicting some of the phenotypes. 

We observe that prediction performance significantly improves across all populations and 

methods when including multi-ethnic data in training. Specifically, the gradient boosting 

method LightGBM is the model that obtains the highest boost in predictive performance 

consistently across all ancestry backgrounds, including European and underrepresented 

ones.

In an effort to gain deeper insights into how various methodologies can influence a 

phenotype, we focus on the Standing Height phenotype. Fig. 4 shows our experiments 

on different models and techniques, with the complexity of machine learning techniques 

increasing from left to right. Our experiments begin with Elastic Net (EN), starting from 

a simple linear model trained on individuals of European descent. We then include multi-

ethnic data and introduce population-conditional weighting during training. Subsequently, 

we explore creating an ensemble of Elastic Nets using boosting. As a more complex 

boosting algorithm, we include LightGBM, followed by AutoGluon, an AutoML method 

that trains multiple ML models to form a stacked ensemble, including LightGBM as one of 

its members.

We note incremental performance for all populations, starting with Elastic Net which 

yields an R2 of 0 for South Asian and East Asian individuals when trained solely 

on European data. Introducing multi-ethnic data leads to significant R2 improvements, 

narrowing the performance gap between populations. Moreover, population-conditional 

weighting boosts performance for underrepresented groups. Finally, non-linear methods 

like LightGBM and AutoGluon have proven especially effective for the European, South 

Asian and East Asian populations. Gains are more modest for the African samples due 

to the higher genetic variation within this group, making phenotype prediction a more 

challenging task. Models trained on multi-ethnic datasets can still struggle to capture the 

intricate relationships between genotype and phenotype specific to African populations. 

As we integrated increasingly complex and de-biasing techniques, we observed an overall 
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improvement in R2, underscoring that non-linear models, multi-ethnic data, and de-biasing 

techniques collectively drive enhanced results.

Table 2 provides a comprehensive comparison of various models in predicting standing 

height across different ancestry groups using diverse training techniques. For the individuals 

of European descent, training with either European-only or multi-ethnic data showcased 

similar results, with LightGBM, XGBoost, and AutoGluon emerging as top performers. 

In contrast, for the South Asian and East Asian groups, introducing multi-ethnic data and 

applying the proposed population-conditional re-sampling significantly improves predictive 

performance. The best results in the Asian groups are obtained applying the population-

conditional sample weighting with AutoGluon. For the African group, top performance 

was observed not only with AutoGluon trained on multi-ethnic data but also with the 

Lasso combined with the population-conditional SMOTE-ENN. This finding underscores 

the importance of not only model choice but also nuanced training strategies, especially for 

diverse groups.

3.2. Binary phenotypes

We extend our experiments to classification models to observe if they follow similar trends 

as the regression results presented above. Table 3 showcases the ROC AUC results for 

two binary phenotypes (diabetes and atrial fibrillation). For both phenotypes, AutoGluon 

frequently achieves the highest ROC AUC scores, followed by LightGBM, outperforming 

the linear models. Particularly, the population-conditional weighted training improves model 

outcomes for the underrepresented groups when using multi-ethnic data.

4. Conclusions and Future Work

Our results advocate for the implementation of non-linear and ensemble methods, 

particularly LightGBM and AutoGluon, combined with the proposed population-

conditional techniques to enhance genotype-to-phenotype prediction tasks for populations 

underrepresented in existing datasets. Strategies such as boosting and population-conditional 

sample weighting and re-sampling proved to be influential additions in order to better 

generalize across population and improve prediction accuracy. These methods were effective 

for both continuous and binary phenotypes, demonstrating their applicability for both 

regression and classification models.

Our study illustrates the use of methodological advancements to enhance prediction 

accuracy in the face of a lack of diverse genetic datasets. While the ideal solution would 

simply be the inclusion of more representative datasets, this is not an accurate reflection of 

the current data landscape. As such, we recommend for our models and techniques to be 

implemented when researchers are dealing with datasets of biased representation, especially 

in genetics. Using these methods should be a priority in situations demanding equitable 

outcomes, such as in clinical studies.

Failure to address these disparities could engender biases in precision medicine, which 

might unfavorably impact underrepresented populations. While our study addressed twelve 

phenotypes, expanding this focus to include other disease phenotypes in future research 
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could yield a deeper understanding of genetic influences on disease. Although AutoGluon 

includes simple neural network models, future work could delve into a broader spectrum of 

deep learning architectures, including convolutional layers and attention mechanisms.

The moderate improvement in the African population compared to the Asian groups when 

applying multi-ethnic training and population-conditional re-sampling can be attributed 

to the inherent genetic diversity present within the African group, as the SNPs selected 

for this study are predominantly enriched for representation in Eurasian populations. For 

future work, a more refined SNP selection tailored for more diverse ancestral backgrounds 

could potentially enhance the predictive performance and rectify this limitation. A 

deeper investigation into linkage disequilibrium among SNPs could also optimize the 

SNP selection process by minimizing redundancies. Although models studied are able 

to capture genotype-phenotype relationships, covariates, particularly genetic principal 

components, could allow for a more accurate accounting of the underlying population 

structure. Incorporating advanced explainable ML techniques51 alongside further analysis of 

covariates can elucidate the underlying mechanisms through which non-linear relationships 

boost predictive performance, offering a clearer insight into genotype-phenotype mappings. 

These approaches could refine model performance and enhance prediction accuracy across 

different ancestry backgrounds.

Given the prevalent bias in many clinical and genetic datasets,10 underrepresented 

populations are often overlooked, with potentially grave implications for health outcomes. 

This issue is especially pertinent in an era where precision health methods and AI algorithms 

are becoming increasingly prominent. Thus, implementing strategies such as those presented 

in our study could considerably enhance the equability and effectiveness of precision 

medicine for underrepresented groups.
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Fig. 1. 
A schematic representation of our predictive modeling pipeline, starting from the initial data 

ingestion to the application of various ML methods and de-biasing techniques.
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Fig. 2. 
EUR - European British, SAS - South Asian, AFR - African, EAS - East Asian (Left) 

Sample counts per group in the training and testing set. (Right) Percentage of SNP overlap 

between the selected sets of SNPs per group using the MAF filter.
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Fig. 3. 

Aggregated results of increase in R2 for the 10 continuous phenotypes, with a 95% 

confidence interval, comparing the scores for models trained on multi-ethnic data (including 

populations underrepresented in the UK Biobank) versus models trained exclusively on the 

British-with-European-ancestry population.
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Fig. 4. 

Comparison of R2 scores across diverse populations for the Standing Height phenotype. 

“EN” represents Elastic Net. The population used for training is provided in parenthesis, 

with “EUR” signifying European-only training data, and “Multi-E” indicating the use of 

multi-ethnic data. The symbol “W” marks the application of population-conditional sample 

weighting.
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Table 1.

We present results on 12 phenotypes, 10 continuous and 2 binary ones.

Variable Type Variable Type

Standing height Continuous Weight Continuous

Ankle spacing width Continuous Impedance of whole body Continuous

HDL cholesterol Continuous Apolipoprotein A Continuous

Urate Continuous Total bilirubin Continuous

Plateletcrit Continuous Red blood cell (erythrocyte) count Continuous

Diabetes Binary Atrial fibrillation Binary
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Table 2.

R2 results for standing height. All the proposed population-conditional (PC) re-sampling methods use multi-

ethnic training data. EN: Elastic Net, AG: AutoGluon.

Population Training Lasso EN Boosted EN LightGBM XGBoost AG

European

European-only 0.508 0.477 0.506 0.520 0.520 0.520

Multi-ethnic 0.497 0.473 0.503 0.517 0.517 0.519

PC-Random OS 0.451 0.435 0.492 0.503 0.501 0.510

PC-SMOTE 0.465 0.422 0.499 0.513 0.505 0.508

PC-SMOTE-ENN 0.189 0 0.132 0.319 0.388 0.372

PC-Weighted 0.452 0.435 0.496 0.506 0.501 0.513

South Asian

European-only 0 0 0 0 0 0

Multi-ethnic 0.342 0.452 0.460 0.554 0.547 0.554

PC-Random OS 0.506 0.499 0.523 0.542 0.549 0.557

PC-SMOTE 0.486 0.480 0.509 0.552 0.533 0.541

PC-SMOTE-ENN 0.520 0.467 0.525 0.544 0.548 0.553

PC-Weighted 0.506 0.498 0.523 0.537 0.543 0.563

African

European-only 0.374 0.368 0.372 0.373 0.355 0.351

Multi-ethnic 0.442 0.427 0.440 0.441 0.437 0.443

PC-Random OS 0.442 0.426 0.439 0.386 0.429 0.439

PC-SMOTE 0.434 0.411 0.421 0.400 0.433 0.414

PC-SMOTE-ENN 0.443 0.397 0.427 0.401 0.431 0.418

PC-Weighted 0.442 0.426 0.437 0.406 0.423 0.442

East Asian

European-only 0 0 0 0 0 0

Multi-ethnic 0.174 0.426 0.413 0.535 0.513 0.534

PC-Random OS 0.487 0.500 0.511 0.536 0.540 0.548

PC-SMOTE 0.466 0.479 0.497 0.525 0.526 0.547

PC-SMOTE-ENN 0.490 0.479 0.502 0.534 0.533 0.547

PC-Weighted 0.487 0.500 0.513 0.511 0.524 0.552
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Table 3.

Performance of various models and training techniques in predicting binary phenotypes (Diabetes and Atrial 

Fibrillation), as measured by ROC AUC scores per group. The proposed population-conditional (PC) method 

uses multi-ethnic training data.

Phenotype Population Training Lasso Elastic Net LightGBM AutoGluon

Diabetes

European

European-only 0.520 0.530 0.585 0.604

Multi-ethnic 0.501 0.508 0.606 0.616

PC-Weighted 0.494 0.495 0.562 0.610

South Asian

European-only 0.546 0.547 0.550 0.570

Multi-ethnic 0.535 0.535 0.539 0.562

PC-Weighted 0.528 0.533 0.563 0.586

African

European-only 0.508 0.527 0.483 0.509

Multi-ethnic 0.527 0.533 0.507 0.494

PC-Weighted 0.516 0.516 0.543 0.493

East Asian

European-only 0.391 0.409 0.480 0.552

Multi-ethnic 0.421 0.385 0.554 0.579

PC-Weighted 0.400 0.429 0.638 0.558

Atrial fibrillation

European

European-only 0.537 0.537 0.591 0.625

Multi-ethnic 0.538 0.539 0.594 0.624

PC-Weighted 0.538 0.537 0.609 0.629

South Asian

European-only 0.504 0.485 0.562 0.513

Multi-ethnic 0.478 0.498 0.547 0.548

PC-Weighted 0.479 0.501 0.487 0.586

African

European-only 0.544 0.521 0.559 0.665

Multi-ethnic 0.554 0.532 0.523 0.592

PC-Weighted 0.550 0.509 0.499 0.566

East Asian

European-only 0.350 0.424 0.596 0.405

Multi-ethnic 0.313 0.397 0.507 0.459

PC-Weighted 0.322 0.424 0.542 0.374
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