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Abstract

This paper describes the Scenes knowledge representation that captures the intentional
and attentional structure of discourse. Using thie information a natural language inter-
face can isolate context and resolve anaphors with focusing heuristics. Further, anaphor
resolution can be coordinated with interruptions so that completed digressions are ignored.

1 Introduction
One of the goals of the KING-KONG Expert System Interface developed at the MITRE Cor-

poration is to perform anaphoric resolution using a model of discourse. Grosz and Sidner
|Grosz & Sidner 86| claim that any discourse has three main constituents: 1) the structure of the
actual sequence of discourse utterances; 2) a structure of intentions; 3) an attentional state. This
paper describes Scenes [Zweben & Chase 87] which are declarative knowledge representations of
the intentional and attentional structure of discourse that facilitate anaphor resolution. Utiliz-
ing the attentional structure stored in scenes, anaphors can be resolved. Further, since scenes
delineate interruptions, resolution strategies can correctly ignore antecedents that reside in in-
terruptions. This paper describes the discourse model underlying scenes, the scene mechanism
and finally, the anaphor resolution algorithm employed.

2 Intention and Attention

Grosz and Sidner distinguish between the intentional state of discourse and the attentional state.
Intentional structure represents the underlying purposes that causally relate the utterances of a
coherent discourse. Attentional state, on the other hand, captures the focus of attention in the
discourse at any one moment, by recording the salient objects and relationships.

*This work was supported by MITRE Sponsored Research Project 90780.
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2.1 Intentional Structure

Discourses can be partitioned into segments, each representing some purpose or intention. These
discourse segment purposes (DSP’s) can be related in special ways. Grosz and Sidner present two
kinds of DSP relationships: dominance and satisfaction-precedence. The satisfaction-precedence
relation represents one intended action being a pre-requisite of another. The dominance relation
states that satisfying one intended action contributes to the satisfaction of another. This relation
establishes a hierarchical structure of DSP’s representing their dependencies. The intentions
that dominate each other depend upon the type of discourse (e.g., general conversation vs.
task-oriented dialogue). An expert system interface is primarily concerned with the computer
accomplishing tasks. The DSP dominance relation, in an expert system interface, adopts the
task-oriented dialogue rule presented here:
Viz1,...,n|Intend(user, Intend(computer, Do(A))) A
Intend(user, Intend(computer, Do(a:))) A
Believe(user, Generates(A,a1,az,,..,an))|
—
Dominates(Intend(user, Intend(computer, Do(A))),
Intend(user, Intend(computer, Do(a;))))

A general interpretation of the above is: If the user intends that the expert system exe-
cutes tasks A and a; , and the user believes that the performance of task a; contributes to the
performance of task A, then the intention concerning task A dominates the intention of task a;.

2.2 Attentional Structure

The attentional structure captures the focus of attention in a discourse. It represents the promi-
nent objects and relationships that are dynamically encountered in conversation. The attentional
state is modeled by a set of focus spaces and rules for transitioning among them. Focus spaces
are paired with their respective discourse purposes to associate intentional state with atten-
tional state. One can view a focus space as the representation of what the discourse participant
is talking about, while its association with intentional state explains why.

3 Knowledge Representation - Scenes

Scenes are knowledge representations of the intentional and attentional states of discourse. They
are schema representations [Minsky 75], [Bobrow & Collins 75] , [Schank & Abelson 77] of plans
of stereotypical interactions with the expert system. The hierarchical structure of scenes repre-
sents the dependencies of the user’s intended actions according to the dominance relation defined
for intentional structure. Thus, the root of a scene hierarchy represents the overall discourse
purpose (DP) of the dialogue, and each remaining scene , in a hierarchy, supports its dominating
scene.

In addition to intentional structure, scenes constrain the attentional structure of a discourse
by defining the kinds of objects that would be prominent if a scene were active. These object
descriptions, called the roles of a scene, represent the players participating in the action that the
scene represents. Scene recognition is directed by the roles that are observed in the conversation;
this process is described in detail later.

When a scene is appropriate (i.e., recognized as the current intentional state), it is instantiated
to represent attentional state. Its roles are filled with the referents of the objects in the current
clause and other objects already present in the discourse. The preceding scene is linked to the
new one, maintaining a predecessor/successor network of scenes modeling the discourse.

838



Scenes

The Intentlional Structure The Attentional Structure
Field Description Field Description
Name The type of scene. Role-Flllers The semantic representations of
Roles The prominent object classes. those objects filing the roles.
Inferiors The scenes that this one dominates. Predecessors The scenes preceding this one In the
Superlor The scene dominating this one. actual discourse.
Enables The post-requisite scenes. Sucessors

Enabl

The scenes following this one.
es-by The pre-requisite scenes. Focus Cache

Triggers The lexical items that are recognized reference.

for this scene and thelr filtering maps. Expert System Goal The abstract expert system actions

to apply.

Figure 1: The slots of a scene.

An important distinction must be made between a plan and an intentional scene hierarchy.
The scenes represent stereotypical interactions with an expert system. However, they do
not represent the sequence of actions an expert system will take. This information is captured
in the expert system’s plans, goals and problem-solving strategies. Only data relevant to the
user-machine interface is captured by the scene hierarchy.

To clarify the exposition of a scene hierarchy, the following figures present examples of scenes
from the KRS mission planning application. The primary goal of this application is to plan a
OCA mission task. In order to complete the plan, among other things, a target, an airbase,
and a type of aircraft must be chosen. The KRS system is a mixed-initiative system which
can fully plan missions or guide a user along using its constraint satisfaction mechanism. The
following scenes represent the interactions with a user planning a mission. Figure 2 represents
the intentional and attentional structure of the following discourse.

1. Build a mission.

2. Leave from Halfort

3. Send F-4cs.

4. Make Mermin the target.

5. What is the range of an F-4c?

By capturing both intentional and attentional state, our expert system interface demon-
strates the ability to perform anaphoric reference. Intentional structure (i.e., scene hierar-
chies) enables the response handler to perform limited plan recognition [Allen & Perrault 80,
[Cohen & Perrault 79|, [Sidner & Israel 81|, [Sidner 83b], [Litman 86|, which isolates context,
while attentional structure provides the dynamic information about objects in conversation.
The next section describes scene recognition. Subsequently, an extensive demonstration of the
system is presented followed by a description of the anaphoric reference algorithm.
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Intentional Structure - Inferior and Superior Relationship

Name Mission-Scene
Roles Ocat-Mission#

/

Name Target-Scene
Roles Ocat-Target

\

Name Alrbase-Scene

Name Alrcraft-Scene

Roles Ocat-Alrcraft Roles Ocat-Alrbase

Attentional Structure - The Network of Predecessor/Successor Links

Scane lostance 1

Instance of Mission-Scene
Roles Ocat-Mission#
filled by
#< OCA1001 >

The #< foo> notation
signifies a semantic
representation as
opposed to a lexical one.

Focus-Cache Focused items
E.S.-Action :Fill

Scens Instance 2
Instance of Airbase-Scene

Scane Instance 4

Roles Ocat-Airbase
filled by
#< Halfort>

Focus-Cache Focused items

Instance of Target-Scene
Roles Ocat-Target

filled by

#< Mermin>

Focus-Cache Focused items

:Fill

E.8.-Aotlon E.S.-Action :Fli

Instance of Alrcraft-Scene
Roles Ocat-Alircraft

filled by

#< F-4c>

The focus-cache holds the items
avallable for anaphoric-reference.
Items are stored here based on
focusing/centering heuristics.

Focus-Cache Focused items
E.S.-Action :Fill

Figure 2: An Example of Intentional and Attentional Structure.

840




4 Scene Recognition

Scene recognition is the process of determining attentional state. This process is failure driven;
a new scene is found if the response mechanism is unable to interpret the input in the current
scene. The response handler can either tell the scene controller what scene to move to, or it can
instruct the scene controller to use its discourse heuristics to find the new attentional state.

4.1 General Control Flow

Scene recognition is a generate and test process in which heuristics guide the generation of
possibilities and roles filter them. When a new scene is required, intentional and attentional
structure is used to provide new possibilities. For each scene proposed, the current input clause
is tested against the lexical triggers of the scene, which maps the head verb, the arguments and
the modifiers of the sentence to the roles of the scene. The goal of this test is to determine
whether the referents of the semantic arguments and modifiers in the sentence match the role
description specified in the lexical trigger mapping. If all the referents are consistent with
the role description, the proposed scene becomes the current scene and is inserted into the
predecessor/successor network. Here is an example of an inconsistent match:

Lexical Trigger: Hit [OBJ — Airbase, INSTR — Aircraft]

Input Clause: Hit the tank with an ordnance.
Both the object and instrument violate the lexical trigger map.

If the heuristics fail to provide a current scene, the user is asked what context his utterance
pertains to (ie. which scene is appropriate) and is then requested to re-phrase his input. In the
future, we hope to provide intelligent failure mechanisms with the ability to learn new scenes
[Mooney & DeJong 85] and reason about misconceptions [Pollack 86|.

4.2 Scene Heuristics

Some of the scene heuristics that currently generate possibilities for scene recognition are:

1. Intentional Clues - Choose a context that follows the plan.

e preceded-by - Try all the post-requisites.

e precedes - Try all the pre-requisites.

e superior - Try the more general scene.

e inferiors - Try the supporting scenes.

e siblings - Try the scenes at the same intentional level.

e all-relatives - Try all the scenes that are causally related.

2. Attentional Clues - Choose a context that was recently referred to.
Backtrack through a scene’s predecessor/successor network.

3. Interrupt - Find a new scene in a different dominance hierarchy.
Sequence through the contextual lexicon to find a scene that recognizes the main verb of
the sentence.

4. Ask - Query the user for the current context.
For each known scene, ask the user whether it is the intended context.
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Parse

SAynt?ctic
Input L i - »| Fill Roles |—»{Response |e——
lause Handler
Semantic
Analysis

Generate
Scene

Figure 3: Overall Control Flow

5 Implementation

The entire interface is implemented in Zetalisp on Symbolics lisp machines. Scene instances
are represented as flavor instances with instance variables for the fields presented and methods
for executing the heuristics. Scene recognition is handled by the scene controller, which is also
implemented as a flavor instance to retain dynamic information and to facilitate integration with
the expert system’s i/o loop. The overall control structure is shown in Figure 3.

6

*

Demonstration

Pane 1 is the KRS main window with a command entered to plan a mission.

In response to the first sentence, KRS creates the mission frame shown in Pane 2 with
the appropriate slots filled in. The sentences in Pane 2 demonstrate the ability to re-
spond intelligently and the ability to respond differently to the same utterance in different
contexts.

In pane 3, f-111es are made prominent and then they are referred to with a pronoun.
Pane 4 is a digression into a refueling context.

Pane 5 demonstrates that the scene maintained its attentional state with an anphoric
reference to the salient F-111e. The conversation ends with a contextual inference that
used the context of targets to constrain the weather query.
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7 Anaphors

Pronouns are processed using simple focus heuristics [Sidner 83a), [Reichman 85]. Each scene
has an ordered focus cache of semantic representations that are salient. After each sentence is
processed, its semantic arguments are pushed onto the current scene’s cache. When a pronoun is
encountered, the focus cache is searched for a referent. This search requires a semantic analysis
that checks whether the cached object makes sense as a substitute for the pronoun. If successful,
the object is moved to the front of the list and a message is supplied to the user to inform him of
the pronoun resolution. Otherwise, a message that no referent was found in the current scene is
provided followed by recursive search in the previous scene’s focus cache. Currently, the system
does not forget focussed objects and backtracks exhaustively through the scenes until successful.
Anaphor resolution is integrated with an interruption component of the scene controller so that
completed interruptions do not provide possible antecedents, which is the topic of the next
section.

7.1 Interruptions

When the scene controller chooses a scene in a different scene hierarchy, it is changing its ex-
pectation of the overall intention of the user. This represents an interruption which is flagged
accordingly in the new scene. When the digression is complete and the user returns to the old
context, the old context is marked. When searching for antecedents, this region, which represents
a full interruption, is skipped. This is shown in the demonstration when the system is asked,
“How fast is it ?”. The most recent antecedent is the kc-185 referred to in the interruption.
Instead, the interruption is skipped and the F-111e is chosen. This demonstrates the utility of
scenes and their ability to retain and manage attentional state. Even though the interruption
causes a context change, the salient objects ( e.g. F-111e) are maintained and the interruption
is marked, thus enabling the correct anaphor resolution.

7.2 Other Approaches

This approach to anaphoric resolution differs from previous attempts in the following manner:
the algorithm is based upon a discourse model that distinguishes intentional and attentional
structure. This integrates anaphor resolution with context processing, resulting in the ability
to “skip” over interruptions as possible placeholders for antecedents. Most commercial systems
simply search for the most recent NP, which often leads to strange resolutions. Further, the use
of focus heuristics is not sufficient to provide intelligent resolutions. The most desirable approach
is to use focus heuristics on top of a discourse model, which was originally proposed by Grosz
and Sidner [Grosz & Sidner 86)].

However, the scenes mechanism differs from Grosz and Sidner’s model in the representation
of attentional state. We maintain a predecessor/successor graph of focus spaces, while Grosz
and Sidner use a focus stack. In their model, focus spaces are pushed onto the stack until
completed. Anaphors can be resolved with antecedents found by iterating through the focus
spaces on the stack until one of two conditions: an interruption is found or the bottom of the
stack is encountered. When a focus space is is completed, it is popped off the stack, thereby
making its focused objects inaccessible. Hence, completed interruptions are no longer available to
provide possible antecedents. If the same intentional state is returned to later, a new focus space
is instantiated, which ignores the objects that were prominent in the old space. In the scenes
system, completed focus spaces are flagged as such, but they maintain their focus cache. If a
discourse participant returns to a closed scene, the cached items in the focus list are still available
for reference. While this capability exists in the scene mechanism, the linguistic evidence for
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this behavior is not conclusive. Nevertheless, users of the natural language system seem to refer
to objects that are prominent in completed focus spaces. Grosz and Sidner claim that all these
items must be re-introduced to be available for anaphoric reference. Here is an interaction which
seems contradictory to this assumption.

User: Are F-4cs and F-111es night aircraft ? (Asrcraft Scene)

Computer: Yes

User: Send an F-4c. (In a stack model, this focus space would now be popped)
Computer: 0.K.

User: Send a B10. (Ordnance Scene)

Computer: F-4cs do not carry B10’s.

User: Send the other one. (In a stack model, the referent would have been popped)

The scenes mechanism is able to skip over interruptions without enforcing the stack model.
The discourse is represented as a predecessor/successor graph of the scenes used, possibly marked
with interruption boundaries. Anaphors are resolved by backtracking through this graph, skip-
ping interruptions. Currently, this graph is never pruned creating a very large structure in
lengthy interactions. We recognize the problems of maintaining this graph but the use of the
stack model seems too drastic because of examples like the one above. More research is necessary
to determine the correct model of attentional state.

8 Conclusion

We have designed a natural language interface that makes extensive use of the Scene knowledge
representation. Scenes are based upon Grosz and Sidner’s model of discourse that distinguishes
attentional and intentional structure. This knowledge representation facilitates limited plan
recognition which establishes the context of an utterance. Further, it captures the salient objects
of a discourse as well as maintaining a model of a user’s interaction. Utilizing this information,
the interface resolves anaphoric references.
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