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ABSTRACT OF THE DISSERTATION

Understanding Arithmetic through Definitions

by

Eileen Susanna Nutting

Doctor of Philosophy in Philosophy

University of California, Los Angeles, 2013

Professor Donald A. Martin, Chair

Identifying the source of our mathematical knowledge is an old and challenging prob-

lem. In order to avoid postulating cognitive faculties that seem entirely mysterious, such

as mathematical intuition, some philosophers have attempted to explain our mathematical

knowledge by claiming that it is grounded in definitions, stipulations, or postulations. In this

dissertation, I argue against a range of views of this sort in the domain of arithmetic. I ar-

gue that none of these views can account for our mathematical knowledge unless we already

understand arithmetical structure when we introduce the relevant definitions, stipulations,

or postulations. An adequate account of mathematical knowledge must explain how we have

this antecedent cognitive grip on the structure of arithmetic. The views under consideration,

I argue, are inadequate because they fail to explain this antecedent cognitive grip.

The dissertation begins with a discussion of the problem of mathematical knowl-

edge. In the process, I introduce several desiderata for theories of mathematical knowledge.

Definition-based accounts are attractive because they fare well on many of these desiderata.
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In the rest of the dissertation, I argue against three such accounts. First, it could not be

the case that all of our mathematical knowledge is grounded in axiomatic definitions; we

have arithmetical knowledge that could not emerge from axioms. Second, it could not be

the case that our ability to think about the natural numbers is grounded in a stipulation of

Hume’s Principle as an implicit definition; such a stipulation could not uniquely fix referents

for number-phrases, and ancient mathematicians could not have stipulated it in a suitable

way. And third, our knowledge of basic arithmetical truths is not entirely grounded in the

standard simple proofs of those truths, which rely on explicit definitions of the form ‘4=3+1’.

While these proofs surely contribute to the security of our arithmetical knowledge, we can

only understand these proofs if we already understand the structure of arithmetic. So, our

most basic arithmetical knowledge is cognitively prior to these explicit definitions.
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Chapter 1

The Problem of Mathematical

Knowledge

Despite widespread agreement about the certainty and security of mathematical knowledge,

there is little agreement about how we come to acquire that knowledge. This dissertation

will begin with an exploration of the old and challenging problem of identifying the source

of our mathematical knowledge. In the first chapter I will gradually unveil six expectations

for accounts of mathematical knowledge. In the remaining chapters, I will consider a class of

approaches to resolving the problem of mathematical knowledge that appear to fare well with

respect to some of these expectations. Approaches of the relevant class attempt to ground

all of our mathematical knowledge in some kind of definition, stipulation, or postulation.

Our route through the problem of mathematical knowledge is largely historical. We

will begin this chapter with issues that surface in the Meno. Next, we will progress to con-

siderations about the role of compass-and-straightedge constructions in geometric reasoning.

From there, we will segue into a discussion of an account of mathematical truth that David

Hilbert proposed around the year 1900. This view seems to qualify as a ‘combinatorial’—and

hence a ‘knowledge-motivated’—account of mathematical truth, according to a classification

introduced by Paul Benacerraf. We will end the chapter with the question of whether or
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not views like Hilbert’s are capable of adequately accounting for all of our mathematical

knowledge. In the rest of the dissertation, I will argue that they are not.

1.1 Lessons from the Meno

One way to come to appreciate the challenge of accounting for mathematical knowledge is to

consider lessons learned from past theories. Recognizing historical problems and appreciating

historical insights will also help us to piece together some expectations for an adequate theory

of mathematical knowledge.

1.1.1 The Obvious Problems

Accounts of how we come to have mathematical knowledge go back at least as far as Plato’s

Meno. There, Plato presents a theory according to which we acquire mathematical knowledge

by recollecting it. There seems to be something right about his analysis; something is apt

about the analogy between the way we figure out mathematical truths and the way we piece

together things we have forgotten. But as a rule, philosophers reject Plato’s account. Those

who claim to agree with Plato agree with a very loose interpretation of the view presented

in the text.1

The main reason that philosophers reject the account of mathematical knowledge

in the Meno is that it is inextricably intertwined with a view about the soul that strikes

most philosophers as far-fetched. According to Plato’s view, the soul has always existed and

it has knowledge before being united with the body. It then forgets its knowledge in the

trauma of birth, but it can recover some of that former knowledge through recollection. Even

philosophers who are sympathetic to Plato’s account of mathematical knowledge typically

1In the Fifth Meditation, Descartes suggests that his innatism is in the same vein as the idea of learning
as recollection: “And the truth of these matters is so open and so much in harmony with my nature, that
on first discovering them it seems that I am not so much learning something new as remembering what I
knew before; or it seem like noticing for the first time things that were long present within me although I
had never turned my gaze on them before.”
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reject the pre-existing soul part of the story. Rather than thinking that we acquire knowledge

by recollecting something that the soul has forgotten, they think that ‘recollection’ is a

placeholder for some other cognitive process through which we discover a priori knowledge. It

is not obvious, however, what that cognitive process is, and what recollection is a placeholder

for.

Less commonly noted, but more important for our purposes, if we interpret Plato more

straightforwardly, and if we grant that the soul existed before birth, his account of knowledge

as recollection nonetheless remains incomplete. His account requires that the disembodied

soul have a wealth of knowledge that it forgets at birth. But Plato never explains how the

soul comes to acquire that knowledge in the first place. He does gesture at an idea, viz. that

because the soul has always existed, it already has seen and learned everything there is to see

or know. But this much gives us no explanation of how the soul acquired that knowledge; it

only explains that the soul did acquire knowledge. Without explaining how the soul initially

acquires the knowledge that it forgets and recollects, Plato’s account is incomplete.

This kind of reaction to the Meno helps us to recognize that we hold theories of

mathematical knowledge to the following standard:

(1) If an account posits or otherwise requires some initial cognition of mathematics, the

account is incomplete until it identifies how we come to have that initial cognition.

On the grounds of (1), Plato’s account in the Meno is incomplete, and hence inadequate. It

does not explain the source of certain antecedent mathematical knowledge, viz. the mathe-

matical knowledge that the soul has before being embodied and that the soul must forget in

order to recollect.

There is little reason to believe that Plato had a well-developed account of how we

initially acquire our mathematical knowledge. That said, he does hint at such an account in

other dialogues. For example, in the Phaedo, Plato (through Socrates) uses perception-like

language to describe how we must acquire knowledge: “if we are ever to have pure knowledge,
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we must escape from the body and observe things in themselves with the soul by itself.”2

Plato writes as though he has some kind of non-perceptual observation in mind. He seems

to think that, when it is not constrained by the body, the soul can acquire knowledge by

immediately cognizing things like the objects of mathematics.

If Plato does indeed have such an account in mind, then he is positing something like

what we now call ‘mathematical intuition’. But even positing something like this does not

make Plato’s account much more satisfying than it was before. Many of us find a faculty of

mathematical intuition spooky. There seems to be something inscrutable about the cognitive

mechanism posited to give the soul immediate access to the objects of mathematics; we do

not understand the inner workings of an account that relies on mathematical intuition. The

fact that this strikes us as unsatisfying suggests that we expect an account of mathematical

knowledge to do more than merely identify the initial source of our mathematical knowledge.

We also evaluate accounts according to the following standard:

(2) A theory of mathematical knowledge is unsatisfying if it posits an inscrutable cognitive

mechanism.

The role of the pre-existing soul is not the only aspect of Plato’s account of mathematical

knowledge that we find wanting. It is not clear that Plato has an account of how we initially

acquire the knowledge that we forget and then recollect. Even if he does have such an

account, it relies on a deeply mysterious cognitive mechanism.

1.1.2 The Insights

It is unsurprising that philosophers reject Plato’s account of mathematical knowledge. But

if we all take the view to be wrong, why do we still read the Meno, and why do many of

us think it gets something right? I think the appeal of Plato’s account is in its respect

for the methods of mathematical discovery. We develop at least some of our mathematical

2Phaedo 66d-e.
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knowledge through reasoning, without relying on empirical observations or the testimony of

others. Since all of the resources we use in such reasoning come from within, at least in

some sense, it almost seems as if the resulting knowledge is also already there within us,

waiting to be (re-)discovered. Part of the appeal of Plato’s account is just this: it captures

a fairly intuitive idea that knowledge acquired in an a priori way is somehow available to us

internally.

But there is more to the appeal of Plato’s account. It also captures the process of

reasoning in mathematics, which progresses in small steps. While each step seems clearly

and naturally correct to us based on the steps we have already taken, some steps are not

entirely transparent; sometimes it takes effort to figure out which step to take next, or

whether the next idea in the sequence is correct, even though its correctness seems obvious

upon reflection. Plato’s account in the Meno is sensitive to this in two ways. First, through

the example of a slave-boy, the Meno gives a realistic description of the cycles of confusion,

hesitance, and eventual confidence that a person undergoes while working through steps of

mathematical reasoning. And second, Plato recognizes that the step-by-step effort that goes

into mentally constructing a piece of mathematical reasoning is phenomenologically similar

to the step-by-step effort that goes into retracing your actions to remember where you must

have left your keys.

If my diagnosis is correct, Plato’s account is appealing both because it respects the

a priori nature of mathematical reasoning and because it captures the phenomenology of

step-by-step mathematical reasoning. All this suggests another feature of a good theory of

mathematical knowledge:

(3) A theory of mathematical knowledge should respect the methods of mathematical

reasoning, especially mathematical proof, as a source of secure knowledge.

Presumably, respecting the methods of mathematical reasoning also requires an account

to be reasonably compatible with the psychology of using reason to extend mathematical

knowledge, as Plato’s account is.

5



1.2 Mathematical Reasoning and Hilbert’s Geometry

As part of the Meno argument that we acquire knowledge through recollection, Plato works

through a geometric example. Socrates prods an uneducated slave-boy to reason from a

square to the length required to form the base of another square with twice the area of the

original. In his questioning, Socrates suggests particular geometric constructions to the boy.

For example, Socrates extends the line segment at the base of the original square. He also

constructs diagonals between the opposite corners of squares. The boy’s reasoning makes

use of these constructions.

1.2.1 Constructive and Non-Constructive Geometry

The geometric constructions that Socrates suggests involve two of three constructive proce-

dures that appear in the postulates of Euclid’s Elements : (i) extending a line segment, (ii)

constructing a line between two points, and (iii) constructing a circle from a center point

with a given length for the radius.3 These physical constructions all can be performed with

a compass or a straightedge. It is no accident that Plato’s example of geometric reasoning

is one that relies on such constructions. All of the proofs of non-trivial geometrical theo-

rems that were available to him use at least one constructive procedure, and nearly all of

them use all three construction procedures. The geometry available at the time—Euclid’s

geometry—was essentially constructive.

Not all versions of geometry are constructive.4 In 1899, Hilbert published a version

of geometry in which axioms and definitions replaced all of the constructive postulates.5

3Actually, Socrates extends line segments by given lengths. This ultimately requires constructing a circle
as well, in order to ensure that the extended segment has the proper length.

4I am using the term ‘constructive’ to describe a reliance on straightedge and compass constructions
in gometrical reasoning. This is not the standard use of the term in the philosophy of mathematics. The
standard use is tied to the interpretation of the existential quantifier: in order to prove that something exists,
it is necessary to construct or identify it. I use the term ‘constructive’ to talk about reasoning that relies on
physical constructions, which is rather different.

5Hilbert does this in his Foundations of Geometry.
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For example, Euclid’s first postulate is: “To draw a straight line from any point to any

point.” Hilbert’s first axiom is an analog of this postulate: “Two distinct points A and

B always completely determine a straight line a.” In Euclid’s version of geometry, figures

come to exist through their constructions. In Hilbert’s version, the figures already exist, and

await determination; they just need to be picked out. Instead of relying on constructions,

Hilbert gives a characterization of Euclidean geometry that is fully axiomatic. Every theorem

provable in Euclid’s geometry is provable without constructions from Hilbert’s axioms.

Giving a fully axiomatized version of Euclid’s constructive geometry is not simply

a matter of replacing constructive postulates with existential axioms. Euclid’s geometry is

essentially constructive; his method of reasoning only works on the assumption that fig-

ures have certain features in virtue of their physical constructions. For example, Euclid’s

demonstrations depend on the fact that constructed lines and circles that appear to intersect

actually do intersect, and that they intersect at a point. But this feature does not appear

in the definitions or common notions (axioms) that Euclid sets out. Euclid was able to

use this feature because it emerges from the physical constructions; in physical space, the

constructed lines or circles actually do intersect.

Accordingly, to give a fully axiomatized theory of Euclidean geometry, Hilbert had

to do more than simply substitute axioms for constructive procedures. For the system to

work, the axioms must account for all the features that emerge from the construction in

Euclid’s version. Successfully eschewing Euclid’s constructive procedures required Hilbert

to otherwise ensure the theoretically significant assumptions that Euclid left unstated.

Furthermore, since a fully axiomatized theory does not rely on constructions, it must

be strictly deductive; its theorems must be derivable from its axioms. Consider, then, the

kind of logic required to derive theorems from the axioms of Hilbert’s fully axiomatized

geometry. We have already seen the axiom that replaces the postulate for constructing a

line between two points. It states that, for any points A and B, there exists a line a that goes

through both A and B. This statement has the form of an ∀∃ statement in our contemporary
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notation; it requires nested quantifiers. And this is typical of Hilbert’s geometric axioms;

nearly all of them involve nested quantifiers. Accordingly, it is unsurprising that Hilbert’s

work axiomatizing geometry emerged in the midst of major advancements in logic in the

second half of the 19th century. In particular, these advancements included the development

of the earliest systems of logic to handle nested quantification in a systematic way—that

is, the earliest systems of polyadic logic. Such developments license the kinds of logical

inferences that make it possible to derive theorems from Hilbert’s axioms without relying on

physical constructions.

1.2.2 Consistency

Hilbert’s primary goal in his work on the foundations of geometry was to prove that both Eu-

clidean and non-Euclidean geometries are consistent. The first step in his strategy was fully

axiomatizing Euclidean geometry. The second step was providing models of those axioms.6

To demonstrate the consistency of Euclidean geometry, it suffices to give a consistent model

that satisfies all of its axioms. Similarly, to demonstrate the consistency of non-Euclidean

geometry, it suffices to give a consistent model that violates the Axiom of Parallels, but

satisfies all of the other axioms of Euclidean geometry.

Hilbert builds his models out of pairs and triples of algebraic numbers.7 Accordingly,

his result is one of relative consistency. His demonstration of the consistency of Euclidean

and non-Euclidean geometries depends on the consistency of his models for them. Those

depend on the consistency of the system of algebraic numbers, which in turn depends on

6Hilbert only provided models in two dimensions, but the generalization into three dimensions is straight-
forward.

7More precisely, the elements of the model are ordered pairs and ordered triples of numbers in a set Ω
that Hilbert defines. Ω is the smallest class such that:

• 1 ∈ Ω

• Ω is closed under addition, subtraction, multiplication, and division

• If ω ∈ Ω, then
√

1 + ω2 ∈ Ω.

Clearly, Ω is a subset of the algebraic numbers.
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the consistency of the system of natural numbers. Nonetheless, it seems fairly clear that the

natural numbers are consistent, and the algebraic numbers can be modeled in the natural

numbers. So it also seems fairly clear that Hilbert’s models are consistent.

Intuitively, when Hilbert builds his model of (two-dimensional) Euclidean geometry,

he does so using the Cartesian coordinates of points on a Euclidean plane. He defines points

to be pairs of algebraic numbers, and he defines lines to be triples of those numbers. Again

intuitively, we can think of each line as the unique triple < a, b, c > such that the Cartesian

coordinates < x, y > of each point on the line satisfy the linear equation ax+ by + c = 0.

But it is important to appreciate that our intuitive idea of the ordered pairs as

providing locations for physical points is no more than an intuitive idea; in Hilbert’s models,

the pairs of numbers are the points, as opposed to representations of them. If the axioms are

strictly about physical points, and pairs of numbers merely represent those physical points,

then the axioms are only satisfied if there are points at all of those Cartesian coordinates—

i.e. they are only satisfied if space actually satisfies the axioms of Euclidean geometry. In that

case, accepting the model would require us to presuppose that Euclidean geometry correctly

describes physical space; it would not help to demonstrate the existence of a consistent

model. Hilbert makes no assumptions about the nature of physical space. His idea is to

demonstrate that the axioms can be mutually satisfied if the terms of those axioms—terms

like ‘point’ and ‘line’—are interpreted on a domain of non-spatial entities. He accomplishes

this using a domain whose elements are pairs and triples of algebraic numbers—elements

that decidedly are not found in physical space.

Hilbert’s consistency proofs, then, rely on a somewhat peculiar interpretation of the

geometric axioms. His models only satisfy the axioms of Euclidean (or non-Euclidean)8

8More specifically, Hilbert’s non-Euclidean model is a model of hyperbolic geometry. The model takes
the pairs and triples corresponding with the inner part of a circular region of the non-Euclidean model, and
changes the metric so that lengths closer to the boundaries of the circle are intuitively shorter than congruent
lengths nearer the center. Given a line a and a point A that does not lie on a, many lines through A will
intersect a outside the boundaries of the circle; since such lines do not intersect a in the model, they are
parallel to a in the model.
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geometry if non-spatial interpretations of key terms in the axioms are admissible. Such

permissiveness about the interpretations of these geometric terms was not entirely uncon-

troversial at the time; in letters to Hilbert, Frege objected to the consistency proofs on the

grounds that, e.g., pairs of numbers are not points.9

Setting objections aside, it is clear that Hilbert’s approach only yields consistency

results for rather abstract geometric axioms. If the meanings of terms like ‘point’ and ‘line’

in the axioms are fixed in advance and are constrained to have spatial significance, Hilbert’s

proof does not work. To demonstrate the consistency of the axioms in this way, Hilbert had

to abstract the meanings of axioms away from physical space. The physical constructions of

Euclid’s geometry served to enforce constraints on the meanings of the key terms in these

axioms; in Euclid’s geometry, the meaning of ‘line’ is tied to a straightedge construction,

and the meaning of ‘circle’ is tied to a compass construction. Because he presented a full,

non-constructive axiomatization of geometry, Hilbert was able to abstract the meanings of

axioms and their key terms from any grounding in physical constructions or physical space.10

1.2.3 Implicit Definitions

Though Hilbert presented his axioms in an attempt to characterize the structural features of

Euclid’s geometry, his axioms are more abstract than Euclid’s. In Euclid’s geometry, terms

have privileged spatial interpretations; this applies both to singular terms like ‘point’ and

‘line’ and to relational phrases like ‘goes through’ (a line goes through a point) and ‘lies

between’ (a point lies between two other points on a line). But in Hilbert’s geometry, these

terms have no such privileged interpretations; they must refer to pairs of algebraic numbers

and to algebraic relations just as well as they refer to spatial elements and to spatial relations.

9See the Frege-Hilbert correspondence in Frege’s On the Foundations of Geometry and Formal Theories
of Arithmetic.

10Hilbert was actually skeptical about the idea that geometric terms could have precise, antecedently-
intended interpretations in physical space. In a Dec. 29, 1899 letter to Frege, Hilbert writes, “If one is
looking for other definitions of ‘point’, e.g. through paraphrase in terms of extensionless, etc., then I must
indeed oppose such attempts in the most decisive way; one is looking for something one can never find
because there is nothing there.”
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Because these terms lack privileged interpretations, they play a role somewhat like that of

variables. They merely require consistent interpretation within and across the axioms, e.g.,

so that all instances of ‘point’ get the same interpretation, and similarly for instances of ‘lies

between’.

Hilbert’s mathematically-motivated abstraction, then, changes the semantics of geo-

metric terms; it changes the meaning or reference of these terms. And when semantics change

in this way, truth-conditions also must change. Claims like the Axiom of Parallels may well

have straightforward truth-values when their terms have intended interpretations. But just

as a statement containing unbounded variables might lack a straightforward truth-value, the

abstract, uninterpreted version of the Axiom of Parallels seems to lack a straightforward

truth-value; after all, its terms lack privileged meanings.11 And if axioms lack straightfor-

ward truth-values, it is natural to think that the theorems that follow from them also lack

straightforward truth-values. If the notion of truth is to apply to Hilbert’s abstract axioms,

or to anything else in abstract mathematics, there must be a way to introduce meaning and

truth without requiring that abstracted terms have privileged interpretations.

Hilbert’s theory of truth and semantics in geometry, and presumably in other areas

of mathematics as well, fits with these considerations. On his account, a system of axioms

implicitly defines its central concepts by setting out relations between those concepts. For

example, the meaning of the concept ‘point’ is determined by its relations to other core

geometric concepts, both concepts of kinds (e.g. ‘line’) and relational concepts (e.g. ‘lies

between’). The axioms fix what these relations are; so, by identifying a relation between

11The Axiom of Parallels states that, for any line a and any point A, if A does not lie on a, then there is
a unique line b through A that does not intersect with a. If the terms ‘point’ and ‘line’, and the relations
‘lie on’ and ‘intersects’ have antecedently fixed meanings, then this is a straightforward claim, the truth of
which depends on the way points and lines are. But if these terms lack fixed meanings, then it is not a
precise enough claim to have a straightforward truth-value. The claim looks like:

(∀x)(∀y)((Lx ∧ Py ∧ ¬yLOx)→ (∃!z)(Lz ∧ yLOz ∧ ¬xIz)),

where ‘Lx’ means ‘x is a line’, ’Py’ means ‘y is a point’, ‘yLOx’ means ‘y lies on x’, and ‘xIz’ means ‘x
intersects z’. Without fixing an interpretation for the property and relation variables, the statement simply
lacks a truth-value.
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points and lines, Hilbert’s axiom that any two points determine a line in part fixes the

meanings of both of the concept ‘point’ and the concept ‘line’.12

One feature of this view is that concepts like ‘point’ and ‘line’ are defined within a

specific system of axioms. Part of what fixes the meaning of the concept ‘point’ in Euclidean

geometry is the Axiom of Parallels, and part of what fixes the meaning of the concept ‘point’

in non-Euclidean geometry is the negation of the Axiom of Parallels. Accordingly, different

kinds of geometry have different ‘point’ concepts (and ‘line’ concepts, and ‘lies between’

concepts). Thus, since things in Hilbert’s Euclidean model—including pairs and triples

of algebraic numbers, and algebraic relations—mutually satisfy the axioms of Euclidean

geometry, the pairs of algebraic numbers in those models are (Euclidean) points; they fully

satisfy the implicitly-defined concept of (Euclidean) ‘point’. Notice, then, that because of the

way in which the concepts of Euclidean geometry are fixed, every two instances of Euclidean

points will determine a Euclidean line. Hilbert’s first axiom is true.

Ultimately, then, all of the axioms of Euclidean geometry are true. And so are

the axioms of non-Euclidean geometry. Since the two systems of axioms involve different

concepts, they do not contradict each other. The axioms are all made true by the definitions

of the concepts that appear within them. Those definitions, in turn, are true because they

are set out as implicit definitions. In Hilbert’s words, “as soon as I have laid down an axiom,

it exists and is ‘true’ . . . ”13 A system of axioms is laid down, or stipulated, to implicitly

define the concepts of the theory the system of axioms describes. As long as the axioms laid

down are consistent, they delineate coherent concepts and the axioms are true.

Hilbert’s interest in consistency led him to a new theory of semantics for geometry,

and a new theory of geometrical truth. Geometric truths are conceptual truths, true in

virtue of the meanings of the concepts of geometry. Those meanings are introduced by

12“In my opinion, a concept can be fixed logically only by its relations to other concepts. These relations,
formulated in certain statements, I call axioms, thus arriving at the view that axioms (perhaps together
with propositions assigning names to concepts) are the definitions of the concepts.” - Letter from Hilbert to
Frege, Sept. 22, 1900.

13Hilbert to Frege, Dec. 29, 1899.
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implicit definitions, and those implicit definitions are fixed by the stipulation of a system of

axioms. Ultimately, that is, on Hilbert’s view the truths of geometry are true in virtue of

stipulations. But now that we have set out his view on semantics and truth, we steer our

discussion back towards knowledge. We will return to Hilbert shortly.

1.3 Benacerraf Problems: Truth and Knowledge

Our discussion began with the problem of mathematical knowledge, transitioned to a discus-

sion of mathematical reasoning, continued to considerations about mathematical truth and

the semantics of mathematical terms like ‘point’ and ‘line’, and now gradually returns to

mathematical knowledge. This is fairly natural; in the philosophy of mathematics, concerns

about mathematical knowledge and concerns about mathematical truth tend to bleed into

one another. The inter-connectedness of theories of truth and theories of knowledge in this

area, however, can raise challenges for theories of either type. In “Mathematical Truth,” Paul

Benacerraf suggests that there are fundamental obstacles to reconciling a plausible account

of mathematical knowledge with a plausible account of mathematical truth.

According to Benacerraf’s diagnosis, views in the philosophy of mathematics fit into

one of two categories. Some are truth-motivated, presenting accounts of mathematical truth

and semantics that are meant to cohere with more general theories of truth and semantics.

Others are knowledge-motivated, presenting accounts of mathematical knowledge that are

meant to cohere with more general theories of knowledge. Benacerraf argues that truth-

motivated views inevitably sacrifice a plausible epistemology, and that knowledge-motivated

views inevitably sacrifice a plausible semantics and/or a plausible theory of truth. If he is

right, developing a general theory that is satisfying in both domains is a rather dim prospect.

13



1.3.1 Sacrificing Knowledge

Benacerraf starts setting up his problem by identifying two minimal standards that he thinks

any adequate theory of mathematical truth must satisfy. One is that of having “the account

of mathematical truth mesh with a reasonable epistemology.”14 Since we think it should be

possible to account for our mathematical knowledge, and since we want to avoid restricting

ourselves to unreasonable epistemic theories, this standard seems to be eminently reasonable.

In fact, its dual seems like an important addition to our list of expectations for theories of

mathematical knowledge:

(4) A theory of mathematical knowledge should be compatible with a plausible account of

mathematical truth.

Notice that we have not yet suggested substantive restrictions on how a plausible theory of

mathematical truth or a plausible theory of mathematical knowledge ought to go. Benacerraf

will have ideas on both of these fronts.

The second minimal standard Benacerraf introduces at the beginning of his paper

is that of “having a homogenous semantical theory in which semantics for the propositions

of mathematics parallel the semantics for the rest of language.”15 Though this seems like a

fairly natural standard for semantical theories, it strikes me as somewhat less transparent as a

minimal standard for a theory of mathematical truth. A semantical theory might primarily

be a theory about meaning and/or reference, rather than a theory about truth or truth-

conditions. A more obvious standard would be that of having a theory of mathematical

truth cohere with a more general theory of truth that applies to non-mathematical cases.

As it turns out, Benacerraf’s ideas about what makes a theory of truth plausible ultimately

emerge from his ideas about what makes a good semantical theory—that is, a good theory

of meaning and reference for mathematical terms. This is not an unreasonable approach;

the connections between truth, meaning, and reference are deep and fundamental.

14p.661

15Ibid.
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According to Benacerraf, then, there are two minimal standards for a theory of math-

ematical truth: (i) that it mesh with a reasonable epistemology, and (ii) that the semantics

of mathematical claims parallel the semantics of non-mathematical claims. On their own,

it is not obvious how these two standards give rise to a problem for the possibility of a

comprehensive philosophy of mathematics. To motivate the problem, Benacerraf relies on

his division of accounts in the philosophy of mathematics into those motivated by knowledge

and those motivated by truth. He argues that truth-motivated views must violate (i)—they

cannot mesh with a reasonable epistemology—while knowledge-motivated views must violate

(ii)—they require a semantics for mathematical language that deviates wildly from semantics

for non-mathematical language. Assuming that any respectable account in the philosophy

of mathematics must fit into one of these categories, then, no respectable account can satisfy

both minimal standards.

Truth-motivated views, on Benacerraf’s classification, are those that are meant to

cohere with a more general theory of truth and semantics. Benacerraf also thinks that the

best general theory of truth must be essentially Tarskian; he tells us that Tarski “has given

us the only viable systematic general account of truth.”16 Since he thinks this is the only

plausible general theory of truth, the views that he classifies as ‘truth-motivated’ are those

that have Tarskian truth-conditions. Benacerraf goes on to identify Gödel as “one of the

most explicit and lucid proponents” of such an account.17 In Gödel’s ontology, there are

mathematical objects like sets and numbers, and these objects “clearly do not belong to the

physical world.”18 Though Benacerraf does not explain how exactly this ontology yields a

theory of mathematical truth, he presumably thinks that, for Gödel, mathematical truths

are true in virtue of these objects and the relations that hold between them.19 Such an

16p.670

17p.674

18Ibid, quoted from Gödel’s “What is Cantor’s Continuum Problem?” p.271 in Benacerraf and Putnam.

19It is not obvious to me that this is Gödel’s theory of mathematical truth. On his view, there are both
mathematical concepts and mathematical objects. The objects bear all the relations to each other that are
required by the concepts. Since Benacerraf never mentions the concepts, he seems to assume mathematical
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account would fit a generally Tarskian mold because, e.g., ‘2 + 3 = 5’ is true if and only if

2 + 3 = 5. That is, ‘2 + 3 = 5’ is true if and only if the objects 2, 3, and 5 bear the proper

relations to one another.

It may seem odd that Benacerraf offers Gödel’s account as a paradigmatic example of

a truth-motivated view, given that Gödel describes a view about ontology instead of a theory

of truth. It also may seem odd that Benacerraf terms truth-motivated accounts ‘platonistic’,

when mathematical platonism is primarily an ontological theory. Hilbert’s account, for

example, seemed to be motivated by concerns about mathematical truth, but it does not

seem to require a platonistic ontology.20

I believe Benacerraf takes this ontological angle because he has a rather robust con-

ception of what it is for a theory of truth to be Tarskian. The most conspicuous feature of

Tarski’s account of truth is that it is disquotational ; Tarski tells us that ‘p’ is true if and only

if p.21 But the mere fact that truth is disquotational does not entail anything about ontol-

ogy. In order for a disquotational theory of truth to have ontological implications, it must

also include a theory of semantics—a theory of meaning or reference—for the right-hand

side of the biconditional. A merely disquotational theory need not include such a theory of

semantics.

Benacerraf clearly includes more than mere disquotation in his interpretation of what

qualifies a theory of truth as Tarskian. He casts Tarskian views as ones that analyze proposi-

tions “in terms of the names and quantifiers they might contain and in terms of the properties

truth is grounded in the objects, rather than the concepts. It is not clear to me that this is right.

20Benacerraf offers some discussion of Hilbert in this paper. But the Hilbert described by Benacerraf seems
rather different from the Hilbert described here; the views and motivations are not the same. The view I
discuss is Hilbert’s view in 1899-1900. The view Benacerraf discusses appears 25 years later in his 1925
address “On the Infinite.” (Republished in Benacerraf and Putnam’s Philosophy of Mathematics: Selected
Readings.) Hilbert’s views changed in those 25 years. In the earlier period, his philosophical views seem to
have been primarily motivated by mathematical concerns about things like consistency. In the later period,
his philosophical views seem to have been motivated by more philosophical concerns about knowledge beyond
the limits of observation.

21More precisely, Tarski describes truth in terms of a schema of such sentences, called ‘T-sentences’.
Among other places, this can be found in his 1944 paper “The Semantic Conception of Truth: And the
Foundations of Semantics,” published in Philosophy and Phenomenological Research.
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they assign to the objects within their domains of discourse.”22 This suggests that Benacer-

raf thinks the right-hand side of Tarski’s disquotational biconditionals must be interpreted

in such a way that singular terms refer to objects. Though controversial, and though Be-

nacerraf might have a rather ontologically-loaded idea of what reference to objects involves,

it is fairly standard to interpret Tarski along these lines.

If Benacerraf is right and the right-hand side of Tarskian biconditionals must be

interpreted according to a theory of reference like the one suggested above, and if truth-

motivated accounts must be Tarskian, then truth-motivated accounts must be ones that

involve reference to mathematical objects of one sort or another. On this construal, Gödel’s

platonistic account is indeed a paradigmatic example of a truth-motivated account, but only

because it is an account on which mathematical singular terms (e.g. ‘the empty set’) refer

to mathematical objects.

Truth-motivated views in the philosophy of mathematics, on Benacerraf’s construal,

are views that provide plausible accounts of mathematical truth. Regardless of whether we

are inclined to agree with Benacerraf about what makes an account of truth plausible, it

does seem correct to think that a plausible account of semantics and truth in the philosophy

of mathematics must be in keeping with a good account of semantics and truth in general.

Similarly, a plausible account of knowledge in the philosophy of mathematics must be in

keeping with a good account of knowledge in general. Benacerraf describes it this way: a

plausible theory of knowledge is one in which “it must be possible to link up what it is for p

to be true with my belief that p;” such a theory will provide “an account of the link between

our cognitive faculties and the objects [or truths] known.”23

These expectations should seem familiar to us. The possibility of linking up the

truth of p with my belief that p is essential to satisfying (4)—the expectation that a theory

of mathematical knowledge cohere with a plausible theory of mathematical truth. The

22p.665

23p.667; p.674.
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expectation that there be an account of the link between our cognitive faculties and the

objects or truths known is tied in with (2)—the expectation that an account of mathematical

knowledge posit no inscrutable cognitive mechanisms.

In addition, Benacerraf’s presentation draws attention to an important point that we

have not yet addressed directly. In considering what qualifies as a good theory of mathemat-

ical knowledge, we ought to pay heed to theories of knowledge in areas outside mathematics.

After all, mathematical knowledge is a species of knowledge. Accordingly, as Benacerraf

makes clear, we have another basic expectation for a theory of mathematical knowledge:

(5) A theory of mathematical knowledge should be contiguous with a plausible general

theory of knowledge.

Benacerraf seems to be right about this much. But recall that he has rather restrictive ideas

about what is required for a general theory of truth to be plausible; he assumes that a good

theory of truth must be a Tarskian theory interpreted according to an ontologically robust

semantical theory. As it turns out, he has equally restrictive ideas about what is required

for a general theory of knowledge to be plausible.

Benacerraf’s positive sketch of an account of knowledge is not terribly popular. In

his words, he “favor[s] a causal account of knowledge on which for X to know that S is true

requires some causal relation to obtain between X and the referents of the names, predi-

cates, and quantifiers of S.”24 This suggests that Benacerraf thinks a plausible account of

knowledge in general ought to be modeled closely on a standard kind of account of percep-

tual knowledge of medium-sized physical objects. Presumably, such a model also motivates

his favored theory of reference; on a fairly standard theory of reference for medium-sized

physical objects, singular terms refer to objects.

Aspects of Benacerraf’s characterization of truth-motivated accounts in the philoso-

phy of mathematics strike me as potentially objectionable. First, it is not clear that accounts

motivated by concerns about truth must be Tarskian. For example, Hilbert’s view appears

24p.671
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to be motivated by concerns about truth that arise out of mathematics, rather than concerns

about truth that arise out of a more strictly philosophical interest in maintaining coherence

with a general theory of truth. It is wholly unclear to me whether or not his view must be

interpreted as Tarskian. Second, as both a matter of interpretation and a matter of truth,

it is not clear that Tarskian biconditionals must be interpreted according to a semantical

theory on which singular terms refer to objects.

It is clear, however, that Benacerraf’s overall characterization is overly restrictive.

There are respectable views in the philosophy of mathematics, such as Hilbert’s, that are

motivated by concerns about truth but nonetheless are excluded from Benacerraf’s ‘truth-

motivated’ classification because of the substantive restrictions Benacerraf sets on theories of

truth. Truth-motivated accounts in the philosophy of mathematics need not be platonistic.

At some level, however, I am merely quibbling about terminology. Benacerraf presents

a classification of ‘truth-motivated’ accounts in the philosophy of mathematics. Whether or

not it is misleadingly-termed, the accounts that fit the classification are platonistic; they

involve reference to mathematical objects and their properties.25 Furthermore, Benacerraf

thinks that a plausible account of mathematical knowledge should be causal. If we grant him

this framework, there is some intuitive appeal to the thought that truth-motivated accounts

must make epistemic sacrifices.

The example of Gödel’s platonistic view might help us appreciate the sorts of epis-

temic sacrifices at issue. Gödel posits a perception-like faculty of mathematical intuition

through which we are able to interact with the mathematical abstracta that ground mathe-

matical truth. But, as Benacerraf notes, such a story about mathematical knowledge lacks

“an account of the link between our cognitive faculties and the objects known.”26 This

point echoes a concern about mathematical intuition raised in our discussion of the Meno.

One of our standards for an adequate account of mathematical knowledge is (2)—it should

25The mathematical objects on truth-motivated accounts need not be abstract, however. Benacerraf’s
classification includes views on which mathematical objects are inscriptions or strings of symbols. See p.665.

26p.674
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not involve inscrutable cognitive mechanisms. And Gödelian intuition does appear to be

inscrutable. Even if we set aside Benacerraf’s causal requirement and the fact that the link

between our belief that p and the truth of p seems to involve no causal relation, Gödel’s

account of mathematical knowledge does not seem to mesh with a plausible epistemology.

It seems, then, that there is some intuitive appeal to the idea that a truth-motivated

account, on Benacerraf’s construal, must make epistemic sacrifices. It cannot mesh with a

epistemology that Benacerraf considers plausible—i.e. one that requires causal relations for

knowledge. But we have said enough about truth. Our main concerns here are about con-

straints on theories of mathematical knowledge. It is time that we returned to epistemology.

1.3.2 Benacerraf’s ‘Combinatorial’ Classification

Benacerraf calls views that he takes to be motivated by epistemic considerations “‘combina-

torial’ views of the determinants of mathematical truth.”27 He primarily characterizes these

views in a negative way, contrasting them with ‘truth-motivated’ views. In his words, “truth

is conspicuously not explained in terms of reference, denotation, or satisfaction” on combina-

torial accounts.28 Ultimately, such views entail that mathematical discourse is about some-

thing other than mind-independent objects and their properties. Mathematical truth is not

tied to a semantics of reference and denotation. In short, mathematical truth is not Tarskian

on combinatorial accounts. At least, it is not Tarskian according to Benacerraf’s peculiar

construal of what it is for an account to be Tarskian. On this characterization, all accounts

of mathematical truth are indeed either truth-motivated (Tarskian) or knowledge-motivated

(non-Tarskian). And surely, ‘knowledge-motivated’ accounts on such a classification must

sacrifice a plausible theory of truth, if the only plausible theory of truth is Tarskian.

While he primarily characterizes combinatorial views as non-Tarskian, Benacerraf

also closely identifies such views with more interesting positive characterizations that more

27p.665

28Ibid.
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clearly connect combinatorial views with epistemic motivations. He seems to be targeting a

class of views on which mathematical truth is constructed, by way of combinatorial manipu-

lations, from cognitively accessible starting points like axioms. According to his description,

these accounts take the fact that much mathematical knowledge is derived through proofs

to suggest that truth itself is grounded in proof.29 To help us identify this class of views,

Benacerraf suggests three kinds of accounts of mathematical truth that qualify as combina-

torial: (a) conventionalist accounts, (b) “certain views of truth in arithmetic on which the

Peano axioms are claimed to be ‘analytic’ of the concept of number,” and (c) views according

to which mathematical truth is a matter of formal derivability from the axioms of a theory.30

Depending on how both Benacerraf and Hilbert are interpreted, Hilbert’s view can

plausibly be thought an example of any of these three categories of knowledge-motivated

views; it is not, you may recall, a truth-motivated view on Benacerraf’s classification. I

believe it is an example of the first two categories, but not the third. Hilbert’s view seems to

be of type (a)—a conventionalist view—because it is a view on which the truths of geometry

are fixed by stipulation, by the setting out of a system of claims. Admittedly, his view

only requires consistency in the axioms set out for implicit definitions to be fixed; it does

not depend on any agreement within a group. Hilbert’s view most likely is the kind of

conventionalist view Benacerraf has in mind. But if not, it is at least a precursor to the

conventionalist views of truth that Benacerraf does have in mind.

Setting aside the fact that Hilbert gives his account in the context of geometry instead

of arithmetic, his view also seems to be a likely example of type (b). Since his view is one

on which the axioms of a theory implicitly define its central concepts, it is also a view on

which the axioms are analytic of the relevant mathematical concepts. But this is not enough

to determine whether or not Hilbert’s view fits under this second kind of combinatorial

accounts, which Benacerraf limits to ‘certain views’ on which axioms are analytic. After all,

29See p.675.

30p.665
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Benacerraf doesn’t say which views he has in mind. Presumably, given his general conception

of combinatorial views, the views that qualify as examples of the second type of combinatorial

view are not ones according to which analyticity emerges from robust pre-axiomatic concepts

of the natural kinds of mathematics. Rather, the relevant views are ones on which the

relevant mathematical concepts somehow emerge from combinatorial constructions. Since

analyticity follows from axiomatic definition on Hilbert’s view, his view seems to yield the

analyticity of the axioms for combinatorial sorts of reasons. So, presumably the way his view

renders the analyticity of axioms qualifies it as a view of type (b).

According to some interpretations of Hilbert, his view also matches Benacerraf’s

description of type (c) of combinatorial views—views according to which mathematical truth

is grounded in formal derivability from the axioms of a theory.31 I do not interpret Hilbert

this way. Presumably he thinks that formal derivation is truth-preserving, and hence that

theorems derived from axioms are true. But he never claims that truth is restricted to the

axioms and what is formally derivable from them. All Hilbert claims is that the meanings of

the relevant concepts are implicitly defined by the system of axioms in which they appear. He

also seems to think that all geometric truths follow from the axioms. This much is compatible

with assigning truth to satisfaction in all models of the axioms, instead of assigning truth to

formal derivation from the axioms.

Admittedly, Hilbert seems to have assumed that formal derivability and satisfaction

in all models are co-extensive. Nonetheless, he might not have thought that formal derivation

grounds truth, properly speaking. He might instead have thought that a sentence is true in

a theory (e.g. Euclidean geometry) in virtue of the fact that any model that satisfies the

axioms of that theory must also satisfy that sentence. In this way, a true sentence would be

necessitated by the structural (or conceptual) restrictions imposed by the axioms. Formal

derivation, then, would be a way of tracking those sentences that are satisfied in all models

of the theory. Whether or not this was Hilbert’s view is an interpretive matter, and I do not

31Patricia Blanchette interprets Hilbert this way in “Frege and Hilbert on Consistency.”
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intend to focus on it here.32 However, it is worth noting that Hilbert’s view that the axioms

of geometry implicitly define the core geometrical concepts appears to be compatible with a

satisfaction-style account of mathematical truth, and not only a derivation-style account.

This point is important because Hilbert was mistaken in thinking that satisfaction in

all models of a set of axioms is co-extensive with derivability from the axioms. Admittedly,

these features are co-extensive if the axioms in question are axioms in a first-order language;

together, the Soundness and Completeness Theorems for first-order logic yield precisely this

result.33 But in more robust languages, these features are not co-extensive. For certain sets

of axioms, there are sentences that are not derivable, but that are satisfied by all models of

those axioms. This is a consequence of Gödel’s Incompleteness Theorems.

Gödel’s First Incompleteness Theorem establishes that, if a system of axioms is both

consistent and strong enough to characterize the structure of the natural numbers in a

fairly robust way, it inevitably leaves some arithmetical sentences undecidable. That is,

some arithmetical sentences are neither provable nor disprovable from the axioms by formal

derivation.34 This result is particularly striking given that it is possible to uniquely charac-

32I suspect that Hilbert most fundamentally thought of geometric truth as a matter of satisfaction in all
models, at least around 1900. His interest in consistency seems to be an interest in whether or not a set
of axioms has a model, rather than an interest in deductive consistency. Furthermore, in a Dec. 29, 1899,
letter to Frege, when emphasizing the abstract nature of his axioms, he writes:

But it is surely obvious that every theory is only a scaffolding (schema) of concepts together
with their necessary connections, and that the basic elements can be thought of in any way one
likes. E.g. instead of points, think of a system of love, law, chimney sweep . . . which satisfies
all the axioms; then surely Pythagoras’ theorem also applies to these things. (42)

I interpret the comment about Pythagoras’s theorem as a comment about satisfaction, not derivation.
But others may disagree with my interpretation. For example, in “Frege and Hilbert on Consistency,”

Blanchette presents Hilbert’s view as one on which what it is for a set of axioms to be consistent is for no
contradiction to be logically deducible from the axioms. She supports this claim by pointing out something
Hilbert says about the consequences of the axioms. It is not clear to me why she thinks the consequences
Hilbert has in mind must be ones that can be logically deduced.

33For a discussion of what makes a language first-order or second-order, see Chapter 2.

34This is a very rough characterization of the theorem. The system of axioms must also be recursively
enumerable (roughly, a computer must be able to generate the set of axioms), and the rules of inference
must be effective (this excludes the use of an ω-rule, which requires infinitely many premises). Also, whether
or not a sentence is ‘provable by formal derivation’ is about the existence of a proof—i.e. a derivation in
finitely many steps. Thus, whether or not a sentence is ‘provable’ in this sense is relative to the structure
of the model of the arithmetical axioms in which the sentence is being interpreted. Different models of the
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terize the structure-type of the natural numbers using second-order axioms, which ensures

that any arithmetical sentence true in one model of the second-order axioms is true in all

models of those axioms.35 But Gödel’s First Incompleteness Theorem ensures that, since

the second-order axioms are able to characterize the natural numbers in a sufficiently robust

way, some second-order arithmetical sentences are undecidable on the basis of those axioms.

That is, there is a gap between satisfaction and derivability. There is no general system

of derivation for second-order statements, so formal derivation is inevitably limited to first-

order statements. Accordingly, there are statements that cannot be derived from the system

of second-order axioms, but that are nonetheless satisfied in every model of the system.

Because of the second-order implications, this theorem is commonly interpreted to

state that, given a fixed system of axioms, not all arithmetical truths are provable. Such an

interpretation relies on two assumptions: first, that there is a unique structure-type of the

natural numbers in which every arithmetical sentence is either satisfied or not; and second,

that arithmetical truth is a matter of satisfaction in that unique structure or structure-type.

Given these assumptions (which I am happy to make), Gödel’s result poses fundamental

problems for views on which truth is limited to axioms and theorems that are formally

derived from those axioms.

Accordingly, if Hilbert’s view limits truth to formal derivability from axioms, it cannot

be extended from geometry to arithmetic. Such a restricted view cannot work as a general

theory of mathematical truth.36 It would be, as Benacerraf says of derivation-based views,

“torpedoed by the incompleteness theorems.”37 Benacerraf’s concerns about knowledge-

motivated (combinatorial) views seem to be well-placed in the case of derivation-based views.

arithmetical axioms sometimes lead to differences in what sentences are provable. The issue of different
models of arithmetic will be explored at much greater length in Chapter 2.

35This unique characterization will also be discussed in Chapter 2.

36I do not intend to suggest here the inference that Hilbert specifically avoided a derivation-restricted
view, nor that he did so because such a view would run into incompleteness problems. The former claim, I
believe, is false. The latter claim would be anachronistic; Gödel’s 1931 incompleteness result was not well
anticipated by the mathematical community.

37p.665.
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Combinatorial views of type (c) must sacrifice a plausible account of truth; such views must

deny truth of any claims that are entailed by the (true) axioms, but are not formally derivable

from them.

But it is not clear that Benacerraf’s concerns properly extend to all combinatorial

views. Hilbert’s view seems to be categorized as a combinatorial, knowledge-motivated

account on Benacerraf’s classification, but it is not obvious that it must sacrifice a plausible

theory of truth. After all, Hilbert seems to have been focused on rendering a plausible theory

of truth capable of preserving the consistency of different systems of axioms. And what we

have seen of his view—viz. that all geometrical truths are grounded in implicit definitions

given through axioms—seems to be compatible with a satisfaction-style account that does

not sacrifice truth in the same way that, in light of incompleteness, derivation-style accounts

must.

Admittedly, one of Benacerraf’s primary characterizations of the ‘combinatorial’ clas-

sification is that such views do not explain truth in terms of reference, denotation, or satis-

faction. Perhaps Benacerraf’s characterization excludes any view that assigns truth on the

basis of satisfaction, even a view like Hilbert’s that both grounds all mathematical truth

in the setting out of a system of axioms and explicitly rejects the idea that any entities or

relations that satisfy the axioms are privileged referents of the relevant terms.

To be honest, it is not clear to me how Benacerraf would classify a satisfaction-style

view in Hilbert’s vein. Either it is combinatorial, and hence knowledge-motivated according

to his classification, or his classification neither includes it as truth-motivated nor includes

it as knowledge-motivated. If the latter, Benacerraf is targeting a very limited set of views

in the philosophy of mathematics. But instead of focusing on the most limited class of views

that could be construed as combinatorial, let us focus on a broader class that could plausibly

be characterized as knowledge-motivated. This broader class presumably includes views like

the satisfaction-style interpretation of Hilbert’s view.
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1.3.3 The Epistemic Appeal

By Benacerraf’s lights, the chief virtue of combinatorial accounts in the philosophy of math-

ematics is their friendliness to plausible epistemic theories. Hilbert’s view—whether or not

it qualifies as ‘combinatorial’, and whether or not it is satisfaction-based—is equally friendly

to such theories. What makes all of these views epistemically promising is, first, that the

kinds of things they identify as the grounds of mathematical truth (e.g. stipulations and def-

initions) are the kinds of things that are cognitively accessible in familiar ways, and second,

that they draw tight connections between truth and proof in mathematics.

Benacerraf never ventures an explanation of how we come to know the axioms or

starting-points of views in the combinatorial vein, but Hilbert’s view provides a nice ex-

ample of how such an explanation might go. On Hilbert’s view, all geometrical truth is

grounded in the truth of the axioms of geometry. The axioms, in turn, are true because

they are stipulated as the implicit definitions of concepts. Accordingly, our knowledge of the

grounds of geometrical truth—that is, the axioms—is no more complex than our knowledge

of any other stipulated definitions. Such knowledge is almost trivial. We know these truths

independently of our knowledge or examination of any independent subject matter; we know

them because we consciously introduce them. It is easy for us to know the foundations of

mathematical truth—in Hilbert’s case, geometrical truth—because we ourselves generated

those foundations by setting them out as truths.

The way in which we come to know further mathematical truths depends on how

those truths are grounded in the known foundations of mathematics. In the case of Hilbert’s

view, the known foundations are axioms. If truth is identified with formal derivability, then

in the words of Benacerraf, “We need only account for our ability to produce and survey

formal proofs” to explain this further knowledge.38 If truth is identified with logical deriva-

tion (which need not be formalized and written), then explaining our further mathematical

knowledge is a matter of accounting for our ability to reason deductively. To be fair, it is

38p.668
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not a simple task to account for either of these abilities. But once the problem of mathemat-

ical knowledge reduces to explaining these abilities, it no longer seems that the remaining

task is to resolve the problem of mathematical knowledge. What remains to be explained is

something much more basic than that—perhaps inferential knowledge, or some other central

cognitive process with broad application.

I have suggested, however, that Hilbert might identify mathematical truth with some-

thing like satisfaction in all models, as opposed to derivation. Would that kind of view be

friendly to knowledge of mathematical truths that follow from the axioms? Quite plausi-

bly: yes, it would. Since on Hilbert’s view the axioms provide implicit definitions of the

theoretical concepts, the axioms are conceptual truths. Logical deduction preserves concep-

tual truth. Accordingly, as Hilbert points out, whenever we have a system of things that

satisfies the axioms of Euclidean geometry, that system will also satisfy the Pythagorean

Theorem.39

Admittedly, it would not be the case on such a view that all truths can be known

through logical deduction—at least not if the account were extended from geometry to arith-

metic. After all, on Hilbert’s view adding axioms changes the implicitly-defined concepts,

and if some of those axioms are second-order, some truths will not be provable. But the

fact that not all truths can be known through logical deduction is no longer a concern about

truth; it is strictly an epistemological problem. And I do not see it as a major epistemolog-

ical problem. We know many mathematical truths, but we have cognitive limitations that

prevent us from knowing them all. And I suspect that unprovable truths are fairly distant

cognitively. It may well be that we cannot know unprovable truths through derivation, but

that this fact does not interfere with our knowing a great many mathematical truths through

derivation.

Combinatorial accounts of mathematical truth—views like Hilbert’s—seem to be

amenable to plausible theories of mathematical knowledge. At least, they are amenable

39Cf. fn.30.
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to theories of knowledge that fare well on some of the criteria we have identified. They fare

well on (2); combinatorial accounts posit no inscrutable cognitive mechanisms in explaining

our knowledge of the foundations of mathematical truth. If they do require inscrutable cog-

nitive mechanisms to explain our knowledge of further mathematical truths, what remains

is a problem for inferential knowledge, which is a much broader category than mathematical

knowledge. They also fare well on (3); combinatorial accounts must respect mathematical

reasoning, especially mathematical proof. And they fare well on (5); combinatorial accounts

seem to cohere with plausible general theories of knowledge. Knowledge of the axioms is

merely knowledge of stipulative definitions, and knowledge of non-axiomatic truths is gener-

ated through cognitive processess that preserve knowledge in non-mathematical cases too.40

Combinatorial accounts, which Benacerraf classifies as ‘knowledge-motivated’, are

amenable to theories of mathematical knowledge that look promising in light of (2), (3),

and (5). But those are not the only standards that we have seen for an adequate and

satisfying account of mathematical knowledge. Such an account also must be compatible

with a plausible theory of mathematical truth (4), and it must not require any unexplained

antecedent knowledge or cognition of mathematics upon which all of our other mathematical

knowledge rests (1). Benacerraf makes it clear that he thinks combinatorial views fare poorly

on (4), but his reasons for thinking so seem to emerge from rather restrictive expectations

for theories of mathematical truth. Given our considerations of Hilbert, I am inclined to

think otherwise. At least one combinatorial account of mathematical truth—Hilbert’s—

seem to be compatible with a plausible theory of mathematical truth: mathematical truths

are conceptual truths, and true in virtue of meaning.

Ultimately, though, I am not concerned here with whether or not combinatorial ac-

counts yield plausible theories of mathematical truth. Regardless of how such accounts—

40Benacerraf wants accounts of mathematical knowledge to be causal. But he thinks knowledge-motivated
views are combinatorial and not derivation-based. It is not clear to me how logical derivation is causal. It
surely is not causal in the sense of physical causation. It likely is causal in a broader sense of causation, e.g. a
grounding sense of causation. But while it is fairly clear that Gödelian intuition is not physically causal, it
is not at all clear that Gödelian intution is not causal in the broader sense.
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accounts that Benacerraf deems ‘knowledge-motivated’—fare as theories of mathematical

truth, are they amenable to plausible theories of mathematical knowledge, even disregarding

standard (4)? If so, they must also fare well on the first standard we raised, when considering

the Meno. They must not presuppose any unexplained antecedent knowledge or cognition

of mathematics. And, I propose, they also must fare well on a sixth standard:

(6) An adequate account of mathematical knowledge must be compatible with all of our

mathematical knowledge, and with the understanding we have of mathematics.

This is a rather weak expectation. Ideally, an adequate account of mathematical knowledge

would go further, and would serve to explain or ground all of our mathematical knowledge,

and all of our understanding of mathematics.41

This expectation is rather different from the others, which are motivated by the

discussions of mathematical knowledge in Plato and in Benacerraf. Both Benacerraf and

Plato attempt to explain relatively simple examples of mathematical knowledge. Benacerraf

uses the example of knowing that there are at least three perfect numbers greater than 17,

and Plato uses the example of knowing that a square based on the diagonal of another square

has twice the area of the square with that diagonal. But it is important that our account

of mathematical knowledge be equipped to explain all of our mathematical knowledge, and

not only the knowledge we have in these fairly simple cases. And it is important that our

account of mathematical knowledge do this without relying on any unexplained antecedent

knowledge or cognition of mathematics.

41Benacerraf makes an off-hand comment about accounts of mathematical truth that seems related to this
standard that I am proposing. He writes, “the concept of mathematical truth . . . must fit into an overall
account of knowledge in a way that makes it intelligible how we have the mathematical knowledge we have”
(p.667). But he does not explore this consideration at all beyond this comment.
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1.4 The Problem of Combinatorial Knowledge

We have seen that there is much to recommend combinatorial accounts of mathematical

knowledge. They do well on several of our standards for accounts of mathematical knowledge.

All that remains is to address how well they fare on standards (1) and (6)—relying on no

antecedent mathematical knowledge or cognition, and being consistent with our having all

of the mathematical knowledge and understanding that we actually have. Hilbert’s example

will help illuminate how combinatorial accounts fare with respect to these expectations.

1.4.1 Hilbert and Antecedent Knowledge

To some extent, Hilbert’s account fares well on (1), the standard regarding antecedent knowl-

edge. If a theory grounds our geometric knowledge in the stipulation of Hilbert’s axioms

as implicit definitions of geometrical concepts, then that theory does not rely on antecedent

and unexplained knowledge of geometry. Hilbert’s account does, however, rely on some

antecedent mathematical knowledge: knowledge of the natural numbers.

As noted earlier, Hilbert only demonstrated the relative consistency of Euclidean

geometry; he did not demonstrate absolute consistency. As long as arithmetic is consistent,

his models of Euclidean and non-Euclidean geometries appear to be consistent, which suffices

to show that the relevant systems of axioms are consistent. But Hilbert’s reliance on the

structure of the natural numbers is not limited to his demonstration of the consistency of

arithmetic; it is not only an issue about Hilbert’s proof. Rather, Hilbert’s very axiomatization

also depends on the consistency of arithmetic. One of his axioms is the Archimedean Axiom:

Let A1 be any point upon a straight line between the arbitrarily chosen points

A and B. Take the points A2, A3, A4, . . . so that A1 lies between A and A2, A2 lies

between A1 and A3, A3 lies between A2 and A4, etc. Moreover, let the segments

AA1, A1A2, A2A3, A3A4, . . . be equal to one another. Then, among this series of

points, there always exists a certain point An such that B lies between A and
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An. (The Foundations of Geometry, §8)

The basic idea is that a finite number of shorter segments of a given length can always cover

a line segment of a longer length. Hilbert relies on this axiom in order to demonstrate that

his axioms fully describe a system of Euclidean geomentry. And whether or not a system

of axioms satisfies this axiom depends on whether or not there is a suitable number n—an

n such that the nth length of a certain size (a size equal to that of the length between A

and A1) covers the point B. Whether or not such an n exists depends on the structure

of the natural numbers.42 But natural number is not otherwise mentioned in the axioms

of Euclidean geometry; number is not implicitly defined by the axioms. Accordingly, the

natural numbers—arithmetic—must be presupposed by the axioms of Euclidean geometry.

If Hilbert’s account of semantics and truth in geometry is to be amenable to an ac-

count of mathematical knowledge that satisfies the demands of (1), it must avoid grounding

geometrical concepts in any prior mathematical concepts. But his axiomatization of geom-

etry presupposes the prior concept of natural number. Accordingly, Hilbert’s account of

geometrical truth only succeeds if the concept of natural number is antecedently fixed. And

if Hilbert’s account is to be extended to mathematical truth generally, as he seems to hope,

it must be possible to characterize the system of natural numbers by implicit definition. In

fact, this is possible; the details of axiomatizations of arithmetic will be presented in the next

chapter. As we will see, some systems of arithmetical axioms are sufficient to characterize

the structure of the natural numbers fully and uniquely.

In order for Hilbert’s account of mathematical truth to ground a plausible account

of mathematical knowledge, then, a theory of mathematical knowledge that grounds all

of our knowledge of arithmetic and the natural numbers in axiomatic implicit definitions

must satisfy the demands of both (1) and (6). That is, we must be able to acquire all of

our knowledge of the natural numbers from arithmetical axioms. Furthermore, we must

42If we cannot distinguish the structure of the natural numbers from nonstandard arithmetical structures,
then this is not a meaningful axiom. We will revisit this concern briefly at the end of Chapter 2.
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be able to do this without relying on any antecedent arithmetical knowledge. If these are

not possible, then a Hilbert-style view cannot provide an adequate account of mathematical

knowledge; it cannot be that all mathematical truth, and hence all mathematical knowledge,

is grounded in the setting-out of axioms.

1.4.2 What Follows: An Overview

In the following chapters of this dissertation, I will argue that Hilbert-style views do not pro-

vide adequate accounts of mathematical knowledge. Ultimately, not all of our mathematical

knowledge can be grounded in definitions, stipulations, or postulations.

In Chapter 2, I will argue that it cannot be the case that all of our arithmetical

knowledge is grounded in axiomatic definitions. In addition to knowing basic arithmetical

truths like ‘2 + 2 = 4’, we have a fairly robust understanding of the structure of the system

of natural numbers. We routinely exhibit this understanding, for example, in our ability

to understand and use the concepts ‘finite’ and ‘infinite’, which are interdefinable with the

natural numbers. In their weaker, first-order forms, standard axiomatizations of arithmetic

(most notably Peano Arithmetic) cannot characterize the structure of the natural numbers

as well as we understand it. Although stronger, second-order axioms (interpreted robustly)

can uniquely characterize this structure, I argue that we can only identify the structure those

axioms characterize if we have a robust antecedent understanding of that structure.

In short, an account of mathematical knowledge based on Hilbert’s account of math-

ematical truth can only satisfy (1) by violating (6). Such an account can only avoid relying

on antecedent arithmetical understanding if it sacrifices some of our existing arithmetical

knowledge. And such an account can only explain all of our mathematical knowledge if it

presupposes that we have a substantial antecedent understanding of arithmetic—so substan-

tial that the role of axiomatic definition in such an account is rendered entirely superfluous.

An account like Hilbert’s that grounds all of our mathematical knowledge in the setting-out

of axioms appears to qualify as combinatorial, and hence knowledge-motivated, according
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to Benacerraf’s taxonomy. But regardless of how well this type of view can account for

truth, such an view cannot adequately account for mathematical knowledge, at least not

arithmetical knowledge.

In Chapter 3, I will address a different type of view that attempts to ground all of our

arithmetical knowledge in a stipulated implicit definition. This view, presented and defended

by Bob Hale and Crispin Wright, is motivated by Benacerraf’s concerns about providing a

philosophy of mathematics that sacrifices neither a plausible theory of truth nor a plausible

theory of knowledge. Hale and Wright take on the platonist challenge. They assume that

numbers are abstract objects, and they attempt to explain one way in which we could come

to have knowledge of these objects despite lacking any kind of causal interaction with them.

Hale and Wright respond to the platonist’s challenge by attributing all of our arith-

metical knowledge—our knowledge of abstract number-objects—to our knowledge of Hume’s

Principle: “The number of F’s equals the number of G’s if and only if the F’s and G’s are

equinumerous.” They take Hume’s Principle to be a stipulated implicit definition that gives

identity conditions for natural numbers. Using second-order logic, it is possible to derive a

version of the Dedekind-Peano axioms for arithmetic from Hume’s Principle, so we would

then be able to derive all of our arithmetical knowledge from our knowledge of this stipulated

implicit definition.

Even setting aside the concerns that I raise in Chapter 2 about deriving all of our

arithmetical knowledge from axioms, I will argue that our arithmetical knowledge is not

grounded in the way that Hale and Wright suggest, for three reasons. First, ancient mathe-

maticians knew some of the same arithmetical truths that we know, and they did not have

the systematized logic required to derive arithmetical axioms from Hume’s Principle. Since

we learned arithmetical truths from them, the grounds of their knowledge must also be the

grounds of our knowledge.

Second, Hume’s Principle gives identity conditions for cardinal numbers (singleton,

pair, triple, etc.), and not for ordinal number (first, second, third, etc.). While it is possible
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to derive ordinal number from cardinal number, and vice versa, the claim that we derive

all of our knowledge of arithmetic from Hume’s Principle entails that cardinal number is

cognitively prior to ordinal number. This claim about cognitive priority is substantive and

empirical, and I believe it to be false.

And third, I will argue that Hume’s Principle does not give us adequate means with

which to pick out the right numbers. While it does ensure that the definite descriptions ‘the

number of fingers on my left hand’ and ‘the number of fingers on my right hand’ pick out

the same object, it does not uniquely determine which object that description picks out.

Accordingly, Hume’s Principle does not provide us with the uniquely identifying information

required to develop knowledge of causally inert number-objects.

In Chapter 4, the last chapter of this dissertation, I will examine a standard approach

to our knowledge of basic arithmetical truths like 2 + 2 = 4. In addition to some general

laws, Leibniz and Frege use the definitions ‘2 = 1 + 1’, ‘3 = 2 + 1’, and ‘4 = 3 + 1’ in order

to prove that 2 + 2 = 4. If our basic arithmetical knowledge is grounded in proof, then our

basic arithmetical knowledge is grounded in these definitions, and in the proofs that rely on

them. Such proofs are those along the lines of the ones that we find in Leibniz and Frege.

My concern in examining this approach will be to determine whether or not it suffices

to account for some of our basic arithmetical knowledge without relying on the kind of robust

understanding of the structure of the natural numbers that I argue a Hilbert-style axiomatic

approach must presuppose. In other words, how much antecedent knowledge or cognition of

arithmetic is required for us to use our standard methods to come to know these basic and

seemingly easy arithmetical truths?

In order to address this question, I will examine the inner workings of the proof

that 2 + 2 = 4. I will argue that the explicit definitions upon which it relies must be

definitions of numerals, i.e. number expressions (‘2’, ‘4’, etc.), rather than definitions of

numbers. Accordingly, we can only understand the relevant proofs—and hence we can only

use them to gain arithmetical knowledge—if we are positioned to understand expressions of
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the form ‘n+ 1’, where ‘n’ is a numeral. I will then argue that, unless we already have some

grasp of the structure of natural numbers, we cannot understand expressions of this form,

and hence are not positioned to prove even simple arithmetical truths.

The central lesson to take from the remaining chapters of this dissertation is fairly

simple. Accounting for our understanding of the structure of the natural numbers should be

one of the key desiderata of a theory of mathematical knowledge. Without understanding

this structure, we cannot come to know arithmetical truths like 2 + 2 = 4—truths that we

typically identify as some of our most secure knowledge. Definitions and postulations alone

cannot ground our understanding of the structure of the natural numbers. Mathematics

and mathematical knowledge, I posit, are more substantive than that. In order to account

for mathematical knowledge, we must account for arithmetical knowledge. And in order to

account for arithmetical knowledge, we must provide an account on which our understanding

of the structure of the natural numbers is some of our most fundamental and primitive

mathematical cognition.
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Chapter 2

Axiomatic Definitions of N

In this chapter, I argue that we could not come to understand the structure of the natural

numbers (N) if all of our mathematical knowledge were grounded in arithmetical axioms.

Though the subject matter is somewhat technical, the main lessons to take from my argument

are not. First, any adequate theory of arithmetical knowledge must be compatible with our

fairly robust understanding of the structure of N. Accordingly, it is not (and could not be)

the case that our epistemic access to the natural numbers is entirely grounded in axiomatic

definitions. Second, and relatedly, there are limits to the power of axiomatic definitions.

And third, the more we think about how we might come to understand the structure of N,

the more evident it becomes that our understanding of this structure is in some way basic

or foundational.

The body of this chapter begins with a presentation of the relevant mathematical

framework. Given the subject matter, parts of this mathematical discussion may be un-

avoidably technical for readers without the relevant background. I have taken some effort to

make these sections accessible to such readers. On the other hand, readers with the relevant

mathematical background might find these sections familiar; such readers might prefer to

skim the chapter until §2 (or §2.3), where the original philosophical work begins.

The first section begins with an introduction to the basics of Peano Arithmetic (PA),

36



the canonical axiomatization of arithmetic. After some discussion of models of PA, I in-

troduce two different languages in which PA can be expressed: the language of first-order

arithmetic and the language of second-order arithmetic. Because the first-order language

lacks a certain kind of expressive power, the axioms of first-order PA cannot distinguish N

from recognizably different kinds of mathematical structures. So, I conclude, first-order PA

cannot lead us to understand the structure of N.

The second section addresses strategies we might use to come to understand the

structure of N using second-order axioms, which are demonstrably robust enough to uniquely

characterize that structure. The bulk of the philosophical work in this chapter occurs in

addressing these second-order strategies. I argue that in order to use the axioms of second-

order PA to come to understand the N structure, we must appeal, explicity or implicitly, to

an antecedent understanding of this structure.

The chapter ends with a brief discussion of a potential skeptical objection. In re-

sponse to my arguments, some might be tempted to deny that we have the kind of robust

understanding of the natural numbers that my arguments demand. But such an objection

is radical, and has significant and deeply implausible implications for the interpretation of

mathematics. Rather than denying that we understand the structure of N, we must admit

that some of our mathematical knowledge is grounded elsewhere, and not in the axioms.

2.1 First-Order Peano Arithmetic

The Dedekind-Peano axioms, also known as the axioms of Peano Arithmetic (PA), provide

the canonical axiomatization of N. If an axiomatic definition is to yield the structure of N,

these axioms are the obvious candidates.

In the axioms of PA, we shall treat parentheses, (first-order) quantifiers and variables,1

1First-order quantification is quantification over individuals, e.g. individual numbers. It is the topic of
further discussion in subsequent sections.
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and the ‘=’ symbol as logical; they do not require axiomatic definition.2 Other symbols used

in these axioms are not logical. Their meanings must be fully determined by the system

of axioms. The first four axioms include two non-logical symbols. One is the ‘0’ symbol,

which is a name for an element; the other is the ‘S(n)’ symbol representing a function of one

argument. We call this ‘the successor function’.

Without further ado, here are the first four axioms of PA:

(1) 0 ∈ N (Zero is a natural number.)

(2) (∀n)S(n) 6= 0 (Zero is not the successor of any natural number.)

(3) (∀n)(∃m)S(n) = m (Every number has a successor.)

(4) (∀n)(∀m)S(n) = S(m)→ n = m (No two distinct numbers have the same successor.)

These four axioms guarantee an infinite, non-repeating progression of successor elements that

starts with a ground element—a number that is not the successor of any other number.3

On their own, axioms (1)-(4) are insufficient to describe an order on an arithmetical

structure. No sentence limited to the language of axioms (1)-(4) can state, for arbitrary m

and n, that m comes before n in the sequence. Sentences are finite, and the only way to

capture this coming-before relation using the successor function is to combine an infinite

number of specific claims, e.g.: ‘n = S(m) or n = S(S(m)) or n = S(S(S(m))), or . . . ’.

Further axioms of PA ensure that there is such an ordering. For the sake of simplicity,

we will restrict ourselves to a modified version of PA that yields such an ordering, but only

uses one more non-logical symbol: ‘m < n’.4 We call this the ‘less-than’ or ‘predecessor’

relation (‘m is less than n’ or ‘m is a predecessor of n’):

2Some variations of PA do not treat the ‘=’ symbol this way, and include four axioms to govern it. The
relation the ‘=’ symbol picks out is (i) reflexive ((∀n)n = n), (ii) symmetric ((∀m)(∀n)m = n→ n = m), (iii)
transitive ((∀l)(∀m)(∀n)((l = m ∧m = n)→ l = n)), and (iv) N is closed under this relation ((∀n)(∀m)n ∈
N ∧ n = m → m ∈ N). To use Dedekind’s words, “That a and b are symbols for one and the same thing is
indicated by the notation a = b.” (“The Nature and Meaning of Numbers” pp. 44.)

3Nothing of import rides on the decision to take 0 instead of 1 to be the first natural number.

4The arguments I give will apply equally well to other versions PA, including the standard version that
axiomatically defines addition and multiplication, and uses addition to explicitly define the less-than relation.
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(5) (∀n)(0 < n ∨ 0 = n) (Zero is less than every other number.)

(6) (∀n)n < S(n) (Each number is less than its successor.)

(7) (∀n1)(∀n2)(∀n3)
(
(n1 < n2 ∧ n2 < n3)→ n1 < n3

)
(Less-than is a transitive relation.)

(8) (∀n1)(∀n2)(n1 < n2 → n2 ≮ n1) (Less-than is an anti-symmetric relation.)

(9) (∀n)(∀m)(n = m ∨ n < m ∨m < n) (If two numbers are not equal, then one of them

is less than the other.)

The less-than relation, then, totally orders the natural numbers. Intuitively, we might say, for

arbitrary m and n, m is less than n when m comes before n in the progression of successors.

Axioms (1)-(9), then, ensure that PA characterizes an infinite, non-repeating progres-

sion of successors that has a ground element and is ordered by the predecessor relation.

2.1.1 Uniqueness and Isomorphism

If there is a particular model N that satisfies axioms (1)-(9), the axioms do not uniquely

describe it. Ordinarily, we think of N this way:

0, 1, 2, 3, . . . , n, . . .

But (1)-(9) equally well describe the progression of natural numbers starting with 1, or

starting with 2, or starting with 3, etc. Of course, these progressions have different ground

elements; the name ‘0’ in the axioms applies in these progressions to 1 or 2 or 3 (etc.) instead

of the standard 0.

Axioms (1)-(9) also describe progressions in which the implicitly-defined ‘S(n)’ sym-

bol picks out successor functions other than one it picks out in N. Such progressions include

that of the even numbers, that of the multiples of three, etc. The interpretations of ‘S(n)’ in

these cases (e.g. ‘next even number’) are consistent with the restrictions imposed by (1)-(4);

the relevant progressions have ground elements, each of their elements has a successor, and

no two distinct elements have the same successor. They also are ordered by predecessor
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relations, defined by (5)-(9), that coincide with the ordering on N. All of these progressions

will satisfy (1)-(9).

While the progressions just described do not have all the same elements as N, they

are just like N structurally. More precisely, these progressions are all isomorphic to N. Two

models are isomorphic if there is a mapping (an isomorphism) from one model to the other

that preserves structural features. An isomorphism has two key features. (i) It is a bijection.

That is, distinct elements of the first model get mapped to distinct elements of the second

model, and each element of the second model is the image of some element of the first model.5

(ii) It is a homomorphism. That is, structurally relevant functions and relations of the first

model are preserved by the mapping. Since an isomorphism is a bijection, the image of a

structurally relevant function or relation in the first model is a function or relation with

the same structural role in the second model. In models of PA, the structurally relevant

relations and functions are the ones defined using these axioms: successor and predecessor.6

An isomorphism between two models of these axioms, then, maps pairs of successors in the

first model to pairs of successors in the second model. It also maps elements related by

predecessor in the first model to elements related by predecessor in the second model.

Consider two structurally alike models: N and the progression of even numbers.

Intuitively, the successor function on N is ‘next natural number’, and the successor function

on the evens is ‘next even number’. Let f be a mapping that takes a number n to the

number 2n. f is a bijection from N to the evens; each even number is in the image of

the mapping, and no two distinct natural numbers map to the same even number. Also,

f preserves successor; if m is the successor of n in N, then f(m) (i.e. 2m, or 2(n + 1), or

2n+2) is the successor of f(n) (i.e. 2n) in the sequence of evens. f preserves the progression

ordering too. If m < n on the first model, then f(m) < f(n) (i.e. 2m < 2n) on the second.

5The image of an element (or set of elements) under a mapping is the element (or set of elements) to
which the original element (or set of elements) gets mapped. E.g. if f(a) = b, then b is the image of a under
f .

6In other versions of PA, addition and multiplication are also defined by axioms and must also be preserved
by isomorphisms.
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So, f is both a bijection and a homomorphism; successor and predecessor on N correspond

under the mapping with successor and predecessor on the evens. So, f is an isomorphism.

Hence, as claimed before, N and the progression of even numbers are isomorphic—these two

models are structurally the same.

Unless axioms describing N identify a particular ground element and a particular

successor function, they cannot distinguish N from models isomorphic to it—models like the

progression of even numbers. But the axioms of PA can only provide us with our grasp of N

if they are purely structural axioms, and presuppose no prior familiarity with N, its ground

element, or its successor function. The axioms of PA cannot distinguish N from models

isomorphic to it.

Although the axioms of PA cannot uniquely characterize any one particular model,

perhaps they nonetheless can allow us to understand the structure-type of N. Call a system

of axioms categorical and say that the axioms yield categoricity if all of the models of those

axioms are isomorphic to one another. If the axioms of PA are to ground our structural

grasp of N, they must at least be categorical. The question remaining, then, is this: Are the

axioms of PA categorical? Do they uniquely characterize the structure-type of N?

2.1.2 Standard and Nonstandard Models

Axioms (1)-(9) are not categorical. Imagine, for example, a model composed of a full copy

of the natural numbers followed by a full (and fully distinct) copy of the integers. Call this

model N+ Z. Intuitively, N+ Z looks like this:

0’, 1’, 2’, 3’, . . . , n’, . . .

. . . , −n, . . . -2, -1, 0, 1, 2, . . . , n, . . .

Although this model includes an additional integer-chain (Z-chain) of elements, it satisfies

axioms (1)-(4). It too has a ground element, every element has a successor, and no two

distinct elements have the same successor. As long as we supplement the expected prede-

cessor orderings on the N-chain and Z-chains by setting m < n for any elements m of the
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N-chain and n of the Z-chain, this model also satisfies axioms (5)-(9). Similarly, models with

additional Z-chains, such as N+ Z+ Z and N+ Z+ Z+ Z, will also satisfy (1)-(9), as long

as the different chains of elements are ordered with respect to one another by the predecessor

relation. Models with many more Z chains satisfy the axioms too. So does a model with

the form of N+QZ, composed of an N-chain followed by infinitely many densely-ordered

Z-chains, one for each rational number in the open interval between 0 and 1. Similarly,

models of N+ RZ, which have a Z-chain for each real number, also satisfy (1)-(9).

But these models with Z-chains are structurally different from N; the models are

not isomorphic. Take N+ Z as an example. Suppose a mapping f from N to N+ Z is a

homomorphism; it preserves structural relations. Then f maps ground elements of N to

ground elements of N+ Z (in each case, there is only one). Also, f preserves the successor

relation amongst other elements. But the successor of any element of an N-chain must also

be in that N-chain. So, the image of any element of N under f must be in the initial N-chain

of N+ Z; the mapping does not reach any elements of the integer chain structure within the

N+ Z model. Since some elements of N+ Z are not in the image of f , f is not a bijection.

No function from N to N+ Z can both be a bijection and a homomorphism (preserving of

structural relations). Hence N and N+ Z are not isomorphic models.

We now have multiple non-isomorphic models of (1)-(9). For now, let us assume that

N has some particular type of structure, and that there is a fact of the matter about whether

or not an arithmetical structure M is isomorphic to N. We call a structure that satisfies PA

a standard model of arithmetic if it is isomorphic to N; we call it a nonstandard model of

arithmetic if it is not. For example, the progression of even numbers is a standard model,

while N+QZ is a nonstandard model. Our assumption, then, is that there is a legitimate dis-

tinction between standard and nonstandard models of arithmetic. This assumption, though

rarely made explicit, is common in both philosophy and mathematics.

Let us assume further, for now, that we understand the progression of natural numbers

well enough to distinguish standard models of arithmetic from nonstandard ones. That is,
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we understand the overall structure of the natural numbers. We can recognize, for example,

that N+QZ is not a standard model of arithmetic. Let us make no assumptions about how

we are able to distinguish standard models from nonstandard ones; let us only suppose that

we are able to do so.

It is clear, then, that (1)-(9) do not describe the structure of N as well as we under-

stand it. These axioms are not categorical. If PA is categorical, and if PA thereby gives us

a means through which to grasp the structure of N, then PA must exclude structures like

N+QZ and N+ Z. PA can only generate our understanding of N if some further feature(s) of

PA can successfully exclude the extraneous chains of elements found in nonstandard models.

Mathematical induction is all that remains of PA to play such a role.

2.1.3 Mathematical Induction

Mathematical induction uses the properties of elements to introduce further restrictions on

what qualify as arithmetical structures. It guarantees that all of the natural numbers have

some specified property whenever two conditions are met: (i) 0 has the specified property,

and (ii) for each number n, if n has the specified property, then so does n + 1. To put this

symbolically, mathematical induction is as follows:

(MI) For a property P :(
P (0) ∧ (∀n)

(
P (n)→ P (S(n))

))
→ (∀n)P (n)

If there is a property that is unique to the standard natural numbers, then mathematical

induction ensures that there are no nonstandard natural numbers, thereby ensuring the

categoricity of PA.7

7Suppose there is a property P ∗ that every element of N has, but that none of the nonstandard elements
of a model of arithmetic has—i.e. P ∗(n) ↔ n ∈ N for n in a model of PA. If such a property P ∗ exists,
the ground element has that property ((i) P ∗(0)), since all of the elements of the initial N-chain have it.
Furthermore, every number that has the property is in the initial N-chain. Since no particular nonstandard
element of the model is the immediate successor of any element of the initial N-chain, and since the immediate
successor of any number in the initial N-chain is also in the N-chain (n ∈ N↔ S(n) ∈ N), such a property also
must be preserved by the successor operation ((ii) P ∗(n) → P ∗(S(n))). Applying mathematical induction
on the property P ∗ then ensures that all natural numbers have the property ((∀n)P ∗(n)).
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The key question, then, is whether or not there is a property that successfully dis-

tinguishes the elements of the initial N-chain from any putative nonstandard numbers. If

so, mathematical induction excludes those putative nonstandard elements and yields cate-

goricity. This would leave open the possibility that our understanding of the structure of

the natural numbers is grounded in the axioms of PA.

The statement of mathematical induction in (MI), however, is imprecise. It does

not specify standards governing what it is to be an admissible property. In contemporary

mathematics, there are two main ways to delineate admissible properties. These two sets of

standards for admissible properties correspond with the two versions of Peano Arithmetic:

first-order PA (PA1), and second-order PA (PA2).

2.1.4 First-Order Induction

In PA1, eligible properties are restricted to those that can be expressed as open sentences

written in the first-order language of arithmetic. First-order languages are limited; in ad-

dition to logical connectives, our arithmetical version includes identity, 0 (zero), successor

(S(n)), predecessor (m < n), and quantification over numbers (∀n, ∃n). This first-order

language is important because we ought to be able to fully understand it; axioms (1)-(9)

have defined every non-logical symbol in the language.

Consider the property of either being 0 or being the successor of some number. This

property is expressible in the first-order language of arithmetic:

φ(n) = (def) : n = 0 ∨ (∃m)n = S(m).

Since it can be expressed in the limited first-order language, this property φ is admissible

as a property in mathematical induction. As it happens, φ also satisfies the antecedent of

induction; it is easy to see that φ(0) holds, and that if φ(n) holds, then so does φ(S(n)).

Applying mathematical induction, then, yields that (∀n)φ(n) (i.e. every number is either

zero or the successor of some number). So, first-order induction guarantees that the ground

element is unique, i.e. there is only one zero in an arithmetical structure.
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Clearly, first-order mathematical induction adds nontrivial restrictions to the ones

imposed by axioms (1)-(9).8 But the highly accessible language of first-order arithmetic

has significant limitations. In particular, it does not allow quantification over subsets of N,

relations, or properties. This limitation has at least two noteworthy consequences. First,

first-order mathematical induction cannot be expressed as a single statement. Instead, it

becomes an axiom schema into which first-order sentences can be substituted:

(MI–Schema) Let φ(n) be an arithmetical sentence in a first-order language. Then(
φ(0) ∧ (∀n)

(
φ(n)→ φ(S(n))

))
→ (∀n)φ(n)

Second, some properties that seem potentially useful for our present purposes cannot

be expresssed in the first-order language. The property ‘finite’ cannot be taken as primitive in

the first-order language, so we cannot use a property like ‘n has finitely many predecessors’ in

mathematical induction to yield categoricity. We also cannot express anything that involves

quantification over sets of numbers, properties of those sets, or correspondences or relations

between those sets. The only quantification in first-order arithmetic is quantification over

individual elements of arithmetical structures.

These limitations of first-order languages, including that of arithmetic, entail that

PA1 ((1)-(9) plus the first-order schema of induction) cannot uniquely describe the structure

of the natural numbers. PA1 cannot distinguish N from N+QZ. PA1 is not categorical.

This is a well-known result.9 Since PA1 is unable to characterize the structure of N up to

isomorphism, it cannot ground our understanding of the structure of the natural numbers.

8In versions of PA that include addition and multiplication, first-order induction ensures that N+ Z is
not a model of PA1. However, there will be many different isomorphism types structured like N+QZ and
N+ RZ (differing in their addition/multiplication operations) that satisfy PA1.

9Appendix I explains this result.
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2.2 Second-Order Peano Arithmetic

First-order languages only license quantification over individuals in the relevant domain.

Second-order languages are more expressive in one of two ways. One way a language can be

second-order is by licensing quantification over all properties and relations (with determinate

extensions) on the domain. The second way a language can be second-order is by licensing

quantification over all sets of individuals in the domain. Ultimately, though, quantification

over properties and quantification over sets of numbers are equivalent in strength. Each

determinate property has a determinate extension that can be treated as a set, and each set

corresponds with the extension of the property of being a member of that set.

The expanded second-order language of arithmetic licenses quantification over all

sets, or all properties, of numbers. This allows us to express, for example, the least number

principle: every set of numbers has a least number (a number that is the predecessor of

every other number in the set). Although claims like the least number principle are common

in ordinary mathematics, they cannot be stated in first-order arithmetic.

PA1 and PA2 ( (1)-(9) plus second-order mathematical induction) differ only in

mathematical induction. In keeping with the two ways in which a language can be second-

order, there are two ways to state second-order mathematical induction. The first way takes

the second-order quantifier to range over properties of the elements of a model of arithmetic:

(MI–Properties): (∀P )

((
P (0) ∧ (∀n)

(
P (n)→ P (S(n))

))
→ (∀n)P (n)

)

That is, for any property P , if (i) P is a property of 0, and if (ii) P is preserved by successor

(i.e. for all numbers n, P (n)→ P (S(n))), then P is a property of every number ((∀n)P (n)).

In other words, if (i) and (ii) hold for a property, then elements that lack the property are

not elements of the model of second-order arithmetic.

The second way to express second-order induction is to take the second-order quan-
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tifier to range over sets of elements:

(MI–Sets): (∀P )
((

0 ∈ P ∧ (∀n)(n ∈ P → S(n) ∈ P )
)
→ (∀n)n ∈ P

)

That is, for any set of elements of a model, if (i) 0 is in the set, and (ii) the successor of any

element of the set is also in the set, then every element of the model is in the set.

2.2.1 Second-Order Categoricity

If the axioms of PA2 are to characterize the N-structure well enough to ground our under-

standing of it, they must characterize a structure-type up to isomorphism. Provably, they

do. Using second-order resources, we can demonstrate that any two models of PA2 are

isomorphic to each other. PA2 is categorical.

Suppose M and M′ are both models of PA2. Then construct a mapping f : M→M′

as follows:

f(0M) = 0M′

f(SM(n)) = SM′(f(n))

The mapping f clearly preserves the ground element and the successor relation. To show

that f is an isomorphism, we must only show that it is a bijection and that it preserves the

predecessor (less-than) relation. This is done in Appendix II. So, any two models of PA2

are isomorphic to each other.10

Since PA1 is provably not categorical, this categoricity proof requires second-order

resources. The proof that f is a bijection proceeds by applying induction to two uncon-

troversially determinate sets defined using the mapping f .11 Since f is a mapping between

10This proof of categoricity is similar to Zermelo’s 1930 proof of the categoricity of second-order ZF
(Zermelo-Fraenkel set theory).

11One is the set of elements of M′ that are in the f -image of M. The other is the set of all m in M such
that, for all m′ <M m, f(m) 6= f(m′). See Appendix II for verification.
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models of PA2, these sets are identified by taking another model as a reference. They are

not defined by first-order sentences—sentences of the language of arithmetic with quantifi-

cation only over elements of the relevant model. But nonetheless they are in the scope of

the second-order quantifier of MI–Sets.

While this proof entails that an isomorphism can be built between any two models

of PA2, it does not identify the structure-type that PA2 characterizes. It does not ensure

that these axioms can ground our understanding of the N-structure. To do that, the axioms

must characterize the right structure-type—that of standard models, and not nonstandard

ones.

And it is obvious to us that they do. It is obvious to us that any given model of PA1

begins with an initial N-chain containing the model’s ground element and all of its finite

successors. The elements of this N-chain can be collected into a set, and there is a property

of being in the initial N-chain of the model. Call this property P ′. Although P ′ cannot

be expressed in the language of first-order arithmetic, it does seem to be a perfectly good,

determinate property.

So, we can apply MI–Properties. The ground element of a given model of PA2 is in

its initial N-chain (P ′(0)). And if an element is in the initial N-chain of a model, then so is its

successor (P ′(n)→ P ′(S(n))). So, the the model satisfies both antecedents of mathematical

induction for the property P ′. Hence, if a model satisfies PA2, the property must hold for

all elements of the model ((∀n)P ′(n)). That is, if the model is a model of PA2, then all of its

elements are in its initial N-chain. The model has the structure of N. Given the categoricity

result, then, every model of PA2 has the structure of N. In the analogous case of the set

whose members include all and only the elements of a model’s initial N-chain, MI–Sets will

yield the same result: PA2 uniquely characterizes the structure of N.
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2.2.2 Potential Limitations of Second-Order Quantification

The result that PA2 uniquely characterizes the structure of N, however, depends on the

range of the second-order quantifier. If being in the initial N-chain of a given model is a

genuine property, or if there is a set of the elements of the model’s initial N-chain, then the

desired result follows. But if the elements of the initial N-chain do not comprise a set, or if

being in the initial N-chain is not a genuine, determinate property, then the result may well

fail. We normally assume that this is a genuine property, and that the standard elements do

comprise a set. But there are nonstandard interpretations of the second-order quantifier on

which the elements of the initial N-chain of a model of arithmetic do not comprise a set—or,

at least, they do not comprise a set within the range of the second-order quantifier.12

If PA2 is to uniquely characterize the structure of N, the second-order quantifier

must have its standard meaning. Call this its full semantics. The quantifier must range

over all of the sets of elements of the model in question (or all of the properties). Let us

make a potentially controversial assumption: that there is some standard semantics for the

second-order quantifier.13 That is, let us assume that there is a matter of fact about what

all the subsets of some given set are. And, however it might come to pass, let us assume

that the second-order quantifier has its standard, full semantics. Somehow, the second-order

quantifier comes to range over the right collection of sets. Let us also assume that under the

standard, full second-order semantics, one of the subsets of a model of arithmetic is the set

containing all and only the elements of the model’s initial N-chain. Given these fairly robust

12Such nonstandard interpretations of the second-order quantifier are due to Henkin. First, terminology:
the full powerset, intuitively speaking, is the set of all the subsets of the elements of some given domain. In
standard, full semantics, the second-order quantifier ranges over the full powerset of the given domain. In
Henkin semantics, the second-order quantifier can range over any of a class of subsets of the full powerset
of the given domain. To be in this class, a subset of the powerset must satisfy some minimal conditions,
such as including all definable subsets. The full powerset itself would be one class of subsets that satisfies
the relevant minimal conditions. But it is not the only such class.

13Part of the motivation behind Henkin semantics is the suspicion that there is no such standard semantics,
or at least that we could not possibly understand standard semantics in the case of infinite domains—domains
such as the elements of an arithmetical structure.
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assumptions, PA2 does uniquely characterize the structure of N.14

But the fact that PA2 uniquely characterizes a structure does not entail that we can

use PA2 to come to understand that structure. In particular, although the reasoning above

demonstrates for us that every model of PA2 has the structure of N, this reasoning cannot

help us come to understand the structure of N. We cannot use a property (being in the initial

N-chain) to come to understand the structure of N if we must understand the structure of

N in order to understand that property.

2.2.3 Understanding through Axioms

We return, then, to the question of understanding. Assuming that PA2 uniquely describes

the structure of N, and that nonstandard models fail to satisfy second-order mathematical

induction, how could PA2 ground our knowledge of the structure of N? How could we use

PA2 to come to understand that structure-type?

Before we identify the distinctively second-order resources required to come to under-

stand the structure of N, let us take stock of the other resources at our disposal. Assuming we

have the basic ability to iterate, axioms (1)-(4) position us to make sense of a non-repeating

progression of successors with a ground element but no final element. They provide us with

the resources required to think through some initial segments of such a progression, and to

understand that any given element, no matter how far down the progression of successors,

is followed by another. Axioms (5)-(9) then position us to understand this progression as

totally ordered by the predecessor relation.

First-order mathematical induction contributes more to our understanding. Together

with a very accessible first-order sentence, it restricts us to models with only one ground

element. But PA1 does not uniquely characterize the structure of N; it also characterizes

nonstandard models of arithmetic. Accordingly, without further resources, the axioms of

14I am not entirely convinced that these assumptions are correct. If not, so much the worse for PA
grounding our understanding of the structure of N.
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PA1 cannot lead us to understand the structure of N as well as we do; they do not give us

a thorough enough understanding to distinguish N from nonstandard models of arithmetic.

PA1 does not, so to speak, sufficiently limit the length of progressions of successors.

With limited second-order resources, as seen in §2.1, we can prove that PA2 only

characterizes one structure-type. The proof only requires induction on two sets that are not

defined in the first-order language, both of which are expicitly defined using the mapping

f , which turns out to be an isomorphism. And the mapping f is cognitively accessible. We

are positioned to understand it as used in the proof as long as we understand that there can

be mappings between mathematical structures, and also understand some basic structural

features addressed previously, viz. the zero and successor functions defined in axioms (1)-

(4). Since the proof is straightforward and uses fairly accessible second-order resources, we

are able to appreciate the categoricity of PA2 without much prior knowledge, and without

antecedently understanding the structure of N.

But without revealing the structure-type of any model that satisfies the axioms of

PA2, the categoricity proof cannot yield understanding of the structure of N. Indeed, if we

(wrongly) took N+QZ to be a model of second-order PA, the categoricity proof on its own

would lead us to think (again wrongly) that all models of PA2 have that structure. So,

if PA2 leads us to understand the structure of N, then a more robust use of second-order

resources must unambiguously illuminate that structure.

We have already identified one way second-order induction uniquely characterizes the

structure of N. We identified a property that satisfies the two conditions of mathematical

induction—P (0), and P (n) → P (S(n)). We then observed that, while all of the elements

of standard models of arithmetic have this property, not all of the elements of nonstandard

models do. In other words, we identified a property that distinguishes standard models from

nonstandard models, and that makes nonstandard models fail second-order mathematical

induction. But the property was that of being in the initial N-chain of the model. Obviously,

we cannot use this property to come to understand the structure of N; understanding the
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property depends upon already understanding this N-structure.

Another property that allows us to uniquely characterize the structure of N, fairly

trivially, is the property of being a standard element, as opposed to a nonstandard one. It

satisfies the two conditions in the antecedent of mathematical induction—0 is a standard

element, and if n is a standard element, then so is its successor. By second-order induction,

if the model satisfies PA2, then all of its elements are standard ones. But, obviously, this

property also will not serve our purposes. By definition, to be a standard element of a model

of arithmetic is simply to be an element in the model’s initial N-chain. So, understanding

this property also depends upon understanding the structure of N.

There might, however, be other suitable properties. Second-order mathematical

induction can ground our understanding of the N-structure provided that there is some

property—any property at all—that the ground element has, that successor preserves, and

that we can understand without antecedently understanding the structure of N. Ultimately,

I shall argue that we must already understand the structure of N in order to use any such

property to recognize that PA2 uniquely characterizes the structure of N.

2.3 To Distinguish Standard Models

As we have seen, one way to distinguish standard models of arithmetic from nonstandard

ones is to explicitly envoke the structure of N. That is how I introduced the distinction in

this paper. But that way of distinguishing the different types of models relies on our already

understanding the N-structure. If the axioms of PA2 are to ground our understanding of

that structure, there must be some other way to identify standard models.

There are three standard approaches to distinguishing standard models of arithmetic

from nonstandard ones without explicitly envoking N. One approach relies on the notions of

finitude and infinity ; someone taking such an approach might, for example, claim that every

standard element of an arithmetical structure is finite, and every nonstandard element is
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infinite. The second approach is to use the least number principle (briefly mentioned in §2),

which only holds for standard models. And the third approach relies on the set-theoretic idea

of taking the intersection of all models with the same zero element and successor function; N

is the only arithmetical structure-type that can be found within every model of arithmetic.

We shall consider each of these approaches in turn, starting with the first. Can we

ground our understanding of the structure of N in an application of mathematical induction

to the property of finitude? It seems as though being finite is a distinguishing feature of

standard elements of arithmetical structures. But, as it turns out, the term ‘finite’ can be

applied to any of a family of properties. Ultimately, none of these properties can lead us to

understand the structure of N.

2.3.1 Traditional and Intuitive Kinds of Finitude and Infinity

We seem to have an intuitive understanding of the difference between finitude and infinity,

and it is tempting to appeal to this intuitive difference to distinguish standard elements of

arithmetical structures from nonstandard ones. But unless we apply this difference suitably,

it will not distinguish standard models from nonstandard ones. Accordingly, it is important

to identify two features of how we are using this intuitive difference. First, we must identify

whether we are discussing finitude or infinity as intrinsic features of elements, or whether we

are discussing finitude and infinity in virtue of the place elements have in the arithmetical

structures in which they occur. And second, since there are distinct conceptions of infinity,

we must ensure that the intuitive difference we are using is in keeping with a conception

of finitude and infinity that successfully distinguishes standard elements from nonstandard

ones.

It might be the case that something is (or some things are) intrinsically infinite—

that something is infinite by its very nature. Perhaps this is the case with Anaximander’s

apeiron, or with the Abrahamic God, or with Descartes’s plenum (comprising space and its
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contents).15 Or perhaps certain large magnitudes—or large sets, pluralities, or collections—

are intrinsically infinite. Whether or not this is the case, the intrinsic finitude or infinity

of things will not be a property capable of distinguishing standard elements of arithmetical

structures from nonstandard elements. Suppose there is a nonstandard model of arithmetic

M in which all standard elements are intrinsically finite and all nonstandard elements are

instrinsically infinite. Then there are models isomorphic to M in which some standard

elements are infinite and some nonstandard ones are finite.16

Since it cannot generally be the case that standard elements of models of arithmetic

are finite and nonstandard elements are infinite, other features must get us to focus on

models that have intrinsically finite standard elements and intrinsically infinite nonstandard

ones. There must be some other relevant feature about the way the model is structured

that makes it the case that only standard elements are intrinsically finite. Two set-theoretic

ways of structuring models to ensure the finitude of (only) the standard elements are fairly

prominent in philosophy, thanks to Paul Benacerraf.17 One is the model of von Neumann

numbers, structured thus:

∅; {∅}; {∅, {∅}}; . . .n; n ∪ {n} . . .

Another is the model of Zermelo numbers, structured thus:

∅; {∅}; {{∅}}; . . .n; {n} . . .

The kind of intrinsic finitude found in these models is finite cardinality (finitely many),

which we shall address in §3.2. There are finitely many members of any standard element

on the von Neumann model, and there are finitely many pairs of brackets in any standard

15Descartes actually took the plenum to be indefinite, as opposed to infinite, because he was concerned
about the contrast with God’s infinity. But, although Descartes did not do this, one might take the plenum
to be intrinsically infinite.

16Consider the model M′ with all and only the same elements that M has, but in which the places of two
elements are swapped. One of those elements, n, is in the initial N-chain of M, and the other element, m, is
not in the initial N-chain of M. Hence, n is standard in M and nonstandard in M′; likewise, m is nonstandard
in M and standard in M′. Since all of the standard elements of M are intrinsically finite, n is intrinsically
finite, and so a nonstandard element of M′ is intrinsically finite. Similarly, m is intrinsically infinite because
it is nonstandard in M, so M′ has an intrinsically infinite standard element.

17See “What Numbers Could Not Be.”
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element on the Zermelo model. Other approaches of this type are similar.18 Setting aside

the details of these models, it seems that intrinsic finitude and infinity—in these models and

others—can only help us to understand the structure of N if they are tied to more general

structural features of the model. But then we are not using the elements’ intrinsic finitude

or infinity to understand the structure of N. Rather, we are using those other structural

features, to which intrinsic finitude and infinity are tied, to come to understand.

If finitude is to distinguish standard models of arithmetic from nonstandard ones,

then the relevant kind of finitude cannot be an intrinsic feature of elements. Rather, it must

be a feature that an element has in virtue of its place in an arithmetical structure. The

intuitive thing to say is that an element is finite or infinite in virtue of being finitely or

infinitely distant from zero. Presumably distance here is measured either using the elements

between the zero element and the element in question, or the iterations of the successor

function required to get from zero to the element in question.19

Given that the relevant kind of finitude or infinity has something to do with distance

from zero, several traditional conceptions of finitude and infinity will be unable to distinguish

standard elements from nonstandard ones. One idea commonly found in the history of

philosophy is that of the infinite as all-encompassing, complete, and whole. According to

this conception of infinity, the half-plane is finite because the other half of the plane is not

included in it, and likewise the entire plane minus one point is finite because of the single

point it lacks.20 Under this conception, even nonstandard elements are finite. The distance

18For example, Frege’s account is analogous to Zermelo’s and von Neumann’s, but makes it so that
standard elements are given in terms of there being finitely many objects in the extension of a concept. See
The Foundations of Arithmetic, §70-83.

19One might similarly say that a model is standard if any two elements of the model are finitely distant
from each other. This claim entails that any element of the model is finitely distant from zero. Since we only
need this latter property to ensure categoricity, and this latter property uses the same conceptual machinery
as the former does to get a categoricity result, we shall focus on the distance from zero.

20Spinoza suggests this in Definition 2 of Part I of his Ethics: “A thing is said to be finite in its ofn kind
when it can be limited by another thing of the same nature. For example, a body is said to be finite because
we can always conceive of another body larger than it.” Descartes also seems to present such an idea in the
Principles of Philosophy(Part I, §26), but he is careful to call this ‘indefinite’ as opposed to ‘infinite’. He
thinks we ought not to reason about the properly infinite.
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between zero and a given element could only include all of the elements of the model if there

were some last element of an arithmetical structure. But every element n of an arithmetical

structure, standard or nonstandard, has a successor that is not in the distance between 0

and n (inclusive). Hence, no element of an arithmetical structure is infinite in this sense.

Accordingly, the relevant conceptions of finitude and infinity cannot be the ones on which

the infinite is all-encompassing and the finite somehow incomplete or lacking.

Similarly, nonstandard elements will be finite under the common conception of the

infinite as boundless, unlimited, or unending, and the finite as bounded, limited, or coming-

to-an-end. There is a limit and a bound to the distance from zero to any given nonstandard

natural number. This is evident from the fact that any given nonstandard element has a

successor that is beyond the bound or limit of this distance. Since the conception of finitude

as bounded or limited admits nonstandard elements as finite, and not as infinite, this kind

of finitude and infinity cannot distinguish standard models from nonstandard ones, and so

cannot help us come to understand the structure of N.

Aristotle’s definition of infinity is of no help either. According to him, “A quantity is

infinite if it is such that we can always take a part outside what has already been taken.”21

If the distance between zero and nonstandard elements of arithmetical structures is such

that we can always take a part outside what has already been taken, then nonstandard

elements of arithmetical structures are infinite by Aristotle’s definition. But since we are

operating with second-order resources, we can take sets of elements of arithmetical structures

as individuals.22 So, for any n, we can take the set of n and its predecessors all at once;

once we do that, there is no part of the distance between 0 and n that has not already been

taken. Because we are using second-order resources that allow us to take large sets (and all

21Physics III.6, 207a8.

22Technically, we are only using properties of elements in this version of second-order induction, and not
sets. We shall address sets in the next section. But Aristotle’s definition is about parts of wholes, and we are
not talking about intrinsic features of elements of arithmetical structures. Accordingly, discussion of parts
of wholes here must be modeled as analogous to susets of sets. To more faithfully restrict ourselves to the
property version of second-order PA, we should think of the relevant sets as extensions of properties.
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of their elements) all at once, nonstandard elements are again finite in the sense of Aristotle’s

definition. We cannot use this conception of infinity to distinguish the standard elements of

arithmetical structures from the nonstandard ones.

A fourth conception of the finite and infinite is that of the finite as traversable and

the infinite as not.23 I take this to be the most intuitive idea of finitude and infinity we

have in mind when we take such properties to distinguish standard elements of arithmetical

structures from nonstandard ones. The idea is approximately this: if you start at zero and

go through the numbers towards some nonstandard number n, you will never get there—you

will never reach n. Since it is not possible to traverse the distance from 0 to n, n is infinite.

But traversability alone will not suffice; we need some restrictions on what it is for a

distance to be traversable. Given infinite time, we could reach a nonstandard number; we

must restrict ourselves to finite time. Counting infinitely fast or with infinitely large intervals,

we could reach a nonstandard element; we must restrict ourselves to finite counting speeds

and finitely large counted intervals. The restrictions we place on what it is for a quantity to be

traversable, then, end up presupposing a robust notion of finitude. In fact, they presuppose

what seems to be the very notion of finitude that we are attempting to articulate.

Our idea of a distance that is traversable in the relevant sense is our idea of something

that is accessible in finitely many steps—that is, accessible in a finite number of ordered steps.

If we have the idea of something being traversable in the relevant sense, then we already have

the idea of a standard element of an arithmetical sequence. Our intuitive understanding of

what it means for a distance to be traversable depends on our understanding of the structure

of N. If we can traverse something, then there is some (standard) natural number of steps

we can take to reach the end; if we cannot traverse something, then we can follow through an

entire N-chain worth of steps without reaching the end. Our idea of the finite as traversable

presupposes our having the idea of finitely many ordered steps or iterations, which is just

the same as having the idea of the structure of N. Since understanding the relevant property

23This is found in Aristotle’s Metaphysics K and Physics III, among other places.
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of finitude requires understanding the structure of N, we cannot use this traversability kind

of finitude (together with mathematical induction) to come to understand the structure of

N. If we use this property, it is because we understand the structure of N already.

2.3.2 Technical Definitions of Finitude

Intuitive ideas of finitude and infinity cannot help us come to understand the structure of N.

But perhaps technical definitions of the finite and infinite can help; several have been given

in mathematics. All of these are (or are derived from) definitions of finitude and infinity in

sets. They are definitions of what it is for there to be finitely or infinitely many things—that

is, what it is for a set to have finite or infinite cardinality. I will address the two most

prominent definitions; others are similar.24

Most commonly, a set is called finite if it can be put into one-to-one correspondence

with the natural numbers between zero and some natural number n. The presupposition

here, of course, is that n must be a standard natural number. The circularity problem

arises again. If we rely on an antecedent understanding of the structure of N to develop our

understanding of the property of finitude, then it cannot be that we rely on an antecedent

understanding of the property of finitude to come to understand the structure of N.

A second technical definition of finitude and infinity in mathematics is attributed to

Dedekind.25 A set is Dedekind infinite if its elements can be put into one-to-one correspon-

dence with the elements of one of its proper subsets; if they cannot, the set is Dedekind

finite.26 The predecessors of standard natural numbers comprise Dedekind finite sets, and

24At least, they are similar enough that my arguments can easily be adjusted to account for them. On
one definition, for example, a set is infinite if there exists a relation on it such that (a) for every n, there is
some m such that nRm; (b) the relation is antisymmetric (mRn→ ¬mRn); and (c) the relation is transitive
(nRm∧mRl→ nRl). Hopefully, after reading my arguments against using Dedekind infinity to account for
our understanding, it will be fairly clear why this definition would not work either.

25Dedekind gives the definition in §64 of The Nature and Meaning of Numbers. In the preface to the second
edition of that work, he acknowledges that Cantor and Bolzano also might legitimately be credited with this
definition, though they did not use it as a foundation for the theory of natural numbers, as Dedekind did.

26Technically, a set is Dedekind infinite if there is a bijection (one-to-one and onto mapping) between the
set and one of its proper subsets. According to the Schroeder-Bernstein Theorem, if there is a one-to-one
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the predecessors of nonstandard natural numbers comprise Dedekind infinite sets.27 So, the

property of Dedekind finitude distinguishes standard natural numbers from nonstandard

ones. This fact opens up two strategies we might use to come to understand the structure

of N. We might use the property of Dedekind infinity to understand how to rule out non-

standard models, which have elements whose predecessors comprise Dedekind infinite sets.

Or, we might use the property of Dedekind finitude to build up a positive understanding of

features peculiar to standard models.

Intuitively, the strategy of ruling out nonstandard models seems to get something

wrong in the order of explanation. If we are to categorize something, we must know what

we are categorizing. So, in order to categorize a model as nonstandard on the grounds that

it has an element with Dedekind infinitely many predecessors, we must already understand

the structure of the model we are so categorizing. But it seems like we come to understand

nonstandard structures like N+QZ and N+ RZ, for example, through our understanding of

N, and not vice-versa; after all, every nonstandard model of PA1 begins with an N structure.

Furthermore, ruling out nonstandard models could not lead us to understand the

structure of standard models. Categorizing structures as nonstandard will only help us to

know what the structure of N is not, rather than what it is. While the process of elimina-

tion might help us identify an already-understood structure that is not eliminated in this

way (i.e. that has no elements whose predecessors comprise Dedekind infinite sets), elimi-

nating alternatives will not help us understand the structure of N. We will only understand

the structure of standard models after completing the process of elimination if we already

understand that structure before beginning the process.

mapping from set A into set B, and a one-to-one mapping from set B into set A, then there is a bijection
between sets A and B. Since there is clearly a one-to-one mapping from any subset into the set of which it is
a subset (the identity mapping), so long as there is a one-to-one mapping from the set into its subset, there
will be a bijection between the two.

27Let n be a nonstandard natural number. Let Pn be the property of being a predecessor of n (in the
relevant model). Let Pn’ be the property of both being a predecessor of n and not being zero. Then for all
of the elements m in the initial N-chain of the model (which all satisfy Pn), we can map m to S(m). For all
of the elements m′ that satisfy Pn but are not in the initial N-chain, we can map m′ to itself. Since this is
a one-to-one mapping, the set determined by Pn is Dedekind infinite.
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Perhaps, though, we use the property of Dedekind infinity to come to understand

the structure of N without relying on the process of elimination. Rather, using the fact

that every element of a standard model has a particular feature (viz. that its predecessors

comprise a Dedekind finite set), we might build up a positive understanding of the structure

of standard models. To do this, we must make sense of the feature in a way that gives us

insight into how elements with that feature are situated in models of arithmetic.

In order to come to understand the structure of N through the property of Dedekind

finitude, we must consider the mappings (and/or types of mappings) that Dedekind finite

sets of predecessors can and cannot support. In particular, the set of predecessors of an

element of a standard model of arithmetic cannot support one-to-one mappings into any

of its subsets. So, every one-to-one mapping from such a set into itself is also an onto

mapping; every element of the set is in the image of every one-to-one mapping from the set

into itself. But we cannot survey all of the one-to-one mappings from the set of predecessors

of an arbitrary element into itself, since we are cognitively incapable of surveying all of

the elements of a sufficiently large set, finite or infinite. There are many more one-to-one

mappings from a sufficiently large set into itself than there are elements of that set, and it is

only possible to think through all such mappings individually if we are already able to think

through the entire set of predecessors.

In order to use the property of Dedekind finitude to come to understand the structure

of N, then, we must consider fairly specific types of mappings that the set of predecessors

of a standard element cannot support, but that the set of predecessors of a nonstandard

element can support. Suitable types of mappings both must be cognitively accessible to

us and must in some way guide us to understand the key structural difference(s) between

Dedekind finite and Dedekind infinite sets of predecessors. Presumably suitable types of

mappings will distinguish Dedekind finite sets from Dedekind infinite sets in virtue of the

fact that whenever the set is Dedekind infinite, at least one mapping of the type will be a

one-to-one mapping into a proper subset.
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The cognitive accessibility constraint on mappings is significant. If a type of mapping

is to distinguish Dedekind finite sets of predecessors from Dedekind infinite sets of prede-

cessors, it must be a type of mapping that can be applied to sets with many more elements

than we are cognitively capable of surveying individually. The mappings, therefore, must be

in accord with relatively simple patterns or rules—patterns or rules that we can understand.

And while there may well be different mapping rules (or disjunctive mapping rules) for dif-

ferent subsets of the set of predecessors (e.g. m maps to S(m) for all odd numbers of the set,

and m maps to itself for all even numbers of the set), cognitive accessibility demands that

the mappings not involve different rules for too many disjoint sets of predecessors.

In fact, any suitable mapping type must involve disjunctive mapping rules, in which

the rule (or part of a rule) that determines where an element gets mapped depends on which

(proper) subset(s) of the domain contain the element. Without disjunctive mapping rules,

it is not possible to map even a Dedekind infinite set of predecessors into one of its proper

subsets in a one-to-one and cognitively accessible way. This is the case because every set of

predecessors of an element of an arithmetical structure has both a first element and a last

element, according to the predecessor ordering. Intuitively, if the mapping does not shift the

placement of any elements (i.e. every element maps to itself), then its image is not a proper

subset. If, on the other hand, the mapping shifts all elements by the same rule (e.g. each

element m maps to S(m)), it shifts the first element and the last element in the same way

as it does all the others; its image then includes things outside the subset (e.g. the successor

of the last element). In any case, non-disjunctive mappings cannot witness the Dedekind

infinity of any set of predecessors with a first and last element.28

A suitable class of mappings must witness the difference between Dedekind finite and

Dedekind infinite sets of predecessors. Accordingly, such a class must include disjunctive

mappings (at least on all Dedekind infinite sets of predecessors). Furthermore, if all of the

28Admittedly, I have not established this point beyond doubt. But I challenge the reader to come up with
a counterexample—a cognitively accessible, non-disjunctive mapping from a set of predecessors into itself
that can witnesses the set’s being Dedekind infinite, if indeed it is.
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subsets on which the disjuncts of a disjunctive mapping rule are defined have both a first and

a last element, the mapping cannot witness that a set of predecessors is Dedkind infinite.

In order for a mapping to witness the Dedekind infinity of a set of predecessors, at least

one disjunct of the mapping rule must only apply on a subset with either no first element

or no last element. So, in order for a class of mappings to help us distinguish Dedekind

finite sets of predecessors from Dedekind infinite ones, the class must include mappings of

this sort—mappings with at least one disjunct of the mapping rule defined on a subset with

either no first or no last element—precisely when the class contains mappings over Dedekind

infinite sets of predecessors. If we are to use Dedekind finitude and Dedekind infinity to come

to understand the structure of N, we must be able to recognize when a set of predecessors

contains a subset with no first element or with no last element. We must be able to recognize

when a set of predecessors contains a progression of elements, ascending or descending, with

no final element.

An example will help illustrate this point. Consider the class of mappings that take

m to S(m) for m in some initial segment of the progression of successors up to some element

n, and take m to itself for all of the other predecessors of n. Intuitively, these mappings shift

elements at the beginning of the set of predecessors up one spot, and hold stationary elements

at the end of Pn. Notice that the image of the set of predecessors of n under any such mapping

is a proper subset of itself because it does not include the element 0. This class of mappings

will include one-to-one mappings (and hence will be Dedekind infinite) exactly when there

are progressions of successors of n with no final element. So, if we understand what it is

for the predecessors of some arbitrary element n to include a progression of successors with

no final element, we can understand the difference between Dedekind finite and Dedekind

infinite sets, and hence can understand the structure of N.

In any model of arithmetic, the full set of predecessors of any nonzero element is a

set with a least element, viz. zero, and a greatest element, viz. the immediate predecessor

of the element whose predecessors comprise the set. If we are to distinguish Dedekind
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finite sets of predecessors from Dedekind infinite sets of predecessors, we need to understand

some difference between the structures of these two kinds of sets. It seems that our route

to understanding this difference requires us to understand what it is for an ordered set of

predecessors to contain within it a progression with no final element. This could be an

ascending progression that goes from each element to a greater element, or it could be a

descending progression that goes from each element to a lesser element.

Either way, if the properties of Dedekind finitude and Dedekind infinity help us

to understand the structure of N, we must be able to understand the difference between

Dedekind finite and Dedekind infinite sets of predecessors, which requires us to understand

what it is for a set of predecessors to contain such progressions. We shall soon see that this

same type of antecedent understanding is required for us to come to understand the structure

of N through the two other standard second-order means: the taking of intersections and

the least number principle.

2.3.3 Taking Intersections

Another second-order method is rather different, at least superficially. Instead of using

a property and second-order mathematical induction to establish the structure of N, this

approach relies on the set-theoretic operation of intersection to define the N-structure.29 In

brief, a standard model of arithmetic is one whose domain is the intersection of—the set of

elements that are common to—all the domains of all the models of arithmetic that share

some particular ground element and some particular successor function.30 The domain of

this standard model, then, is that of the initial N-chain part of the progression of successors

29Dedekind, for example, presents a definition much like the one presented here. He then uses that
definition to prove the validity of second-order induction. See The Nature and Meaning of the Natural
Numbers.

30Two issues deserve note here. One is that two models of arithmetic cannot share the exact same successor
function. But one can be a restriction or an extension of the other. The other is that we must quantify over
all sets of elements if we are to take the interection of all of the models of PA1 that share an element and a
successor function. This is a case of unrestricted comprehension, which leads to paradox. But the approach
is easily salvaged if we take some particular model of PA1 to quantify over all of its submodels.
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beginning with the identified ground element.

If we are to use this type of definition to come to understand the structure of N,

we must recognize that the relevant intersection is nonempty, and in fact is itself a model

of PA1. Presumably we can recognize this. Trivially, 0 must be in the intersection of all

the domains of models of PA1 that begin with 0. Since every element in these domains

has a successor, S(0) must also be in the intersection, and S(S(0)), and so on. No element

contained in the intersection can be the last such in the progression of successors.

Let us try to build up an understanding of N from the resources currently available.

Let m be an element that is nonstandard according to the intersection definition. We are

aware that such elements exist in some models because we appreciate the fact that taking

intersections sets a restriction on models of PA1; otherwise, taking intersections would not

help us hone in on the N-structure. Then, since m is nonstandard, it is not in the intersection

of all models beginning with 0. So, there is some progression of successors beginning at 0

that has no last element, and all of the elements of which are predecessors of m. Clearly

m is not the ground element of a model in which it is a nonstandard element, so m has an

immediate predecessor. Its immediate predecessor also is not in the intersection, since by

hypothesis m is not in the intersection and the immediate successor of any element in the

intersection is also in the intersection. Neither is the predecessor of m’s predecessor, nor

its predecessor, and so on. Hence there is a progression of immediate predecessors, starting

with m, that are not in the intersection of the domains of all the models of PA1 that begin

with 0. Furthermore, this progression cannot have a final element.31

Thus, it seems that we can use the intersection method to provide a sufficient, thor-

ough account of the structure of N. The intersection definition gives us the resources to de-

31This result is easy to demonstrate. If there is a final element, m′, then either m′ lacks an immediate
predecessor in the model, or it has one. If m′ has no immediate predecessor in the model, it is the ground
element; m′ would then be in the intersection. If m′ has an immediate predecessor, that predecessor must
be in the intersection; otherwise it would be in the sequence. But then m′ would be the immediate successor
of an element in the intersection, and so would also be in the intersection. But m′ was defined as an element
of a progression that is not in the intersection. So m′ can neither have nor lack an immediate predecessor;
we reach a contradiction if we assume that there is a last element to this progression of predecessors.
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scribe the structure of the standard model as that of the smallest successor- and 0-preserving

model contained in any model of PA1. We can use this description to come to understand

that structure, provided that we understand what it is for every element of the model to have

a certain feature: every progression of immediate predecessors beginning with that element

must have a final element. This, of course, is the very same feature we need to understand if

we are to come to understand the structure of N through the properties of Dedekind finitude

and Dedekind infinity.

2.3.4 The Least Number Principle

The third second-order method of definitionally distinguishing the structure of N from the

structures of nonstandard models of PA1 uses the least number principle. Recall this prin-

ciple from §2: every non-empty set of numbers has a least number. That is, if the set is

non-empty, then there is an element of the set that is less than every other member of the

set. In symbols:

(∀P )

(
(∃x)Px→ (∃x)

(
Px ∧ (∀y)

(
Py → (y = x ∨ x < y)

)))
.

The least number principle holds for standard models of arithmetic, but not nonstandard

ones. Intuitively, this is clear from the fact that nonstandard models contain Z-chains, whose

elements comprise sets with no least element. But this insight cannot explain how we come

to understand the structure of N through axioms. If we come to understand the structure

of N because we antecedently understand the structure of Z, our understanding of the N-

structure instead is grounded in whatever grounds our understanding of the Z-structure,

which will encounter analogous challenges.

Presumably there are far too many sets of elements in a model of PA1 for us to survey

to ensure that every set has a least element. Perhaps, however, we can again focus on fairly

specific and accessible classes of sets—ones that distinguish standard models of PA1 from
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nonstandard ones in virtue of whether or not the classes include any sets that violate the

least number principle. The paradigmatic example of such an accessible class is, yet again,

that of the descending progressions of immediate predecessors of elements. An element of a

standard model cannot have a descending progression of predecessors with no final element

because the elements of such a sequence would comprise a set with no least element.

2.3.5 Descending Progressions

We have already seen that first-order axioms are not robust enough to ground our under-

standing of the structure of N. While second-order axioms (interpreted with their full seman-

tics) are robust enough to uniquely characterize that structure, the more intuitive approaches

we might use to identify the structure they characterize cannot help us to understand the

structure of N; these approaches require us to antecedently understand that structure. We

are left, then, with more technical second-order approaches. It has become apparent that the

three standard technical definitions of the N-structure that we have considered—definitions

of infinity, the intersection of sets, and the least number principle—are only able to guide

us to the structure of N, in all three cases, if we understand what it is for there to be a

descending progression of immediate predecessors that begins with one element but has no

final element.32 We must then come to understand what it is for each element of a model of

arithmetic to have no such descending progression of predecessors. To understand this is to

understand the structure of N.

That is not to say, however, that we have discovered how to use axioms to come to

understand the structure of N. Making sense of verbal expressions (‘the element begins no

decending progressions of predecessors with no final element’ or ‘every descending progression

of immediate predecessors beginning at the element has a final element’) is not enough. To

32Alternatively, these approaches might require us to understand what it is for the predecessors of an
element to include an ascending progression of successors starting at zero that has no final element. But
these two ideas amount to the same thing. One is a descending progression starting at some element n and
ending before 0; the other is an ascending progression starting with 0 and ending before some element n.
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come to genuinely understand the structure of N, we must fully understand the structural

limitations that the property so described imposes on an element of an arithmetical structure.

And if we genuinely understand what it is for an element to have this feature—for it to begin

no descending progressions of predecessors that lack a final element—we must understand

the most simple and basic structure of a progression with no final element. And that is the

structure of N. It seems, then, that we must already understand the structure of N if we are

to successfully identify that structure by second-order means. We cannot use PA2 to come

to understand the structure-type of N.

2.4 Resisting Relativism

One stance that could be taken in response to this result is the stance that there is no

standard or intended model of arithmetic. There are only models of arithmetic. Some

interpret Skolem to have taken such a view in his later years,33 and Putnam seems also to

have entertained a view of this sort.34 In both cases the view (or putative view) appears in

response to the fact that first-order axioms cannot describe a structure up to isomorphism.

We made two fairly substantive assumptions early in this paper. (1) There is a stan-

dard model-type of arithmetic, with the structure of N. (2) We understand that model well

enough to distinguish it from nonstandard models. Taking a skeptical or relativistic posi-

tion on either of these assumptions has serious consequences—consequences that ultimately

serve to undermine the motivational grounds of that denial. Denying (1) renders the idea of

a ‘finite’ set ultimately meaningless. Denying (2) interferes with our ability to use the term

‘finite’ (or the concept) to pick out an unambiguous property in the world. Denying either of

these assumptions completely undermines our ability to use reasoning about arbitrary finite

things (e.g. finite sets) or anything infinite.

Notice that the very idea of a sentence of a first-order language becomes ambiguous

33See Benacerraf and Wright, “Skolem and the Skeptic.”

34See Putnam “Models and Reality.”

67



when we deny (1) or (2); a sentence has finite length. Accordingly, the very set-theoretic

results that we use to conclude that first-order sentences cannot characterize structures up

to isomorphism all end up relying on the assumed categorical (and understood) structure

of N. These results also all presuppose the idea of finitude in more explicit ways.35 If the

set-theoretic results depend on the idea of a standard model, we ought not to use those

results to motivate the view that there is no standard model.

But lastly, it is just deeply implausible that we are unable to reason about finitude

and infinity. Surely we are making an unambiguous claim when we claim that there are

infinitely many prime numbers, or that Euclidean space is Archimedean (i.e. that we can

cover any distance of Euclidean space with finitely many copies of any other distance of

Euclidean space). Surely we are disinclined to deny the meaningfulness of these sorts of

claims.

If we are to do any interesting math at all, it seems that we must accept the uniqueness

(up to isomorphism) of the structure of N. We also must understand that structure-type.

If, as I have argued, we cannot get this understanding from axioms, then we must get it

elsewhere. The structure of N, it seems, is basic, primitive, and foundational.

35The statement of Compactness, for example, makes use of idea of finite subsets. The Lowenheim-Skolem
Theorem makes use of countable sets—i.e. sets that can be put into one-to-one correspondence with the
(standard) natural numbers.
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2.5 Appendix I

We must show that no first-order set of sentences can characterize N up to isomorphism. In

order to do so, we shall use the Compactness Theorem, which is the theorem that a set of

first-order sentences has a model as long as all of its finite subsets have models. And we

shall argue by contradiction.

Suppose that there is a set, Γ, of sentences that characterizes the structure of N up to

isomorphism. Then every finite set of sentences of Γ is satisfied by N, so every finite subset

of Γ has a model. Now, we shall expand Γ to Γ′, whose members include all of the members

of Γ, and also all of the following sentences:

(∃n)n 6= 0,

(∃n)(n 6= S(0) ∧ n 6= 0), [i.e. n 6= 0 ∧ n 6= 1]

(∃n)(n 6= S(S(0)) ∧ n 6= S(0) ∧ n 6= 0), [i.e. n 6= 0 ∧ n 6= 1 ∧ n 6= 2]

and so on, for all of the sentences that can be so formed. (Recall that all sentences are finite.)

Now, notice that any finite subset of these new sentences will be satisfied in N. So, since

evry finite subset of Γ is satisfied in N, and every finite subset of these additional sentences

is satisfied in N, any finite set of sentences of Γ′ is satisfied in N. By Compactness, then, Γ′

has a model. But the model of Γ′ must contain an element not in N, since it satisfies these

additional sentences. So, Γ′ has a model that is not iomorphic to N. Since this model, M,

satisfies Γ′, it must also satisfy its subset Γ. So, Γ did not uniuely characterize the structure

of N. We reach a contradiction with our supposition. So, no first-order theory can uniquely

characterize the structure of N.
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2.6 Appendix II

SupposeM and N are both models of second-order PA. Then construct a mapping f : M→ N

as follows:

f(0M) = 0N

f(SM(n)) = SN(f(n))

Clearly f preserves the ground element and the successor relation. To show that f is an

isomorphism, we must only show that it is a one-to-one and onto mapping, and that it

preserves predecessors.

Onto: Suppose f is not onto. That is, suppose there are n ∈ N that f does not

map to. Then we can define a proper subset N* of N: N* is the image of M under f .

Now consider induction using the subset N*. Since f(0M) = 0N, 0N ∈ N*. Also, for any

n ∈ N to also be in N*, there must be some m ∈ M such that f(m) = n. Since M satisfies

second-order PA, it is closed under successor, so SM(m) ∈ M. Using the definition of f ,

then, f(SM(m)) = SN(f(m)) = SN(n). So, if n is in the image of M under f , then so is

SN(n). So, if n ∈ N*, then SN(n) ∈ N*. But since N* is a proper subset of N, N could not

have satisfied second-order PA. Since N does satisfy second-order PA, the supposition must

have been false, and f must be onto.

One-to-one: Suppose f is not one-to-one. That is, suppose f maps some distinct m

and m′ in M to the same n in N. Then let M* be the set of those m in M such that for all

m′ <M m, f(m) 6= f(m′). Then, given our supposition, M* is a proper subset of M. Since

there is no m <M 0M, it is clear that 0M ∈M*. Now suppose m ∈M*, and f(m) = n. Then

no m′ <M m is such that f(m′) = f(m). Now suppose SM(m) is not in M*. Then for some

m′ <M SM(m), we get f(m′) = f(SM(m)) = SN(f(m)) = SN(n). If m′ = 0M, then 0N =

f(0M) = f(m′) = SN(n), which violates the axioms of PA. If m′ 6= 0M, then m′ = SM(m′′)

for some m′′ ∈ M. But then SN(f(m′′)) = f(SM(m′′)) = f(m′) = SN(n). Since N satisfies

second-order PA, SN is one-to-one, so f(m′′) = n = f(m). But if SM(m′′) = m′ <M SM(m),
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then m′′ <M m, and we already have from the supposition that m ∈ M* that no m′ <M m

is such that f(m′) = f(m). So, if m ∈ M*, then SM(m) ∈ M*. But since M* is a proper

subset of M, M then fails to satisfy second-order induction. So f must be one-to-one.

Predecessor: We proceed by induction. We will show that for arbitrary n, the follow-

ing holds for all m: m <M n→ f(m) <N f(n).

Case 1: m = 0M. Suppose 0M <M n. Then 0M 6= n, by antisymmetry. And by

the definition of f , f(0M) = 0N. Since f is one-to-one, f(n) 6= 0N = f(0M). So, then,

f(0M) = 0N <N f(n) 6= 0N. The result holds.

Case 2: Suppose m <M n → f(m) <N f(n). We must show SM(m) <M n →

f(SM(m)) <N f(n). Suppose not. Then SM(m) <M n and f(SM(m)) ≮N f(n). By the

latter, and the definition of predecessor, (i) f(SM(m)) = f(n) or (ii) f(n) <N f(SM(m)).

If (i), then since f is one-to-one, SM(m) = n, contradicting SM(m) <M n. If the latter,

f(n) <N f(SM(m)) = SN(f(m)) by the definition of f . Now, notice that if f(n) <N SN(f(m)),

then f(m) ≮N f(n). This is a specific case of if A < S(B) then B ≮ A. Since, then,

f(m) ≮N f(n), by the original supposition, m ≮M n. But then SM(m) <M n. cannot be

true, as we had concluded it was. So we reach a contradiction. Thus, the second supposition

must be false, and the case must hold. So, by mathematical induction, the result holds for

all m.

Thus, we have that f is an isomorphism, so M and N are isomorphic. Since these

were two arbitrary models satisfying second-order PA, the axioms of second-order PA are

categorical, and pick out the standard models of arithmetic.
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Chapter 3

On Interaction Problems and Hume’s

Principle

Platonists about mathematics face two intuitively gripping problems that I call ‘the inter-

action problems’. This chapter addresses a fairly prominent neo-Fregean attempt to resolve

these problems by appealing to an implicit definition. I argue that this approach, proposed

by Bob Hale and Crispin Wright, cannot succeed. The view seems to be committed to an

implausible claim about the origin of mathematical thought, viz. that all cognition of the

natural numbers is grounded in a particular truth-making stipulation. The stipulation re-

quired is only possible with fairly robust logical resources that were not available until long

after people had established arithmetical thought.

3.1 Interaction Problems for Platonism

Mathematical platonism is the view that there are abstract mathematical objects, and that

mathematical truths describe the properties of and relations between these objects. For

example, it is true that 2+3=5 in virtue of relations that hold between 2, 3, and 5, all of

which are abstract objects. Of course, it is difficult to explain what it is to be an abstract

object. The standard characterization is largely negative: abstract objects are not spatial,
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they are not temporal, and they are not in the causal order of things. This characterization of

abstract objects as outside the causal order leaves platonism about mathematics vulnerable

to two challenges: the interaction problems.1

The first interaction problem, posed by Paul Benacerraf,2 highlights an apparent

tension between our inability to causally interact with abstract mathematical objects and

our ability to know things about such objects. If abstract mathematical objects are not

causally efficacious, how do we come to have knowledge of their properties and relations?

That is, how do we come to know mathematical truths? We cannot, for example, come to

know the properties of causally inert objects through ordinary perception, as we come to

know so many other truths. The platonist is challenged to provide an epistemology that

accounts for mathematical knowledge in a way that is contiguous with a reasonable account

of knowledge in non-mathematical cases.

The second interaction problem, posed by Bob Hale and Crispin Wright,3 is similar

to the knowledge problem.4 There is an apparent tension between our inability to causally

interact with abstract mathematical objects and our ability to refer to such objects. How do

we account for the fact that abstract objects are the referents of our mathematical terms?

A causal-historical picture of reference, for example, seems not to cover reference to mathe-

matical abstracta, again because they are causally inert. Thus, the platonist faces a second

challenge: identifying a reference-fixing mechanism for mathematical terms that is contigu-

ous with a reasonable account of reference-fixing for non-mathematical terms.

The interaction problems typically strike philosophers as intuitively compelling.5 Pre-

1Perhaps other veins of platonism are also vulnerable to the interaction problems. In this paper, I only
consider the case of platonism about mathematics.

2See “Mathematical Truth” in The Journal of Philosophy 1973.

3See “Benacerraf’s Dilemma Revisited,” in European Journal of Philosophy, 2002. Until otherwise noted,
all references to Hale and Wright are references to this paper.

4Benacerraf does not directly present this problem, but comes very close.

5Benacerraf’s knowledge problem, in particular, has been one of the central problems in the philosophy
of mathematics since “Mathematical Truth” was published in 1973.
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sumably, the fact that we cannot causally interact with mathematical abstracta makes it

obscure to us how we might come to think about them at all. A worry about our ability to

come to think about mathematical abstracta in the first place is, I think, at the heart of the

interaction problem for reference. Very likely, the interaction problem for knowledge initially

was presented to address that same worry. But the knowledge case is potentially even more

difficult. Not only must we be able to think about these objects, we must be able to think

about them in a truth-tracking way. After all, mathematical knowledge is paradigmatically

secure.

3.1.1 Descriptions, Interaction, and Object-Directed Thought

The source of our worry about coming to think about causally inert mathematical abstracta,

however, is not entirely clear. We routinely come to think about, know about, and refer to

things with which we do not directly interact causally. I can refer to and know truths

about Julius Caesar, though we have had no direct causal interaction. That said, I have

interacted with Caesar causally, albeit indirectly, through a chain of causal interactions of

communication somehow grounded in long-ago perceptions of the man himself.

It also is fairly clear that we refer to things with which we have not causally interacted,

directly or indirectly, in any way that grounds object-directed thought. We do so using

definite descriptions. For example, I can think about and refer to the oldest living man

who has summitted Mt. Everest. In fact, in saying that, I just did refer to him. My

ability to refer to this man through a definite description in no way presupposes any kind of

interaction with him through any of the relevant causal channels, such as perception or acts

of communication.6

I even have identifying knowledge of the individual that I am able to think about

through this description. I know that he is the oldest living man who has summitted Mt.

6Presumably I do have some very indirect physical interaction with the man in question, for butterfly-
effect reasons. But that is not the kind of physical interaction that is usually taken to ground the ability to
think about a thing.
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Everest. All I had to do to get this knowledge (that the oldest living man who has summitted

Mt. Everest is the oldest living man who has summitted Mt. Everest) was state the law

of self-identity in the case of a definite description that I know has some unique satisfier,

I know not what. And not all of my knowledge of this man is trivial. I know that he has

summitted a taller mountain than I have, and that he is older than I am.

What, then, is the problem with coming to think about causally inert mathematical

abstracta? A definite description provides the resources required to refer to and know things

about an object, including nontrivial things, without having the right kind of causal connec-

tion to it. But in the case just considered, we do have the right kind of causal connections

to the elements of that description. Perhaps we haven’t seen Mt. Everest (I haven’t), but

all of us have heard about it from others.7

Mathematical abstracta also satisfy definite descriptions. Five, for example, is the

number of fingers on my left hand. But we do not have causal interactions with all of

the parts of this description. In order to refer to the number five using this description, I

presumably must already be able to think about number. No causal story can explain how

that is possible. This is what is at issue in the interaction problems.

It is somewhat tempting to think that we cannot think about an object unless we

have the right sorts of causal connections, either to it or to the elements of an identifying

description of it. Hale and Wright credit a related and objectionable assumption with mak-

ing many philosophers take the interaction problems to be rather more hopeless than they

actually are. The assumption is that some kind of interaction with an object is required to

think about that object, and that this interaction depends on a causal connection—in partic-

ular, a physical connection—with the object.8 This assumption is objectionable because, as

7I am not entirely sure what to say about the other terms used in the description. I would like to say that
I am familiar enough with the concepts of ‘older’ and ‘man’ and ‘living’ to make sense of the description. I
have causally interacted with instances of each of these concepts, and I have done so in ways that seem to
be relevant for thinking about things.

8Strictly speaking, they only identify this assumption in the case of the knowledge problem. But that
is only because they identify the assumption before presenting the reference problem. They also do not
consider the possibility of definite descriptions in this discussion.
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Hale and Wright point out, it “is obviously inimical to the abstract.” That seems right. To

assume that only physical interaction will do is to make an extreme physicalist assumption.

Even if it is not immediately obvious to us how we might come to think about objects with

which we do not causally interact, we ought not to assume it to be impossible.

3.2 The Fregean Solution

Hale and Wright claim that a neo-Fregean solution can resolve the interaction problems

for some mathematical abstracta: the natural numbers. The general strategy is to devise an

account of how we could come to understand descriptive phrases like ‘the number of fingers on

my left hand’ that does not require causal interaction with numbers. We could then provide

those numbers with new names, e.g. ‘five’. On Frege’s account, we could ground our grasp of

the meanings of number-words in our grasp of the meanings of words of other sorts.9 If this

account succeeds, it both gives us the ability to think about some mathematical abstracta

and provides a sufficient basis for us to come to know quite a bit about arithmetic.10

In our discussion of this Fregean solution, let us grant two controversial claims. First,

let us grant that number-words pick out abstract number-objects;11 our goal is to explain

9See The Foundations of Arithmetic §62-70, pp. 73-81 in the English translation.

10From Hume’s Principle, which is central to Frege’s account, it is possible to derive a version of the
Dedekind-Peano axioms.

11Frege does not assume this, and takes some effort to establish it. The first step in his argument for this
in the Foundations is to establish that, grammatically, number words are singular terms.

On the surface, there are two grammatical uses of number words. Number-words can be used as singular
terms, as in, ‘The number of fingers on my left hand is five’. But they can also be used as modifiers, as in, ‘I
have five fingers on my left hand’. Wright (in Frege’s Conception of Numbers as Objects, pp.11-12) identifies
three reasons that Frege has for believing that number-words fundamentally figure as singular terms and not
as modifiers. First, the same content that is expressed by sentences using number-words as modifiers can
also be expressed by sentences that use number-words as singular terms. In the examples above, the content
of the sentence featuring a modificational use of the word five can be expressed equally well by the sentence
using the word five as a singular term. Second, “we readily apply the definite article to number words and
expressions,” as in ‘the number of fingers . . . ’ or ‘the number five’. And third, identity statements involving
numbers are central to number theory.

After establishing that number words are singular terms, Frege argues further in §55-62 that “number
words are to be taken as standing for self-subsistent objects.” In “Frege’s Platonism,” (The Philosophical
Quarterly 1984) Hale gives a succinct account of a Fregean argument for this claim:

[I]f there is a range of expressions members of which function as singular terms in true
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how number words come to do this. Second, for the sake of argument, let us grant the

context principle, which is an important starting point for Frege in the Grundlagen. This

is the principle that words only have meaning in the context of sentences.12 It is a general

principle for Frege. So, the name ‘Mt. Everest’ only has meaning in the context of sentences

involving the name ‘Mt. Everest’. Number words (e.g. ‘five’) only have meaning in virtue

of the meanings of sentences involving them (e.g. ‘The number of fingers on my left hand is

five’ or ‘Three and two add up to five’). If Hale and Wright can use the context principle to

resolve the interaction problems in a plausible way, they have made considerable progress.

Assuming that numbers are self-subsistent abstract objects and that we can only

grasp the meanings of number words in the context of sentences containing them, the status

of the remaining problem stands thus, in Hale and Wright’s words:

The outstanding question, after Frege’s re-orientation of the issues, is how an

understanding may be acquired of those forms of statement which, if true and

taken to involve the reference to and quantification over abstracta which they

seem to involve, serve to give us the means to think of and refer to such objects.

(22)

One relevant form of statement is that of identity statements. Identity statements are central

in arithmetic; this observation plays a significant role in Frege’s argument that number-words

pick out self-subsistent objects. Given their centrality to the science of arithmetic, identity

claims involving number-words must be meaningful. Providing the meanings of identity

statements involving number-words appears to be a promising approach to grasping the

meanings of number-words.

statements, then there exists a range of objects corresponding to them. But numerals and
other numerical expressions do so function—notably, though not exclusively, in . . . arithmetical
equations. Hence there exists a range of numerical objects to which reference is made in
arithmetical statements. (pp. 40-41)

12Frege himself puts it slightly differently, as a principle: “never to ask the meaning of a word in isolation,
but only in the context of a proposition” (Introduction p.x). For our purposes, my paraphrase will do.
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Unfortunately, textual difficulties leave unclear the sort of meaning that must be

provided for number-identity statements in order for us to grasp the meanings of number-

words. Frege wrote The Foundations of Arithmetic before making his significant distinction

between Sinn (sense) and Bedeutung (denotation).13 When Frege discusses the meanings of

number-words, or of numerical identity statements, it is not clear whether he intends to talk

about their senses, their denotations, or something else entirely. He appears to use ‘Sinn’

and ‘Bedeutung’ (and their variants) interchangeably.14 Hale and Wright suggest, quite

reasonably, that providing truth-conditions for numerical identity statements will suffice for

providing their meanings in the relevant sense.15

We follow Hale and Wright (and perhaps also Frege), then, in supposing that we

can grasp the meaning of numerical identity statements if we give the truth-conditions of

identity statements involving number-terms. Once we grasp the meanings of numerical

identity statements, we have identifying knowledge of numbers; we know the conditions of

identity for numbers. Since identifying knowledge of numbers suffices for us to have the

ability to engage with (or think about) the identified numbers, we would then be able to

have knowledge about numbers and refer to them. In other words, the interaction problems

will be resolved—at least, for numbers—if we can give truth-conditions for number-identity

statements without making reference to any numbers or other mathematical objects (or other

potential unknowns) in the process of giving those truth conditions.

13See “Sinn und Bedeutung.”

14When Frege gives the context principle, he uses a variant of ‘Bedeutung’ (“bedeuten die Wörter”—
literally ‘the words mean/denote’); words have denotations only in the context of sentences. He then switches
to ‘Sinn’, and says that once we give the sense (Sinn) of numerical identity sentences, we can refer to number
objects (§62). A few sections later (§65), he takes himself to have successfully completed this task by giving
another sentence with the same meaning as a relevant identity sentence, using a variant of ‘Bedeutung’ again
(“sei gleichbedeutend mit”—literally ‘are same-meaning with’ or ‘are same-denoting with’).

15There might seem to be a prima facie worry about using truth conditions to provide the meanings of
statements about mathematical objects. This does tend to present a problem for certain kinds of truth
conditions, as we see in possible world semantics—or at least in its unsophisticated versions, which are
unable to distinguish between distinct necessary truths. But Frege’s approach to truth conditions are of a
rather different sort. It might be worth attending to the question of whether or not Frege’s truth-conditions
adequately distinguish between the meanings of distinct mathematical truths. My instinct is to believe that
they can so distinguish.
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3.2.1 Abstraction Principles: Hume’s Principle and Direction Equiv-

alence

Consider a number-identity claim:

The number of F’s is identical to the number of G’s.16 (3.1)

According to Hale and Wright, the trick to resolving the interaction problems is to explain

how we could come to know the truth-conditions for (1) without relying on any antecedent

ability to think about numbers. They suggest that we could come to know these truth-

conditions through Hume’s Principle:17

The number of F’s = the number of G’s

⇐⇒ there is a one-one correspondence between the F’s and the G’s.

(3.2)

Since we can account for one-one correspondence without appealing to numbers, it is possible

to know when the right-hand side of the biconditional is true without relying on knowledge

of numbers.18 Hume’s Principle, then, seems to offer a means by which we could come to

16Hale and Wright state (1) as, “The number of F’s = The number of G’s.” Frege writes, “The number
which belongs to the concept F is the same as that which belongs to the concept G.” These slight variations
are of no substantive import for our purposes.

17Frege presents this, as Hume did, in terms of one-to-one correspondence. I follow suit. Hale and Wright
sometimes present it this way, and sometimes present it in terms of equinumerocity : The number of F’s = the
number of G’s ⇐⇒ the F’s and the G’s are equinumerous. In “Cardinal, Counting, and Equinumerosity”
(Notre Dame Journal of Formal Logic, 2002) Richard Heck focuses on the equinumerocity idea, as contrasted
with the one-to-one correspondence idea.

18Frege gives a purely logical account of one-one correspondence in Grundlagen Sections 70-73. To give a
more modern version, we can say that for the F’s and G’s to be in one-one correspondence is for the following
condition to be met:

∃R
(
∀x

(
(Fx→ ∃y(Gy ∧Rxy)) ∧ (Gx→ ∃y(Fy ∧Ryx))

)
∧

∀x∀y∀z
(
((Fx ∧Gy ∧Rxy ∧Rzy)→ x = z) ∧ ((Fx ∧Gy ∧Rxy ∧Rxz)→ y = z)

))
.

This expression of one-one correspondence, like Frege’s version, is a second-order statement, but the first
order schema is also available. For the purposes of demonstrating that we don’t need to use numbers to
account for one-one correspondence, I don’t think it matters which version we use. If we are further concerned
about the existence of relations (as entities), that might be another matter.
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know the truth-conditions of number-identity statements in the form of (1) without having

antecedent knowledge or cognition of numbers.

According to Hale and Wright, the truth conditions of a statement fix its meaning. In

light of the context principle, if the meaning of (1) is in keeping with the meanings of other

kinds of identity claims, then knowing the truth-conditions of (1) positions us to individuate

numbers. So, knowing Hume’s Principle would position us to have identifying knowledge of

numbers, even without antecedent cognition of any mathematical objects. As we saw with

definite descriptions, identifying knowledge gives us a way to think about objects. Thus,

if Hale and Wright are correct, knowledge of Hume’s Principle would position us to have

knowledge of numbers, and to begin to think about them. If they are right, we can resolve the

interaction problems by accounting for our knowledge of Hume’s Principle without relying

on antecedent knowledge of mathematical objects.

To explain more fully how this approach works, Hale and Wright turn to the more

general class of what they call ‘abstraction principles’. Abstraction principles have the form:

(∀α)(∀β)(R(α) = R(β)↔ α ≈ β) (3.3)

The ‘α’ and ‘β’ denote objects or concepts that bear some equivalence relation (≈), and

‘R’ denotes a function that takes those objects (or concepts) to some abstracta, viz. the

abstracta in virtue of which α and β are equivalent in the relevant sense. In the case of

Hume’s Principle, ‘α’ and ‘β’ are ‘the concept F’ and ‘the concept G’, ‘R(x)’ is ‘the number

belonging to x’, and the equivalence relation is that of being in one-one correspondence. But

Hume’s Principle isn’t the only abstraction principle. Frege also makes use of another, which

Hale and Wright call ‘Direction Equivalence’:

The direction of line a = the direction of line b

⇐⇒ lines a and b are parallel.

(3.4)
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Frege claims that a statement about lines being parallel “can be taken as an identity”

(§64). To support this claim, he points out that being parallel is a transitive relation.19

But when we take a statement like ‘a//b’ as an identity, we do not simply interpret it as

‘a = b’; a and b are two different lines. Rather, we interpret ‘a//b’ as in (4)—‘the direction

of line a = the direction of line b’. As Frege says, “We carve up the content [of the parallel

relation between the two lines] in a way different from the original way, and this yields us

a new concept” (§64). We start with what we grasp in intuition (in something like the

Kantian sense), viz. lines and being parallel. From these, we extract things we do not

grasp in intuition, viz. directions. The same sort of phenomenon occurs in the case of the

equinumerocity of concepts and the identity of the numbers belonging to those concepts.

We can grasp numbers by conceptually extracting them from things we already are familiar

with—the concepts F and G, and the relation of equinumerocity.

Notice that in his explanation of how we conceptually access directions through par-

allelism, Frege provides evidence for thinking that the notion of identity we use when we

carve up conceptual content through Direction Equivalence is our usual notion of identity. It

is the same notion of identity that we use in the case of all abstraction principles, including

19Something bothers me about the claim that ‘a//b’ is an identity. Frege is onto something in claiming
that the relation of being parallel is transitive (if line a is parallel to line b, and line b is parallel to line c, then
line a is parallel to line c) . The relation is clearly symmetric; if a//b, then b//a. But it seems unnatural to
me to think of it as reflexive. Hence, it seems unnatural to me to think of it as entirely transitive; I’m not
convinced that transitivity holds if c = a in the above. I can get myself to think that a//a is true, but only
if I define ‘parallel’ for myself using the notion of direction. Of course a has the same direction as itself. But
if I take the sense associated with ‘parallel’ as prior to the sense associate with ‘direction’, as Frege requires
in this case, then it doesn’t seem quite right that a//a. Another candidate notion of parallelism is Euclid’s:

Parallel straight lines are straight lines which, being in the same plane and being produced
indefinitely in both directions [alt. translation: towards both the parts/regions], do not meet
one another in either direction [alt. translation: region]. - Part I, Definition 23 in Euclid’s
Elements

But this notion of parallelism does not accomodate reflexivity either, since every line meets itself at every
point.

The same kind of concern about reflexivity might—or might not—apply to concepts being equinumerate.
To be honest, I have so much more practice using my concept of number than my concept of equinumerocity
that I have trouble prodding my intuitions about the proper application of the concept of equinumerocity in
abstraction from a definition involving the concept of number. The account given in fn 18 does imply that
equinumerocity is reflexive.
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Hume’s Principle. But even more important, we haven’t made any effort at all to define

identity in the case of directions. Likewise, we make no effort to define identity in the special

case of numbers. In Frege’s words,

We are therefore proposing not to define identity specially for this case, but

to use the concept of identity, taken as already known, as a means of arriving at

that which is to be regarded as being identical. (§63)

The abstraction principles have simply given the truth-conditions of identity for directional

(and numerical, etc.) objects. So the notion of identity in these cases is no different from

the ordinary notion we use in the case of, say, physical objects. We are only able to carve

up the content of parallelism (or equinumerocity) to render the new concept of direction (or

number) because we already understand the concept of identity; the concept of identity is

antecedently fixed.

3.2.2 Implicit Definitions

As Hale and Wright point out, this talk of carving up content is metaphorical. Somehow we

are able to move from the concept of parallelism to the new sortal concept of direction. They

claim that the work is being done by an implicit definition. In this case, the implicit definition

is Direction Equivalence. When we take a//b to be an identity, in Hale and Wright’s words,

we “view the Direction Equivalence as an implicit definition of the direction operator—‘the

direction of . . . ’—and thereby of the sortal concept of direction” (HW 23). Analogously,

Hume’s Principle is an implicit definition, one that implicitly defines the number operator—

‘the number of . . . ’—and thereby the sortal concept of number.

Let’s think about how these ideas work out in a non-mathematical case: color. Sup-

pose your shirt and mine hue-match. Then they have something in common–they have the

same blueish hue. The hue of your shirt is identical with the hue of mine. We have a way

of thinking about whatever it is that our shirts have in common, because we know its iden-

tity conditions, viz. it is the hue of something that hue-matches my shirt, or hue-matches

82



your shirt. That is, something is identical with this particular hue, the hue that I can pick

out with the phrase ‘the hue of my shirt’, if and only if it is the hue of something that is

hue-matching with my shirt.

Furthermore, there will be a sortal of which this-bluish-hue and that-reddish-hue (and

so on) are exemplars. By getting onto one of the hues, e.g. this-blueish-hue, we can recognize

the identity conditions for members of the hue class in general. We have what we might call

the hue operator; this operator (‘the hue of . . . ’) picks out the hue of any given physical

object, be it this-blueish-hue or that-reddish-hue.

Each thing picked out through the hue operator falls under a sortal concept, hue. We

even have proper identity conditions for the things that fall under the sortal concept of hue,

that is, the things picked out by the hue operator: the hue of physical object x = the hue

of physical object y if and only if x and y hue-match. Since we have and understand the

identity conditions for the things—the objects—of the sort hue, we have a way of thinking

about objects of that sort.

Now, let’s return to the implicit definition issue. We have here another application

of an abstraction principle. That is Hue Equivalence:

The hue of physical object c = the hue of physical object d

⇐⇒ physical objects c and d hue-match.

(3.5)

We can access the relevant equivalence between physical objects, like your shirt and mine,

using our ordinary and immediate faculties—in this case, visual perception. When we stip-

ulate Hue Equivalence, we use our stipulation to implicitly define something, viz. the hue

operator—the operator that takes us from an object c to ‘the hue of c’.20 Hue Equiva-

lence thereby implicitly defines the sortal hue, just as Hale and Wright tell us Direction

20There is something of an issue about whether ‘the hue of c’ is an object or a concept. This is related to
Frege’s comment that, “The concept horse is not a concept,” found in his paper “On Concept and Object”
in Geach and Black.
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Equivalence implicitly defines the sortal direction.21

They explain:

The import of the stipulation of the equivalence is simply that correspond-

ing instances of the left and right sides—matching sentences of the shapes ‘the

direction of line a = the direction of line b’ and ‘lines a and b are parallel’—are

to be alike in truth-value, i.e. materially equivalent. But because the stipulation

is put forward as an explanation, its effect is to confer upon the statements of

direction-identity the same truth-conditions as those of corresponding statements

of line-parallelism.22

In other words, the stipulation of an abstraction principle—such as Hume’s Principle, Di-

rection Equivalence, or Hue Equivalence—only states that the equivalence relations and

associated identity statements are materially equivalent. But the stipulation is also the

manner of introduction of these phrases—‘the number of . . . ’, ‘the direction of . . . ’, or ‘the

hue of . . . ’. Accordingly, the stipulation sets the truth-conditions of the relevant identity

statements. It doesn’t just happen to be the case that Hume’s Principle holds. Hume’s

Principle determines what it is for two numbers to be identical—the concepts that those

numbers belong to, or the sets that have that number, are equinumerous. The stipulation

effectively defines the meaning of the relevant number-identity claims, and thereby makes

its content—the content of Hume’s Principle—true in virtue of meaning.

According to Hale and Wright, the stipulation of Hume’s Principle resolves the in-

teraction problems. Since it is a stipulated truth that introduces a new linguistic expression

(‘the number of . . . ’), Hume’s Principle is true in virtue of meaning, and we can know it

21Notice, though, that we don’t give identity conditions for the sortal hue using this. We give a schema for
identity conditions of members of the class hue. We give identity conditions for this-blueish-hue and that-
reddish-hue and whatnot. We give conditions that tell us whether this hue is that hue, and so on. (What
conditions? They are hue-matching.) But we don’t do the second-order thing and give identity conditions
for hue. We don’t give identity conditions for being this sortal or that. We simply give conditions for being
an instance of the hue sort—conditions for being some particular hue.

22All italics are in the original.
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without having antecedent knowledge of numbers. Since it is a biconditional, and we assume

that the right-hand side of the biconditional has an antecedent meaning that we already

understand, Hume’s Principle provides us with truth-conditions for statements of the form

of (1). By providing us with truth-conditions for such statements, it gives us the meaning of

such statements. And since we use the usual notion of identity in these statements, we can

extract from our understanding of these statements the meaning of the previously unknown

and undefined expression ‘the number of . . . ’. In doing so, we gain the ability to individuate

numbers, which is a kind of identifying knowledge of numbers. In gaining identifying knowl-

edge of numbers, we gain the ability to think about numbers, and Hume’s Principle ensures

that we are able to do so in a truth-tracking way.

3.3 Identifying Knowledge

According to Hale and Wright, our stipulation of Hume’s Principle determines which objects

get picked out when we apply the operator ‘the number of . . . ’ to various F s and Gs. In

particular, the operator maps concepts (or collections) like ‘the F s’ or ‘the Gs’ onto number-

objects, mapping two concepts onto the same number-object if and only if the concepts are

equinumerous. This information about the operator is enough to provide us with information

about the individuation of numbers. Using Hume’s Principle, then, we are able to come to

understand what it is to be an instance of the sort ‘number’. Once we understand the

number operator, we are able to think about numbers in general. Once we apply the number

operator to a particular F (e.g. fingers on my left hand), we are able to think about a

particular number (e.g. 5).

3.3.1 Fixing Reference

On the neo-Fregean account, stipulating Hume’s Principle fixes reference for number-phrases

like ‘the number of fingers on my left hand’. Given that we are attempting to resolve

85



the interaction problems, we can assume that there are entities (viz. the natural numbers)

satisfying the conditions laid out by Hume’s Principle. But the existence of entities satisfying

given conditions is not sufficient to establish reference; a denoting phrase fails to refer if it

fails to distinguish between candidate denotations. Hume’s Principle can only establish the

reference of the phrase ‘the number of fingers on my left hand’ if there is an entity that

uniquely satisfy the conditions that Hume’s Principle lays out for this particular F , or if one

of the entities satisfying the conditions laid out by Hume’s Principle is privileged in some

way (e.g. by intention or salience) that ensures that it becomes the referent of this number-

phrase.23 If there is no unique or privileged schema according to which the number operator

assigns particular number-objects to concepts, then Hume’s Principle does not succeed in

fixing reference, and hence does not resolve the interaction problems.

Hume’s Principle simply requires that, given an equivalence class of equinumerous

collections, the number operator (‘the number of . . . ’) picks out the same object for each

member of that equivalence class. But these conditions are not terribly strong, and many

distinct operators could satisfy them. It would be consistent with these conditions, for

example, for an operator to map all and only the members of some particular equivalence

class of equinumerous collections to Julius Caesar. Intuitively, of course, such an operator

would not be the number operator; Julius Caesar is not a number, and the number operator

maps collections to numbers. This is a worry that bothered Frege. He thought that, from

the proper definition of number, we should be able to determine that Julius Caesar is not

a number. Since he thought that Hume’s Principle was insufficient for this purpose, he

ultimately rejected a definition of number from Hume’s Principle.

Hale and Wright, however, are not swayed by the Julius Caesar problem; though

they take it seriously, they think it is surmountable. Their proposed resolution centers

23For example, I can use the definite description ‘the pen on the table’ to refer to a particular pen sitting
before me. Though many entities satisfy the description, somehow the pen before me is privileged in a way
that makes it the referent of my use of the definite description, perhaps by my intention to refer to it, or
perhaps because this pen is the most salient one in my current physical environment.
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on an appeal to sortals and to the fact that Hume’s Principle specifically provides identity

conditions for numbers; it does not provide identity conditions that apply to things like lines,

hues, or people.24 Accordingly, Hume’s Principle—like Direction Equivalence—gives sortal

identity conditions. It expresses the conditions of individuation for objects of a certain sort,

viz. number-objects.

Furthermore, Hale and Wright think, Julius Caesar is not a number because there is

no overlap between the number sort and the human sort. They justify this claim through a

more general principle that they call ‘Sortal Inclusion’: an object x can only be an instance

of two different sortals (e.g. human and animal or human and number) if the identity con-

ditions for that object can be the same regardless of the sortal under which it is considered.

Thus, x can be an instance of both human and animal because the conditions that make

human x identical with human y are the same conditions that make x identical with animal

z. Similarly, if the human x is to be identical with the number w, then the conditions under

which x is the same human as y must be the same conditions under which x is identical

with the number w. But the identity condition for the latter is equinumerocity, and equinu-

merocity is not the appropriate kind of identity condition for human x = human y. Thus,

humans and numbers are not overlapping sortals, and Julius Caesar is not a number.

Even if we grant their account of why Julius Caesar is not a number, however, the

Julius Caesar problem can be generalized in a way that Hale and Wright seem to lack the

means to resolve. In light of their Sortal Inclusion principle, let us restrict the candidate

numbers to those entities whose conditions of individuation could plausibly thought to be

cashed out in terms of equinumerocity. One such view is Frege’s. According to his view, n

is a number if and only if, for some concept F , n is the extension of the concept equal to

the concept F . What it is for a concept G to be equal to the concept F is for the F s and

Gs to be equinumerous. So, on Frege’s view, identity conditions for numbers (considered as

24This proposal is found in the paper “To Bury Caesar . . . ,” which appears in their book The Reason’s
Proper Study.
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the extensions of certain kinds of concepts) can be explained in terms of conditions about

equinumerocity. His analysis of number, according to which numbers are entities of the

concept-extension sort, satisfies the restrictions imposed by Sortal Inclusion.

But Frege’s view is not the only reductive analysis of number that satisfies Sortal

Inclusion. Van Neumann’s set-theoretic reduction of number does too. On Van Neumann’s

reduction, the numbers are a class of certain kinds of sets: any given natural number is the

set of all of the smaller natural numbers (and zero is the empty set). The sets of this class

are such that sets x and y are equinumerous if and only if they have the same members.

And according to the individuation conditions for sets given by the Axiom of Extension, sets

x and y are the same set if and only if they have the same members. Accordingly, for the

class of sets to which Van Neumann reduces the numbers, the individuation conditions for

sets are tantamount to the equinumerocity conditions that individuate numbers. Thus, it

appears to be consistent with Sortal Inclusion that these set-objects be identical with the

number-objects.

Van Neumann’s reduction is not even the only set-theoretic reduction of number that

appears to be consistent with Sortal Inclusion. Zermelo’s set-theoretic reduction of number

also seems to work. According to Zermelo’s reduction, each number is the set whose sole

member is its immediate predecessor (again, zero is the empty set). Again, two sets are

identical if they have the same members. In the case of the class of sets to which Zermelo

reduces the numbers, two sets have the same members exactly when they have the same

transitive closure. The transitive closure of a set x is the smallest set that contains all the

members of x and also satisfies an additional condition: if y is a member of the set, and z

is a member of y, then z is a member of the set. In other words, the transitive closure of a

set contains all of the set’s members, and all of the members of those sets, and so on. In the

case of the class of sets to which Zermelo reduces the numbers, because each number-set’s

sole member is its immediate predecessor, the transitive closure of a number-set turns out to

be the set of its predecessors. So, using reasoning similar to that used in the Van Neumann
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case, two sets of the class to which Zermelo reduces the numbers are the same set if and only

if their transitive closures are equinumerous. The individuation conditions for sets of the

relevant type can be expressed in terms of equinumerocity, and so Zermelo’s set-theoretic

reduction of number seems to be consistent with Sortal Inclusion.

Given that Sortal Inclusion is consistent with Frege’s, Van Neumann’s, and Zermelo’s

respective reductions of number, there are multiple kinds of candidate entities to which

the number operator might map.25 It is not clear how we would decide which potential

number operator is the number operator. Hale and Wright do not offer a method, and

different philosophers presumably would want to give different methods, given their different

accounts of number. This is a serious problem, and closely related to the topic of another

paper of Benacerraf’s, “What Numbers Could Not Be.” But it seems perfectly plausible that

there is one number operator that maps each F onto one of Frege’s preferred entities, another

that maps each F onto one of Van Neumann’s preferred entities, and yet a third that maps

each F onto one of Zermelo’s preferred entities. All of these candidates satisfy both Hume’s

Principle and Sortal Inclusion. If we want to claim that there is only one number operator,

we either have to privilege one of these number operators over the others (and there seems

no reason to do so), or we have to claim that not all of these entities exist. But if we claim

that some of these entities do not exist, we must give up the existence of at least one of

the set-theoretic options. This is a bullet that most platonists about mathematics would be

loath to bite; it does not provide a satisfactory resolution to the interaction problems.

If Hume’s Principle is to resolve the interaction problems, it must give us identifying

knowledge of numbers. That is, it must give us uniquely identifying knowledge of numbers.

If there are several candidate classes of number-objects that satisfy Hume’s Principle, and

if additional principles like Sortal Inclusion do not distinguish one preferred class, then

25The Axiom of Extension ensures that the objects of Van Neumann’s reduction are not the same as the
objects of Zermelo’s reduction (except for zero). I am making the substantive, but I believe unobjectionable,
assumption that the objects of Frege’s reduction are not identical with the objects of either type of set-
theoretic reduction.
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Hume’s Principle cannot provide uniquely identifying knowledge of the numbers. Hence,

Hume’s Principle cannot resolve the interaction problems.

3.3.2 Distinguishing Numbers

Suppose, however, that additional metaphysical principles could be introduced to ensure

that there is a unique sortal whose instances have the individuation conditions set out by

Hume’s Principle. Then stipulating Hume’s Principle as an implicit definition does seem

to uniquely pick out the entities of that sort; those entities are the numbers. Even under

such auspicious circumstances, I contest, Hume’s Principle would not suffice to fix reference

for phrases of the form ‘the number of F s’. Hale and Wright’s explanation of how to use

Hume’s Principle to resolve the interaction problems relies on the assumption that knowledge

of individuation conditions constitutes identifying knowledge of the things so individuated.

I claim that knowing what individuates one thing of a sort from another thing of that same

sort does not, on its own, position us to have identifying knowledge of any particular thing

of that sort. Even if Hume’s Principle provides conditions for individuating numbers from

each other, it does not provide uniquely identifying knowledge of any particular numbers.

The latter is required to fix the reference of a phrase of the form ‘the number of F s’.

Suppose we accept whatever metaphysical suppositions are required for the individ-

uation conditions found in Hume’s Principle to uniquely apply to a certain class of entities.

Then the objects of this class are objects of the number-sort. Consider, then, the phrase ‘the

number of fingers on my left hand’. Since this phrase takes the proper form, it picks out one

of the number-objects. It picks out the same number-object that the phrase ‘the number of

fingers of my right hand’ picks out. This fact is clear from Hume’s Principle and the fact

that the fingers on my left hand are equinumerous with the fingers on my right hand.

But which of the entities in the class of number-objects is picked out by these phrases?

It is not sufficient to use the stipulation to get onto the right sortal ; we must be able to

identify some particular object of the relevant sort. If Hume’s Principle is to fix reference for
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‘the number of fingers on my left hand’, it must either identify one particular number-object

as the unique number satisfying the relevant conditions, or it must somehow privilege one

particular number as the one that the phrase is to pick out. It does not suffice to know

what sort of objects numbers are and what sorts of things the fingers on my left hand are.

In order to fix the referent of the phrase ‘the number of fingers on my left hand’, we must

know how numbers are related to concepts like ‘the fingers on my left hand’.

An analogy might help. We might know individuation conditions for people (e.g. spatio-

temporal continuity), and we might know what sorts of things constitute wealth (money,

things that can be sold for money, etc).26 Nonetheless, we might not know which person is

the wealthiest in the room. I am not merely suggesting that we might not know the wealthi-

est person by name or by a different description. In order to know who the wealthiest person

in the room is—under that very description—we need to know what it is for a person to be

wealthy. It does not suffice to know what a person is and what wealth is; we also need to

know something about what it is for a person to have wealth.

Similarly, it does not suffice for us to know conditions of individuation for number, and

to know the concept F . If Hume’s Principle is to fix the referents of statements of the form

‘the number of F s’ by providing identifying knowledge, it must provide knowledge about the

relation between numbers and concepts—what it is for a number to be the number of some

concept F . Without doing this, Hume’s Principle cannot fix any particular referent for the

phrase ‘the number of fingers on my left hand’. As far as Hume’s Principle is concerned, the

object we call ‘two’ is just as well qualified to be the referent of this phrase as is the number

we call ‘five’, so long as it is also the referent of ‘the number of F s’ for all and only the F s

that are equinumerous with the fingers on my left hand.

Even if Hume’s Principle fixes which entities are the numbers, it is ill-equipped to fix

which of those entities is the number of fingers on my left hand. Hume’s Principle seems to

26Individuation conditions for people are obviously controversial, and I do not intend to take a side on
that debate. The controversy should have no bearing on the point I am trying to make.
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be consistent with the phrase ‘the number of fingers on my left hand’ picking out what is

intuitively the wrong number. If it is to fix reference, then there must be other factors at play

that somehow privilege one particular number-entity to be the referent of that phrase. One

possibility would be that some other metaphysical principle leaves some particular entity

privileged. If so, Hale and Wright must adequately address that metaphysical principle in

order to resolve the interaction problems. Knowledge of individuation conditions does not

on its own constitute the kind of identifying knowledge that can be used to fix reference.

It might seem like there are some intuitive solutions. For example, if Frege’s preferred

class of entities (extensions of concepts of the form ‘equal to the concept F ’) are the numbers,

then it seems obvious to fix the referent of ‘the number of fingers on my left hand’ as the

extension of the concept ‘equal to the concept fingers on my left hand ’. If Van Neumann’s

preferred entities (sets containing all of a number’s predecessors) are the numbers, then it

seems obvious to fix the referent of ‘the number of fingers on my left hand’ as the set of

the relevant type that is equinumerous with the numbers on my left hand. And if Zermelo’s

preferred entities (sets containing a number’s immediate predecessor) are the numbers, then

it seems obvious to fix the referent of ‘the number of fingers on my left hand’ as the set whose

predecessors are (or, what amounts to the same, whose transitive closure is) equinumerous

with the fingers on my left hand. While Hume’s Principle does not itself privilege any of

these assignments, they nonetheless seem to be the natural ones.

While these assignments might seem intuitive, there are reasons to hesitate before

assuming that we can use them to fix the reference of phrases of the relevant form. First, if

further relevant metaphysical principles are going to be strong enough to pick out a unique

class of entities, they must be strong enough to ensure that all or almost all reductive analyses

of number do not in fact yield number objects; the number operator does not map to the

entities described by these reductions. But it seems likely that principles strong enough to

eliminate almost all reductions ultimately will be strong enough to eliminate all reductions.

So, it seems likely that, if further metaphysical principles ensure that Hume’s Principle gives
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the individuation conditions for a unique class of entities, then the numbers will be sui

generis—that they will not be reducible to things like sets or extensions of classes.27

Second, the assignments that seem to be intuitive seem to emerge from the specific

reductive analyses under consideration, and if number cannot be reduced, then there does

not seem to be an intuitive assignment system. The most intuitive method of assignment

outside of a reductive analysis would seem to rely on something like assigning the referent

of ‘the number of F s’ as the number whose predecessors are equinumerous with the F s. But

to do this would be to presuppose knowledge of the structure of the number sequence. That

is, it would presuppose knowledge of ordinal number—first, second, third, fourth, etc.—

in order to explain knowledge of cardinal number—singleton, pair, threesome, foursome,

etc.28 Our initial ability to think about number, then, would be an ability to think about

ordinal number. Our stipulation of Hume’s Principle would not resolve the interaction

problems. Even presupposing additional (and presumably very substantive) metaphysical

principles that ensure that Hume’s Principle uniquely picks out a class of number-objects,

our stipulation seems like it would only help us to access the cardinal numbers if we already

knew the ordinals. We will return to this point.

3.4 The Ancients

I have argued that Hume’s Principle does not suffice to fix reference for phrases of the

form ‘the number of F s’. But even if it did suffice, I will argue that Hale and Wright’s

attempt to resolve the interaction problems could not explain how we actually do come to

think about numbers. There can be no doubt that ancient mathematicians knew arithmetical

truths. They made the same basic arithmetical claims that we make today, albeit in different

27I make this point with some hesitance, primarily because it strikes me as unlikely that metaphysical
principles could bring us from the conditions set out in Hume’s Principle to a unique class of number-
objects without presupposing knowledge of numbers. It is difficult to reason about things that strike one as
impossible.

28Notice also that Zermelo and Van Neumann provide set-theoretic analyses of ordinal number, while
Hume’s Principle gives individuation conditions for cardinal number.
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languages. Those claims are true today, and they were true thousands of years ago when

expressed by the ancients. If knowing those mathematical truths requires the ability to think

about abstract mathematical objects, then ancient mathematicians were able to think about

mathematical objects, and refer to them, and know truths about them. The solution Hale

and Wright provide for the interaction problems—their account of our ability to refer to such

objects and know truths about them—must be compatible with this fact. I will argue that

it is not.

3.4.1 The Possibility of an Alternative Method of Engagement

Suppose that my arguments in the previous sections are wrong, and that Hume’s Principle

can fix reference for phrases of the form ‘the number of F s’. Suppose it is possible to use

Hume’s Principle to come to think about the natural numbers. Then, either (a) the ancients

had Hume’s Principle and used it to think about the numbers, or (b) they came to think

about the same number objects through some other route.

Let us consider (b) first. Suppose the ancients initially accessed arithmetical objects

using some means other than the stipulation of Hume’s Principle. Like Hume’s Principle,

this alternative method allows people to think about number objects, and it gives rise to

arithmetic.

Supposing, then, that there are two different methods of accessing the subject mat-

ter of arithmetic, do these two methods of engagement give us access to the very same

number-objects? Without a particular alternative method of engagement (and possibly

more information about the objects picked out by Hume’s Principle), we might not be able

to answer this question. Unless the alternative method also gives us access to numbers in

the form ‘the number of F s’, we will be unable to determine whether or not the two methods

yield the same objects. The only identity statements that the neo-Fregean route positions

us to evaluate are those that occur in the form found in Hume’s Principle.29 We cannot, for

29Perhaps the alternative method would give us insight into another form of identity statement that would
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example, take the name of a (putative) number, e.g. ‘5’, that we access using the alternative

method and substitute in for it something of the right form, perhaps ‘the number of fingers

on my left hand’. To do so would be to assume that the object named ‘5’ accessed using

the alternative method is the same as the object named ‘5’ accessed using Hume’s Principle.

Most likely, we would lack the tools to determine whether or not the entities picked out by

Hume’s Principle were the same picked out using the alternative method.

Why, one might ask, does this matter? Prima facie, unless the two methods give

access to the very same number objects, and not just similar ones, the arithmetic based on

Hume’s Principle will be a different arithmetic from that based on the alternative method.

After all, those who use the alternative method for engaging with number objects would have

knowledge about and refer to different objects from those who get onto number objects using

Hume’s Principle. Presumably the two engagement methods would give rise to two similar-

looking arithmetics. But they would involve completely different truths; there would be two

fundamentally different studies of arithmetic, studies that explored two entirely different

subject matters. It would appear to be sheer coincidence if the class of numbers accessed

through Hume’s Principle and the class of numbers accessed through the alternative method

have entities with similar properties and relations.

An initial response to this line of reasoning might be that two people can engage with

the same arithmetical project even when they are referring to and discovering truths about

different objects. After all, Zermelo and von Neumann did not seem to be engaged in two

fundamentally different projects of arithmetic, even though their accounts of number were

rather different. For Zermelo, n+ 1 = {n}; for von Neumann, n+ 1 = n∪{n}. Nonetheless,

they were doing the same arithmetic. The common-looking arithmetical equalities and other

results that the Zermelo and von Neumann numbers yielded (e.g. 2+3=5) were not acci-

dentally similar. The fact that the two mathematicians were concerned with fundamentally

be of some use in resolving the identity questions here, but we are just operating with the possibility of such
an account, not an example of one.
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different number objects did not prevent them from being involved in the same arithmetical

project.

Surely Zermelo and von Neumann were engaged in the same arithmetical project.

But their situation does not appear to bear directly on the proposal under consideration.

Zermelo and von Neumann both were already familiar with the numbers before giving their

set-theoretic accounts of those numbers. Both were trying to ground an already-existing

arithmetic;30 they were trying to understand a common subject-matter, and the result was

two different substantive accounts of the set-theoretic composition of numbers. This is

analogous to a case in which two biologists examine the same animal and come up with

two different substantive accounts of the internal structure of that animal. Zermelo and

von Neumann were engaged in the same arithmetical project because they were trying to

describe a common subject-matter. People were familiar with the numbers long before they

were familiar with any set-theoretic underpinnings that arithmetic may have.31

Zermelo and von Neumann, though, were already engaging with the same numbers

before they theorized about the internal structure of those numbers. The assumption of

prior engagement with the numbers is not available in the kind of scenario we are trying to

consider: the case in which there are two different ways of initially engaging with number-

objects. We are considering the case in which one person’s initial (and continued) engagement

with numbers comes through Hume’s Principle, and another person’s initial (and continued)

engagement with numbers comes through some other means, and these two methods yield

engagement with two different classes of objects. So, the fact that Zermelo and von Neumann

were working on the same arithmetic does not bear on the question of whether or not the

two people interacting with fundamentally different entities could nonetheless do the same

arithmetic. It seems that they could not.

30I would claim that Frege was also engaged in the same project of grounding an already-existing arith-
metic. Unlike Wright and Hale, he was not using Hume’s Principle to account for our initial interaction with
numbers.

31I do not mean this to be an endorsement of any attempts to reduce arithmetic to set-theory.
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Perhaps another kind of mathematical consideration will prove more fruitful in this

discussion: the distinction between ordinal and cardinal numbers. Consider the number 4.

It could be interpreted as a cardinal number—a size of collections, the size that all foursomes

have in common. Or, it could be interpreted as an ordinal—a place in an order, following

the third and preceding the fifth. Since they take equinumerocity to give truth conditions

for numerical identity, and thereby account for our ability to engage with number, Hale and

Wright must be concerned with cardinal number, not ordinal number.32 But perhaps there

could be a method that gave access to ordinals rather than cardinals. If so, then this method

would likely get us onto different objects than would Hume’s Principle. After all, there is

no ordinal number of fingers on my left hand, the way there is a cardinal number of fingers

on my left hand (five). And when the ordinal number of my finish in the race is third, the

cardinal number is, if anything, one—only one event fits the description of being my finish.

But even though ordinal numbers and cardinal numbers are different, they yield the

same arithmetic.33 And it is no coincidence that they do; ordinal and cardinal numbers

are closely related. There is a natural one-one correspondence between the cardinals and

the ordinals; one gets mapped to first, two to second, three to third, and so on. And

there are straightforward ways of defining this natural correspondence from the ordinals to

the cardinals, or vice versa. We can create an ordering of cardinal numbers according to

whether or not there is an injection from a concept that has one cardinal into a concept that

has another cardinal.3435 And we can always map the ordinals onto the cardinals using the

operator ‘the (cardinal) number of (ordinal) numbers (including zero) less than x’.

Given this natural bijection between the ordinal and cardinal numbers, it is no ac-

32Recall that Zermelo and von Neumann gave accounts of ordinal number.

33At least, they yield the same arithmetic in the finite case. They do not yield the same arithmetic in the
infinite case.

34That is, if n is the (cardinal) number of the F s, and m is the (cardinal) number of the Gs, then the
number of F s is greater than the number of Gs if and only if there is an onto mapping of the F s into the G
but no onto mapping of the Gs into the F s.

35Cf. Frege’s version in Foundations §76.
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cident that the arithmetical structure of the ordinals is the same as that of the cardinals.

Yes, the person who gets onto this common arithmetical structure through the ordinals will

be thinking about different numbers from the person who gets onto it through the cardinals

(say, through Hume’s Principle). But although a person may be stating a truth about the

ordinals, there will be a corresponding truth—a dual truth, if you will—about the cardinals.

Thus, if there are two methods of initially engaging with number-objects, and one

method provides access to the ordinals while another (Hume’s Principle) provides access

to the cardinals, it seems that a person who engages with number-objects through the

ordinal route is perfectly capable of engaging in the same arithmetical project as the person

who engages with number-objects through the cardinal route. So if there were a method

capable of establishing engagement with ordinal numbers the way that Hume’s Principle

establishes engagement with cardinal number, and the ancient mathematicians used this

alternative ordinal method to establish interaction with number-objects, then it seems that

it will nonetheless be the case that the ancient mathematicians were making the same basic

arithmetical claims that we make today. At worst, they were making corresponding claims,

claims whose duals are still made today.

3.4.2 Continuity of Object-Directed Thought

For all that has been said thus far, it seems perfectly possible that the ancients’ initial

engagement with number-objects was an engagement with one sort of object, and today the

typical initial engagement is with a different sort of object. But this might not be the right

approach.

There is continuity between our arithmetic and the arithmetic of the ancients. We

learned much of our arithmetic from them. Presumably it is not the case that the ancients

discovered arithmetic through one means, and we discovered it completely independently,

using a completely different route. No, rather, the knowledge of basic arithmetic has traveled

down through the linguistic and cultural community, much as knowledge of Julius Caesar
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has. And much as the ability to speak of Julius Caesar gets communicated to those who

have not personally interacted with him, talk of numbers can get communicated through

the community. So if someone gained the ability to think about numbers at some point

long ago, and passed knowledge about and reference to number objects down to us through

communication chains, then we too have the ability to think about those same number-

objects, thanks to the help of our teachers.

If the ancients used one means of engaging with the numbers, and we initially learned

about arithmetic from communication chains that connect to them, then we initially came

to think about the same number-objects through those ancients and so through their route

of interaction. If they initially accessed numbers using some method other than Hume’s

Principle, than so did we. Contrapositively, if our initial access to the numbers comes through

Hume’s Principle, then so did theirs. If Hale and Wright’s solution to the interaction problem

is the method that we actually use to initially come to think about the numbers, then it

must be the case that the ancients also had Hume’s Principle.36 Furthermore, it must be

the case that the ancients relied upon Hume’s Principle to think about number objects.

Granted, it seems unlikely that our intellectual predecessors in ancient times had

Hume’s Principle in explicit form. To state the principle without presupposing the abil-

ity to refer to number, in particular in the parts that involve ‘one-one correspondence’ (or

‘equinumerocity ’), the principle must be stated using polyadic logic (that is, nested quan-

tifiers). Frege was the first to develop polyadic logic, and his doing so was a significant

acheivement.37 Ancient philosophers could not have formulated Hume’s Principle in a logi-

cally rigorous way.

36At least, the ancients who were our intellectual predecessors must have had Hume’s Principle. It seems
possible that the Greeks and the Mayans, for example, had different origins for their arithmetical thought.
Perhaps the Greeks got onto number using ordinality while the Mayans got onto number using cardinality,
given that the Mayans had zero and the Greeks did not.

37Ancient philosophers did not have the logical resources to nest quantifiers and so could not have explicitly
formulated Hume’s Principle. But I might be shortchanging medieval logicians in making this claim. Their
logic was considerably more sophisticated than we usually credit it with being. But nonetheless, medieval
logicians could not have formulated Hume’s Principle because they did not have quantification over relations.
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Most likely, if the ancients who thought about arithmetic accessed numbers through

Hume’s Principle, then they had Hume’s Principle implicitly. They used it in some abstract,

logically imprecise form.38 But they were not consciously aware of the fact that they were

using it, and probably did not attempt to formulate it. Nonetheless, their subconscious use

of Hume’s Principle allowed them to latch onto these abstract number-objects, and gave the

means necessary to refer to these objects and have knowledge about them.

3.4.3 The Very Idea of Implicit or Innate Stipulation

The fact that Hume’s Principle is a stipulation does much work in the account Hale and

Wright give to resolve the interaction problems. Since it is a stipulation, we need not justify

our claim that number-identity claims have the particular truth-conditions it sets out. Our

stipulation makes it so; our stipulation introduces those truth-conditions. Hume’s Principle

determines what it is for two numbers to be identical. If the principle merely reported the

truth-conditions of identity statements, relying on it would be unjustified without some other

knowledge of number. But because Hume’s Principle is a stipulation and establishes those

truth-conditions, relying on it is perfectly acceptable.

Stipulations are declarations that introduce truths. But in the previous section, we

suggested that Hume’s Principle was known implicitly, or innately. Somehow the ancients

subconsciously knew and applied this truth. But if Hume’s Principle is innate, then it

cannot be a stipulation that serves to implicitly define number, as Hale and Wright claim.

Stipulations cannot introduce innately known truths. Stipulated truths are not even true

before they are stipulated; they are not knowable before they are stipulated. The very idea

of an innately known stipulation is incoherent.

If it is possible to have Hume’s Principle innately, then Hume’s Principle is a so to

speak non-manufactured truth. If we are to know it innately, we must be able to recognize

38I do not mean to say that their version of Hume’s Principle was logically imprecise in a pejorative sense.
I just mean that they did not use, even subconsciously, any particular logical formation of the principle. The
ancients used a pre-theoretic version.
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its truth. But if we are to be able to recognize something as true, then we must already

understand the content of that truth. If we are to innately know Hume’s Principle, we must

have some sort of innate access to number.

This leaves us in the following position. If we are to accept Hume’s Principle as the

way that we are able to engage with non-intuitable, non-perceivable number objects, then

we need Hume’s Principle to be a stipulation. If we cannot otherwise interact with number

objects, then no justification is available for this truth, so we cannot know it or rely on it

in building our theory. But if we do in fact use Hume’s Principle to initiate our interaction

with number-objects, then we also seem to be committed to thinking that the ancients used

it in the same way, to give them access to number-objects. And the most reasonable way to

suggest that the ancients had Hume’s Principle is to suggest that they had it implicitly, or

innately. Something about the idea of the ancients going about stipulating Hume’s Principle

seems strange. So we are torn, then, between Hume’s Principle being a stipulation and its

being innate. It cannot be both.

3.5 Final Thoughts

Hale and Wright seem to want to have mathematics both ways, so to speak. They want

mathematical platonism to be true; they want our mathematics to be a science of a special

kind of abstract entities. But they also want us to be able to interact with those entities

without relying on any rather mysterious faculty of intuition. Ultimately they rely on a

stipulation of Hume’s Principle in order to resolve the interaction problems and make sense

of holding these two positions simultaneously. I have argued that this solution is not tenable.

But even setting aside my arguments, it should seem implausible to us that we come to think

of numbers through Hume’s Principle for the same reasons that it should seem intuitively

implausible to us that we come to think about the colors of objects through Hue Equivalence.

Instead, we recognize Hume’s Principle—and likewise Hue Equivalence—to be true. Before
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we encounter these principles, we already know quite a lot about the putative abstract objects

they involve.
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Chapter 4

2+2=4: A Basic Arithmetical Proof

In the previous two chapters, we considered two candidate methods of using definitions to

ground our mathematical knowledge. Both methods involved implicit definitions. In Chapter

2, we saw that axiomatic definitions could not ground all of our knowledge and understanding

of arithmetic. In Chapter 3, we saw that an implicit definition could not ground our initial

cognition of the objects of arithmetic if those objects (the natural numbers) are mathematical

abstracta.

In this chapter, we will step away from implicit definitions and consider the role of

explicit definitions in arithmetic. I will argue that we could not use explicit definitions to

gain secure knowledge of basic arithmetical truths unless we already had a rather significant

antecedent understanding of the structure of the natural numbers. Accordingly, we cannot

ground our understanding of the structure of arithmetic in explicit arithmetical definitions

any better than we can ground our understanding of the structure of arithmetic in implicit

definitions.

4.1 Leibniz’s Proof

In New Essays Concerning Human Understanding, Leibniz gives a seemingly solid proof of

the arithmetical truth that 2 + 2 = 4. Explicit definitions of the form ‘m = n + 1’ play a
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central role in this proof; one of the proof’s key definitions, for example, is ‘4 = 3 + 1’. In

addition to these definitions, the proof relies on two fundamental assumptions. One, Leibniz

notes, is that the substitution of equals preserves equality in arithmetical equations. Another,

Frege notes in The Foundations of Arithmetic, is that the proof requires the associativity of

addition. Any viable account of mathematical truth and knowledge ought to preserve both

of these assumptions.

Leibniz’s proof that 2 + 2 = 4 goes as follows:

It is not an immediate truth that 2 and 2 are 4; provided it be granted that

4 signifies 3 and 1. It can be proved, as follows:

Definitions:

1. 2 is 1 and 1

2. 3 is 2 and 1

3. 4 is 3 and 1

Axiom: If equals be added to equals, the equality remains.

Proof: 2 + 2 = 2 + 1 + 1 (by Def. 1) = 3 + 1 (by Def. 2) = 4 (by Def. 3)

∴ 2 + 2 = 4 (by the Axiom).1

Frege quotes this passage in The Foundations of Arithmetic §6, and then goes on to observe

that Leibniz’s proof depends on an additional assumption that Leibniz fails to make explicit:

the associativity of addition ((a+ b) + c = a+ (b+ c)). But aside from suggesting that this

assumption be made explicit, Frege praises Leibniz’s approach to arithmetical proof:

If we assume this law [associativity], it is easy to see that a similar proof

can be given for every formula of addition. Every number, that means, is to be

1There are several minor variations in the translation here. Frege’s quotation, and Austin’s translation
of it, uses numerals here: “4 is 3 and 1” (“4 ist 3 und 1”). Leibniz’s original French uses number-words:
“four is three and one” (“quatre est trois et un”). Langley’s translation of Leibniz’s New Essays italicizes
one of those number-words: “four is three and one.” In addition, the formatting of the proof is different in
all three versions. I have used Frege’s formatting here.
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defined in terms of its predecessor. I do not see how a number like 437986 could

be given to us more aptly than in the way that Leibniz does it. (§6)

The key points are that (a) Leibniz’s approach offers an account of each of the natural

numbers in terms of its predecessors; (b) Frege thinks that the explicit definitions in such

proofs provide an apt explanation of how the numbers are given to us—that is, how we

cognitively access the numbers; and (c) this approach gives us a straightforward method

with which to prove arithmetical truths. Taking these points together, Frege seems to think

that the kind of approach we see in Leibniz’s proof exhibits a plausible account of how we

come to think about numbers (at least, numbers larger than 1) and also of how we can

securely establish (prove) arithmetical truths.

A variation of this approach has become standard in axiomatic accounts of arithmetic.

Rather than starting from the number 1 and using Leibniz’s ‘n + 1’ operation to get the

other natural numbers, modern mathematicians tend to start from 0 (zero) and get the

other natural numbers using the successor operation (S(n)). While Leibniz’s approach to

generating the numbers starts at one and modern axiomatic arithmetic tends to start at

zero, they are fundamentally minor variations of the same approach. For the purposes of

this paper, we shall go with Leibniz, and assume that the process begins at 1. Nothing

should be lost by using this convention.

4.2 Leibniz’s Definitions

For at least two reasons, it is worth examining what cognitive resources are required to

understand Leibniz’s proof. First, if we are to take seriously Frege’s apparent suggestion

that Leibniz’s explicit definitions give us cognitive access to numbers (at least the fairly

large ones), then we should ensure that these definitions do not presuppose any antecedent

cognitive access to those numbers. Second, if the type of reasoning demonstrated in Leibniz’s

proof that 2 + 2 = 4 is the type of reasoning that ultimately grounds our secure arithmetical
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knowledge, it is worth determining what cognitive resources that reasoning relies upon.

That is, it is worth determining what resources we rely upon in acquiring our most secure

arithmetical knowledge.

In order to determine what cognitive resources are required to understand Leibniz’s

proof, we must first investigate the nature of the definitions that the proof employs. What

exactly are they definitions of ? One possibility is that they are definitions of numerals

(e.g. the symbol ‘6’) or number-words (e.g. the word ‘six’). A second possibility is that they

are definitions of number-objects or number-concepts—objects or concepts that are neither

symbols nor pieces of language.

It is fairly clear that Leibniz means to treat definitions (1)–(3) as definitions of terms,

that is, definitions of numerals or of number-words. After all, he writes that “4 signifies 3 and

1.” Usually symbols or words signify things or objects; non-linguistic objects like numbers—

objects that have not been stipulated in the relevant context to have some particular symbolic

meaning—do not signify anything at all. So, this statement suggests that Leibniz is interested

in the signification of the symbol or word ‘4’.2 In fact, he makes explicit the fact that he

thinks of these as definitions of terms when he writes, two paragraphs before the selection

excerpted by Frege:

. . . the statement one and two is three is only the definition of the term three,

so that to say that one and two is equal to three is to say that a thing is equal

to itself. (Bk IV, Ch. VII, §10)3

Given our modern sensitivity to the use/mention distinction, a philosopher writing today

would be better off putting it this way: “ ‘4’ signifies 3 and 1,” and “the statement ‘one and

two is three’ is only the definition of the term ‘three’.”4

2In Leibniz’s original French, it is actually the written-out word ‘four’, rather than the numeral.

3Here I use Langley’s translation, but I remove Langley’s italics, which are not in the original French.

4The segments placed in single quotation marks here are the same segments italicized by Langley. There
should be little doubt about the interpretation.
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Frege appears to treat Leibniz’s definitions a little differently. In describing Leibniz’s

approach, he writes that, “Every number is to be defined in terms of its predecessor.” He

uses the term ‘number’ here, and not the term ‘numeral’.5 It appears that Frege understands

Leibniz’s definitions (1)–(3) to be definitions of objects.6 Frege might have just been speaking

loosely here, and might have meant to suggest that the definitions were of terms (numerals) or

of concepts. But let us consider the possibility suggested by Frege’s wording—the possibility

that these are definitions of number-objects.

4.2.1 Defining Number-Objects

I think the interpretation according to which number-objects are defined in terms of their

predecessors makes it implausible that Leibiz’s proof is a source of secure arithmetical knowl-

edge. On such an interpretation, a definitional statement, e.g. ‘4 is 3 and 1’, is a definition

of the object (a particular number-object) picked out by the definiendum (the numeral ‘4’).

Let us follow both Frege and Leibniz in treating ‘4 is 3 and 1’ as equivalent to ‘4 = 3+1’; let

us assume with them that the “=” symbol represents identity. Then, the definition states

that this object, viz. the one picked out by ‘4’, is identical with whatever gets picked out

by the expression ‘3 + 1’. Since the number 4 is an object, that with which it is identical

must also be an object. So, the expression ‘3 + 1’ must also pick out an object; it must pick

out the same object that ‘4’ picks out.

If the definition ‘4 = 3 + 1’ is a definition of the number-object picked out by ‘4’ (and

not a term, concept, or mode of presentation), then there are two possibilities regarding how

this number-object is being defined. One possibility is that the definition merely defines this

5Frege uses ‘Zahl’ in the German.

6There is something a little intuitively strange, to me at least, about the idea of defining an object.
But there is plenty of historical precedence for engaging in such a project. There is a significant literature
on Aristotle’s real and nominal definitions, and at least some of that literature interprets these definitions
(or just the real definitions) to be definitions of objects. For example, on such an interpretation the real
definition ‘Man is rational animal’ identifies the essence of the thing in question, viz. humans, or perhaps
humanity. The definition provides no information about e.g. the term ‘man’ or its proper application; the
term already has a meaning fixed. Rather, the definition aims to provide information about or an analysis
of what the term picks out.
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number-object as identical to another object, viz. the one to which the expression ‘3 + 1’

refers. If so, the role of the definiens is to provide an object, rather than the term that

picks it out or the mode of presentation through which it is picked out. Such a definition is

independent of the name or mode of presentation through the definiens picks out the object.

In such a case, the way in which this thing, viz. the relevant number-object, gets picked out

should not affect its definition.

Accordingly, if the definition ‘4 = 3 + 1’ defines the bare object picked out by ‘4’

as identical to that picked out by ‘3 + 1’, then the definition does one of two things: either

it defines the number-object as identical to itself, or it is a substantive claim that is false

because ‘4’ and ‘3 + 1’ refer to different objects. Even disregarding the clearly undesirable

possibility that the definition is a false substantive claim, this ought not to be a satisfying

definition; every object is self-identical, so a definition of something as identical with itself

provides neither analysis of the object nor insight into it. Since this definition is an identity

statement, it does not, on the surface, provide any information about the object.

The other possibility is that the expression used as the definiens does not merely

pick out an object (as the expression used in the definiendum does), but provides further

information as well, such as perhaps a mode of presentation. But in this case, the definition

‘4 = 3 + 1’ provides no analysis or insight that ‘3 + 1 = 3 + 1’ does not; in both cases, the

definiendum merely picks out the relevant object. And if the definition provides no analysis

or insight beyond what could be provided by an instance of self-identity, it could not play

the substantive role it is required to play in proofs. The definition is not used merely as

an instance of self-identity in the proof. If the definition is to be at all useful in proving

arithmetical truths, it must be a definition that relies on the term (or perhaps the mode of

presentation or the concept) used in the definiendum.7 But then the definition no longer

7There are at least two notions of proof. One notion is that of formal proof, which involves the manip-
ulation of statements using syntactical rules (e.g. modus ponens, or the substitution of equals). This is the
standard notion of proof, and proofs of this sort rely on the forms of statements. So, for example, since ‘4’
and ‘3 + 1’ have distinct syntactical forms, the identity ‘4 = 3 + 1’ potentially could play a different role in
proofs of this kind than could the identity ‘3 + 1 = 3 + 1’.
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defines the object, but rather it defines something that represents or picks out the object.

More generally, it seems to be fruitless to define particulars—that is, to define in-

dividual things. Definitions seem to define representations: words, or perhaps modes of

presentation. Perhaps it is more sensible to define universal things—that is, kinds, like hu-

man or triangle (assuming that there are many triangles). To be honest, I remain dubious

about this latter possibility, but that is a topic for another time. Of relevance to the issue

under discussion is the fact that identity claims will not suffice to define number-objects.

If definitions of the sort provided by Leibniz are to be useful in arithmetical proofs, those

definitions cannot be definitions of objects.

4.2.2 Defining Numerals

Now that we have rejected the interpretation of definitions as defining number-objects, we

turn to Leibniz’s idea that the definition ‘4 is 3 and 1’ defines the term (the numeral or

number-word) ‘4’. Under this interpretation, the definition is non-trivial; it fixes the referent

of the numeral ‘4’ by giving it the same referent as the expression ‘3 + 1’. Once the referents

of the numerals get fixed in this way, arithmetical truths can be proved using the method

Leibniz models in his proof of ‘2 and 2 is 4’.8

This interpretation seems promising, provided that the definition succeeds in provid-

ing the numeral with a referent. The definition of the numeral ‘4’, for example, succeeds if

The other notion of proof is not formal. Descartes suggests one such method of proof (deduction), according
to which deduction involves a movement of the mind. (See his Rules for the Direction of the Mind, in The
Philosophical Writings of Descartes, Vol I, edited by Cottingham, Stoothoff, and Murdoch.) But truths of
the form ‘3+1 = 3+1’—statements of self -identity—play no substantive role in such deductions because no
movement of the mind is required to notice that an object is self-identical, even if a movement of the mind
is required to recognize that two distinct terms co-refer. While Descartes’s notion of proof is rather tricky,
it still seems to require movement of the mind between something like distinct modes of presentation of an
object or perspectives on it, or having distinct means of representing a single object.

8In the French, Leibniz says, “two and two are four” (‘sont’) in one place; he says, “two and two is
four” (‘est’) in another. The difference between singular and plural here does seem relevant, but it is not
clear whether or not Libniz was attending to that difference. If he was, he meant to treat the number four
as singular; the character representing his views, Theophilus, uses the singular form, while the character
recommending Locke’s views, Philalethes, uses the plural. I will stick to the singular in virtue of the fact
that we are assuming that e.g. the number four is one object, rather than multiple objects.
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and only if the expression ‘3 + 1’ has a particular number-object as its referent. We must

suppose, of course, that ‘1’ has its referent fixed, as do all the other predecessors of the par-

ticular numeral getting defined. So, in this case, we assume ‘1’, ‘2’, and ‘3’ all have referents

fixed. But what about ‘3 + 1’?

4.2.3 Compositional Number-Expressions

There are a few ways that the referent of ‘3 + 1’ might be fixed. One possibility is that the

expression is primitive in a certain way; in particular, the referent of ‘3 + 1’ is not dependent

on the composition of ‘1’ and ‘3’ and ‘a+ b’ (the part the ‘+’ contributes to the expression),

but rather the expression acts as an indivisible unit and picks out the relevant number

object immediately, so to speak. Of course, this would render the definition of ‘4’ as ‘3 + 1’

uninformative, at least in the sense that it would provide no information about the relation

between 3 and 4. Further, it would introduce complications in arithmetical proofs of the

style modeled by Leibniz’s proof that 2 + 2 = 4. The non-compositional expression would

accomodate neither the valid application of Leibniz’s axiom (substitution of equals) nor

Frege’s (associativity of addition). Just as we cannot validly perform substitution of equals

on terms that occur as part of a name, we cannot substitute into ‘(2 + 1) + 1’ to get ‘3 + 1’

if ‘3 + 1’ is to be taken as a single, non-compositional term. A similar problem arises with

the associativity of addition, assuming that ‘(2 + 1) + 1’ is taken to be a non-compositional

term as well.

Accordingly, if we are to validate the uses of substitution and associativity in Leibniz’s

proof that 2 + 2 = 4, we must take expressions of the form ‘a + b’ to be compositional in

nature. The referents of such expressions depend on their component terms. In particular,

the success that such expressions have in fixing reference depends on the role of the symbol

that allows the numerals to be joined together into a single term: the ‘+’.
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4.3 The Meaning of ‘a + b’

We turn our attention, then, to the role of the ‘+’ symbol in fixing the reference of expressions

of the form ‘a + b’. One fairly intuitive idea is that the ‘+’ sign, in conjunction with the

open variables for numerals flanking it (i.e. ‘a+b’), represents an operation of some sort—an

operation of adding.9 But there is a prima facie implausibility about treating ‘a+ b’ (where

a and b are unbound variables) as representing an operation. While perhaps 5 is the result

of adding 2 and 3, 5 is not the actual adding of 2 and 3. The implausibility of the idea that

‘a+ b’ represents a binary operation performed on number-objects, accordingly, stems from

our assumptions that numbers are objects and the ‘=’ symbol represents identity. It is not

enough for the composition ‘2 + 3’ to yield an object or give instructions on how to get an

object; the referent of the composition ‘2 + 3’ must itself be an object.

It might be tempting to think that this is no more than a mathematical example of

Frege’s puzzle about identity. One might think that the challenge I raise to the idea of ‘a+b’

representing an operation is the problem of one object (the number 5) getting picked out by

two distinct senses (the sense associated with the expression ‘2+3’ and that associated with

the numeral ‘5’). Surely such a puzzle will arise for number-objects if it arises for other sorts

of objects. The substantive side of such a challenge obviously would be far more general than

the mathematical case, and would give us no reason to worry about arithmetical identities

beyond the reasons we already have to worry about identity in general.

But Frege’s puzzle does not apply here, because the number 5 is not identical with

the operation of adding the numbers 2 and 3. The number 5 is not the performance of

an action, while the adding of 2 and 3 surely is. Intuitively, the number 5 is an object,

while the summing of 2 and 3 is an action.10 But let us even suppose that the number 5

9Honestly, I am not certain where this view can be found in print as a view held by any living philosopher.
But I routinely hear philosophers say things along these lines. It is also the way basic arithmetic is commonly
explained to children. It is easy to imagine a parent or teacher saying, “Take two. Now add 3. What do we
have now? 5. Good. See, 2+3=5!”

10Admittedly, depending on our ontology, there may well be objects that are actions; perhaps the bombing
of Dresden, for example, is an event-object. But to my knowledge, nobody believes that numbers are actions,
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is an action-object, and that it is the very action-object of summing 2 and 3. Then, since

‘4 + 1 = 5’ is also true, the number 5 must also be the action-object of summing 4 and 1.

By the transitivity of identity, then, the action of summing 2 and 3 must be identical to the

action of summing 4 and 1. That is, these actions are not just equivalent actions thanks to

associativity; they are the very same actions. Certainly such a result is counter-intuitive.

We must conclude that it is deeply implausible that the ‘+’ represents an operation, at least

if an operation is a performed action.

Since the ‘+’ symbol, together with its two unbound variables, presumably does not

represent the performance of an operation of adding or summing, it must represent something

else. Perhaps, rather than representing the performance of an operation, ‘a + b’ represents

the result of an operation. That is, perhaps the expression ‘2 + 3’ is polysemous between the

performance of the operation (the adding itself) and the result of performing the operation.

If so, the latter meaning (the result of adding) is the meaning that makes the equation

sentence (‘2 + 3 = 5’) true.

From here on out, let us assume that ‘2 + 3’ represents the result of the addition op-

eration on the numbers 2 and 3. It will be useful to consider how the results of the operation

represented by ‘a+ b’ are determined. What is the ‘a+ b’ operation, fundamentally?11

4.3.1 Collections, Combinations, and Sums

One common way of thinking about addition is as an operation of combining, collecting,

or putting together. After all, if we put two apples together with three apples, we get five

apples. It is natural to think that we have performed an operation of adding apples. We

might think about this operation we have performed—the adding, or putting together, or

combining, or collecting—either in terms of mereology or in terms of the union of sets of

objects; the mereological sum of two apples and three apples is five apples, or the union of

or in any way active. Such a view would be intuitively implausible.

11For the sake of brevity, I will use the term ‘addition’ and the phrase ‘the + operation’ in place of ‘the
operation represented by the ‘+’ symbol, flanked by two unbound variables’.
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the two-apple set with the three-apple set is a five-apple set.

There are a number of problems with this kind of account of the addition operation.

First, apples are not themselves number-objects; I can eat apples, but I cannot eat numbers.

We have described an operation on apples, rather than an operation on number-objects.

There may well be some non-arbitrary relation between this operation on apples and the

addition of numbers, but in describing the operation on apples we have not, strictly speaking,

described the addition of numbers. It might be that the operation on apples is an application

of the addition operation on numbers. Perhaps we even could explain such an application.12

But we are interested in explaining the addition operation itself, rather than methods of or

criteria for its application to situations involving things other than number-objects.

It also might be that the relevant number-objects (viz. the numbers 2, 3, and 5)

somehow involve the relevant apples, either directly or indirectly; it might be that apples

somehow fall under numbers. Frege’s view, according to which numbers are the extensions

of second-level concepts, is an example of something like this.13 Such views require positing

internal structure to individual number-objects. More particularly, it seems that the relevant

kinds of internal structure could not be given in strictly mathematical terms. At the very

least, if the number 3 somehow covers our trio of apples, the number must have more

structure than simply being identical with 1+1+1, or the structural relations of addition,

multiplication, etc. that it has with the other natural numbers. In addition to the problem

raised previously that we do not yet know what operation the ‘+’ sign represents, such a

simple account of internal structure provides no explanation of how our trio of apples might

be connected to the nature of the number 3. So, the operation on the apples can only be a

case of addition if number-objects have some kind of extra-mathematical structure or anchor.

In that case, further knowledge would be required to understand Leibiz’s proof: knowledge

12We could, for example, explain something about the one-to-one correspondence between the collections
of apples and the sets of predecessors of the numbers in question.

13Charles Parsons is a more modern example of someone with such a view. He expounds his view in
Mathematical Thought and Its Objects.
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of the metaphysical relation between collections of objects (such as apples) and the numbers.

I assume that most of us lack such knowledge. Since we do understand Leibniz’s proof, it

seems that such metaphysical knowledge is not required to understand the proof, and so it

seems unlikely that the numbers have such non-mathematical structure.

Second, the operation on the apples will not always work as advertised. Two apples

put together with three apples do not always yield five apples; sometimes the two apples and

the three apples have an apple or two in common. The two apples and the three apples must

be disjoint, or non-overlapping, for the operation to work. This point extends to addition

on the number-objects too. The collecting and mereological summing of number-objects is

largely the same as the collecting and mereological summing of objcts of other sorts. For

example, the mereological sum of an object x and the very same object x is just x, whether x

is an apple or the number 2. Since 2+2 = 4, and 2+2 6= 2, the operation of addition cannot

be a mereological summing of number objects. For similar reasons, addition also cannot be

the union of sets of ones; it cannot be a putting-together operation in any ordinary sense.14

We now have two reasons for rejecting the picture of addition as an operation of

collecting, combining, or mereologically summing objects—assuming, of course, that number-

objects are not to be identified with entities having non-mathemetical internal structures.

One reason to reject the picture of addition as combining is that this picture does not seem to

arise from the addition operation itself. Addition is an operation on number-objects, but this

picture seems to arise from our common use of arithmetic to model non-mathematical cases

(like combining collections of apples). In doing so it gets the order of explanation wrong.

We use mathematical structures to explain and understand the non-mathematical world, not

the other way around. The second reason we have for rejecting this picture of addition is

that operations of collecting, combining, or mereologically summing number-objects seem to

14Frege argues similarly in the Foundations of Arithmetic, §29-45. As he writes in §45:

The word ‘one’, as the proper name of an object of mathematical study, does not admit
of a plural. Consequently, it is nonsense to make numbers result from the putting together of
ones. The plus symbol in 1 + 1 = 2 cannot mean such a putting together.
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yield results that we do not expect from addition (e.g. the undesirable result that 2+2 = 2).

Assuming that numbers do not have non-arithmetical internal structures, it seems

deeply implausible that addition is an operation of combining, collecting, or mereological

summing. We must consider other possibilities. Presumably the genuine addition operation,

the one on the number-objects, cannot be any sort of ordinary physical action or activity;

after all, numbers are not ordinary physical objects like apples. But if addition is not such

an operation, what else might it be? One possibility is that it is an extensional function.

Another is that it is a Fregean function, or something in that vicinity.

4.3.2 An Extensional Function

Perhaps addition—that is, the operation that the ‘+’ sign represents—is not an activity, nor

any other kind of operation that takes time. We might think that addition is a function

in the extensional sense. There are a number of ways to cash out this extensional sense of

function. An extensional function (in the case of addition) might be a set of ordered triples,

of form < a, b, c >, where intuitively the triple means that a + b = c. If we want to avoid

a set-theoretic reduction, we might think of the extensional function as a graph; one such

graph might be the 3-dimensional one in Cartesian coordinates in which, intuitively, the

ordered triples mentioned before give the graph’s coordinates. We also might think of an

extensional function in terms of inputs and outputs; inputs a and b yield output c, and this

is just a brute fact with no further explanation.

There seem to be many different frameworks for thinking about what it is to be

an extensional function, but let us not dwell long on any puzzles related to that concern.

Regardless of the account of extensional function that we give, I propose, we will not be able

to account for Leibniz’s proof that 2+2 = 4 (and similar proofs) if addition is an extensional

function. We will run into one of two problems with the proof. Which problem we encounter

will depend on what the proof is directed towards demonstrating. The proof might be

directed towards demonstrating something about number-objects; e.g. the number-object
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that results from the addition of 2 and 2 is identical to the number object 4. Or, it might

be directed towards proving something about language or notation; e.g. if the expressions

‘2 + 2’ and the numeral ‘4’ refer at all, they refer to the same object, whatever that object

might be.15

In the former case, in which the proof is directed towards demonstrating a fact about

a relation holding between objects, no non-trivial proof of ‘2 + 2 = 4’ is required. Because

addition is an extensional function, the addition of ones in no way grounds the addition of

larger numbers. Every result of adding number-objects is an equally fundamental part of the

definition of the extensional addition function. Accordingly, there is no need for the middle

steps in Leibniz’s proof. The fact that the object referred to by the numeral ‘4’ (that object)

is the very same object as the object that results from the adding of 2 and 2 (the adding

of this object and this object) is simply included in the extension that defines the addition

function. Any true sentence of the form ‘a + b = c’ is trivial in virtue of the extensional

definition of addition.

In the latter case, the proof is directed towards demonstrating a fact about language—

in particular, a fact about the co-reference of numerical expressions, regardless of what

the common referent happens to be. Rather than demonstrating a truth about number-

objects, the proof demonstrates that there are certain kinds of linguistic connections between

numerals.

One problem with taking the proof to demonstrate this linguistic connection is that

it is prima facie implausible. It seems to get the subject matter wrong; rather than proving

something about numbers, we prove something about language. As a matter of course, we

15The two possibilities here of the content of what we are trying to prove map onto the two different
interpretations Frege offers in the first paragraph of ‘Sinn und Bedeutung’ about what the relation of identity
is. Identity, according to Frege, is either a relation between objects, or a relation between the names of
objects. Although Frege earlier thought (in the Begriffschrift) identity to be a relation between the names
of objects, here he seems to think identity to be a relation between objects. There is, however, some debate
on how Frege is properly interpreted on this point. See, e.g. Thau and Caplan ‘What is Puzzling Gottlob
Frege?’ and Heck ‘Frege on Identity and Identity-Statements: A Reply to Thau and Caplan’, both in the
Canadian Journal of Philosophy.
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mention numerals in our basic mathematical practices, rather than using them. Frege puts

it this way:

In that case the sentence a = b would no longer refer to the subject matter,

but only to its mode of designation; we would express no proper knowledge by

its means.16

But prima facie implausibility is not the only impediment to taking this approach; it has

more serious difficulties.

If this sort of account is to work, we must think of the definitions of numerals in

a slightly different way. We had been thinking of the definition ‘4 = 3 + 1’ as directly

fixing reference; the numeral ‘4’ is defined as a name for that number-object, viz. the one

to which the expression ‘3 + 1’ refers. But a purely reference-fixing definition does little to

identify the connections between the relevant linguistic items; such a definition only serves to

identify the connection between one linguistic item (the numeral ‘4’) and one non-linguistic

item (the relevant number-object). If the proof is to demonstrate a fact about language,

the definitions of numerals cannot be purely reference-fixing; they must provide a linguistic

connection between the definiendum numeral and the numerals used in the definiens.

The most natural way for there to be a linguistic connection between the definiendum

and the definiens is for a definition to stipulate co-reference. For example, the definition

‘4 = 3+1’ is the stipulation that the numeral ‘4’ co-refers with the expression ‘3+1’. Leibniz’s

proof then gets its legs from the combination of these facts about co-reference, given by the

definitions of the numerals, with facts about the compositional nature of numeral-expressions

involving the ‘+’ sign.

So long as this linguistic approach allows us to account for the relevant aspects of

the compositional nature of expressions using the ‘+’ sign, we have a potentially viable

story about how the definitions and proof work. Unfortunately, no such account is available.

16‘Sinn und Bedeutung’, first paragraph.
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Leibniz’s proof requires the associativity of addition, but this feature will not be available

as required to prove that ‘4’ and ‘2 + 2’ co-refer.

The unavailability of associativity for Leibniz’s proof is a consequence the fact that

‘a + b’ represents addition, which we are supposing to be simply an extensional function

on number-objects. Addition is not an operation defined on numerals. Were this operation

defined extensionally on numerals, a definitional circle would arise. The numerals would be

defined in terms of the + operation, and the + operation would be defined in terms of the

numerals. So expressions of the form ‘a+ b’ must represent an operation on number-objects.

Since expressions of the form ‘a + b’ must represent operations on number-objects,

features of the way the ‘+’ sign (together with its unbound variables) works compositionally

must parallel features of the addition operation on number-objects. It ought to be fairly clear

that the only plausible explanation of this parallelism of features is that the compositional

features of the sign are grounded in the compositional features of the operation on numbers.17

One of the relevant compositional features of the symbol in arithmetical language is the

feature that parallels the associativity of addition. For any three numbers α, β, and γ,

(α + β) + γ = α + (β + γ); similarly, for any three numerals a, b, and c, expressions of

the form ‘(a + b) + c’ and ‘a + (b + c)’ co-refer.18 Call this linguistic feature ‘associative

co-reference’.

The version of Leibniz’s proof under consideration relies upon associative co-reference,

since the claim we are interested in proving is a linguistic claim about co-reference. But even

17In case it is not clear, here is a brief argument. There are three possibilities. Either the features of the
sign and the features of the operation on numbers have analogous features as a matter of happy coincidence,
or the features of one are grounded in its relation to the other, or the analogous features have a common
grounding in something else entirely. Having a common grounding in something else is not a viable option
because the addition operation on number-objects is an extensional function; it has no grounding aside from
its extension. This fact also undermines the possibility of the features of the operation on numbers being
grounded in the features of the ‘+’ sign. And if the analogous features are the result of a happy coincidence,
then it is mere coincidence that the proper use of a symbol representing a function reflects the nature of
that very function. But that is absurd; surely the proper use of a symbol is non-coincidentally related to
that which it represents.

18Notice that this is in keeping with the style of numerical definition: ‘4 = 3 + 1’ means ‘4’ and ‘3 + 1’
co-refer.
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though associative co-reference is linguistic, it is grounded in a feature of the numbers and

an operation on those numbers (viz., the associativity of the operation). Furthermore, since

the linguistic features of the ‘+’ sign are grounded in the operation of addition, every proper

use of the ‘+’ sign must be grounded in this extensional function on number-objects.19

Our problem arises here, in the grounding of the proper use of the ‘+’ sign, and in

particular the grounding of associative co-reference, which is part of the proper use of this

sign. Given the rigorous nature of arithmetical proofs, any assumption used in a proof must

be solidly available to mathematicians.20 In particular, associative co-reference must be

solidly available to mathematicians if it is to be legitimately used in the vesion of Leibniz’s

proof under consideration. It can only be solidly available, though, in virtue of the associa-

tivity of addition on the number-objects being solidly available.21 And given the infinity of

numbers and the fact that addition is an extensional function, the associativity of addition

is not solidly available. The associative feature of the operation of addition is grounded in

the infinite extension that defines addition, so if the associative property is solidly available,

the infinite extension must also be. That, of course, is impossible for creatures like us with

finite minds. Perhaps we could hypothesize the associative nature of addition, but such a

hypothesis would not suffice for use in a rigorous arithemetical proofs.

Thus, Leibniz’s proof that 2 + 2 = 4 cannot be successful under the assumption that

the operation of addition is defined extensionally. If the proof is aimed at showing something

about mathematical objects, it is superfluous. If the proof is aimed at showing something

19Perhaps I should be more careful when saying something about every proper use of the sign, because
presumably it has other meanings in non-arithmetical contexts. But forgive my sloppiness; I only mean to
discuss arithmetical contexts here.

20I distinguish between assumptions and suppositions. The former must be solidly available; the latter
need not be (and may be reduced to absurdity as part of a reductio argument).

21Suppose not. Then associative co-reference is solidly available in the absence of the solid availability of
the associativity of addition. Then either it is not available that the ‘+’ sign is used properly when associative
co-reference is at issue, or facts about the proper use of the ‘+’ sign are solidly available without the solid
availability of facts about whether or not the proper uses of the ‘+’ sign reflect features of the operation it
represents. The latter option is absurd. As for the former option, a linguistic law is not available for the
purposes of mathematical proof if it is not even available whether or not that linguistic law is in keeping
with the proper use of the central term guiding its application.
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about language, one of the crucial assumptions required for it is not available. So, assuming

that Leibniz’s proof is of some value (an assumption I am happy to make), addition cannot

be defined extensionally.

4.3.3 Fregean Functions

Since addition can neither be an extensional function nor any kind of physical operation, we

might think that addition is, in the Fregean sense, a function of two arguments. On Frege’s

view, functions are fundamentally incomplete:

. . . a function by itself must be called incomplete, in need of supplementation,

or ‘unsaturated’.22

Functions are so to speak gappy—a gap in a function can be filled with an argument, which

is an object (a complete entity) that completes or saturates the function, thereby yielding a

value (assuming this is a function of one argument). The value is a complete entity, such as

a number or a truth-value:

. . . the argument does not belong with the function, but goes together with

the function to make up a complete whole . . . 23

An example might help elucidate this account. On Frege’s view, concepts turn out to be

functions:

. . . a concept is a function whose value is always a truth-value.24

So, for example, a (Fregean) concept like ‘human()’ will be a (Fregean) function that yields

the value True when it goes together with an object like Socrates or Frege as argument, but

yields the value False when it goes together with an object like the Moon or the Sun as

argument.

22See “Function and Concept.”

23Ibid.

24Ibid p. 15.
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Given this account, addition is not a concept in the Fregean sense. Taken as a Fregean

function, it has the form () + ( ), where the two arguments must be numbers.25 Once

saturated, this function will not yield a truth-value; its value is always a number-object.

This account has some intuitive appeal. It retains the compositional feature of ex-

pressions of the form ‘x+ y’; the referent of the expression is determined by the composition

of the function denoted by ‘() + ( )’ with certain arguments, viz. the objects denoted by

x and y. It also explains why truths of the form ‘x + y = z’ can be informative: while the

same object gets denoted by ‘x+y’ and by ‘z’, the two expressions can have different senses.

One of these senses involves the composition of two arguments, x and y, with the addition

function. The other sense does not have the same compositional structure. Furthermore, this

account can explain the substitution of equals required by Leibniz’s proof. The arguments of

a function are objects, not expressions or senses. Whether one of the arguments is denoted

using the numeral ‘2’ or the expression ‘1 + 1’, to use a particular example, the composition

of function and arguments will be exactly the same.

Though Frege’s account of functions can explain some of the key features of the addi-

tion function and Leibniz’s proof that 2 + 2 = 4, like compositionality and the substitution

of equals, it leaves some questions unanswered. One unanswered question, which we shall

set aside for now, is the question of what a function is. Frege describes some features of

functions, such as their being unsaturated and combining together with argument-objects to

yield values, but these features do not seem to suffice for a satisfying account of the nature

of functions.

Another unanswered question has to do with the content of the addition function, and

what distinguishes this particular function from other functions. Presumably a satisfactory

account of the nature of this particular function will explain the associativity of addition,

which is of particular interest to us right now because of its role in Leibniz’s proof that

2 + 2 = 4.

25I use () and ( ) to designate that the gaps need not be filled by the same argument.
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A Primitive Function

One possibility is that the addition function is primitive. That is, it has no components;

it is not a composite entity built from smaller or simpler parts. Assuming this to be the

case, there must be some way to epistemically access this function, this denotation of the

‘+’ symbol, in a way that allows us to successfully execute Leibniz’s proof. This could occur

in one of two ways. Either we could have primitive knowledge of the addition function, or

we could develop the requisite knowledge of the function through our knowledge of other

objects or functions. This latter alternative might take any of many different forms, such

as knowledge of the pairings of arguments with values, or knowledge of other functions and

objects that can be used to define the function.

If the former option holds, and our knowledge of the addition function is in some way

immediate or direct, our definitions of numerals like ‘4’ are solid. Assuming we have such

knowledge of the function represented by ‘+’, and we also have knowledge of the referents

of ‘1’, ‘2’, and ‘3’, we are in a position to define the numeral ‘4’ in terms of its coreference

with ‘3 + 1’.

There will, however, be a couple unsettling results. First, it might be unclear why

a proof of 2 + 2 = 4 is required at all. If we have unmediated knowledge of the addition

function, it is not obvious why a proof is required to secure our knowledge of this arithmetical

truth. It might seem that our knowledge of the way the addition function works is no more

privileged when the number one is one of the arguments than it is when both arguments

are other numbers. To be honest, it strikes me as intuitively compelling that this kind of

direct knowledge of addition would render arithmetical proofs unneccessary for the purposes

of securing mathematical truth. But I am far from convinced by this intuitive tug. It seems

that a primitive-knowledge account will be compatible with many explanations of why the

addition of smaller numbers would be more epistemically secure than the addition of larger

numbers.26

26Let me give an example of one potential explanation to handle objections that the primitive knowledge
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The second result is more unsettling. One of the fundamental tools we need to

complete Leibniz’s proof is the associativity of addition. But if our knowledge of the addition

function is direct or immediate, we are unable to explain our knowledge of associativity. We

are supposing that addition is a primitive function, and as a function it takes two objects

as arguments. Since the arguments of the addition function must be numbers, any structure

that the arguments have is structure that the numbers have. Thus, unless the numbers that

serve as arguments themselves have a particular compositional structure, viz. that of the

addition function completed with two number-object arguments, compositional expressions

like ‘(a + b) + c’ will not reflect the actual composite structure of addition.27 Rather, the

referent of the expression ‘(a+ b) + c’ is the value of the addition function together with two

number-object arguments. One of those arguments is the referent of ‘c’, and the other is

the referent of ‘a+ b’—that is, the number-object that is the value of the addition function

together with number-object arguments a and b. Surely this composition is not the same

as that expressed by ‘a + (b + c)’. This latter expression refers to the composition of the

addition function together with arguments quite distinct from the ones mentioned before.

account renders proof unneccessary. I do not intend to endorse this explanation, but it strikes me as fairly
plausible. This explanation depends on the idea that we have a better cognitive grip on smaller number-
objects than on larger ones. As a result, the addition of smaller numbers might be more secure than the
addition of larger numbers. This might lead us to have a better cognitive grip on the composition of a related
function that we understand through the addition function, viz. the single-argument function () + 1, than
we do on the addition function itself when it is composed with larger numbers as arguments.

27Even if the numbers did have the relevant compositional structure, the addition function would not
structurally suggest associativity—at least, not immediately or in a way that would allow us to use it as a
foundational truth. For the function-argument structure of (a+ b) + c to reveal its identity with a+ (b+ c),
the overall structure of the addition function composed with arguments a and b + c must not take the main
addition connective in the expression of the function to have any priority over the other addition components
in the actual function; regardless of parentheses in the expressions, ‘(a+ b) + c’ and ‘a+ (b+ c)’ must denote
the same function (unsaturated, without particular arguments yet assigned). But then if, for example,
a+ b = d+ e, and the arguments identified in the expression ‘(a+ b) + c’ are just the referents of ‘a+ b’ and
‘c’, then the former of these arguments must also just be the referent of ‘d + e’ also. So ‘(a + b) + c’ and
‘(d + e) + c’ must represent the exact same compositions of function and argument. Assuming that a 6= d
and a 6= e, then, associativity will only be structurally obvious if the numbers are sums of ones, and the
central ‘+’ in the expression refers to an instance of the addition operation that has no structural priority
over any of the others. It no longer seems that addition would be a primitive function; rather, it would seem
to be a composite function given in terms of addings of 1. And furthermore, it seems that the associativity
of the general case of (a + b) + c = a + (b + c) would be derived from the associativity of the particular case
(1 + 1) + 1 = 1 + (1 + 1). It no longer seems to be an obvious property, fundamental enough to be used
without explanation in a proof.
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These arguments are the referents of ‘a’ and ‘b+c’, rather than of ‘a+b’ and ‘c’; unless a = c,

these are different argument-objects. Thus, unless the addition function—the unsaturated

thing—is built from components, the structure of the addition function gives us no reason

to believe that (a + b) + c = a + (b + c). The structure of the addition function therefore

provides no explanation of the associativity of addition.

In order to use associativity in Leibniz’s proof, we must have some explanation or

knowledge of it. But if the addition function is primitive, and if our grasp on the func-

tion is direct and does not come through our understanding of other objects or functions,

then grasping the addition function is sufficient neither for us to explain why addition is

associative, nor to immediately recognize that addition is associative.

Knowledge through Other Objects or Functions

Let us then consider the latter alternative: that, though the addition function is primitive,

our knowledge of it comes through knowledge of other objects or functions. If so, the relevant

objects or functions that allow us to have knowledge of the addition function must suffice

for us to also have knowledge of the key features of this primitive function, and the key

features of expressions used to pick it out (that is, expressions involving the ‘+’ symbol). In

particular, for the purposes of Leibniz’s proof, these functions or objects must provide the

grounds for our knowledge of associativity, the substitution of equals, and the denotations

of the particular expresssions used in the definitions of the numerals (e.g. the denotation of

‘3 + 1’ in the definition of the numeral ‘4’).

Let us suppose that our knowledge of the addition function only arises through our

knowledge of other functions or objects. It seems that there are four ways in which this

might occur. First, our knowledge of the addition function might arise as a result of our

pairing arguments with values; 2 and 2 get paired with 4, 5 and 7 with 12, and so on. Second,

it might arise as a result of placing some sort of restriction on some more general function,

perhaps by fixing one or more arguments, or by restricting the available arguments to those
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that stand in some relation to one another. For example, there might be a function of three

arguments that gives us the addition function when two of the argument places must be

filled by the same argument. Third, our knowledge of the addition function might arise as

a result of our knowledge of one or more restrictions of the addition function. We might,

for example, come to know it through our knowledge of the single-argument function that

we express as ‘() + 1’, or perhaps knowing many other such functions too, such as those

expressed as ‘() + 2’, ‘() + 3’, ‘() + 4’, and so on. And fourth, our knowledge of addition

might arise as a result of describing the intension, or meaning, of the function. This might

happen, for example, through an implicit or explicit definition of the function, or through

an account of the complement of the function—an account of what the function is not.

Setting aside what Frege might have thought,28 none of these four approaches seem to

provide plausible explanations of how we could come to know a primitive addition function.

The first option, pairing arguments with values, is just one way to think about extensional

28Frege’s view on functions is a tricky matter, and it is not clear whether or not some of these options
straightforwardly conflict with his view. Given some of the things he says in “Function and Concept,” he
might be understood to believe that there are distinct functions with identical argument-value pairings:

There are functions, such as 2 +x−x or 2 + 0 ·x, whose value is always the same, whatever
the argument; we have 2 = 2 + x − x and 2 = 2 + 0 · x. Now if we counted the argument
as belonging with the function, we should hold that the number 2 is the function. But this
is wrong. Even though here the value of the function is always 2, the function itself must be
distinguished from 2; for the expression for a function must always show one or more places
that are intended to be filled up with the sign of the argument. (p. 7)

This quotation might be taken to suggest that, on Frege’s view, argument-value pairings are not sufficient to
uniquely identify a function. But it is unclear whether that is a fitting interpretation of Frege. After all, he
identifies 2 + x− x and 2 as distinct, but the former is a function (it takes arguments) while the latter is an
object (it is saturated, and does not take arguments). He does not explicitly say that 2 + x− x and 2 + 0 · x
are distinct functions. Thus, he has not unambiguously given a case in which the pairings of arguments with
values are identical and the functions are not.

He later adds a comment that might be taken to suggest again some resitance to the idea that the
argument-value pairings uniquely identify a function:

If we write
x2 − 4x = x(x− 4),

we have not put one function equal to the other, but only the values of one equal to those of
the other. (p. 9)

But this might simply be a caution about jumping to identity conclusions in cases of function; he does not
explicitly claim that x2 − 4x and x(x− 4) are distinct functions. Let us, then, set aside the complexities of
Frege scholarship and just focus on what might be true.
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functions. As we have already seen, understanding addition through its extension will not

position us to know the associativity of addition securely enough to use it as an assumption

in Leibniz’s proof.

The second option, according to which we reach addition by putting restrictions on

the arguments of a more general function, will not suffice for Leibniz’s proof either. The

resulting restricted function, which we suppose to be addition, will be a composite of one

function with another function, or with an argument. We have also supposed, however,

that addition is a primitive function. So, either the composite including the more general

function positions us to recognize another function (addition) that we grasp primitively, or

we grasp addition through the composite. In the former case, regardless of the inspiration,

we have a primitive grasp of addition. We have already covered the arguments against this

option. In the latter case, our full grasp of the addition function is through this composite

that includes the more general function. But given the lack of candidates for such a role, it is

prima facie implausible that we grasp addition this way. Furthermore, if we can only grasp

addition through this composite, it seems that the postulation of a distinct and primitive

addition function is superfluous; the composite function alone provides all our knowledge of

the structural features of addition, and presumably shares those structural features. Let us

use Ockham’s razor to shave the primitive addition function from the account. Soon we will

consider the possibility that addition is a composite function.

Largely similar concerns will undermine the third option, according to which we can

come to know addition through our knowledge of restrictions of the addition function. Either

the function () + 1, for example, is a composite consisting of the addition function partially

saturated with one argument (the number 1), or it is its own primitive function. In the

former case, we must already know the addition function component of the composition in

order to know the composite () + 1 function. In the latter case, the situation is again one in

which our full grasp of the addition function is through this other function. Once again, it

seems fitting to take Ockham’s razor to the primitive addition function; the function () + 1,
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along with the construction we use to build the addition function from it, will suffice alone

for use in Leibniz’s proof.

The fourth option covers a range of possibilities: explicit definitions of the intension

of the function, implicit definitions, descriptions of the complement, etc. These possibilities

will fall into one of the two problems we have already seen. One possible problem is that

the function will be defined or described in a way that attributes some kind of composite

structure to the function, which we have assumed to be non-composite. The other is that our

definition or description will not uniquely determine the addition function, either because a

non-composite function is identified through compositional means, or because it is introduced

by an implicit definition, which possibility we found unsatisfactory in the second chapter.

None of these four ways of using other functions to grasp a primitive addition function

seems to be a satisfactory approach. So, let us consider the possibility that the function is

composed or defined using other functions. Let us consider the possibility that the meaning

of the ‘+’ is constructed.

4.4 The Successor Function

The obvious candidate for constructing the meaning of the ‘+’ from more basic components

should be familiar from Peano Arithmetic. This is the recursive definition of addition in

terms of the successor function (S):

• a+ 1 = S(a)

• a+ S(b) = S(a+ b)29

There are two things to notice about such a definition. First, the first clause can

define in either direction, so to speak. One possibility is that the ‘+1’ operation is assumed,

29This definition of addition relies on the assumption that 1, rather than 0, is the smallest natural number.
If we prefer to begin with 0 instead, as is commonly done in Peano Arithmetic, we can modify the definition
by replacing ‘a + 1 = S(a)’ with ‘a + 0 = a’.
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and the successor operation is defined in terms of it. Notice that this approach would not

obviously run into all the same sorts of problems that we have seen before, many of which

arose from worries about adding potentially large numbers. The second clause would then

use the newly-defined successor operation to define addition on larger numbers. The other

possibility is that the successor operation is assumed, and all cases of addition are defined

in terms of it.

It seems that the definition fits the latter description; the successor operation is

assumed, rather than the ‘+1’ operation. Were the ‘+1’ operation assumed, the first clause

wouldn’t be necessary. The addition of larger numbers could be defined directly in terms of

addition of ones in the following way: ‘a+(b+1) = (a+ b)+1’. A further assumption would

be required, of course, viz. that for every number a > 1, there exists a number b such that

a = b + 1. But an analogous assumption is also required when we define addition in terms

of successor.

Even though the particular definition provided above seems to take the successor

function to be basic, nothing important rides on whether we base the definition on the

adding of ones or on the successor function. In either case, we identify one operation with

the other: S(a) = a + 1. The successor of a number is identical with the result of adding

one to that number. We start with an operation on one number, which we may label with

‘successor’ or with ‘plus one’. Ultimately, the operation in question is given both labels. In

what follows, I will take successor to be the more basic form.

Second, assuming that the successor function is taken to be primitive, this definition

clearly defines addition in terms of ordinal number instead of cardinal number. Regardless

of whether the definition of addition assumes the successor function or the +1 operation, the

assumed operation treats numbers as having an order—the order provided by the successor

or +1—and not simply a size in terms of one-to-one correspondences. The successor (or

+1) function puts the numbers in order, and relies on that order to define the operation of
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addition.30

Once addition is treated as a defined function, we can put this definition to use

in Leibniz’s proof. Recall that accouting for the associativity of addition was the most

significant problem we had with this proof when we took addition to be a primitive function.

Fortunately, associativity becomes a rather straightforward affair once addition is treated as

a defined operation. Using the ‘a+ (b+ 1) = (a+ b) + 1’ version of the definition of addition,

we get:

2 + 2 = 2 + (1 + 1) (by the definition of ‘2’ and the substitution of equals)

= (2 + 1) + 1 (by the definition of addition)

= 3 + 1 (by the definition of ‘3’ and the substitution of equals)

= 4 (by the definition of ‘4’).

The definitions of the numerals in terms of successor should be obvious, and the proof is

essentially the same (but includes more lines for substitutions) when successor is used instead

of +1. We are thus well-positioned to give Leibniz’s proof that 2 + 2 = 4, provided that we

can account for successor.31

4.4.1 Accounting for Successor

Just as we must understand the expression ‘3 + 1’ compositionally in order to define the

numeral ‘4’ using co-reference, so we must also understand ‘S(3)’ compositionally in order

to define ‘4’ once we reduce addition to the successor function. So, what is the successor

function, and how do we understand it?

30Frege gives an account of cardinal number using something like the successor function. The reason his
account is of cardinal number, and not ordinal number, is that he uses the equinumerocity of concepts in
order to define the successor function. Accordingly, he does not take the successor function to be primitive,
as we are assuming here that it is.

31While the uses of associativity required by Leibniz’s proof and others of the kind are immediate from
the definition of addition, the general assocativity of addition requires a short proof, by strong induction. I
argue in Chapter 2 that we cannot make use of strong induction without already understanding the structure
of the sequence of natural numbers.
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As with addition, it seems prima facie unlikely that successor is merely an extensional

function. But let us suppose, for the sake of argument, that it is. Then, assuming that

addition is defined over all natural numbers (an assumption we should be happy to make),

we must use the full extension of the successor function in order to give a full definition

of addition. Were we to limit ourselves to some proper initial segment of the successor

extension, we would not succeed in defining expressions of the form ‘a + b’ over all of the

numbers. In particular, we would not succeed in defining it for sufficiently large a or b.

After all, infinitely many extensional functions over all of the natural numbers will agree

with the successor function on any of its given finite subsets of argument-value pairings.

Thus, in order to fully define addition, we must be able to distinguish the full extension

that is the successor function. We cannot do this; our minds are finite. So, if successor is

extensionally defined, we cannot use it to fully define addition. The result that we cannot

define addition in this way is deeply implausible, so it seems unlikely that successor is an

extensional function.

Furthermore, the basic axioms of Peano Arithmetic involve the successor function,

and it seems that we must be able to know these axioms. That is, we do know these axioms;

we intuitively accept them as these axioms as accurate descriptions of the way the successor

function operates on the natural numbers.32 In particular, I have the following axioms in

mind (where n and m are natural numbers):

• (∀n)S(n) 6= 133

• (∀n)(∀m)(S(n) = S(m)→ n = m)

If successor is merely an extensional function, we are not in a position to know these axioms.

Unless we knew the full extension that is successor, we would not be able to know that it

32Recall from Chapter 2 that our knowledge of arithmetic—and in particular, our knowledge of the suc-
cessor function—is not grounded in axiomatic definition.

33Recall that we are assuming that natural numbers begin with 1, not with 0. Were we to begin with 0,
the same form would apply: (∀n)S(n) 6= 0. For our purposes, nothing of consequence will ride on this.
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includes no pairing of an argument with a value of 1, or that no two distinct arguments are

paired with the same value. Since these truths are obvious to us, it seems that successor is

not an extensional function.

The successor function also is not a promising candidate for definition in terms of

other functions or in terms of more basic concepts. There have been attempts to define it

(aside from defining it as +1). But such attempts inevitably require us to treat the natural

numbers in non-arithmetical terms. For example, if we were to reduce arithmetic to set

theory, we could take zero to be equal to the empty set, and then define successor as the

following operation: S(n) = n∪{n}. Then we take every natural number to be a set formed

in this way. While we can define a successor (or successor-like) function on these sets, we

either are identifying natural numbers with sets, or we assume the successor function and

merely draw an isomorphism between the natural numbers and the relevant sets.34 Frege

does something similar in The Foundations of Arithmetic. He identifies numbers using an

operation on things of another kind, viz. second-level concepts, and then describes a relation

between second-level concepts that yields the successor function.35 But it seems that we can

understand Leibniz’s proof without knowing anything about second-level concepts, or what

it is to take the union of a set with its singleton. It seems that this approach could not

explain how easy it is to understand Leibniz’s proof.

34Recall §4.1.

35See §76. Here is how Frege describes this operation:

The proposition:
“there exists a concept F , and an object falling under it x, such that the Number which

belongs to the concept F is n and the Number which belongs to the concept ‘falling under F
but not x’ is m”

is to mean the same as:
“n follows in the series of natural numbers directly after m.”
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4.4.2 A Primitive Successor Function

We are left, then, thinking of the successor function as primitive and basic. We do not know

it through its extension, nor do we know it through any more basic arithmetical functions.

It seems that we do not know it through other functions of any sort. Successor seems to be

about as primitive and basic as a function can be.36

There is some inclination, of course, to describe the successor function in terms of

ordinary language. The successor of a number n is just the next number after n, or the

number that follows n. These descriptions fit with our colloquial usage of the term ‘successor’,

when we are not discussing arithmetic or numbers. Elizabeth II is the successor of George

IV, because Elizabeth immediately followed George as the reigning monarch of England.

But these descriptions do not serve to explicate the successor function. Rather than giving

an account of the successor function, we seem to be giving synonyms that apply in a broader

class of domains (e.g. English monarchs). We seem to grasp all of these operations with

equal immediacy. The only thing that separates them is the domains on which they operate.

Let us suppose that we do, in fact, grasp this primitive successor function, and that we

instinctively understand how it operates on the natural numbers. Then we need not know

in advance, the full extension of the successor function in order to use it to fix referents

using definitions like ‘4 = S(3)’ (or ‘4 = 3 + 1’). Given a number n, and the intension of

the successor function, ‘S(n)’ uniquely picks out a referent, which we can identify through

our primitive grasp of the intension of ‘S’. Since we have a determinate conception of

36Perhaps there is a more primitive function. Perhaps we could think of the successor function as built
from the idea of ‘a different thing’, which may strike us as more basic than ‘the next thing’. But then we
would have to build the successor function using omething like Peano Arithmetic. One problem with such an
account is that it seems to get the order of explanation wrong. But, there are two more striking problems.
First, we already established in Chapter 2 that Peano Arithmetic does not uniquely characterize the natural
numbers, so it does not uniquely characterize successor (though perhaps it could if we limited successor to
the natural numbers). And Peano Arithmetic does nothing to guarantee that S(2) = 3, for example, instead
of S(2) = 4. It would be completely consistent with such a definition of successor to switch the order on the
natural numbers.

Second, the successor function would then be a generic and implicitly-defined function. A structure that
is implicitly defined does not distinguish between isomorphism classes, as discussd in Chapter 2. So the
successor function would not pick out a unique referent for ‘S(1)’. This would make our definition of the
numeral ‘2’ an unsuccessful definition.
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the successor function we use to define addition, the definition of the addition function

presumably covers the addition of any pair of natural numbers—as we would expect.

Assuming that we do have this immediate understanding of the successor function,

Leibniz’s proof no longer seems to pose a problem. The relevant use of associativity follows

immediately from our definition of addition, and the definitions appear to be informative and

useful. If we already know the referent of ‘3’, our understanding of the successor function

positions us to identify its successor, which we then label ‘4’.

Our immediate understanding of successor would have further implications as well.

This is because we intuitively accept the axioms of Peano Arithmetic.37 We intuitively

recognize that the number 1 is not the successor of any other natural number, and that no

two distinct numbers have the same successor.38 But once we put this together with another

fact we intuitively recognize, viz. that every natural number has a successor, we get an

infinite sequence of numbers. Our primitive understanding of the successor function, and

its operations on the numbers, reveals that we understood something else as well. It reveals

that we already, at some level, understand the structure of the sequence of natural numbers.

4.5 Final Thoughts

We ought to be able to successfully execute a standard proof of ‘2+2=4’, and proofs of other

similarly simple arithmetical truths. In order to do so, we must be able to make use of a

few simple definitions, e.g. ‘4=3+1’. We also must be able to make use of a few simple

arithmetical laws, such as the associativity of addition (a + (b + c) = (a + b) + c). As it

turns out, our ability to make adequate use of these fairly simple tools depends upon our

defining addition from its most simple cases—cases of adding ones. That is, we must have an

understanding of the successor function as a function over all the natural numbers in order

37I neglect to distinguish here between the first-order axiom schema of Peano Arithmetic and the second-
order axioms. But I do not discuss induction here, so the two are effectively equivalent for our purposes.

38Recall, once again, that we are assuming that the natural numbers begin at one, rather than zero. This
assumption has no real impact for our purposes.
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to prove fairly simple arithmetical truths, like ‘2+2=4’. In order to understand the successor

function that well, we must have a grasp of the entire structure of the natural numbers as

an infinite, nonrepeating sequence.

4.6 Conclusions

In the first chapter of this dissertation, it became clear that we have a number of desiderata

for theories of mathematical knowledge. One of these desiderata is that an account of

mathematical knowledge ought to be able to explain all of our mathematical knowledge.

Another is that an account of mathematical knowledge ought not to presuppose unexplained

antecedent mathematical knowledge. Any account of mathematical knowledge that fails to

satisfy these two desiderate is, quite simply, inadequate as a theory of knowledge. Any

account of mathematical knowledge that is inconsistent with the satisfaction of these two

desiderata is unacceptable.

In the remaining chapters of this dissertation, I considered three ways in which

philosophers have attempted to use definitions to account for our mathematical knowledge.

I hope to have shown that these accounts are, at best, radically incomplete. It could not

be the case that all of our mathematical knowledge is grounded in axiomatic definitions

because we have arithmetical knowledge that could not emerge from axioms. It could not

be the case that our ability to think about the natural numbers is grounded in a stipulation

of Hume’s Principle as an implicit definition; first, such a stipulation could not uniquely fix

referents for number-phrases, and second, ancient mathematicians could not have stipulated

it in a suitable way. And while I think that the use of explicit definitions in arithmetical

proofs helps us develop secure knowledge of arithmetical truths, our ability to understand

those proofs presupposes an understanding of the structure of arithmetic. Our most basic

arithmetical knowledge is not grounded in these explicit definitions, but is cognitively prior

to those definitions.
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The upshot of all of this is, I believe, that we must have some very basic and primitive

understanding of the structure of the natural numbers if we are to have any mathematical

knowledge at all. The rest of mathematics presupposes arithmetic, and definitions alone

cannot ground all of our arithmetical cognition.
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