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Abstract

Compactifying Real Polynomials via Non-Crossing Combinatorics

by

Sam Sehayek

The space of monic polynomials of degree d with distinct roots is a well-known clas-

sifying space for the braid group on d strands. Recently, Dougherty and McCammond

have defined a compactification of this space using the Lyashko-Looijenga map, giving

it a piece-wise Euclidean cell structure indexed by pairs of non-crossing partitions. The

compactified space retracts onto another well-known classifying space of the braid group.

Both the compactification and its spine are conjectured to be CAT(0).

In this dissertation, I investigate the subspaces and subcomplexes that result when at-

tention is restricted to real polynomials. These subspaces have multiple components with

well-known fundamental groups and I explicitly describe the corresponding subcomplexes

for small values of d. The non-crossing partitions used to index the cells in the complexes

for real polynomials belong two specific classes of non-crossing partition chains: reflection

symmetric chains and palindromic chains. Although reflection symmetric non-crossing

partitions have previously been defined, the streamlined techniques introduced here clar-

ify many aspects of their structure. Palindromic non-crossing partition chains are defined

here for the first time.
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Chapter 1

Introduction

The space of monic polynomials of degree d with distinct roots is a well-known classify-

ing space for the braid group on d strands. Recent work of Dougherty and McCammond

compactifies the space of monic polynomials using the Lyashko-Looijenga map and gives

it a piece-wise Euclidean cell structure indexed by compatible pairs of non-crossing parti-

tions. The compactified space, which they call the Branched Rectangle Complex, can be

given face identifications to form what they call the Branched Annulus Complex, which

in turn retracts onto a spine which is another well-known classifying space of the braid

group called the Dual Braid Complex. Both the Branched Rectangle Complex and the

Dual Braid Complex are conjectured to be CAT(0). The goal of this dissertation is to

understand the portions of both the Branched Rectangle Complex and the Branched

Annulus Complex that come from a restriction to polynomials with real coefficients.

In Part I, we lay out all of the relevant work needed to understand this process to

compactify monic complex polynomials culminating in Chapters 6 and 7 where we lay out

the outline of this research program initiated by Michael Dougherty and Jon McCammond

in [10, 11]. The part begins in Chapter 2 with a brief discussion about the braid groups

and classifying spaces. In Chapters 3 and 4, we highlight examples of classifying spaces

1



Introduction Chapter 1

and their constructions: Configuration spaces and complex polynomials, and the Salvetti

complex, respectively.

In Chapter 5, we illuminate the work done by Brady and McCammond in [7], who

designed a well-behaved metric on the cell complex associated to the dual presentation of

the braid group introduced in [4], called the Dual Braid Complex. That construction relies

heavily on the combinatorics of non-crossing partitions, which are featured throughout

this dissertation.

In Part II, we turn our attention from complex polynomials to those that are fixed

by the action of complex conjugation: the real polynomials. In Chapter 8, we investi-

gate the specialized non-crossing combinatorics that appear for these polynomials. The

non-crossing partitions used to index the cells in the complexes for monic real polynomi-

als belong to two specific classes of non-crossing partition chains: reflection symmetric

and palindromic non-crossing partition chains—an investigation into their combinatorial

features makes up the content of Chapter 8. Although reflection symmetric non-crossing

partitions have previously been defined in [9], the streamlined techniques introduced in

Chapter 8 clarify many aspects of their structure. We also introduce palindromic chains

of non-crossing partitions in Section 8.8, along with combinatorial techniques to produce

and recognize them efficiently.

Then in Chapter 9, we show how these combinatorics inform the construction of the

analog for what is called the Branched Rectangle Complex for real polynomials. Finally,

in Chapter 10, we turn our attention towards the cell complex for real monic polynomials

with distinct roots. This complex has several complicated features and is the setting for

several still open problems. It has multiple components with well-known fundamental

groups as expressed in the main theorems in Section 10.1 of Chapter 10. In Section 10.2

of that chapter, we explicitly describe the corresponding subcomplexes for degrees up to

5.

2



Introduction Chapter 1

R-Polyd(C) ∼= Rd−1 SymBrRectd

R-Polyd(C∗) SymBrAnnd

C-Polyd(C) ∼= Cd−1 BrRectd

C-Polyd(C∗) BrAnnd

Figure 1.1: The division of related spaces that are discussed in this dissertation.

When discussing polynomials, we make three binary distinctions throughout this

dissertation: Are the coefficients of the polynomial real or complex? Are the roots

distinct or not (equivalently, is 0 a critical value or not)? And in terms of the associated

spaces, are we considering the space from the point of view of algebraic geometry or

as piece-wise Euclidean cell complexes? These distinctions and their connections are

described in Figure 1.1. The distinction of R versus C coefficients is marked by the

top and bottom, respectively. In the bottom level, the four spaces are all dealing with

complex coefficients whereas all the spaces in the top come from real coefficients, which

imbue more restrictive symmetries. The distinction of algebraic geometry versus cell

complex is marked in the left and right sides. On the left are the polynomial spaces as

we think of them in algebraic geometry, the space R-Polyd(C∗) for example is the space of

monic, centered, polynomials with real coefficients whose critical values are in C∗. On the

right, the compactified associated cell complexes—for complex coefficients the Branched

Rectangle Complex, BrRect and the Branched Annulus Complex, BrAnn identified

and studied by Michael Dougherty and Jon McCammond in [12], and for real coefficients,

the symmetric versions introduced in this dissertation. Whether we are talking about

3



Introduction Chapter 1

any set of roots or distinct roots is marked in the back and front, respectively, as that

feature for distinct roots is equivalent to the set of critical values being entirely in C∗.

For the cell complexes, on the bottom level BrAnnd is obtained from BrRectd via side

identifications. For real coefficients the situation is more complicated.

R

R∗

C

C∗

Figure 1.2: A version of the diagram in Figure 1.1 for the quadratic polynomial case
when d = 2.

We conclude this introduction by clarifying these distinctions for the case of a quadratic

polynomial, where the degree is low enough so that there is no branching. Figure 1.2 is

the analog of Figure 1.1 for this degree. Because the polynomials we study are centered

and monic, every quadratic polynomial simply appears as z2 + c. If the value of c ∈ C or

c ∈ R we see that we get that set back as the algebraic geometric point of view for this

degree. Just as easily, we can understand these quadratics using the image of critical

point at 0, its image c is the only critical value of z2 + c. By compactifying, for R we

obtain a closed segment and for C we get a closed square or disk as the possible critical

values. Once we restrict our viewpoint towards distinct roots, we no longer can have 0

as a critical value, so in particular, c ̸= 0. This breaks the closed segment into two closed

segments (after another compactification) in the case of R or results in a closed annulus

in the case of C.

4



Part I

Complex Polynomials and their

Associated Cell Complexes
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The chapters in Part I focus on braid groups, complex polynomials, and their asso-

ciated cell complexes. The first and second chapters review the definition of the braid

groups and their realization as fundamental groups of quotients of complex hyperplane

complements, as well as the interpretation of these spaces and the collection of complex

polynomials with distinct roots. The third and fourth chapters build up cell complexes

that are classifying spaces for the braid groups. The last chapters of this part deal with

constructions of cell complexes for monic and centered complex polynomials. If the roots

of those polynomials are distinct, the associated cell complex is also a classifying space

for the braid group.

6



Chapter 2

Braid Groups and Classifying Spaces

This short chapter reviews braid groups and classifying spaces. First recall the standard

presentation of the braid group on d strands.

Definition 2.0.1 (Braid Groups). The standard presentation for the braid group on d

strands is

Braidd = ⟨σ1, . . . , σd−1 | σiσj = σjσi for |i− j| ≥ 2, σiσi+1σi = σi+1σiσi+1⟩

The relations σiσj = σjσi for |i− j| ≥ 2 are called commuting relations and the relations

σiσi+1σi = σi+1σiσi+1 are called braid relations.

Next, recall the definition of a classifying space.

Definition 2.0.2 (Classifying Spaces). A classifying space for a group G is a connected

topological space X with a contractible universal cover and with fundamental group

G = π1(X). Note that all topological spaces in this dissertation are cell complexes

and/or manifolds, and they all have universal covers. Such a space is also known as an

Eilenberg-Mac Lane space or a K(G, 1).

7
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Classifying spaces have several nice properties.

Remark 2.0.3 (Properties of Classifying Space). Every group admits a classifying space.

In fact, every group has a simplicial classifying space via a classical construction due to

von Neumann. Moreover, the classifying space for a group G is essentially unique in

that all classifying spaces for G are homotopy equivalent. Any group G with a finite

dimensional classifying space must be torsion-free. See [17].

Many classifying spaces for the braid groups have been constructed. The other chap-

ters in this part discuss four of these. The configuration space of d unlabeled points in

C, which corresponds to monic polynomials of degree d with distinct roots is discussed

in Chapter 3 [15].

The Salvetti complex of the braid arrangement [25] is discussed in Chapter 4. The

complex derived from the dual Garside structure introduced by Birman, Ko and Lee [4, 6]

is discussed in Chapter 5. And the “thickened” version of the dual complex constructed

by Dougherty and McCammond [11, 12] is discussed in Chapter 7. All classifying spaces

for the braid group are homotopy equivalent. However, concrete connections between

them are murky due to their varied motivations and constructions. One motivation for

the work outlined in Chapter 7 is that it bridges some of these murky connections.

8



Chapter 3

Configuration spaces and Complex

Polynomials

The first classifying space for the braid group comes from the natural action of the

symmetric group Symd on the complex vector space Cd which simply permutes the co-

ordinates. This action is not free. For example, the tuple (1, . . . , 1) is fixed by any

permutation. The subset of Cd where the action is not free is a union of hyperplanes

called the (complex) braid arrangement.

Definition 3.0.1 (Braid Arrangement). Let Cd be a d-dimensional complex vector space

with a fixed coordinate system and let z⃗ = (z1, . . . , zd) be a vector in Cd. Let Hij = {z⃗ ∈

Cd | zi = zj} be the hyperplane were the i-th and j-th coordinates are equal, and let Hd

be union of hyperplanes where there exists two equal coordinates. The set Hd is called

the (complex)braid arrangement. By construction,

Hd :=
⋃
i ̸=j

Hij = {z⃗ ∈ Cd | zi = zj for some i ̸= j}.

Definition 3.0.2 (Configuration Spaces). The complement of the hyperplanes Hd is a

9
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domain for which the symmetric group action is free called the (ordered) configuration

space of points in C, Confn(C) := Cn \ H . It is is path-connected and its fundamental

group is PBraidd, the d-string pure braid group. The unordered configuration space

UConfd(C) is the quotient of Confd(C) by the free action of Symd.

Proposition 3.0.3. The fundamental group of the ordered and unordered configura-

tion spaces of points in C are the pure braid group and braid group, respectively. I.e.

π1(Confd(C)) = PBraidd and π1(UConfd(C)) = Braidd. There is also a short exact

sequence:

0 → PBraidd ↪→ Braidd ↠ Symd → 0

Remark 3.0.4. The proof of Proposition 3.0.3 is not too hard to see by using a clever

trick to visualize Confd(C). By definition, this configuration space lives inside a space

with 2d real dimensions, however, since each coordinate is distinct, we can associate

to each element of configuration space a labeled collection of complex numbers on the

plane. Now, a loop in this space is a continuous path with the same start and end

point. In particular, since at each point in time, the coordinates (the labeled points in

C) are distinct, and the result of a continuous deformation of the original coordinate, the

loop can be visualized as the path each labeled point takes in C back unto itself, never

crossing the other strands, or paths of the other points. If we quotient Confd(C) by the

symmetric group action, the effect is to remove the labels of our distribution of points

in C. Now, points can end at a different point as long as it was one of the ones in the

original configuration. So, after the quotient, the fundamental group is the braid group

Braidd.

Not as obviously, the universal cover of UConfd(C) is contractible, and as such, we

have the following proposition proven by Fadell and Neuwirth in 1962 [15].

Proposition 3.0.5. The topological space UConfd(C) is a classifying space for Braidd.

10
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Definition 3.0.6 (Multisets of Complex Points). If instead of considering the quotient

of the symmetric group on Confk(C) we considered it on Ck, the set we obtain consists of

all unordered sets of k points in C which we call Multk(C) (for multisets) or Multk(U)

for U ⊆ C.

Remark 3.0.7. The elements of Multk(C) are in natural bijection with the vectors

(z1, . . . , zk) ∈ Ck whose components are in lexicographic order, i.e z1 = a1 + b1i is

ordered before z2 = a2 + b2i when a1 < a2 or when a1 = a2 and b1 < b2. The map

lex : Ck → Multk(C) that rearranges the input vectors components into lexicographic

order is a k! to 1 map away from the Braid Arrangement. To simplify notation, when

referring to elements in Multk(C) we will often borrow the notation of vectors and

identify a multiset with its image under the lex map.

Definition 3.0.8 (Polynomial Spaces). For each d ∈ N, let C-Polyd ⊂ C[z] be the

collection of complex polynomials of degree d. For any given p ∈ C-Polyd, we write

p(z) = adz
d + ad−1z

d−1 + · · · + a1z + a0 with ad ∈ C \ {0} and ai ∈ C for all i ∈

{0, . . . , d− 1}. The polynomial p is monic if ad = 1 and centered if ad−1 = 0 which, for

monic polynomials, occurs whenever the sum of the roots of p is zero. Let C-Polym
d be the

subspace of monic polynomials over C and C-Polymc
d be the subspace of monic, centered

polynomials. Similarly, we define R-Polym
d ⊂ C[z] as the set of monic polynomials over

C that have real coefficients and R-Polymc
d as the monic, centered polynomials over C

that have real coefficients.

In addition, we add the extra argument in C-Polyd(U) or any of the other similarly

defined spaces to be the polynomials in that space whose critical values lie in U . We

may use the argument of C to emphasize situations in which there are no restrictions on

the critical values

Remark 3.0.9 (Centered). When we consider the symmetric group action on a d di-

11



Configuration spaces and Complex Polynomials Chapter 3

mensional space, it is point-wise fixing the vectors where all the coordinates are equal,

which is a copy of C. To rectify this, we can either quotient by that subspace or restrict

to where the coordinate sum is zero. The complement of the braid arrangement has a de-

composition as its intersection with the hyperplane with coordinate sum zero and a copy

of C. In UConfd(C), any element has a unique “centered” representative via translating

in the (1, . . . , 1) direction.

Geometrically, centering a polynomial makes the average of the roots at the ori-

gin. Precomposing a polynomial with a translation translates the roots (in the opposite

direction) and the critical values don’t change. A centered polynomial is a canonical

representative for the equivalence class under precomposition with a translation that

preserves the critical values of the polynomial. Precomposing a monic polynomial with

a translation establishes a homeomorphism C-Polymc
d (U) × C ∼= C-Polym

d (U) which

justifies our use of the space C-Polymc
d (U) as a convenient space of representatives with

the same topology.

Definition 3.0.10 (Three Maps from Polynomials to Multisets). Let n = d − 1 and

define the following three maps that relate polynomials with multisets:

1. rts : C-Polym
d → Multd(C) that sends a polynomial p to its multiset of roots, the

solutions of p(z) = 0.

2. cpt : C-Polym
d → Multn(C) that sends a polynomial to its multiset of critical

points, the roots of its derivative: rts(p′).

3. cvl : C-Polym
d → Multn(C) that sends a polynomial to its multiset of critical

values, the image of its critical points: {p(z) | z ∈ cpt(p)}.

Remark 3.0.11 (Roots as Multisets). By the fundamental theorem of algebra, we can

identify any monic polynomial over C to the unordered set of d points in C that are roots

12
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of p. In other words the map rts is a homeomorphism from C-Polym
d to Multd(C) .

We note that this identification when restricted to R-Polym
d still requires as a target

space Multd(C) since the roots of real polynomials can often be complex numbers. In

particular,

R-Polym
d = {p(z) ∈ C-Polym

d | p(z) = p(z) for all z ∈ C}

and can be identified with Multd(C) := {z⃗ ∈ Multd(C) | z⃗ = lex(z⃗)}.

Finally, we also note that since UConfd(C) naturally lives in Multd(C), and simi-

larly UConfd(C) ⊂ Multd(C), we can identify UConfd(C) (respectively UConfd(C)) with

C-Polym
d (C

∗) (respectively R-Polym
d (C

∗)) by using the following easy to prove lemma.

Lemma 3.0.12. A polynomial p ∈ C-Polym
d has distinct roots if and only if rts(p) ∩

cpt(p) = Ø if and only if zero is not a critical value, i.e. cvl(p) ⊂ C∗.

Corollary 3.0.13. The space of monic and centered complex polynomials of degree d

with distinct roots, C-Polymc
d (C∗), is a classifying space for the braid group Braidd.

Proof: Using the homeomorphism from Remark 3.0.11 along with Proposition 3.0.5

establishes the corollary, since C-Polym
d (C

∗) deformation retracts onto C-Polymc
d (C∗).

There is a natural homeomorphism between the unlabeled configuration space and

monic polynomials over C with distinct roots. Thus, that is another classifying space for

the Braid Group.

13



Chapter 4

Polytopes and the Salvetti Complex

This chapter outlines the construction a cell complex called the Davis complex, that

can be created for any Coxeter group. For each Davis complex, there is an associated

Salvetti complex, which is a classifying space for the corresponding Artin group. Due

to the way in which these complexes are formed, via polytopes, we begin by laying the

framework for these flat-sided shapes, which generalize polygons or polyhedrons into

arbitrary dimensions. For the braid group, the Salvetti complex is constructed from a

single polytope called the permutohedron.

4.1 Polytopes

The n-dimensional analogue to a polygon or polyhedron is called a polytope. It is

simply a (convex) shape with flat sides. There are two regularly used ways to describe a

polytope: The convex hull of a finite set of points; The bounded intersection of halfspaces.

Definition 4.1.1. • A domain D ⊂ Rn is called convex if for any pair x, y ∈ D, the

straight line segment

tx+ (1− t)y ∈ D

14
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for all t ∈ [0, 1].

• The convex hull of a set of points S, denoted conv(S), is the intersection of all

convex domains that contain the set of points.

Definition 4.1.2. • A hyperplane in Rn is an affine subspace of codimension 1. It is

the solution set of a single linear equation.

• A hyperplane cuts Rn into two halfspaces.

Figure 4.1: The halfspace 2x− y − 1 ≤ 0.

15
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Proposition 4.1.3. The intersection of any number of halfspaces is convex.

Figure 4.2: Some intersecting halfspaces.

Definition 4.1.4. If the common intersection of finitely many halfspaces is bounded,

then that region is called a polytope. Equivalently, if for some finite V ⊆ S, conv(V ) =

conv(S), then conv(S) is a polytope.

Theorem 4.1.5. • Any polytope can be described in terms of its halfspaces

P = {x⃗ ∈ Rn | Ax⃗ ≤ b⃗}

where A is an m× n matrix where n is the dimension of the ambient space and m

is the number of defining halfspaces.

• Any polytope can be describe as the convex hull of a finite set of points. Concretely,

P = conv(x1, . . . , xn)

where {x1, . . . , xn} ∈ P contains the vertices of P .

Definition 4.1.6. (Faces of a Polytope)

16
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• The (nontrivial) intersection of a hyperplane with a polytope defines a face of the

polytope whenever the polytope is entirely contained in a halfspace of the hyper-

plane.

• Equivalently, a convex subset F ⊂ P is a face of P if for all z ∈ F , tx+(1− t)y = z

for some x, y ∈ P and t ∈ (0, 1) implies x, y ∈ F .

Remark 4.1.7. For a k dimensional polytope, the (k − 1)-dimensional faces are called

facets, the 0-dimensional vertices, and the 1-dimensional faces called edges. Every face

of a polytope is again a polytope, and all of its faces are faces of the original polytope.

In particular, the set of all faces for a polytope P are naturally ordered by containment,

giving the set a poset structure.

Definition 4.1.8 (The Face Lattice). The face lattice for a polytope P is the poset

whose elements are the faces of P , and the partial order is set containment.

Definition 4.1.9. • If two polytopes P and P ′ have face lattices that are isomorphic

as posets, then P and P ′ are combinatorially equivalent.

• If there is an invertible affine map between P and P ′, they are linearly equivalent.

• If they have matching side lengths, angles, etc. they are metrically equivalent.

Definition 4.1.10. There is a unique n− 1 dimensional polytope with n vertices (up to

combinatorial equivalence), any polytope in this class is called a simplex.

Let {ei} be a standard orthonormal basis for Rn.

Example 4.1.11 (Regular simplices). The standard simplex is an example of a regular

simplex and is defined as P = conv(ei | i ∈ [n]). For example, the standard 3-simplex is

the convex hull of the tips of the standard basis vectors {e1, e2, e3, e4} in R4.
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Figure 4.3: A 3-dimensional orthoscheme Θ3 inscribed in a 3-cube.

Definition 4.1.12 (Orthoschemes). The metric simplex resulting from quotienting a unit

d-dimensional cube by natural Symd group action fixing a vertex is called a (standard)

orthoscheme Θd, which can also be described in terms of the convex hull

Θd = conv

(
0, e1, e1 + e2, e1 + e2 + e3, . . . ,

d∑
i=1

ei

)
.

There is also a more general definition of an orthoscheme, which is any polytope obtained

as the convex hull of a piece-wise linear path where the set of direction vectors for

the linear pieces are pairwise orthogonal. The facets of a standard orthoscheme are

orthoschemes of this more general type.

4.2 Permutohedra

To construct the Davis and Salvetti complexes, the most important example of a

polytope is the permutohedron.
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24314213
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Figure 4.4: The permutohedron of dimension 3, denoted Π3, a three dimensional
polytope in R4.

Example 4.2.1 (Permutohedron). Another classic family of polytopes is called the per-

mutohedron Πd−1 which is the convex hull of the orbit of (1, 2, . . . , d) under the action of

the symmetric group Symd. In other words

Πd−1 = conv(σ(1, 2, . . . , d) | σ ∈ Symd).

The permutohedron of dimension d− 1, Πd−1 is an (d− 1)-dimensional polytope with d!
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vertices. For d = 3 the permutohedron Π2 is a regular hexagon in R3. Figure 4.4 is the

3-dimensional permutohedron for d = 4, Π3, which naturally lives in R4.

Definition 4.2.2. Let A,B ⊂ Rn. We define the Minkowski sum of A and B to be

A+B = {a+ b | a ∈ A b ∈ B}.

For example, the Minkowski sum of n orthonormal line segments is the unit n-cube.

Definition 4.2.3. For a Coxeter group W generated by reflections, the root system

is the collection of normal vectors to the hyperplanes that define the reflections. The

Minkowski sum of the (normalized) root system is the W-permutohedron.

Remark 4.2.4 (Davis complex). For any Coxeter group W , there is a general construc-

tion of an associated cell complex called the Davis complex which is obtained by gluing

W ′-permutohedrons onto the (right) Cayley graph of W on the associated vertices of the

cosets of the finite parabolic subgroups W ′ ≤ W . For a finite Coxeter group, the Davis

complex is the W -permutohedron.

The 1-skeleton of the permutohedron is the (right) Cayley graph of the symmetric

group with respect to the minimal standard generating set (adjacent transpositions).

In particular, the Minkowski sum of the two unit normal vectors perpendicular to the

hyperplanes in the Braid Arrangement is the permutohedron and the W -permutohedron

for W = Symd = Cox(Ad−1) is Πd−1 (up to scaling). In other words, the permutohedron,

with a suitable cell structure, is the Davis complex for the symmetric group.

4.3 The Salvetti Complex

Via the Davis complex, which for our purposes is a permutohedron, we can construct

another classic classifying space for the braid group called the Salvetti complex.
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Definition 4.3.1 (Oriented Davis Complex and Salvetti Complex). AnyW -permutohedron

has a well defined ‘antipodal’ map on its vertices. For a finite Coxeter group Cox(Γ), we

can orient the Davis complex, which is just a Cox(Γ)-permutohedron, from any vertex

to its antipode and label each edge in the 1-skeleton according to the Cayley graph. Glu-

ing the Davis complex with respect to these labeled edges and orientations results in a

1-vertex complex, called the Salvetti complex, whose fundamental group is the associated

Artin group Art(Γ). More generally, the Salvetti complex is the quotient of the oriented

Davis complex by the free action of Cox(Γ).

Example 4.3.2. As a key example, we can orient the edges of the permutohedron to

flow positively from a vertex to the antipodal vertex and label the edges to correspond

to the (right) Cayley graph of the symmetric group, by labeling each edge with the

transposition that relates the connected vertices. If we identify edges with the same

transposition label, we obtain the Salvetti complex for the braid group. It is homotopy

equivalent to the hyperplane compliment quotient, and it is a classifying space for the

braid group [23].

Recalling the presentation for Braid3,

Braid3 = ⟨a, b | aba = bab⟩,

where we use a and b to be the generators σ1 and σ2 for convenience. The 2-complex

of this presentation is shown schematically in Figure 4.5. The hexagon with oriented

labeled edges shown on the right is attached to the 1-skeleton shown on the left. This is

the Salvetti complex for Braid3. In Figure 4.6, we see the identifications for Braid4 to

obtain its Salvetti complex.
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Figure 4.5: Visulaizing the presentation of Braid3 topologically. Oriented upwards.
Identifications via color.
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Figure 4.6: Visualizing the identifications for the Salvetti complex for Braid4.
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Chapter 5

Non-Crossing Partitions and the

Dual Braid Complex

This chapter discusses an alternative type of presentation for the braid groups and a cor-

responding classifying space called the Dual Braid Complex. We begin with a primer on

partially ordered sets, to highlight some properties that are leveraged in the construction

of the Dual Braid Complex, another classifying space for the braid group. In Section

5.2, we discuss the particular partially ordered set underpinning this construction, the

non-crossing partitions lattice. In Section 5.3 and 5.4, we develop the presentation of the

braid groups introduced by Birman, Ko, and Lee [4] and in Section 5.5, we discuss the

Dual Braid Complex and highlight some of its important aspects.

The Dual Braid Complex is known to be homotopy equivalent to monic, centered

complex polynomials with critical values in C∗, and recent work by Dougherty and Mc-

Cammond [12] actually realizes it as the spine of this polynomial space.

Remark 5.0.1 (History of Dual Braid Complex). The standard presentation for the

braid group was introduced by Artin in 1925, where he also solves the word problem. His

solution was exponential in word length, and therefore not the most efficient. Another
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shortcoming was that it left unresolved the related conjugacy problem.

Improvements came in dissertation of Garside in 1969, who adapted Artin’s approach

and presented another solution to the word problem, with similar efficiency issues, but

with a flexible enough construction to resolve the conjugacy problem as well. Garside

left a large impact with his ideas that inspired ‘Garside Theory’ developed in the 1990s.

The first more efficient solution to the word problem came from Thurston in 1992,

championing the Garside approach with modifications leading to a considerable increase

in efficiency on the order of O(|W |2n log n), and to date this is the most efficient solution

that relies on the standard presentation of the braid group. [14]

However, in 1998 Birman, Ko, Lee introduce what became known as the dual presen-

tation of the Braid group and used the new presentation to offer an even more efficient

solution to the word problem, roughly in O(|W |2n) time [4].

The Dual Braid Complex which comes from this presentation, introduced by Tom

Brady [6] and independently by David Bessis [3] and it was metricized by Brady and

McCammond in 2010 [7], who proved the complex is CAT(0) for n ≤ 5. This result was

extended to n = 6 by Haettel-Kielak-Schwer [16], and to n = 7 by Jeong in [18].

5.1 Partially Ordered Sets

This section reviews basic definitions and conventions for partially ordered sets.

Definition 5.1.1. A set, P , along with a relation ≤, is called a partially ordered set or

poset if for a, b, c ∈ P :

• (Reflexivity) a ≤ a.

• (Anti-symmetry) If a ≤ b and b ≤ a, then a = b.

• (Transitivity) If a ≤ b and b ≤ c then a ≤ c.
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If a ≤ b for some a, b ∈ P , we says that a and b are comparable. Otherwise, they are

incomparable. Without the transitivity, we call P locally ordered.

Definition 5.1.2. For two comparable elements in a poset x ≤ y, if there is no z ̸= x, y

such that x ≤ z ≤ y, we say that y covers x or y is a cover of x. We may also call it a

covering relation.

Remark 5.1.3 (Visualizing Posets). The Hasse Diagram for a poset is a visualization

graph for the poset in which each element is denoted by a vertex, and there is an edge

between two vertices if the corresponding poset elements share a covering relation. As a

convention, if x ≤ y in the poset, then the vertex labeled x will be below the element y

in the Hasse diagram.

Example 5.1.4. The Boolean Lattice: Booln = (2[n],⊆) is a classic example of a poset.

Its Hasse diagram encodes the 1-skeleton of an n-cube.

Figure 5.1: The Hasse Diagram for the Boolean Lattice for n = 3.

Remark 5.1.5. If there is an element that is “greater than” all the others in the poset

we refer to this element as 1̂, if an element is “less than” all others we will denote it as

0̂. These maximum and minimum elements may not exist.
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Definition 5.1.6. (Meets and Joins) If there is a unique least upper bound for two

elements in a poset a, b, we refer to this poset element as the join denoted as a ∨ b.

Dually, if there is a greatest lower bound, we refer to this as the meet denoted a ∧ b.

Again these need not exist.

Definition 5.1.7. A poset (P,≤) is a lattice if p ∨ q and p ∧ q exists for any pair of

elements p, q ∈ P .

Figure 5.2 shows the Hasse diagrams of three finite posets. Only the left most is a

lattice. In the center poset, the minimal elements do not admit a meet. In the right

most, the upper bounds for the elements on the lower level are not unique. Similarly,

there is no uniqueness for the lower bounds of the elements on the upper level.

Figure 5.2: Hasse diagrams for a lattice on the left. The Hasse diagrams of posets
that are not lattices in the center and on the right.

We end this section with a few other definitions that are used in subsequent sec-

tions/chapters.

Definition 5.1.8 (Chains). A totally ordered subset of a poset, C ⊆ P , is called a chain.

The chain’s length is |C| − 1. If there is no element x ∈ P \ C so that x ⊔ C is a chain,

we call C a maximal chain.

Definition 5.1.9. A poset is graded if there exists a well-defined rank function ρ : P → N

such that

• The rank function respects the partial ordering, i.e. x <P y implies ρ(x) < ρ(y).
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• The rank function respects covers, i.e. if y covers x, then ρ(y) = ρ(x) + 1.

Definition 5.1.10 (Intervals). For elements p ≤ q ∈ P , the interval [p, q] is the set

[p, q] := {x ∈ P | p ≤ x ≤ q}

Definition 5.1.11. For two posets (P,≤P ) and (Q,≤Q) we may define the product poset

P ×Q to be the collection of pairs (x, y) for x ∈ P and y ∈ Q along with the relation

(x1, y1) ≤ (x2, y2) if and only if x1 ≤P x2 and y1 ≤Q y2.

Remark 5.1.12. Using the orthoscheme metric on the geometric realization of graded

poset respects direct product. In other words, the orthoscheme realization of the poset

direct product is equivalent to the metric direct product of each factor’s orthoscheme

realization. This is one way to see how the Boolean lattice connects with the n-cube.

The orthoscheme realization glues together orthoschemes to form an n-cube.

Definition 5.1.13. A poset isomorphism is a bijective map φ : P → Q that respects

the partial order, i.e x ≤P y if and only if φ(x) ≤Q φ(y) for all x, y ∈ P . A poset

anti-isomorphism is the same notion except that it reverses the order, i.e. x ≤P y if and

only if φ(y) ≤Q φ(x).

Definition 5.1.14 (Duality). Every poset admits a dual poset which for our purposes is

any poset in the anti-isomorphism class of P . We say it is self-dual if P itself is in the

anti-isomorphism class.

Remark 5.1.15. It is easy to recognize duality in finite posets by investigating their

Hasse diagrams, since the Hasse diagrams of dual posets are vertically flipped versions

of each other.
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5.2 Non-Crossing Partitions

The main poset of interest here is the lattice of non-crossing partitions.

Definition 5.2.1 (Combinatorial Non-Crossing Partitions). Given a partition of [n] with

the usual total order, π = (A1, . . . , Ak) where ⊔Ai = [n] is non-crossing if for every

quadruple a < b < c < d ∈ [n], if {a, c} ⊂ Ai and {b, d} ⊂ Aj, then i = j.

The metric version explains the “non-crossing” title and provides a simple and evoca-

tive way to visualize a non-crossing partition.

Definition 5.2.2 (Metric Non-Crossing Partitions). Suppose we have an embedding

of a regular n-gon in the complex plane with labeled vertices according to some cyclic

ordering. A partition π is non-crossing if the convex hulls of the vertices labeled by the

numbers in each block of π form pairwise disjoint subspaces of C.

The topological version avoids any mention of a metric.

Definition 5.2.3 (Topological Non-Crossing Partitions). Let U be a closed topological

disk, let S ⊂ ∂U be a subset of its boundary with n path components and fix a bijective

labeling of the components of S by the numbers in [n] in the order they occur in the

boundary of U . For every subspace V with S ⊂ V ⊂ U we define a set partition

NCP (V ) where i and j are in the same block of NCP (V ) if and only if the path

components of S labeled i and j are in the same path component of V . A set partition

π is a (topological) non-crossing partition if there exists a subspace V with S ⊂ V ⊂ U

such that NCP (V ) = π. Note that if we view the subspaces of U containing S as a

poset under inclusion, then the map to NCP (n) is order-preserving. In other words, if

S ⊂ V ⊂ V ′ ⊂ U as subspaces, then NCP (V ) ≤ NCP (V ′) as set partitions.

Remark 5.2.4. In this document, when we illustrate non-crossing partitions, we will

typically use the metric version, but we may exaggerate the convex hulls using curved arcs
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for clarity, since metric non-crossing partitions are topological non-crossing partitions,

whether we use arcs or straight lines we retain all consistency.

Remark 5.2.5. The set of combinatorial non-crossing partitions on n form a partially

ordered set under the refinement relation: π ≤ τ if and only if for every i, Ai ⊆ Bj for

some j, where {A1, . . . , Ak} and {B1, . . . , Bℓ} are the parts of π and τ , respectively.

The following enumerative theorem is known for non-crossing partitions, which cate-

gorizes them as Catalan objects (objects enumerated by the Catalan number sequence).

They share this designation with myriad other combinatorial objects, such as the num-

ber of closed parenthetical words, rooted trees, Dyck Paths, weakly-increasing parking

functions, and many more. See [27] for many other examples.

Proposition 5.2.6.

|NCP (n)| = Cn =
1

n+ 1

(
2n

n

)
Remark 5.2.7 (Kreweras Complements). There is a family of maps called Kreweras

complements on NCP (n) that can be used to create a complementary non-crossing par-

tition. One way to construct it is to establish an ordering on the regions between the

nodes in the circular diagram version of the non-crossing partition, and maximally extend

the regions between these new nodes so as not to intersect the original partition. Figure

5.3 illustrates this process. There is a reasonable large amount of choice on what labels

to pick for the new nodes, with the only really restriction is to select a consistent cyclic

ordering. That choice is not very important except for in a few cases throughout this

dissertation, when we will make a particular distinction for the Kreweras complement to

simplify some methods or ideas.
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Figure 5.3: The partition π = {{1, 2, 7}, {3, 4}, {5, 6}} and the Kreweras complement
τ = {{1}, {2, 4, 6}, {3}, {5}, {7}} according to the given labelling.

Remark 5.2.8. Here are some properties that are well-known for the poset of non-

crossing Partitions under the refinement relation (in this viewpoint, NCP (n) is a sub-

poset of the Partition Lattice)

• (NCP (n), refinement) is a lattice.

• It is self-dual under the Kreweras complement map [20].

• All of its maximal chains are of the same length, which implies the existence of a

well-defined rank function—the number of blocks. Thus, NCP (n) is graded.

• Maximal chains are in bijection with parking functions of length n − 1 (Integer

sequences (b1, . . . , bn−1) satisfying bi ≤ i and all of their permutations—there are

nn−2 of these [19].)
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• Each interval has the structure of direct products of smaller non-crossing partition

lattices.

Figure 5.4: The Hasse Diagrams for the non-crossing Partition Lattices for n = 3
(left) and n = 4 (right).

5.3 Dual Simple Braids

We know turn our attention towards a particular set of braids inBraidn that generate

the braid group called dual simple braids drawing from [13]. The braid group naturally

surjects into the symmetric group by considering (without crossing information) the final

position of each strand.

Concretely, we may define the map

φ : Braidn → Symn

that sends σi 7→ (i, i + 1). To insert some non-crossing data into this system we can

precompose this map with γ : NCP (n) → Braidn which sends non-crossing partitions

to compositions of what are called rotation braids.
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Definition 5.3.1 (Rotation Braids). • Let A ⊆ [n], the rotation braid δA rotates

counterclockwise the vertices of A and fixes the other strands.

• If |A| = 2, δA is called a positive half twist.

Definition 5.3.2 (Dual Simple Braids). For each π ∈ NCP (n) of the form π =

(A1, . . . , Ak), the dual simple braid δπ is the product of rotation braids δA1 · δA2 · · · δAk
.

Note, since the underlying partition is non-crossing, the order of the multiplication is

immaterial.

Altogether we have an injection into both the braid group and the symmetric group.

NCP (n) ↪→ Braidn ↠ Symn

π 7→ δπ 7→ σπ

Consider the set DSn of all dual simple braids. Its image in the symmetric group is

called the set of non-crossing permutations. Both the set of dual simple braids and the

set of non-crossing permutations inherit via the above injection, the poset structure of

NCP (n).

Proposition 5.3.3. The map that sends π 7→ δπ gives an embedding of the Hasse Dia-

gram of NCP (n) into the (right) Cayley Graph of Braidn. Similarly, π 7→ σπ embeds

the Hasse diagram into the (right) Cayley Graph of Symn with respect to the set of trans-

positions.

Theorem 5.3.4 (Geodesic Intervals). The Hasse Diagram of NCP (n) is isomorphic to

the subgraph of the Cayley graphs consisting of length minimizing (geodesic) paths from

the identity braid/identity permutation to δ[n]/the cycle (1, . . . , n), respectively.

Theorem 5.3.5. For π, τ ∈ NCP (n):
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• π ≤ τ if and only if δ−1
π δτ is a dual simple braid.

• π < τ is a cover if and only if δ−1
π δτ is a positive half twist.

Corollary 5.3.6. Maximal chains are in bijective correspondence with minimum length

factorizations of (1, . . . , n). A such, the number of minimum length factorizations of the

n-cycle into transpositions is

nn−2

Remark 5.3.7. The bijection in the above corollary essentially labels every covering

relation with a transposition that includes a number from each of the two blocks that

merge. There are rules to follow, but rather than describe them, we illustrate this

bijection is a few examples in Figure 5.5.
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Figure 5.5: A few examples of the bijection between maximal non-crossing partition
chains and factoring the n-cycle.

5.4 Dual Braid Presentation

With the machinery built up, we can introduce the different presentation for the Braid

group conceived by Birman, Ko, and Lee [4] call the Dual Presentation, though the way

it is presented below more closely resembles the version of the same from Tom Brady [6].

Braidn = ⟨DS∗
n | δπδτ = δπ∨τ if (π, τ) is properly ordered⟩
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Note, the set of generators DS∗
n is the set of dual simple braids excluding the trivial ones.

Example 5.4.1. We can compare this presentation to the standard presentation in the

case of n = 3 as such

⟨a, b | aba = bab⟩ = Braid3 = ⟨a, b, c, d | ab = bc = ca = d⟩.

Notice that the two standard generators appear in both presentations. However, in the

dual presentation we have a few more generators and a different flavor of relations coming

from the poset of non-crossing partitions.

Definition 5.4.2 (Order Complex). Let L be a locally ordered set. The order complex

∆(L). is the ordered simplicial complex with vertices labeled by elements of L and an

ordered k-simplex on the vertices

vℓ0 , vℓ1 , . . . , vℓk

in ∆(L) whenever

ℓ0 < ℓ1 < · · · < ℓk

is a k-chain in L.

Remark 5.4.3. An ordered simplicial complex is just a simplicial complex with orders

on the vertices.

5.5 The Dual Braid Complex

We may assign a local order on Braidn by the rule that β1 ≤ β2 if β−1
1 β2 is a dual

simple braid. Each dual simple braid can be written as a product of positive half twists,
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so it follows that each relation in this local order appears in the absolute order, but not

vice versa.

Definition 5.5.1. The (n− 1) -dimensional order complex for this local order with the

orthoscheme metric is the dual braid complex, denoted Dn.

Remark 5.5.2. Equivalently, the dual braid complex is the flag complex of the Cayley

graph for Braidn with respect to the set of dual simple braids (the generating set of

Braidn in the dual presentation ).

Remark 5.5.3 (Properties of the Dual Braid Complex). Here we collect a few well

known properties for the Dual Braid Complex. See [7] and [21] for details.

• Dn is contractible.

• The 1-skeleton of Dn is the (right) Cayley graph for Braidn with respect to the

dual generators.

• Braidn acts freely on itself by left multiplication and this induces a simplicial

action on Dn with the order complex ∆(NCP (n)) as a fundamental domain. The

k-simplices in Dn are:

conv(βδπ0 , βδπ1 , . . . , βδπk
)

where δπ0 < δπ1 < · · · < δπk
is a chain of dual simple braids and β ∈ Braidn.

• The quotient of this action is a single-vertex ∆-complex which is a quotient of

∆(NCP (n)).

Example 5.5.4. D3 is a topologically the product of trivalent tree and the real line.

Consider the 3 string braid group with the dual presentation

B3 = ⟨a, b, c, d | ab = bc = ca = d⟩.
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The orthoscheme realization of the associated non-crossing partition lattice consists of

three right triangles glued along the common hypotenuse. The dual braid complex is

topologically the product of a trivalent tree with the real line. Each column exactly

matches with the column in the Z2 generated by (1, 0), (0, 1), (1, 1) which is built up by

orthoschemes. The thing to notice is that the dual braid complex for d = 3 is simply

the Z2 from the discussion of buildings except with branching at each of the trivalent

vertices.

Figure 5.6: From left to right: The orthoscheme realization of NC3, a column in the
dual braid complex for d = 3, a portion of the trivalent tree cross-section of the dual
braid complex.

In the figure above, the colors red, blue, and green match the generators a, b, and c

with the common hypotenuse corresponding to the generator d. The dual braid complex

whose quotient is that orthoscheme realization is topologically a trivalent tree crossed

with the reals. Metrically, each of the interval edges seen in the cross-section looks like

the tiling of a column with orthoschemes like in the middle picture. In total we obtain

something whose skeleton is the Cayley graph for Braid3 (with respect to the dual

presentation).

For the 4 string version, the non-crossing partition lattice for d = 4 has 16 maximal

chains, so the orthoscheme realization consists of 16 copies of 3-dimensional orthoschemes
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Figure 5.7: The graph corresponding to the link of the long edge in the orthoscheme
realization for the Non-crossing partition lattice for n = 4.

all glued along the long diagonal which we can encode in a graph. The graph in Figure 5.7

is the small neighborhood to a point in the long edge. Perpendicular to long edge, taking

an ε neighborhood we have π/3 arcs— 16 of them. Figure 5.7 is a visual representation

of this long edge link. More reading on this subject in [7].
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Chapter 6

Extracting Combinatorial Data

From a Polynomial

This chapter aims to summarize a connection between a monic, complex polynomial

and the combinatorial objects, non-crossing partitions, that was developed by Michael

Dougherty and Jon McCammond in [12]. In particular, through a close examination of

some examples, they establish that all polynomials of this type can be associated to two

chains in the non-crossing partitions lattice that start at the discrete partition and end

at the trivial partition. The figures contained in this chapter are copied from [12] with

permission from the authors.

6.1 Monic Complex Polynomials Combinatorially

In this section, we aim to understand what specific combinatorial data we can asso-

ciate with a monic complex polynomial. We will be especially interested what can be

gleaned from the critical values of a polynomial.

Example 6.1.1 (Running Example). Let p be the unique monic complex polynomial of
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degree 5 with p(0) = 0 and critical points

cpt(p) =

{
−2

5
,
2

5
,
7− 7i

5
,
10 + i

5

}
.

Concretely, p(z) is the polynomial

p(z) = z5 +

(
−17 + 6i

4

)
z4 +

(
73− 63i

15

)
z3 +

(
34− 12i

25

)
z2 +

(
−308 + 252i

125

)
z.

The (rounded) critical values are

cvl(p) = {.8− .6i,−6 + .5i,−8.5− 4.3i, 3.6− 6.9i}.

Figure 6.1: A subdivided rectangular complex R containing cvl(p) (they are the points
in yellow).

We may obtain a subdivided rectangle as follows: bound all the critical values of p

by a rectangle in C. Using lines through each critical value in the horizontal and vertical
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directions, we break it up into 25 rectangles.

Remark 6.1.2. We pay attention to critical points and critical values because, away

from those, polynomials are local homeomorphisms (a quick consequence of the Inverse

Mapping Theorem). If we remove the critical values and their preimages, what is left is

a covering space. Because it is a covering space, an open rectangle that avoids critical

values will pull back as open rectangles – evenly covered. So for p, each of the open

rectangles pull back to 5 open rectangles in the domain.

Figure 6.2: A d-sheeted branched rectangle, with the pullback metric, is a right-angled
4d-gon.

Remark 6.1.3 (Polynomials exhibit branching). A polynomial map p : C → C is a local

homeomorphism away from its critical points and its a covering map once you remove the

critical values and their preimages (the preimages are potentially a bigger set than just

the critical points). There is finite branching at the critical points. It makes the domain

behave like covering space except there are branched points—the critical points/other

preimages of the critical values—where it looks more complicated.

Abstractly, given some map from a 4d-gon to a rectangle, it must have some branching.
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We can imbue the planar 4d-gon with the pullback metric from the rectangle, discussion

of which we push to Chapter 7. Except for isolated points, it is a local homeomorphism.

Figure 6.3: The preimage p−1(R) is a branched rectangular complex.

In the polynomial case of Example 6.1.1 where we had rectangles pulling back to 125

rectangles, we can use the metric on the output side to understand the metric on the

preimage. It will no longer lie flat (isometrically embed) in the Euclidean plane with

its usual metric, but it will enjoy some nice properties, namely it will be non-positively

curved. It will look like a metric, piece-wise rectangular complex (even though the

preimages look curved, it has the metric of a euclidean rectangle). At every vertex there
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are either 4 corners meeting at 2π angle or 8 or 16, giving some multiple of 2π. Figure 6.3

exhibits the rectangular cell structure that encodes the 125 open rectangle preimages for

our running example. The four distinguished points in yellow look like they have eight

corners around them— they are the critical points.

In order to highlight the combinatorial information from a diagram like Figure 6.3,

we may suppress the metric information. Consider the rectangle from Figure 6.1, but

stylized so that all the rectangles are equal sizes.

Figure 6.4: This stylized version of Figure 6.1 suppresses the metric information to
highlight the combinatorial structure.

The boundary of this rectangle is regular, and far from the critical values, this poly-

nomial behaves like z 7→ zd (wrapping around a large circle on itself d times. When we
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pull back the regular rectangle we would get a 20-gon, and ignoring metric information

for the preimage in Figure 6.3 we obtain the content of Figure 6.5.

Figure 6.5: The stylized version of Figure 6.3.

Remark 6.1.4 (Regular points). To understand the combinatorics, instead of consid-

ering the lines that runs through critical values, lines through the rectangle consisting

of only regular points are more useful. In Figures 6.4 and 6.5, this will correspond to

removing the solid lines and instead focusing on the dotted lines as in Figure 6.6.
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Figure 6.6: The same rectangle and branched rectangle from Figures 6.4 and 6.5, now
with regular horizontal and vertical lines in the pullback.

The regular lines being pulled back do not branch. Since the lines avoid the critical

values on the range side, their preimages are unions of disjoint unbranched arcs. In order

to highlight the combinatorics, we can 2-color a regular top-bottom split, and pull it back

to obtain this pair of figures:

Figure 6.7: A vertically separated 2-coloring that avoids cvl(p) and its pullback.

At this point, we can start to see the non-crossing partitions that can arise from this

example. In all these figures, we are using rectangular coordinates on the output, pulling
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back horizontal and vertical lines and getting nice and regular curves, and they uncover

non-crossing combinatorics.

Figure 6.8: Preimages of regular lines are non-crossing matchings.

Example 6.1.5. On Figure 6.8, we see an example of a general phenomenon. As an

important note, this figure relates more closely to a degree 9 polynomial, not our running

example. The degree increased so that the non-crossing data is more prominent. In this

example, if you have a horizontal line the connects left and right side and avoids all

critical values, the preimage will have to be things that start at the 9 left sides, travel

along non-branched arcs, to the 9 right sides. Further, they can never cross because they

are all regular preimages, so it pulls back like a covering space. The result is what is called

a non-crossing matching of the 9 “left” and “right” sides. And this phenomenon stays

true, some potential matchings are prohibited if they have a crossing. So, non-crossing

phenomenon are appearing.
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Figure 6.9: non-crossing matchings equivalently induce non-crossing partitions.

Remark 6.1.6 (Non-crossing matchings induce non-crossing partitions). Intuitively,

non-crossing matchings give non-crossing partitions.

In Figure 6.9, the matching in the top left connects “left” and “right” sides. It induces

a non-crossing partition of the “top” sides (the top right diagram) by considering the

largest such partition that doesn’t cross the arcs in the matching. Dually, it also defines a

non-crossing partition of the “bottom” sides (the bottom left diagram) in the same way.

Equivalently, given a non-crossing partition of the “tops” or of the “bottoms,” we can

recover the non-crossing matching. The dual non-crossing partitions and the non-crossing

matching are superimposed in the bottom left diagram.
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Figure 6.10: Parallel line preimages determine chains of non-crossing partitions.

Remark 6.1.7 (Morse theory gives chains). Using the real and imaginary directions, we

obtain height functions and can effectively use Morse theory on the preimage. Pulling

back the purple region in Figure 6.10 determines a non-crossing partition. Pulling back

the green and purple together gives another non-crossing partition, which covers (in the

poset sense) the previous non-crossing partition. Continuing like this, the bottom to top

Morse theory on this preimage determines a chain in the non-crossing partition lattice,

starting at the discrete partition, and ending at the trivial partition. Note that this chain

need not be maximal.

A similar thing is happening in Figure 6.7 with a left-right Morse theory. Another

thing to note is that the partition changes to a larger one exactly after passing through

critical values on the output.

To help visualize the non-crossing partitions and chains, below is the non-crossing

partition lattice for d = 4 using these diagrams.
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Figure 6.11: The non-crossing partition lattice for d = 4, in the point of view of
branched rectangle diagrams.

Remark 6.1.8 (Two chains for every polynomial). Effectively, every polynomial deter-

mines not one, but two chains in the non-crossing partition lattice, one from bottom-top

Morse theory, and one from left-right Morse theory. The length of the chain from the

bottom-top is given by the number of distinct latitudes (horizontal cuts) of critical val-

ues and the length for the left-right Morse theory is the number of distinct longitudes

(vertical cuts) for the critical values.
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Figure 6.12: Left (or right) non-crossing partition chains determined by left-right, (or
right-left) Morse Theory on the preimage.

To really drive this point home, Figure 6.12 illustrates: on the top level, a chain in the

non-crossing partition lattice; on the next level, a series of branched rectangle diagrams

determining that chain; on the 2nd level from the bottom, another non-crossing chain

which is the dual chain to the top level (with respect to Kreweras compliment); on the

bottom level, the rectangle diagrams that determine these chains. In Figure 6.13, is the

same idea on the vertical Morse theory for this example rectangle diagram.
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Figure 6.13: Morse theory in the vertical direction on the same example and the
corresponding non-crossing partition chains.
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In 1799, Gauss tried to prove the Fundamental Theorem of Algebra by focusing

on the pullback of the real and imaginary axes. Given a complex polynomial with no

critical values on the real or imaginary axis, Gauss noted that the pullback of the real

and imaginary axis consisted of 4d rays. Moreover, every real axis preimage intersects

exactly one imaginary axis preimage. The pull back of the intersection determines a root.

A few centuries later in 2007, Martin, Savitt, and Singer considered similar pullbacks

from a combinatorial perspective, which they call basketballs.

Definition 6.1.9. A basketball is a pair of non-crossing matchings with the given com-

patibility condition: Every arc from the first non-crossing matching intersects exactly

one arc in the other non-crossing matching and vice versa.

Proposition 6.1.10. Let p ∈ C-Polymc
d (R). Every regular cross in R pulls back as a

pair of non-crossing matchings satisfying the basketball criterion.

Proof: Evidently, the preimage under polynomial maps of rectangle diagrams with

crossing lines satisfy this condition so long as the crossing lines are regular (in the sense

that they don’t meet a critical value). Since, if they crossed multiple times in the preim-

age, the same would be true in R. Diagrams for the pullback of a cross resulting in

basketballs are in Figure 6.14 and Figure 6.15.
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Figure 6.14: Crossing line preimages are basketballs.

Here is similar figure with respect to the example in the other figures.

53



Extracting Combinatorial Data From a Polynomial Chapter 6

Figure 6.15: Basketball diagram associated to a specific polynomial.

Remark 6.1.11. If ever a “plus sign” can be drawn in the rectangle diagram avoiding

any critical value latitudes or longitudes, they will pull back forming a basketball. The

generic example we have been working with has 25 such “plus signs” pulling back to

distinct basketballs. See below for the plus signs and their pullbacks in Figure 6.16 and

Figure 6.17 that come from the 5 different horizontal separating lines and the 5 different

vertical separating lines.
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Figure 6.16: The 25 different plus signs avoiding all critical values.
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Figure 6.17: The 25 corresponding basketballs matching with Figure 6.16.
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Chapter 7

Geometry of Monic Complex

Polynomials

This chapter continues to highlight the recent work of Michael Dougherty and Jon

McCammond. In particular, it illuminates the natural correspondences between three

spaces:

• monic complex polynomials of degree d.

• d-sheeted branched covers of a Euclidean rectangle R.

• metric cell complexes built from non-crossing partitions called the (metric) Basket-

ball Complex.

The third viewpoint leads to a new geometric combinatorial parametrization of the

space of complex polynomials.

Garside Structures led to at least two different classifying spaces for the Braid Group.

There was the Salvetti Complex, which could be thought of as a quotient of the permu-

tohedron, and the Dual Braid Complex with the orthoscheme metric. The original con-

struction of the Dual Braid Complex had nothing to do with complex polynomial space.
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However, the (metric) Basketball Complex with side identifications, which corresponds

as a metric cell complex to the space of monic complex polynomials with distinct roots,

admits a deformation retraction onto the Dual Braid Complex as its spine.

7.1 Basketball Complex

As established in Chapter 6, there is a lot of combinatorial information that is ap-

pearing for a single polynomial. Each regular horizontal cut on a rectangle bounding the

polynomial’s critical values pulls back to give a non-crossing partition/matching and same

for regular vertical cuts. Each pair pulls back in a compatible way to form basketballs.

The cell complex |NCPd| × |NCPd| has top-dimensional cells that are the product

of two n-dimensional simplices (recall we have set n = d− 1) corresponding to maximal

chains in the non-crossing partition lattice.

The vertices in the direct product are ordered pair of vertices, one from each factor.

However, to identify the subcomplex that agrees with the combinatorics for polynomials

we require the extra condition that the pair corresponds to a basketball.

Definition 7.1.1 (Basketball Vertices). The vertices in |NCPd| × |NCPd| that satisfy

the basketball criterion are called basketball vertices.

Definition 7.1.2 (Basketball Complex). The basketball complex is the full subcomplex

restricted to the basketball vertices. We also call this the branched rectangle complex

BrRectd.

Remark 7.1.3. Even though the order complex for the non-crossing partition lattice is

not a manifold, and neither is the direct product with itself, restricting to the basketball

vertices is topologically a 2n-dimensional ball. This becomes apparent using results from

this chapter.
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So, for each polynomial with critical values in R we can determine a pair of chains

in the non-crossing partition lattice that are compatible under the basketball criterion.

Other polynomials may give the same pair of chains. All those with the same basketballs

forming determine a cell in the basketball complex. The polynomial in Example 6.1.1 is

a degree 5 polynomial with 4 critical values that each had distinct real and imaginary

components and in BrRectd its combinatorics determines an 8-cell (the product of two

4-simplices) shared by any other monic degree 5 polynomial with critical values in R

which admits the same pair of non-crossing partitions/matchings chains.

For a less generic distribution of 4 critical values in R, for example if some critical

values have higher multiplicities or if they share a real or imaginary component, instead

of getting maximal chains, we would get some shorter chains, and would place us into a

lower dimensional cell. The cell structure of the basketball complex encodes coincidences

between the real and imaginary parts of the critical values.

Now lets reinforce the metric information that we have been ignoring as of yet. To

do this we invoke the following specific use of the pullback metric, which is well behaved

everywhere the polynomial acts as a local homeomorphism.

The space Multn(U) has a natural metric as inherited from the Euclidean metric on

Cn under the quotient by the symmetric group action.

Definition 7.1.4. Given a polynomial p ∈ C-Polymc
d (U). For z1, z2 ∈ C such that

p(z1), p(z2) ∈ U ⊂ C. We define the pullback metric for p as follows: Let {Hα}α∈J be

the set of all paths from z1 to z2 and define dp(z1, z2) to be the minimum length of the

paths {p(Hα)}α∈J .

The pullback metric on the polynomial space C-Polymc
d (U) is defined similarly.

Definition 7.1.5 (Pullback Metric on Polynomial Space). Let {Hα}α∈J be the set of all

paths in polynomial space from two polynomials p1, p2 ∈ C-Polymc(U) and define the
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pullback metric on polynomials to be the minimum length of {cvl(Hα)}α∈J , where that

length is with respect to the natural metric in Multn(U).

Remark 7.1.6 (Coordinates). The combinatorics of a branched rectangle determines a

cell in the basketball complex. The specific metric information determines the specific

point in the interior of this cell. In particular, the relative sizes of the width of the small

rectangles give barycentric coordinates in one simplex and the relative sizes of the heights

of the small rectangles give barycentric coordinates of the other simplex.

So, recovering the metric information gives the specific point in the simplicial complex.

Other monic polynomials of the same degree with critical values in the same rectangle

may determine the same combinatorics and land in the same cell, but with the metric

information the point is uniquely determined by a polynomial up to precomposition with

a translation, i.e. it uniquely determines a monic centered polynomial.

Theorem 7.1.7 (Basketballs and Branched Rectangles). The points of the basketball

complex BrRectd(R) are in natural bijection with the space of all (based) planar d-

sheeted metric branched covers of a metric rectangle R.

Not only do we have the ability to associate a polynomial with a point in the basketball

complex BrRectd, we can also put a nice cell structure on the polynomial space that

agrees with that of the basketball complex. That work from [11] and [10], is summarized

here.

Given a generic polynomial, if you took the roots and moved them around, that

determines a path in the space of polynomials. This would also determine a path of

the critical values in the range. We want something like path-lifting so that if we move

critical values, we would like to have that determine a path in the space of polynomials

in a unique way given the start point. There are technical details to worry about because
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the map from polynomials over to polynomials determined by critical values is not always

a local homeomorphism, it exhibits branching. Bearden, Carney, and Ng proved in 2002

the following:

Theorem 7.1.8 (Bearden, Carney, Ng 2002). Every possible distinct set of n complex

numbers are critical values for a monic complex polynomial up to translation.

It boils down to the existence of a map from Cn → Cn such that if the determinant

of the Jacobian is nonzero, it is a local homeomorphism. They were able to determine

that the map is a local homeomorphism if the critical values are distinct. And as such,

any path like this can be lifted back to the space of polynomials.

From this, we know that all the points in the interior of the top-dimensional cells

(product of two orthoschemes) and all the paths in that interior can be lifted uniquely.

To be clear, this is the scenario when all critical values are distinct. The ultimate goal

is to continue this procedure to extend it to the facets of these cells when critical values

have some multiplicities.

Concretely, given p ∈ C-Polymc
d , we can factor p′(z) = d(z − z1) . . . (z − zn) and

record the vector z⃗ = (z1, . . . , zn) ∈ Cn. With the extra assumption that p(0) = 0 we can

rebuild the polynomial

p(z) =

∫ z

0

d(w − z1) . . . (w − zn)dw.

So the map z⃗ 7→ ((p(z1), . . . , p(zn)) maps the tuple of critical points to the critical

values which is a polynomial defined map. But the output is really a n-tuple of mul-

tivariable polynomials. The Jacobian is an n × n matrix with partial derivatives with

respect to the variables. As long as z′is are distinct and nonzero, the determinant of this

Jacobian is also nonzero according to Bearden, Carney, and Ng.
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To allow for multiplicity, assume p′(z) = d(z − z1)
m1 . . . (z − zk)

mk where
∑

mi = n

with fixed m′
is. The k × k matrix corresponding to this setup had a Jacobian whose

determinant admits a clean factorization into linear terms, established in [10].

Theorem 7.1.9. Determinant of that Jacobian is

1(
n

m1, . . . ,mk

) m∏
j=1

(−zj)
aj

∏
1≤j ̸=k<m

(zk − zj)
aj .

Therefore,

Corollary 7.1.10. If the critical points for the set of polynomials remain distinct and

nonzero, we have a local homeomorphism.

Essentially, via the unique lifting of paths in the polynomial space C-Polymc
d (R)

established in the work of Dougherty and McCammond in [11], we get a cell structure on

C-Polymc
d (R) coming from the basketball complex. By recognizing that the map from

C-Polymc
d (R) → BrRectd(R) is a cellular map, and that the two complexes agree on

the number n!dd−2 of top dimensional cells, we have some indication that this map is

injective. As a consequence of the fact that the braid group action on maximal chains

is transitive on maximal chains in the non-crossing partition lattice, we can establish

that the map is onto. So, since they agree on count and the map is onto, we also get

injectivity.

Theorem 7.1.11. There are homeomorphisms BrRectd(R) ∼= C-Polymc
d (R) ∼= D2n

which restrict to int(BrRectd(R)) ∼= C-Polymc
d (int(R)) ∼= int(D2n).
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7.2 Polynomials Topologically

The conversation in this section is designed to illustrate why the basketball complex

discussed in Section 6.1 is flexible enough to describe as a metric object the entirety of

C-Polym
d (C) regardless of the choice of rectangle, which in Section 6.1 was chosen simply

to bound the critical values of the polynomial in Example 6.1.1. In particular,

Theorem 7.2.1. C-Polymc
d (C) ∼= C-Polymc

d (int(R)). In particular, we get that the

branched rectangle complex, built out of basketball vertices is a compactification of the

monic centered complex polynomials.

To establish Theorem 7.2.1, the main tool is the idea of a nonsplitting homotopy,

which we will describe here, drawn from [12].

Definition 7.2.2 (Homotopies). A point homotopy is a map H : U × I → Y with

I = [0, 1]. We write H(u, t) = ht(u) = hu(t) for each u ∈ U and t ∈ I. These refer

to the time map ht : U → Y , and the path map hu : I → Y . We also write ut for

H(u, t) = hu(t) and Ut for H(U, t) = ht(U), so that hu is a path from u0 to u1 and H is

a homotopy from U0 to U1.

Whenever we have a homotopy on points in C it induces a homotopy of the tuples in

Cn and a homotopy of multisets in Multn(C) for any n ∈ N.

Definition 7.2.3 (Induced Homotopies). Let H : U × I → C be a point homotopy from

U0 to U1 inside C. There is a corresponding tuple homotopy Hn : Un × I → Cn from

(U0)
n to (U1)

n inside Cn, defined by Hn(z, t) = (H(z1, t), . . . , H(zn, t)) for each n ∈ N,

with z = (z1, . . . , zn) ∈ Cn and t ∈ I. The multiset quotient Mult(Hn(z, t)) is constant

under the Symn-action of permuting coordinates. So we also have an induced homotopy

Hn : Multn(U) × I → Multn(C) from Multn(U0) to Multn(U1) inside Multn(C),

by taking the relevant multisets of each piece. In particular, if M ∈ Multn(U) is an
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n-element multiset in U and z ∈ Un is any n-tuple with M = Mult(z), then Hn(M, t) =

Mult(Hn(z, t)).

The induced time maps are (hn)t : Un → Cn for Hn and (hn)t : Multn(U) →

Multn(C) for Hn and the induced path maps defined as expected are (hn)z and (hn)
M ,

respectively.

The key feature we want to record is whether the point paths in point homotopies

merge or split.

Definition 7.2.4 (Splitting and Merging). Let H : U×I → C be a point homotopy. We

say that H splits points if there are distinct points u, v ∈ U and distinct times s < t ∈ I

such that us = vs and ut ̸= vt. Similarly, we say that H merges points if there are

distinct points u, v ∈ U and distinct times s < t ∈ I such that us ̸= vs and ut = vt.

When H does not split points it is nonsplitting and when it does not merge points it

is nonmerging. A point homotopy that is both nonsplitting and nonmerging, preserves

points. In particular, for a point-preserving homotopy, us = vs at some time s ∈ I if and

only if ut = vt for all t ∈ I.

Remark 7.2.5. When H is a nonsplitting point homotopy, points with u0 = v0 stay

together throughout, so the entire homotopy H factors through the quotient map h0×1 :

U × I ↠ U0× I to produce a simpler point homotopy H ′ : U0× I → C. This allows us to

assume without loss of generality, that all nonsplitting homotopies are injective at time

t = 0 with U = U0.

A nonsplitting point homotopy leads to multiset paths that are uniquely liftable.

Remark 7.2.6 (Nonsplitting). Let H : U × I → C is a point homotopy and let Hn be

the corresponding multiset homotopy. When H is nonsplitting, the points in a multiset

path can merge but not split, which means that they have a weakly increasing shape. In
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particular, multiset paths in Hn satisfy the necessary conditions to be uniquely liftable

through the cvl map.

In particular, we can carry along these ideas into polynomials.

Definition 7.2.7 (Polynomial Homotopies). Let H : U × I → C be a nonsplitting point

homotopy with U = U0 ⊂ C. We can use the polynomial path lifting theorem to define a

function C-Poly(H) : C-Polymc
d (U) × I → C-Polymc

d (C) as follows. Let p be a monic

centered degree d polynomial and let M = cvl(p) ∈ Multn(U). There is a unique lift of

(hn)
M to a path P : I → C-Polymc(U) that starts at p. Finally, we define C-Poly(H)

at the point (p, t) ∈ C-Polymc
d (U)× I to be P (t).

Remark 7.2.8. In particular, given a nonsplitting point homotopy H : U × I → C The

function C-Poly(H) is continuous and a homotopy of polynomial spaces.

When the point homotopy preserves points, we get an even stronger condition for the

induced polynomial homotopies

Lemma 7.2.9 (Homeomorphisms). If H : U × I → C is a point preserving homotopy,

then all the C-Poly(H)-induced maps C-Polymc
d (Us) → C-Polymc

d (Ut) with s < t ∈ I

are homeomorphisms.

Remark 7.2.10. This establishes most of Theorem 7.2.1 since we may easily construct

point preserving homotopies from C to the interior of any rectangle in C. The compact-

ifications also can be shown to behave nicely. If we do have a merging homotopy, like

in a homotopy that deforms a rectangle into an annulus, the result is a quotient. Since

monic and centered polynomials with distinct roots are homeomorphic to monic, centered

polynomials with critical values in an annulus, this implies that these polynomials can be

compactified as the branched rectangle complex with side identifications. The induced

map from the closed annulus to a circle induces through polynomials a map that realizes
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the Dual Braid Complex as the spine of this side-identified branched rectangle complex.

The idea is summarized in Theorem 7.2.11 and details can be found in [12].

Theorem 7.2.11. Give a homotopy from a rectangle to an annulus in C, the induced

polynomial homotopy realizes that the space C-Polymc
d (C∗) can be compactified as the

branched rectangle complex with side identifications, called the branched annulus complex,

which deformation retracts onto the Dual Braid Complex as its spine.
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Part II

Real Polynomials and their

Underlying Combinatorics
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The chapters in Part 2 focus on the real polynomial analogs of the Branched Rectangle

Complex (also called the Basketball Complex) which compactifies monic, centered com-

plex polynomials and the Branched Annulus Complex, with compactifies monic, centered

polynomials with distinct roots. The first chapter highlights the special combinatorics

that guide these discussions. The second and third deal with the cell complexes.
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Chapter 8

Specialized Non-crossing

Combinatorics

In the case of polynomials whose coefficients are real, the combinatorics discussed in

Chapter 6 become more restrictive. Consider, for example the polynomial p(z) = z7 −

10.5z6 + 48z5 − 121z4 + 1723z3 − 131z2 and the corresponding preimage of a subdivided

rectangle shown in Figure 8.1. There is an obvious reflection symmetry with respect

to the x-axis, and this has a major impact on the combinatorics. In this chapter we

investigate the structure of these more restrictive non-crossing features.

Within the literature on non-crossing partitions, there has been significant study of

Type B non-crossing partitions. These arise by studying the dihedral group action on

the set of non-crossing partitions, in particular those partitions fixed by rotations. This

viewpoint is discussed in length in [24]. A similar study can be made for the stabilized

non-crossing partitions of the reflections, which was started with varying levels of depth

in [8] and especially by Ding in his dissertation [9]. A more pointed study of these

non-crossing phenomenon is introduced here as a tool towards understanding (monic)

polynomials with real coefficients. It should be noted that several of the similar results
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from [9] that are presented here with updated proofs are being prepared for publication

in joint work from Ziqian Ding and myself. Recall that the basketball complex concerns

itself with chains in the non-crossing partition lattice and their products, subject to the

basketball condition. In addition to the reflection symmetric non-crossing partitions, we

also see a unique style of non-crossing partition chains when studying real polynomials

which we call palindromic chains. Much less is known about these chains, which are

being introduced here. We connect them with other combinatorial objects that may lend

themselves to easier study.

The outline of this chapter is as follows: We start in Section 8.1 by introducing the

relevant definitions for the specific subtype of non-crossing partitions that are the main

focus of the chapter– reflection symmetric non-crossing partitions. This type of non-

crossing partitions creates a sublattice of the regular non-crossing partition lattice, but

the sublattice is neither graded nor self-dual as is the case in the larger poset. That

said, the duality of the poset is well understood and is highlighted in Section 8.2 in

Proposition 8.2.1 along with other basic facts about the poset’s structure continued in

Section 8.4 to understand the structure of intervals in the poset. These non-crossing

partitions admit interesting recurrences, and in Section 8.3 we prove that they satisfy

a Pascal-like recurrence relation which leads to myriad numerical results about these

non-crossing partitions and the size within each rank (inherited as the subposet of the

graded non-crossing partition lattice). In Section 8.5 we discuss the numbers and types

of maximal chains that arise in this non-graded poset culminating in Theorem 8.5.6 and

in Section 8.6 show the Moebius function for the poset depends on parity and is signed

Catalan numbers in even cases or zero in odd cases. In Section 8.7, we provide an elegant

direct proof about the size of the poset by shifting perspective to non-crossing matchings.

In particular, although the poset structure is quite different these non-crossing partitions

are equinumerous with Type B non-crossing partitions.
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Figure 8.1: The branched rectangle diagram for a polynomial with real coefficients

The final section of this chapter turns attention towards the other type of non-crossing

combinatorics that arises for real polynomials, the palindromic chains, defining them

concretely and establishing a bijection from them to a family of labeled hypergraphs.

8.1 Reflection Symmetric Non-Crossing Partitions

In this section we define the first style of specialized non-crossing combinatorics that

is covered in this chapter, reflection symmetric non-crossing partitions.
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Definition 8.1.1. A non-crossing partition of vertices of a regular n-gon is reflection

symmetric if it is invariant under a reflection that fixes a vertex or under a reflection that

fixes the midpoint of an edge. To differentiate between these two types of symmetries, a

reflection symmetric non-crossing partition fixing a vertex will be called vertex reflection

symmetric and the ones fixing the midpoint of an edge will be called edge reflection

symmetric

Remark 8.1.2. A useful convention to embed these reflection symmetric non-crossing

partitions into C is consists of three sets of labels on the 4nth roots of unity, e
kiπ
4n .

• For k ≡ 2 mod 4, label those roots of unity in a counter-clockwise way starting

from the label 1 on e
2iπ
4n and ending at n.

• For k ≡ 0 mod 4, label those roots of unity in a counter-clockwise way starting

from the label 1 on 1 ∈ C and ending at n.

• For odd k, label those roots of unity in a counter-clockwise way starting from the

label 1 on e
iπ
4n and ending at 2n.

With this convention, a edge reflection symmetric non-crossing partition on the 2 mod 4

roots (with respect to reflecting through the real axis—complex conjugation) induces

both a vertex reflection symmetric non-crossing partition on the 0 mod 4 roots and a

reflection symmetric non-crossing matching on the odd roots (which itself is an edge

reflection symmetric non-crossing partition on 2n where each block is of size 2). This is

visualized in Figure 8.2.
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Figure 8.2: Superimposed reflection symmetric non-crossing partitions of edge type
(in green), vertex type (in blue), and a reflection symmetric non-crossing matching
(in red), with the established labelling convention from Remark 8.1.2 for n = 6.

Remark 8.1.3 (Complex conjugation as the reflection). Throughout our study on re-

flection symmetric non-crossing partitions, we use the conventions from Remark 8.1.2

and consider the reflection symmetry across the real axis, which corresponds to complex

conjugation. There is no difference in the combinatorics we present for any other reflec-

tive axis, but for clarity purposes we will only refer to reflection symmetry with respect

to this particular reflective axis and particular arrangement of the labels. With that in

mind, we can establish our particular reflection symmetric non-crossing partitions into

purely combinatorial definitions.

Definition 8.1.4. A non-crossing partition τ is edge reflection symmetric if a, b ∈ τj

implies n− a+ 1, n− b+ 1 ∈ τk for some j and k and a, b ∈ [n].

Remark 8.1.5. The condition is most clear diagrammatically, wherein these non-crossing
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partitions satisfy the condition that reflecting through the bisecting line between 1 and

n results in the same diagram as diagrammed in Figure 8.3 for n = 6.

Figure 8.3: Examples of Edge Reflection Symmetric Non-crossing partitions for n = 6.

Definition 8.1.6. A non-crossing partition τ is vertex reflection symmetric if a, b ∈ τj

implies (−a+ 2) mod n, (−b+ 2) mod n ∈ τk for some j and k and a, b ∈ [n].

Remark 8.1.7. Like in edge version, these partitions are symmetric under reflection ac-

cording to the labelling conventions establish, diagrammatically the reflection line strikes

through 1 and bisects the diagram by striking through 1, visualized in Figure 8.4 for

n = 4.

Figure 8.4: The Vertex Reflection Symmetric non-crossing Partitions for n = 4.
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8.2 Poset Structure

As noted in 5.2, the non-crossing partition lattice has the structure of a graded lattice

and enjoys many well known properties. It is self-dual and its maximal chains are in

bijective correspondence with parking functions, etc. On the other hand the sublattice

consisting of reflection symmetric non-crossing partitions is not graded, nor self-dual in

general. In this section, we investigate the duality and establish some terminology for

the covers and atoms/coatoms for the poset and consider some examples.

Terminology 1. As in previous chapters, we denote the usual poset of all non-crossing

partitions of size n by NCP (n), the subposet of edge reflection symmetric non-crossing

partitions of size n by RNCPE(n), the subposet of vertex reflection symmetric non-

crossing partitions of size n by RNCPV (n).

Proposition 8.2.1. The posets RNCPE(n) and RNCPV (n) are dual. When n is odd,

RNCPE(n) ∼= RNCPV (n) and thus, RNCPE(n) is self-dual when n is odd.

Proof: The duality is easily seen by taking Kreweras compliments, evidenced in

Figure 8.2. Evidently, when n is odd, vertex symmetry coincides with edge symmetry,

since reflections that fix a vertex necessarily fix the midpoint of the edge on the opposite

side as well. With our particular labels in mind, the map x 7→ x + n+1
2

mod n is an

isomorphism from RNCPE(n) to RNCPV (n) for the odd case.

Terminology 2 (Covering Relations). In the standard non-crossing partition lattice,

every covering relation adheres the same rule, namely τ ≺ π is a minimal covering

relation if and only if one block of π is the union of two blocks of τ , and all other blocks

coincide.

However, due to the added restriction for symmetry in the the reflection symmetric

non-crossing partitions, this is not the only minimal covering relation in RNCPE(n) or
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RNCPV (n). Minimal covering relations like the ones described above for NCP (n) still

exist, but many of the covers in NCP (n) do not preserve reflection symmetry. Moreover,

there is a different minimal covering relation of height two. For convenience, we classify

the minimal covering relations into two distinct types.

Recall our established context is that we are thinking of non-crossing partitions em-

bedded into C as in Remark 8.1.2. Our convention is to call blocks that intersect the

real axis real blocks and those that do not complex blocks. Note that in the reflection

symmetric setting, complex blocks always appear in conjugate pairs. For completeness,

we outline the types of covers that exist in the reflection symmetric case stratified by

whether they are a 1-fold or 2-fold cover in the corresponding non-crossing partition

lattice. In Figure 8.5, we show the diagrams for the corresponding covers.

1. The first kind of cover is itself a cover in the non-crossing partition lattice. An x-

type covering relation is the minimal covering relation that does one of the following

things: It could join into a single block a block elements of [n] that are mirror

images of each other with respect to the real axis. Said another way, these covering

relations combine conjugate pairs of complex blocks into a real block. The other

kind of x-type cover is when two real blocks merge into a single real block. These

are covers in the non-crossing partition lattice as well because they relate, under

refinement, two non-crossing partitions for which two blocks have joined to create

a single block.

2. A y-type covering relation is a minimal covering relation in RNCPE and RNCPV

but is a 2-fold covering relation from the perspective of the NCP (n) and again

pertains to two situations: Either two complex blocks in the same half space com-

bine and simultaneously so do their conjugate blocks. or when a conjugate pair

of complex blocks merge with a real block. In the latter situation, it is a cover
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precisely when the convex hulls of the two conjugate blocks together non-trivially

intersects the real block.

Figure 8.5: The left two columns describe the two styles of x-type covers, and the
right two columns describe the two styles of y-type covers, as top-bottom pairs.

Remark 8.2.2. It is easily checked that under the dualization that goes betweenRNCPE

and RNCPV , these two types of covering relations types interchange in a predictable way.

In particular, If τ ≺ π via an x-type covering relation, then π′ ≺ τ ′ in the dual poset is

again an x-type covering relation. Similarly, if the relation is a y-type covering, then the

dual relationship is again a y-type covering.
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Figure 8.6: The posets RNCPE(4) and its dual RNCPV (4).

Remark 8.2.3 (Atoms and Coatoms). We denote the specific symmetric non-crossing

partition in which the only nontrivial block contains a label i for 1 ≤ i ≤
⌊
n
2

⌋
and

its reflected image label as πi and notice that this is an atom for both NCP (n) and

RNCPE(n). In particular, πi has as its only nontrivial block {i, (n+ 1)− i}.

The other sort of atom is not an atom of NCP (n). We denote the symmetric non-

crossing partition in which the nontrivial blocks are {i, j} for 0 < i, j ≤
⌊
n
2

⌋
and the

reflected version of that block {(n + 1) − i, (n + 1) − j} as πi,j and notice that this is

atomic in RNCPE(n) but not in NCP (n).

These two types exhaust the list of atoms for RNCPE(n).

The coatoms of RNCPE(n) also have two distinct types: If the symmetric non-

crossing partition consists of two blocksA andB then the partition is uniquely determined
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by the maximum labeled vertex m ∈ [1,
⌊
n
2

⌋
] within the block containing the labeled

vertex 1. If 1 ≤ m < n
2
, the coatom is the partition consisting of the block {±1, . . . ,±m}

and {±(m+ 1), . . . ,±
⌈
n
2

⌉
} whereas if m = n

2
the partition is [1, n

2
]⊔ [−n

2
,−1], where by

abuse of notation we think of −i as the labeled vertex (n+1)− i (the reflected vertex of

i). We denote these coatoms as π1,m.

The other type of coatom is not a coatom of NCP (n). The specific non-crossing

partition in which all but i and −i belong to a single nontrivial block for 1 < i <
⌈
n
2

⌉
is

a coatom of RNCPE(n) we denote as πi.

8.3 Pascal Like Recurrence

In this section I describe a recurrence relation to obtain the number of reflection

symmetric non-crossing partitions of n with k blocks, denoted RNCPE(n, k).

In many instances, the recurrence which arises coincides with the Pascal Recurrence

for binomial coefficients.

Remark 8.3.1. The exact recurrences below still work for both types of reflection sym-

metric non-crossing partitions, even though the proofs are only provided for Edge Type.

Following the argument while passing through to the Kreweras complement gives a mir-

rored argument for the vertex reflective cases.

Lemma 8.3.2. When n is even, RNCPE(n, k) = RNCPE(n−1, k−1)+RNCPE(n−1, k)

Proof: When k is odd, at least one of the blocks in any of the reflection symmetric

non-crossing partitions with k blocks is a real block. Thus, the following operations are

always well-defined.

Now consider any of the partitions in RNCPE(n−1, k−1). When n is even, the n
2
th

vertex is on the real axis for this partition of n− 1. If this vertex is not in a block with
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any other vertex, then shifting the labels past n
2
up by one followed by the replacement

of n
2
with the disjoint pair of n

2
and n

2
+ 1 gives a unique partition in RNCPE(n, k).

If n
2
is in an existing block, then the other entries in that block are conjugate pairs,

because there are no other real vertices. To create a partition of RNCPE(n, k) from this,

we can shift the labels past n
2
up by one and then divide the block containing n

2
into two

blocks: one containing n
2
and the positive conjugates, the other containing n

2
+1 and the

negative conjugates.

Figure 8.7: Demonstrating the injection of RNCPE(7, 3) into RNCPE(8, 4).

Thus, there is an injection under these operations from RNCPE(n − 1, k − 1) into

RNCPE(n, k).

For a partition from RNCPE(n−1, k), we can obtain a partition from RNCPE(n, k)

shifting the labels past n
2
up by one and adding the n

2
+ 1 vertex into the same block as

n
2
.

Figure 8.8: Demonstrating the injection of RNCPE(7, 4) into RNCPE(8, 4).

Thus, there is another injection of RNCPE(n− 1, k) into RNCPE(n, k).
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Clearly, the images under these injections are disjoint and their union equals all of

RNCPE(n, k), since they partition the elements of RNCPE(n, k) into partitions contain-

ing a block that have both n
2
and n

2
+ 1 and those that do not.

The situation when n is odd is more complicated since the choice of k affects the

recursion.

Lemma 8.3.3. When n is odd and k is odd, RNCPE(n, k) = RNCPE(n − 1, k − 1) +

RNCPE(n− 1, k).

If k is even, RNCPE(n, k) = RNCPE(n− 1, k− 1) +RNCPE(n− 1, k)−N(n−1
2
, k
2
)

where N(n, k) is the Narayana number.

Proof: For odd k, the insertion of the
⌊
n
2

⌋
+1 vertex after shifting all the entries past⌊

n
2

⌋
by one gives a well-defined injection from RNCPE(n−1, k−1) into RNCPE(n−1, k).

But when k is even, there is no guarantee that any real block exists for a partition

from RNCPE(n−1, k). If a real block does exist, shifting all the entries past
⌊
n
2

⌋
by one

and then inserting a vertex
⌊
n
2

⌋
+ 1 into the unique real block that preserves the non-

crossing property will produce a unique element from RNCPE(n, k). When there is no

real block, this process doesn’t work. In this case the [even] blocks for the partition of n−1

are mirrored on top and bottom. It is easy to see that the number of such partitions

coincides with the number of non-crossing partitions of
⌊
n
2

⌋
with k

2
blocks. https:

//oeis.org/A001263 Figure 8.9 describes the excluded partitions in RNCPE(8, 4).
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Figure 8.9: The partitions that must be excluded from the map of RNCPE(8, 4) to
RNCPE(9, 4). The corresponding Narayana number is N(4, 2) = 6.

Once again we partition all the elements of RNCPE(n, k), this time into those that

have
⌊
n
2

⌋
+ 1 in a nontrivial block, or not.

Theorem 8.3.4. When n is even, |RNCPE(n)| = 2|RNCPE(n − 1)|. When n is odd,

|RNCPE(n)| = 2|RNCPE(n− 1)| − Cn−1
2
, where Ck is the kth Catalan number.

Proof: By Lemmas 8.3.2, when n−1 is odd, each reflection symmetric non-crossing

partition gives rise to two reflection symmetric non-crossing partitions of size n, one in

which a new central vertex is added in its own block, and one in which a new central

vertex connects to a real block. Since n− 1 is odd, there is always a real block or vertex.

Thus, we recover RNCPE(n) = 2RNCPE(n − 1) when n is even. We can attempt the

same in the case when n− 1 is even, however as noted in the proof of the Lemma 8.3.3,

there is not guarantee that any real block exists. In fact, when there are an even number

of blocks, the reflection symmetric non-crossing partition may simply be a non-crossing

partition on half as many, mirrored over the reflective axis. Thus, we exclude N(n−1
2
, k)

the Narayana number corresponding to the number of non-crossing partitions of size n−1
2

with k blocks for any valid choice of k. Thus we exclude

n−1
2∑

k=1

N

(
n− 1

2
, k

)
= Cn−1

2
.
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Proposition 8.3.5. The number of reflection symmetric non-crossing partitions of size

n with k blocks is

|RNCPE(n, k)| =
(⌊n−1

2

⌋⌊
k−1
2

⌋)(⌊n2⌋⌊
k
2

⌋)
Proof: The result can be deduced by the recurrences in Lemmas 8.3.2 and 8.3.3

and is consistent with https://oeis.org/A088855.

Remark 8.3.6. Using the recurrences, we can build a Pascal-like triangle where the kth

entry of the nth row is the number of Reflection Symmetric non-crossing Partitions of n

with k blocks.

1

1 1

1 1 1

1 2 2 1

1 2 4 2 1

1 3 6 6 3 1

1 3 9 9 9 3 1

1 4 12 18 18 12 4 1

1 4 16 24 36 24 16 4 1

The row sums of this triangle are central binomial coefficients, thus:

Corollary 8.3.7. The size of RNCPE is

|RNCPE(n)| =
(

n⌊
n
2

⌋).
Proof: We observe that

(
n⌊
n
2

⌋) satisfy the same recurrence and initial conditions

as |RNCPE(n)|.
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8.4 Intervals

This section outlines the structure of intervals within the posetRNCPE. As usual, the

symbols 0̂ and 1̂ will denote the discrete partition and the trivial partition, respectively,

which are the respective minimum and maximum partitions for both the lattices of non-

crossing partitions and symmetric non-crossing partitions. In addition we will continue

to use the abuse of notation by which we consider the vertex labeled (n+1)− i as simply

−i.

Remark 8.4.1. For a chain of reflection symmetric non-crossing partitions that con-

sists of only y-type covers in the language of Terminology 2, the structure as a poset

is very reminiscent of the original non-crossing partition lattice on about half as many

vertices. Since there is mirroring happening on either side of the real axis, these are

length 2 relations from the perspective of the non-crossing partition lattice. To describe

this phenomenon which is important in understanding the intervals in RNCPE, we use

the notation NCP (2)(m) to signify the copy of the non-crossing partition lattice that

appears in NCP (2m) with some ignored middle steps. To illustrate this, NCP (2)(3)

signifies the collection of non-crossing partitions (which are also reflection symmetric)

{0̂, π1,2, π1,3, π2,3, 1̂} inside NCP (6) like in Figure 8.10. It is like a stretched copy of

NCP (3) where each cover now is a length 2 chain within the non-crossing partition

lattice.

For any τ ∈ RNCPE(n), the intervals [0̂, τ ] are all straightforward to describe. It

has the structure of a product of RNCPEs and NCP (2)s as follows: if a block of τ , say

τi contains j and −j for some j, then that contributes a factor of RNCPE(|τi|). If not,

that block and its mirror contributes a factor of NCP (2)(|τi|).

In other words, we may partition the blocks of τ into two classes: real blocks denoted

ri (if they contain both ±j for all j ∈ ri which includes the case when (n + 1) − j = j
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Figure 8.10: The “stretched” copy of NCP (3) that sits inside NCP (6).

for n odd) and complex blocks ci ⊔ ci (that come in pairs of all positive and all negative

similar labels). So if π = {r1, . . . , rk, c1 . . . , cℓ, c1, . . . , cℓ} then

Proposition 8.4.2.

[0̂, π] =
k∏

j=1

RNCPE(|rj|)×
ℓ∏

i=1

NCP (2)(|ci|).

Proof: To establish the poset structure of real blocks, we recognize that in order to

retain reflection symmetry, the covers must be of the form described in 2 and thus they

contribute factors for the reflection symmetric poset of that size. For complex blocks,

any non-crossing cover would need to be mirrored on the paired complex block. In that

case, the covers we notice in the interval are two-fold covers from the point of view of

the non-crossing partition lattice. Thus, they are all y-type covers in the language of 2.

The result is a non-crossing partition lattice in which each cover is a height two cover.
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Thus, each contributes the NCP (2) of the proper size.

Example 8.4.3. For example, let

π = {{1,−1}, {2, 4}, {3}, {5,−5}, {6}, {−6}, {−4,−2}, {−3}}.

Via the proposition the interval [0̂, π] has the poset structure ofRNCPE(2)×RNCPE(2)×

NCP (2)(2), since there are two nontrivial real blocks both of size 2 and one pair of non-

trivial conjugate blocks of size 2.

Now we direct our attention to intervals of the form [π, 1̂].

Remark 8.4.4. Given a reflection symmetric non-crossing partition π, viewed as diagram

with labeled vertices on the unit circle, we may contract the partition along each block.

For example, if there is an edge between i and j then the contraction will contract along

that edge turning it into the point i/j. On a reflection symmetric non-crossing partition,

after carrying out all possible contractions, we obtain a cellular cactus diagram in which

some regions cross over the real axis (denoted real regions) and some do not cross the

real axis and have a mirrored partner (denoted complex region). This is illustrated for

an example in Figure 8.11. We can then determine the poset structure of [π, 1̂] to be the

product of the admissible non-crossing posets in each region: for a real region Ri which

looks like a circle with marked points bisected by the real axis, to retain the reflection

symmetry we obtain a factor of RNCPV (|Ri|) where |Ri| denotes the number of vertices

on the circular region Ri. Notice the poset structure is that of the vertex reflection

symmetric non-crossing partitions RNCPV . That is because contracting a real block

puts an identified vertex on the real axis, which happens in RNCPV for any n but not

in RNCPE(n) when n is even. By Proposition 8.2.1, RNCPV is the correct catch-all

whenever at least one real block exists.
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Figure 8.11: The symmetric non-crossing partition π along with the cellular cactus
diagram obtained by contracting blocks.

For complex regions, we need only pay attention to the ones above the axis (since

they are mirrored) and we may move along a chain to 1̂ via any non-crossing partition in

it so long as it is mirrored to its conjugate pair. Thus we obtain a factor of NCP (2)(|Ci|)

following the same size convention as in the real regions.

Thus, if after carrying out the described contractions we obtain a cactus with real

regions R1, . . . , Rk and (upper) complex regions C1, . . . , Cℓ, then

Proposition 8.4.5.

[π, 1̂] =
k∏

j=1

RNCPV (|Rj|)×
ℓ∏

i=1

NCP (2)(|Ci|),

or if π has no real blocks (which means it has one real region following contractions),

[π, 1̂] = RNCPE(|R1|)×
ℓ∏

i=1

NCP (2)(|Ci|)

Example 8.4.6. Returning to the example

π = {1,−1}, {2, 4}, {3}, {5,−5}, {6}, {−6}, {−4,−2}, {−3},
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which is illustrate in Figure 8.11, the interval [π, 1̂] has the poset structure ofRNCPV (3)×

RNCPV (4)×NCP (2)(2). The subpartition of {6}, {−6} and {5,−5} contracts to the real

region with vertices 6,−6 and 5/− 5 which gives the factor of RNCPV (3), the collection

{−5, 5}, {2, 4}, {1,−1}, {−4,−2} contract to the real region with vertices 1/ − 1, 5/ −

5, 2/4,−4/− 2 give the RNCPV (4), and the {3} with {2, 4} gives a complex region with

vertices 3 and 2/4 contributing the NCP (2), which is elongated to height 2 to capture

the reflective symmetry on the blocks with {−3} and {−4,−2}.

8.5 Maximal Chains

This section involves polynomials used for maximal chain enumeration, for which

a neat closed form remains an open problem. In this section we establish an iterative

process that can be used to generate a multivariable polynomial that encodes the number

of maximal chains of any possible length.

Within the polynomial, any monomial in the variables x, y records as its leading term

the number of maximal chains that involve that combination of covering relations.

Definition 8.5.1. Let p□n (x, y) be the polynomial described above for edge reflection

symmetry, and p⋄n(x, y) be the same for the vertex style.

For example, we can generate the polynomial for RNCPE(4) by inspection of Figure

8.6, to produce

p□4 (x, y) = 2x3 + yx,

which says that there are two maximal chains that involve three x-type covers and one

maximal chain that involves a y-type cover and an x-type cover. Evaluating at x = y = 1

gives the total number of maximal chains, 3 in this case.

Remark 8.5.2. Outside of the question about the number of chains, the make up of
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the chains is an interesting question. As in, how many covers in the chain are actually

two-fold covers from the perspective of the ambient non-crossing partition lattice? Many

of the maximal chains in the reflection symmetric poset are maximal chains in the non-

crossing partition lattice, in particular the ones that only consist of x-type covers in

the language of Terminology 2. The maximal chains that involve y-type covers are

not themselves maximal chains in the non-crossing partition lattice. When we are not

interested in discerning anything except the total length of the chain in the reflection

symmetric poset, we will use a one variable variant polynomial in the variable z.

Our goal is to build up these polynomials iteratively, by collecting a database of

the known polynomials for low values of n to use in producing the next polynomial.

The key is Proposition 8.4.5, which highlights the structure of the intervals [π, 1̂] as the

product of lower order reflection symmetric posets and a “stretched” version of the non-

crossing partition lattice. By investigating the intervals above the atoms of the poset,

the factors are all made up of pieces previously produced from the database, and we

use that information to guide us in constructing the next polynomial. When we want

to form chains from products of posets, the covers in the resultant chains can be any

possible interweaving of the covers in each factor chain. To respect that feature we use

the notation p⊠ q to be the following operation on p =
∑

pi and q =
∑

qj (where pi and

qj are the monomials that make up p and q respectively):

p⊠ q :=
∑
i,j

(
deg(pi) + deg(qj)

deg(pi)

)
piqj

where deg(pi) and deg(qj) are the multi-degrees of pi and qj as monomials.

Example 8.5.3. To see the process of building these polynomials in action for a more

complicated example, we can work out what happens for n = 6 in the Edge Type: we
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have three x-type minimal covers for the discrete partition going to the atoms π1, π2, π3,

respectively, and three y-type going from discrete to atoms π1,2, π1,3, and π2,3. Thus,

p□6 = x(p□5 ) + x(p□3 ⊠ p⋄3) + x(p⋄5) + y(p□4 ) + y(p□2 ⊠Np
(2)
2 ) + y(p□4 ),

where p□2 = x, Np
(2)
2 = y, p□3 = p⋄3 = x2, p□4 = p⋄4 = 2x3 + yx, p□5 = p⋄5 = 2x2y + 5x4.

The interweaving required for p□3 ⊠p⋄3 gives
(
4
2

)
x4 and p□2 ⊠Np

(2)
2 =

(
2
1

)
xy. Thus the final

polynomial

p□6 = x(2x2y + 5x4) + x(6x4) + x(2x2y + 5x4) + y(2x3 + yx) + y(2xy) + y(2x3 + yx)

= x3y + x3y + 5x5 + 6x5 + x3y + x3y + 5x5 + 2x3y + xy2 + 2xy2 + 2x3y + xy2

= 16x5 + 8x3y + 4xy2.

In this two-variable version we can read off quite clearly how those chains behave with

respect to the ambient non-crossing partition lattice. And, if we set all the variables to

be equal we get a breakdown in terms of length of the maximal chain. In this example,

16z5 + 8z4 + 4z3

tells us that of the 28 total maximal chains, there are sixteen chains of length 5, eight of

length 4 and four of length 3.

Lemma 8.5.4. The polynomials p□n = p⋄n for all n.

Proof: This was observable in Example 8.5.3, and is true as a general phenomenon

by the duality between RNCPE and RNCPV outlined in 8.2.1. Indeed, the dual of a

maximal chain is again a maximal chain. And, as noted in Remark 8.2.2, the same covers

arise in the dual chain.
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Remark 8.5.5. With Lemma 8.5.4 in mind, we drop the qualifier for which type of re-

flection symmetry (edge reflective or vertex reflective) and simply use pn(x, y) or pn(z) to

be the polynomial, in two or one variables, respectively, for maximal chain enumeration.

Thus, we obtain:

Theorem 8.5.6.

pn =
∑

odd k<n

x (pn−k ⊠ pk) +

⌊n
2 ⌋−1∑
k=1

(⌊n
2

⌋
− k
)
y
(
Np

(2)
k ⊠ pn−2k

)

with Np
(2)
n = nn−2yn−1.

Proof: Here is a general algorithm to produce pn for Edge Type, which we apply

to the 2-variable version (the 1-variable version is recoverable from the 2-variable one):

Note that in Edge Type, for any n there are
⌊
n
2

⌋
many vertices above the real axis.

Thus, at the first level, there
⌊
n
2

⌋
x-type covers, which we index using the odd numbers

less than n. The

(⌊
n
2

⌋
2

)
y-type covers are grouped according to the size of the “stretched”

non-crossing partition lattice factor that shows up and the complementary reflection

symmetric piece, which depends on the size of the gap between i and j in the atom πi,j.

For example, above π2,6 which has a gap of 4, there is a NCP (2)(4) factor in the interval

[π2,6, 1̂]. From there, the validity of this formula for Edge Type and vertex reflection

symmetry is a result of Remark 8.2.3 along with Proposition 8.4.5 and Lemma 8.5.4.

Remark 8.5.7. Through this recursive definition, we can use computational tools to

easily compute these polynomials and the evaluation at x = y = z = 1 to learn the num-

ber of maximal chains with remarkable efficiency advantages over direct chain counting

algorithms for posets. Code to generate these polynomials is provided in the Appendix.

Table 8.1 lists the relevant two variable polynomials for pn and Np
(2)
n which can be used
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in Theorem 8.5.6. In Table 8.2 we list the corresponding one variable versions and the

maximal chain counts for those values of n, which is the evaluation pn(1).

n pn(x, y) Np
(2)
n

2 x y

3 x2 3y2

4 2x3 + xy 16y3

5 5x4 + 2x2y 125y4

6 16x5 + 8x3y + 4xy2 1296y5

7 61x6 + 32x4y + 11x2y2 16807y6

8 272x7 + 152x5y + 62x3y2 + 27xy3 262144y7

9 1385x8 + 802x6y + 323x4y2 + 94x2y3 4782969y8

10 7936x9 + 4736x7y + 1952x5y2 + 676x3y3 + 256xy4 100000000y9

11 50521x10 + 30832x8y + 12706x6y2 + 4288x4y3 + 1077x2y4 2357947691y10

Table 8.1: A table of iteratively computed polynomials for maximal chains.

Corollary 8.5.8. The posets RNCPE and RNCPV are not graded. I.e. their maximal

chains are not of consistent length.

Proof: Some maximal chains in RNCPE consist only of x-type covers, which means

they are also maximal chains in the ambient non-crossing partition lattice and so they
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n pn(z)
pn(1) =

#max chains

2 z 1

3 z2 1

4 2z3 + z2 3

5 5z4 + 2z3 7

6 16z5 + 8z4 + 4z3 28

7 61z6 + 32z5 + 11z4 104

8 272z7 + 152z6 + 62z5 + 27z4 513

9 1385z8 + 802z7 + 323z6 + 94z5 2604

10 7936z9 + 4736z8 + 1952z7 + 676z6 + 256z5 15556

11 50521z10 + 30832z9 + 12706z8 + 4288z7 + 1077z6 99424

12 353792z11 + 219904z10 + 90752z9 + 31104z8 + 9382z7 + 3125z6 708059

Table 8.2: The one-variable polynomials and the number of maximal chains for given n.

are length n− 1. Since the monomials in Theorem 8.5.6 include those of degree less than

n−1, not all maximal chains have the same length. This, of course, was clear from earlier

observations as well.

8.6 Moebius Function

An interesting invariant of posets is the Moebius function, and for the non-crossing

partition lattice, it is well known to be signed Catalan numbers [5].

The following lemmas are used to compute the Moebius function of RNCPE(n). Both

can be found with proof in [1].

Lemma 8.6.1 (Hall). For a finite lattice P , if the unique maximal element 1̂ is not the

join of the atoms of P or if the unique minimal element 0̂ is not the meet of the coatoms
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of P , then µP = 0.

The next Lemma requires the following definition.

Definition 8.6.2. For a poset (P,≤), a map J : P → P is called a closure operator if

• x ≤ J(x)

• If x ≤ y, then J(x) ≤ J(y)

• J2(x) = J(x).

The image of this map J(P ) := {J(x) | x ∈ P} is called the quotient of P by J .

Lemma 8.6.3 (Rota). Let P be a locally finite poset and J a closure operator on P with

quotient Q. Then, for all x, y ∈ P,

∑
z∈P ;J(z)=J(y)

µP (x, z) =


µQ(J(x), J(y)) if x = J(x)

0 if x < J(x)

Now we come to the main theorem of this subsection. It was originally conceived in

an unpublished manuscript of Montenegro. For posterity, we provide a proof inspired by

his original argument.

Theorem 8.6.4. The Moebius function for RNCPE(n) is (−1)
n
2Cn

2
−1 when n is even

and 0 when n is odd.

Proof: If n is odd we observe that the atoms A of RNCPE(n) satisfy
∨
A < 1̂ since

it has two blocks. Thus by Lemma 8.6.1, we have µ(RNCPE(n)) = 0 when n is odd.

When n is even we define the following closure operation J :

0̂ 7→ 0̂
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π 7→ π ∨ π1

so that the quotient via this closure is Q = {x ∈ RNCPE(n) | x∨π1 = x}. Observe that

π1 is the only atomic element in the quotient lattice and 1̂ ∈ Q. Thus, via Lemma 8.6.1,

µQ = 0 because π1 ̸= 1̂.

Now consider the reflection symmetric non-crossing partition π1,n
2 where the only two

blocks are [1, n
2
] and its conjugate pair. Clearly, π1,n

2 ∨ π1 = 1̂ ∨ π1 = 1̂, but if π is any

other reflection symmetric non-crossing partition, π ∨ π1 ̸= 1̂. Indeed for such a π, the

subpartition on [1, n
2
] contains at least 2 blocks and the same is true for its join with π1.

Thus by Lemma 8.6.3 we have

0 = µQ =
∑

J(y)=1̂

µRNCPE(n)(0̂, y) = µRNCPE(n)(0̂, π
′) + µRNCPE(n)(0̂, 1̂).

From the above we recover that µRNCPE(n) = −µRNCPE(n)(0̂, π
1,n

2 ). Finally we observe

using Proposition 8.4.2 that the interval [0̂, π1,n
2 ] is isomorphic as a poset to NCP (n

2
), so

from [5] we see µRNCPE(n)(0̂, π
1,n

2 ) = (−1)
n
2
−1Cn

2
−1 and thus

µRNCPE(n) = (−1)
n
2Cn

2
−1

as desired.

8.7 Reflection Symmetric non-crossing Matchings

The goal of this section is provide a direct proof that the set of reflection symmetric

non-crossing partitions of size n is equinumerous with the number of Type B non-crossing

partitions. In other words, the goal is establish a bijection between these two combina-

torial objects. In [8], the authors noted the surprising connection between reflection
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symmetric non-crossing partitions and non-crossing partitions symmetric with respect

to the π radian rotation (called Type B non-crossing partitions), that they are equinu-

merous. Though the result matches with Corollary 8.3.7 (proven based on enumerative

techniques), their methods follow the map introduced in Simion and Ullman based on

the Kreweras complement and pass through lattice paths in [26]. It was again noted by

Ding in [9] in a parity-dependent way. Here we introduce a different proof that defines a

direct bijection between non-crossing partitions fixed by rotation and reflection by utiliz-

ing non-crossing perfect matchings. There are two advantages to this approach: firstly,

it provides a proof of the result which is independent of parity that doesn’t obfuscate

the relationship between the two objects, and secondly, the framing of reflection symme-

try with non-crossing perfect matchings is integral for identifying basketballs which are

important for Chapter 9.

Definition 8.7.1. A non-crossing perfect matching is a non-crossing partition of [2n] in

which every block has size 2.

Remark 8.7.2. A non-crossing matching is reflection symmetric precisely when the

associated non-crossing partitions it induces are reflection symmetric. It is helpful to use

the labelling convention of Remark 8.1.2 to recover those partitions, however reflection

symmetry is quite apparent on diagrammatic realizations of the matching since it is itself

a reflection symmetric non-crossing partition on 2n with all blocks of size 2 (of Edge Type

using the label convention of Remark 8.1.2).

Similarly, a Type B non-crossing matching on 2n is a Type B non-crossing partition

with blocks of size 2 which is equivalent to saying that it induces Type B non-crossing

partitions on n via the same set of conventions as above.

See Figure 8.13 for an example of each.
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Figure 8.12: A non-crossing matching on 2n = 12 and its image under the map S12,18.

Definition 8.7.3. For a given n and even numbers 0 ≤ i, j < 4n− 1 let

Si,j : NCM(2n) → NCM(2n)

be defined as follows: Orient the non-crossing perfect matching according to the labelling

convention from Remark 8.1.2, so that it is a matching on the odd powers of the 4nth

roots of unity. For the odd powers of the 4nth root between i and j (where we allow

cycling back around in case i > j), augment the matching according to these rules:

• if two odd powers are matched inside [i, j] switch that pairing to be the opposite

pairing inside [i, j].

• if a node is matched with another outside of [i, j], remove that matching and re-

match with the unique node that retains the non-crossing property.

Remark 8.7.4. The map Si,j is an involution for any choice of even numbers 0 ≤ i, j <

4n− 1, i.e. S2
i,j(τ) = τ for any τ ∈ NCM(2n). In Figure 8.12 we see a visualization for

the map S12,18 on NCM(12).
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Figure 8.13: A reflection symmetric non-crossing matching and its image under S12,0,
a Type B non-crossing matching. This map establishes the bijection between reflection
symmetric non-crossing matchings and Type B non-crossing matchings for 2n = 12.

Theorem 8.7.5. The set of reflection symmetric non-crossing matchings are in bijection

with Type B non-crossing matchings for any given 2n.

Proof: For a given n, the map S2n,0 restricts to a map from reflection symmetric

non-crossing matchings to Type B non-crossing matchings and is easily checked to be a

bijection, where the same map acts as the inverse.

Remark 8.7.6. The map S2n,0, visualized in Figure 8.13 is similar to the one discussed

in [9] Theorem 2.1.5. But, from the point of view of non-crossing matchings, there are no

special cases to verify. This defines, without obstruction, a map that is bijective between

reflection symmetric non-crossing matchings and rotation symmetric non-crossing match-

ings. The underlying non-crossing partitions are also reflection symmetric and rotation

symmetric, respectively, and so the bijection carries through.

8.8 Palindromic Non-Crossing Partition Chains

This section is devoted to describing a special collection of chains in the non-crossing

partition lattice using three different but related points of view. There is the viewpoint
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of non-crossing partitions, non-crossing matchings, and properly labeled hypertrees. The

special collection we are interested in corresponds to the following situation.

Recall, for every non-crossing partition, the Kreweras complement maps a non-

crossing partition of n with k parts into a non-crossing partition of n with n − k parts.

For a chain of non-crossing partitions, the Kreweras complement maps a chain to a chain.

However, these chains are usually different, though they might be equivalent under some

involution.

For clarity purposes, we will be using a particular Kreweras map, which we call the

flip Kreweras complement, which we define as follows.

Definition 8.8.1. Arrange 2n nodes on the vertices of a regular 2n-gon so that the 2n-gon

has antipodal edges bisected by the horizontal axis. Then alternate colors on the nodes

to bicolor them. Starting above the horizontal axis in the first quadrant, consecutively

label every other node (colored blue) with the labels 1 through n counterclockwise. Below

the horizontal axis in the 4th quadrant, label every other node (colored green) with 1′

to n′ clockwise. A non-crossing partition on {1, . . . , n} induces a non-crossing partition

on {1′, . . . , n′} in the obvious way: form the convex hulls of nodes so long as that convex

hull does not cross that for the original non-crossing partition’s blocks. This particular

version of the Kreweras complement will be called the flip Kreweras complement.

A nice aspect of this version of the Kreweras complement is that it is an involution,

i.e. (πc)c = π.

Definition 8.8.2. If a given chain of non-crossing partitions is flip Kreweras comple-

mentary to the same partition chain but with ‘prime’ labels (for example if {1, 5} is the

first nontrivial block in one then {1′, 5′} is the first nontrivial block in the under the flip

Kreweras map, and so on) these chains are the called palindromic.

We can set up the same idea from the perspective of non-crossing matchings as well.
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Figure 8.14: A visualization of the flip Kreweras complement taking the partition
π = {{1, 2}, {3, 4, 5}, {6, 8}, {7}} to πc = {{1, 4, 7}, {2, 3}, {5}, {6}, {8}}.

Figure 8.15: An example of a palindromic chain in the non-crossing partition lattice
on n = 7, superimposed with its flip Kreweras complement in each diagram.
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Figure 8.16: The induced non-crossing matching for the non-crossing partition (and
its complement) from Figure 8.14.

Color the even powers of the 4nth roots of unity red. For the odd powers, color them

as blue if the power is ∼= 1 mod 4 and green if the power is ∼= 3 mod 4. Under this

construction, the blue and green colors match exactly with the same colored nodes in

the non-crossing partition point of view from above. From a non-crossing partition on

the blue, we get an induced non-crossing matching on the red by thinking of those arcs

as the boundary of the thickened convex hull of the nodes within each block. Similarly,

a non-crossing partition on the green nodes induces a non-crossing matching on the red.

If the induced non-crossing matching is the same for a blue non-crossing matching and a

green one, then it is clear to see that these are flip Kreweras complementary non-crossing

partitions. In particular we have the following lemma:

Lemma 8.8.3. The effect of flipping this particular matching is that the pair of non-

crossing partitions induced:

(π, πc) 7→ (πc, π)
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Figure 8.17: The same palindromic chain from Figure 8.15 from the point of view of
non-crossing matchings.

And with this in mind, we can again define our palindromic condition:

Definition 8.8.4. A chain in the non-crossing matchings lattice on the 2n even powers

of the 4nth roots of unity in called palindromic if the π rotation of the chain is the same

chain. Said another way, the flip over the real axis results in the same chain when read

in the opposite order.

We can also view this condition through the lens of properly labeled non-crossing

trees, using the language and conventions of [22].

Definition 8.8.5. A non-crossing (or planar) tree on the vertices of a regular n-gon is

called properly labeled if for every vertex, the labels on the edge set that see that vertex

are ordered so that they are strictly increasing in the clockwise sweep on the interior of

the n-gon.

Remark 8.8.6. We can broaden this definition to include hypertrees, where instead of

edges, we may also have labeled blocks of any size, and the same order convention still

applies for the proper labelling.

In order to invoke similar symmetries to what we have been working with before, we

will consider a particular embedding of the n-gon for this definition: position the regular

n-gon in the complex plane so that the line re(z) = 1 is a defining hyperplane for the

n-gon which lives in the halfspace re(z) ≤ 1 scaled so that there are vertices at 1+ i and
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Figure 8.18: Several examples of properly labeled non-crossing hypertrees on the
vertices of a regular 5-gon.

Figure 8.19: The chain in the non-crossing partition lattice for n = 5 corresponding
to the 1st hypertree in Figure 8.18.

1− i. The effect of this embedding is that the resulting n-gon is symmetric with respect

to the flip over the real axis. Label the vertex at 1+ i by 1 and continue counterclockwise

to the label n for the vertex at 1− i.

These properly labeled trees correspond to chains in the non-crossing partition lattice.

Lemma 8.8.7. A chain in the non-crossing partition lattice can be represented by a

properly labeled hypertree on the vertices of a regular n-gon. In particular, a properly

labeled tree on these vertices without repeated labels corresponds to a maximal chain.

Proof: Here is how we would obtain the corresponding chain from a properly labeled

hypertree:

At step i, two or more blocks will be joining, the joining blocks are the ones connected

by the hyperedge labeled i.

Since the hypertree was planar/non-crossing, the partition obtained at any step i is

non-crossing.

Conversely, given a chain of non-crossing partitions, the properly labeled tree can be

obtained iteratively first connecting via a hyperedge or block the first set up elements
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of the n-gon corresponding to the partition, and so on. While there might be ambiguity

when choosing how to connect blocks with a hyperedge, it is self-rectified in that only

one choice would result in proper labeling.

This can be readily checked to be a bijection.

Another point of view passes through the factorization of an n-cycle with transposi-

tions and its bijection with these chains. The element in each transposition (or cycle for

hypertrees) identifies the vertices connected by edges or blocks.

With the recognition that these properly labeled trees correspond to non-crossing

partition chains, we can observe how certain manipulations of the tree affect the corre-

sponding chain.

Of particular interest for our purposes, we want to highlight the effect of flipping the

trees edge/block set vertically and inverting the label set. Both of these actions on their

own change the orientation of the labeling from say, clockwise, to counterclockwise. The

result of which results in a factorization of the inverse of the original n-cycle. From the

point of view of the chain, doing both of these actions recovers a new properly labeled

tree, however the chain that is recovered is a flip Kreweras complementary chain.

Lemma 8.8.8. Under the bijection from properly labeled hypertrees to chains in the

non-crossing partition lattice, the flip/invert labels action on the trees has the effect of

producing the flip Kreweras complementary chain.

Proof: The helpful viewpoint to understand how this works comes from viewing

non-crossing perfect matching as coming from Morse theory on a branched rectangle map,

which appeared in Chapter 7. In Figure 8.20 we can see that the flip complementary

chain on the level of non-crossing matchings comes from reversing direction by which we

analyze, from top to bottom or bottom to top of the associated rectangle. That direction

change flips the order of the matchings that appear (signified by inverting the labels on
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Figure 8.20: Visualizing flip complementary chains from different points of view.
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the associated hypertree) for the chain that arises on the inverted set of vertices (signified

by the flip of the hypertree vertically). It is clear that the correspondence carries past

the specific example in the figure.

This result offers justification for a third definition of the palindrome condition.

Definition 8.8.9. A properly labeled non-crossing hypertree is called palindromic if it

is symmetric with respect to flipping vertically and inverting the labels.

Figure 8.21: All of the palindromic properly labeled hypertrees on 5 vertices, stratified
by length of the corresponding chain.

The main result in this section is that the three palindromic conditions correspond

to the same general situation through bijective correspondences.

Proposition 8.8.10. The following three sets are in bijective correspondence:
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1. The set of palindromic chains in the non-crossing partition lattice of size n.

2. The set of palindromic chains in the non-crossing matching lattice of size 2n.

3. The set of palindromic properly labeled hypertrees on the vertices of a regular n-gon.

Proof: By Lemma 8.8.7, we know that the palindromic properly labeled hypertrees

are associated bijectively with certain chains in the non-crossing partition lattice and by

Lemma 8.8.8, we know that if the hypertree is invariant under the flip/invert labels, then

the chain is flip complementary to itself. This establishes (1) ⇐⇒ (3). By Lemma 8.8.3

we see that the effect of flipping a chain of non-crossing matchings is that we obtain the

flip complementary induced pairs of partitions in opposite order, due to the fact that the

Kreweras complement is an anti-isomorphism. Thus, if the the chain recovers the same

set of matchings in reverse order after the flip, then πi = πc
n−i for all i, which establishes

(1) ⇐⇒ (2).

Remark 8.8.11. With reflection symmetric non-crossing partitions, we had two differ-

ent duality conditions based on parity: For odd n, the poset was self dual since the

two different styles of reflection symmetry were isomorphic. For even n, one reflection

symmetry was dual to the other, due to the Kreweras map slightly changing the axis of

symmetry.

One way around switching between these two different type of reflection symmetry

was to pass to non-crossing matchings instead of partitions. Everything is perfectly

translatable going to these matchings: reflection symmetric non-crossing partitions in-

duce reflection symmetric non-crossing matchings but this version works slightly better

under dualizing (which in the case of matchings is simply swapping the binary choice

of side to distinguish the induced non-crossing partition. The reason this works is that,

now, the non-crossing matching has no nodes on the reflective axis.
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For palindromic chains, we again can pass to non-crossing matchings to clarify the

palindrome condition as state above. However, the matching that perfectly captures this

situation does have two antipodal nodes on the reflective axis, so it is a non-crossing

matching for a slightly different embedding of 2n vertices along the unit circle in C.

The advantage then to the non-crossing matching point of view is that it unifies

with our vision of reflection symmetry and lend itself well towards the uses of these

combinatorial objects in Chapter 9 when we superimpose matchings of both styles to

create combinatorial basketballs. The major advantage of the properly labeled hypertree

point of view, is that we can study these chains more directly and produce examples easily.

In addition, we may apply enumerative techniques to the hypertrees, which are easier to

study directly, though more detailed analysis is reserved for a future investigation.

Some preliminary numerical results are collected in Table 8.3.
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n palindromic maximal chains palindromic chains

2 1 1

3 1 2

4 2 3

5 5 12

6 12 21

7 49 132

8 128

Table 8.3: A table of enumerations for palindromic chains.
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Figure 8.22: All of the palindromic properly labeled hypertrees on 6 vertices, stratified
by the length of the corresponding chain.
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Chapter 9

Real Polynomials from Metric

Basketballs

9.1 Introduction

As discussed in Chapter 7, there is a connected cellular complex that represents the

space of monic and centered complex polynomials. This metric object is the result of

pulling back the metric on the rectangle of critical values. In our discussion on the combi-

natorics of complex polynomials we noted that its geometry was governed by the metric

basketball complex, also called the Branched Rectangle Complex, BrRect, which is a

subcomplex of the metric direct product of the order complex of the non-crossing partition

lattice with itself, subject to the constraint that the product in each cell forms a metric

basketball (a property that was especially evident from the perspective of non-crossing

matchings). In this chapter, we apply these results for the subset of real polynomials

in complex polynomial space. In particular, a portion of the metric basketball complex

illuminates the geometry of real polynomials once we understand the specific metric bas-

ketballs that we may obtain from real polynomials. The main theorem in this chapter
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outlines the method to construct the real metric basketball complex as a subcomplex of

the basketball complex for complex polynomials. We also show how to concretely build

it for degree 3.

9.2 Real Metric Basketball Complex

Any monic, centered polynomial with real coefficients behaves nicely with respect to

complex conjugation. Its roots, critical points, and its critical values all are either real

or come in conjugate pairs.

Proposition 9.2.1. For any p ∈ R-Polymc(C), we have

rts(p) = rts(p) cpt(p) = cpt(p) cvl(p) = cvl(p)

where A is the set of complex conjugates of A ∈ Multk(C).

Proof: This is evident from the basic facts a + b = a+ b and an = (a)n for any

a, b ∈ C and n ∈ Z.

Thus, we may always choose a rectangle to bound the critical values for a real poly-

nomials that is bisected by the real axis that would exhibit symmetry. And, it is imme-

diately clear that the complex conjugate horizontal lines in the image, regular or not,

will pull back as complex conjugate lines (or branched lines). In particular, this makes

clear two general features about the combinatorics of non-crossing matchings that appear

for real polynomials. As we are able to observe in Figure 8.1, the branched rectangle is

symmetric with respect to flipping over the real axis. The output side (the rectangle)

is also symmetric with respect to that flip, by virtue of being a real polynomial. This

tells us two things: The pullback of a regular line vertical line is a reflection symmetric

non-crossing matching on the preimages of top and bottom sides, and the pullback of
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Figure 9.1: The stylized basketball ‘court’ from Figure 8.1 which is the preimage of
the regular lines of the rectangle around its critical values.

horizontal regular lines determine a palindromic chain of non-crossing matchings on the

preimages of left-right sides in the 4d-gon.

Remark 9.2.2. A stylized version of the example illustrated in Figure 8.1 is in Figure

9.1, where we ignore the metric information and just consider the matching information

we get by pulling back regular lines. The red lines pull back to a top-bottom matching

that is reflection symmetric, and the blue lines pull back to left-right matchings that

altogether form a palindromic chain. Each red matching forms a basketball with every

blue matching. We refer to diagrams with all these matchings superimposed as a basket-

ball court and it corresponds to a cell in the basketball complex that is obtained as the

product of chains of the top-bottom matchings with the left-right matchings.

To highlight these features more clearly, we can clean the figure up by just considering

the pullback of the vertical, red lines as in Figure 9.2. There we can see that all the

matchings are symmetric with respect to flipping across the real axis.

We can also highlight the palindromic features by focusing on the pullback of one of

the blue lines and its reflected pair. That is the content of Figure 9.4. It is clear that the
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Figure 9.2: The pullback of just the vertical red lines of Figure 9.1. Each top-bottom
matching (5 in total) is a reflection symmetric non-crossing matching.

condition of Definition 8.8.4 is satisfied by the pair of matchings. Also by superimposing

all the matchings by taking the preimage of all the horizontal blue lines, as in Figure

9.3, we see that since the diagram is symmetric with respect to the real axis flip, we are

obtaining a palindromic chain.

Clear immediately from examples like in Figure 9.1 are the features for the combina-

torics discussed in Chapter 8. The rectangle diagram is reflection symmetric with respect

to the flip across the real axis, and performing top-to-bottom Morse theory is mirrored in

the bottom-to-top Morse theory on the preimage. The first observation recovers a reflec-

tion symmetric non-crossing matching as the pullback of any regular vertical line in the

rectangle, and the second observation precisely translates to the palindromic condition

for chains of non-crossing matchings that come from pulling back the regular horizontal

lines of the rectangle.

Thus in this portion of the full (Metric) Basketball Complex, instead of simply looking

at a chain times a chain in the product of two copies of the geometric realization of the

non-crossing partition lattices (subject to the basketball condition), we are considering
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Figure 9.3: The pullback of all the horizontal blue lines at once. Since the diagram is
reflection symmetric, this is a palindromic chain of left-right non-crossing matchings.

a chain in the reflection symmetric non-crossing partition lattice times a palindromic

chain (still subject to the basketball constraint). We summarize this observation in the

Theorem below, which is self-evident from the diagrams that arise for real polynomials

and our discussion.

Theorem 9.2.3. The portion of the (metric) basketball complex that comes from monic

real polynomials consists of products that form metric basketballs of the form

R×K

where R is a chain of reflection symmetric non-crossing partitions and K is a palindromic

chain.

With this in mind, we can describe the general features for this portion of the Metric

Basketball Complex, which we refer to as the real metric basketball complex.

Remark 9.2.4 (Palindromic Barycentric Coordinates). Geometrically realizing a palin-

dromic chain results in a simplex as with any other chain. But generally, each subchain
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Figure 9.4: Pulling back the horizontal blue lines as pairs with its reflected copy
recovers palindromicity.

116



Real Polynomials from Metric Basketballs Chapter 9

would define a face of that simplex, whereas for palindromic chains not every subchain

is a palindromic chain. To produce a subchain that is still palindromic, we need to con-

sider the fix set of this simplex under the flip Kreweras map. Concretely, we have an

orthoscheme defined on barycentric coordinates and there is a natural map that sends

those barycentric coordinates to themselves, i.e for barycentric coordinates, t0, t1, . . . , tn−1

satisfying
∑

ti = 1 with all ti ≥ 0, we are interested in the fixed set under the map that

sends ti 7→ tn−1−i, which in particular is the intersection of the halfspaces defined by

ti = tn−1−i. For clarity we consider this example, say we have barycentric coordinates

defining the simplex in Figure 9.5:

Figure 9.5: A 3-dimensional simplex with the highlight intersection corresponding to
palindromic vertices.

So that the portion of this simplex that we really are interested in is simply the

segment that is the convex hull of 1
2
0 0 1

2
and 0 1

2
1
2
0. Generally, for an n-dimensional

simplex, the palindromic barycentric coordinates form a
⌊
n
2

⌋
-simplex.

117



Real Polynomials from Metric Basketballs Chapter 9

Said another way, every palindromic chain corresponds to an orthoscheme, but rather

than associating it to the full orthoscheme, wherein, some points don’t exhibit palin-

dromicity, we associate it to the barycenter. Palindromic subchains again would be

barycenters of faces in that orthoscheme and moving around within the convex hull of

these points retains the palindromicity throughout. So the palindromic chain gives a

simplex of palindromic points of roughly half dimension. We summarize this remark in

the Proposition 9.2.5

Proposition 9.2.5. In the orthoscheme realization of a palindromic chain of length n,

the portion in the real basketball complex is the convex hull of the palindromic barycentric

points which is
⌊
n
2

⌋
-simplex.

Remark 9.2.6. For the Reflection symmetric points, these match with every point in

orthoschemes that are realizations of Reflection Symmetric Chains. So, the order com-

plex of the Reflection Symmetric non-crossing Partition Lattice is entirely made up of

admissible points.

Example 9.2.7. We can construct the real basketball complex concretely for degree 3

polynomials. There is a single palindromic tree on the vertices of the regular triangle,

the geometric realization of the associated chain is itself a triangle, but the palindromic

points are simply a segment with two palindromic vertices by Proposition 9.2.5. For the

reflection symmetric non-crossing poset, again there is a single maximal chain, whose

realization is again a triangle, but all these points and vertices are admissible. So, before

passing through to the basketball criterion, we have the product of a segment with a

triangle to form a triangular prism. Of the six vertices on this triangular prism, one

vertex does not pass the basketball criterion, as we can check manually in Figure 9.6.
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Figure 9.6: The superimposed non-crossing matchings for a reflection symmetric and
palindromic chain that do not form a basketball.

So in particular, the full triangular prism is not the basketball complex we want. In-

stead we obtain the portion of that triangular prism highlighted in Figure 9.7. Metrically,

this complex is a triangle times a point, glued to a product of two segments. I.e. it is a

triangle glued to a square. This geometry comes from looking at the pairs of chains that

do form basketballs, which for degree 3 are given in Figure 9.8. In the basketball on the

left of the figure, the reflection symmetric chain is length 2, and as such is geometrically

realized as a right triangle. The palindromic chain for that basketball is the trivial chain

of length 1. Its geometric realization may be a segment, but the palindromic point is just

the barycenter of the segment. That pair recovers the triangle times a point shaded in

green in Figure 9.7. The right hand basketball in Figure 9.8 consists of the trivial chain in

the reflection symmetric poset, which is a full segment, and a palindromic chain of length

2, which geometrically is the 1-simplex determined by the palindromic barycentric points
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by Proposition 9.2.5. The two segments together form as their product the square shaded

in blue in Figure 9.7. They are glued along another basketball (not pictured) which is

the product of the trivial chain with itself producing an segment for the symmetric part

and a point for the palindromic part, so an edge in total. As a look ahead, this matches

the right hand portion for the distinct root case covered in Chapter 10 in Figure 10.6.

Figure 9.7: The portion of the triangular prism that forms the basketball complex for
degree 3.

Figure 9.8: Two basketballs corresponding to top dimensional cells in the basketball
complex for degree 3.

Remark 9.2.8. In the complex polynomials case, side identifications of the metric bas-

ketball complex produced the complex for monic centered polynomials with distinct roots
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via the induced homotopy on polynomials coming from deforming a rectangle into an an-

nulus, where the gluing described in [12] happened along the negative real axis. In the

real polynomial case, since we are considering just the fixed set of the complex by the

action of complex conjugation, the connection with distinct roots is harder to codify.

Another impediment is that real polynomials often have negative critical values, so this

manipulation will always leave out some information. Of course, we have the ability to

carry out the same investigations if we glue the sides of the rectangle to become the pos-

itive real axis. In this case, no critical values are positive, but the diagrams and analysis

is exactly analogous. For degree 3, we would again obtain a right triangle glued along its

hypotenuse to a square. The triangle cell, as in the previous example describes polyno-

mials with two real critical values because the symmetric chain is length 2, meaning the

two critical values have different real parts, forcing them to be real. By identifying the

square in each case under the natural map in which these are actually the same polyno-

mials (since no critical values lie on either side of the real axis in this area) we obtain the

full content of Figure 10.6, as we should expect. Our ability to recover the full picture

relating to the distinct roots case of Chapter 10 is in some ways an artifact of the low

degree in this example. For degree 4 and others, these analogous points of view (forming

a version of the basketball complex avoiding the negative reals and another avoiding the

positive reals and then gluing) will uncover more of, but not all of, the structure in the

distinct roots case since there are also cases with distinct roots that have positive and

negative real critical values.
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Figure 9.9: A non-exhaustive set of diagrams for basketballs in degree 4.

Remark 9.2.9. See Figure 9.9 for some of the basketball diagrams that appear for

degree 4. We can describe the cells they contribute in the basketball complex by investi-

gating the lengths of the chains. The leftmost basketball is the trivial palindromic chain

matched with a length 3 reflection symmetric chain so geometrically it is a point times

a tetrahedron. The middle basketball is a length 2 palindromic chain (so geometrically

an edge by Proposition 9.2.5) and a length 2 symmetric chain, so geometrically it is an

edge times a triangle... a triangular prism. The rightmost basketball has a length 2

palindromic chain and the trivial symmetric chain, so geometrically it is an edge times

an edge... a square.
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Chapter 10

Real Polynomials with Distinct

Roots

Transitioning now to distinct roots, by way of Theorem 7.2.11, we devote this chapter

to the subcomplex of the branched annulus complex corresponding to real polynomials

with distinct roots. This still has many mysterious features especially in degrees larger

than 5. However, we do know several interesting features that apply generally, and we

have full understanding in low degrees.

Remark 10.0.1. In general the three important sets that we focus our attention on are

roots, critical points, and critical values. The root point of view is helpful for under-

standing the underlying topology. The critical points must live in the convex hull of the

roots. The critical values are what determines the metric information. Ideally, we want

to meld these points of views together in order to obtain a full picture.
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10.1 General Features

In this section we prove general features for the cell complex of monic and centered

real polynomials with distinct roots. This is the fixed complex of the Branched Annulus

complex under the action of complex conjugation.

Theorem 10.1.1 (Connected components). The subcomplex of real polynomials in the

space of monic centered complex polynomials with distinct roots of a given degree with

the pullback metric is disconnected. In particular, each connected component consists of

all monic, centered real polynomials with distinct roots of that degree that share the same

number of real roots.

Proof: Real polynomials in this setting are exactly the ones fixed by the action

of complex conjugation. Thus, complex roots appear in pairs that are mirrored across

the real axis. Because of this restrictive symmetry, any path through real polynomials

in which a complex pair of roots becomes two real roots, must go through a double real

root before splitting into distinct real roots. Since that intermediate step is not within

our space, it constitutes a disconnection.

Since the cell structure of the space is completely determined by the critical values,

we also want to ensure that the pullback of a path of the critical values in the closed

annulus is a path of real polynomials. If the range is symmetric with respect to complex

conjugation, and you have a path in that closed annulus that is symmetric with respect

to complex conjugation, you may still have a non-symmetric preimage. However, if the

branched annulus begins as something symmetric with respect to complex conjugation,

and then you have a path on the range side that respects complex conjugation, we know

that has a unique lift. If the unique lift breaks complex conjugation, then we can apply

conjugation to obtain a second lift, which violates the unique lifting of paths. Therefore,

we may form a path between any two real polynomials via real polynomials so long as
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they retain the same number of real roots.

Corollary 10.1.2. The number of connected components in the degree d space of monic

square-free real polynomials is ⌈
d+ 1

2

⌉
Proof: By Theorem 10.1.1, we need only count how many real roots are possible,

with the only restriction coming from the fact that the number of other roots, the complex

conjugate ones, must come in pairs, including the potential for zero pairs of conjugate

complex roots.

Example 10.1.3. For example, in degree 2, a polynomial could have no real roots or

two real roots (the possibility of a single real root is excluded since it corresponds to the

case in which there is a repeated root at the vertex). The critical value of the monic

quadratic polynomial would be negative in the former case and positive in the latter. As

such, the completion of the pullback metric gives rise to two disjoint segments– edges

inside the two dimensional cellular complex of complex polynomials with distinct roots

of degree 2.

Example 10.1.4. In degree 3, there are also two connected components corresponding

to the case of a single real root and that of three real roots.

When the polynomial has three real roots, it necessarily has two critical values, with

one of each parity. Any combination of values is acceptable, therefore the completed

metric object corresponding to this case is the two-fold product of intervals, a square.

when there is a single real root, the situation is a bit more complicated. The distribution

of critical values could be: one or two negative, one or two positive, or one pair of complex

conjugates. In the cases of the real critical values, the magnitudes of the values dictate

the specific monic cubic. Metrically, these cases produce orthoschemes. To see this in the
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positive value case, letting vM and vm be the local maximum and minimum (or saddle),

respectively, we can assign any values inside 0 ≤ vm ≤ vM ≤ 1. The values satisfying

these inequalities give a right-angled triangle, also known as a 2-orthoscheme. When

vM = vm, there is a saddle point, and perturbing this value in the complex direction

will split the value into the conjugate pair scenario. Since they are conjugate, we don’t

obtain any extra metric information by considering both points of the pair. We observe

that the value with positive imaginary part can take any value in the upper half plane,

so under the completed metric we have a square. The gluing of the two orthoscheme

cells with the square happens on opposite side of the square and along the hypotenuse

of each orthoscheme. Ultimately, this component is a hexagon with two right-triangular

cells capping off opposite sides of a square as in Figure 10.6.

Example 10.1.5. For degree 4 polynomials, the case in which all roots are real follows

a similar vein as in the previous degrees. Name the three critical values vl, vp, vr for the

left, positive, and right values under the normal viewpoint for the graph of the quartic.

The values that are negative can be any combination of negative values, so that gives

rise to a square. Cellularly, we have two 2-orthoschemes meeting along their hypotenuse,

coming from whether vl ≤ vr or vr ≤ vl. Then due to the positive critical value vp having

maximum choice along the positive axis, we take the product of this subdivided square

with an interval. The result is a cube, formed by stacking two triangular prisms together

in the obvious way.

Generalizing to any degree, the component in which all the roots are real gives the

nice structure of a hypercube.

Theorem 10.1.6. For a degree d polynomial, the subcomplex corresponding to the all real

roots case will be a (d − 1)-cube, the product of the
⌊
d
2

⌋
-cube of negative critical values

and the
⌊
d−1
2

⌋
-cube of positive critical values (counting multiplicity).

126



Real Polynomials with Distinct Roots Chapter 10

This (d− 1)-cube is divided into
⌊
d
2

⌋
!
⌊
d−1
2

⌋
! copies of Θ⌊ d

2⌋ ×Θ⌊ d−1
2 ⌋, where Θn is an

n-orthoscheme.

Proof: In this component, since all roots are real, the same is true for all critical

points (which are necessarily distinct) and their associated critical values (which need

not be distinct). The structure of a (d− 1)-cube comes from the freedom to choose any

tuple of the
⌊
d
2

⌋
negative critical values, and the

⌊
d−1
2

⌋
positive critical values. Together,

the product of the
⌊
d
2

⌋
-cube of negative values with the

⌊
d−1
2

⌋
-cube gives us the full

(d− 1)-cube since
⌊
d
2

⌋
+
⌊
d−1
2

⌋
= d− 1.

Cellularly, any linear ordering is possible on the negative critical values and similarly

on the positive critical values. Given a linear ordering of the negative critical values, we

get a full orthoscheme worth of combinations as the values would be subject to inequalities

0 ≤ v1 ≤ v2 ≤ · · · ≤ v⌊ d
2⌋ ≤ 1.

Any linear ordering of the critical values is possible, so in total there are
⌊
d
2

⌋
! many

and the product would be taken with any of the
⌊
d−1
2

⌋
! many copies of Θ⌊ d−1

2 ⌋ arising

from order the positive critical values. They glue along facets when equality arises like

in the case of v1 ≤ v2 ≤ v3 and v1 ≤ v3 ≤ v2 we glue when these orthoschemes along the

v1 ≤ v2 = v3 facet.

Remark 10.1.7 (Branched Annuli and Lemniscates). In the distinct roots case, all of

our critical values lie in an annulus and have positive magnitude. The pullback of the

positive levels of the modulus of a polynomial with distinct roots were referred to in [11]

as multipedal pairs of pants which can be given a cell structure to produce what they call

a branched annulus by pulling back critical level and direction sets (see [11] for details).

This matches somewhat with the notion of a generalized lemniscate in the language of

Arnol’d [2].

Definition 10.1.8. A line of positive level of the modulus of a polynomial is called a
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Figure 10.1: Some generalized lemniscates for different n.

generalized Cassini oval and if the level is critical, a generalized lemniscate.

In Figure 10.1 we see some lemniscates where the points can be thought of as the

roots of the associated polynomial.

Remark 10.1.9. For our purposes, lemniscates will refer to the pulling back of all the

critical levels, which produces in a Morse theoretic way a chain of non-crossing parti-

tions of the roots of the associated polynomial. In [2], two generalized lemniscates are

topologically equivalent if one can be deformed into the other. For real polynomials,

this notion of equivalence is overly broad since it would equate lemniscates coming from

different connected components of our cell complex or via homotopies that leave a par-

ticular connected component. Instead, we will refer to generalized lemniscates as being

similar if they can be deformed to the other via a homotopy that stays within the same

path component.
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Figure 10.2: The annular version of a basketball formed by pulling pack a (regular)
line of positive level of the modulus of a polynomial.

Remark 10.1.10. Regarding the similarity classes for the lemniscates in the case of all

real roots, each gives rise to chain in the non-crossing partition lattice, which for the

configuration of roots along the real axis is also a chain in the composition lattice (not

necessarily maximal).

Figure 10.3: The three similarity classes for lemniscates in degree 3.

Theorem 10.1.11. The number of similar lemniscates in the all real roots case is encoded

by the Fubini Numbers. https: // oeis. org/ A000670

Proof: A similarity class of a lemniscate for a polynomial with all real roots has

to connect adjacent roots through the critical point between them. This means we have

the following bijection from lemniscates to chains in the non-crossing partition lattice

of points in a straight line, which is the composition lattice that go from the minimum
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element to the maximum element: starting at 1 + 1 + · · · + 1 = d, each critical level

will correspond to collapsing some collection of the plus signs until none remain. Since

the number of chains (not necessarily maximal) in the composition lattice that start at

1+ · · ·+1 = d and end at d = d is enumerated by the Fubini numbers, the result follows.

One way to see that Fubini numbers count these chains is to use the characterization of

Fubini numbers as ordered set partitions. Label the d−1 plus signs in order 1, . . . , d−1.

For an ordered set partition
⊔

Ai = [d− 1], evaluate the plus signs labeled by the entries

in Ai at step i along the chain.

Remark 10.1.12 (Euler Numbers). Coming back to the cell complex, if a polynomial has

no real roots, or a single real root in the odd degree case, and when the polynomial again

has all real critical points, this portion of the complex also takes the form of orthoschemes

that can be enumerated using ZigZag numbers, also known as Euler numbers https://

oeis.org/A000111 that count the number of up-down permutations on n letters The Zig

numbers https://oeis.org/A000364 count these type of permutations of even letters

and the Zag numbers https://oeis.org/A000182 count them for odd letters.

Theorem 10.1.13. 1. If the degree d is even, there are Zag(d
2
) many (d−1)-orthoschemes

in the cell complex of real degree d with no real roots corresponding to when all the

critical points are real.

2. If the degree d is odd and instead there is one real root, there are

(Zk−2i · Z2i) many Θk−2i ×Θ2i

for 0 ≤ i ≤ k
2
where k = d− 1 and Zn = Zig(n

2
+ 1)

Proof: When the degree is even, since the polynomial is monic, all the critical

values must be positive. From left to right in the graph of the polynomial in the plane,
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the critical values must satisfy v1 ≤ v2 ≥ v3 ≤ · · · ≥ vd−1. This up-down correspondence

means that a particular tuple of critical values may come from any of the valid up-down

permutations on d− 1 letters, which is encoded by the Zag numbers.

When the degree is odd, the single real root could lie before, between, or after the

critical points. But once the parity of critical values changes, it does not change back.

The sign must come in pairs since the 1st is a local maximum, then a local minimum,

and so on. When the values have the same sign, they must follow down-up pattern such

as v1 ≥ v2 ≤ v3 ≥ · · · ≥ vj (where j is necessarily even) which is encoded by the Zig

numbers.

A further generalization of the above theorem exists for an arbitrary number of real

roots. Indeed, when all critical points are real, they can be linearly ordered and par-

titioned by the real roots of the polynomial. For example, a degree 7 polynomial with

three real roots may have six real critical points where two occur before the first root, 3

between the first and second root and one after between the second and third root. The

one extra caveat, is that there are restrictions on the number of critical points allowed

within these gaps. If the critical points occur before or after all of the real roots, they

must occur in groups of even size. If they occur between roots, they must occur in odd

sized groups so that the real graph can change direction back towards the x-axis.

Theorem 10.1.14. For a degree d polynomial with m < d real roots, for any partition

of d− 1 with m parts like p1 + p2 + · · ·+ pm+1 = d− 1 satisfying the conditions: p1, pm+1

are even (including possibly zero) and pi is odd for all i ̸= 1,m+ 1 we obtain

Zigp1 · Zigpm+1 ·
m∏
i=2

Zagpi many Θp1 ×Θpm+1 ×
m∏
i=2

Θpi

orthoscheme products corresponding to when all critical points are real and linearly or-

dered within the real roots as determined by the partition.
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Figure 10.4: The annulus (output) view of a degree 7 polynomial agreeing with the
partition 2 + 3 + 1 + 0 in the language of Theorem 10.1.14.

For example, for the partition 2 + 3 + 1 + 0 there are 2 copies of Θ2 × Θ3 × Θ1

corresponding to degree 7 polynomials with three real roots that have six real critical

points where two occur before the first root, 3 between the first and second root and one

after between the second and third root. They are glued along the Θ2×Θ2×Θ1 where the

first and third critical point between the first and second root agree on their associated

critical values. The Figure 10.4 shows an example polynomial output matching with this

example. The points of the same color may be moved along the positive and negative

real lines which traces out an orthoscheme. Different colored points don’t depend on

each other. In this figure, the green points are the first two critical values associated to

the critical points prior to the first root (the 2 in the partition), the red are the positive

values associated to the three critical points between the first and second roots (the 3 in

the partition), and the blue point is the critical value associated with last critical value

between the 2nd and 3rd roots (the 1 in the partition).

Theorem 10.1.15 (Topology of Components). The fundamental group of a connected
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component corresponding to n pairs of complex conjugate roots is the braid group on n

strands.

Proof: Since real polynomials are fixed under complex conjugation, the preimage of

C\{0} (which compactifies to a punctured disk, punctured at the roots of the polynomial)

has mirror symmetry with respect to the real axis, and therefore, we may understand

the topology by understanding the upper half plane. In that upper half plane, roots may

move freely so long as they do not collide, and so braiding is exhibited by these roots.

The real roots do not contribute to the fundamental group.

Corollary 10.1.16. Components of degree d real polynomials with d or d− 2 real roots

are the only contractible components.

10.2 Degrees up to 5

In this section we our knowledge of how the critical values of a real polynomial behave

to concretely describe the components for the cell complex of monic and centered real

polynomials with distinct roots in degrees 3, 4, and 5.

10.2.1 Degree 3

Since we know what the component corresponding to all real roots looks like for

degree 3 by Theorem 10.1.6, we only have one other connected component to determine.

The component in degree 3 corresponding to a single real root and a complex conjugate

pair of roots is a subdivided hexagon.
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Figure 10.5: The degree 3 polynomial component corresponding to one real root.

In Figure 10.5 we consider how the critical values of such a polynomial might behave.

From the critical values we are able to form the cell complex. We see that we obtain

one triangle which is a 2-orthoscheme whose interior is characterized by distinct real

negative critical values, thus it corresponds to the possible ways in which the red points

can move along the interval in the leftmost diagram in Figure 10.5. On the hypotenuse,

these critical values have become one of multiplicity 2. It is connected via an edge of a

square which is the situation corresponding to complex critical values and depicted by

the central diagram in Figure 10.5. The other end is a right-triangle (2-orthoscheme)

that again corresponds to real critical values, though this time they are both positive

which is depicted in the right-most diagram for the figure and is similarly glued up along

its hypotenuse.
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Figure 10.6: The subdivided hexagon obtained by investigated the metric information
for degree 3 polynomials with one real root.

10.2.2 Degree 4

In degree 4, there are three connected components corresponding to the disjoint sit-

uations where we have (1) four real roots, (2) two real roots and a complex conjugate

pair of roots, or (3) no real roots and two pairs of complex conjugate roots.

When there are four real roots, the case is completely understood in terms of Theorem

10.1.6 and as discussed in Example 10.1.5, it is a cube subdivided into two triangular

prisms. In the rest of this section, we wish to concretely describe the other two connected

components.

We begin with the case in which there is one pair of conjugate roots, and two real

roots. One feature to keep in mind in this case and in other even degree cases, is that

a real minimum of the function exists as a real critical value. In particular, when there

are two real roots for the polynomial, the real minimum of the function is a negative

critical value. For the other two not necessarily distinct critical values, they may both be

negative, both positive, or form a complex conjugate pair. From the real graph it is clear

we may have three distinct real critical points where either the first pair appear before

the first root (when a local minimum and maximum occurs to the left of the first root),

between the real roots (when 3 local minima/maxima occur between the real roots), or
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we have a pair of real critical points after the roots (when there is a local max/min

after the roots). We may also have two distinct real critical points, when one has higher

multiplicity this time with 4 possibilities— we may have a saddle prior to the first root, a

saddle to the left or right of the global minimum but between the two roots, or a saddle

to the right of the roots. When there is one (necessarily real) critical point of multiplicity

3, the real graph appears as a wide-looking quadratic.

Figure 10.7: Sample polynomials from three perspectives tracing a path from all real
critical points to one pair of complex conjugate critical points.
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Figure 10.8: Sample polynomials from three perspectives for continuing the path from
Figure 10.7 until real positive critical values appear.

Remark 10.2.1. In each cluster in Figure 10.7 (and the other similar figures) we balance

three viewpoints simultaneously. In the bottom level is the real graph of the sample

polynomial and the annulus containing its critical values. The graph is a key guide but

doesn’t show every bit of crucial information. The annulus of critical values, the output

side, gives us the way to understand the cell structure on the complex via the pullback

metric. The top level are the (reflection symmetric) lemniscates corresponding to those

polynomials which captures where the roots (interior white circles) and the critical points

(the colored points) are positioned. They are helpful to understand what is happening

topologically.

When we have a conjugate pair of critical points, their effect may be perceptible on

the real graph exhibiting a wiggle on the left or right of the real minimum (exhibited with

a sample polynomial as the right cluster in Figure 10.7— in this situation the output

side shows that their associated critical values are a conjugate pair of complex numbers,

and regardless of the side the annular picture of the codomain may look exactly the
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same. The difference is clear on the branched annulus viewpoint of the domain, where

the wiggle corresponds to which real root the complex pair is closer to, and is position

with respect to the real roots coincides with their orthogonally projected position within

the real roots. In other words, taking the right diagram of Figure 10.7 and flipping the

real graph through a vertical line would preserve the output diagram, but would also flip

the lemniscate diagram through a vertical line.

However, there is one more situation in which a pair of critical points are complex

conjugates but they both evaluate to a negative real critical value that has higher multi-

plicity less than the real minimum of the polynomial. This is basically invisible from the

perspective of the real graph and this situation appears to like a quadratic on the real

graph exhibited in the right-most diagrams of Figure 10.9.

Figure 10.9: Sample polynomials from three perspectives of polynomials that trace
the path pulling the complex pair of roots upwards.

With these ideas and guiding figures in mind, we can extract the metric information.

In the case for which all the critical values are negative real numbers, we may also

have real critical points, and in these cases we obtain two 3-orthoschemes. The left

Θ3 corresponds to when the real minimum value is the left-most in terms of the natural
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linear order on the critical points, and the right Θ3 corresponds to when the real minimum

value is the right-most. They are glued along a 2-orthoscheme corresponding to when

the real minimum is achieved by both the 1st and 3rd critical points (the situation in

the left-most diagrams of Figure 10.9). This Θ2 is actually part of a square, because

glued along its hypotenuse is another Θ2 corresponding to when there are three real

negative critical values come from one critical point witnessing the real minimum, and

two conjugate critical points corresponding to a negative critical value of multiplicity

2. This subdivided square comes from polynomials matching with all three examples of

Figure 10.9, the perturbing of the left-most gives the interior of one right-triangular side,

the middle diagrams represent the tracing out of the hypotenuse, which glues along the

right-triangle obtained by perturbing polynomials like the one on the right-most side of

the figure.

There is a subdivided left-cube made of of two Θ2 × Θ1. The interior of this cube

is characterized by polynomials having one real critical value and a conjugate pair of

critical values. The graph of the polynomial over the real numbers has a wiggle on the

right side of the critical point that witnesses the real minimum.

Similarly, another subdivided right-cube for the wiggle on the left side is glued to this

one partially on the 2-orthoscheme with the critical value of multiplicity 2 coming from a

conjugate pair of critical points. The other half is glued to the boundary of the right Θ3

where the real graph shows a saddle to the left of the real minimum, i.e. a real critical

point of multiplicity 2. Whereas, the other half of the left-cube glues to the face of the

left Θ3 which has a negative real saddle value on the right of the real minimum.

The subdivision of this cube happens along the rectangle where all the critical values

have the same norm in the complex space.

Finally, there is a left triangular prism and a right triangular prism whose interiors

are characterized with real graphs for a polynomial in which three distinct real critical
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Figure 10.10: The cellular pieces of the component corresponding to two real roots in
degree 4.

values arise, corresponding to three real critical points, with the real minimum critical

point on the left or right, respectively, of the others in the natural linear order of the real

critical points.

These prisms are glued along the square face of the left and right cubes, respectively

along the boundary where the real graph exhibits a positive saddle.

Topologically (ignoring the cell structure), since we may precompose with a transla-

tion and normalize so that the roots appear fixed on the real axis, whilst the complex

root (above the axis) can move freely in the upper half plane, we get a product of a

disk with an interval, and so we have the topological type of a 3-ball, which is confirmed

by the cellular description as well which is visualized in Figure 10.10. By labeling the

vertices of each cell, we can see concretely how they would glue together. So, another
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Figure 10.11: The cells with gluing information for the component corresponding to
two real roots in degree 4.

way of describing the gluing instructions in 10.10 is shown in Figure 10.11.

The situation is not far off from the above description even when there are no real

roots. In this case, the real minimum is a positive critical value, however, negative real

critical values of multiplicity 2 may arise corresponding to a conjugate pair of critical

points.

Recalling Remark 10.2.1, we want to consider three points of view simultaneously.

We want to consider how each viewpoint contributes to our understanding. When no

roots are real in degree 4, the real graph lies entirely above the x-axis and has either three

distinct real critical points (when there are two local minima and a local maxima), two
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distinct real critical points where one has higher multiplicity (when the graph exhibits

the two local minima agreeing on the critical value, or when one local minimum coincides

with the local maximum forming a saddle), or one real critical point of multiplicity 3.

Figure 10.12: Sample polynomials from three perspectives for when all critical points are real.

However, there are other situations to consider, which may not be clear from the real

graph, but are clearly born out of the analysis of specific polynomials. One critical point

must be real, to witness the real minimum of the function. But, the others may be a

conjugate pair of complex critical points. Whether their associated critical values are

real or complex conjugates themselves are perceptible on the real graph in most cases,

but that aspect is far clearer when using the combination of our three viewpoints.

Take for example the two polynomials p(z) = (z + i)(z − i)(z − 1− i)(z − 1 + i) and

q(z) = (z + i)(z − i)(z + 2i)(z − 2i) which are the left-most and right-most clusters in

Figure 10.13. On the real graphs, these polynomial appear very similar, both appearing

to resemble a quadratic. And indeed, both pairs of complex critical points for these

polynomials correspond to a real critical value of multiplicity 2. The difference, is that
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for p(z), the real critical value associated to these critical points is positive, and for q(z)

it is negative. The general phenomenon is that if all the roots have the same real part

(all the roots line up vertically), we obtain negative critical values imperceptible on the

real graph because they come from a conjugate pair of complex critical values. Whereas

if the upper half representatives of each pair of roots share the same imaginary part, and

the difference in their real part is less than twice their imaginary part (i.e. when the

roots form a tall rectangle in complex space) the associated critical value is positive but

less than the real minimum.

Through this discussion in the previous paragraphs, we have exhausted all the ways

in which a monic square-free real quartic with no real roots may have real critical values.

The other situation is, of course, when the complex pair of conjugate critical points

evaluate to a complex pair of conjugate critical values. On the real graph, this is per-

ceptible as a slight wiggle on either the left or right side of the real global minimum.

Regardless of which side the wiggle appears, the annular picture of the codomain looks

exactly the same. However, on the domain view of the branched annulus, the side of the

wiggle corresponds to the side whose imaginary parts are greater as we can see in the

middle diagrams of Figure 10.13.
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Figure 10.13: Sample polynomials from three perspectives for when a pair of critical
points are complex conjugates.

Again there is a left and right 3-orthoscheme, glued along a 2-orthoscheme where

the real minimum is achieved by the two outer real critical points which correspond to

when all the critical points (and critical values) are real, like in Figure 10.12. As before

there are 3 ways to travel with a critical value of higher multiplicity, it can go towards

a real saddle on the right, the left, or a complex saddle. The left and right cubes also

behave exactly as before, corresponding to a right or left wiggle gluing on the left/right

Θ3, respectively, and the complex saddle triangle shared as a portion of the square face

on both cubes. The major difference is the lack of triangular prisms. In fact, whereas in

the previous component there was no path between the cubes except for through the Θ3’s

or the complex saddle Θ2, in this component there is a shared boundary of the cubes, a

square, corresponding to when negative real critical values of high multiplicity exist, like

the situation on the right in Figure 10.13. The real graph of which looks like a sharp

parabola.

This complex is visualized in Figure 10.14 with some sample polynomials. Topolog-
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Figure 10.14: The cellular pieces of the no real roots case in degree 4.

ically, since the two roots in the upper half plane can move around each other, we have

nontrivial fundamental group agreeing with the braid group on 2 strands, Z. This is

confirmed by the way the cells glue together in our complex, which is clarified in Figure

10.15

10.2.3 Degree 5

In degree 5, we have three connected components, like in degree 4, by Theorem 10.1.1.

We may use our understanding of the 3-dimensional components in degree 4 to guide us

in the case of the 4-dimensional components of degree 5.

Of course, by Theorem 10.1.6 the simplest component to describe corresponds to all
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Figure 10.15: The cells with labeled vertices for the no real roots case in degree 4.
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real roots, with no pairs of complex conjugate roots.

The other contractible component corresponds to three real roots, and a single pair of

complex conjugate roots. The real graph of a polynomial within this component makes

immediately clear that at least, we must have one positive and one negative real critical

value and they must be positioned with the positive one’s critical point between the 1st

and 2nd root and the negative critical value’s critical point between the 2nd and 3rd real

root.

Summing up what happened in degree 4 when there were two real roots, essentially

the complex is made up of a square pyramid with an extra triangle, and then two cubes

branching out from the square plus triangle base, and then triangular prisms on the other

ends of those cubes.

The pyramid is the place where the degree 4 polynomial with two real roots has all

the interesting stuff (critical points, etc) happening between those real roots.

For degree 5, with three real roots, there are two hubs which appear like the situation

described above for degree 4 with two real roots, except in 4 dimensions. They correspond

to the two styles of degree 5 polynomials with three real roots wherein the interesting

stuff happens between those roots. Either three real critical points (counting multiplicity)

happen between the 1st and 2nd root, or they appear between the 2nd and 3rd root.

They are bridged by a 4-cube and have two other 4-cubes heading off over towards

4-dimensional triangular prisms.

So it is like two copies of the degree 4 situation enhanced into a 4-dimensional shape

and then superimposing them on each other on one of the cubular branches. This rough

description is visualized (the best we can manage for 4 dimensional cells) in Figure 10.16.

This is a contractible component and the cellular description confirms that.
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Figure 10.16: The component in degree 5 corresponding to three real roots.

When there is a single real root, we have a Z fundamental group that comes from

the possible movements that two complex roots can rotate around each other in the

upper half space. In this case, Theorem 10.1.14 tells us how some of the pieces behave.

In particular, there are three hubs where all the critical points are real. One hub is

when all the critical points are real and correspond to negative critical values, which by

the theorem is five glued together copies of Θ4. Another similar hub again looks like

five glued together copies of Θ4 for when the critical points are real and correspond to

positive critical values. And the last hub corresponds to when the critical points are real

and there are two positive and two negative critical values, which geometrically is Θ2×Θ2.

Between these hubs there are either 4 dimensional triangular prisms: Θ2 ×Θ1 ×Θ1 or a

4-cube. Essentially this data is collected in a diagram in Figure 10.17, though in some
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Figure 10.17: A diagram of the main cellular pieces for the degree 5 component with
one real root.

ways, this component is still understudied.
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Future Directions

This short final chapter lists several direction for future investigation.

Remark 11.0.1. The known technique to understand the degree 5 components in a

detailed way is to blend the three points of view of Remark 10.2.1 and analyze all the

possibilities. This quickly becomes intractable as the degree increases, and new tech-

niques will be required to push this type of work into higher degrees. So one further

direction is to identify new techniques to understand each component of these cell com-

plexes explicitly, in the style of the results from Section 10.1.

Remark 11.0.2. Palindromic chains are introduced in this dissertation, and much is

still unknown about them. In particular, enumerations for general n is unknown, and

no known closed formula exists to count them. Indeed, even the sequences of known

values is unreported in the online encyclopedia for integer sequences. The counting

techniques introduced in discussing palindromic chains, namely the bijection to properly

labeled palindromic hypertrees, gives a possible direction lending itself to completing

that counting problem.

In closing, it is worth highlighting an important feature of this (still mysterious)
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cell complex that comes from its genesis as the fixed complex of the branched annulus

complex under complex conjugation: its potential curvature.

Remark 11.0.3. Real polynomials are fixed point of complex conjugation involution.

If you have a finite order 2 group acting on a CAT(0) space and you are looking at the

fixed set, that is CAT(0). In particular, the branched annulus complex is conjecturally

CAT(0), which is a property that would carry onto the real version. So another future

direction is to investigate these curvature properties using tools from geometric group

theory.
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Appendix

A.1 Code for Reflection Symmetric Noncrossing Par-

titions

Remark A.1.1. Below are the tools added to CatalanObjects.wl to produce and study

Reflection Symmetric Non-crossing Parititons (In Mathematica).

FlipGraph::usage = "FlipGraph[cg] flips the configuration.";

FlipGraph[CircularGraph[n_Integer, edges_List]] :=

CircularGraph[n, Map[n - # + 1 &, edges, {1}]];

XFlipGraph::usage =

"XFlipGraph[cg] flips the configuration throught the axis defined \

by the first point.";

XFlipGraph[CircularGraph[n_Integer, edges_List]] :=

CircularGraph[n, Map[1 + Mod[n - # + 1, n] &, edges, {1}]]
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RNonCrossingPartitions[n_Integer] :=

RNonCrossingPartitions[n] = Select[

NonCrossingPartitions[n], FlipGraph[#] == # &];

RXNonCrossingPartitions[n_Integer] :=

RXNonCrossingPartitions[n] = Select[

NonCrossingPartitions[n], XFlipGraph[#] == # &];

DiagramRNonCrossingPartitions[n_Integer] :=

For[i = 1, i < n + 1, i++,

Print[Select[RNonCrossingPartitions[n],

Length[CircularGraphEdges[#]] == i &]]]

DiagramRXNonCrossingPartitions[n_Integer] :=

For[i = 1, i < n + 1, i++,

Print[Select[RXNonCrossingPartitions[n],

Length[CircularGraphEdges[#]] == i &]]]

RXNCPRelationMatrix[n_Integer] :=

Table[If[

Combinatorica‘CoarserSetPartitionQ[

CircularGraphEdges[RXNonCrossingPartitions[n][[i]]],

CircularGraphEdges[RXNonCrossingPartitions[n][[j]]]], 1, 0], {i,

Length[RXNonCrossingPartitions[n]]}, {j,

Length[RXNonCrossingPartitions[n]]}]
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RNCPRelationMatrix[n_Integer] :=

Table[If[

Combinatorica‘CoarserSetPartitionQ[

CircularGraphEdges[RNonCrossingPartitions[n][[i]]],

CircularGraphEdges[RNonCrossingPartitions[n][[j]]]], 1, 0], {i,

Length[RNonCrossingPartitions[n]]}, {j,

Length[RNonCrossingPartitions[n]]}]

RankSizeRNCP[n_Integer, k_Integer] :=

Binomial[Quotient[n - 1, 2], Quotient[k - 1, 2]]*

Binomial[ Quotient[n, 2], Quotient[k, 2]]

SizeRNCP[n_Integer] := Binomial[n, Quotient[n, 2]]

Remark A.1.2. Below is the code to to build the Reflection Symmetric Non-crossing

Partition maximal chain enumerating polynomials (In Mathematica).

AlgebraicDegree[eqn_, vars_List] :=

Max[Total[

GroebnerBasis‘DistributedTermsList[eqn /. Equal :> Subtract,

vars][[1, All, 1]], {2}]]

AlgebraicDegree[eqn_] := AlgebraicDegree[eqn, Variables[eqn]]

Boxtimes[poly1_, poly2_] :=

Total[Total[
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Table[ Binomial[

AlgebraicDegree[MonomialList[poly1][[i]]] +

AlgebraicDegree[MonomialList[poly2][[j]]],

AlgebraicDegree[MonomialList[poly1][[i]]]]*

MonomialList[poly1][[i]]*MonomialList[poly2][[j]], {i,

Length[MonomialList[poly1]]} , {j,

Length[MonomialList[poly2]]} ]]]

dual[x] = z;

dual[y] = w;

dual[z] = x;

dual[w] = y;

var = {w, x, y, z};

var2 = {w, z}

rules = Table[

var[[i]] -> dual[var[[i]]], {i,

4}]; (* this set of rules dualizes the polynomial to switch from \

x<->z and y<->w, for square to diamond*)

rules1var =

Table[var[[i]] -> x, {i,

4}]; (* this set of rules makes all variables into ’x’*)

rules2var =

Table[var2[[i]] -> dual[var2[[i]]], {i,

2}];(*this set of rules makes w->y and z->x*)

Np[n_Integer] := n^(n - 2) y^(n - 1)

Npz[n_Integer] := n^(n - 2) y^(n - 2)*w
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Psquare[1] = 1;

Pdiamond[1] = 1;

Psquare[2] = x;

Pdiamond[2] = z;

Psquare[3] = x*Boxtimes[Pdiamond[2], Psquare[1]];

Pdiamond[3] = Psquare[3] /. rules;

Psquare[n_] :=

Expand[Sum[

x*Boxtimes[Pdiamond[n - (2 i - 1)], Psquare[2 i - 1]], {i,

Quotient[n, 2]}] +

Sum[(Quotient[n, 2] - i)*y*Boxtimes[Np[i], Psquare[n - 2 i]], {i,

Quotient[n, 2]}]]

Pdiamond[n_] := ReplaceAll[Psquare[n], rules]

Remark A.1.3. Code to build the poset of Reflection Symmetric Non-Crossing parti-

tions in a more efficient way than sieving all non-crossing partitions (In SageMath).

def ncp(n):

"generates the noncrossing partition lattice as a poset"

return posets.SetPartitions(n).subposet([x for x in posets.

SetPartitions(n)

if x.is_noncrossing()])

def vis(S):
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"finds the visible blocks of a noncrossing partition"

vis=[max(S[0])]

"The first visible block is always the first"

for i in srange(1,len(S),1):

test=[]

"This test set will be used to determine which ones are visible"

for j in srange(i):

if max(S[j])>max(S[i]):

test.append(1)

"this means that block isn’t visible"

else:

test.append(0)

"this means it is visible"

if sum(test)==0:

vis.append(max(S[i]))

else:

vis

return vis

def RNCP(n):

"generates the data for reflection symmetric noncrossing

partitions of type 1 as a ncp (n) plus a subset of the visible set"

RNCP=[]

for S in ncp(n):

for y in subsets(vis(S)):
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RNCP.append((S,y))

return RNCP

def neg(x):

"negates a list"

neg=[]

for i in srange(0,len(x),1):

neg.append(-x[i])

return neg

def new_RNCP(n):

"generates the reflection symmetric noncrossing partitions

of size 2n with labels [n] and their negations"

new_RNCP=[]

for x in RNCP(n):

part=[]

for i in srange(len(x[0])):

if x[1].count(max(x[0][i]))>0:

part.append(list(x[0][i])+neg(list(x[0][i])))

else: part.append(list(x[0][i]));part.append

(neg(list(x[0][i])))

new_RNCP.append(SetPartition(part))

return new_RNCP
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def refinement(A, B):

"define the cover relation of refinement"

#if len(A) != len(B)+1:

#return False

for a in A:

if not any(set(a).issubset(b) for b in B):

return False

return True

A.2 Code for Palindromic Noncrossing Chains

Remark A.2.1. The below code was used for preliminary investigations into what be-

came the study of palindromic chains of non-crossing partitions (In SageMath).

def even_partition(partition):

"""

Takes a set partition and returns a new partition where every element

is replaced by twice that element.

"""

return SetPartition([[2*x for x in block] for block in partition])

def odd_partition(partition):

"""

Takes a set partition and returns a new partition where every element

is replaced by twice that element minus 1.

"""
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return SetPartition([[2*x-1 for x in block] for block in partition])

def flip1(n):

return Permutation(srange(n, 0, -1))

def flip2(n):

return Permutation([1]+srange(n,1,-1))

def add_partitions(partition1, partition2):

"""

Takes two set partitions and returns their union.

"""

P1_list = list(partition1)

P2_list = list(partition2)

P_union_list = P1_list+P2_list

return SetPartition(P_union_list)

def good_ncp(n): #this returns the set of noncrossing partitions

that if you superimpose with the flip its still noncrossing.

good_ncp=[]

for x in ncp(n):

if add_partitions(even_partition(x.apply_permutation

(flip1(n))),odd_partition(x)).is_noncrossing():

good_ncp.append(x)

return good_ncp
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