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First observation of the decay
B+
c → J/ψK+

The LHCb collaboration†

Abstract

The decay B+
c → J/ψK+ is observed for the first time using a data sample, corre-

sponding to an integrated luminosity of 1.0 fb−1, collected by the LHCb experiment in
pp collisions at a centre-of-mass energy of 7 TeV. A yield of 46±12 events is reported,
with a significance of 5.0 standard deviations. The ratio of the branching fraction
of B+

c → J/ψK+ to that of B+
c → J/ψπ+ is measured to be 0.069± 0.019± 0.005,

where the first uncertainty is statistical and the second is systematic.

Submitted to JHEP

c© CERN on behalf of the LHCb collaboration, license CC-BY-3.0.

†Authors are listed on the following pages.
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D. Golubkov30, A. Golutvin52,30,37, A. Gomes2, H. Gordon54, M. Grabalosa Gándara5,
R. Graciani Diaz35, L.A. Granado Cardoso37, E. Graugés35, G. Graziani17, A. Grecu28,
E. Greening54, S. Gregson46, P. Griffith44, O. Grünberg60, B. Gui58, E. Gushchin32, Yu. Guz34,37,
T. Gys37, C. Hadjivasiliou58, G. Haefeli38, C. Haen37, S.C. Haines46, S. Hall52, T. Hampson45,
S. Hansmann-Menzemer11, N. Harnew54, S.T. Harnew45, J. Harrison53, T. Hartmann60, J. He37,
V. Heijne40, K. Hennessy51, P. Henrard5, J.A. Hernando Morata36, E. van Herwijnen37,
A. Hicheur1, E. Hicks51, D. Hill54, M. Hoballah5, C. Hombach53, P. Hopchev4, W. Hulsbergen40,
P. Hunt54, T. Huse51, N. Hussain54, D. Hutchcroft51, D. Hynds50, V. Iakovenko43, M. Idzik26,
P. Ilten12, R. Jacobsson37, A. Jaeger11, E. Jans40, P. Jaton38, A. Jawahery57, F. Jing3,

iii



M. John54, D. Johnson54, C.R. Jones46, C. Joram37, B. Jost37, M. Kaballo9, S. Kandybei42,
M. Karacson37, T.M. Karbach37, I.R. Kenyon44, U. Kerzel37, T. Ketel41, A. Keune38,
B. Khanji20, O. Kochebina7, I. Komarov38, R.F. Koopman41, P. Koppenburg40, M. Korolev31,
A. Kozlinskiy40, L. Kravchuk32, K. Kreplin11, M. Kreps47, G. Krocker11, P. Krokovny33,
F. Kruse9, M. Kucharczyk20,25,j , V. Kudryavtsev33, T. Kvaratskheliya30,37, V.N. La Thi38,
D. Lacarrere37, G. Lafferty53, A. Lai15, D. Lambert49, R.W. Lambert41, E. Lanciotti37,
G. Lanfranchi18,37, C. Langenbruch37, T. Latham47, C. Lazzeroni44, R. Le Gac6,
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T. Pilař47, D. Pinci24, S. Playfer49, M. Plo Casasus36, F. Polci8, G. Polok25, A. Poluektov47,33,
E. Polycarpo2, A. Popov34, D. Popov10, B. Popovici28, C. Potterat35, A. Powell54,
J. Prisciandaro38, A. Pritchard51, C. Prouve7, V. Pugatch43, A. Puig Navarro38, G. Punzi22,q,
W. Qian4, J.H. Rademacker45, B. Rakotomiaramanana38, M.S. Rangel2, I. Raniuk42,
N. Rauschmayr37, G. Raven41, S. Redford54, M.M. Reid47, A.C. dos Reis1, S. Ricciardi48,
A. Richards52, K. Rinnert51, V. Rives Molina35, D.A. Roa Romero5, P. Robbe7, E. Rodrigues53,
P. Rodriguez Perez36, S. Roiser37, V. Romanovsky34, A. Romero Vidal36, J. Rouvinet38,
T. Ruf37, F. Ruffini22, H. Ruiz35, P. Ruiz Valls35, G. Sabatino24,k, J.J. Saborido Silva36,
N. Sagidova29, P. Sail50, B. Saitta15,d, V. Salustino Guimaraes2, C. Salzmann39,
B. Sanmartin Sedes36, M. Sannino19,i, R. Santacesaria24, C. Santamarina Rios36,
E. Santovetti23,k, M. Sapunov6, A. Sarti18,l, C. Satriano24,m, A. Satta23, M. Savrie16,e,
D. Savrina30,31, P. Schaack52, M. Schiller41, H. Schindler37, M. Schlupp9, M. Schmelling10,
B. Schmidt37, O. Schneider38, A. Schopper37, M.-H. Schune7, R. Schwemmer37, B. Sciascia18,
A. Sciubba24, M. Seco36, A. Semennikov30, K. Senderowska26, I. Sepp52, N. Serra39, J. Serrano6,
P. Seyfert11, M. Shapkin34, I. Shapoval16,42, P. Shatalov30, Y. Shcheglov29, T. Shears51,37,
L. Shekhtman33, O. Shevchenko42, V. Shevchenko30, A. Shires52, R. Silva Coutinho47,
T. Skwarnicki58, N.A. Smith51, E. Smith54,48, M. Smith53, M.D. Sokoloff56, F.J.P. Soler50,
F. Soomro18, D. Souza45, B. Souza De Paula2, B. Spaan9, A. Sparkes49, P. Spradlin50,

iv



F. Stagni37, S. Stahl11, O. Steinkamp39, S. Stoica28, S. Stone58, B. Storaci39, M. Straticiuc28,
U. Straumann39, V.K. Subbiah37, L. Sun56, S. Swientek9, V. Syropoulos41, M. Szczekowski27,
P. Szczypka38,37, T. Szumlak26, S. T’Jampens4, M. Teklishyn7, E. Teodorescu28, F. Teubert37,
C. Thomas54, E. Thomas37, J. van Tilburg11, V. Tisserand4, M. Tobin38, S. Tolk41, D. Tonelli37,
S. Topp-Joergensen54, N. Torr54, E. Tournefier4,52, S. Tourneur38, M.T. Tran38, M. Tresch39,
A. Tsaregorodtsev6, P. Tsopelas40, N. Tuning40, M. Ubeda Garcia37, A. Ukleja27, D. Urner53,
U. Uwer11, V. Vagnoni14, G. Valenti14, R. Vazquez Gomez35, P. Vazquez Regueiro36, S. Vecchi16,
J.J. Velthuis45, M. Veltri17,g, G. Veneziano38, M. Vesterinen37, B. Viaud7, D. Vieira2,
X. Vilasis-Cardona35,n, A. Vollhardt39, D. Volyanskyy10, D. Voong45, A. Vorobyev29,
V. Vorobyev33, C. Voß60, H. Voss10, R. Waldi60, R. Wallace12, S. Wandernoth11, J. Wang58,
D.R. Ward46, N.K. Watson44, A.D. Webber53, D. Websdale52, M. Whitehead47, J. Wicht37,
J. Wiechczynski25, D. Wiedner11, L. Wiggers40, G. Wilkinson54, M.P. Williams47,48,
M. Williams55, F.F. Wilson48, J. Wishahi9, M. Witek25, S.A. Wotton46, S. Wright46, S. Wu3,
K. Wyllie37, Y. Xie49,37, Z. Xing58, Z. Yang3, R. Young49, X. Yuan3, O. Yushchenko34,
M. Zangoli14, M. Zavertyaev10,a, F. Zhang3, L. Zhang58, W.C. Zhang12, Y. Zhang3,
A. Zhelezov11, A. Zhokhov30, L. Zhong3, A. Zvyagin37.

1Centro Brasileiro de Pesquisas F́ısicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
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7LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
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59Pontif́ıcia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2

60Institut für Physik, Universität Rostock, Rostock, Germany, associated to 11

aP.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
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The B+
c meson is composed of two heavy valence quarks, and has a wide range of

expected decay modes [1–10]. Prior to LHCb taking data, only a few decay channels,
such as B+

c → J/ψπ+ and B+
c → J/ψµ+ν had been observed [11, 12]. For pp collisions

at a centre-of-mass energy of 7 TeV, the total B+
c production cross-section is predicted

to be about 0.4µb, one order of magnitude higher than that at the Tevatron [13, 14].
LHCb has thus been able to observe new decay modes, such as B+

c → J/ψπ+π−π+ [15],

B+
c → ψ(2S)π+ [16] and B+

c → J/ψD
(∗)+
s [17], and to measure precisely the mass of the

B+
c meson [18].

In this paper, we report the first observation of the decay channel B+
c → J/ψK+

(inclusion of charge conjugate modes is implied throughout the paper). The J/ψ meson is
reconstructed in the dimuon final state. The branching fraction is measured relative to
that of the B+

c → J/ψπ+ decay mode, which has identical topology and similar kinematic
properties, as shown in Fig. 1. No absolute branching fraction of the B+

c meson is known
to date. The predicted ratio of branching fractions B(B+

c → J/ψK+)/B(B+
c → J/ψπ+)

is dominated by the ratio of the relevant Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements |Vud/Vus|2 ≈ 0.05 [19]. However, after including the decay constants, fK+(π+),
the ratio is enhanced,

B(B+
c → J/ψK+)

B(B+
c → J/ψπ+)

≈
∣∣∣∣VusfK+

Vudfπ+

∣∣∣∣2 = 0.077 , (1)

where the values of fK+(π+) are given in Ref. [19]. Taking into account the contributions of
the B+

c form factor and the kinematics, the theoretical predictions for the ratio of branching
fractions lie in the range from 0.054 to 0.088 [2, 3, 5–7, 9, 10]. The large span of these
predictions is due to the various models and the uncertainties on the phenomenological
parameters. The measurement of B(B+

c → J/ψK+)/B(B+
c → J/ψπ+) therefore provides

a test of the theoretical predictions of hadronisation.
The analysis is based on a data sample, corresponding to an integrated luminosity

of 1.0 fb−1 of pp collisions, collected by the LHCb experiment at a centre-of-mass energy
of 7 TeV. The LHCb detector [20] is a single-arm, forward spectrometer covering the
pseudorapidity range 2 < η < 5 and is designed for precise measurements in the b and
c quark sectors. The detector includes a high precision tracking system consisting of a

W+

π+(K+)
d̄(s̄)

u
Vud(Vus)

b̄
c

c̄
c

J/ψB+
c

Figure 1: Diagram for a B+
c → J/ψπ+(K+) decay.
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silicon-strip vertex detector surrounding the pp interaction region, a large area silicon-
strip detector located upstream of a dipole magnet with a bending power of about 4 Tm,
and three stations of silicon-strip detectors and straw drift tubes placed downstream.
The combined tracking system has momentum resolution ∆p/p that varies from 0.4%
at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter (IP) resolution of 20µm for
tracks with high transverse momentum (pT). Charged hadrons are identified using two
ring-imaging Cherenkov (RICH) detectors and good kaon-pion separation is achieved
for tracks with momentum between 5 GeV/c and 100 GeV/c [21]. Photon, electron and
hadron candidates are identified by a calorimeter system consisting of scintillating-pad and
preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons
are identified by a system composed of alternating layers of iron and multiwire proportional
chambers. The trigger system [22] consists of a hardware stage, based on information from
the calorimeter and muon systems, followed by a two-stage software trigger that applies
event reconstruction and reduces the event rate from 1 MHz to around 3 kHz.

In the hardware trigger, events are selected by requiring a single muon or dimuon
candidate with high pT. In the software trigger, events are selected by requiring dimuon
candidates with invariant mass close to the known J/ψ mass [19] and with decay length
significance greater than 3 with respect to the associated primary vertex (PV). For events
with several PVs, the one with the smallest χ2

IP is chosen, where χ2
IP is defined as the

difference in χ2 of a given PV reconstructed with and without the considered track. The
bachelor hadrons (K+ for B+

c → J/ψK+ and π+ for B+
c → J/ψπ+ decays) are required to

be separated from the B+
c PV and have pT > 0.5 GeV/c. The B+

c candidates are required
to have good vertex quality with vertex fit χ2

vtx per degree of freedom less than 5, and
mass within 500 MeV/c2 of the world average value of the B+

c mass [19].
A boosted decision tree (BDT) [23] is used for the final event selection. The BDT is

trained using a simulated B+
c → J/ψπ+ sample as a proxy for signal and the high-mass

sideband (mJ/ψπ+ > 6650 MeV/c2) in data for background. The BDT cut value is optimised
to maximise the expected B+

c → J/ψK+ signal significance. In the simulation, pp collisions
are generated using Pythia 6.4 [24] with a specific LHCb configuration [25]. The B+

c

meson production is simulated with the dedicated generator Bcvegpy [26]. Decays of
hadronic particles are described by EvtGen [27], in which final state radiation is generated
using Photos [28]. The interaction of the generated particles with the detector and its
response are implemented using the Geant4 toolkit [29] as described in Ref. [30]. The
BDT takes the following variables into account: the χ2

IP of the bachelor hadron and B+
c

mesons with respect to the PV; the B+
c vertex quality; the distance between the B+

c decay
vertex and the PV; the pT of the B+

c candidate; the χ2 from the B+
c decay vertex refit [31],

obtained with a constraint on the PV and the reconstructed J/ψ mass; and the cosine
of the angle between the momentum of the B+

c meson and the direction vector from the
PV to the B+

c decay vertex. These variables are chosen as they discriminate the signal
from the background, and have similar distributions for B+

c → J/ψK+ and B+
c → J/ψπ+

decays, ensuring that the systematic uncertainty due to the relative selection efficiency is
minimal. After the BDT selection, no event with multiple candidates remains.
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The branching fraction ratio is computed as

B(B+
c → J/ψK+)

B(B+
c → J/ψπ+)

=
N(B+

c → J/ψK+)

N(B+
c → J/ψπ+)

· ε(B
+
c → J/ψπ+)

ε(B+
c → J/ψK+)

, (2)

where N is the signal yield of B+
c → J/ψK+ or B+

c → J/ψπ+ decays and ε is the total
efficiency, which takes into account the geometrical acceptance, detection, reconstruction,
selection and trigger effects.

An unbinned maximum likelihood fit is used to determine the yields from the J/ψK+

mass distribution of the B+
c candidates, under the kaon mass hypothesis. The total

probability density function for the fit has four components: signals for B+
c → J/ψK+

and B+
c → J/ψπ+ decays; the combinatorial background; and the partially reconstructed

background.
To discriminate between pion and kaon bachelor tracks, the quantity

DLLKπ = lnL(K)− lnL(π) (3)

is used, where L(K) and L(π) are the likelihood values provided by the RICH system
under the kaon and pion hypotheses, respectively. Since the momentum spectra of
the bachelor pions and kaons are correlated with the DLLKπ, the shapes of the mass
distribution used in the fit vary as a function of DLLKπ. To reduce this dependence
and separate the two signals, the DLLKπ range is divided into four bins, DLLKπ < −5,
−5 < DLLKπ < 0, 0 < DLLKπ < 5 and DLLKπ > 5. The ratio of the total signal yields
is defined as RK+/π+ =

∑4
i=1N

i
J/ψK+/

∑4
i=1N

i
J/ψπ+ , where N i

J/ψK+(π+) is the signal yield

in each DLLKπ bin i. Due to the limited sample size of the B+
c → J/ψK+ signal in the

bins with DLLKπ < −5 and −5 < DLLKπ < 0, their signal yields are fixed, respectively,
to be zero and P ×

∑4
i=1N

i
J/ψK+ where the P is the probability that the kaon from the

B+
c → J/ψK+ decay has −5 < DLLKπ < 0, as estimated from simulation.

Figure 2 shows the invariant mass distributions of the B+
c candidates, calculated with

the kaon mass hypothesis in the four DLLKπ bins. In the fit to the B+
c mass spectrum,

the shape of the B+
c → J/ψK+ signal is modelled by a double-sided Crystal Ball (DSCB)

function [32] as

f(x;M,σ, al, nl, ar, nr) =



e
−a2l
2

(
nl
al

)nl
(
nl
al
− al −

x−M
σ

)−nl x−M
σ

< −al

exp

[
−1

2

(
x−M
σ

)2
]

−al ≤
x−M
σ

≤ −ar

e
−a2r
2

(
nr
ar

)nr
(
nr
ar
− ar +

x−M
σ

)−nr x−M
σ

> −ar

(4)

where the peak position is fixed to that from an independent fit to the B+
c → J/ψπ+ mass

distribution, and the tail parameters al,r and nl,r on both sides are taken from simulation.
As the decay B+

c → J/ψπ+ is reconstructed with the kaon mass replacing the pion mass,
the signal is shifted to higher mass values and is modelled by another DSCB function whose
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Figure 2: Mass distributions of B+
c candidates in four DLLKπ bins and the superimposed fit

results. The solid shaded area (red) represents the B+
c → J/ψK+ signal and the hatched area

(blue) the B+
c → J/ψπ+ signal. The dot-dashed line (blue) indicates the partially reconstructed

background and the dotted (red) the combinatorial background. The solid line (black) represents
the sum of the above components and the points with error bars (black) show the data. The
labels (a), (b), (c) and (d) correspond to DLLKπ < −5, −5 < DLLKπ < 0, 0 < DLLKπ < 5 and
DLLKπ > 5 for the bachelor track, respectively.

shape and the relative position to the B+
c → J/ψK+ signal are also derived from simulation.

Two corrections are applied to the B+
c → J/ψπ+ simulation sample. Firstly, since the

resolution of the detector is overestimated, the momenta of charged particles are smeared
to make the resolution on the B+

c mass in the B+
c → J/ψπ+ simulation sample the same

as that of the J/ψπ+ mass distribution of the B+
c candidates in the data sample. Secondly,

the shapes of the B+
c → J/ψπ+ mass distribution in the four DLLKπ bins depend on the

DLLKπ distribution, which is different in data and simulation. To reduce the effect of this
difference, each simulated event is reweighted by a DLLKπ dependent correction factor,
which is derived from a linear fit to the ratio of the DLLKπ distribution in background-
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subtracted data, to that of the simulation sample. The background subtraction [33] is
performed with the J/ψπ+ mass distribution of the B+

c candidates in the data sample
with the pion mass hypothesis.

The combinatorial background is modelled as an exponential function with a different
freely varying parameter in each DLLKπ bin. The contribution of the partially reconstructed
background is modelled by an ARGUS function [34]. The contribution of the partially
reconstructed background is dominated by events with bachelor pions, which are suppressed
in the high-value DLLKπ bins, therefore the number of the partially reconstructed events
in the DLLKπ > 5 bin is assumed to be zero. All parameters of the partially reconstructed
background are allowed to vary. The observed B+

c → J/ψK+ signal yield is 46± 12 and
the ratio of yields is

RK+/π+ =
N(B+

c → J/ψK+)

N(B+
c → J/ψπ+)

= 0.071± 0.020 (stat) .

The ratio of the total efficiencies computed over the full DLLKπ range is

ε(B+
c → J/ψK+)

ε(B+
c → J/ψπ+)

= 1.029± 0.007 ,

which is determined from simulation and the uncertainty is due to the finite size of the
simulation samples.

The B+
c → J/ψπ+ signal has a long tail that may extend into the high mass region.

A systematic uncertainty is assigned due to the choice of fit range, and is determined
to be 0.9% by changing the mass window from 6000-6600 MeV/c2 to 6200-6700 MeV/c2

and comparing the results. To estimate the systematic uncertainty due to the potentially
different performance of the BDT on data and simulation, several BDT cut values were
tested. A 5.7% spread in the final result is obtained and is propagated to the quoted
systematic uncertainty.

To estimate the uncertainty due to the shapes of the B+
c → J/ψK+ and B+

c → J/ψπ+

signals, the fit is repeated many times by varying the parameters of the tails of these
DSCB functions that were kept constant in the fit within one standard deviation of their
values in simulation. A spread of 0.7% is observed. For the B+

c → J/ψπ+ signal the
assigned systematic uncertainty is 0.5%.

To estimate the systematic uncertainty due to the choice of signal shape, an alternative
B+
c → J/ψπ+ mass shape is used, which is determined from the data sample by subtracting

the background in the J/ψπ+ mass distribution of the B+
c candidates with the pion

hypothesis. A 2.7% difference with the ratio obtained with the nominal signal shape is
observed.

For the systematic uncertainty due to the choice of the partially reconstructed back-
ground shape in each DLLKπ bin, the shape is modelled with the ARGUS function
convolved with a Gaussian function. The observed 2.3% deviation from the default fit is
assigned as the systematic uncertainty.

For the B+
c → J/ψK+ yields in the two bins with DLLKπ < 0, half of the probability

estimated from the simulation, namely 1.8%, is taken as systematic uncertainty.
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Table 1: Relative systematic uncertainties on the ratio of branching fractions.

Source Uncertainty (%)
Mass window 0.9
BDT selection 5.7
B+
c → J/ψK+ signal model 0.7

B+
c → J/ψπ+ signal model 0.5

Choice of signal shape 2.7
Partially reconstructed background shape 2.3
B+
c → J/ψK+ signals in DLLKπ < 0 bins 1.8

DLLKπ binning choice 1.2
K+ and π+ interaction length 2.0
Simulation sample size 0.7
Total 7.5

To estimate the uncertainty due to the choice of the DLLKπ binning, two other binning
choices are tried: DLLKπ < −6, −6 < DLLKπ < −1, −1 < DLLKπ < 4, DLLKπ > 4 and
DLLKπ < −4, −4 < DLLKπ < 1, 1 < DLLKπ < 6, DLLKπ > 6. The average value of the
results with these two binning choices has a 1.2% deviation from the default value, which
is taken as the systematic uncertainty.

There is a systematic uncertainty due to the different track reconstruction efficiencies
for kaons and pions. Since the simulation does not describe hadronic interactions with
detector material perfectly, a 2% uncertainty is assumed, as in Ref. [35].

An uncertainty of 0.7% arises from the statistical uncertainty of the ratio of the total
efficiencies, which is due to the finite size of the simulation sample.

The systematic uncertainties are summarised in Table 1. The total systematic uncer-
tainty, obtained as the quadratic sum of the individual uncertainties, is 7.5%.

The asymptotic formula for a likelihood-based test
√
−2 ln(LB/LS+B) is used to

estimate the B+
c → J/ψK+ signal significance, where LB and LS+B stand for the likelihood

of the background-only hypothesis and the signal and background hypothesis respectively.
A deviation from the background-only hypothesis with 5.2 standard deviations is found
when only the statistical uncertainty is considered. When taking the systematic uncertainty
into account, the total significance of the B+

c → J/ψK+ signal is 5.0 σ.
In summary, a search for the B+

c → J/ψK+ decay is performed using a data sample,
corresponding to an integrated luminosity of 1.0 fb−1 of pp collisions, collected by the LHCb
experiment. The signal yield is 46± 12 candidates, and represents the first observation
of this decay channel. The branching fraction of B+

c → J/ψK+ with respect to that of
B+
c → J/ψπ+ is measured as

B(B+
c → J/ψK+)

B(B+
c → J/ψπ+)

= 0.069± 0.019± 0.005 ,

where the first uncertainty is the statistical and the second is systematic. The measurement
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is in agreement with the theoretical predictions [2, 3, 5–7,9, 10].
Assuming factorization holds, the näıve prediction of the ratio B(B+

c →
J/ψK+)/B(B+

c → J/ψπ+) can be compared to other B meson decays with a similar
topology

B(B → DK+)

B(B → Dπ+)
=


0.0646± 0.0043± 0.0025 forB0

s → D−s K
+(π+)

0.0774± 0.0012± 0.0019 forB+ → D0K+(π+)

0.074± 0.009 forB0 → D−K+(π+)

(5)

taken from Ref. [19,36,37]. Hence, this measurement of B(B+
c → J/ψK+)/B(B+

c → J/ψπ+)
is consistent with näıve factorisation in B decays.
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