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STABILITY OF THE SURFACE AREA PRESERVING MEAN

CURVATURE FLOW IN EUCLIDEAN SPACE

ZHENG HUANG AND LONGZHI LIN

Abstract. The surface area preserving mean curvature flow is a mean curva-

ture type flow with a global forcing term to keep the hypersurface area fixed.

By iteration techniques, we show that the surface area preserving mean cur-

vature flow in Euclidean space exists for all time and converges exponentially

to a round sphere, if initially the L2-norm of the traceless second fundamental

form is small (but the initial hypersurface is not necessarily convex).

1. Introduction

Let Mn be a smooth, embedded, closed (compact, no boundary) n-dimensional

manifold in Rn+1, and we evolve it by the surface area preserving mean curvature

flow, that is,

(1.1)
∂F

∂t
= (1− hH) ν, F (·, 0) = F0(·) .

Here F0 : Mn → Rn+1 is the initial embedding, and H = H(x, t) is the mean

curvature and ν = ν(x, t) is the outward unit normal vector of Mt = F (·, t) at

point (x, t) (for simplicity, we simply write (x, t) ∈ Mt). And the function h is

given by

(1.2) h = h(t) =

∫
Mt

H dµ∫
Mt

H2 dµ
,

where dµ = dµt denotes the surface area element of the evolving surface Mt with

respect to the induced metric g(t). Clearly we have H 6≡ 0 on M0 since there

is no closed minimal hypersurface in Euclidean space by the maximum principle

(see e.g. [CM11]). A good monotonicity property of the surface area preserving

mean curvature flow (1.1) is that the surface area of Mt remains unchanged and

the volume of the (n + 1)-dimensional region enclosed by Mt is non-decreasing

along the flow, see Corollary 2.3. This flow is a normalized variant of the classic

mean curvature flow which is the steepest descent flow for the area functional, c.f.

volume preserving mean curvature flow [Hui87]. We shall point out the velocity of

the surface area preserving mean curvature flow depends on a global term 1− hH,

and it is quite different from rescaling the mean curvature flow by dilation and

reparametrization considered by Huisken [Hui84, §9].
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2 ZHENG HUANG AND LONGZHI LIN

We denote A = {aij} as the second fundamental form of Mt and its traceless

part as Å = A − H
n g. Then we have |Å|2 = |A|2 − 1

nH
2. This quantity measures

the roundness of the hypersurface.

In this paper, we prove the following theorem on the stability of this surface area

preserving mean curvature flow:

Theorem 1.1. Let Mn
t ⊂ Rn+1, n ≥ 2, be a smooth compact solution to the surface

area preserving mean curvature flow (1.1) for t ∈ [0, T ) with T ≤ ∞. Assume that

h(0) > 0. There exists ε > 0, depending only on n, h(0), the surface area of

M0, maxM0
|A| and the L2-norms of the covariant derivatives of A on M0, such

that if

(1.3)

∫
M0

|Å|2 dµ ≤ ε ,

then T =∞ and the flow converges exponentially to a round sphere.

Remark 1.2. The general scheme of the proof is an iteration argument, and the

idea of using this to prove dynamical stability of geometric flows seems to go back

[Ye93]). The stability of the volume preserving mean curvature flow was studied

by Escher-Simonett ([ES98]) and Li ([Li09]), under different sets of conditions.

In [McC03], McCoy proved that the surface area preserving mean curvature flow

exists for all time and converges to a sphere if the initial hypersurface is strictly con-

vex. As in the case of volume preserving mean curvature flow initiated by Huisken

in [Hui87], strict convexity of the initial surface is essential. In our setting, we do

not assume such strict convexity (or mean convexity) for the initial hypersurface.

While it is crucial to keep track of the behavior of the global term h(t) along the

flow, the analytical nature of our case, namely the surface area preserving mean

curvature flow, is much more complicated than that of the volume preserving mean

curvature flow, since the function h(t) contains two integral terms both involving

the mean curvature. A key reduction in §3.2 for our treatment is that we may

assume the H of the hypersurface is small (possibly changing signs), otherwise, the

hypersurface is strictly convex already. As a result, the flow exists for all time and

we iterate to prove the convergence to a round sphere. Our approach is expected to

use to investigate the more general mixed volume preserving mean curvature flow

studied by McCoy in [McC04], also in the study of the dynamical stability for the

mean curvature flow [LS13].

Outline of the proof: Our strategy is by iteration: based on the initial bounds, we

prove bounds on some time interval for several geometric quantities (Theorem 3.2),

and these bounds together with Lemma 3.4 allow us to make a reduction on the

argument such that we have control on the mean curvature over the time interval,

then we prove decay for these quantities on the time interval (Theorem 4.1). Main

theorem then follows. One of the key ingredients in the proof is a version of the

classical Michael-Simon inequality to derive the exponential decay for
∫
Mt
|Å|2.

Plan of the paper: There are four sections. In §2, we collect evolution equations

for various geometric quantities associated to this flow, and provide some classic

results that will be used in the proof. The proof of the main theorem is contained
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in the last two sections: we provide key estimates for the initial time interval of

the iteration in §3, and we prove decay for
∫
Mt
|Å|2 and other quantities, and prove

the Lemma 3.4 to use it later for a reduction of the argument, we then use these

estimates to prove the long-time existence and convergence in §4.

Acknowledgements. Z. H. thanks supports from U.S. national science founda-

tion grants DMS 1107452, 1107263, 1107367 “RNMS: Geometric Structures and

Representation varieties” (the GEAR Network), and he is also partially supported

by a PSC-CUNY award.

2. preliminaries

For convenience of the reader, we collect some necessary preliminary results in

this section. In §2.1, we obtain evolution equations for some key quantities and op-

erators, many of which were derived in [McC03]; in §2.2, we state and use Hamil-

ton’s interpolation inequalities for tensors to obtain a L2 estimate (Lemma 2.11)

on the covariant derivatives of the tensor Å. A version of the parabolic maximum

principle and a version of the Michael-Simon inequality are also provided in this

subsection.

2.1. Evolution of geometric quantities. We start with the short time existence

of the surface area preserving mean curvature flow (1.1) that is guaranteed by a

work of Pihan:

Theorem 2.1. ([Pih98]) Let M0 be a smooth embedded compact n-dimensional

manifold in Rn+1. Assume that H 6= 0 at some point of M0 and h(0) > 0, then

there exists T0 > 0 such that the surface area preserving mean curvature flow (1.1)

exists and is smooth for t ∈ [0, T0).

We now collect and derive some evolution equations of several geometric quan-

tities which will be used later. These quantities are:

(1) the induced metric of the evolving surface Mt: g(t) = {gij(t)};
(2) the second fundamental form of Mt: A(•, t) = {aij(•, t)}, and its square

norm given by

|A(•, t)|2 = gijgklaikajl;

(3) the mean curvature of Mt with respect to the outward normal vector:

H(•, t) = gijaij ;

(4) the traceless part of the second fundamental form: Å = A− H
n g;

(5) the surface area element of Mt: dµt =
√
det(gij).

Lemma 2.2. ([McC03]) The metric of Mt satisfies the evolution equation

(2.1)
∂

∂t
gij = 2(1− hH)aij .

Therefore,

(2.2)
∂

∂t
gij = −2(1− hH)aij
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and

(2.3)
∂

∂t
(dµt) = H(1− hH)dµt.

Moreover, the outward unit normal ν to Mt satisfies

(2.4)
∂ν

∂t
= h∇H .

As an easy consequence of (2.3), we have

Corollary 2.3. ([McC03])

(1) The surface area |Mt| of Mt remains unchanged along the flow, i.e.,

d

dt

∫
Mt

dµ =

∫
Mt

(1− hH)H dµ = 0 .

(2) The volume of Et, the (n + 1)-dimensional region enclosed by Mt, is non-

decreasing along the flow, i.e.,

d

dt
Vol (Et) =

∫
Mt

dµ−

(∫
Mt

H dµ
)2∫

Mt
H2 dµ

≥ 0 .

Remark 2.4. In Euclidean space, among all closed hypersurfaces, the sphere is of

the least surface area with fixed enclosed volume, and as well as of the largest

enclosed volume with fixed surface area. Therefore from this point of view, it is

natural to study the sphere via both the volume preserving mean curvature flow

and the surface area preserving mean curvature flow.

Theorem 2.5. ([McC03]) The second fundamental form satisfies the following

evolution equation:

(2.5)
∂

∂t
aij = h∆aij + (1− 2hH)ami amj + h|A|2aij ,

where ami = gmlali.

Corollary 2.6. ([McC03]) We have the evolution equations for H, |A|2 and |Å|2:

(i) ∂
∂tH = h∆H − (1− hH)|A|2;

(ii) ∂
∂t |A|

2 = h
(
∆|A|2 − 2|∇A|2 + 2|A|4

)
− 2tr

(
A3
)
,

where tr
(
A3
)

= gijgklgmnaikalmanj . Therefore we also have

(iii) ∂
∂t |Å|

2 = h∆|Å|2 − 2h|∇Å|2 + 2h|A|2|Å|2 − 2
(

tr(Å
3
) + 2

nH|Å|
2
)

, where

|∇Å|2 = |∇A|2 − 1
n |∇H|

2.

Proof. The last equation here is equivalent to the one from [McC03]. To see this,

we used the following fact (see page 335 of [Li09]):

tr
(
A3
)
− 1

n
|A|2H = tr

(
Å

3
)

+
2

n
|Å|2H.
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We can then derive the evolution equations for the square norm of the covariant

derivatives of the second fundamental form.

Corollary 2.7. We have the evolution equation for |∇mA|2:

∂

∂t
|∇mA|2 =h∆|∇mA|2 − 2h|∇m+1A|2 +

∑
i+j+k=m

∇iA ∗h ∇jA ∗ ∇kA ∗ ∇mA

+
∑

r+s=m

∇rA ∗h ∇sA ∗ ∇mA ,(2.6)

where ∗h and ∗ denote any linear combination of tensors formed by contraction by

the metric g (∗h means the coefficient contains a linear factor h).

Proof. The time derivative of the Christoffel symbols Γijk is equal to

∂

∂t
Γijk =

1

2
gil
{
∇j
(
∂

∂t
gkl

)
+∇k

(
∂

∂t
gjl

)
−∇l

(
∂

∂t
gjk

)}
= gil {∇j ((1− hH)akl) +∇k ((1− hH)ajl)−∇l ((1− hH)ajk)}
= A ∗h ∇A+∇A ,

Here we have used the evolution equation for the metric, i.e., (2.1). Now we can

proceed exactly as in [Ham82, §13] (see also [Hui84, §7]) to obtain (2.6).

In addition, we prove the following lemma on the time-derivative of the function

h(t) =

∫
Mt

H dµ∫
Mt

H2dµ
. Later in §4.3, we will use it to establish a positive lower bound

for h(t) under our conditions.

Lemma 2.8.

dh

dt
=

∫
Mt

[−(1− 2hH)(1− hH)|A|2 +H2(1− hH)2 + 2h2|∇H|2 ]dµ∫
Mt

H2 dµ
.

Proof. For the sake of completeness, we compute as follows:

dh

dt
=

d

dt

( ∫
Mt

H dµ∫
Mt

H2 dµ

)

=

(∫
Mt

H2 dµ

)−1 [∫
Mt

−(1− hH)|A|2 +H2(1− hH) dµ

]
−
(∫

Mt

H2 dµ

)−1 [∫
Mt

−2h2|∇H|2 − 2hH(1− hH)|A|2 + hH3(1− hH) dµ

]
=

∫
Mt

[−(1− 2hH)(1− hH)|A|2 +H2(1− hH)2 + 2h2|∇H|2 ]dµ∫
Mt

H2 dµ
.
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2.2. Interpolations, Michael-Simon’s inequality and maximum principle.

We will also need to make use of several well-known techniques for our proof. We

start with the following Hamilton’s interpolation inequality for tensors.

Theorem 2.9. ([Ham82]) Let Mn be an n-dimensional compact Riemannian

manifold and Ω be any tensor on M . Suppose

1

p
+

1

q
=

1

r
with r ≥ 1 .

We have the estimate(∫
M

|∇Ω|2r dµ
)1/r

≤ (2r − 2 + n)

(∫
M

|∇2Ω|p dµ
)1/p(∫

M

|Ω|q dµ
)1/q

.

A consequence of this theorem is the following:

Corollary 2.10. ([Ham82]) Let Mn and Ω be the same as the Theorem 2.9. If

1 ≤ i ≤ m − 1, then there exists a constant C = C(n,m) which is independent of

the metric and connection on M , such that the following estimate holds:∫
M

|∇iΩ| 2mi dµ ≤ C max
M
|Ω|2(mi −1)

∫
M

|∇mΩ|2 dµ .

As an application of these interpolation inequalities, we prove an estimate that

will be used later.

Lemma 2.11. For any m ≥ 1 we have the estimate

d

dt

∫
Mt

|∇mA|2 dµ+ 2h

∫
Mt

|∇m+1A|2 dµ

≤ C(n,m) (|h(t)|+ 1) max
Mt

(
|A|2 + |A|

) ∫
Mt

|∇mA|2 dµ .

Proof. By integrating the equation (2.6), and using the generalized Hölder in-

equality, for any i, j, k, r, s > 0 with i+ j + k = r + s = m we have

d

dt

∫
Mt

|∇mA|2 dµ−
∫
Mt

(1− hH)H|∇mA|2 dµ+ 2h

∫
Mt

|∇m+1A|2 dµ

≤C(n,m)(|h(t)|+ 1)

(∫
Mt

|∇mA|2
) 1

2

{(∫
Mt

|∇rA| 2mr
) r

2m
(∫

Mt

|∇sA| 2ms
) s

2m

+

(∫
Mt

|∇iA| 2mi
) i

2m
(∫

Mt

|∇jA|
2m
j

) j
2m
(∫

Mt

|∇kA| 2mk
) k

2m

}
.

The |h|+1 term comes from the fact that the contraction ∗h involves a linear factor

h. We then apply Corollary 2.10 for tensor A to get(∫
Mt

|∇qA|
2m
q dµ

)
≤ C(n,m) max

Mt

|A|2(mq −1)

(∫
Mt

|∇mA|2 dµ
)
,

where q = i, j, k, r or s.

Also note that∫
Mt

|(1− hH)H|∇mA|2dµ ≤ max
Mt

{|H|+ |h|H2}
∫
Mt

|∇mA|2dµ
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≤ C(n)(|h(t)|+ 1) max
Mt

(
|A|2 + |A|

) ∫
Mt

|∇mA|2dµ.

Now the conclusion follows from combining these inequalities.

In order to carry out our proof of Theorem 4.1, we need the following version of

Michael-Simon’s inequality. A key point for applications in our setting is that this

inequality is essentially a Poincaré type inequality for closed hypersurfaces which

have small mean curvatures, see (3.22), (3.23), and (3.24).

Lemma 2.12. Let M be a closed n-dimensional hypersurface, smoothly immersed

in Rn+1. Let v ≥ 0 be any Lipschitz function on M . We have:

(i) For any n > 2,

(2.7)

(∫
M

v
2n
n−2 dµ

)n−2
n

≤ C(n)

(∫
M

|∇v|2 dµ+

∫
M

H2v2 dµ

)
.

(ii) For n = 2,

(2.8)

∫
M

v2 ≤ C(n)

(∫
M

|∇v|2 dµ+

∫
M

H2v2 dµ

)
.

Proof. See e.g. [LS13].

We will need the following version of the maximum principle, especially in the

proof of Theorem 3.2.

Theorem 2.13. (Maximum principle, see e.g. [CLN06, Lemma 2.12]) Suppose

u : M × [0, T ]→ R satisfies

∂

∂t
u ≤ aij(t)∇i∇ju+ 〈B(t),∇u〉+ F (u) ,

where the coefficient matrix
(
aij(t)

)
> 0 for all t ∈ [0, T ], B(t) is a time-dependent

vector field and F is a Lipschitz function. If u ≤ c at t = 0 for some c > 0, then

u(x, t) ≤ U(t) for all (x, t) ∈ Mt, t ≥ 0, where U(t) is the solution to the following

initial value problem:

d

dt
U(t) = F (U) with U(0) = c .

3. Proof of Theorem 1.1: estimates and reduction

Our proof will occupy the rest of the paper, which is broken into two sections.

In this section, we provide key estimates: the L∞-bound for |Å| from its L2-bound,

and we make an important reduction before we proceed to complete the proof in

next section.
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3.1. Establishing bounds for geometric quantities. Let us start with a result

of Topping which plays an important role in the key estimates in this subsection.

Lemma 3.1. ([Top08]) Let M be an n-dimensional closed, connected manifold

smoothly immersed in RN , where N ≥ n+ 1. Then the intrinsic diameter and the

mean curvature H of M are related by

diam (M) ≤ C(n)

∫
M

|H|n−1 dµ .

We now begin to prove the following key estimates which allows us to obtain the

L∞-bound for |Å| and |∇H| on some time interval. More specifically,

Theorem 3.2. Let Mn
t ⊂ Rn+1, n ≥ 2, be a smooth compact solution to the surface

area preserving mean curvature flow (1.1) for t ∈ [0, T ), with T ≤ ∞. Assume that

(3.1) max

{
max
M0

|A|,
∫
M0

|∇mA|2 dµ
}
≤ Λ0 and h(0) ≥ 1

Λ1

for some Λ0,Λ1 > 0 and all m ∈ [1, m̂] with some m̂� 1. Then there exists some

ε0 = ε0(n,Λ0,Λ1, |M0|) > 0 and T1 = T1(n,Λ0, |M0|) ∈ (0, 1), such that if

(3.2)

∫
M0

|Å|2 dµ ≤ ε0 ,

then either at some time t0 ∈ [0, T1] the hypersurface becomes strictly convex and

the flow converges exponentially to a round sphere as t → ∞, or for all t ∈ [0, T1]

we have

(3.3) max

{
max
Mt

|A|,
∫
Mt

|∇mA|2 dµ
}
≤ 2Λ0 and h(t) ≥ 1

2Λ1
,

and moreover there exists C1 = C1(n,Λ0, |M0|) and some universal constant α ∈
(0, 1) such that for any t ∈ [0, T1]

(3.4) max
Mt

(
|Å|+ |∇H|

)
≤ C1ε

α
0 .

Proof. The proof will begin here, but will be completed in next subsection. To

begin, by the short time continuity, we denote t1 > 0 as the maximal time such

that for all t ∈ [0, t1] we have

(3.5) max

{
max
Mt

|A|,
∫
Mt

|∇mA|2 dµ
}
≤ 2Λ0 and h(t) ≥ 1

2Λ1
.

We also note that the following general inequality holds for the mean curvature H

of any closed hypersurfaces Mt, namely,

(3.6)

∫
Mt

|H|ndµ ≥ ωn,

where ωn is the area of the unit n-sphere, see e.g. [Che71].

By (3.5) and (3.6), and |H| ≤
√
n|A| ≤ 2

√
nΛ0, for any t ∈ [0, t1], we have

(2
√
nΛ0)n−2

∫
Mt

H2dµ ≥
∫
Mt

|H|2|H|n−2dµ =

∫
Mt

|H|ndµ ≥ ωn,
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and so that we obtain the following lower bound for the integral
∫
Mt

H2:

(3.7)

∫
Mt

H2dµ ≥ ωn(2
√
nΛ0)2−n .

Therefore, since |Mt| = |M0| for any t ∈ [0, t1], we have

(3.8) 0 < h(t) =

∫
Mt

H dµ∫
Mt

H2 dµ
≤ (ωn)−1|M0|(2

√
nΛ0)n−1 := Λ2(n,Λ0, |M0|) .

Now using the fact that |tr
(
A3
)
| ≤ |A|3 (see Lemma 2.2 of [HS99]), and Kato’s

inequality |∇|A|| ≤ |∇A|, we derive from (ii) of Corollary 2.6 to find

∂

∂t
|A| ≤ h∆|A|+ Λ2|A|3 + |A|2 on Mt for all t ∈ [0, t1] .

Then by the comparison maximum principle (Theorem 2.13), we have:

max
Mt

|A| ≤ U(t) for all t ∈ [0, t1] , with U(0) = Λ0,

where U(t) > 0 solves

Λ2 ln

(
Λ2 +

1

U

)
− 1

U
= t+ Λ2 ln

(
Λ2 +

1

Λ0

)
− 1

Λ0
.

Therefore, there exists 0 < t2 = t2(Λ0,Λ2) = t2(n,Λ0, |M0|) ≤ 1 such that

(3.9) max
Mt

|A| ≤ 3Λ0

2
for all t ∈ [0, t2] .

The first assertion of the Theorem, namely, (3.3), is obtained from the following

technical lemma by setting T1 = min{t1, t2}.

Lemma 3.3. There exists some constant ε = ε(n,Λ0,Λ1, |M0|) > 0 such that if∫
M0
|Å|2 dµ ≤ ε, then

t1 ≥ t2 = t2(n,Λ0, |M0|) .

Proof. (of the Lemma 3.3): Suppose this is not the case, then we have t1 < t2 ∈
(0, 1]. Then by the definition of t1 (i.e., (3.5)) and the definition of t2 (i.e., (3.9)), we

conclude that at time t = t1 there are two possibilities: (1)
∫
Mt
|∇mA|2 dµ achieves

the extreme value 2Λ0; or (2) h(t) achieves the extreme value 1
2Λ1

. Our strategy is

to eliminate both possibilities.

We first integrate the evolution equation for |Å|2, namely, the equation (iii) of

the Corollary 2.6 over Mt for t ∈ [0, t1], to obtain

d

dt

∫
Mt

|Å|2 dµ−
∫
Mt

|Å|2H(1− hH) dµ

=

∫
Mt

[
−2h|∇Å|2 + 2h|A|2|Å|2 − 2

(
tr(Å

3
) +

2

n
H|Å|2

)]
dµ ,(3.10)

and therefore by (3.5) and (3.8), we have

(3.11)
d

dt

∫
Mt

|Å|2 dµ ≤ C(n,Λ0, |M0|)
∫
Mt

|Å|2dµ for all t ∈ [0, t1] ,
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where we have also used the following inequalities: |H| ≤
√
n|A| ≤ 2

√
nΛ0 and

|tr(Å3
)| ≤ |Å|3 ≤ 2Λ0|Å|2.

Therefore, using the inequality (3.11), we have

(3.12)

∫
Mt

|Å|2 dµ ≤ εeC(n,Λ0,|M0|)t ≤ C2(n,Λ0, |M0|)ε for all t ∈ [0, t1] .

Now we apply Hamilton’s interpolation inequality (Theorem 2.9, with r = 1, p =

q = 2) to find for any t ∈ [0, t1]:

(3.13)∫
Mt

|∇Å|2 dµ ≤ n
(∫

Mt

|Å|2 dµ
) 1

2
(∫

Mt

|∇2Å|2 dµ
) 1

2

≤ C(n,Λ0, |M0|)ε
1
2 ,

where we used |∇2Å| ≤ C(n)|∇2A| and (3.5). In fact, using (3.5) and applying

Theorem 2.9 inductively, we have, for all m ∈ [1, m̂] and t ∈ [0, t1],

(3.14)

∫
Mt

|∇mÅ|2 dµ ≤ C(n,Λ0, |M0|)ε
1

2m .

This together with Corollary 2.10 imply that, for all t ∈ [0, t1],∫
Mt

|∇mÅ|p dµ ≤ C(n,Λ0, |M0|)εβ

for all m ∈ [1, m̂] and any p ≤ p̂ for some p̂ sufficiently large (note that the geometry

of Mt is uniformly bounded, c.f. (3.5), so that the standard Sobolev embedding

Cγ ↪→ W 1,p̂ holds for some γ > 0, see e.g. [Aub98, §2]). Here β > 0 is some

positive constants depending on n and the fixed constants m̂ and p̂. This yields, by

the standard Sobolev inequality, that for some universal constant α ∈ (0, 1) that is

smaller than β, we have

(3.15) max
Mt

|∇mÅ| ≤ C(n,Λ0, |M0|)εα.

for all m ∈ [1, m̂] and t ∈ [0, t1]. In particular, using [Hui84, Lemma 2.2], we have

(3.16) max
Mt

(|∇H|+ |∇Å|) ≤ C3(n,Λ0, |M0|)εα ,

for all t ∈ [0, t1].

One can then deduce from inequalities (3.12) and (3.16), and the fact that we

always have |Mt| = |M0|, to find

max
Mt

|Å| ≤

√
C2(n,Λ0, |M0|)ε

|M0|
+ C3(n,Λ0, |M0|)εα · (diameter of Mt)

≤

√
C2(n,Λ0, |M0|)ε

|M0|
+ C4(n,Λ0, |M0|)εα .(3.17)

where C4(n,Λ0, |M0|) = C3(n,Λ0, |M0|)|2
√
nΛ0|n−1|M0| and in the last inequality

we used Topping’s Lemma 3.1 and |H| ≤ 2
√
nΛ0. We will continue the proof of this

lemma after we establish some decaying properties of the quantities
∫
Mt
|∇mA|2 dµ

and h(t) in subsection 3.3, see Lemma 3.5 and Corollary 3.6.
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3.2. Reduction. We want to differentiate the notions of being “sufficient small-

ness” and “arbitrary smallness” of the constant ε in the initial conditions. If ε is

too small comparing with the mean curvature H, then the smallness of |Å| will

force the initial hypersurface to be strictly convex, for which the classic results ap-

ply. The most interesting case occurs when the constant ε is within the appropriate

range (depending on the initial bounds) and the initial hypersurface is allowed to be

non-convex. There is no yet general results concerning the surface area preserving

mean curvature flow starting from non-convex hypersurfaces in the literature. The

behavior of global flows such as the surface area preserving mean curvature flow,

starting from general (non-convex) hypersurface is expected to be very complicated

and singularities are expected in finite time.

We want to make a key reduction in this subsection, which is that we may

assume the mean curvature is not too big. Otherwise, with a bound on |∇H|, we

can apply the following Lemma 3.4 to find that the hypersurface is already strictly

convex. We now continue the proofs of Lemma 3.3 and Theorem 3.2. Note that

H =
∑n
i=1 λi and |Å| =

√
1
n

∑
i<j(λi − λj)2, then we deduce that every principal

curvature

(3.18) λi > 0 and M0 is strictly convex

if H and |Å| satisfy some inequality. In particular, we have

Lemma 3.4. If a closed hypersurface satisfies that |H| ≥ n(n− 1)|Å|+ ε for some

ε > 0, then either λi > 0 for all i, or λi < 0 for all i.

Proof. Let us only prove the case H ≥ n(n − 1)|Å| + ε. Let λ1 ≤ λ2 ≤ · · · ≤ λn
be principal curvatures. Then we have∑

i<j

|λi − λj | = H − nλ1 +
∑

1<i<j

|λi − λj |.

But we also find ∑
i<j

|λi − λj | =

n∑
j=2

j∑
i=1

(λj − λi)

≤
n∑
j=2

√√√√n

j∑
i=1

(λj − λi)2

≤ n

n∑
j=2

|Å|

= n(n− 1)|Å|.

Therefore we have

nλ1 ≥ H − n(n− 1)|Å|+
∑

1<i<j

|λi − λj | ≥ ε > 0.
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Once we reached (3.18), the classic results for strictly convex initial hypersurfaces

apply, and the surface area preserving mean curvature flow exists for all time and

converges to a round sphere, see [McC03]. With this in mind, we define the

following constant:

(3.19)

ε̃ =: C4(n,Λ0, |M0|)εα + 2n(n− 1)

(√
C2(n,Λ0, |M0|)ε

|M0|
+ C4(n,Λ0, |M0|)εα

)
.

Suppose there is some time t0 ∈ [0, t1] such that

(3.20) max
Mt0

|H| > ε̃.

Since we also have estimate (3.16) on |∇H|, and estimate (3.17) on |Å|, then this as-

sumption (3.20) forces H and |Å| to satisfy the inequality in Lemma 3.4 at t = t0.

While any closed hypersurface cannot have negative principal curvatures every-

where, each principal curvature λi of Mt0 will be strictly positive at t0. In this

case, the classic results for the surface area preserving mean curvature flow start-

ing from a strictly convex hypersurface apply and the flow exists for all time after

t0 and converges exponentially to a round sphere ([McC03]).

The other possibility is that we have

(3.21) max
t∈[0,t1]

max
Mt

|H| ≤ ε̃,

which we will assume from now on.

Choose ε ≤ ε1 = ε1(n,Λ0, |M0|) sufficiently small so that ε̃ is also sufficiently

small. Then by the Michael-Simon’s inequality (Lemma 2.12), we have, for any

t ∈ [0, t1]

(3.22)

∫
Mt

H2dµ ≤ C5(n, |M0|)
∫
Mt

|∇H|2dµ ,

(3.23)

∫
Mt

|Å|2dµ ≤ C6(n, |M0|)
∫
Mt

|∇Å|2dµ ,

and

(3.24)

∫
Mt

|∇mA|2dµ ≤ C7(n, |M0|)
∫
Mt

|∇m+1A|2dµ ,

where Kato’s inequalities |∇|Å|| ≤ |∇Å| and |∇|A|| ≤ |∇A| are used and Hölder’s

inequality is used when n > 2.

3.3. Completion of proof of Theorem 3.2. After above reduction, with (3.21)

assumed, we now complete the proof of Theorem 3.2. We first show that h(t) cannot

decrease too much in [0, t1]. More specifically,

Lemma 3.5. There exists ε2 = ε2(n,Λ0,Λ1, |M0|) such that if the conditions in

Theorem 3.2 and (3.21) are satisfied for some ε ≤ ε2, then h(t) ≥ 2
3Λ1

for all

t ∈ [0, t1].
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Proof. Using (3.22) and the evolution equation of h(t), i.e., Lemma 2.8, we have

dh

dt
=

∫
Mt

[−(1− 2hH)(1− hH)|A|2 +H2(1− hH)2 + 2h2|∇H|2 ]dµ∫
Mt

H2 dµ

=

∫
Mt

[−(1− 3hH + 2h2H2)(|Å|2 + 1
nH

2) +H2(1− hH)2 + 2h2|∇H|2 ]dµ∫
Mt

H2 dµ

=

∫
Mt

[−(1− 3hH + 2h2H2)|Å|2 +
[
n−1
n − (2− 3

n )hH + n−2
n h2H2)

]
H2 ]dµ∫

Mt
H2 dµ

+

∫
Mt

2h2|∇H|2 dµ∫
Mt

H2 dµ

≥
∫
Mt

[
(3hH − 1)|Å|2 −

[
2h2|Å|2 + (2− 3

n )hH)
]
H2 + 2h2|∇H|2

]
dµ∫

Mt
H2 dµ

.

Since we have

3hH|Å|2 =
3

2
(2hH|Å||Å|) ≥ −3

2

(
h2H2|Å|2 + |Å|2

)
,

therefore we find

dh

dt
≥
∫
Mt

[
− 5

2 |Å|
2 −

[
7
2h

2|Å|2 + (2− 3
n )hH

]
H2 + 2h2|∇H|2

]
dµ∫

Mt
H2 dµ

.

Now using (3.6) and (3.21), for any t ∈ [0, t1], we have

ε̃n−2

∫
Mt

|H|2dµ ≥
∫
Mt

|H|2|H|n−2dµ =

∫
Mt

|H|ndµ ≥ ωn,

and so that ∫
Mt

|H|2dµ ≥ ωnε̃2−n .

Therefore, by (3.12) and (3.22) we have

dh

dt
≥ − 5

2ωn
ε̃n−2

∫
Mt

|Å|2 +

∫
Mt

[
2h2 − C5(n, |M0|)

(
7
2h

2|Å|2 + 2n+3
n |hH|

)]
|∇H|2∫

Mt
H2

.

Now using (3.17), (3.21), we can choose ε2 = ε2(n,Λ0,Λ1, |M0|) > 0 sufficiently

small such that if ε ≤ ε2, then

2h2 − C5(n, |M0|)
[

7

2
h2|Å|2 +

2n+ 3

n
|h||H|

]
≥ 0 ,

and consequently we have

(3.25)
dh

dt
≥ −

∫
Mt

|Å|2 dµ ≥ −εα2 .

Since we have h(0) ≥ 1
Λ1

, and the fact that h(t) ≥ 1
2Λ1

for all t ∈ [0, t1], we find

(3.26) h(t) ≥ 2

3Λ1
for all t ∈ [0, t1] .
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Lemma 3.5 negates the possibility of h(t) reaching the extreme value 1
2Λ1

. We

now eliminate the other possibility. In other words, as a consequence of Lemma 3.5

and previous estimates, we show that the integral
∫
Mt
|∇mA|2dµ is non-increasing

along the flow in [0, t1]:

Corollary 3.6. There exists ε3 = ε3(n,Λ0,Λ1, |M0|) such that if the conditions in

Theorem 3.2 and (3.21) are satisfied for some ε ≤ ε3, then we have

d

dt

∫
Mt

|∇mA|2dµ ≤ 0

for all t ∈ [0, t1], and m ≥ 1.

Proof. (of Corollary 3.6) We first observe that by (3.17) and (3.21), we have:

(3.27) max
Mt

|A| ≤ max
Mt

(|Å|+ |H|) ≤

√
C2(n,Λ0, |M0|)ε

|M0|
+ C4(n,Λ0, |M0|)εα + ε̃ .

We apply this to the inequality in Lemma 2.11, and use the upper bound for h(t)

(3.8) to have:

d

dt

∫
Mt

|∇mA|2dµ+ 2h

∫
Mt

|∇m+1A|2dµ ≤ C8ε
α
2

∫
Mt

|∇mA|2dµ,

where C8 = C8(n,m,Λ0, |M0|). We then apply (3.24) to have:

d

dt

∫
Mt

|∇mA|2dµ+ 2h

∫
Mt

|∇m+1A|2dµ ≤ C7C8ε
α
2

∫
Mt

|∇m+1A|2dµ.

Now the conclusion follows from the positive lower bound of h(t), i.e., Lemma 3.5.

(continue to the proof of Lemma 3.3) Corollary 3.6 eliminates the possibility that∫
Mt1
|∇mA|2 dµ achieves the extreme value 2Λ0. The other possibility that h(t1)

achieves the extreme value 1
2Λ1

has been eliminated by Lemma 3.5. Therefore

t1 ≥ t2 = t2(n,Λ0, |M0|), and we set T1 = t2(n,Λ0, |M0|) to complete the proof of

Lemma 3.3.

(completion of the proof of Theorem 3.2) The only estimate left to establish in

Theorem 3.2 is (3.4), but we see that the bound on |∇H| is given by (3.16), while

the bound on |Å| follows from (3.17) by choosing α < 1
2 if necessary.

4. Proof of Theorem 1.1: continued

In the previous section we have shown that if the initial hypersurface is close to

a sphere in the L2-sense (see (3.2)), then either the hypersurface becomes strictly

convex at some time, or the estimates (3.3) and (3.4) hold on some time interval

[0, T1]. In that proof, we made a key reduction, namely, we showed that it suffices

to prove our main theorem when H(t) is close to zero, i.e., (3.21). We will assume

that (3.21) holds for the remaining of the argument. More importantly, under

this condition on H and (3.17), since |A|2 = |Å|2 + 1
nH

2, we find that |A| is
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uniformly bounded on time interval [0, T1]. Therefore the surface area preserving

mean curvature flow (1.1) can be extended pass time T1 (cf. [Hui84]). To prove

our main theorem, we only have to address the issues of long-time existence and

convergence.

4.1. Establishing the decay for geometric quantities. In this subsection, we

show that the exponential decay of
∫
Mt
|Å|2, assuming (3.21) holds. More precisely,

we show:

Theorem 4.1. Let Mn
t ⊂ Rn+1, n ≥ 2, be a smooth compact solution to the surface

area preserving mean curvature flow (1.1) on [0, T1], where T1 as in Theorem 3.2.

Then there exists ε4 = ε4(n,Λ0,Λ1, |M0|) such that if the conditions in Theorem

3.2 and (3.21) (with t1 replaced by T1) are satisfied for some ε ≤ ε4, then for all

t ∈ [0, T1] we have

(4.1)

∫
Mt

|Å|2 dµ ≤ e−δt
∫
M0

|Å|2 dµ ,

for δ = 2Λ1C6(n, |M0|) > 0, where C6(n, |M0|) is from (3.23).

Proof. We use again the evolution equation for |Å|2 as in (iii) of Corollary 2.6 and

since the surface area is preserved, we have (see also (3.10))

d

dt

∫
Mt

|Å|2 dµ =

∫
Mt

∂

∂t
|Å|2dµ

= −2

∫
Mt

[
h|∇Å|2 − h|A|2|Å|2 +

(
tr(Å

3
) +

2

n
H|Å|2

)]
dµ

≤ −2

∫
Mt

[
h|∇Å|2 − |Å|2

(
h|A|2 + |Å|+ 2

n
|H|
)]

dµ,

where we used that |tr(Å3
)| ≤ |Å|3.

Now by (3.3), (3.17) and (3.21) (see also (3.27)), we can choose ε ≤ ε4 sufficiently

small, where ε4 = ε4(n,Λ0,Λ1, |M0|), so that by (3.23), we have

d

dt

∫
Mt

|Å|2 dµ ≤ −2h

∫
Mt

[
|∇Å|2 − 1

2C6(n, |M0|)
|Å|2

]
dµ

≤ − 1

2Λ1C6(n, |M0|)

∫
Mt

|Å|2 dµ.

This completes the proof by setting δ = 1
2Λ1C6(n,|M0|) > 0 .

4.2. Convergence. In the previous subsection, we obtain the exponential decay

for
∫
Mt
|Å|2 dµ on some time interval [0, T1]. We now complete the proof for long-

time existence of the flow by the following extension theorem:

Theorem 4.2. Let Mn
t ⊂ Rn+1, n ≥ 2, be a smooth compact solution to the surface

area preserving mean curvature flow (1.1) with initial condition (3.1). Then there

exists ε̃0 = ε̃0(n,Λ0,Λ1, |M0|) > 0 and T2 = T2(n,Λ0, |M0|) > 0, such that if

(4.2)

∫
M0

|Å|2 dµ ≤ ε ≤ ε̃0 ,
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then either at some time t0 ∈ [0, T1 + T2] the hypersurface Mt0 becomes strictly

convex and the flow converges exponentially to a round sphere as t→∞, or for all

t ∈ [0, T1 + T2] we have

(4.3) max

{
max
Mt

|A|,
∫
Mt

|∇mA|2 dµ
}
≤ Λ0 and h(t) ≥ 1

2Λ1
.

Proof. By the proof of Theorem 3.2, we know that if ε̃0 ≤ ε0, then there exists some

T1 = T1(n,Λ0, |M0|) > 0, such that either at some time t0 ∈ [0, T1] the hypersurface

becomes strictly convex and the flow converges exponentially to a round sphere as

t→∞ ,or for all t ∈ [0, T1] we have (see (3.27), Lemma 3.5 and Corollary 3.6) the

following:

(4.4) max
Mt

|A| ≤ Cεα ≤ Λ0 ,

∫
Mt

|∇mA|2dµ ≤ Λ0 and h(t) ≥ 1

2Λ1
.

Now by Theorem 4.1, if we choose ε̃0 ≤ ε4 (where ε4 is from Theorem 4.1), then at

t = T1 we have ∫
MT1

|Å|2 dµ ≤
∫
M0

|Å|2 dµ ≤ ε .

Therefore, we can apply Theorem 3.2 to the flow starting at t = T1 with Λ1 replaced

by 2Λ1 to get T2 = T1(n,Λ0, |M0|) > 0. This yields that if the hypersurface does

not become strictly convex in [0, T1], then either at some time t̃0 ∈ [T1, T1 + T2]

the hypersurface becomes strictly convex and the flow converges exponentially to

a round sphere as t→∞, or for all t ∈ [T1, T1 + T2] we have

(4.5) max
Mt

|A| ≤ Λ0 ,

∫
Mt

|∇mA|2 dµ ≤ Λ0 and h(t) ≥ 1

4Λ1
.

On the other hand, in this last case, by (3.25) and Theorem 4.1, for all t ∈ [0, T1+T2]

we have
dh

dt
≥ −

∫
Mt

|Å|2 dµ ≥ −e−δt
∫
M0

|Å|2 dµ

and therefore

h(t) ≥ h(0)− εδ−1 ≥ 1

Λ1
− 2εΛ1C6(n, |M0|)

where C6(n, |M0|) is from (3.23). Choose ε̃0 (possibly smaller) so that

h(t) ≥ 1

2Λ1
for all t ∈ [0, T1 + T2] .

This together with (4.4), (4.5) yield (4.3).

We now complete the proof of our main theorem:

Proof. (of Theorem 1.1) Suppose that the initial condition (3.1) is satisfied for

some Λ0,Λ1 > 0. Then by Theorem 3.2, we choose ε0 = ε0(n,Λ0,Λ1, |M0|) > 0

and T1 = T1(n,Λ0, |M0|) ∈ (0, 1], such that if ε ≤ ε0, then either the evolving

hypersurface becomes strictly convex at some time, or the estimates (3.3) and (3.4)

hold for all t ∈ [0, T1].

Then we can apply the Theorem 4.2, and we see that if we choose ε ≤ min{ε0, ε̃0}
then either the flow (1.1) becomes strictly convex at some time t0 ∈ [0,∞) and
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converges exponentially to a round sphere as t → ∞, or the flow (1.1) exists for

all time and the estimates (3.17) and (3.21) holds for all time (so that |A| and

|∇mA| are uniformly bounded). Note that in the later case, using Theorem 4.1 we

know that the quantity
∫
Mt
|Å|2 dµ decays exponentially, and so that |Å|, |∇H| and

|∇mA| (similar to (3.13) – (3.15)) also decay exponentially. Therefore in the later

case the flow also exponentially converges to a round sphere (i.e., |Å| → 0 as t→∞
and the only closed umbilical hypersurface in Rn+1 is the round sphere).

References

[Aub98] Thierry Aubin, Some nonlinear problems in Riemannian geometry, Springer Mono-

graphs in Mathematics, Springer-Verlag, Berlin, 1998.

[Che71] Bang-yen Chen, On a theorem of Fenchel-Borsuk-Willmore-Chern-Lashof, Math. Ann.

194 (1971), 19–26.

[Che06] Xiuxiong Chen, On the lower bound of energy functional E1. I. A stability theorem on

the Kähler Ricci flow, J. Geom. Anal. 16 (2006), no. 1, 23–38.

[CLN06] Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, Graduate Studies in Math-

ematics, vol. 77, American Mathematical Society, Providence, RI, 2006.

[CLW09] Xiuxiong Chen, Haozhao Li, and Bing Wang, Kähler-Ricci flow with small initial energy,

Geom. Funct. Anal. 18 (2009), no. 5, 1525–1563.

[CM11] Tobias Holck Colding and William P. Minicozzi, II, A course in minimal surfaces, Grad-

uate Studies in Mathematics, vol. 121, American Mathematical Society, Providence, RI,

2011.

[ES98] Joachim Escher and Gieri Simonett, The volume preserving mean curvature flow near

spheres, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2789–2796.

[Ham82] Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential

Geom. 17 (1982), no. 2, 255–306.

[HS99] Gerhard Huisken and Carlo Sinestrari, Mean curvature flow singularities for mean con-

vex surfaces, Calc. Var. Partial Differential Equations 8 (1999), no. 1, 1–14.

[Hui84] Gerhard Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential

Geom. 20 (1984), no. 1, 237–266.

[Hui87] , The volume preserving mean curvature flow, J. Reine Angew. Math. 382 (1987),

35–48.

[KS01] E. Kuwert and R. Schätzle, The Willmore flow with small initial energy, J. Differential

Geom. 57 (2001), no. 3, 409–441.

[Li09] Haozhao Li, The volume-preserving mean curvature flow in Euclidean space, Pacific J.

Math. 243 (2009), no. 2, 331–355.

[LS13] Longzhi Lin and Natasa Sesum, Blow-up of the mean curvature at the first singular

time of the mean curvature flow, preprint, arXiv:1302.1133 (2013).

[McC03] James McCoy, The surface area preserving mean curvature flow, Asian J. Math. 7

(2003), no. 1, 7–30.

[McC04] , The mixed volume preserving mean curvature flow, Math. Z. 246 (2004), no. 1-

2, 155–166.

[Pih98] D. Pihan, A length preserving geometric heat flow for curves, thesis, Univ. of Melbourne

(1998).

[Top08] Peter Topping, Relating diameter and mean curvature for submanifolds of Euclidean

space, Comment. Math. Helv. 83 (2008), no. 3, 539–546.

[Ye93] Rugang Ye, Ricci flow, Einstein metrics and space forms, Trans. Amer. Math. Soc.

338:2 (1993), 871–896.

(Z. H.) Department of Mathematics, The City University of New York, Staten Island,

NY 10314, USA



18 ZHENG HUANG AND LONGZHI LIN

The Graduate Center, The City University of New York, 365 Fifth Ave., New York,

NY 10016, USA

E-mail address: zheng.huang@csi.cuny.edu

(L. L.) Mathematics Department, University of California, Santa Cruz, 1156 High

Street, Santa Cruz, CA 95064, USA

E-mail address: lzlin@ucsc.edu


	1. Introduction
	Outline of the proof:
	Plan of the paper:
	Acknowledgements

	2. preliminaries
	2.1. Evolution of geometric quantities
	2.2. Interpolations, Michael-Simon's inequality and maximum principle

	3. Proof of Theorem 1.1: estimates and reduction
	3.1. Establishing bounds for geometric quantities
	3.2. Reduction
	3.3. Completion of proof of Theorem 3.2

	4. Proof of Theorem 1.1: continued
	4.1. Establishing the decay for geometric quantities
	4.2. Convergence

	References



