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ABSTRACT OF THE DISSERTATION

Computations of Vapnik-Chervonenkis Density

in Various Model-Theoretic Structures

by

Anton Bobkov

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2017

Professor Matthias J. Aschenbrenner, Chair

Aschenbrenner et al. have studied Vapnik-Chervonenkis density (VC-density) in the

model-theoretic context. We investigate it further by computing it in some common

structures: trees, Shelah-Spencer graphs, and an additive reduct of the field of p-adic

numbers. In the theory of infinite trees we establish an optimal bound on the VC-density

function. This generalizes a result of Simon showing that trees are dp-minimal. In Shelah-

Spencer graphs we provide an upper bound on a formula-by-formula basis and show that

there isn’t a uniform lower bound, forcing the VC-density function to be infinite. In ad-

dition we show that Shelah-Spencer graphs do not have a finite dp-rank, so they are not

dp-minimal. There is a linear bound for the VC-density function in the field of p-adic

numbers, but it is not known to be optimal. We investigate a certain P -minimal additive

reduct of the field of p-adic numbers and use a cell decomposition result of Leenknegt to

compute an optimal bound for that structure. Finally, following the results of Podewski

and Ziegler we show that superflat graphs are dp-minimal.
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CHAPTER 1

Introduction and Preliminaries

1.1 Introduction

My research concentrates on the concept of VC-density, a recently introduced notion

of rank in NIP theories. The study of a structure in model theory usually starts with

quantifier elimination in a natural language, followed by a finer analysis of definable

functions and interpretability. The study of VC-density goes one step further, looking

at the asymptotic growth of finite definable families. In the most geometric examples,

VC-density is closely related to the natural notion of dimension. However, no geometric

structure is required for the definition of VC-density, thus we can get some notion of

geometric dimension for families of sets given without any geometric context.

In 2013, Aschenbrenner et al. investigated and developed a notion of VC-density for

NIP structures, an analog of geometric dimension in an abstract setting [ADH16]. Their

applications included a bound on the VC-density of definable families in the field of p-

adic numbers, an object of great interest in many fields of mathematics. My research

concentrates on expanding techniques of that paper to improve the known bounds as

well as computing VC-density for other NIP structures of interest. I am able to obtain

new bounds for a certain additive reduct of the p-adic numbers, trees, and some families

of graphs. Recent research by Chernikov and Starchenko in 2015 [CS15] suggests that

having good bounds on VC-density in the p-adic numbers opens a path for applications

to incidence combinatorics (e.g. Szemeredi-Trotter theorem).

The concept of VC-dimension was first introduced in 1971 by Vapnik and Chervo-
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nenkis for set systems in a probabilistic setting [VC71]. The theory grew rapidly and

found wide use in geometric combinatorics, computational learning theory, and machine

learning. Around the same time Shelah was developing the notion of NIP (”not hav-

ing the independence property”), a natural tameness property of (complete theories of)

structures in model theory [She71]. In 1992, Laskowski noticed the connection between

the two: theories where all uniformly definable families of sets have finite VC-dimension

are exactly NIP theories [Las92]. This is a wide class of theories including algebraically

closed fields, differentially closed fields, modules, free groups, o-minimal structures, and

ordered abelian groups. A variety of valued fields fall into this category as well, including

the p-adic numbers.

The p-adic numbers were first introduced by Hensel in 1897 in [Hen97], and over the

following century a powerful theory was developed around them with numerous appli-

cations across a variety of disciplines, primarily in number theory, but also in physics

and computer science. In 1965, Ax, Kochen [AK65] and Ershov [Ers65] axiomatized the

theory of p-adic numbers. A key insight was that properties of the value group and

residue field determine the properties of the valued field itself. In 1976, Macintyre proved

a quantifier elimination result in a definitional expansion of the field language [Mac76].

In 1984, Denef proved a cell decomposition result which clarified the geometry of de-

finable sets in Qp [Den84]. This result was soon generalized to p-adic subanalytic and

rigid analytic extensions, allowing for the later development of the powerful technique of

motivic integration. The conjunction of those model theoretic results allowed to solve

a number of outstanding open problems in number theory (e.g., Artin’s Conjecture on

p-adic homogeneous forms).

In 1997, Karpinski and Macintyre computed VC-density bounds for o-minimal struc-

tures and asked about similar bounds for the p-adic numbers [KM97]. VC-density is a

concept closely related to VC-dimension. It comes up naturally in combinatorics with

relation to packings, Hamming metric, entropic dimension and discrepancy. VC-density

is also the decisive parameter in the Epsilon-Approximation Theorem, which is one of the
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crucial tools for applying VC theory in computational geometry. In a model theoretic

setting it is computed for families of uniformly definable sets. In 2013, Aschenbrenner,

Dolich, Haskell, Macpherson, and Starchenko computed a bound for VC-density in the

field of p-adic numbers and a number of other NIP structures [ADH16]. They observed

connections to dp-rank and dp-minimality, notions first introduced by Shelah. In well

behaved NIP structures, families of uniformly definable sets in n-space tend to have VC-

density bounded above by n, a simple linear behavior. In many cases (including the p-adic

numbers) this bound is not known to be optimal. My research concentrates on improving

those bounds and adapting those techniques to compute VC-density in other common

NIP structures.

Some other well behaved NIP structures of a combinatorial flavor are Shelah-Spencer

graphs and superflat graphs. Shelah-Spencer graphs are the limit structures of random

graphs arising naturally in a combinatorial context. Their model theory was studied by

Shelah and Spencer in 1988 in [SS88] and then refined by Baldwin, Shi, and Shelah in 1997

in [BS96], [BS97]. Later work of Laskowski in 2007 provided a quantifier simplification

result [Las07]. Superflat graphs were introduced by Podewski-Ziegler in 1978, who showed

their stablity [PZ78]. Later results gave a criterion for superstability [HMS83]. Superflat

graphs also come up naturally in combinatorics (for example, see the work of Nesetril and

Ossona de Mendez [NM11]).

The first chapter of my dissertation introduces some basics of model theory and defines

VC-density and VC-dimension.

The second chapter concentrates on trees. I answer an open question from [ADH16],

computing VC-density for trees viewed as a partial order. The main idea is to adapt a

technique of Parigot [Par82] to partition trees into weakly interacting parts, with simple

bounds of VC-density on each.

In the third chapter I work with Shelah-Spencer graphs. I show that they don’t have

finite dp-rank, so they are poorly behaved as NIP structures. I also show that one can

obtain arbitrarily high VC-density when looking at uniformly definable families in a fixed
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ambient space. However, I’m able to bound VC-density of individual formulas in terms

of edge density of the graphs they define.

The fourth chapter deals with p-adic numbers. I show that VC-density is linear for

an additive reduct of p-adic numbers using a cell decomposition result from the work of

Leenknegt in 2014 in [Lee14].

In chapter five I investigate superflat graphs using the techniques of Podewski-Ziegler

[PZ78]. I am able to show that superflat graphs are dp-minimal, an important first step

before establishing bounds on VC-density.

1.2 Basic Model Theory

This section goes through some of the basic model theoretic concepts that are used

throughout this text. We assume the reader’s familiarity with the fundamental notions

of languages, formulas, structures, and theories. For an introduction to these topics, we

refer to Chapters 1 and 2 of [TZ12].

We work with structures M = (M, . . .) in finite or countable languages L. Generally,

in this thesis the structures have infinite universes M . For a tuple of variables x, let |x|

denote its arity. Similarly, for a tuple a ∈ Mn let |a| = n. We often confuse a tuple

a = (a1, . . . , an) ∈Mn with its underlying set a = {a1, . . . , an} ⊆M . We study definable

sets given by first-order formulas φ(x). Abusing notation, we denote L to be the set of all

first-order formulas in the language L. For a parameter set A ⊆ M the expression L(A)

denotes the collection of formulas with parameters from A (or simply A-formulas).

More generally, we work with complete theories and their models. Throughout this

text we often confuse the two. This is justified for properties that can be described by a

collection of first-order sentences. Then a theory has this property if and only any (all)

models have this property. An example of that is the notion of stability.

Stability is a deep subject, with a lot of theory developed around it. We won’t work
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with it directly, but it is a property of some of the structures we study. We present a

definition for completeness and refer the reader to Chapter 8 of [TZ12] or to [Pil13] for a

more complete introduction.

Definition 1.2.1.

• Suppose we have a structure M. A formula φ(x, y) is called unstable in M if for all

natural numbers n there exist ai ∈M |x|, bi ∈M |y| for 0 ≤ i ≤ n such that

M |= φ(ai, bj) ⇐⇒ i ≤ j.

• A formula is stable if it is not unstable.

• A structure M is stable if all of its formulas are stable in M.

• A complete theory T is stable if any (all) of its models are stable.

Definable sets are subsets of our structure given by formulas. More precisely:

Definition 1.2.2. Let M be a structure, A ⊆ M a parameter set and φ(x) be an A-

formula. Then

φ(M |x|) =
{
b ∈M |x| |M |= φ(b)

}
is referred to as the A-definable subset of M |x| defined by φ.

More generally, we will need a slightly more refined notion of trace:

Definition 1.2.3. Suppose we have a structure M, a formula φ(x, y), tuples a ∈M |x|, b ∈

M |y|, and sets A ⊆M |x|, B ⊆M |y|. Define

φ(A, b) = {a ∈ A |M |= φ(a, b)} ,

φ(a,B) = {b ∈ B |M |= φ(a, b)} .

These sets will be informally referred to as traces (on A, respectively B). Similarly, let

φ(A,B) = {φ(A, b) | b ∈ B} ⊆ P(A)

denote the collection of traces on A parametrized by B.
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Types are one of the main objects of study in model theory.

Definition 1.2.4. Let M be a structure, B ⊆M . Also fix a tuple of variables x.

• A partial type over B is a collection of formulas in the variables x with parameters

from B.

• A tuple a ∈ M |x| is called realization of a partial type p(x) if M |= φ(a) for all

φ(x) ∈ p(x).

• A partial type p(x) is consistent if every finite subset p(x) has a realization in M.

• Let a ∈ M |x| and ∆ ⊆ L(B) be a collection of formulas δ(x). Define the ∆-type of

a over B to be the collection of formulas δ(x) ∈ ∆ such that M |= δ(a). Denote it

as tp∆(a/B).

• Let a ∈M |x|. Define the type of a over B as the ∆-type of a over B for ∆ = L(B).

Denote it as tp(a/B).

Many model theoretic arguments are simplified when done inside saturated structures.

This is the next important construction that we turn our attention to:

Definition 1.2.5. Let κ be a cardinal. A structure M is called κ-saturated if for all

B ⊆M with |B| < κ all consistent partial types over B are realized in M.

Indiscernible sequences will be useful to us to describe dp-rank and dp-minimality.

They come up often in model theory as a way to leverage symmetry present in sequences

and sets.

Definition 1.2.6.

• Suppose we have a sequence (ai)i∈I where I is an ordered index set and ai ∈ Mm

for all i. For a subset J ⊆ I let a(J ) ∈ Mm| J | denote the tuple obtained by the

concatenation of the sequence (aj)j∈J (where J is ordered using the order induced

by I).
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• Suppose M is a structure, B ⊆M , and I is an ordered index set. A sequence (ai)i∈I

with each ai ∈Mm is called indiscernible over B (or B-indiscernible) if for any two

finite subsets J 1,J 2 ⊆ I of equal size we have

tp(a(J 1)/B) = tp(a(J 2)/B).

• If we use the same definition, but allow tuples a(J 1), a(J 2) to be concatenated in

arbitrary order, then we obtain the definition of a sequence that is totally indis-

cernible over B (alternatively called an indiscernible set).

Here is an important property of indiscernible sequences in stable theories:

Lemma 1.2.7 (see Lemma 9.1.1 in [TZ12]). If M is stable then every indiscernible se-

quence (over a subset of M) is totally indiscernible.

Instead of starting with an indiscernible sequence, we sometimes wish to construct one

from a sequence with some degree of symmetry:

Lemma 1.2.8 (see Lemma 5.1.3 in [TZ12]). Work in a κ-saturated structure M. Let B ⊆

M with |B| < κ. Fix a tuple of variables x and a collection of B-formulas ∆(x1, . . . , xn)

with |xi| = |x|. Suppose we can find an arbitrarily long finite sequence (ai)i∈I with ai ∈

M |x| such that for any subset J ⊆ I of length n we have

M |= ∆(a(J )).

Then there exists an infinite B-indiscernible sequence (bi)i∈N such that for any subset

J ⊆ N of length n we have

M |= ∆(b(J )).

Instead of working with types directly, it is often more convenient to work with auto-

morphisms:
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Definition 1.2.9. Suppose M is a structure and A ⊆M . An automorphism of M over A

is a bijection f : M −→M with f(a) = a for all a ∈ A which preserves the interpretations

of all constant, relation, and function symbols in M. We denote by Aut(M/A) the group

of all automorphisms of M over A. For a tuple a = (a1, . . . , am) ∈ Mm let f(a) =

(f(a1), . . . , f(am)).

The following lemma is obvious from the definition of an automorphism:

Lemma 1.2.10. Let M be a structure, A ⊆ M , f ∈ Aut(M/A), and a ∈ Mm. Then

tp(a/A) = tp(f(a)/A).

The converse of this result holds in a special type of structures:

Definition 1.2.11. Let M be a structure and κ a cardinal. Then M is called strongly

κ-homogeneous if for all A ⊆ M with |A| < κ and all a, b ∈ Mn, if tp(a/A) = tp(b/A)

then there exists f ∈ Aut(M/A) such that f(a) = b.

Luckily, for a given theory one can always find a model sufficiently saturated and

homogeneous:

Lemma 1.2.12 (see Theorem 6.1.7 in [TZ12]). Let T be a complete theory and κ be a

cardinal. There exists a model of T that is κ-saturated and strongly κ-homogeneous.

1.3 VC-dimension and VC-density

Throughout this section we work with a collection F of subsets of an infinite set X. We

call the pair (X,F) a set system.

Definition 1.3.1.

• Given a subset A of X, we define the set system (A,A ∩ F) where

A ∩ F = {A ∩ F | F ∈ F} .
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• For A ⊆ X we say that F shatters A if A ∩ F = P(A) (the power set of A).

Definition 1.3.2. We say (X,F) has VC-dimension n if the largest subset of X shattered

by F is of size n. If F shatters arbitrarily large subsets of X, we say that (X,F) has

infinite VC-dimension. We denote the VC-dimension of (X,F) by VC(X,F).

Note 1.3.3. We may drop X from the notation VC(X,F), as the VC-dimension doesn’t

depend on the base set and is determined by (
⋃
F ,F).

Set systems of finite VC-dimension tend to have good combinatorial properties, and

we consider set systems with infinite VC-dimension to be poorly behaved.

Another natural combinatorial notion is that of the dual system:

Definition 1.3.4. For a ∈ X define Xa = {F ∈ F | a ∈ F}. Let F∗ = {Xa | a ∈ X}. We

call (F ,F∗) the dual system of (X,F). The VC-dimension of the dual system of (X,F)

is referred to as the dual VC-dimension of (X,F) and denoted by VC∗(F). (As before,

this notion doesn’t depend on X.)

Lemma 1.3.5 (see 2.13b in [Ass83]). A set system (X,F) has finite VC-dimension if

and only if its dual system has finite VC-dimension. More precisely

VC∗(F) ≤ 21+VC(F).

For a more refined notion of complexity of (X,F) we look at the traces of our family

on finite sets:

Definition 1.3.6. Define the shatter function πF : N−→N of F and the dual shatter

function π∗F : N−→N of F by

πF(n) = max {|A ∩ F| | A ⊆ X and |A| = n} ,

π∗F(n) = max {atoms(B) | B ⊆ F , |B| = n}

where atoms(B) is the number of atoms in the boolean algebra of sets generated by B.

Note that the dual shatter function is precisely the shatter function of the dual system:

π∗F = πF∗ .
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A simple upper bound is πF(n) ≤ 2n (same for the dual). If the VC-dimension of F

is infinite then clearly πF(n) = 2n for all n. Conversely we have the following remarkable

fact:

Theorem 1.3.7 (see [Sau72], [She72]). If the set system (X,F) has finite VC-dimension

d then πF(n) ≤
(
n
≤d

)
for all n, where

(
n
≤d

)
=
(
n
d

)
+
(
n
d−1

)
+ . . .+

(
n
1

)
.

Thus the systems with a finite VC-dimension are precisely the systems where the

shatter function grows polynomially. The VC-density of F quantifies the growth of the

shatter function of F :

Definition 1.3.8. Define the VC-density and dual VC-density of F as

vc(F) = lim sup
n→∞

log πF(n)

log n
∈ R≥0 ∪ {+∞} ,

vc∗(F) = lim sup
n→∞

log π∗F(n)

log n
∈ R≥0 ∪ {+∞} .

Generally speaking, a shatter function that is bounded by a polynomial doesn’t itself

have to be a polynomial. Proposition 4.12 in [ADH16] gives an example of a shatter

function that grows like n log n (so it has VC-density 1).

So far the notions that we have defined are purely combinatorial. We now adapt

VC-dimension and VC-density to the model theoretic context.

Definition 1.3.9. Work in a first-order structure M. Fix a finite collection of formulas

Φ(x, y) in the language L(M) of M.

• For φ(x, y) ∈ L(M) and b ∈M |y| let

φ(M |x|, b) = {a ∈M |x| | φ(a, b)} ⊆M |x|.

• Let Φ(M |x|,M |y|) = {φ(M |x|, b) | φ ∈ Φ, b ∈M |y|} ⊆ P(M |x|).

• Let FΦ = Φ(M |x|,M |y|), giving rise to a set system (M |x|,FΦ).
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• Define the VC-dimension VC(Φ) of Φ to be the VC-dimension of (M |x|,FΦ), simi-

larly for the dual.

• Define the VC-density vc(Φ) of Φ to be the VC-density of (M |x|,FΦ), similarly for

the dual.

We will also refer to the VC-density and VC-dimension of a single formula φ by viewing

it as a one element collection Φ = {φ}.

Counting atoms of a boolean algebra in a model theoretic setting corresponds to

counting types, so it is instructive to rewrite the shatter function in terms of types.

Definition 1.3.10.

π∗Φ(n) = max {number of Φ-types over B | B ⊆M, |B| = n} .

Here a Φ-type over B is a maximal consistent collection of formulas of the form φ(x, b) or

¬φ(x, b) where φ ∈ Φ and b ∈ B.

The functions π∗Φ and π∗FΦ
do not have to agree, as one fixes the number of generators

of a boolean algebra of sets and the other fixes the size of the parameter set. However, as

the following lemma demonstrates, they both give the same asymptotic definition of dual

VC-density.

Lemma 1.3.11.

vc∗(Φ) = degree of polynomial growth of π∗Φ(n) = lim sup
n→∞

log π∗Φ(n)

log n
.

Proof. With a parameter set B of size n, we get at most |Φ|n sets φ(M |x|, b) with φ ∈

Φ, b ∈ B. We check that asymptotically it doesn’t matter whether we look at growth of

boolean algebra of sets generated by n or by |Φ|n many sets. We have:

π∗FΦ
(n) ≤ π∗Φ(n) ≤ π∗FΦ

(|Φ|n) .
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Hence:

vc∗(Φ) ≤ lim sup
n→∞

log π∗Φ(n)

log n
≤ lim sup

n→∞

log π∗FΦ
(|Φ|n)

log n
=

= lim sup
n→∞

log π∗FΦ
(|Φ|n)

log |Φ|n
log |Φ|n

log n
= lim sup

n→∞

log π∗FΦ
(|Φ|n)

log |Φ|n
≤

≤ lim sup
n→∞

log π∗FΦ
(n)

log n
= vc∗(Φ).

One can check that the shatter function and hence VC-dimension and VC-density of

a formula are elementary notions, so they only depend on the first-order theory of the

structure M.

NIP theories are a natural context for studying VC-density. In fact, we can take the

following as the definition of NIP:

Definition 1.3.12. Define φ to be NIP if it has finite VC-dimension in a theory T . A

theory T is NIP if all the formulas in T are NIP.

In a general combinatorial context (for arbitrary set systems), VC-density can be any

real number in 0 ∪ [1,∞) (see [Ass85]). Less is known if we restrict our attention to NIP

theories. Proposition 4.6 in [ADH16] gives examples of formulas that have non-integer

rational VC-density in an NIP theory, however it is open whether one can get an irrational

VC-density in this model-theoretic setting.

Instead of working with a theory formula by formula, we can look for a uniform bound

for all formulas:

Definition 1.3.13. For a given NIP structure M, define the VC-density function

vcM(n) = sup{vc∗(φ(x, y)) | φ ∈ L(M), |x| = n}

= sup{vc(φ(x, y)) | φ ∈ L(M), |y| = n} ∈ R≥0 ∪ {+∞} .

12



As before this definition is elementary, so it only depends on the theory of M. We

omit the superscript M if it is understood from the context. One can easily check the

following bounds:

Lemma 1.3.14 (Lemma 3.22 in [ADH16]). We have vc(1) ≥ 1 and vc(n) ≥ n vc(1).

However, it is not known whether the second inequality can be strict or even just

whether vc(1) <∞ implies vc(n) <∞.

1.4 Dp-rank and dp-minimality

Dp-rank is a popular dimension notion used in the study of NIP theories, and is used to

define dp-minimality. Those notions originated in [She14], and were further studied in

[KOU13], where it was shown, for example, that dp-rank is additive. Here it is easiest for

us to introduce dp-rank in terms of VC-density over indiscernible sequences.

Definition 1.4.1.

• Work in an ℵ1-saturated structure M. Fix a finite collection of formulas Φ(x, y) in

the language of M. Suppose A = (ai)i∈N is an ∅-indiscernible sequence with each

ai ∈M |x|. Let

Φ(A,M |y|) = {φ(A, b) | φ ∈ Φ, b ∈M |y|} ⊆ P(M |x|).

This gives a rise to a set system (M |x|,Φ(A,M |y|)).

• Define

vcind(Φ) = sup
{

vc(Φ(A,M |y|)) | A = (ai)i∈N is ∅-indiscernible
}
.

• The dp-rank of an ℵ1-saturated structure M is ≤ n if vcind(φ) ≤ n for all formulas

φ.

• The dp-rank of a theory T is ≤ n if dp-rank is ≤ n for any (each) ℵ1-saturated

model of T .
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• A theory T is said to have a finite dp-rank if its dp-rank is ≤ n for some n.

• A theory T is dp-minimal if its dp-rank ≤ 1.

Refer to [GH14] for the connection between the classical definition of dp-rank and the

definition given here.

There is a characterization of dp-minimality in terms of indiscernible sequences that

will be useful for what we do:

Lemma 1.4.2 (see Lemma 1.4 in [Sim11]). Suppose M is an ℵ1-saturated structure. Then

the following are equivalent:

• M is dp-minimal.

• For any countable ∅-indiscernible sequence (ai)i∈I indexed by a dense linear order

I, and any c ∈ M , there is i0 in the completion of I such that the two sequences

(tp(ai/c) | i < i0) and (tp(ai/c) | i > i0) are constant.
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CHAPTER 2

Trees

In this chapter we establish an optimal bound on the VC-density function in the theory

of infinite trees. This generalizes a result of Simon showing that trees are dp-minimal.

We work with trees viewed as posets. Parigot in [Par82] showed that such structures

have NIP. This result was strengthened by Simon in [Sim11] showing that trees are dp-

minimal. The paper [ADH16] poses the following problem:

Problem 2.0.3. (see section 6.3 in [ADH16]) Determine the VC-density function of each

infinite tree.

Here we solve this problem by showing that any infinite model of the theory of trees

has vc(n) = n for each n.

In Section 1 we introduce proper subdivisions – the main tool that we use to analyze

trees. We also prove some basic properties of proper subdivisions. Section 2 introduces

the key constructions of proper subdivisions which will be used in the proof. Section 3

presents the proof of vc(n) = n via subdivisions. In the concluding section we state open

questions and outline future work.

The language of trees consists of a single binary predicate symbol ≤. The theory of

trees states that ≤ defines a partial order and that for every element a the set {x | x ≤ a}

is linearly ordered by ≤. For visualization purposes we assume that trees grow upwards,

with the smaller elements on the bottom and the larger elements on the top. If a ≤ b we

will say that a is below b and b is above a.

Definition 2.0.4. Work in a tree T = (T,≤). For x ∈ T let T≤x = {t ∈ T | t ≤ x}
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denote the set of all elements of T below x. Two elements a, b are said to be in same

connected component if T≤a ∩ T≤b is non-empty. The meet of two elements a, b of T is

the greatest element of T≤a ∩ T≤b (if one exists) and is denoted by a ∧ b.

The theory of meet trees requires that any two elements in the same connected com-

ponent have a meet. Colored trees are trees with a finite number of colors added via

unary predicates.

From now on assume that all trees are colored. We allow our trees to be disconnected

(so really, we work with forests) or finite unless otherwise stated.

2.1 Proper Subdivisions: Definition and Properties

We work with finite relational languages. Given a formula we define its complexity as the

depth of quantifiers used to build up the formula. More precisely:

Definition 2.1.1. Define the complexity of a formula by induction:

Complexity(q.f. formula) = 0

Complexity(∃xφ(x)) = Complexity(φ(x)) + 1

Complexity(φ ∧ ψ) = max(Complexity(φ),Complexity(ψ))

Complexity(¬φ) = Complexity(φ)

A simple inductive argument verifies that there are (up to logical equivalence) only

finitely many formulas when the complexity and free variables are fixed. We will use the

following notation for types:

Definition 2.1.2. Let B be a structure, A ⊆ B be a finite parameter set, a, b be tuples

in B, and m,n be natural numbers.

• tpnB(a/A) will stand for the set of all A-formulas of complexity ≤ n that are true

of a in B. If A = ∅ we may also write this as tpnB(a). The subscript B will be
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omitted as well if it is clear from context. Note that if A is finite, then there are

finitely many such formulas (up to equivalence and renaming free variables). The

conjunction of finitely many formulas of complexity ≤ n still has complexity ≤ n

and so we can just associate a single formula with complexity ≤ n to every type

tpnB(a/A) defining the set of realizations of tpnB(a/A) in B.

• B |= a ≡nA b means that a, b have the same type with complexity ≤ n over A in B,

i.e., tpnB(a/A) = tpnB(b/A).

• SnB,m(A) will stand for the set of all m-types of complexity ≤ n over A:

SnB,m(A) = {tpnB(a/A) | a ∈ Bm} .

Definition 2.1.3.

• Let A, B, T be structures in some (possibly different) finite relational languages. If

the underlying sets A,B of A,B partition the underlying set T of T (i.e. T = AtB),

then we say that (A,B) is a subdivision of T .

• A subdivision (A,B) of T is called n-proper if given p, q ∈ N, a1, a2 ∈ Ap and

b1, b2 ∈ Bq with

A |= a1 ≡n a2

B |= b1 ≡n b2

we have

T |= a1b1 ≡n a2b2.

• A subdivision (A,B) of T is called proper if it is n-proper for all n ∈ N.

Lemma 2.1.4. Consider a subdivision (A,B) of T . If (A,B) is 0-proper then it is

proper.
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Proof. We prove that the subdivision (A,B) is n-proper for all n by induction. The case

n = 0 is given by the assumption. Suppose we have T |= ∃xφn(x, a1, b1) where φn is some

formula of complexity n. Let a ∈ T witness the existential claim, i.e., T |= φn(a, a1, b1).

We can have a ∈ A or a ∈ B. Without loss of generality assume a ∈ A. Let p = tpnA(a, a1).

Then we have

A |= ∃x tpnA(x, a1) = p

(with tpnA(x, a1) = p a shorthand for φp(x) where φp is a formula that determines the

type p). The formula tpnA(x, a1) = p is of complexity ≤ n so ∃x tpnA(x, a1) = p is of

complexity ≤ n+ 1. By the inductive hypothesis we have

A |= ∃x tpnA(x, a2) = p .

Let a′ witness this existential claim, so that tpnA(a′, a2) = p, hence tpnA(a′, a2) = tpnA(a, a1),

that is, A |= a′a2 ≡n aa1. By the inductive hypothesis we therefore have T |= aa1b1 ≡n

a′a2b2; in particular T |= φn(a′, a2, b2) as T |= φn(a, a1, b1), and T |= ∃xφn(x, a2, b2).

This lemma is general, but we will use it specifically applied to (colored) trees. Suppose

T is a (colored) tree in some language L = {≤, . . .} expanding the language of trees by

finitely many predicate symbols. Suppose A,B are some structures in languages LA,LB

which expand L, with the L-reducts of A,B substructures of T . Furthermore suppose

that (A,B) is 0-proper. Then by the previous lemma (A,B) is a proper subdivision of

T . From now on all the subdivisions we work with will be of this form.

Example 2.1.5. Suppose a tree consists of two connected components C1, C2. Then

those components (C1,≤), (C2,≤) viewed as substructures form a proper subdivision. To

see this we only need to show that this subdivision is 0-proper. But that is immediate as

any c1 ∈ C1 and c2 ∈ C2 are incomparable.

Example 2.1.6. Fix a tree T in the language {≤}, and let a ∈ T . Let B = {t ∈ T |

a < t}, S = {t ∈ T | t ≤ a}, A = T − B. Then (A,≤, S) and (B,≤) form a proper
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subdivision, where LA has a unary predicate interpreted by S. To see this, again, we show

that the subdivision is 0-proper. The only time a ∈ A and b ∈ B are comparable is when

a ∈ S, and this is captured by the language. (See proof of Lemma 2.2.7 for more details.)

Definition 2.1.7. For φ(x, y), A ⊆ T |x| and B ⊆ T |y|

• let φ(A, b) = {a ∈ A | φ(a, b)} ⊆ A, and

• let φ(A,B) = {φ(A, b) | b ∈ B} ⊆ P(A).

Thus φ(A,B) is a collection of subsets of A definable by φ with parameters from B.

We notice the following bound when A,B are parts of a proper subdivision.

Corollary 2.1.8. Let A,B be a proper subdivision of T and φ(x, y) be a formula of

complexity n. Then |φ(A|x|, B|y|)| ≤ |SnB,|y||.

Proof. Take some a ∈ A|x| and b1, b2 ∈ B|y| with tpnB(b1) = tpnB(b2). We have B |= b1 ≡n

b2 and (trivially) A |= a ≡n a. Thus we have T |= ab1 ≡n ab2, so T |= φ(a, b1)↔ φ(a, b2).

Since a was arbitrary we have φ(A|x|, b1) = φ(A|x|, b2) as different traces can only come

from parameters of different types. Thus |φ(A|x|, B|y|) ≤ |SnB,|y||.

We note that the size of the type space |SnB,|y|| can be bounded uniformly:

Definition 2.1.9. Fix a (finite relational) language LB. Let N = N(n,m,LB) be smallest

integer such that for any structure B in LB we have |SnB,m| ≤ N . This integer exists as

there is a finite number (up to logical equivalence) of possible formulas of complexity ≤ n

with free variables x1, x2, . . . , xm. Note that N(n,m,LB) is increasing in all parameters:

n ≤ n′,m ≤ m′,LB ⊆ L′B ⇒ N(n,m,LB) ≤ N(n′,m′,L′B).

2.2 Proper Subdivisions: Constructions

Throughout this section, T = (T,≤, C1, . . . , Cn) denotes a colored meet tree. First, we

describe several constructions of proper subdivisions that are needed for the proof of our
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main theorem.

Definition 2.2.1. We use E(b, c) to express that b and c are in the same connected

component of T :

E(b, c)⇔ ∃x (b ≥ x) ∧ (c ≥ x).

Definition 2.2.2. Given an element a of the tree T we call the set of all elements strictly

above a, i.e., the set T>a = {x | x > a}, the open cone above a. Connected components

of that cone can be thought of as closed cones above a. With that interpretation in mind,

the notation Ea(b, c) means that b and c are in the same closed cone above a. More

formally:

Ea(b, c)⇔ E(b, c) and (b ∧ c) > a.

Fix a language for our colored tree L = {≤, C1, . . . Cn}. Put ~C = {C1, . . . Cn}. Given

A ⊆ T we put ~C∩A = {C1 ∩ A, . . . , Cn ∩ A}. In that case (A,≤, ~C∩A) is a substructure

of T (here as usual by abuse of notation ≤ denotes the restriction of the ordering ≤ of T

to A.) For the following four definitions fix an expansion L∗ = L ∪ {U} of the language

L by a unary predicate symbol U . We refer to the figures below for illustrations of these

definitions.

Definition 2.2.3. Fix c1 < c2 in T . Let

B = {b ∈ T | Ec1(c2, b) ∧ ¬(b ≥ c2)},

A = T −B,

T<c1 = {t ∈ T | t < c1},

T<c2 = {t ∈ T | t < c2},

SB = T<c2 − T<c1 ,

T≥c2 = {t ∈ T | c2 ≤ t}.

Define structures Ac1
c2

= (A,≤, ~C∩A, T<c1 , T≥c2) in a language expanding L by two unary

predicate symbols and Bc1
c2

= (B,≤, ~C ∩ B, SB) in the language L∗ (as defined above).

Note that c1, c2 /∈ B.
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c1

c2

A

B

Figure 2.1: Proper subdivision (A,B) = (Ac1
c2
,Bc1

c2
)

c1

c2

A

B

Figure 2.2: Proper subdivision (A,B) = (Ac1 ,Bc1)
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c1

c2

A

B

Figure 2.3: Proper subdivision (A,B) = (Ac1
S ,B

c1
S ) for S = {c2}

c1

c2

A

B

Figure 2.4: Proper subdivision (A,B) = (AS,BS) for S = {c1, c2}
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Definition 2.2.4. Fix c in T . Let

B = {b ∈ T | ¬(b ≥ c) ∧ E(b, c)},

A = T −B,

T<c1 = {t ∈ T | t < c}.

Define structures Ac = (A,≤, ~C ∩A) in the language L and Bc = (B,≤, ~C ∩B, T<c1) in

the language L∗. Note that c /∈ B. (cf. example 2.1.6).

Definition 2.2.5. Fix c in T and a finite subset S ⊆ T . Let

B = {b ∈ T | (b > c) and for all s ∈ S we have ¬Ec(s, b)},

A = T −B,

T≤c1 = {t ∈ T | t ≤ c}.

Define structures Ac
S = (A,≤, ~C ∩ A, T≤c1) and Bc

S = (B,≤, ~C ∩ B,B) both in the

language L∗. Note that c /∈ B and S ∩B = ∅.

Definition 2.2.6. Fix a finite subset S ⊆ T . Let

B = {b ∈ T | for all s ∈ S we have ¬E(s, b)},

A = T −B.

Define structures AS = (A,≤, ~C ∩ A) in the language L and BS = (B,≤, ~C ∩ B,B) in

the language L∗. (cf. example 2.1.5)

Note that we forced the structures Bc1
c2
,Bc,B

c
S,BS to have the same language L∗.

This is done for uniformity to simplify Lemma 2.3.1. By comparison, the corresponding

structures denoted by A with decorations have different languages.

Lemma 2.2.7. The pairs of structures defined above are all proper subdivisions of T .

Proof. We only show this holds for the pair (A,B) = (Ac1
c2
,Bc1

c2
). The other cases follow

by a similar argument. The sets A,B partition T by definition, so (A,B) is a subdivision
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of T . To show that it is proper, by Lemma 2.1.4 we only need to check that it is 0-proper.

Suppose we have

a = (a1, a2, . . . , ap) ∈ Ap,

a′ = (a′1, a
′
2, . . . , a

′
p) ∈ Ap,

b = (b1, b2, . . . , bq) ∈ Bq,

b′ = (b′1, b
′
2, . . . , b

′
q) ∈ Bq,

with A |= a ≡0 a
′ and B |= b ≡0 b

′. We need to show that ab has the same quantifier-free

type in T as a′b′. Any two elements in T can be related in the four following ways:

x = y,

x < y,

x > y, or

x, y are incomparable.

We need to check that for all i, j the same relations hold for (ai, bj) as do for (a′i, b
′
j).

• It is impossible that ai = bj as they come from disjoint sets.

• Suppose ai < bj. This forces ai ∈ T<c1 thus a′i ∈ T<c1 and a′i < b′j.

• Suppose ai > bj. This forces bj ∈ SB and a ∈ T≥c2 , thus b′j ∈ SB and a′i ∈ T≥c2 , so

a′i > b′j.

• Suppose ai and bj are incomparable. Two cases are possible:

– bj /∈ SB and ai ∈ T≥c2 . Then b′j /∈ SB and a′i ∈ T≥c2 making a′i, b
′
j incomparable.

– bj ∈ SB, ai /∈ T≥c2 , ai /∈ T<c1 . Similarly this forces a′i, b
′
j to be incomparable.

Also we need to check that ab has the same colors as a′b′. But that is immediate as having

the same color in a substructure means having the same color in the tree.
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2.3 Main proof

The basic idea for the proof is as follows. Suppose we have a formula with q parameters

over a parameter set of size n. We are able to split our parameter space into O(n) many

sets by designating subdivisions described in the previous section based on the parameter

set (see figures in the previous section for an example of a partition of the tree into four

sets using parameter set {c1, c2}). Each of the q parameters can come from any of those

O(n) components giving us O(n)q many choices for parameter configuration. When every

parameter is coming from a fixed component, the number of definable sets is constant and

in fact is uniformly bounded above by some N (independent of the parameter set). This

gives us at most N ·O(n)q possibilities for different definable sets.

First, we generalize Corollary 2.1.8. (This is required for computing VC-density of

formulas φ(x, y) with |y| > 1).

Lemma 2.3.1. Consider a finite collection (Ai,Bi)i≤n satisfying the following properties:

• (Ai,Bi) is either a proper subdivision of T or Ai = T and Bi = {bi},

• all Bi have the same language L∗, and

• the sets {Bi}i≤n are pairwise disjoint.

Let A =
⋂
i∈I Ai. Fix a formula φ(x, y) of complexity m . Let N = N(m, |y|,L∗) be as in

Definition 2.1.9. Let B = Bi1
1 ×Bi2

2 × . . .×Bin
n ⊆ T |y| where i1 + i2 + . . .+ in = |y| (some

of the indices can be zero). Then we have the following bound:

φ(A|x|, B) ≤ N |y|.

Proof. We show this result by counting types.
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Claim 2.3.2. Suppose we have

b1, b
′
1 ∈ B

i1
1 with b1 ≡m b′1 in B1,

b2, b
′
2 ∈ B

i2
2 with b2 ≡m b′2 in B2,

· · ·

bn, b
′
n ∈ Bin

n with bn ≡m b′n in Bn .

Then

φ(A|x|, b1, b2, . . . bn) ⇐⇒ φ(A|x|, b′1, b
′
2, . . . b

′
n).

Proof. Define b̄i = (b1, . . . , bi, b
′
i+1, . . . , b

′
n) ∈ B for i = 0, . . . , n. We have

φ(A|x|, b̄i) ⇐⇒ φ(A|x|, b̄i+1),

as either (Ai+1,Bi+1) is m-proper or Bi+1 is a singleton, and the implication is trivial.

(Notice that bi ∈ Aj for j 6= i by disjointness assumption.) Thus, by induction we get

φ(A|x|, b̄0) ⇐⇒ φ(A|x|, b̄n) as needed.

Thus φ(A|x|, B) only depends on the choice of the types for the tuples:

|φ(A|x|, B)| ≤ |SmB1,i1
| · |SmB2,i2

| · . . . · |SmBn,in|

Now for each type space we have an inequality

|SmBj ,ij
| ≤ N(m, ij,L∗) ≤ N(m, |y|,L∗) ≤ N.

(For singletons |SmBj ,ij
| = 1 ≤ N). Only non-zero indices contribute to the product and

there are at most |y| of those (by the equality i1 + i2 + . . .+ in = |y|). Thus we have

|φ(A|x|, B)| ≤ N |y|

as needed.

For subdivisions to work out properly, we will need to pass to subsets closed under

meets. We observe that the closure under meets doesn’t add too many new elements:
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Lemma 2.3.3. Suppose S ⊆ T is a finite subset of size n ≥ 1 in a meet tree and S ′ is

its closure under meets. Then |S ′| ≤ 2n− 1.

Proof. We can partition S into connected components and prove the result separately

for each component. Thus we may assume all elements of S lie in the same connected

component. We prove the claim by induction on n. The base case n = 1 is clear. Suppose

we have S of size k with closure of size at most 2k − 1. Take a new point s, and look

at its meets with all the elements of S. Those are linearly ordered, so we can pick the

smallest one, s′. Then S ∪ {s, s′} is closed under meets.

Putting all of those results together we are able to compute the VC-density of formulas

in meet trees:

Theorem 2.3.4. Let T be an infinite (colored) meet tree and φ(x, y) a formula with

|x| = p and |y| = q. Then vc(φ) ≤ q.

Proof. Pick a finite subset of S0 ⊆ T p of size n. Let S1 ⊆ T consist of the components of

the elements of S0. Let S ⊆ T be the closure of S1 under meets. Using Lemma 2.3.3 we

have |S| ≤ 2|S1| ≤ 2p|S0| = 2pn = O(n). We have S0 ⊆ Sp, so |φ(S0, T
q)| ≤ |φ(Sp, T q)|.

Thus it is enough to show |φ(Sp, T q)| = O(nq).

Label S = {ci}i∈I with |I| ≤ 2pn. For every ci we construct two subdivisions in the

following way. We have that ci is either minimal in S or it has a predecessor in S (greatest

element less than c). If it is minimal, construct (Aci ,Bci). If there is a predecessor p,

construct (Ap
ci
,Bp

ci
). For the second subdivision let G be all the elements in S greater

than ci and construct (Ac
G,B

c
G). So far we have constructed two subdivisions for every

i ∈ I. Additionally construct (AS,BS). We end up with a finite collection of proper

subdivisions (Aj,Bj)j∈J with |J | = 2|I| + 1. Before we proceed, we note the following

two lemmas describing our subdivisions.

Lemma 2.3.5. For all j ∈ J we have S ⊆ Aj. Thus S ⊆
⋂
j∈J Aj and Sp ⊆

⋂
j∈J(Aj)

p.
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Proof. Check this for each possible choice of subdivision. Cases for subdivisions of the

type AS,A
c
G,Ac are easy. Suppose we have a subdivision (A,B) = (Ac1

c2
,Bc1

c2
). We need

to show that B ∩ S = ∅. By construction we have c1, c2 /∈ B. Suppose we have some

other c ∈ S with c ∈ B. We have Ec1(c2, c), i.e., there is some b such that b > c1, b ≤ c2

and b ≤ c. Consider the meet c ∧ c2. We have c ∧ c2 ≥ b > c1. Also as ¬(c ≥ c2) we have

c ∧ c2 < c2. To summarize: c2 > c ∧ c2 > c1. But this contradicts our construction as S

is closed under meets, so c∧ c2 ∈ S and c1 is supposed to be a predecessor of c2 in S.

Lemma 2.3.6. {Bj}j∈J is a partition of T − S, i.e., T =
⊔
j∈J Bj t S.

Proof. This more or less follows from the choice of subdivisions. Pick any b ∈ T −S. Let

a be the minimal element of S with a > b, and let c be the maximal element of S with

c < b (if such elements exist). Also let G be the set of elements of S incomparable to b.

If both a and c exist we have b ∈ Ba
c . If only the upper bound exists we have b ∈ Ba

G. If

only the lower bound exists we have b ∈ Bc. If neither exists we have b ∈ BG.

Note that those two lemmas imply S =
⋂
j∈J Aj.

For the one-dimensional case q = 1 we don’t need to do any more work. We have par-

titioned the parameter space into |J | = O(n) many pieces and over each piece the number

of definable sets is uniformly bounded. By Corollary 2.1.8 we have that |φ((Aj)
p, Bj)| ≤ N

for any j ∈ J (letting N = N(nφ, q,L ∪ {S}) where nφ is the complexity of φ and S is a

unary predicate). Compute

|φ(Sp, T )| =

∣∣∣∣∣⋃
j∈J

φ(Sp, Bj) ∪ φ(Sp, S)

∣∣∣∣∣ ≤
≤
∑
j∈J

|φ(Sp, Bj)|+ |φ(Sp, S)| ≤

≤
∑
j∈J

|φ((Aj)
p, Bj)|+ |S| ≤

≤
∑
j∈J

N + |I| ≤

≤ (4pn+ 1)N + 2pn = (4pN + 2p)n+N = O(n).
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The basic idea for the general case q ≥ 1 is that we have q parameters and |J | = O(n)

many components to pick each parameter from, giving us |J |q = O(nq) choices for the

parameter configuration, each giving a uniformly constant number of definable subsets

of S. (If every parameter is picked from a fixed component, Lemma 2.3.1 provides a

uniform bound). This yields vc(φ) ≤ q as needed. The rest of the proof is stating this

idea formally.

First, we extend our collection of subdivisions (Aj,Bj)j∈J by the following singleton

sets. For each ci ∈ S let Ai = T,Bi = {ci} and add (Ai,Bi) to our collection with U in the

language L∗ of Bi interpreted arbitrarily. We end up with a new collection (Ak,Bk)k∈K

indexed by some set K with |K| = |I|+ |J | (we added |S| many new pairs). Now {Bk}k∈K
partitions T , so T =

⊔
k∈K Bk and S =

⋂
j∈J Aj =

⋂
k∈K Ak. For (k1, k2, . . . kq) = ~k ∈ Kq

denote

B~k = Bk1 ×Bk2 × . . .×Bkq .

Then we have the following identity

T q = (
⊔
k∈K

Bk)
q =

⊔
~k∈Kq

B~k.

Thus we have that {B~k}~k∈Kq partition T q. Compute

|φ(Sp, T q)| =

∣∣∣∣∣∣
⋃
~k∈Kq

φ(Sp, B~k)

∣∣∣∣∣∣ ≤
≤
∑
~k∈Kq

|φ(Sp, B~k)|.

We can bound |φ(Sp, B~k)| uniformly using Lemma 2.3.1. The family (Ak,Bk)k∈K satisfies

the requirements of the lemma and B~k looks like B in the lemma after possibly permuting

some variables in φ. (For example we would need to permute B(2,1,2) = B2×B1×B2 into

B1 ×B2
2 so it has the appropriate form for Lemma 2.3.1.) Applying the lemma we get

|φ(Sp, B~k)| ≤ N q
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with N only depending on q and the complexity of φ. We complete our computation:

|φ(Sp, T q)| ≤
∑
~k∈Kq

|φ(Sp, B~k)| ≤
∑
~k∈Kq

N q ≤

≤ |Kq|N q ≤ (|J |+ |I|)qN q ≤

≤ (4pn+ 1 + 2pn)qN q = N q(6p+ 1/n)qnq = O(nq).

Corollary 2.3.7. In the theory of infinite (colored) meet trees we have vc(n) = n for all

n.

We get the general result for trees that aren’t necessarily meet trees via an easy

application of interpretability.

Corollary 2.3.8. In the theory of infinite (colored) trees we have vc(n) = n for all n.

Proof. Let T ′ be a tree. We can embed it in a larger tree T that is closed under meets.

Expand T by an extra color and interpret it by coloring the subset T ′. Thus we can

interpret T ′ in T . By Corollary 3.17 in [ADH16] we get that vcT
′
(n) ≤ vcT (1 · n) = n

thus vcT
′
(n) = n as well.

2.4 Conclusion

This settles the question of determining VC-density function for infinite trees. Lacking a

quantifier elimination result in a natural language, a lot is still not known. One can try

to adapt these techniques to compute the VC-density on the formula by formula basis:

Open Question 2.4.1. What is the VC-density of individual formulas in infinite trees?

Can it take non-integer values?

It is also not known whether trees have the VC 1 property (see Definition 5.2 in

[ADH16]; this is a quantified formulation of uniform definability of types over finite sets).
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It seems that our techniques can be used to show that the VC 2 property holds but this

doesn’t give the optimal VC-density function.

Open Question 2.4.2. For which n do infinite trees have the VC n property?

One can also try to apply similar techniques to more general classes of partially ordered

sets. For example, the VC-density function is not known for lattices, and it is also not

known whether lattices are dp-minimal. Similarly, relaxing the ordering condition, one

can look at nicely behaved families of graphs, such as planar graphs or flat graphs (see

[PZ78]). Those are known to be dp-minimal (see Theorem 5.3.4), so one would expect a

simple VC-density function. It is this author’s hope that the techniques developed in this

chapter can be adapted to yield fruitful results for such more general classes of structures.
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CHAPTER 3

Shelah-Spencer Graphs

In this chapter we investigate VC-density of definable sets in Shelah-Spencer graphs. We

provide an upper bound on a formula-by-formula basis and show that there isn’t a uniform

lower bound, forcing the VC-density function to be infinite. In addition we show that

Shelah-Spencer graphs do not have a finite dp-rank, thus, in particular, they are not

dp-minimal.

A Shelah-Spencer graph is a limit of random structures G(n, n−α) for an irrational

α ∈ (0, 1). Here G(n, n−α) is a random graph on n vertices with edge probability n−α.

(The model theory of G(n, n−α) as n→∞ is much less pleasant if α ∈ (0, 1) is rational,

see [BL12].) In [SS88] Shelah and Spencer showed that such structures have a 0-1 law,

thus obtaining a complete (first-order) theory of Shelah-Spencer graphs. These structures

are of a general combinatorial interest as well. For example, [ABC95] computes the

VC-dimension of neighborhood sets in finite Shelah-Spencer graphs. Our treatment of

Shelah-Spencer graphs closely follows the one in [Las07].

Our first result is that Shelah-Spencer graphs have vc(n) =∞ for each n. Our second

result gives an upper bound on the VC-density of a given formula φ(x, y):

vc(φ) ≤
⌊
|y|K(Φ)

ε(Φ)

⌋
where K(φ), ε(φ) are explicitly computable expressions involving the number of vertices

and edges defined by φ. For example, let φ(x, y) be a formula that says that there is an

edge between x and y. Our bound gives vc(φ) ≤
⌊

2
α

⌋
. With a more careful computation

one can get the exact value vc(φ) =
⌊

1
α

⌋
(see 4.9 in [ADH16]).
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Section 1 summarizes notation and basic facts concerning Shelah-Spencer graphs. We

direct the reader to [Las07] for a more in-depth treatment. In Section 2 we introduce

key lemmas that will be useful in our proofs. Section 3 computes a lower bound for

VC-density to demonstrate that vc(n) = ∞. We also do some computations involving

dp-rank. Section 4 computes an upper bound for VC-density on a formula-by-formula

basis. The concluding section discusses open questions and future work.

3.1 Graph Combinatorics

Throughout this chapter A,B,C,M (sometimes with decorations) denote finite graphs,

and D is used to denote potentially infinite graphs. All graphs are undirected and asym-

metric. For a graph A the set of its vertices is denoted by v(A), and the set of its edges

by e(A). The number of vertices of A is denoted by |A|. Subgraph always means induced

subgraph and A ⊆ D means that A is a subgraph of D. For two subgraphs A,B of a

larger graph, the union A∪B denotes the graph induced by v(A)∪v(B). Similarly, A−B

means a subgraph of A induced by the vertices of v(A) − v(B). For A ⊆ B ⊆ D and

A ⊆ C ⊆ D, graphs B,C are said to be disjoint over A if v(B) − v(A) is disjoint from

v(C) − v(A) and there are no edges from v(B) − v(A) to v(C) − v(A) in D. We often

confuse a tuple of vertices a = (a1, . . . , an) ∈ Dn with the subgraph a = {a1, . . . , an} ⊆ D.

For the remainder of the chapter fix α ∈ (0, 1), irrational.

Definition 3.1.1.

• For a graph A let dim(A) = |A| − α|e(A)|. (Note that this may be negative.)

• For A,B with A ⊆ B define dim(B/A) = dim(B)− dim(A).

• We say that A ≤ B if A ⊆ B and dim(A′/A) > 0 for all A ( A′ ⊆ B.

• Define A to be positive if for all A′ ⊆ A we have dim(A′) ≥ 0.

• We work in theory Sα in the language of graphs axiomatized by the following con-
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ditions:

– Every finite substructure is positive.

– Given a model G and graphs A ≤ B, every embedding f : A−→G extends to

an embedding g : B−→G.

(Here an embedding is taken in the model-theoretic sense, of structures in the lan-

guage of graphs, so each embedding maps edges to edges and nonedges to nonedges.)

This theory is complete and stable (see 5.7 and 7.1 in [Las07]). From now on, fix

an ambient model G |= Sα. This will be the only infinite graph we work with.

• Given S ∈ N, a graph S ⊆ G is called S-strong if for any R ⊆ T ⊆ G with

|T | − |R| ≤ S we have R ≤ T .

• For A,B positive, (A,B) is called a minimal pair if we have A ⊆ B, dim(B/A) < 0

but dim(A′/A) ≥ 0 for all proper A ⊆ A′ ( B. We call B a minimal extension of

A. The dimension of a minimal pair is defined as | dim(B/A)|.

• A sequence 〈Mi〉0≤i≤n of finite graphs is called a minimal chain if (Mi,Mi+1) is a

minimal pair for all 0 ≤ i < n.

• Suppose we have a graph A with vertices v(A) = {x1, . . . , xn} with pairwise disjoint

xi. For the variable tuple of vertices x = (x1, . . . , xn) let diagA(x) be the atomic

diagram of A, i.e., the first-order formula recording whether there is an edge or a

nonedge between every pair of vertices. So for a graph D and a tuple a = (a1, . . . , an)

we have D |= diagA(a) if and only if there exists an embedding f : A−→D such that

f(xi) = ai.

• Given A ⊆ B let

φA,B(x) = diagA(x) ∧ ∃z diagB(x, z).

Any graph isomorphic to B is called a witness of φA,B. Work in a graph D. Suppose

D |= φA,B(a) for some tuple a = (a1, . . . , am) and we have a finite subgraph B′ ⊆ D
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with vertices v(B′) = {b1, . . . bn} such that bi = ai for i = 1, . . . ,m and D |=

diagB(b). In this case we call such a graph B′ a witness of φA,B(a).

• A formula φA,B is called a basic formula if there is a minimal chain 〈Mi〉0≤i≤n such

that A = M0 and B = Mn. We also denote such a formula by φ〈Mi〉0≤i≤n .

Theorem 3.1.2 (Quantifier simplification, 5.6 in [Las07]). In the theory Sα every formula

is equivalent to a boolean combination of basic formulas.

3.2 Basic Definitions and Lemmas

We require the following lemmas from [Las07]:

Lemma 3.2.1. [See 2.3 in [Las07]] Let A,B ⊆ D. Then

dim(A ∪B/A) ≤ dim(B/A ∩B).

Moreover,

dim(A ∪B/A) = dim(B/A ∩B)− αE,

where E is the number of edges connecting the vertices of B−A to the vertices of A−B.

Lemma 3.2.2. [See 4.1 in [Las07]] Suppose A is a positive graph with d1/αe+2 vertices.

Then for any ε > 0 there exists a graph B such that (A,B) is a minimal pair with

dimension ≤ ε. Moreover, every vertex in A is connected to a vertex in B − A.

Lemma 3.2.3. [See 4.4 in [Las07]] Suppose we have A ⊆ G. Then for any integer S ≥ 0

there exists an embedding f : A−→G such that f(A) is S-strong in G.

Lemma 3.2.4. [See 3.8 in [Las07]] For all S > 0 there exists M = M(S, α) ∈ N with the

following property. Suppose A ⊆ G. Then there exists B with A ⊆ B ⊆ G such that B is

S-strong in G and |B| ≤M |A|.
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We conclude this section by stating a couple of technical lemmas that will be useful

in our proofs later. In these lemmas we work in some ambient graph D; that is, all the

finite graphs that come up are assumed to be subgraphs of D.

Lemma 3.2.5. Let B be a graph and (A,M) be a minimal pair with A ⊆ B and

dim(M/A) = −ε. Then either M ⊆ B or dim(M ∪B/B) < −ε.

Proof. By Lemma 3.2.1 we have

dim(M ∪B/B) ≤ dim(M/M ∩B),

and as A ⊆M ∩B ⊆M we get

dim(M/A) = dim(M/M ∩B) + dim(M ∩B/A).

In addition we are given dim(M/A) = −ε. If M 6⊆ B then A ⊆ M ∩ B ( M and by

minimality dim(M ∩ B/A) > 0. Combining the inequalities above we obtain the desired

result:

dim(M ∪B/B) ≤ dim(M/M ∩B) = dim(M/A)− dim(M ∩B/A) < −ε.

Lemma 3.2.6. Let B be a graph and 〈Mi〉0≤i≤n be a minimal chain with dimensions

dim(Mi+1/Mi) = −εi

and M0 ⊆ B. Let ε = min0≤i≤n εi. Then either Mn ⊆ B or dim((Mn ∪B)/B) < −ε.

Proof. Let M i = Mi ∪B. Then:

dim(Mn/B) = dim(Mn/Mn−1) + . . .+ dim(M2/M1) + dim(M1/B).

Either Mn ⊆ B or at least one of the summands above is nonzero. Apply the previous

lemma.
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Lemma 3.2.7. Let (A,M) be a minimal pair with dimension ε and let B ⊆M . Then

dimB/(A ∩B) ≥ −ε.

Moreover if B ∪ A 6= M then dimB/(A ∩B) ≥ 0.

Proof. We have dim(B∪A/A) ≤ dim(B/A∩B) by Lemma 3.2.1. Note that A ⊆ B∪A ⊆

M . If B ∪ A 6= M then we have dim(B ∪ A/A) ≥ 0 by minimality. If B ∪ A = M then

we have dim(B ∪ A/A) = −ε.

Lemma 3.2.8. Let 〈Mi〉0≤i≤n be a minimal chain with dimensions

dim(Mi/Mi−1) = −εi.

Let

ε =
n∑
i=1

εi,

and let B ⊆Mn. Then dim(B/M0 ∩B) ≥ −ε.

Proof. Let Bi = B∩Mi. We have dim(Bi+1/Bi) ≥ dim(Mi+1/Mi) by the previous lemma.

Thus

dim(B/M0 ∩B) = dim(Bn/B0) =
n∑
i=1

dim(Bi+1/Bi) ≥ −ε.

3.3 Lower bound

Definition 3.3.1. Suppose φA,B(x, y) is a basic formula. Define X to be the graph on

the vertices x with edges defined by φ (equivalently it is a subgraph of A induced by the

vertices x). Similarly define Y . Note that X, Y are positive as A is positive. Additionally,

let Y ′ be a subgraph of Y induced by vertices of Y that are connected to B − (X ∪ Y ).

In this section we restrict our attention to the following family of basic formulas φ(x, y):
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• All formulas have Y ′ = Y .

• All formulas define no edges between X and Y .

• The minimal chain of φ(x, y) consists of one step, that is we only have one minimal

extension as opposed to a chain of minimal extensions.

• The dimension of that minimal extension is smaller than α.

We obtain a lower bound for the formulas that are boolean combinations of basic

formulas of this type written in disjunctive-normal form. First, define εL(φ).

Definition 3.3.2.

• For a basic formula φ = φM0,M1(x, y) let ε(φ) = − dim (M1/M0).

• (Negation) If φ is a basic formula, then define

εL(¬φ) = εL(φ).

• (Conjunction) Take a finite collection of formulas φi(x, y) where each φi is a positive

or a negative basic formula and φ =
∧
i φi. If both positive and negative formulas

are present then εL(φ) =∞. We don’t have a lower bound for that case. If different

formulas define X or Y differently then let εL(φ) = ∞. In the case of conflicting

definitions, the formula would have no realizations. Otherwise, let

εL

(∧
i

φi

)
=
∑
i

εL(φi).

• (Disjunction) Take a collection of formulas ψi with each formula a conjunction as

above. Also assume that all the basic formulas that appear agree on X and Y . Then

let

εL

(∨
ψi

)
= min εL(ψi).
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Theorem 3.3.3. For a formula ψ as above we have

vc(ψ) ≥
⌊
Y (ψ)

εL(ψ)

⌋
,

where Y (ψ) = dim(Y ) (well-defined, as all basic components agree on Y ).

Proof. First, work with a formula that is a conjunction of positive basic formulas ψ =∧
i∈I φi. Then as we have defined above

εL(ψ) =
∑
i∈I

εL(φi).

If Wi is a witness of φi, let Si = |Wi|. Let n1 be the largest natural number such that

n1εL(ψ) < Y (ψ).

Let ε′ be the smallest value among εL(φi) corresponding to the formula φ′. Let n2 be the

largest natural number such that

n1εL(ψ) + n2ε
′ < Y (ψ).

Fix some N > n1 + n2. Let J be the set of first N natural numbers. Let {aj}j∈J
be a pairwise disjoint collection of graphs, where each ai is isomorphic to X. Let A =⋃

1≤j≤N aj. Let

S = |Y |+ (n1 + n2 + 1)
∑
i∈I

Si.

By Lemma 3.2.3 the graph A can be embedded into G as an S-strong graph. Abusing

notation, we identify A with this embedding. Thus we have A ⊆ G, S-strong.

Let J1, J2 be disjoint subsets of J , of sizes n1, n2 respectively. Let b be a graph

isomorphic to Y . For each i ∈ I, j ∈ J1 let Wij be a witness of φi(aj, b). (Note that then

(aj ∪ b,Wij) is a minimal pair. Also note that we are not assuming yet that Wij ⊆ G.)

For each j ∈ J1 let Wj be a union of {Wij}i∈I disjoint over aj ∪ b. For each j ∈ J2 let Wj

be a witness of φ′(aj, b). Let W ′ be a union of {Wj}j∈J1∪J2
disjoint over b. Let W be a

union of W ′ and A disjoint over {aj}j∈J1∪J2
.

39



Lemma 3.3.4. We have A ≤ W .

Proof. Consider some A ( B ⊆ W . We need to show dim(B/A) > 0. Let A = A∪ b. We

have

dim(B/A) = dim(B/B ∩ A) + dim(B ∩ A/A).

Let Bij = B ∩Wij. Let Bj = B ∩Wj. To unify indices, relabel all the graphs above as

{Bk}k∈K for some index set K. By the construction of W we have

dim(B/B ∩ A) =
∑
k∈K

dim(Bk/Bk ∩ A).

Fix k. We have Bk ⊆ Wk, where Wk is a minimal extension of Mk
0 = a ∪ b for some

a ∈ A. Let εk be the dimension of this minimal extension. We have dim(Bk/Bk ∩ A) =

dim(Bk/a ∪ (B ∩ b)).

Case 1: B ∩ b = b. Then Mk
0 ⊆ Bk ⊆ Wk and

dim(Bk/a ∪ (B ∩ b)) = dim(Bk/M
k
0 ).

By minimality of (Mk
0 , Bk) we have dim(Bk/M

k
0 ) ≥ −εk. Thus

dim(B/B ∩ A) ≥ −
∑
k∈K

εk = − (n1εL(ψ) + n2ε
′) .

In addition

dim(B ∩ A/A) = dim(b) = Y (ψ).

Combining the two, we get

dim(B/A) ≥ Y (ψ)− (n1εL(ψ) + n2ε
′) ,

which is positive by the construction of n1, n2 as needed.

Case 2: B ∩ b ( b.

Claim 3.3.5. We have dim(Bk/Bk ∩ A) > 0.
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Proof. Recall that

dim(Bk/Bk ∩ A) = dim(Bk/a ∪ (B ∩ b)).

First, suppose that Bk ∪Mk
0 6= Wk. Then by Lemma 3.2.7 we get the required inequality.

Thus we may assume that Bk ∪Mk
0 = Wk. By Lemma 3.2.1 we have

dim(Bk ∪Mk
0 /M

k
0 ) = dim(Bk/Bk ∩Mk

0 )− αE,

where E is the number of edges connecting the vertices of Bk −Mk
0 = Bk ∪Mk

0 −Mk
0 to

the vertices of Mk
0 −Bk = Mk

0 −Bk∩Mk
0 . Noting that Bk∪Mk

0 = Wk, dimWk/M
k
0 = −εk,

and Bk ∩Mk
0 = a ∪ (B ∩ b) we may rewrite the equality above as

dim(Bk/a ∪ (B ∩ b)) = αE − ε,

and E is the number of edges connecting the vertices of Wk − Mk
0 to the vertices of

Mk
0 − a ∪ (B ∩ b). As Y = Y ′ and B ∩ b ( b we must have E ≥ 1. But then as α > ε we

have dim(Bk/a ∪ (B ∩ b)) > 0 as needed.

(Continuing the proof of Lemma 3.3.4) Now, recall that

dim(B/A) = dim(B ∩ A/A) +
∑
k∈K

dim(Bk/Bk ∩ A).

By the claim above, each of dim(Bk/Bk ∩ A) > 0, thus

dim(B/A) > dim(B ∩ A/A).

In addition,

dim(B ∩ A/A) = dim(B ∩ b) ≥ 0,

as b is positive. Thus dim(B/A) > 0 as needed.

As A ≤ W and A ⊆ G, we can embed W into G over A. Abusing notation again, we

identify W with its embedding A ≤ W ⊆ G. In particular, now we have b ∈ G. Also note
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that

dim(W/A) = Y (ψ)− (n1εL(ψ) + n2ε
′) ,

|W | − |A| ≤ |b|+ (n1 + n2)
∑
i∈I

Si.

Lemma 3.3.6. We have

{aj}j∈J1
⊆ ψ(A, b) ⊆ {aj}j∈J1∪J2

.

Proof. First inclusion {aj}j∈J1
⊆ ψ(A, b) is immediate from the construction of W , as

Wij witnesses that φi(aj, b) holds. For the second inclusion, suppose that there is a ∈

A− {aj}j∈J1∪J2
such that ψ(a, b) holds. Let W ′ ⊆ G be a witness of φ1(a, b). First, note

that the case W ′ ⊆ W is impossible as there are no edges between a and W −a, but there

are edges between a and W ′−a. Thus assume W ′ 6⊆ W . As (a∪ b,W ′) is a minimal pair,

by Lemma 3.2.5 we have dim(W ′ ∪W/W ) < −ε1. Therefore

dim(W ′ ∪W/A) = dim(W ′ ∪W/W ) + dim(W/A) < Y (ψ)− (n1εL(ψ) + n2ε
′)− ε1,

which is negative by the construction of n1, n2. Thus A 6≤ W ∪W ′, as then it would have

a positive dimension. Additionally,

|W ′ ∪W | − |A| ≤ |W ′ −W |+ |W | − |A| ≤ S1 + |b|+ (n1 + n2)
∑
i∈I

Si ≤ S,

but then this is a contradiction as A is S-strong but A 6≤ W ∪W ′.

In the construction of W we could have chosen the index sets J1, J2 arbitrarily. In

particular, suppose we let J2 be the last n2 indices of J and J1 an arbitrary n1-element

subset of the first N−n2 elements of J . Each of those choices would then yield a different

trace ψ(A, b) by the lemma above. Thus ψ(A,M |y|) ≥
(
N−n2

n1

)
and therefore vc(ψ) ≥ n1.

By the definition of n1 we have n1 =
⌊
Y (ψ)
εL(ψ)

⌋
, so this proves the theorem for ψ.

Now consider a formula which is a conjunction of negative basic formulas ψ =
∧
i∈I ¬φi.

Let ψ̄ =
∧
i∈I φi. Do the construction above for ψ̄ and suppose its trace is X ⊆ A for
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some b. Then A−X is the trace ψ(A, b). Therefore we get as many traces as above and

thus the same bound.

Finally, consider a formula θ =
∨
k∈K ψk which is a disjunction of the formulas consid-

ered in the previous paragraph. Choose the one with the smallest εL, say ψk, and repeat

the construction above for ψk. Any trace for ψk is automatically a trace for θ, so we get

as many traces as above, and thus the same bound.

Corollary 3.3.7. The VC-density function is infinite in the theory of Shelah-Spencer

graphs:

vcSα(n) =∞.

Proof. Let A be a graph consisting of d1/αe + 2 disconnected vertices. Fix ε > 0. By

Lemma 3.2.2, there exists B such that (A,B) is a minimal pair with dimension ≤ ε

and every vertex in A is connected to a vertex in B − A. Consider a basic formula

ψA,B(x, y) where |x| = d1/αe + 1 and |y| = 1. Then by the theorem above we have

vcSα(1) ≥ vc(ψA,B) ≥
⌊

1
ε

⌋
. As ε was arbitrary, we can make this number as large as we

want, giving vcSα(1) =∞. By Lemma 1.3.14 we then have vcSα(n) =∞ as needed.

Corollary 3.3.8. The theory of Shelah-Spencer graphs doesn’t have finite dp-rank. In

particular it is not dp-minimal.

Proof. Suppose that the ambient model G is ℵ1-saturated. It suffices to show that G

doesn’t have finite dp-rank. We would like to modify the proof of Theorem 3.3.3 to make A

an infinite ∅-indiscernible sequence. (Note that as Sα is stable, all indiscernible sequences

are totally indiscernible.) In the proof we can construct S-strong sets A = {aj}j∈J of

arbitrary finite size. Moreover, for every J ′ ⊆ J , the set A = {aj}j∈J ′ is still S-strong.

Thus by Lemma 1.2.8 we can find an infinite ∅-indiscernible sequence A = {aj}j∈N in

G that is S-strong. Repeating the construction of the corollary above, we can obtain

a formula with an arbitrarily large VC-density over this indiscernible sequence A. By

Definition 1.4.1 this means that G doesn’t have finite dp-rank.
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3.4 Upper bound

Let φ(x, y) be a basic formula associated to a minimal chain 〈Mi〉0≤i≤n with dimensions

dim(Mi+1/Mi) = −εi.

Define

ε(φ) = min {εi}0≤i≤nφ

K(φ) = |Mn|.

Now consider a finite collection of basic formulas

Φ = Φ(x, y) = {φi(x, y)}i∈I .

Define

K(Φ) = max {K(φi)}i∈I ,

ε(Φ) = min {ε(φi)}i∈I ∪ {α} .

Theorem 3.4.1. If φ is a boolean combination of formulas from Φ, then

vc(φ) ≤
⌊
|y|K(Φ)

ε(Φ)

⌋
.

We first reduce Theorem 3.4.1 to a combinatorial statement (Theorem 3.4.6 below),

the proof of which takes up the rest of this section.

Let

S =

⌈(
|y|
ε(φ)

+ 1

)
K(φ)

⌉
.

Fix a finite parameter set A0 ⊆ G|x| with |A0| = N0. We would like to bound
∣∣φ(A0,G|y|)

∣∣
in terms of Φ and N0. Let A1 ⊆ G consist of the components of the tuples of A0 (so

A0 ⊆ A
|x|
1 ). Then |A1| ≤ |x|N0. Using Lemma 3.2.4 let A be a graph A1 ⊆ A ⊆ G,
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S-strong in G. Let N = |A|. Then we have N ≤ |x|N0M (where M = M(S, α) is the

constant from Lemma 3.2.4). As A0 ⊆ A|x| we have

∣∣φ(A0,G|y|)
∣∣ ≤ ∣∣φ(A|x|,G|y|)

∣∣ .
Therefore it suffices to bound

∣∣φ(A|x|,G|y|)
∣∣ uniformly in Φ, |A|.

Definition 3.4.2. For A ⊆ G|x|, B ⊆ G|y|, b ∈ G|y| define

Φ(A, b) = {(a, i) ∈ A× I | G |= φi(a, b)} ⊆ A× I,

Φ(A,B) = {Φ(A, b) | b ∈ B} ⊆ P(A× I).

Lemma 3.4.3. For A ⊆ G|x|, B ⊆ G|y| if φ is a boolean combination of formulas from Φ

then |φ(A,B)| ≤ |Φ(A,B)|.

Proof. Clear, as for all a ∈ A, b ∈ B the set

Φ(a, b) = {i ∈ I | G |= φi(a, b)}

determines the truth value of φ(a, b).

Thus it suffices to bound
∣∣Φ(A|x|,G|y|)

∣∣ in terms of Φ, |A|.

Definition 3.4.4.

• For all i ∈ I, a ∈ A|x|, b ∈ G|y| if φi(a, b) holds, fix W i
a,b ⊆ G, a witness of φi(a, b).

• For b ∈ G|y| let

Wb =
⋃{

W i
a,b | a ∈ A|x|, i ∈ I,G |= φi(a, b)

}
.

• Suppose A,B are subgraphs of G such that v(A), v(B) are disjoint. Then define

E (A,B) to be the number of edges between the vertices in v(A) and the vertices in

v(B).
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• For C,B ⊆ G define the boundary of C over B

∂(C,B) = {b ∈ B | E (b, C −B) 6= 0} ⊆ B.

• For b ∈ G|y| let ∂b = ∂(Wb, A) ⊆ A.

• For b ∈ G|y| let W b = (Wb − A) ∪ ∂b.

• For b1, b2 ∈ G|y| we say that b1 ∼ b2 if ∂b1 = ∂b2 , b1 ∩A = b2 ∩A, and there exists a

graph isomorphism from W b1 ∪ b1 to W b2 ∪ b2 that fixes ∂b1 and maps b1 to b2. One

easily checks that this defines an equivalence relation.

Lemma 3.4.5. For b1, b2 ∈ G|y| if b1 ∼ b2 then Φ(A|x|, b1) = Φ(A|x|, b2).

Proof. Fix a graph isomorphism f̄ : W b1 ∪ b1−→W b2 ∪ b2. Extend it to an isomorphism

f : Wb1 ∪ A−→Wb2 ∪ A by making it an identity map on the new vertices. Suppose

G |= φi(a, b1) for some a ∈ A|x|. Then f(W i
a,b1

) is a witness of φi(a, b2) (though not

necessarily equal to W i
a,b2

) and thus G |= φi(a, b2). As a was arbitrary, this proves the

equality of the traces.

Thus to bound the number of traces it is sufficient to bound the number of ∼-

equivalence classes.

Theorem 3.4.6. Suppose we have b ∈ G|y|. Let Y = |b− A|. Then

|∂b| ≤
⌊
Y
K(Φ)

ε(Φ)

⌋
,

|W b| ≤
⌊

3Y
K(Φ)

ε(Φ)

⌋
.

From this theorem we get the desired result:

Corollary 3.4.7. (Theorem 3.4.1) If φ is a boolean combination of formulas from Φ, then

vc(φ) ≤
⌊
|y|K(Φ)

ε(Φ)

⌋
.
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Proof of Theorem 3.4.1 (based on Theorem 3.4.6). We count possible equivalence classes

of ∼. This amounts to bounding the possibilities for ∂b, b∩A, and the number of isomor-

phism classes of Wb. Fix b ∈ G|y| and let Y = |b− A|. Let

D =

⌊
Y
K(Φ)

ε(Φ)

⌋
,

D′ =

⌊
3Y

K(Φ)

ε(Φ)

⌋
,

D′′ =

⌊
|y|K(Φ)

ε(Φ)

⌋
.

By the first part of Theorem 3.4.6 there are
(
N
D

)
choices for the boundary ∂b. By the

second part of Theorem 3.4.6 there are at most D′ vertices in W b. Thus to determine the

graph W b we need to choose how many vertices it has and then decide where edges go.

This amounts to at most D′2(D′)2
choices. Additionally there are

(
N
|y|−Y

)
choices for b∩A.

In total this gives us at most(
N

D

)
·
(

N

|y| − Y

)
·D′2(D′)2

= O
(
ND+|y|−Y )

choices. By Lemma 3.4.5 we have
∣∣Φ(A|x|,G|y|)

∣∣ = O
(
ND+|y|−Y ). As K(Φ)

ε(Φ)
≥ 1 we have

D + |y| − Y =

⌊
Y
K(Φ)

ε(Φ)

⌋
+ |y| − Y ≤

⌊
|y|K(Φ)

ε(Φ)

⌋
= D′′.

Thus ∣∣Φ(A|x|,G|y|)
∣∣ = O

(
ND+|y|−Y ) = O

(
ND′′

)
.

Recall that ∣∣φ(A0,G|y|)
∣∣ ≤ ∣∣Φ(A|x|,G|y|)

∣∣ .
Therefore we have ∣∣φ(A0,G|y|)

∣∣ = O
(
ND′′

)
= O

(
(|x|N0M)D

′′
)

=

= O
(

(|x|M)D
′′
ND′′

0

)
= O

(
ND′′

0

)
.

As A0 was arbitrary, this shows that vc(φ) ≤ D′′ =
⌊
|y|K(Φ)

ε(Φ)

⌋
as needed. (Note that

throughout this proof we are using the fact that quantities K(Φ), ε(Φ),M are completely

determined by Φ, thus independent from A0.)
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Proof of Theorem 3.4.6. The graph Wb is a union of witnesses of the form Wa,b for some

a ∈ A|x|, b ∈ G|y|. Enumerate all of them as {Wj}1≤j≤J . Define Mj =
⋃j
k=1Wk for

1 ≤ j ≤ J and let M0 = b,M−1 = ∅. Let A = A ∪ b.

Definition 3.4.8. For 0 ≤ j ≤ J :

• Let vj = 1 if new vertices are added to Mj outside of A, that is if Mj−A 6= Mj−1−B,

and let it be 0 otherwise.

• Let Ej = ∂(A−Wj,Mj − A).

• Let

mj =

j∑
k=0

(vj + |Ej|).

Lemma 3.4.9. For 0 ≤ j ≤ J we have

|∂(Mj, A)| ≤ |E0|+mjK(Φ).

Proof. Proceed by induction on j = 0, . . . , J . The base case j = 0 is clear. For the

inductive step suppose that

|∂(Mj−1, A)| ≤ mj−1K(Φ)

holds. Let

δ1 = ∂(Mj, A)− ∂(Mj−1, A) =

= {a ∈ A | E (a,Mj − A) 6= 0 and E (a,Mj−1 − A) = 0} .

If Mj −A = Mj−1−A then δ1 = ∅ and we are done as mj is increasing. Suppose not. We

have |δ1| = |δ1 ∩Wj|+ |δ1 −Wj|, and

δ1 −Wj = {a ∈ A−Wj | E (a,Mj − A) 6= 0 and E (a,Mj−1 − A) = 0} .

But then it’s clear that δ1 −Wj ⊆ Ej as

Wj −Mj−1 − A ⊆Mj − A,

(Wj −Mj−1 − A) ∩ (Mj−1 − A) = ∅.

48



As b ∈ Mj−1 and Mj − A 6= Mj−1 − A, then Mj − A 6= Mj−1 − A, and thus vj = 1.

Therefore we have

|δ1| = |δ1 ∩Wj|+ |δ1 −Wj| ≤ |Wj|+ |Ej| ≤

≤ K(Φ) + |Ej| ≤ (vj + |Ej|)K(Φ) ≤ (mj −mj−1)K(Φ),

as needed.

Lemma 3.4.10. For 0 ≤ j ≤ J we have

|Mj − A| ≤

(
j∑

k=0

vk

)
K(Φ).

Proof. Proceed by induction on j = 0, . . . , J . The base case j = 0 is clear. For the

inductive step suppose that

|Mj−1 − A| ≤

(
j−1∑
k=0

vk

)
K(Φ)

holds. If Mj − A = Mj−1 − A then the inequality is immediate as vj ≥ 0. Therefore

assume this is not the case. Then vj = 1 and |Mj −A| − |Mj−1−A| ≤ |Wj| ≤ vjK(Φ) so

we get the required inequality.

Lemma 3.4.11. For 0 ≤ j ≤ J we have

dim(Mj ∪ A/A) ≤ −mjε(Φ),

Proof. Proceed by induction on j = 0, . . . , J . The base case j = 0 is clear. For the

inductive step suppose that

dim(Mj−1 ∪ A/A) ≤ −mj−1ε(Φ)

holds. We have

dim(Mj ∪ A/A) = dim(Mj ∪ A/Mj−1 ∪ A) + dim(Mj−1 ∪ A/A) ≤

≤ dim(Mj ∪ A/Mj−1 ∪ A)−mj−1ε(Φ).
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Let M j−1 = Mj−1 ∪ A. By Lemma 3.2.1 we have

dim(Mj ∪ A/Mj−1 ∪ A) = dim(Wj ∪M j−1/M j−1) = dim(Wj/Wj ∩M j−1)− Eα

where E is the number of edges connecting the vertices of M j−1 −Wj to the vertices of

Wj −M j−1. Recall that Ej = ∂(A −Wj,Mj − A). We have A −Wj ⊆ M j−1 −Wj (as

A ⊆ M j−1) and Wj −Mj−1 − A = Wj −M j−1 (as for j > 1, we have b ⊆ Mj−1). Thus

|Ej| ≤ E, and we get

dim(Mj ∪ A/Mj−1 ∪ A) ≤ dim(Wj/Wj ∩M j−1)− |Ej|α.

If Wj ⊆ M j−1 then dim(Wj/Wj ∩ M j−1) = 0. If not, then by Lemma 3.2.6 we have

dim(Wj/Wj ∩M j−1) ≤ −ε(Φ). Either way, we have dim(Wj/Wj ∩M j−1) ≤ −vjε(Φ).

Using this and the fact that ε(Φ) ≤ α, we obtain

dim(Mj ∪ A/Mj−1 ∪ A) ≤ −vjε(Φ)− |Ej|ε(Φ) = −(mj −mj−1)ε(Φ).

Finally,

dim(Mj ∪ A/A) ≤ dim(Mj ∪ A/Mj−1 ∪ A)−mj−1ε(Φ) ≤

≤ −(mj −mj−1)ε(Φ)−mj−1ε(Φ) = −mjε(Φ),

as needed.

(Proof of Theorem 3.4.6 continued) For any 0 ≤ j ≤ J we have

dim(Mj ∪ A/A) = dim(A/A) + dim(Mj ∪ A/A)

≤ Y − |E0|α + dim(Mj ∪ A/A).

Lemma 3.4.11 gives us

dim(Mj ∪ A/A) ≤ −mjε(Φ).

Thus

dim(Mj ∪ A/A) ≤ Y − |E0|α−mjε(Φ).
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Suppose j is an index such that

Y − |E0|α−mjε(Φ) ≥ 0,

Y − |E0|α−mj+1ε(Φ) < 0

if one exists. Then

mj ≤
Y − |E0|α
ε(Φ)

.

By Lemma 3.4.10 we have

|Mj+1 − A| ≤

(
j+1∑
k=1

vk

)
K(Φ) ≤ (mj + 1)K(Φ) ≤

≤
(
Y − |E0|α
ε(Φ)

+ 1

)
K(Φ) ≤ S.

This is a contradiction, as A is S-strong and dim(Mj+1 ∪ A/A) is negative. Thus Y −

|E0|α−mjε(Φ) ≥ 0 for all j ≤ J . In particular Y −|E0|α−mJε(Φ) ≥ 0, so mJ ≤ Y−|E0|α
ε(Φ)

.

Noting that MJ = Wb, Lemma 3.4.9 gives us

|∂b| = |∂(Wb, A)| ≤ |E0|+mJK(Φ) ≤ |E0|+K(Φ)
Y − |E0|α
ε(Φ)

.

As K(Φ) ≥ 1 and ε(Φ) ≥ α, we get

|∂b| ≤ K(Φ)
Y

ε(Φ)
= Y

K(Φ)

ε(Φ)
.

As |∂b| is an integer we have |∂b| ≤
⌊
Y K(Φ)

ε(Φ)

⌋
. But this is precisely the first inequality we

need to prove. For the second inequality, Lemma 3.4.10 gives us

∣∣Wb − A
∣∣ ≤ Y +

(
J∑
k=0

vk

)
K(Φ) ≤ Y +mJK(Φ) ≤

≤ Y +K(Φ)
Y

ε(Φ)
≤ 2Y

K(Φ)

ε(Φ)
.

As
∣∣Wb − A

∣∣ is an integer we have
∣∣Wb − A

∣∣ ≤ ⌊2Y K(Φ)
ε(Φ)

⌋
. Thus we have

|W b| ≤ |Wb − A|+ |∂b| ≤
⌊

3Y
K(Φ)

ε(Φ)

⌋
,

as needed. This ends the proof of Theorem 3.4.6.
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3.5 Conclusion

We have computed upper and lower bounds for certain types of formulas in Shelah-Spencer

graphs. The bounds are not tight: in the best case scenario for a basic formula φ(x, y)

defining a minimal extension of dimension ε we have

|y|
ε
≤ vc(φ) ≤ K

|y|
ε
,

where K is the number of vertices in this minimal extension. Thus there is a multiple

of K gap between lower and upper bounds. It is this author’s hope that a refinement of

the presented techniques can yield better estimates of the VC-density. One potential way

to achieve this goal is to conduct a closer study on how multiple minimal extensions can

intersect without increasing the overall dimension.

One direction for the future work is to ask what these bounds on VC-density can tell

about the structure of large finite random graphs, along the lines of results in [ABC95].

Note that this chapter doesn’t answer the question on whether there can be exotic

values for the VC-density of individual formulas, such as non-integer or irrational values.

A better bound can help address this.

Open Question 3.5.1. In Shelah-Spencer graphs can a formula have non-integer or

irrational VC-density?

Another observation is that while the VC-density function is infinite there seems to be

a good structural behavior of the VC-density for individual formulas. This suggests that

perhaps the VC-density function is not the best tool to describe the behavior of definable

sets in Shelah-Spencer graphs, and some more refined measure might be required. One

potential way to do this is to separate the formulas based on the values of K(φ) and

ε(φ). Once those are bounded, VC-density seems to be well-behaved. The author hopes

to explore this further in his future work.
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CHAPTER 4

An Additive Reduct of the P -adic Numbers

For Qp in the language LMac of Macintyre, the paper [ADH16] computes an upper bound

for the VC-density function to be 2n − 1, and it is not known whether it is optimal for

n ≥ 2. This same bound holds in any reduct of the field of p-adic numbers, but one may

expect that the simplified structure of suitable reducts would allow a better bound. In this

chapter we investigate a reduct of the field of p-adic numbers and use a cell decomposition

result of Leenknegt to compute an optimal bound for that structure.

In [Lee14], Leenknegt provides a cell decomposition result for a certain P -minimal

additive reduct of the field of p-adic numbers. Using this result we improve the bound

for the VC-density function, showing that in Leenknegt’s structure vc(n) = n for each

n. Using Definition 1.4.1 this also proves that this structure is dp-minimal which is more

direct than using the fact that the field of p-adics is dp-minimal.

In Section 1 we recall some basic facts about the theory of p-adic numbers. Here

we also introduce the reduct with which we will be working. Section 2 sets up basic

definitions and lemmas that will be needed for the proof. We define trees and intervals

and show how they help with VC-density calculations. Section 3 finishes the proof. In

the concluding section we state open questions and discuss future work.

4.1 P -adic numbers

The field Qp of p-adic numbers is often studied in the language of Macintyre

LMac = {0, 1,+,−, ·, |, {Pn}n∈N}
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which is a language {0, 1,+,−, ·} of rings together with unary predicates Pn interpreted

in Qp so as to satisfy

Pnx↔ ∃y yn = x

and a divisibility relation where a|b holds in Qp when val a ≤ val b.

Note that Pn\ {0} is a multiplicative subgroup of Qp with finitely many cosets.

Theorem 4.1.1 (see [Mac76]). The LMac-structure Qp has quantifier elimination.

There is also a cell decomposition result for definable sets in this structure:

Definition 4.1.2. Define k-cells recursively as follows. A 0-cell is the singleton Q0
p. A

(k + 1)-cell is a subset of Qk+1
p of the following form:

{(x, t) ∈ D ×Qp | val a1(x) �1 val(t− c(x)) �2 val a2(x), t− c(x) ∈ λPn}

where D is a k-cell, a1(x), a2(x), c(x) are definable functions D−→Qp, each of �i is <,≤

or no condition, n ∈ N, and λ ∈ Qp.

Theorem 4.1.3 (see [Den84]). Any subset of Qk
p defined by an LMac-formula decomposes

into a finite disjoint union of k-cells.

In [ADH16], Aschenbrenner, Dolich, Haskell, Macpherson, and Starchenko show that

the LMac-structure Qp satisfies vc(n) ≤ 2n − 1 for each n ≥ 1, however, it is not known

whether this bound is optimal.

In [Lee14], Leenknegt analyzes the reduct of Qp to the language

Laff =
{

0, 1,+,−, {c̄}c∈Qp , |, {Qm,n}m,n∈N
}

where c̄ denotes the scalar multiplication by c, a|b as above stands for val a ≤ val b, and

Qm,n is a unary predicate interpreted as

Qm,n =
⋃
k∈Z

pkm(1 + pnZp).
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Note that Qm,n\ {0} is a subgroup of the multiplicative group of Qp with finitely many

cosets. One can check that these extra relation symbols are definable in the LMac-structure

Qp. The paper [Lee14] provides a cell decomposition result based on the following notion

of a cell:

Definition 4.1.4. A 0-cell is the singleton Q0
p. A (k + 1)-cell is a subset of Qk+1

p of the

following form:

{(x, t) ∈ D ×Qp | val a1(x) �1 val(t− c(x)) �2 val a2(x), t− c(x) ∈ λQm,n}

where D is a k-cell, called the base of the cell, a1(x), a2(x), c(x) are polynomials of degree

≤ 1, called the defining polynomials, each of �1,�2 is < or no condition, m,n ∈ N, and

λ ∈ Qp. We call Qm,n the defining predicate of our cell.

Theorem 4.1.5 (see [Lee14]). Any definable subset of Qk
p defined by an Laff -formula

decomposes into a finite disjoint union of k-cells.

Moreover, [Lee14] shows that Laff -structure Qp is a P -minimal reduct of the LMac-

structure Qp, that is, the one-variable definable sets of the Laff -structure Qp coincide

with the one-variable definable sets of the full structure LMac-structure Qp.

The main result of this chapter is the computation of the VC-density function for this

structure:

Theorem 4.1.6. The Laff -structure Qp satisfies vc(n) = n for all n.

Unlike the bound on the VC-density function of the LMac-structure Qp from [ADH16]

which was obtained via a quantified version of uniform definability of types over finite

sets, we will directly count the number of φ-types over a finite set of parameters.

4.2 Key Lemmas and Definitions

To show that vc(n) = n it suffices to bound vc∗(φ) ≤ |x| for every Laff -formula φ(x, y).

Fix such a formula φ(x, y). Instead of working with this formula directly, we first simplify
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it using quantifier elimination. The required quantifier elimination result can be easily

obtained from cell decomposition:

Lemma 4.2.1. Any Laff -formula φ(x, y) is equivalent in the Laff -structure Qp to a

boolean combination of formulas from a collection

Φ(x, y) = {val(pi(x)− ci(y)) < val(pj(x)− cj(y))}i,j∈I ∪

{pi(x)− ci(y) ∈ λkQm,n}i∈I,k∈K

of Laff -formulas where I,K are finite index sets, each pi is a degree ≤ 1 polynomial in x

without a constant term, each ci is a degree ≤ 1 polynomial in y, m,n ∈ N, and λk ∈ Qp.

Proof. Let l = |x| + |y|. Using Theorem 4.1.5 partition the subset of Ql
p defined by φ to

obtain D l, a collection of l-cells. Let D l−1 be the collection of the bases of the cells in

D l. Similarly, construct by induction D i for each 0 ≤ j < l, where D j is the collection of

j-cells which are the bases of cells in D j+1. Set

m =
∏{

m′ | Qm′,n′ is the defining predicate of a cell in D j for 0 ≤ j ≤ l
}
,

n = max
{
n′ | Qm′,n′ is the defining predicate of a cell in D j for 0 ≤ j ≤ l

}
.

This way, if a, a′ are in the same coset of the definable predicate Qm′,n′ of a cell in D j

(0 ≤ j ≤ l), then they are in the same coset of Qm,n. Choose {λk}k∈K to range over all

representations of cosets of Qm,n. Let qi(x, y) enumerate all of the defining polynomials

a1(x), a2(x), t−c(x) that show up in the cells of D j for any j. All of those are polynomials

of degree ≤ 1 in the variables x, y. We can split each of them as qi(x, y) = pi(x) − ci(y)

where the constant term of qi is substituted by ci. This gives us the appropriate finite

collection Φ of formulas. From the cell decomposition it is easy to see that when a, a′ have

the same Φ-type, then they have the same φ-type. Thus φ can be written as a boolean

combination of formulas from Φ.

Lemma 4.2.2. Let Φ(x, y) be a finite collection of formulas. If φ can be written as a

boolean combination of formulas from Φ then vc∗(φ) ≤ vc∗(Φ).
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Proof. If a, a′ have the same Φ-type over B, then they have the same φ-type over B, where

B is some parameter set. Therefore the number of φ-types is bounded by the number of

Φ-types. The bound follows from Lemma 1.3.11.

For the remainder of the chapter fix Φ(x, y) to be a collection of formulas as in Lemma

4.2.1. By the previous lemma, to show that vc∗(φ) ≤ |x|, it suffices to bound vc∗(Φ) ≤ |x|.

More precisely, it is sufficient to show that given a parameter set B of size N , the number

of Φ-types over B is O(N |x|). Fix such a parameter set B and work with it from now on.

We will compute a bound for the number of Φ-types over B.

Consider the finite set T = T (Φ, B) = {ci(b) | b ∈ B, i ∈ I} ⊆ Qp. In this definition

ci(b) come from the collection of formulas Φ (see Lemma 4.2.1). View T as a tree as

follows:

Definition 4.2.3.

• For c ∈ Qp, α ∈ Z define the (open) ball

B(c, α) = {c′ ∈ Qp | val (c′ − c) > α}

of radius α and center c. We also let B(c,−∞) = Qp and B(c,+∞) = ∅.

• Define the collection of balls B = {B(t1, val(t1 − t2))}t1,t2∈T . Note that B is a

(directed) boolean algebra of sets in Qp. We refer to the atoms in that algebra as

intervals. Note that the intervals partition Qp so any element a ∈ Qp belongs to a

unique interval.

• Let’s introduce some notation for the intervals. For t ∈ T and αL, αU ∈ Z ∪

{−∞,+∞} define

I(t, αL, αU) = B(t, αL)\
⋃
{B(t′, αU) | t′ ∈ T, val(t′ − t) ≥ αU}

(this is sometimes referred to as the swiss cheese construction). One can check that

every interval is of the form I(t, αL, αU) for some values of t, αL, αU . The quantities

αL, αU are uniquely determined by the interval I(t, αL, αU), while t might not be.
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• Intervals are a natural construction for trees, however we will require a more refined

notion to make Lemma 4.2.12 below work. Define a larger collection of balls

B′ = B ∪ {B(ci(b), val(cj(b)− ck(b)))}i,j,k∈I,b∈B .

Similarly to the previous definition, we define a subinterval to be an atom of the

boolean algebra generated by B′. Subintervals refine intervals. Moreover, as before,

each subinterval can be written as I(t, αL, αU) for some values of t, αL, αU . As before,

αL, αU are uniquely determined by the subinterval I(t, αL, αU), while t might not

be.

. . .ci(b). . .

c3(b5)c4(b3)

. . .ci(b). . .

c3(b5)c4(b3)

Figure 4.1: A typical interval (left) and subinterval (right) in a tree consisting of branches

ci(b) with i ∈ I and b ∈ B.

Subintervals are fine enough to make Lemma 4.2.12 below work while coarse enough

to be O(N) few:

Lemma 4.2.4.
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• There are at most 2|T | = 2N |I| = O(N) different intervals.

• There are at most 2|T |+ |B| · |I|3 = O(N) different subintervals.

Proof. Each new element in the tree T adds at most two intervals to the total count, so

by induction there can be at most 2|T | many intervals. Each new ball in B′\B adds at

most one subinterval to the total count, so by induction there are at most |B′\B| more

subintervals than there are intervals.

Definition 4.2.5. Suppose a ∈ Qp lies in the interval I(t, αL, αU). Define the T-valuation

of a to be T -val(a) = val(a− t).

This is a natural notion having the following properties:

Lemma 4.2.6.

(a) T -val(a) is well-defined, independent of choice of t to represent the interval.

(b) If a ∈ Qp lies in the subinterval I(t, αL, αU), then T -val(a) = val(a− t).

(c) If a ∈ Qp lies in the (sub)interval I(t, αL, αU) then αL < T -val(a) ≤ αU .

(d) For any a ∈ Qp lying in the (sub)interval I(t, αL, αU) and t′ ∈ T :

• If val(t− t′) ≥ αU , then val(a− t′) = T -val(a).

• If val(t− t′) ≤ αL, then val(a− t′) = val(t− t′) (≤ αL < T -val(a)).

Proof. (a)-(c) are clear. For (d) fix t′ ∈ T and suppose a ∈ Qp lies in the subinterval

I(t, α′L, α
′
U). This subinterval lies inside of a unique interval I(t, αL, αU) for some choice

of αL, αU and by the definition of intervals (or more specifically B):

val(t− t′) ≥ αU ⇐⇒ val(t− t′) ≥ α′U ,

val(t− t′) ≥ αL ⇐⇒ val(t− t′) ≥ α′L.
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Therefore without loss of generality we may assume that a ∈ Qp lies in an interval

I(t, αL, αU). By (c) and the definition of intervals one of the three following cases has to

hold.

Case 1: val(t− t′) ≥ αU and T -val(a) < αU . Then

val(t− t′) ≥ αU > T -val(a) = val(a− t),

thus val(a− t′) = val(a− t) = T -val(a) as needed.

Case 2: val(t− t′) ≥ αU and T -val(a) = αU . Then

T -val(a) = val(a− t) = val(t− t′) ≥ αU ,

thus val(a − t′) ≥ αU . The interval I(t, αL, αU) is disjoint from the ball B(t′, αU), so

a /∈ B(t′, αU), that is, val(a − t′) ≤ αU . Combining this with the previous inequality we

get that val(a− t′) = αU = T -val(a) as needed.

Case 3: val(t− t′) ≤ αL. Then

val(t− t′) ≤ αL < T -val(a) = val(a− t),

thus val(a− t′) = val(t− t′) as needed.

Definition 4.2.7. Suppose a ∈ Qp lies in the subinterval I(t, αL, αU). We say that a is

far from the boundary (tacitly: of I(t, αL, αU)) if

αL + n ≤ T -val(a) ≤ αU − n.

Here n is as in Lemma 4.2.1. Otherwise we say that it is close to the boundary (of

I(t, αL, αU)).

Definition 4.2.8. Suppose a1, a2 ∈ Qp lie in the same subinterval I(t, αL, αU). We say

a1, a2 have the same subinterval type if one of the following holds:

• Both a1, a2 are far from the boundary and a1− t, a2− t are in the same Qm,n-coset.

(Here Qm,n is as in Lemma 4.2.1.)
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• Both a1, a2 are close to the boundary and

T -val(a1) = T -val(a2) ≤ val(a1 − a2)− n.

Definition 4.2.9. For c ∈ Qp and α, β ∈ Z, α < β define c � [α, β) to be the record of

the coefficients of c for the valuations between [α, β). More precisely write c in its power

series form

c =
∑
γ∈Z

cγp
γ with cγ ∈ {0, 1, . . . , p− 1} .

Then c � [α, β) is just (cα, cα+1, . . . cβ−1) ∈ {0, 1, . . . , p− 1}β−α.

The following lemma is an adaptation of Lemma 7.4 in [ADH16].

Lemma 4.2.10. Fix m,n ∈ N. For any x, y, c ∈ Qp, if

val(x− c) = val(y − c) ≤ val(x− y)− n,

then x− c, y − c are in the same coset of Qm,n.

Proof. Call a, b ∈ Qp similar if val a = val b and

a � [val a, val a+ n) = b � [val b, val b+ n).

If a, b are similar then

a ∈ Qm,n ⇐⇒ b ∈ Qm,n.

Moreover for any λ ∈ Q×p , if a, b are similar then so are λa, λb. Thus if a, b are similar,

then they belong to the same coset of Qm,n. The hypothesis of the lemma force x−c, y−c

to be similar, thus belonging to the same coset.

Lemma 4.2.11. For each subinterval there are at most K = K(Qm,n) many subinterval

types (with K not depending on B or on the subinterval).
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Proof. Let a, a′ ∈ Qp lie in the same subinterval I(t, αL, αU).

Suppose a, a′ are far from the boundary. Then they have the same subinterval type

if a − t, a′ − t are in the same Qm,n-coset. So the number of such subinterval types is

bounded by the number of Qm,n-cosets.

Suppose a, a′ are close to the boundary and

T -val(a)− αL = T -val(a′)− αL < n and

a � [T -val(a), T -val(a) + n) = a′ � [T -val(a′), T -val(a′) + n).

Then a, a′ have the same subinterval type. Such a subinterval type is thus determined by

T -val(a)− αL and the tuple a � [T -val(a), T -val(a) + n), therefore there are at most npn

many such types.

A similar argument works for a with αU − T -val(a) ≤ n.

Adding all this up we get that there are at most

K = (number of Qm,n cosets) + 2npn

many subinterval types.

The following critical lemma relates tree notions to Φ-types.

Lemma 4.2.12. Suppose d, d′ ∈ Q|x|p satisfy the following three conditions:

• For all i ∈ I pi(d) and pi(d
′) are in the same subinterval.

• For all i ∈ I pi(d) and pi(d
′) have the same subinterval type.

• For all i, j ∈ I, T -val(pi(d)) > T -val(pj(d)) iff T -val(pi(d
′)) > T -val(pj(d

′)).

Then d, d′ have the same Φ-type over B.

Proof. There are two kinds of formulas in Φ (see Lemma 4.2.1). First we show that d, d′

agree on formulas of the form pi(x)− ci(y) ∈ λkQm,n. It is enough to show that for every
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i ∈ I, b ∈ B, pi(d) − ci(b), pi(d
′) − ci(b) are in the same Qm,n-coset. Fix such i, b. For

brevity let a = pi(d), a′ = pi(d
′) and Q = Qm,n. We want to show that a− ci(b), a′− ci(b)

are in the same Q-coset.

Suppose a, a′ are close to the boundary. Then T -val(a) = T -val(a′) ≤ val(a− a′)− n.

Using Lemma 4.2.6d, we have

val(a− ci(b)) = val(a′ − ci(b)) ≤ T -val(a) ≤ val(a− a′)− n.

Lemma 4.2.10 shows that a− ci(b), a′ − ci(b) are in the same Q-coset.

Now, suppose both a, a′ are far from the boundary. Let I(t, αL, αU) be the interval

containing a, a′. Then we have

αL + n ≤ val(a− t) ≤ αU − n,

αL + n ≤ val(a′ − t) ≤ αU − n

(as being far from the subinterval’s boundary also makes a, a′ far from interval’s bound-

ary). We have either val(t − ci(b)) ≥ αU or val(t − ci(b)) ≤ αL (as otherwise it would

contradict the definition of intervals, or more specifically B).

Suppose it is the first case val(t− ci(b)) ≥ αU . Then using Lemma 4.2.6d

val(a− ci(b)) = val(a− t) ≤ αU − n ≤ val(t− ci(b))− n.

So by Lemma 4.2.10 elements a − ci(b), a − t are in the same Q-coset. By an analogous

argument, a′−ci(b), a′−t are in the same Q-coset. As a, a′ have the same subinterval type,

a− t, a′ − t are in the same Q-coset. Thus by transitivity we get that a− ci(b), a′ − ci(b)

are in the same Q-coset.

For the second case, suppose val(t− ci(b)) ≤ αL. Then using Lemma 4.2.6d

val(a− ci(b)) = val(t− ci(b)) ≤ αL ≤ val(a− t)− n,

so by Lemma 4.2.10 elements a − ci(b), t − ci(b) are in the same Q-coset. Similarly a′ −

ci(b), t− ci(b) are in the same Q-coset. Thus by transitivity we get that a− ci(b), a′− ci(b)

are in the same Q-coset.
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Next, we need to show that d, d′ agree on formulas of the form val(pi(x) − ci(y)) <

val(pj(x)−cj(y)) (again, referring to the presentation in Lemma 4.2.1). Fix i, j ∈ I, b ∈ B.

We would like to show the following equivalence:

val(pi(d)− ci(b)) < val(pj(d)− cj(b)) ⇐⇒

⇐⇒ val(pi(d
′)− ci(b)) < val(pj(d

′)− cj(b)) (4.2.1)

Suppose pi(d), pi(d
′) are in the subinterval I(ti, αi, βi) and pj(d), pj(d

′) are in the subin-

terval I(tj, αj, βj). Lemma 4.2.6d yields the following four cases.

Case 1:

val(pi(d)− ci(b)) = val(pi(d
′)− ci(b)) = val(ti − ci(b))

val(pj(d)− cj(b)) = val(pj(d
′)− cj(b)) = val(tj − cj(b))

Then it is clear that the equivalence (4.2.1) holds.

Case 2:

val(pi(d)− ci(b)) = T -val(pi(d)) and val(pi(d
′)− ci(b)) = T -val(pi(d

′))

val(pj(d)− cj(b)) = T -val(pj(d)) and val(pj(d
′)− cj(b)) = T -val(pj(d

′))

Then the equivalence (4.2.1) holds by the third hypothesis of the lemma (that order of

T-valuations is preserved).

Case 3:

val(pi(d)− ci(b)) = val(pi(d
′)− ci(b)) = val(ti − ci(b))

val(pj(d)− cj(b)) = T -val(pj(d)) and val(pj(d
′)− cj(b)) = T -val(pj(d

′))

If pj(d), pj(d
′) are close to the boundary, then T -val(pj(d)) = T -val(pj(d

′)) and the equiv-

alence (4.2.1) clearly holds. Suppose then that pj(d), pj(d
′) are far from the boundary.

αj + n ≤T -val(pj(d)), T -val(pj(d
′)) ≤ βj − n

αj <T -val(pj(d)), T -val(pj(d
′)) < βj
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and val(ti− ci(b)) lies outside of the (αj, βj) by the definition of subinterval (more specif-

ically definition of B′). Therefore (4.2.1) has to hold. (Note that we always have

T -val(pj(d)), T -val(pj(d
′)) ∈ (αj, βj]

by Lemma 4.2.6c, so we only need the condition on being far from the boundary to avoid

the edge case of equality to βj.)

Case 4:

val(pi(d)− ci(b)) = T -val(pi(d)) and val(pi(d
′)− ci(b)) = T -val(pi(d

′))

val(pj(d)− cj(b)) = val(pj(d
′)− cj(b)) = val(tj − cj(b)).

Similar to case 3 (switching i, j).

The previous lemma gives us an upper bound on the number of types - there are at

most |2I|! many choices for the order of T -val, O(N) many choices for the subinterval

for each pi, and K many choices for the subinterval type for each pi (where K is as in

Lemma 4.2.11), giving a total of O(N |I|) ·K |I| · |I|! = O(N |I|) many types. This implies

vc∗(Φ) ≤ |I|. The biggest contribution to this bound are the choices among the O(N)

many subintervals for each pi with i ∈ I. Are all of those choices realized? Intuitively

there are |x| many variables and |I| many equations, so once we choose a subinterval for

|x| many pi’s, the subintervals for the rest should be determined. This would give the

required bound vc∗(Φ) ≤ |x|. The next section outlines this idea formally.

4.3 Main Proof

Given a homogenenous linear polynomial p(x) with coefficients in Qp and c ∈ Q|x|p , an

alternative way to write p(c) is as a scalar product ~p ·~c, where ~p and ~c are vectors in Q|x|p .

Lemma 4.3.1. Suppose we have a finite collection of vectors {~pj}j∈J with each ~pj ∈ Q|x|p .

Suppose ~p ∈ Q|x|p satisfies ~p ∈ span {~pj}j∈J , and we have ~c ∈ Q|x|p , α ∈ Z with val(~pj · ~c) >
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α for all j ∈ J . Then val(~p · ~c) > α − γ for some γ ∈ N. Moreover γ can be chosen

independently from ~c, α depending only on {~pj}j∈J .

Proof. For some cj ∈ Qp for j ∈ J we have ~p =
∑

j∈J cj~pj, hence ~p · ~c =
∑

j∈J cj~pj · ~c.

Thus

val (cj~pj · ~c) = val (cj) + val (~pj · ~c) > val (cj) + α.

Let γ = max(0,−maxj∈J val (cj)). Then we have

val(~p · ~c) = val

(∑
j∈J

cj~pj · ~c

)
≥

≥min
j∈J

val

(∑
j∈J

cj~pj · ~c

)
> min

j∈J
val(cj) + α ≥ α− γ

as required.

Corollary 4.3.2. Suppose we have a finite collection of vectors {~pi}i∈I with each ~pi ∈ Q|x|p .

Suppose J ⊆ I and i ∈ I satisfy ~pi ∈ span {~pj}j∈J , and we have ~c ∈ Q|x|p , α ∈ Z with

val(~pj · ~c) > α for all j ∈ J . Then val(~pi · ~c) > α− γ for some γ ∈ N. Moreover γ can be

chosen independently from J, j,~c, α depending only on {~pi}i∈I .

Proof. The previous lemma shows that we can pick such γ for a given choice of i, J , but

independent from α,~c. To get a choice independent from i, J , go over all such eligible

choices (i ranges over I and J ranges over subsets of I), pick γ for each, and then take

the maximum of those values.

Recall that we have confined to work with collection Φ(x, y) of formulas from Lemma

4.2.1. Fix γ according to Corollary 4.3.2 corresponding to {~pi}i∈I given by Φ. (The lemma

above is a general result, but we only use it applied to the vectors given by Φ.)

Definition 4.3.3. Suppose a ∈ Qp lies in the subinterval I(t, αL, αU). Define the T -floor

of a to be T -fl(a) = αL.
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Definition 4.3.4. Let f : Q|x|p −→QI
p with f(c) = (pi(c))i∈I . Define the segment space

Sg to be the image of f . Equivalently:

Sg =
{

(pi(c))i∈I | c ∈ Q|x|p
}
⊆ QI

p.

Without loss of generality, we may assume that I = {1, 2, . . . , k} (that is the formulas

are labeled by consecutive natural numbers). Given a tuple (ai)i∈I in the segment space,

look at the corresponding T -floors {T -fl(ai)}i∈I and T -valuations {T -val(ai)}i∈I . Partition

the segment space by the order types of {T -fl(ai)}i∈I and {T -val(ai)}i∈I (as subsets of Z).

Work in a fixed set Sg′ of the partition. After relabeling the pi we may assume that

T -fl(a1) ≥ T -fl(a2) ≥ . . . for all ai ∈ Sg′.

Consider the (relabeled) sequence of vectors ~p1, ~p2, . . . , ~pI . There is a unique subset

J ⊆ I such that the set of all vectors with indices in J is linearly independent, and all

vectors with indices outside of J are a linear combination of preceding vectors. (We can

pick those using a greedy algorithm for finding a linearly independent subset of vectors.)

We call indices in I independent and we call the indices in I \ J dependent.

Definition 4.3.5.

• Denote {0, 1, . . . , p− 1} as Ct.

• Let Tp be the space of all subinterval types. By Lemma 4.2.11 we have |Tp | ≤ K.

• Let Sub be the space of all subintervals. By Lemma 4.2.4 we have | Sub | ≤ 3|I|2·N =

O(N).

Definition 4.3.6. Now, we define a function

gSg′ : Sg′−→TpI × SubJ ×CtI\J

as follows:
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Let a = (ai)i∈I ∈ Sg′. To define gSg′(a) we need to specify where it maps a in each

individual component of the product.

For each ai record its subinterval type, giving the first component in TpI .

For aj with j ∈ J , record the subinterval of aj, giving the second component in SubJ .

For the third component (an element of CtI\J) do the following computation. Pick

ai with i dependent. Let j be the largest independent index with j < i. Record ai �

[T -fl(aj)− γ, T -fl(aj)).

Combine gSg′ for all sets Sg′ in our partition of Sg to get a function

g : Sg−→TpI × SubJ ×CtI\J .

Lemma 4.3.7. Suppose we have c, c′ ∈ Q|x|p such that f(c), f(c′) are in the same set Sg′

of the partition of Sg and g(f(c)) = g(f(c′)). Then c, c′ have the same Φ-type over B.

Proof. Let ai = ~pi · ~c and a′i = ~pi · ~c ′ so that

f(c) = (pi(c))i∈I = (~pi · ~c)i∈I = (ai)i∈I ,

f(c′) = (pi(c
′))i∈I = (~pi · ~c ′)i∈I = (a′i)i∈I .

For each i we show that ai, a
′
i are in the same subinterval and have the same subinterval

type, so the conclusion follows by Lemma 4.2.12 (the tuples f(c), f(c′) are in the same

partition ensuring the proper order of T -valuations for the 3rd condition of the lemma).

Tp records the subinterval type of each element, so if g(ā) = g(ā′) then ai, a
′
i have the

same subinterval type for all i ∈ I. Thus it remains to show that ai, a
′
i lie in the same

subinterval for all i ∈ I. Suppose i is an independent index. Then by construction, Sub

records the subinterval for ai, a
′
i, so those have to belong to the same subinterval. Now

suppose i is dependent. Pick the largest j < i such that j is independent. We have

T -fl(ai) ≤ T -fl(aj) and T -fl(a′i) ≤ T -fl(a′j). Moreover T -fl(aj) = T -fl(a′j) as aj, a
′
j lie in the

same subinterval (using the earlier part of the argument as j is independent).

Claim 4.3.8. We have val(ai − a′i) > T -fl(aj)− γ.
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Proof. Let K be the set of the independent indices less than i. Note that by the definition

for dependent indices we have ~pi ∈ span {~pk}k∈K . We also have

val(ak − a′k) > T -fl(ak) for all k ∈ K

as ak, a
′
k lie in the same subinterval (using the earlier part of the argument as k is indepen-

dent). Now val(ak − a′k) > T -fl(aj) for all k ∈ K by monotonicity of T -fl(ak). Moreover

ak − a′k = ~pk ·~c− ~pk ·~c ′ = ~pk · (~c−~c ′). Combining the two, we get that val(~pk · (~c−~c ′)) >

T -fl(aj) for all k ∈ K. Now observe that K ⊆ I, i ∈ I,~c − ~c ′ ∈ Q|x|p , T -fl(aj) ∈ Z satisfy

the requirements of Lemma 4.3.2, so we apply it to obtain val(~pi · (~c−~c ′)) > T -fl(aj)− γ.

Similar to before, we have ~pi · (~c−~c ′) = ~pi ·~c− ~pi ·~c ′ = ai−a′i. Therefore we can conclude

that val(ai − a′i) > T -fl(aj)− γ as needed, finishing the proof of the claim.

Additionally ai, a
′
i have the same image in the Ct component, so we have val(ai−a′i) >

T -fl(aj). We now would like to show that ai, a
′
i lie in the same subinterval. As T -fl(ai) ≤

T -fl(aj), T -fl(a′i) ≤ T -fl(a′j) and T -fl(aj) = T -fl(a′j) we have that val(ai − a′i) > T -fl(ai)

and val(ai − a′i) > T -fl(a′i). Suppose that ai lies in the subinterval I(t, T -fl(ai), αU) and

that a′i lies in the subinterval I(t′, T -fl(a′i), α
′
U). Without loss of generality assume that

T -fl(ai) ≤ T -fl(a′i). As val(ai − a′i) > T -fl(a′i), this implies that ai ∈ B(a′i, T -fl(a′i)).

Then ai ∈ B(t′, T -fl(a′i)) as val(ai − t′) > T -fl(a′i). This implies that B(t, T -fl(ai)) ∩

B(t′, T -fl(a′i)) 6= ∅ as they both contain ai. As balls are directed, the non-zero intersection

means that one ball has to be contained in another. Given our assumption that T -fl(ai) ≤

T -fl(a′i), we have B(t, T -fl(ai)) ⊆ B(t′, T -fl(a′i)). For the subintervals to be disjoint we

need I(t, T -fl(ai), αU) ∩ B(t′, T -fl(a′i)) = ∅. But val(t′ − ai) > T -fl(a′i) implying that

ai ∈ I(t, T -fl(ai), αU) ∩ B(t′, T -fl(a′i)) giving a contradiction. Therefore the subintervals

coincide.

Corollary 4.3.9. The dual VC-density of Φ(x, y) is ≤ |x|.

Proof. Suppose we have c, c′ ∈ Q|x|p such that f(c), f(c′) are in the same partition and

g(f(c)) = g(f(c′)). Then by the previous lemma c and c′ have the same Φ-type. Thus the
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number of possible Φ-types is bounded by the size of the range of g times the number of

possible partitions

(number of partitions) · |Tp ||I| · | Sub ||J | · |Ct ||I−J |.

There are at most (|2I|!)2 many partitions of Sg, so in the product above the only com-

ponent dependent on B is

| Sub ||J | ≤ (N · 3|I|2)|J | = O(N |J |).

Every pi is an element of an |x|-dimensional vector space, so there can be at most |x|

many independent vectors. Thus we have |J | ≤ |x| and the bound follows.

Corollary 4.3.10 (Theorem 4.1.6). The Laff -structure Qp satisfies vc(n) = n for each

n.

Proof. The previous lemma implies that vc∗(φ) ≤ vc∗(Φ) ≤ |x|. As our choice of φ was

arbitrary, this implies that the VC-density of any formula is bounded by |x|.

4.4 Conclusion

This proof relies heavily on the linearity of the defining polynomials a1, a2, c in the cell

decomposition result (see Definition 4.1.4). Linearity is used to separate the x and y

variables as well as for Corollary 4.3.2 to reduce the number of independent factors from

|I| to |x|. The paper [Lee14] has cell decomposition results for more expressive reducts

of Qp, including, for example, restricted multiplication. While our results don’t apply to

them directly, it is this author’s hope that similar techniques can be used to also compute

the VC-density function for those structures.

Open Question 4.4.1. Compute the VC-density function for Qp-reducts studied in

[Lee14].

Another interesting question is whether the reduct studied in this chapter has the VC

1 property (see Definition 5.2 in [ADH16]). If so, this would imply the linear VC-density
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bound directly. The techniques used in the paper [ADH16] make it seem likely that the

reduct has the VC 2 property (just as the LMac-structure Qp). While there are techniques

for showing that a structure has a given VC n property, less is known about showing

that a structure doesn’t have a given VC n property. Perhaps the simple structure of the

Laff -reduct can help understand this phenomenon better.

Open Question 4.4.2. For which n does the Laff -structure Qp have the VC n property?
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CHAPTER 5

Dp-minimality in Superflat Graphs

Superflat graphs were introduced in [PZ78] as a natural class of stable graphs. This family

of graphs is known in a combinatorial context as nowhere dense graphs, see [AA10] and

[NM11]. In this chapter we prove that superflat graphs are dp-minimal. It may be possible

to prove dp-minimality by combining a characterization of dp-minimality in stable theories

studied in [OU11] with the results on forking in superflat graphs given in [Iva93]. Here,

however, we present a direct proof using the characterization of dp-minimality by Lemma

1.4.2.

Section 1 gives all the necessary combinatorial and model-theoretic definitions. In

addition, we list several basic results involving connectivity hulls and superflat graphs. In

Section 2 we study how to expand parameter sets of indiscernible sequences to increase

the distance between the elements of those sequences. Section 3 applies a special case of

this result to show dp-minimality of superflat graphs via Lemma 1.4.2. In the concluding

section we outline directions for future work.

5.1 Preliminaries

First, we introduce some basic graph-theoretic definitions.

Definition 5.1.1. Work in a possibly infinite graph G. Let A,B, S, V ⊆ G where G is

the set of vertices of G.

1. A path is a subgraph of G with distinct vertices v0, v1, . . . , vn and an edge between

vi−1, vi for all i = 1, . . . n. It is called a path from A to B if v0 ∈ A and vn ∈ B.
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The length of such a path is n.

2. Two paths are disjoint if, excluding endpoints, they have no vertices in common.

3. For a, b ∈ G define the distance d(a, b) between a and b to be the length of the

shortest path from a to b in G. If no such path exists then the distance is infinite.

4. For a, b ∈ G−A define dA(a, b) to be the distance between a and b in the subgraph

of G induced on the set of vertices G − A. Equivalently it is the shortest path

between a and b that avoids the vertices in A.

5. We say that S separates A from B if there exists a ∈ A − S and b ∈ B − S with

dS(a, b) =∞.

6. We say that A separates V if it separates V from itself.

7. We say that V has connectivity n if there is a set of size n that separates V , but

there are no sets of size n− 1 that separate V .

8. Suppose V has connectivity n. The connectivity hull of V is defined to be the union

of all sets of size n separating V .

In [AB09] we find a generalization of Menger’s Theorem for infinite graphs:

Theorem 5.1.2. Let A and B be two sets of vertices in a possibly infinite graph. Then

there exists a set P of disjoint paths from A to B, and a set S of vertices separating A

from B, such that S consists of a choice of precisely one vertex from each path in P .

We use the following easy consequences:

Corollary 5.1.3. Let V be a subset of vertices of a graph G with connectivity n. Then

there exists a set of n disjoint paths from V into itself.

Corollary 5.1.4. With assumptions as above, the connectivity hull of V is finite.

Proof. All the separating sets have to have exactly one vertex in each of those paths.
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Definition 5.1.5.

• Km
n denotes the graph obtained from a complete graph on n vertices by adding m

vertices to every edge. Km
∞ denotes the same construction on a complete graph with

an infinite countable number of vertices.

• A graph is called flat if for every m ∈ N the graph avoids Km
∞ as a subgraph.

• A graph is called superflat if for every m ∈ N there is n ∈ N such that the graph

avoids Km
n as a subgraph.

It is easy to see by compactness that a graph is superflat if and only if there is

an elementary extension which is flat. By the same line of reasoning, in uncountably

saturated structures the notions of flatness and superflatness coincide.

Theorem 2 in [PZ78] gives a useful characterization of superflat graphs.

Theorem 5.1.6. The following are equivalent:

1. G is superflat.

2. For every n ∈ N and an infinite set A ⊆ G, there exists a finite B ⊆ G and an

infinite A′ ⊆ A such that for all a, b ∈ A′ we have dB(a, b) > n.

Roughly, in superflat graphs every infinite set contains a sparse infinite subset (possibly

after throwing away finitely many vertices).

We also note the stability result:

Theorem 5.1.7 (see Corollary 10 in [PZ78]). Every superflat graph is stable.

5.2 Indiscernible sequences

Fix an uncountable cardinal κ. Work in a superflat graph S that is κ-saturated and

strongly κ-homogeneous. Fix a parameter set A ⊆ S with |A| < κ. Let I = (ai)i∈I be
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a countable A-indiscernible sequence. Stability implies that I is totally indiscernible (see

Lemma 1.2.7).

Definition 5.2.1.

• For a subsequence J ⊆ I let a(J ) denote the tuple obtained by concatenating

(aj)j∈J .

• Let m be the arity of elements of I, that is, ai ∈ Sm. We call a set H ⊆ S uniformly

definable from I if there is a formula φ(x, y1, . . . , yk) with |yi| = m such that for

every J ⊆ I of size k we have H = φ(G, a(J )).

First suppose that I consists of singletons, that is ai ∈ S.

Definition 5.2.2. Let V ⊆ S. Define Pn(V ), a subgraph of S, to be the union of all

paths of length ≤ n between the vertices of V .

Lemma 5.2.3. Let n ∈ N. There exists a finite set B ⊆ S such that

∀i 6= j dB(ai, aj) > n.

Proof. By Theorem 5.1.6 we can find an infinite J ⊆ I and a finite set B′ such that each

pair from J = (aj)j∈J has distance > n over B′. By total indiscernibility there exists an

automorphism mapping J to I and fixing A. The image of B′ under this automorphism

is the required set B.

In other words, B separates I when viewed inside the subgraph Pn(I). This shows

that I has finite connectivity in Pn(I). Applying Corollary 5.1.4 we obtain that the

connectivity hull of I in Pn(I) is finite.

Definition 5.2.4. Given a graph G and V ⊆ G defineH(G, V ) ⊆ G to be the connectivity

hull of V in G. Note that if V is finite, then H(Pn(V ), V ) is V -definable.

Lemma 5.2.5. Let H be the connectivity hull of I inside the graph Pn(I), that is, H =

H(Pn(I), I). Then H is uniformly definable from I in S.
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Proof. Using total indiscernibility we may assume without the loss of generality that I is

indexed by N. Let Ii = (a0, a1, . . . , ai−1) a finite subsequence of the sequence I. Let N be

the connectivity of I inside of Pn(I).

First note that any finite set H ⊆ Pn(I) will be contained in Pn(Ii) for large enough

i. Every element of H is inside a path of length ≤ n and endpoints of that path are

eventually going to be inside Ii. (Here the assumption that I is enumerated by N is

important.)

Vertices a0, a1 cannot be separated by less than N elements inside of Pn(I) (as this

would contradict connectivity being N). Thus by Theorem 5.1.2 there are N disjoint

paths inside of Pn(I) connecting a0 to a1. For large enough i, say i ≥M1, all those paths

are contained inside of Pn(Ii). Those paths also witness that vertices a0, a1 cannot be

separated by less than N elements inside of Pn(Ii). As the set Pn(Ii) is Ii-definable and

I is indiscernible, we have that no two vertices can be separated by less than N elements

inside of Pn(Ii) Thus Ii has connectivity ≥ N inside of Pn(Ii) for i ≥M1.

Consider a set S of size N that separates I inside of Pn(I). This is witnessed by two

elements of I that are separated. There are finitely many such sets S as connectivity hull

is finite. Thus for large enough i, say i ≥ M2, for each such S the segment Ii contains a

pair of vertices witnessing that S is a separating set.

Corollary 5.1.3 tells us that there are finitely many paths between elements of V such

that H(Pn(I), I) is inside the union of those paths. For large enough i, say i ≥M3, Pn(Ii)

will contain all of those paths, and thus H(Pn(I), I) ⊆ Pn(Ii).

Combine those three observations. Let M = max(M1,M2,M3). Then for i ≥ M the

set Pn(Ii) contains all the N -element sets separating I in Pn(I), those sets separate Ii

in Pn(Ii), and the connectivity of Ii in Pn(Ii) is at most N . But this means that the

connectivity of Ii in Pn(Ii) has to be exactly N , and H(Pn(I), I) ⊆ H(Pn(Ii), Ii).
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For i ≥M define

Ei =
i⋂

j=M

H(Pn(Ij), Ij).

We have H(Pn(I), I) ⊆ Ei and Ei is a decreasing chain. Suppose

H(Pn(I), I) ( H(Pn(IM), IM),

that is H(Pn(IM), IM)−H(Pn(I), I) 6= ∅. Then there exists a set S of size N that

separates IM in Pn(IM) but does not separate I in Pn(I). Thus there has to be a finite

subgraph of Pn(I) disjoint from S that connects all the elements of IM (witness of failure

of separation). For large enough i, say i ≥ MS, this subgraph is contained in Pn(Ii).

There are finitely many possibilities for S (as connectivity hull of IM in Pn(IM) is finite).

Let M4 = maxS(MS). Then for i ≥ max(M4,M) we have

H(Pn(Ii), Ii) ∩ (H(Pn(IM), IM)−H(Pn(I), I)) = ∅,

and thus Ei = H(Pn(I), I). As Ei is Ii-definable, this shows that H(Pn(I), I) is Ii-

definable. Now we need to show uniform definability. Suppose I ′ is a subsequence of I

of length i. There is an automorphism mapping Ii to I ′ that fixes I setwise. But this

automorphism has to fix H(Pn(I), I) setwise, so it maps an Ii-definition of H(Pn(I), I)

to an I ′-definition of H(Pn(I), I). As I ′ was arbitrary this shows uniformity.

Corollary 5.2.6. Let Hn = H(Pn(I), I). Then

∀i 6= j dHn(ai, aj) > n.

Proof. The set Hn separates I inside of Pn(I). In particular there exist i 6= j such that

dHn(ai, aj) =∞

inside Pn(I). This means that dHn(ai, aj) > n inside of S. But then by total indiscerni-

bility and using the fact that Hn is uniformly I-definable, this holds for all i 6= j.
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We would like to start working with tuples now instead of singletons. We need some

notation to extract individual elements of a tuple:

Definition 5.2.7. Suppose a = (a1, . . . , am) is a tuple of arity m. Let a(j) denote the

j’th component, that is a(j) = aj.

More generally, now suppose that I consists of tuples of arity m, that is ai ∈ Sm.

Definition 5.2.8.

• We would like extract j’th components out of elements of I. Let I(j) = (ai
(j))i∈I ,

an A-indiscernible sequence of singletons.

• Let Hn
(j) = H(Pn(I(j)), I(j)).

• Let

Bn =
n⋃
i=1

m⋃
j=1

Hn
(j).

Note that Bn is finite as each Hn
(j) is finite by Corollary 5.1.4.

Lemma 5.2.9. The sequence I is indiscernible over A ∪Bn.

Proof. By Lemma 5.2.5 the set Hn
(j) is uniformly I(j)-definable. Thus it is uniformly

I-definable. Then Bn is a finite union of uniformly I-definable sets, thus also uniformly

I-definable.

By uniform definability there is a formula φ(z, w1, . . . , wk) with |z| = 1 and |wi| = m

such that for any subsequence J ⊆ I of length k we have φ(G, a(J )) = Bn. Fix such a

subsequence J .

Let ψ(x1, . . . , xl, y) be an arbitrary A-formula with |xi| = m. Consider the collection

of traces (i.e., a collection of subsets of B
|y|
n )

{
ψ(a(J ′), B|y|n ) | J ′ a subsequence of I of length l disjoint from J

}
.
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If two of the traces are distinct, then by indiscernibility all of them are (using the fact

that Bn is uniformly definable). But that is impossible as Bn is finite and thus has finitely

many subsets. Thus all such traces are identical. As the choice of J was arbitrary, we

can drop the condition that J ′ is disjoint from J . This shows that for any J 1,J 2 ⊆ I

of length l and h ∈ B|y|n we have

S |= ψ(a(J 1), h) ⇐⇒ S |= ψ(a(J 2), h).

As the choice of ψ was arbitrary, this shows that I is indiscernible over A∪Bn as needed.

Definition 5.2.10. For tuples a, b of the same arity m and B ⊆ S define

dB(a, b) = min
1≤i,j≤m

dB(a(i), b(j)).

Lemma 5.2.11.

∀i 6= j dBn(ai, aj) > n/2.

Proof. Towards a contradiction suppose we have some i 6= j and k, l such that

dBn(ai
(k), aj

(l)) ≤ n/2.

As Bn is uniformly I-definable, by total indiscernibility we have that this inequality holds

for all i 6= j. Assuming for convenience that I is enumerated by naturals, let b1 = a1
(k),

b2 = a2
(l), b3 = a3

(k) (note the superscripts). Then we have

dBn(b1, b2) ≤ n/2,

dBn(b3, b2) ≤ n/2.

By the triangle inequality

dBn(b1, b3) ≤ n,

dBn(a1
(k), a3

(k)) ≤ n.
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But this is a contradiction, as Corollary 5.2.6 gives us

∀i 6= j dHn(k)(ai
(k), aj

(k)) > n

and we have Hn
(k) ⊆ Bn.

Corollary 5.2.12. There is a countable B such that I is indiscernible over A ∪B and

∀i 6= j dB(ai, aj) =∞.

Proof. Let Bn as above. By Lemma 5.2.11 we have

∀i 6= j dBn(ai, aj) > n/2,

and I is indiscernible over A ∪Bn by Lemma 5.2.9. Let B =
⋃
n∈NBn. Then

∀i 6= j dB(ai, aj) =∞.

As Bn ⊆ Bn+1, the sequence I is indiscernible over A ∪B as needed.

Thus I can be upgraded to have infinite distance over its parameter set.

5.3 Superflat graphs are dp-minimal

Definition 5.3.1. For B ⊆ S define an equivalence relation ∼B on S−B as follows: two

vertices b, c are ∼B-equivalent if dB(b, c) is finite.

Lemma 5.3.2. Fix tuples a, b, c in S, with a, b having the same arity. Also let B ⊆ S.

Suppose tp(a/B) = tp(b/B) and dB(a, c) = dB(b, c) =∞. Then tp(a/Bc) = tp(b/Bc).

Proof. Suppose a = (a1, a2, . . . , am) and b = (b1, b2, . . . , bm). Define Xj to be the ∼B-

equivalence class of aj or Xj = ∅ if aj ∈ B. Similarly define Yj for bj. There is an

automorphism f of S fixing B with f(a) = b. It’s easy to see that f(Xj) = Yj setwise.

We would like to define a function g : S−→S. For each j let g = f on Xj. Additionally

if Xj 6= Yj then also let g = f−1 on Yj. Define g to be identity on the rest of S. It is easy
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to check that g is a well-defined automorphism fixing Bc that maps a to b. This shows

that tp(a/Bc) = tp(b/Bc).

Lemma 5.3.3. Let b ∈ G. There exists c ∈ I such that all (ai)i∈I −c have the same type

over Ab.

Proof. Use Corollary 5.2.12 to find B ⊇ A such that I is indiscernible over B and has

infinite distance over B. All the tuples of the indiscernible sequence fall into distinct ∼B-

equivalence classes. If b ∈ B we are done. Otherwise, there can be at most one element

of the sequence that is in the same ∼B-equivalence class as b. Exclude that element from

the sequence. Remaining sequence elements are all infinitely far away from b over B. By

the previous lemma we have that the elements of the indiscernible sequence all have the

same type over Bb as needed.

Theorem 5.3.4. Superflat graphs are dp-minimal.

Proof. It suffices to show that S is dp-minimal. Using Lemma 1.4.2, by total indiscerni-

bility it is enough to show that if b ∈ S and I is a countable ∅-indiscernible sequence then

one element can be excluded from I, so that the remaining elements have the same type

over b. But this is precisely Lemma 5.3.3.

5.4 Conclusion

The determination of dp-minimality is the first step towards establishing bounds on VC-

density. It is this author’s hope that the simple structure of superflat graphs yields nicely

behaved VC-density. We pose the following question for the future work:

Open Question 5.4.1. What are the bounds on VC-density function in superflat graphs?

In particular, do we have vc(1) = 1 or vc(n) = n vc(1)? Are the bounds better in specific

classes of superflat graphs, such as planar graphs, graphs with bounded tree-width, or

graphs excluding certain classes of subgraphs?
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