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Abstract
Feature selection is indispensable in microbiome data analysis, but it can be par-
ticularly challenging as microbiome data sets are high dimensional, underde-
termined, sparse and compositional. Great efforts have recently been made on
developing newmethods for feature selection that handle the above data charac-
teristics, but almost all methods were evaluated based on performance of model
predictions. However, little attention has been paid to address a fundamental
question: how appropriate are those evaluation criteria? Most feature selection
methods often control themodel fit, but the ability to identifymeaningful subsets
of features cannot be evaluated simply based on the prediction accuracy. If tiny
changes to the datawould lead to large changes in the chosen feature subset, then
many selected features are likely to be a data artifact rather than real biological
signal. This crucial need of identifying relevant and reproducible features moti-
vated the reproducibility evaluation criterion such as Stability, which quantifies
how robust amethod is to perturbations in the data. In our paper, we compare the
performance of popular model prediction metrics (MSE or AUC) with proposed
reproducibility criterion Stability in evaluating fourwidely used feature selection
methods in both simulations and experimental microbiome applications with
continuous or binary outcomes. We conclude that Stability is a preferred feature
selection criterion over model prediction metrics because it better quantifies the
reproducibility of the feature selection method.
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1 INTRODUCTION

Reproducibility is imperative for any scientific discovery,
but there is a growing alarm about irreproducible research
results. According to a survey by Nature Publishing Group
of 1576 researchers in 2016, more than 70% of researchers
have tried and failed to reproduce another scientist’s exper-
iments, and more than half have failed to reproduce their
own experiments (Baker, 2016). This “reproducibility cri-
sis” in science affects microbiome research as much as
any other areas, and microbiome researchers have long
struggled to make their research reproducible (Schloss,
2018). Great efforts have been made toward setting pro-
tocols and standards for microbiome data collection and
processing (Thompson et al., 2017), but more could be
achieved using statistical techniques for reproducible data
analysis. Microbiome research findings rely on statisti-
cal analysis of high-dimensional data, and feature selec-
tion is an indispensable component for discovering bio-
logically relevant microbes. In this field, it is a common
practice to use predictive models as a way to infer dis-
ease biomarkers or more generally phenotype markers for
variables like age, vitamin D metabolism, and human dis-
ease status such as cancer and IBD (Gevers et al., 2014;
Huang et al., 2020; Poore et al., 2020; Thomas et al., 2020).
As discussed in Duvallet et al. (2017), when comparing
cases versus controls, the identification of microbial fea-
tures uniquely associated with a phenotype, shared among
phenotypes, or uniquely associated with healthy controls
can have vastly different implications for probiotic or drug
development. As such in this context researchers are often
interested in identifying the most relevant microbial fea-
tures associated with a given outcome. This task can be
particularly challenging in microbiome analyses, as the
datasets are typically high dimensional, underdetermined
(the number of features far exceeds the number of sam-
ples), sparse (a large number of zeros are present), and
compositional (the relative abundance of taxa in a sam-
ple sum to one). Currentmethodological research has been
focusing on developing and identifying the best methods
for feature selection that handle the above characteris-
tics of microbiome data, however, methods are typically
evaluated based on overall performance of model predic-
tion, such as Mean Squared Error (MSE), R-squared, or
Area Under the Curve (AUC). Although prediction accu-
racy is important, another possibly more biologically rel-
evant criterion for choosing an optimal feature selection
method is reproducibility, that is, how reproducible are all
discovered features in unseen (independent) samples? If
a feature selection method is identifying true signals in a
microbiome dataset, then we would expect those discov-
ered features to be found in other similar datasets using
the same method, indicating high reproducibility of the

method. If a feature selection method yields a good model
fit yet poor reproducibility, then its discovered features
will mislead related biological interpretation. The notion
of reproducibility for evaluating feature selection method
seems intuitive and sensible, yet in reality we neither
have access to multiple similar datasets to estimate repro-
ducibility, nor have a well-defined mathematical formula
to define reproducibility. The many available resampling
techniques (Efron and Tibshirani, 1994) enable us to uti-
lize well-studied methods, for example, bootstrapping, to
create replicates of realmicrobiome datasets for estimating
reproducibility. Moreover, given the burgeoning research
in reproducibility estimation in the field of computer sci-
ence (Kalousis et al., 2005, 2007; Nogueira, 2018), we can
borrow their concept of Stability to approximate the repro-
ducibility of feature selectionmethods inmicrobiome data
analysis.
In this paper, we investigate the performance of popu-

lar model prediction metrics MSE or AUC and the pro-
posed feature selection criterion Stability in evaluating
four widely used feature selection methods in microbiome
analysis (lasso, elastic net, random forests, and compo-
sitional lasso) (Tibshirani, 1996; Breiman, 2001; Zou and
Hastie, 2005; Lin et al., 2014; Lu et al., 2019). We evaluate
both extensive simulations and experimental microbiome
applications, with a focus of feature selection analysis in
the context of continuous or binary outcomes.We find that
Stability is a superior feature selection criterion to MSE or
AUC as it is more reliable in discovering true and biologi-
callymeaningful signals.We thus suggest thatmicrobiome
researchers incorporate a reproducibility criterion such as
Stability intomodel prediction performancemetric such as
MSE orAUC for feature selection inmicrobiome data anal-
ysis in order to achieve both high stability and low predic-
tion error.

2 METHODS

2.1 Estimation of stability

The Stability of a feature selection method was defined as
the robustness of the feature preferences it produces to dif-
ferences in training sets drawn from the same generating
distribution (Kalousis et al., 2005). If the subsets of cho-
sen features are nearly static with respect to data changes,
then this feature selection method is a stable procedure.
Conversely, if small changes to the data result in signifi-
cantly different feature subsets, then thismethod is consid-
ered unstable, and we should not trust the output as reflec-
tive of the true underlying structure influencing the out-
come being predicted. In biomedical fields, this is a proxy
for reproducible research, in the latter case indicating that



JIANG et al. 1157

the biological features the method has found are likely to
be a data artifact, not a real clinical signal worth pursu-
ing with further resources (Lee et al., 2013). Goh andWong
(2016) recommend augmenting statistical feature selection
methods with concurrent analysis on stability and repro-
ducibility to improve the quality of selected features prior
to experimental validation (Sze and Schloss, 2016; Duvallet
et al., 2017).
Although the intuition behind the concept of stability is

simple, there is to date no single agreed-upon measure for
precisely quantifying stability. Up to now, there have been
at least 16 different measures proposed to quantify the sta-
bility of feature selection algorithms in the field of com-
puter science (Nogueira et al., 2017). Given the variety of
stability measures published, it is sensible to ask: which
stability measure is most valid in the context of micro-
biome research? A multiplicity of methods for stability
assessmentmay lead to publication bias in that researchers
may be drawn toward themetric that extracts their hypoth-
esized features or that reports their feature selection algo-
rithmasmore stable (Boulesteix and Slawski, 2009). Under
the perspective that a useful measure should obey cer-
tain properties that are desirable in the domain of appli-
cation, and provide capabilities that other measures do
not, Nogueira and Brown aggregated and generalized the
requirements of the literature into a set of five proper-
ties (Nogueira et al., 2017). The first property requires the
stability estimator to be fully defined for any collection of
feature subsets, thus allowing a feature selection algorithm
to return a varying number of features. The second prop-
erty requires the stability estimator to have a negative rela-
tionship with the variances in feature selections. The third
property requires the stability estimator to be bounded by
constants not dependent on the overall number of features
or the number of features selected. The fourth property
states that a stability estimator should achieve its maxi-
mum if and only if all chosen feature sets are identical. The
fifth property requires that under the null model of fea-
ture selection, where we independently draw feature sub-
sets at random, the expected value of a stability estimator
should be constant. These five properties are desirable in
any reasonable feature selection scenario, and are critical
for useful comparison and interpretation of stability val-
ues. Among all the existing measures, only Nogueira’s sta-
bility measure (defined below) satisfies all five properties,
thus we adopted this measure in the current work.
We assume a data set of 𝑛 samples {𝑥𝑖, 𝑦𝑖}𝑛𝑖=1, where each

𝑥𝑖𝑥𝑖𝑥𝑖 is a 𝑝-dimensional feature vector and 𝑦𝑖 is the associated
biological outcome. The task of feature selection is to iden-
tify a feature subset, of size 𝑘 < 𝑝, that conveys the maxi-
mum information about the outcome𝑦𝑦𝑦. An ideal approach
to measure stability is to first take𝑀 data sets drawn ran-
domly from the same underlying population, to apply fea-

ture selection to each data set, and then to measure the
variability in the 𝑀 feature sets obtained. The collection
of the𝑀 feature sets can be represented as a binary matrix
𝑍𝑍𝑍 of size𝑀 × 𝑝, where a row represents a feature set (for a
particular data set) and a column represents the selection
of a given feature over the𝑀 data sets as follows:

𝑍𝑍𝑍 =

⎛⎜⎜⎜⎝
𝑍1,1 ⋯ 𝑍1,𝑝

⋮ ⋱ ⋮

𝑍𝑀,1 ⋯ 𝑍𝑀,𝑝

⎞⎟⎟⎟⎠
Let 𝑍.𝑓 denote the 𝑓th column of the binary matrix 𝑍𝑍𝑍,

indicating the selection of the 𝑓th feature among the 𝑀
data sets. Then 𝑍.𝑓𝑍.𝑓𝑍.𝑓 follows a Bernoulli distribution with
mean 𝑝̂𝑓 =

1

𝑀

∑𝑀

𝑖=1
𝑍𝑖,𝑓 , and variance 𝜎2

𝑓
=

𝑀

𝑀−1
𝑝̂𝑓(1 −

𝑝̂𝑓). Moreover, 𝑘̄ =
1

𝑀

∑𝑀

𝑖=1

∑𝑝

𝑓=1
𝑍𝑖,𝑓 is the average num-

ber of selected features over the 𝑀 data sets. Under the
null model of feature selection 𝐻0 when feature subsets
are drawn independently at random, 𝐸[𝜎2

𝑓
|𝐻0] =

𝑘̄

𝑝
(1 −

𝑘̄

𝑝
). Nogueira then defined the stability estimator as

Φ̂(𝑍𝑍𝑍) = 1 −

1

𝑝

∑𝑝

𝑓=1
𝜎2
𝑓

𝐸[
1

𝑝

∑𝑝

𝑓=1
𝜎2
𝑓
|𝐻0]

= 1 −

1

𝑝

∑𝑝

𝑓=1
𝜎2
𝑓

𝑘̄

𝑝

(
1 −

𝑘̄

𝑝

) . (1)

This proposed measure is undefined when 𝑍𝑍𝑍 contains all
0s or all 1s. Nogueira’s stability is asymptotically bounded
by 0 and 1. It reaches maximum 1 when each column of 𝑍𝑍𝑍
contains either all 1s or all 0s, indicating the selection of
each feature is consistent across all𝑀 data sets. It reaches
minimum 0 when selection of each feature alternatives
between 0 and 1, suggesting highly unstable feature selec-
tion results.
In practice, we usually only have one data sample (not

𝑀), so a typical approach tomeasure stability is to first take
𝑀 bootstrap samples of the provided data set, and apply the
procedure described in the previous paragraph. Other data
sampling techniques can be used as well, but due to the
well-understood properties and familiarity of bootstrap to
the community, we adopt the bootstrap approach.

2.2 Four selected feature selection
methods

Lasso, elastic net, compositional lasso, and random forests
were chosen as benchmarked feature selection methods
in this paper due to their wide application in microbiome
community (Knights et al., 2011). Lasso is a penalized least
squares method imposing an 𝐿1-penalty on the regression
coefficients (Tibshirani, 1996). Owing to the nature of the
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𝐿1-penalty, lasso does both continuous shrinkage and auto-
matic variable selection simultaneously. One limitation of
lasso is that if there is a group of variables among which
the pairwise correlations are very high, then lasso tends
to select one variable from the group and ignore the oth-
ers. Elastic net is a generalization of lasso, imposing a con-
vex combination of the 𝐿1 and 𝐿2 penalties, thus allowing
elastic net to select groups of correlated variables when
predictors are highly correlated (Zou and Hastie, 2005).
Compositional lasso is an extension of lasso to composi-
tional data analysis for continuous outcome (Lin et al.,
2014) and general outcome (Lu et al., 2019), and it is one
of the most highly cited compositional feature selection
methods in microbiome analysis (Kurtz et al., 2015; Li,
2015; Shi et al., 2016; Silverman et al., 2017). Compositional
lasso, or the sparse log-contrast model, considers variable
selection via 𝐿1 regularization. The log-contrast regression
model expresses the continuous outcome of interest as a
linear combination of the log-transformed compositions
subject to a zero-sum constraint on the regression vector,
which leads to the intuitive interpretation of the response
as a linear combination of log-ratios of the original com-
position. Suppose an 𝑛 × 𝑝 matrix 𝑋𝑋𝑋 consists of 𝑛 sam-
ples of the composition of a mixture with 𝑝 components,
and suppose 𝑦𝑦𝑦 is a response variable depending on𝑋𝑋𝑋. The
nature of compositionmakes each row of𝑋𝑋𝑋 lie in a (𝑝 − 1)-
dimensional positive simplex 𝑆𝑝−1𝑆𝑝−1𝑆𝑝−1 = {(𝑥1, … , 𝑥𝑝) ∶ 𝑥𝑗 >

0, 𝑗 = 1,… , 𝑝 and
∑𝑝

𝑗=1
𝑥𝑗 = 1}. This compositional lasso

model for continuous outcome is then expressed as

𝑦𝑦𝑦 = 𝑍𝑍𝑍𝛽𝛽𝛽 + 𝜖𝜖𝜖,

𝑝∑
𝑗=1

𝛽𝑗 = 0, (2)

where𝑍𝑍𝑍 = (𝑧1, … , 𝑧𝑝) = (log𝑥𝑖𝑗) is the 𝑛 × 𝑝 designmatrix
and 𝛽𝛽𝛽 = (𝛽1, … , 𝛽𝑝)

𝑇 is the 𝑝-vector of regression coeffi-
cients. Applying the 𝐿1 regularization approach to this
model is then

𝛽𝛽𝛽 = argmin
(

1

2𝑛
||𝑦𝑦𝑦 −𝑍𝛽𝑍𝛽𝑍𝛽||2

2
+ 𝜆𝜆𝜆||𝛽𝛽𝛽||1) ,

subject to
𝑝∑
𝑗=1

𝛽𝑗 = 0, (3)

where 𝛽𝛽𝛽 = (𝛽1, … , 𝛽𝑝)
𝑇, 𝜆 > 0 is a regularization param-

eter, and ||.||2 and ||.||1 denote the 𝐿2 and 𝐿1 norms,
respectively. For general outcome, the linear model (2) is
extended to the generalized linear model with its density
function specified as

𝑓(𝑦𝑖|𝛽, 𝑍𝑖𝛽, 𝑍𝑖𝛽, 𝑍𝑖) = ℎ(𝑦𝑖)exp{𝜂𝑖𝑦𝑖 − 𝐴(𝜂𝑖)}, 𝜂𝑖 = 𝑍𝑖𝑍𝑖𝑍𝑖
𝑇𝛽𝛽𝛽, (4)

where 𝛽𝛽𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝)
𝑇 ∈ ℝ𝑝, and satisfies 𝐶𝑇𝛽𝛽𝛽 = 0,

with 𝐶 as the orthonormal constraint matrix (Shi et al.,
2016). For binary outcome, 𝐴(𝜂) = 𝑙𝑜𝑔(1 + 𝑒𝜂), and the 𝑙1
penalized estimates of 𝛽𝛽𝛽 is

𝛽̂𝛽𝛽
𝑛
= argmin

[
−
1

𝑛

{
𝑦𝑦𝑦𝑇𝑍𝑍𝑍𝛽𝛽𝛽 −

𝑛∑
𝑖=1

𝐴(𝑍𝑖𝑍𝑖𝑍𝑖
𝑇
𝛽𝛽𝛽)

}]
+ 𝜆||𝛽𝛽𝛽||1,

(5)
subject to 𝐶𝑇𝛽𝛽𝛽 = 0, where 𝜆 is a tuning parameter.

Random forests is regarded as one of the most effec-
tive machine learning techniques for feature selection in
microbiome analysis (Statnikov et al., 2013; Liu et al., 2017;
Belk et al., 2018; Santo et al., 2019; Namkung, 2020). Ran-
dom forests is a combination of tree predictors such that
each tree depends on the values of a random vector sam-
pled independently and with the same distribution for all
trees in the forest (Breiman, 2001). As random forests do
not select features but only assign importance scores to
features, we choose features from random forests using
Altmann’s permutation test (Altmann et al., 2010), where
the response variable is randomly permuted 𝑆 times to
construct new random forests and new importance scores
computed. The 𝑆 importance scores are then used to com-
pute the p-value for the feature, which is derived by com-
puting the fraction of the 𝑆 importance scores that are
greater than the original importance score. In our applica-
tions, we set the number of permutations 𝑆 to be 100, and
chose those features with permuted p-values less or equal
to 0.05.

2.3 Simulation settings

We compared the performance of the popular model pre-
diction metrics MSE or AUC and the proposed criterion
Stability in evaluating four widely used feature selection
methods for different data scenarios. We simulated fea-
tures with Independent, Toeplitz, and Block correlation
structures for data sets with the number of samples and
features in all possible combinations of (50, 100, 500, 1000),
resulting in the ratio of 𝑝 (number of features) over
𝑛 (number of samples) ranging from 0.05 to 20. Our
simulated compositional microbiome data are an exten-
sion of the simulation settings from Lin et al. (2014) as
follows:

(1) Generate tan 𝑛 × 𝑝 data matrix 𝑊𝑊𝑊 = (𝑤𝑖𝑗) from a
multivariate normal distribution 𝑁𝑝(𝜃𝜃𝜃,ΣΣΣ). To reflect
the fact the components of a composition in metage-
nomic data often differ by orders of magnitude, let
𝜃𝜃𝜃 = (𝜃𝑗)with 𝜃𝑗 = log(0.5𝑝) for 𝑗 = 1,… , 5 and 𝜃𝑗 = 0
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otherwise. To describe different types of corre-
lations among the components, we generated
three general correlation structures: Independent
design where covariates are independent from
each other, Toeplitz design where ΣΣΣ = (𝜌|𝑖−𝑗|) with
𝜌 = 0.1, 0.3, 0.5, 0.7, 0.9, and Block design with five
blocks, where the intra-block correlations are 0.1, 0.3,
0.5, 0.7, 0.9, and the inter-block correlation is 0.09.

(2) Obtain the covariate matrix 𝑋𝑋𝑋 = (𝑥𝑖𝑗) by the trans-

formation 𝑥𝑖𝑗 =
𝑒𝑥𝑝(𝑤𝑖𝑗)∑𝑝

𝑘=1
𝑒𝑥𝑝(𝑤𝑖𝑘)

, and the 𝑛 × 𝑝 log-ratio

matrix 𝑍𝑍𝑍 = log(𝑋𝑋𝑋), which follows a logistic normal
distribution (Aitchison, 1982). Note that 𝑍𝑍𝑍 does not
follow the exact same correlation structures specified
in step (1) due to the compositional data transforma-
tion, hence the correlation designs of Independent,
Toeplitz, and Block refer to the data matrix𝑊𝑊𝑊 rather
than the log-ratio matrix 𝑍𝑍𝑍.

(3) Generate the continuous responses 𝑦𝑦𝑦 according
to the model 𝑦𝑦𝑦 = 𝑍𝛽∗𝑍𝛽∗𝑍𝛽∗ + 𝜖𝜖𝜖,

∑𝑝

𝑗=1
𝛽∗
𝑗
= 0, where

𝜖𝜖𝜖 ∼ 𝑁(0, 0.52), and 𝛽∗𝛽∗𝛽∗ = (1, −0.8, 0.6, 0, 0, −1.5, −0.5,

1.2, 0, … , 0)𝑇 , indicating that only six features are real
signals. To generate binary responses, we convert the
continuous responses into classes 0 or 1 by the cutoff
of the median value.

(4) Repeat steps 1–3 for 100 times to obtain 100 simulated
datasets for each simulation setting, and apply the
desired feature selection algorithm with 10-fold cross-
validation on the 100 simulated datasets, which allows
the optimal hyperparameters to vary for each simula-
tion scenario. Specifically, each simulated data set is
separated into training and test sets in the ratio of 8:2,
10-fold cross-validation is applied to the training set
(80% of the data) for parameter tuning (e.g., the value
of tuning parameter 𝜆 in lasso and compositional lasso,
𝛼 and 𝜆 in elastic net, and the number of variables ran-
domly sampled as candidates at each split in random
forests) and variable selection, and then model pre-
diction (i.e., MSE or AUC) is evaluated on the test set
(20% of the data). Hence, stability is measured accord-
ing to Nogueira’s definition based on the 100 subsets
of selected features. AverageMSE or AUC is calculated
as the mean of the MSEs or AUCs across the 100 sim-
ulated data sets, and the average false positive or false
negative rate denotes the mean of the false positive or
false negative rates across the 100 simulated data sets.

In summary, a total of 176 simulation scenarioswere gen-
erated, with 16 for Independent design, 80 for Toeplitz or
Block design, and 100 replicated data sets were simulated
for each simulation setting, resulting in 17,600 simulated
data sets in total.

3 SIMULATION RESULTS

Given that the true numbers of false positive and false
negative features are known in simulations, we can utilize
their relationships with prediction metrics (MSE for con-
tinuous outcome or AUC for binary outcome) and Stability
to compare the reliability of MSE or AUC and Stability
in evaluating feature selection methods. In theory, we
would expect to see a positive correlation between MSE
and false positive or false negative rates, while a negative
correlation between AUC or Stability and false positive or
false negative rates. This is because when the real signals
are harder to select (i.e., increasing false positive or false
negative rates), a feature selection method would perform
worse (i.e., increasing MSE or decreasing AUC and Stabil-
ity). The first column in Figure 1 shows the relationship
between MSE and false positive rate in three correlation
designs for continuous outcome, and the second column
in Figure 1 shows the relevant relationship between
Stability and false positive rate. In contrast to the random
pattern in MSE versus false positive rate (Figure 1A, E,
and I), where drastic increase in false positive rate could
lead to little change in MSE (e.g. random forests), or big
drop in MSE corresponds to little change in false positive
rate (e.g. elastic net), we see a clear negative correlation
pattern between Stability and false positive rate (Figure 1B,
F, and J). This clear relationship of false positive rate with
Stability versus a vague pattern with predictive metric are
consistently observed for binary outcome (shown in the
third and fourth columns of Figure 1). Regarding false
negative rate, we also observe a random pattern in MSE or
AUC and a meaningful negative correlation relationship
in Stability (Supplementary Figure 1). These results sug-
gest that Stability is a more reliable evaluation criterion
thanMSE or AUC due to its closer reflection of the ground
truth in the simulations (i.e., false positive & false negative
rates), and this is true irrespective of feature selection
method used, features-to-sample size ratio (𝑝∕𝑛), correla-
tion structure among the features, or types of outcome.
Using themore reliable criterion Stability, we now inves-

tigate the best feature selectionmethod in different simula-
tion scenarios. Figure 2A–C shows that for continuous out-
come, compositional lasso has the highest stability in “eas-
ier” correlation settings based on Stability (Toeplitz 0.1–0.7
in Supplementary Figure 2A–D, represented by Toeplitz
0.5 in Figure 2A due to their similar results; Block 0.9–
0.3 in Supplementary Figure 3A–D, represented by Block
0.5 in Figure 2C) for all combinations of 𝑛 (number of
samples) and 𝑝 (number of features). Across all “easier”
correlation scenarios, compositional lasso has an average
stability of 0.76 with its minimum at 0.21 and its maxi-
mum close to 1 (0.97), while the second-best method Lasso
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F IGURE 1 Comparing the relationship between MSE or AUC and False Positive Rate versus Stability and False Positive Rate in three
correlation structures for continuous or binary outcomes. The first two columns denote the results for continuous outcome, and the last two
columns are the results for binary outcome. Colored dots represent values from different feature selection methods: compositional lasso (red),
elastic net (green), lasso (blue) and random forests (purple). Size of dots indicate features-to-sample size ratio 𝑝∕𝑛.

has an average stability of only 0.44 with the range from
0.09 to 0.89, and the average stabilities of random forests
and Elastic Net hit as low as 0.24 and 0.17, respectively.
In “extreme” correlation settings (Toeplitz 0.9 in Figure 2B
or Block 0.1 in Figure 2D), compositional lasso no longer
maintains the highest stability across all scenarios, but it
still has the highest average stability of 0.42 in Toeplitz 0.9
(surpassing the second-best Lasso by 0.09), and the sec-
ond highest average stability in Block 0.1 (only 0.03 lower
than the winner Lasso). Regarding specific scenarios in
“extreme” correlation settings, compositional lasso, lasso,
or random forests can be the best in different combinations
of 𝑝 and 𝑛. For example, in both Toeplitz 0.9 and Block
0.1, with small 𝑝 (when 𝑝 = 50 or 100), random forests
has highest stability (≥ 0.8) when 𝑛 is largest (𝑛 = 1000),
but Lasso or compositional lasso surpasses random forest
when n is smaller than 1000, although all methods have

poor stability (≤ 0.4) when 𝑛 ≤ 100. Similarly, for binary
outcome, compositional lasso achieves the highest stability
in most scenarios (Figure 2E–G and Supplementary Fig-
ure 3E–H), and lasso surpasses it in some Toeplitz cases
and scenario of Block 0.1 (Figure 2E–H and Supplemen-
tary Figure 2E–H). This indicates that best feature selec-
tion method based on Stability depends on the correlation
structure among features, the number of samples, and the
number of features in each particular data set; thus there is
no single omnibus best, that is, most stable, feature selec-
tion method.
To further examine the effect of high correlation

on stability, we investigated the large 𝑝 small 𝑛 case
(𝑝 = 1000, 𝑛 = 100) for continuous outcomes, which is
common in microbiome data, under two correlation struc-
tures: independence and high correlation (Toeplitz 0.9) for
continuous outcome. We extracted selection probabilities
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F IGURE 2 Method comparisons based on Stability in representative correlation structures for continuous or binary outcomes. The first
two rows denote the results for continuous outcome, and the last two rows are the results for binary outcome. Colored bars represent Stability
values corresponding to specific number of samples (x-axis) and number of features (𝑝) for different feature selection methods: compositional
lasso (red), elastic net (green), lasso (blue) and random forests (purple). Note that Toeplitz 0.1-0.7 has similar results as Toeplitz 0.5 (see
Supplementary Figure 2), and Block 0.9-0.3 has similar results as Block 0.5 (see Supplementary Figure 3). Moreover, Stability equals to zero
when no features were selected by methods (e.g. random forests chooses nothing when the number of samples equals 50). (A) Toeplitz
Correlation 0.5 (Continuous). (B) Toeplitz Correlation 0.9 (Continuous). (C) Block Correlation 0.5 (Continuous). (D) Block Correlation 0.1
(Continuous). (E) Toeplitz Correlation 0.5 (Binary). (F) Toeplitz Correlation 0.9 (Binary). (G) Block Correlation 0.5 (Binary). (H) Block
Correlation 0.1 (Binary).
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F IGURE 3 Method comparisons based on MSE in extreme correlation structures (Toeplitz 0.9 and Block 0.1) for continuous or binary
outcomes. The first two columns denote the results for continuous outcome, and the last two columns are the results for binary outcome.
Colored bars represent MSE (first row), False Negative Rates (second row), and False Positive Rates (third row) corresponding to a specific
number of samples (x-axis) and features (𝑝) for different feature selection methods: compositional lasso (red), elastic net (green), lasso (blue),
and random forests (purple). Note that false positive rates are not available for random forests when number of samples equals 50 because it
chooses zero features.

for each feature for each of the four each feature selection
methods. The results (Supplementary Figure 4) suggest
that while it is true that high correlation leads to insta-
bility in feature selection, this issue is most pronounced
for random forest. According to the simulation settings,
𝛽∗𝛽∗𝛽∗ = (1, −0.8, 0.6, 0, 0, −1.5, −0.5, 1.2, 0, … , 0)𝑇 , suggesting
that all six real signals are concentrated among the first 10
features, with features 1, 6, and 8 having largest effect sizes.
For lasso, elastic net, and compositional lasso, features
with large effects have high selection probabilities (> 0.75

in Supplementary Figure 4A–F). Also, for lasso, elastic net,
and composition lasso, while features with moderate-low
effects have lower selection probabilities, and in some
cases “wrong” features that are not the true signals are
selected, the selection probabilities of the wrongly selected
features (potentially due to high correlation with true
signals) are mostly low (< 0.3). For random forests, all the
selection probabilities, whether true or false signals and
irrespective of effect-size are much lower (≤ 0.55) than
the other methods (Supplementary Figure 4G and H).
Of note, when we examined simulations with indepen-

dence correlation structure (Supplementary Figure 4G),
random forest still had low selection probabilities for all
features, suggesting that stability is more intrinsic to the
feature selection method than correlation structure of
the features.
If we use MSE or AUC as the evaluation criterion, how

will results differ with regards to the best feature selection
method? Using the extreme correlation settings (Toeplitz
0.9 and Block 0.1) as examples, for continuous outcome,
random forest has lowest MSEs for all combinations of 𝑝
and 𝑛 (Figure 3A and B). However, Figure 3E and F unveils
that random forests has highest false negative rates in all
scenarios of Toeplitz 0.9 and Block 0.1, and its false neg-
ative rates can reach as high as the maximum 1, indicat-
ing that random forests fails to pick up any real signal
despite its low prediction error. Moreover, Figure 3I and
J shows that random forests can have highest false pos-
itive rates when 𝑝 is as large as 500 or 1000. For binary
outcome, random forests also performs the best in terms
of prediction metric (AUC), in fact it achieves the perfect
AUC score of 1 in all cases (Figure 3C and D). However, it
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has the highest false negative rates inmost cases (Figure 3G
and H), and highest false positive rates when 𝑝 ≥ 500 in
Toeplitz 0.9, or when 𝑝 = 1000 and 𝑛 ≥ 500 in Block 0.1
(Figure 3K and L). These highlight the danger of choos-
ing inappropriate feature selection method based on MSE
or AUC, where the merit of high predictive power masks
high errors in false positives and false negatives. On the
other hand, the method with lowest false positive rates
(compositional lasso) was rather often found to have the
worst performance by MSE or AUC, suggesting another
pitfall of missing the optimal method when using predic-
tion performance as the evaluation criterion. It is possible
that high false negative or false positive rates of highly pre-
dictive method were due to its selecting the highly corre-
lated yet wrong features. However, Toeplitz 0.9 and Block
0.1 serve as two extreme scenarios of the correlation struc-
tures, where features are highly correlated in Toeplitz 0.9
while weakly correlated in Block 0.1. Hence, we expect our
conclusion here to be true regardless of the strength of cor-
relation among features.
The use of point estimates alone to compare feature

selection methods, without incorporating variability in
these estimates, could bemisleading. Hence, as a next step,
we evaluate reliability of prediction metrics and Stabil-
ity across methods using a hypothesis testing framework.
Specifically, we evaluate compositional lasso (which gen-
erally had the highest stability) and random forests (which
generally had the best prediction metrics, i.e., lowest MSE
or highest AUC). We consider the cases of 𝑛 = 100 & 𝑝 =

1000 for Toeplitz 0.5 and Block 0.5 and use the continuous
outcome for illustration purpose. We use bootstrap to con-
struct 95% confidence intervals to compare compositional
lasso versus random forests based on Stability or predic-
tion metrics (MSE). For each simulated data (100 in total
for Toeplitz 0.5 or Block 0.5), we generate 100 bootstrapped
data sets and apply feature selectionmethods to each boot-
strapped data set. Then for each simulated data, Stability
is calculated based on the 100 subsets of selected features
from the bootstrapped replicates, and the variance of Sta-
bility is measured as its variability across the 100 simulated
data.AsMSE can be obtained for each simulated datawith-
out bootstrapping, we use the variability of MSE across the
100 simulated data as its variance. Based on the 95% CI
for the difference in Stability between compositional lasso
and random forest methods (Table 1), we see that composi-
tional lasso is superior to random forest in terms of Stabil-
ity index, and not statistically inferior to random forests in
terms of MSE despite its lower point estimate. This sug-
gests that Stability has higher precision (i.e., lower vari-
ance). Conversely, MSE has higher variance, which results
in wider confidence intervals and its failure to differenti-
ate methods.

4 EXPERIMENTALMICROBIOME
DATA APPLICATIONS

To compare the reliability of prediction metrics (MSE or
AUC) and Stability in choosing feature selection methods
in microbiome data applications, two experimental micro-
biome data sets were chosen to cover common sample
types (human gut and environmental soil samples) and the
scenarios of 𝑝 ≈ 𝑛 and 𝑝 >> 𝑛 (where 𝑝 is the number
of features and 𝑛 is the number of samples). The human
gut data set represents a cross-sectional study of 98 healthy
volunteers to investigate the connections between long-
term dietary patterns and gut microbiome composition
(Wu et al., 2011), and we are interested in identifying a sub-
set of important features associated with BMI, which is a
widely used gauge of human body fat and associated with
the risk of diseases. The soil data set contains 88 samples
collected fromawide array of ecosystem types inNorth and
South America (Lauber et al., 2009), and we are interested
in discovering microbial features associated with the pH
gradient, as pH was reported to be a strong driver behind
fluctuations in the soil microbial communities (Morton
et al., 2017). Prior to our feature selection analysis, the same
filtering procedures were applied to the microbiome count
data from these two data sets, where only the microbes
with a taxonomy assignment at least to genus level or lower
were retained for interpretation, and microbes present in
fewer than 1% of the total samples were removed. More-
over, the count data were transformed into compositional
data after replacing any zeroes by the maximum rounding
error 0.5 (Lin et al., 2014). Specifically, the count data here
refers to the number of raw sequencing reads in samples.
After removing the microbes with the filtering procedures
above and replacing zero counts with 0.5, we transform
the count data into relative abundance for further analysis.
Note that the log of relative abundances instead of the typ-
ically used log ratios is used for compositional lasso due to
its clever formulation in Equation (2). Moreover, the same
response variables are used as continuous or binary out-
comes,with the binary classes obtained by the cut-off value
of medians.
Comparisons of feature selection methods in these two

microbiome data sets are shown in Table 2, which are con-
sistentwith simulation results, where the bestmethod cho-
sen by predictionmetric (MSE or AUC) or Stability in each
data set can be drastically different. For the continuous out-
come, based onMSE, random forests is the best in the BMI
Gut data set, while being the worst based on Stability. Sim-
ilarly, in the pH Soil data set, random forests is the second-
best method according to MSE, yet the worst in terms of
Stability. If we use Stability as the evaluation criterion, then
Elastic Net is the best in the BMI Gut and compositional
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TABLE 1 Hypothesis testing using Bootstrap to compare
compositional lasso (CL) with random forests (RF) based on
Stability or prediction metric (MSE) using two simulation scenarios
(*indicate statistically significant)

Example
(N = 100 & P =

1000)
(Continuous)

Estimated
mean difference
(CL-RF) in
Stability index
with 95% CI

Estimated
mean difference
(CL-RF) in
MSE with
95% CI

Toeplitz 0.5 0.22 (0.19, 0.28)* 0.23 (-0.62, 1.36)
Block 0.5 0.23 (0.17, 0.29)* 0.44 (-0.27, 1.57)

lasso is the best in the pH Soil, yet both methods would
be the worst if MSE was used as the evaluation criterion.
Similarly, for the binary outcome, although random forest
achieves a perfect AUC in both data sets, it is the least sta-
ble method with Stability < 0.1. It is clearer in the binary
case that compositional lasso is the best method for both
data sets due to its highest Stability values and secondhigh-
est AUCs. One important note is that the Stability values in
these two experimentalmicrobiomedata sets are low: none
of the feature selection method exceeds a stability of 0.5,
indicating the challenging task of feature selection in real
microbiome applications. However, this possibility of low
Stability values was already reflected in our simulated sce-
narios of “extreme” correlation scenarios. Another impor-
tant note, whichmight be counter-intuitive, is that the data
set with a high 𝑝∕𝑛 ratio (pH Soil) has higher stabilities
than the data set with 𝑝∕𝑛 ratio close to 1 (i.e., similar 𝑝
& 𝑛 values) (BMI Gut). This might be explained by the
clearer microbial signals in environmental samples than
in human gut samples, but it also highlights the impact
of the data set itself, whose characteristics cannot be eas-
ily summarized with the numbers of 𝑝 and 𝑛, on feature
selection results. Correlation structures between features
as considered in our simulations could play an important
role, and there may be many other unmeasured factors
involved as well.
Apart from the comparisons based on point estimates,

we can further compare prediction metrics and Stability
with hypothesis testing using nested bootstrap (Wainer
and Cawley, 2018). The outer bootstrap generates 100 boot-
strapped replicates of the experimental microbiome data
sets, and the inner bootstrap generates 100 bootstrapped
data set for each bootstrapped replicate from the outer
bootstrap. Feature selections are performed on each inner
bootstrapped data set with 10-fold cross-validation after a
80:20 split of training and test sets. The variance of Stability
is calculated based on the Stability values across the outer
bootstrap replicates, and the variance of MSE or AUC is
calculated across both inner and outer bootstrap replicates,
as MSE or AUC is available for each bootstrap replicate

while Stability has to be estimated based on feature selec-
tion results across multiple bootstrap replicates. Using the
data sets of BMI Gut and pH Soil, Table 3 confirms with
simulation results that raw value difference in MSE does
not indicate statistical difference, yet difference in Stabil-
ity does help to differentiate methods due to its higher pre-
cision. A comparison between the observed difference in
Table 2 and the estimated mean difference from bootstrap
in Table 3 further confirms this discovery. Compared to the
estimated mean differences between compositional lasso
and random forests based on stability (Table 3: 0.27 in the
BMI Gut and 0.36 in the pH Soil), the observed differences
(Table 2: 0.2 in the BMI Gut and 0.35 in the pH Soil) differ
by 26% in the BMIGut and 3% in the pH Soil. However, this
difference is much more drastic based on MSE. Compared
to the estimated mean differences between compositional
lasso and random forests based onMSE (Table 3: 11.8 in the
BMI Gut and 0.08 in the pH Soil), the observed differences
(Table 2: 16.6 in the BMI Gut and 0.23 in the pH Soil) have
huge differences of 41% and 160% in each data set, respec-
tively. For binary outcome, confidence intervals ofAUCare
much tighter than MSE, probably due to the constrained
range of AUC from 0 to 1. Although the two feature selec-
tionmethods were able to be differentiated based on AUCs
in BMI gut, they are similar to one another in the pH Soil
data set. Hence, Stability is consistently shown to exhibit
more optimal properties (i.e., lower false positive or neg-
ative rate, less variability) than prediction metrics such as
MSE or AUC in experimental data applications as in sim-
ulations.

5 DISCUSSION

In this article,we focus ondiscovering a reproducibility cri-
terion for evaluating feature selectionmethods rather than
developing a better feature selection method. We ques-
tion the common practice of evaluating feature selection
methods based on overall performance of model predic-
tion (Knights et al., 2011), such asMSEorAUC, aswe detect
a stark contrast between prediction accuracy versus repro-
ducible feature selectionwithin amethod. Instead, we pro-
pose to use a reproducibility criterion such as Nogueira’s
Stability measurement (Nogueira et al., 2017) for identify-
ing the optimal feature selection method.
In both our simulations and experimental microbiome

data applications, we have shown that Stability is a pre-
ferred evaluation criterion over MSE or AUC for feature
selection, because of its closer reflection of the ground
truth (false positive and false negative rates) in simula-
tions, and its better capacity to differentiate methods due
to its higher precision. Hence, if the goal is to identify
the underlying true biological signal, we propose to use a
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TABLE 2 Method comparisons based on Stability Index and prediction metric (MSE/AUC) in experimental microbiome data sets with
continuous or binary outcomes (methods ordered in terms of best MSE/Stability performance, followed with raw MSE/AUC/Stability values
in parentheses)

Dataset
(Continuous) 𝒏 ∗ 𝒑 (𝒑∕𝒏) MSE (lower is better) Stability (higher is better)
BMI Gut 98 * 87 (0.9) Random forests (4.99) Compositional lasso (21.59)

Lasso (24.07) Elastic Net (25.33)
Elastic Net (0.23) Compositional lasso (0.22)
Lasso (0.14) Random forests (0.02)

pH Soil 89 * 2183 (24.5) Elastic Net (0.23) Random forests (0.26)
Lasso (0.34) Compositional lasso (0.46)

Compositional lasso (0.39) Lasso (0.31)
Elastic Net (0.16) Random forests (0.04)

Dataset
(Binary) 𝒏 ∗ 𝒑 (𝒑∕𝒏) AUC (higher is better) Stability (higher is better)
BMI Gut 98 * 87 (0.9) Random forests (1.00) Compositional lasso (0.85)

Elastic Net (0.78) Lasso (0.63)
Compositional lasso (0.29) Elastic Net (0.19)
Lasso (0.14) Random forests (0.01)

pH Soil 89 * 2183 (24.5) Random forests (1.00) Compositional lasso (0.96)
Elastic Net (0.94) Lasso (0.90)

Compositional lasso (0.46) Elastic Net (0.32)
Lasso (0.28) Random forests (0.03)

TABLE 3 Hypothesis testing using Bootstrap to compare
compositional lasso (CL) with random forests (RF) based on
Stability or prediction metric (MSE/AUC) using two experimental
microbiome data sets with continuous or binary outcomes
(*indicate statistically significant)

Dataset
(Continuous)

Estimated mean
difference (CL-RF)
in Stability index
with 95% CI

Estimated mean
difference (CL-RF)
in MSE with 95% CI

BMI Gut 0.27 (0.17, 0.34)* 11.8 (-2.1, 41.2)
pH Soil 0.36 (0.28, 0.44)* 0.08 (-0.28, 0.95)

Dataset
(Binary)

Estimated mean
difference (CL-RF)
in Stability index
with 95% CI

Estimated mean
difference (CL-RF)
in AUC with 95% CI

BMI Gut 0.30 (0.11, 0.42)* -0.09 (-0.19, -0.02)*
pH Soil 0.43 (0.37, 0.5)* -0.02 (-0.08, 0)

reproducibility criterion like Stability instead of a predic-
tion criterion like MSE or AUC to choose feature selec-
tion algorithms for microbiome data applications. MSE or
AUC is better suited for problems where prediction accu-
racy alone is the focus. To reduce the possible risk of high
stability yet low prediction accuracy, we recommend that
researchers check the prediction performance when using
Stability. We did not observe this occurrence in our sim-
ulations or applications, probably because our four cho-
sen feature selection methods were known for their high
prediction power in microbiome applications, but it might
happen with methods that provide poor data fit. More-
over, if the researchers want to gain a holistic picture of
both stability and prediction accuracy, they could consider
coupling stability estimateswith prediction error estimates
in view of identifying feature selection algorithms that
maximize both stability and prediction performance. In
light of this, Kalousis et al. (2005) suggested using strati-
fied 10-fold cross-validation, where at each iteration of the

cross-validated error estimation loop, there is a full internal
cross-validation loop aimed at measuring the stability of
feature precedences returned by the feature selection algo-
rithm.
The strength of our work lies in the comparisons

of widely used microbiome feature selection methods
using extensive simulations, and experimental micro-
biome data sets covering various sample types and data
characteristics. The comparisons are further confirmed
with nonparametric hypothesis testing using bootstrap.
Although Nogueira et al. (2017) were able to derive the
asymptotical normal distribution of Stability, their inde-
pendent assumption for two-sample test might not be
realistic due to the fact that two feature selection methods
are applied to the same data set. Hence our nonparametric
hypothesis testing is an extension of their two-sample
test for Stability. However, our current usage of bootstrap,
especially the nested bootstrap approach for experimental
microbiome data applications, is computationally expen-
sive; further theoretical development on hypothesis testing
for reproducibility can be done to facilitate more efficient
method comparisons based on Stability. Moreover, our
current work relies on cross-validation (CV) for choosing
optimal parameters in feature selection methods. CV has
been shown to be unstable in high-dimensional data, and
effective alternatives include estimation stability with
cross-validation (ESCV) (Lim and Yu, 2016) or stability
selection (Meinshausen and Bühlmann, 2010), where the
former aims at reducing the variance of estimation empir-
ical loss, and the latter addresses the problem of proper
regularization with a generic subsampling approach. Note
that the definitions of stability in these two works are
different from Nogueira’s and they are designed to meet a
different goal: stability in parameter tuning rather than in
feature selection. Hence ESCV or stability selection can be
used together with Nogueira’s Stability Index to achieve
the stability at both the levels of parameter tuning and
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feature selection, which has already been carried out in
Nogueira’s data application (Nogueira et al., 2017). Last but
not least, although our paper is focused on microbiome
data, we do expect the superiority of reproducibility cri-
teria over prediction accuracy criteria in feature selection
to apply in other types of data sets as well. We thus rec-
ommend that researchers consider incorporating stability
into the evaluation criterion while performing feature
selection in order to yield reproducible results.
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