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Preface 

The electricity industry may well be standing at the technological threshold to a new era built of 
the most fundamental change in power system engineering and organization since the original, 
small, isolated power networks of the nascent industry first began to be interconnected. The 
technical challenges, risks, and rewards of this new era are all major and sobering. We hereby 
step across the threshold and accept the consequences. 
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Executive Summary 

This report describes work completed for the California Energy Commission (CEC) on 
the continued development and application of the Distributed Energy Resources 
Customer Adoption Model (DER-CAM). This work was performed at Ernest Orlando 
Lawrence Berkeley National Laboratory (Berkeley Lab)between July 2000 and June 
2001 under the Consortium for Electric Reliability Technol()gy Solutions (CERTS) 
Distributed Energy Resources Integration (DERI) project 

Our research on distributed energy resources (DER) builds on the concept of the 
microgrid (J..lGrid), a semiautonomous grouping of electricity-generating sources and 
end-use sinks that are placed and operated for the benefit of its members. Although a 
flGrid can operate independent of the macrogrid (the utility power network), the flGrid is 
usually interconnected, purchasing energy and ancillary services from the macrogrid. 
Groups of customers can be aggregated into flGrids by pooling their electrical and other 
loads, and the most cost-effective combination of generation resources for a particular 
flGrid can be found. 

In this study, DER-CAM, an economic model of customer DER adoption implemented in 
the General Algebraic Modeling System (GAMS) optimization software is used, to find 
the cost-minimizing combination of on-site generation customers (individual businesses 
and a J.!Grid) in a specified test year. DER-CAM's objective is "to minimize the cost of 
supplying electricity to a specific customer by optimizing the installation of distributed 
generation and the self-generation of part or all of its electricity." Currently, the model 
only considers electrical loads, but combined heat and power (CHP) analysis capability is 
being developed under the second year of CEC funding. 

The key accomplishments of this year's work were the acquisition of increasingly 
accurate data onDER technologies, including the development of methods for 
forecasting cost reductions for these technologies, and the creation of a credible example 
California flGrid for use in this study and in future work The work performed during this 
year demonstrates the viability ofDER-CAM and ofour approach to analyzing adoption 
ofDER 

Analysis Method and Creation of Example Microgrid 

The J.tGrid created for this study, "Microgrid Oaks," is a hypothetical San Diego strip 
mall of eight commercial buildings: a supermarket (grocery), an office, three restaurants 
(fast food, sit-down, and deli), a department store, a retail store, and a warehouse store. 
Metered end-use electricity load data for commercial buildings were obtained from 
Southern California Edison (SCE) and used to create the load shapes for the businesses in 
Microgrid Oaks. Appropriate fuel and electricity costs for San Diego were applied for the 
test year, 2000. 

DER-CAM was run for Microgrid Oaks as a whole and the eight businesses individually 
under 13 different scenarios. In the base-case scenario, the customer is free to install DER 
and purchase electricity at the California Independent System Operator (CAISO) 
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imbalance energy market (IEM) price plus an adder that guarantees revenue neutrality for 
the utility distribution company (UDC) (This is the Imbalance Energy Revenue 
Neutrality or IERN case). The variations on the base case cover changes in economic or 
regulatory conditions- relaxation of constraints on operating hours for diesel-fueled 
back-up generators, opportunities for customers to sell self-generated energy to the 
macrogrid before meeting their own loads, and changes in energy or related prices or in 
subsidies for particular DER technologies. The scenarios are defined specifically in 
Table ES-1 below. 

Our study assumed that Microgrid Oaks wishes to install distributed generation to 
minimize the cost of electricity consumed on site. DER-CAM determined the 
technologies and capacity that the f..!Grid would likely to install given the mall's 
configuration and economic data in the year 2000 and predicted when customers would 
be self-generating and/or transacting with the grid and whether it would be worthwhile 
for customers to disconnect entirely from the grid. 

The results of this analysis describe the most cost-effective combination of on-site 
generation for the f..!Grid during the year 2000 and an elementary operating schedule that 
would optimize the customer's benefit from DER operation. The model outputs include 
estimates for such items as total electricity bill, on-site electricity generation, and 
electricity purchases in each hour. Results were generated for the individual customers in 
Microgrid Oaks so that their individual optimal generation strategies can be studied and 
the benefits of f..!Grid aggregation can be compared to individual customer DER adoption 
can be assessed. In addition, the apparent effect of their different individual 
characteristics, notably load shape and capacity factor, on results provides insights into 
the f.lGrid characteristics that might affect their economics and operations. 

The key inputs to the model are the customer's load profile; the customer's electricity 
purchasing technology option; the capital, operation and maintenance (O&M), and fuel 
costs of the various available DER technologies; and the basic physical characteristics of 
alternative generating technologies. The market prices used in most scenarios are the 
2000 CAISO IEM prices (augmented by an adder as noted above), which were highly 
volatile at times and extremely high in the latter part of the year when California's 
restructured market began unraveling. These prices were used both because they reflect 
recent market information and because they were expected to produce interesting results, 
especially generator operating schedules. 

With these inputs, the model determines: 

• The optimal, cost-minimizing capacity of each technology to be installed; 
• When and how much of the installed capacity will be running; and 
• The total cost of supplying electricity. 

DER equipment data were collected from diverse sources to establish reasonable cost and 
performance parameters for about 30 DER options currently available for installation. 
This data set includes information on two microturbines, a commercial fuel cell, small 
wind and photovoltaic (PV) systems, and a wide range of reciprocating engines that bum 
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diesel and natural gas fuel. Installation costs for these technologies were estimated using 
a standard engineering handbook. A data set representing possible equivalent data for 
2010 was also developed, with emphasis on forecasting of fuel- cell costs for that year. 
Consequently, the 2010 data set includes two additional fuel-cell technologies and a fuel­
cell vehicle. Costs for these technologies were estimated using a combination of 
experience curves and literature review. 

The analyses described in this report are not intended to be thorough financial or 
engineering evaluations of whether on-site generation makes sense for the particular 
customers and J.!Grid studied, nor are they intended to provide market assessments or 
forecasts ofDER penetration. The goal is simply to look at economic fundamentals and 
see what DER technologies may be attractive to J.!Grids, in what combinations they might 
be installed, and how they might be operated a decade or so in the future. 

Analysis Results and Conclusions 

Table ES- 1 summarizes the DER capacity installed by the individual grocery store and 
by the J.!Grid, according to the results DER-CAM's analysis. Although the details of the 
generating equipment adopted by each of the businesses in Micro grid Oaks acting 
individually vary quite significantly based on each business's electrical loads, the results 
for the grocery illustrate the pattern of capacity adoption by individual customers. In 
general, we find that if customers join together to form a J.!Grid, the pattern of 
technologies adopted is more stable than if customers act separately. For example, the 
J.!Grid usually selects two natural gas or diesel back-up generators, but customers acting 
on their own select a wide variety oftechnologies. Intuitively, this pattern seems 
plausible because the J.!Grid, a$ a larger customer, can pool its resources and capitalize on 
the economies of scale inherent in many DER technologies, including reciprocating 
engine generators. Microgrid Oaks purchases larger units than do businesses acting 
individually; the 500-kW natural gas generator is particularly common in Microgrid Oaks 
choices under different scenarios, and the 500-kW diesel generator is common in the 
relaxed-diesel-constraint cases. 

Table ES- 1. Technologies Adopted (Grocery and J.LGrid) 

Scenario Grocery J!Grid 
(Dangerway) (Microe:rid Oaks) 

PXRN 1999 None None 

Low Natural Gas Prices 3 75-kW microturbines 2 500-kW natural gas generators, and 1 
75-kW microturbine 

IERN 2000 3 75-kW microturbines 2 500-kW natural gas generators, and I 
75-kW microturbine 

IERN 2010 I 250-kW PEM fuel cell 4 250-kW PEM fuel cells 

High DiscoER 3 75-kW microturbines I 500-kW natural gas generators, and 8 
75-kW microturbines 

Diese11,052 Hours I 55-kW natural gas generator and I 500-kW natural gas generators, and 2 
I 500-kW diesel generator 500-kW diesel generators 

75% PV Subsidy 2 l 00-kW PV Systems, 2 55-kW natural 9 100-kW PV Systems, I 500-kW 
gas generators, and l 75-kW natural gas generator, and 3 75-kW 
microturbine microturbines 

50% PV Subsidy 3 75-kW microturbines 2 500-kW natural gas generators, and I 
75-kW microturbine 
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Notes: 
"PXRN 1999" is a case based on 1999 power exchange electricity prices, with a revenue-neutral 

adder to compensate distribution companies for commodity non-energy costs. Year 2000 CAISO 
IEM prices are used in all other cases. 

"Low Natural Gas Prices" is a case where the cost of commodity natural gas is halved relative to the 
base case. 

"IERN 2000" and "IERN 2010" are year 2000 and year 2010 cases based on the imbalance energy 
market in 2000, year 2000 and year 2010 technology costs, and a revenue-neutral adder to 
compensate distribution companies for non-energy costs. 

"High DiscoER" is a case based on a doubled revenue-neutral adder. 
"Diesel1,052 Hours" is a case where the environmental permit restriction on diesel generators is 

eased to allow 1,052 hours per year of operation. 
"75% PV Subsidy" is a case where the turnkey costs ofPV systems are subsidized by 75%. 
"50% PV Subsidy" is a case where the turnkey costs ofPV systems are subsidized by 50%. 

We see from Figure ES- 1 that installation ofDER generation capacity results in 
significant electricity bill savings over the do-nothing-IERN scenario. Note that 
customers in the do-nothing scenario are buying electricity at the 2000 CAISO imbalance 
energy price, not under tariffed rates. As discussed previously, customers acting together 
as Micro grid Oaks are able to realize greater savings because they can take advantage of 
economies of scale. In particular, customers with higher load factors (i.e., flatter loads) 
are able to achieve greater percentage cost savings because they need not install 
additional capacity or purchase from the IEM to meet peaking loads that are not 
economic to self-provide. Figure ES- 2 indicates that this relationship is a strong one. 
Customers are not allowed to sell to the macrogrid in any of these cases. When sales to 
the macrogrid are possible, DER-CAM results show customers making massive 
investments in DER, often to the point of hundreds of generators being installed, a 
reflection of the unusual circumstances prevalent in 2000, which are a key driver in all 
results presented here. Note that using 1999 PX prices in place of CAISO 200 IEM 
prices eliminates all adoption ofDER. The exceptional2000 prices present an excellent 
opportunity to exercise the model although we hope that the results represent a boundary 
case. 
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Percentage Cost Savings Over Do-Nothing-IERN Case 
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Figure ES- 2. Effect of Load Factor on Customer Cost Savings 
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Figure ES- 3 and Figure ES- 4 show that customers typically cover most of their peak 
demand and about half of their energy needs through installed DER capacity. Customers 
with lower load factors (e.g., the office, retail store, and deli) have relatively high peaks 
and install comparatively less DER capacity than other customers. Thus, _they cover 
smaller fractions of their peak demand through installed capacity. 
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Percentage of Peak Demand Covered Through Installed Capacity 
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Figure ES- 5. Comparison of Results for Grocery and f.! Grid 

In comparing the relative advantages ofDER adoption by the f.1Grid versus by an 
individual customer, it is evident from Figure ES- 5 that the f.1Grid realizes greater cost 
savings than the grocery does even though the grocery has the highest load factor of the 
customers. These results are typical of comparisons of f.lGrid DER versus individual­
customer-owned generation. The f.1Grid 's ability to install specialized equipment and to 
coordinate the actions of the market participants appears to contribute to its lower costs. 
Indeed, for all scenarios, the grocery installs more capacity (as a percentage of its peak 
demand) than does the f.1Grid. Nevertheless, the f.1Grid usually covers more of its energy 
needs with less installed capacity than the grocery. This result is an illustration of the 
gains in efficiency that can be achieved through the strategic coordination that the f.lGrid 
enables. 

In general, we find that installation of generation capacity is attractive to customers under 
a variety of circumstances. Only in the case with low and stable 1999 PX prices is it 
unattractive for the grocery to install any DER capacity. Although the installed DER 
capacity is used to generate a significant proportion of each customer's energy (more 
than 50% in most cases), there are no scenarios, given the IEM prices used, in which the 
customer opts to disconnect fully from the grid (see Figure ES- 4). 

In the base (IERN) scenario, customers buy electricity at the IEM price and cannot sell 
electricity, while natural gas costs a flat yearlong 8.25 $/GJ and diesel fuel costs 8.46 
$/GJ. Use of diesel generators is restricted for air quality reasons to 52 hours per year. 
Customers significantly lower their average electricity costs over a do-nothing scenario, 
in the case of the grocery from 13.6 to 9.4 ¢/kWh. Microturbines are the most attractive 
technology to customers with high load factors, and gas-fired reciprocating engines are 
chosen by Microgrid Oaks and several individual customers. Microgrid Oaks chooses a 
large (500-kW) natural gas engine because of the noticeable economy of scale. 
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When constraints on use of diesel engines are relaxed, diesel generators prove highly 
attractive to customers, and, again, economies of scale make bigger machines more 
desirable. It appears that improvement in the environmental performance of these 
machines (resulting in looser permit conditions) could make them highly attractive for 
self-generation. 

When PV systems are heavily subsidized, they become an attractive option. Interestingly, 
because PV power is only available during daylight hours, gas engines and microturbines 
are typically installed as well, yielding the interesting result that most customers 
individually and Microgrid Oaks as a whole install more generating capacity than their 
own peak demand. This outcome is rare ifPV systems are not included in the mix of 
DER chosen. When PV systems are chosen, therefore, Microgrid Oaks would be able to 
sell power even at the time of its own peak demand. Unfortunately, sales to the grid could 
not be allowed in this study because the IEM price was so high in 2000 relative to the 
fuel price that generation became enormously profitable and Micro grid Oaks would 
essentially be turned from a retail mall into a power-generating station, a perverse result. 
In future work, however, the inclusion ofPV resulting in higher capacity installation 
could prove very interesting because this configuration and amount ofDER capacity 
would permit Microgrid Oaks to readily participate in interruptible load markets. 

In most of the reasonable scenarios, customers save 20 to 40 percent on their 2000 
electricity bills by self-generating; higher-load-factor and larger customers save more. 
Joining customers together in the J.!Grid raises load factor and increases overall size, so 
customers gain- though not enormously- by forming the 11Grid. However, the PXRN 
assumptions, which replace the 2000 IEM prices with the 1999 PX prices, result in no 
DER adoption at all, yet customers still save about 50% on their bills relative to the IERN 
case. 

Although installed capacities ofDER are quite high in this analysis- almost always 
between 60 and 100% of peak demand - shares of self-provided energy are much lower, 
typically 40 to 60% of consumption. Self-provision is uneven during the year; there is 
less during the low-price first few months than during the high-price periods later in the 
year. 

Limitations and Future Work 

Despite the improvements made to the quality of data applied to DER-CAM in this study, 
the approach still has serious limitations that will be addressed in future work. A critical 
limitation is that DER-CAM does not address combined heat and power (CHP) systems. 
This capability is key because the potential of J.!Grids to capture the economic and 
environmental benefits of CHP will have a powerful influence on their development. 
Work in the immediate future will focus first on incorporating CHP technology and the 
joint optimization of electricity and heat (in the case of California invariably natural gas) 
consumption. Evaluating the potential benefit of waste-heat use in California's moderate 
climate will significantly improve the value ofDER-CAM's analysis results. To this end, 
data on CHP technologies are being collected, heat-load shapes for Microgrid Oaks that 
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were not available in the original data set are being developed, and DER-CAM 
algorithms being installed to accommodate this information. 

The second imminent enhancement to DER-CAM will be the incorporation of stochastic 
effects such as interruptible load market participation into the J.!Grid' s economic 
opportunities. GAMS has solvers available for problems involving stochastic variables 
although these are much less well proven and computationally demanding codes than 
those on which the model currently relies. Inclusion of randomness could significantly 
enhance the .value ofDER-CAM's results for both technical purposes (e.g., consequences 
of equipment failures) and economic purposes (e.g., finding investment strategies robust 
to price uncertainty). 

Given that CERTS' focus is on power system reliability and that popular wisdom insists 
that early adopters ofDER will be motivated by reliability concerns, estimating the 
improvement in reliability and quality of power supply to end uses within the J.LGrid and 
its value is also a priority in future work. 

Other, lesser limitations of the model include that it does not treat equipment outages, 
does not permit customers to participate in ancillary services markets or interruptible load 
programs, does not consider the current crop ofDER incentives, and does not address 
some limitations onDER installation; such as noise restrictions, building codes, and 
zoning regulations. We hope to address many, if not all, ofthese limitations in future 
work. 

Better estimation·of equipment and operations costs would also improve the model's 
analysis. However, many cost issues are highly localized in nature and thus are not easily 
represented in the DER-CAM framework. The feasibility of customers forming and 
operating J.LGrids will be largely determined by considerations such as zoning, building 
codes, noise ordinances, air quality permits, etc., that can be effectively represented 
spatially. Therefore, Berkeley Lab hopes to include these considerations by embedding 
the DER-CAM analysis within a geographic information system (GIS) framework. 

Finally, the analysis is based on simple economics and not a business approach. 
Enhancement of analysis procedure leading to the equipment adoption decision to better 
reflect actual business practice would also enhance the value of results. · 
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1. Introduction 

1.1 Berkeley Lab Work in Context 

This report covers work completed for the California Energy Commission (CEC) at 
Berkeley Lab during the period July 2000 through June 2001, in the Consortium for 
Electric Reliability Technology Solutions (CERTS) Integration of Distributed Energy 
Resources (IDER) project. Berkeley Lab work completed this year focused on the 
continued development and application of the Distributed Energy Resources Customer 
Adoption Model (DER-CAM). CERTS research on distributed energy resources (DER) 
builds on the concept of the micro grid (fl.Grid). A f.lGrid is a semiautonomous grouping 
of generating sources and end-use sinks that share heat and power and are clustered and 
operated for the benefit of its members. Although capable of operating independently of 
the macrogrid (the interconnected utility grid), the fl.Grid is usually interconnected and 
exchanges energy and ancillary services with the macrogrid. The f.lGrid maintains energy 
balance through passive "plug and play" electronic interfaces that allow operation of the 
f.lGrid without active control or fast communication. The design, implementation, 
operation, and expansion of the fl. Grid is meant to optimize the overall energy system 
requirements of participating customers and not the objectives and requirements of the 
macrogrid. The goal ofCERTS research is to solve the technical problems required to 
make f.lGrids a viable technology; Berkeley Lab's contribution is to direct the technical 
research at CERTS partner sites toward the most productive engineering problems. 

1.2 Analysis Approach 

With CERT's wider goals in mind, Berkeley Lab has build an economic model of 
customer DER adoption, DER-CAM, that finds the cost-minimizing combination of on­
site generation that a customer could have had during a test year (in this report 2000 is 
the test year). DER-CAM has been implemented in the General Algebraic Modeling 
System (GAMS) optimization software. The key inputs to DER-CAM are the load shape 
of a customer's electricity usage, data that describe the operating characteristics of 
available DER technologies (e.g. energy conversion efficiencies,costs, etc.), and data 
that describe economic circumstances, such as the tariffs under which the fJ.Grid can buy 
electricity, the prices of fuels, etc. Groupings of customers can be aggregated into fl.Grids 
by pooling o'f their electrical loads, and the optimal combination of generation for the 
fl.Grid can be found. DER-CAM's results are not intended to be thorough financial or 
engineering evaluations of whether on-site generation makes sense for particular 
customers and f.lGrids, nor are the results intended to provide market assessments or 
forecasts ofDER penetration. The objective is simply to look at economic fundamentals 
and see what DER technologies may be attractive to f.lGrids, in what combinations they 
might be installed, and how they might be operated. Always, the intention is to anticipate 
what are the key technical problems that would need to be solved for a particular fl.Grid 
to function. The results obtained from this process are the optimum combination of on­
site generation, an elementary operating schedule showing how the equipment should 
have been used, and summary results for each case, such as total electricity bill, 
electricity generation and purchases in each hour, etc. 
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In this study, Micro grid Oaks, a hypothetical strip mall of eight hypothetical commercial 
buildings in Southern California, is analyzed. Historic end-use metered electrical loads 
for the eight customers have been massaged into load shapes appropriate for use in DER­
CAM. Microgrid Oaks is assumed to be in the San Diego area, so appropriate year-2000 
fuel and electricity costs for San Diego during 2000 are applied. 

1.3 Justification for the J.LGrid 

The expectation that DER will emerge during the next decade to shape the way in which 
electricity is supplied stems from the following hypotheses: 

1. Electricity demand will continue to grow although more slowly than economic 
expansiOn. 

2. Small-scale generating technology, both renewable and thermal, will improve 
significantly. 

3. Siting constraints, environmental concerns, fossil fuel s~arcity, and other limits 
will impede continued expansion of the existing electricity supply infrastructure. 

4. The potential for application of small-scale combined heat and power (CHP) 
technologies will tilt power generation economics in favor of generation based 
closer to heat loads. 

5. Customers' desire for control over service quality and reliability will intensify. 
6. Power electronics will enable operation of semi-autonomous systems. 

The last hypothesis above is the driving force behind the CERTS approach, built on the 
fundamental concept of the J.LGrid, which could yield a more decentralized power system. 
A J.LGrid consists of a localized semi-autonomous grouping ofloads and generation 
operating under a form of coordinated local control, which could be either active or 
passive, although low-cost, passive, plug and play control is probably the most attractive. 
The J-tGrid is connected to the current power system macrogrid in a manner that allows 
the J.LGrid to appear to the wider grid as a good citizen; that is, the J-tGrid performs as a 
legitimate entity under grid rules (e.g., as what we currently consider a normal electricity 
customer or generating unit). 

The J-tGrid would most likely exist on a small, dense group of contiguous geographic sites 
that exchange electrical energy through a low-voltage (e.g., 480-V) network and 
exchange heat by means of working fluids. In the commercial sector, heat loads may be 
absorption or desiccant cooling. The generators and loads within the cluster are placed 
and coordinated to minimize the joint cost of serving electricity and heat demand, given 
prevailing market conditions, while operating safely and maintaining power balance and 
quality. 

Traditional power system planning and operation hinge on the assumption that the 
selection, deployment, and financing of generating assets will be tightly coupled to 
changing requirements and that it will rest in the hands of a centralized authority. The 
ongoing deregulation of generation represents the first step towards abandoning the 
centralized paradigm, and the emergence of J.LGrids represents the second. J.LGrids will_ 
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develop their own independent operational standards and expansion plans. This will 
significantly affect the overall growth of the power system but will tend to occur in 
accordance with the independent incentives of J.!Grids. In other words, the power system 
will be expanding according to dispersed independent goals, not coordinated global ones. 

The emergence of 1-1Grids partially stratifies the current strictly hierarchical control of the 
power system into at least two layers. The upper layer macrogrid is the current power 
system engineers are familiar with (high-voltage, meshed power grid). A control center 
dispatches a limited set oflarge assets in keeping with contracts established between 
electricity and ancillary services buyers and sellers, while maintaining energy balance 
and power quality, protecting the system, and ensuring reliability. At the same time, the 
lower layer of the system, the 1-1Grid, jointly locally controls some generation and load to 
meet end-use requirements for energy and power quality and reliability (PQR). 

Control of the generating and transmission assets of the macro grid is governed by 
extremely precise technical standards that are uniform on regional scales, and the key 
characteristics of the grid, such as frequency and voltage, are maintained strictly within 
tight tolerances. This control paradigm ensures overall stability and safety and attempts 
to guarantee that power and ancillary service delivery between sellers and buyers is as 
efficient and reliable as reasonably possible. However, it should be recognized that 
uniform standards ofPQR are unlikely to match well with the optimal requirements of 
individual end uses that are highly heterogeneous (i.e., with end uses such as server farms 
at one end of the reliability requirement spectrum and water pumps at the other). 1-1Grids 
move the PQR choice closer to the end uses and permits end uses to choose a level of 
PQR that more closely matches the end use's requirements. 1-1Grids can, therefore, 
improve the overall efficiency of electricity delivery at the point of end use, and, as 
1-1Grids become more prevalent, the PQR standards of the macro grid can ultimately be 
matched to the purpose of bulk-power delivery. 

1.4 Report Outline 

The following two sections describe the development of the input data set to DER-CAM, 
and section 4 describes the eight customers that form Microgrid Oaks. Section 5 presents 
some background environmental information to the analysis. Section 6 describes the 
mathematics ofDER-CAM, and section 7 lays out a full set of results for one case, and 
presents some comparative analysis of cases. 
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2. DER Technology Cost and Performance Data 

2.1 Introduction 

Clearly, the quality of the data fed into a model is just as important in producing credible 
and realistic results as the methods and algorithms of the model itself. hnproving on the 
quality of data used for the DER-CAM analysis is one of the primary objectives of this 
effort. Using credible data is particularly important for work of this kind because a 
technology that is represented by incorrectly favorable characteristics will likely do 
extraordinarily well in competition with other technologies that are more accurately 
portrayed, so the inaccurate data will figure prominently in the results. Consequently, 
DER technology data that best reflect actual operations are used wherever possible. The 
data were collectedfrom various sources including manufacturers' technical 
specifications, phone interviews with company representatives, publicly available 
literature, and proprietary publications such as Electric Power Research Institute's (EPRI) 
Technical Assessment Guide (TAG). On the other hand,-many of the technologies that 
will be dominant in f.lGrids are not yet commercial and certainly not yet mature. Also, 
the resources available for this study are limited, and few organized data sources 
currently exist in the public domain. Therefore, realistically, some of the required data 
are not satisfactorily reliable at this time, and our results should therefore be viewed with 
appropriate suspicion. 

2.2 About the Data 

The data were organized around two scenarios: one based on current DER technology 
operating characteristics and costs, the other anticipating cost and performance 
information for approximate conditions in the year 2010. These two data sets were used 
in the two scenarios to determine any differences in customer adoption behavior in 2000 
compared with 2010. The 2010 scenario was analyzed to reflect the likelihood that some 
DER technologies will significantly improve during the next decade. Lowering operating 
and equipment costs by increasing production volume may make DER a more viable 
alternative to purchasing electricity from the macrogrid because large-scale generating 
technologies are mature now, and siting and congestion may raise costs of the macrogrid 
power in the future. 

The DER-CAM model relies upon a variety of input data related to the economics and 
performance of each technology type. These data include capital costs of equipment, 
O&M costs, equipment installation costs, conversion efficiencies, and emission rates. 
These data have been compiled from various sources and are presented in and Table 2. 

One important note is that some of the cost data collected were for technologies whose 
emergence in the market is forthcoming. For example most types of fuel cells (FCs), 
including the solid-oxide fuel cell (SOFC), are still in the test stages of development; 
other technologies already available on the market, such as photovoltaics (PVs), are still 
undergoing significant improvements. Also, forecasted production-volume increases 
during the next 10 years will bring about further improvements. Therefore, the 2010 data 
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show significant improvements in these emerging technologies but little or no change in 
mature technologies. 

This section presents the characteristics ofthe collected DER data by technology type. 
The technologies incorporated in DER-CAM include microturbines, FCs, PV, wind 
turbines, and diesel and natural gas reciprocating engines currently thought of as back-up 
generators. 

2.3 Present-Day and 2010 Scenario Data 

Table 1 below illustrates the data used for the present-day scenario. This data set is 
slightly abbreviated for space purposes but nonetheless shows most of the parameters that 
are fed into DER-CAM. Included in this scenario are two microturbines, one FC, two 
wind turbines, four PV systems, fourteen diesel back-up generators, and five gas-fired 
reciprocating engine generators. 

The parameters considered include the nameplate kW rating, equipment cost, cost for 
installation, estimated turnkey cost (turnkey costs are defined here as free-on-board 
equipment cost plus delivery cost plus installation and permitting cost), fixed and 
variable O&M costs, calculated levelized cost, conversion efficiency or heat rate, and air 
emissions rates (if available). Entries in the tables with a "PR" label denote places where 
the data were available but from a proprietary source that could not be explicitly reported. 

For the levelized cost calculation shown, a lifetime of 20 years was assumed for the PV 
units and a 12.5-year life was assumed for all other DER technologies. The annualized 
costs reflect amortization spanning the length of equipment lifetime at a real annual 
interest rate of 9 .5%. 
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Table 1. Present-Day DER-CAM Technology Options 

Name DER Type Source Nameplate lifetime $/kW cost $/kW cost OMFix OMVar Lev Cost Heat Rate NOx PM 
kW (a) FOB cost Turnkey cost $/kW/a $/kWh c/kWh kJ/kWh g/kWh g/kWh 

I MTL-C-30 MT SCE 30 12.5 1200 1333 119 inFixO&M 12.14 12,186 

3 MT-HW-75 MT SCE 75 12.5 700 753 0.5 c/kWh inFixO&M 10.56 11,373 0.238 

4 PAFC-0-200 PAFC TAG 200 12.5 3500 PR PR PR 13.68 PR PR 

5 DE-K-15 Diesel Backup manufacturer 15 12.5 878 2257 26.5 0.000033 N/A 0 

6 DE-K-30 Diesel Backup manufacturer 30 12.5 473 1290 26.5 0.000033 5.51 11,887 8.17 0.54 

7 DE-K-60 Diesel Backup manufacturer 60 12.5 290 864 26.5 0.000033 6.30 11,201 11.57 0.54 

8 DE-K-ro5 Diesel Backup manufacturer 105 12.5 212 690 26.5 0.000033 5.48 10,581 12.25 0.54 

9 DE-K-200 Diesel Backup manufacturer 200 12.5 170 514 26.5 0.000033 5.20 11,041 8.85 0.27 

10 DE-K-350 Diesel Backup manufacturer 350 12.5 !56 414 26.5 0.000033 4.61 10,032 8.16 0.68 

11 DE-K-500 Diesel Backup manufacturer 500 12.5 166 386 26.5 0.000033 4.65 10,314 8.57 0.16 

12 DE-C-7 Diesel Backup manufacturer 7.5 12.5 213 627 26.5 0.000033 N/A 10,458 

13 DE-C-20 Diesel Backup manufacturer 20 12.5 440 1188 26.5 0.000033 7.48 12,783 0.54 

14 DE-C-40 Diesel Backup manufacturer 40 12.5 350 993 26.5 0.000033 7.05 11,658 0.54 

15 DE-C-100 Diesel Backup manufacturer 100 12.5 180 599 26.5 0.000033 5.45 10,287 0.54 

16 DE-C-200 Diesel Backup manufacturer 200 12.5 135 416 26.5 0.000033 4.94 9,944 0.27 

17 DE-C-300 Diesel Backup manufacturer 300 12.5. 127 357 26.5 0.000033 5.14 10,287 0.41 

18 DE-C-500 Diesel Backup manufacturer 500 12.5 136 318 26.5 0.000033 5.42 9,327 0.16 

19 GA-K-25 Gas Backup manufacturer 25 12.5 522 1730 26.5 0.000033 10.42 15,596 

20 GA-K-55 Gas Backup manufacturer 55 12.5 290 970 26.5 0.000033 7.55 12,997 

21 GA-K-100 Gas Backup manufacturer 100 12.5 259 833 26.5 0.000033 9.18 15,200 

22 GA-K-215 Gas Backup manufacturer 215 12.5 416 1185 26.5 0.000033 7.15 13,157 6.05 

23 GA-K-500 Gas Backup manufacturer 500 12.5 408 936 26.5 0.000033 7.33 12,003 25.29 

24 WD-1 Wind Bergey Windpower I 12.5 3920 8920 3.8 0 39.85 

25 WD-10 Wind Bergey Windpower 10 12.5 2805 6055 5.7 0 27.05 

26 PV-5 PV Jeff Oldman, Real Goods 5 20 7150 8650 14.3 0 55.23 0.0 0.0 

27 PV-20 PV Jeff Oldman, Real Goods 20 20 5950 7450 14.3 0 47.56 0.0 0.0 

28 PV-50 PV Jeff Oldman, Real Goods 50 20 5175 6675 5 0 42.62 0.0 0.0 

c12_. PV-100 
L .. 

PV Jeff Oldman, Re~l Goods 100 20 5175 
- L ... 

6675 L__~.85_ .... 0 42.62 0.0 0.0 
-·- ~~--
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Table 2. 2010 DER~CAM Technology Options 

Name DER Tech Type Source Plate kW lifetime $/kW cost $/kW cost OM Fix OMVar Lev Cost Heat Rate NOx PM 
(a) FOB cost Turnkey cost $/kWia $/kWh clkWh kJikWh glkWh glkWh 

1 MTL-C-30 MT SCE 30 li.5 1200 1333 119 in Fix O&M 12.14 12,186 

2 MT-HW-75 MT SCE 75 12.5 700 753 44 in Fix O&M 10.56 11,373 <0.053 

3 PAFC-0-200 PAFC TAG 200 12.5 1300 PR PR PR 10.15 9,480 PR ' 

4 PAFC-0-1200 PAFC TAG 1200 12.5 1300 PR PR PR 8.14 9,080 

5 SOFC-SW-3100 SOFC-CT TAG 3100 12.5 600 PR PR PR 7.66 6,153 

6 PEM-BA-250 PEM-FC TAG 250 12.5 710 PR PR PR 8.68 9,154 

7 SOFC-C8-500 SOFC TAG 500 12.5 750 PR PR PR 8.97 6,692 

8 PEM-IOkW PEM-FC Ogden & Kreutz 10 12.5 1546 1600 10 0.0010 13.34 10,800 

9 PEM-25kW PEM-FC 0 gden & Kreutz 25 12.5 976 1000 4 0.0007 11.75 10,800 

10 PEM-50kW PEM·FC Ogden & Kreutz 50 12.5 786 800 2 0.0006 7.70 10,800 

II FCV-75 FCV-75 Tim Lipman 30 12.5 0 83 20 0.029000 7.75 9,231 

12 DE-K-15 Diesel Backup manufacturer 15 12.5 878 2257 27 0.000033 NIA 18,288 

13 DE-K-30 Diesel Backup manufacturer 30 12.5 473 1260 27 0.000033 5.51 11,887 8.17 0.54 

14 DE-K-60 Diesel Backup manufacturer 60 12.5 290 864 27 0.000033 6.30 11,201 11.57 0.54 

15 DE-K-105 Diesel Backup manufacturer 105 12.5 212 690 27 0.000033 5.48 10,581 12.25 0.54 

16 DE-K-200 Diesel Backup manufacturer 200 12.5 170 514 27 0.000033 5.20 11,041 8.85 0.27 

17 DE·K-350 Diesel Backup manufacturer 350 12.5 156 414 27 0.000033 4.61 10,032 8.16 0.68 

18 DE-K-500 Diesel Backup manufacturer 500 12.5 166 386 27 0.000033 4.65 10,314 8.57 0.16 

19 DE-C-7 Diesel Backup manufacturer 7.5 12.5 213 627 27 0.000033 NIA 10,458 

20 DE-C-20 Diesel Backup manufacturer 25 12.5 440 1182 27 0.000033 7.48 12,783 0.54 

21 DE-C-40 Diesel Backup manufacturer 40 12.5 350 993 27 0.000033 7.05 11,658 0.54 

22 DE-C-100 Diesel Backup manufacturer 100 12.5 180 599 27 0.000033 5.45 10,287 0.54 

23 DE-C-200 Diesel Backup manufacturer 200 12.5 135 416 27 0.000033 4.94 9,944 0.27 

24 DE-C-300 Diesel Backup manufacturer 300 12.5 127 357 27 0.000033 5.14 10,287 0.41 

25 DE-C-500 Diesel Backup manufacturer 500 12.5 136 318 27 0.000033 5.42 9,327 0.16 

26 GA-K-25 Gas Backup manufacturer 25 12.5 522 1420 27 0.000033 10.42 15,596 

27 GA·K-55 Gas Backup manufacturer 55 12.5 290 866 27 0.000033 7.55 12,997 

28 GA-K-100 Gas Backup manufacturer 100 12.5 259 830 27 0.000033 9.18 15,200 

29 GA·K-215 Gas Backup manufacturer 215 12.5 416 1196 27 0.000033 7.15 13,157 6.05 

30 GA-K-500 Gas Backup manufacturer 500 12.5 408 936 27 0.000033 7.33 12,003 25.29 

31 WD-1 Wind Bergey Windpower 1 12.5 3920 8920 4 0 39.85 

32 WD-10 Wind Bergey W indpower 10 12.5 2805 6055 6 0 27.05 

33 PV-5 PV Jeff Oldman, Real Good 5 20 3580 5080 14 0 32.43 0.0 0.0 

34 PV-20 PV Jeff 0 ldman, Real Good 20 20 2975 4475 14 0 28.57 0.0 0.0 

35 PV-50 PV Jeff Oldman, Real Good 50 20 2588 4088 5 0 26.10 0.0 0.0 

~- PV-100 PV Jeff Oldman, Real Good 100 20 2588 4088 3 0 26.10 0.0 0.0 
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2.3.1 Microturbines 

Two microturbine options were incorporated in this analysis: a 30-kW Capstone model 
and a 75-kW unit from Honeywell. The 30 kW Capstone was a low-pressure gas model. 
Some of the microturbine data, including selected emissions data, were taken from the 
technical specifications provided by their manufacturers. Hourly fuel-flow rates were 
used to calculate the heat rate of each microturbine. 

The Berkeley Lab received test data from John Auckland of Southern California Edison 
(SCE) on January 27, 2001 for the two microturbines. These data were collected at 
SCE's test facility located on the U.C. Irvine campus (Hamilton 1999). The equipment 
costs, O&M costs, and emissions rates were added to the database to reflect this real­
world test case. Both the fixed and variable O&M costs are incorporated in the fixed 
O&M parameter estimate in Table 1. Estimated installation costs for these three test 
units were also provided by John Auckland and incorporated into the data set. Wherever 
possible, the SCE test data replaced pre-existing data provided by the manufacturers to 
better represent real-world operation. 

Although one would expect differences between the manufacturer's claims and real­
world test data, for the most part the microturbine data matched up quite well. For 
example, the free-on-board equipment cost from the manufacturer was different by only 
+!-?percent from the real experience data reported by SCE. 

No modifications were made for the 2010 scenario, and the same two micro turbines were 
considered in this forecast case. 

2.3.2 Fuel Cells 

The only FC included in the present-day scenario was a 200-kW phosphoric-acid fuel cell 
(P AFC) manufactured by ONSI, which is the only FC widely available today. All of the 
data collected for this model were from the proprietary EPRI Technical Assessment 
Guide (EPRI 1999 November). The only air emissions data available for this FC were 
for uncontrolled NOx (nitrogen oxides). 

For the 2010 scenario, eight additional FC units were added based on the current 
likelihood oftheir emergence in the market within the next 10 years. These options 
include a second PAFC, four proton-exchange-membrane (PEM) FCs, two sulfur-oxide 
fuel cells, and one fuel-cell vehicle (FCV) option, ranging in size from 10 kW to 3,100 
kW. The heat-rate conversion efficiencies range from 32% to 55%. 

The estimated levelized cost for the ONSI 200 kW P AFC option in the present day 
scenario is 13.68 ¢/kWh. Over the course of the next 10 years, assumed improvements in 
the production costs of this FC model produce an approximate 26% reduction in costs, 
down t? 10.15 ¢/kWh. 

The FCV with a power rating of 30 kW represents a promising DER option. The 
levelized cost is only 7.75 ¢/kWh in 2010, largely because of the zero equipment cost 
assumed because the equipment is purchased prior to considering DER options. DER-
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CAM assumes that the FCV would be purchased for transportation purposes, and 
distributed generation would be a "by product." Although the 3,100-kW and 500-kW 
solid-oxide fuel cell (SOFC) units, for which data are available, are predicted to achieve 
lower costs overall, they are too large for most DER applications in our analysis. Thus, 
the FCV seems to be an attractive option with its low levelized cost in 2010. 

A detailed discussion of the methodology used to derive the 2010 technology cost for 
FCs is presented in the next section. 

2.3.3 Wind 

Two wind-technology options are included in the data set for both scenarios. However, 
wind was not considered a viable option for the urban setting of the current analysis, so 
this technology was not made available to the customers in the Microgrid Oaks f.lGrid. 
The units selected are 1 kW and 10 kW in size, with technology data obtained from a 
phone interview with Steve Wilke at Bergey Windpower on February 24, 2001. Using 
the present-day turnkey costs, which just account for the equipment, estimated at 6,055 to 
8,920 $/kW, respectively, for these two turbines, the per-kW cost decreases by 32% from 
the 1 kW to the 10 kW unit. Unfortunately the cost ofwind technology for DER 
applications is one of the highest of the technology options, making it far from viable in 
the DER-CAM model. The levelized costs for the 1-kW and 10-kW wind options are 
estimated to be 39.85 ¢/kWh and 27.05 ¢/kWh, respectively, far higher than costs of a 
diesel or natural gas back-up generator, or even a microturbine or FC. 

No wind-technology data adjustments were made for the 10-year outlook scenario. The 
20 1 0 costs match those used for the 2000 case because good sources to determine a 
credible outlook for wind technology costs were lacking. Thus, costs are assumed to 
remain constant. However, wind was excluded as an option for the test cases reported 
here because all sites considered were urban and, therefore, unlikely to be appropriate for 
wind development. 

2.3.4 Photovoltaics 

The option for customers to choose PV was permitted in the DER-CAM runs reported 
here. Four different PV systems, ranging in size from 5 to 100 kW, were included. Data 
were collected from a telephone conversation with Jeff Oldman ofReal Goods on April 
10, 2001. Cost information, including the installed cost and O&M costs, were provided. 

The Renewable Energy Technology Characterizations 1997 edition book by EPRI, which 
summarizes and forecasts the operating and economic features of various renewable 
energy resources, was used to adjust the PV equipment costs for the 2010 case (EPRI 
1997). Neither installation costs nor O&M costs were modified from the present-day 
case because of uncertainty about how these costs would change over time. The 
projected cost improvement is largely a result of the technological improvement of 
crystalline-silicon PV modules expected during this period. 
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2.3.5 Diesel and Gas Back-up Generators 

A variety of small-scale diesel- and natural-gas-fueled internal combustion engines 
currently marketed were included as DER technology options. A total of 14 diesel 
options ranging in size from 15 to 500 kW and five natural gas generators from 25-500 
kW constitute the internal combustion engine DER options. The data were collected 
primarily from various manufacturers' technical specification sheets that provided the 
kW rating; dimensions and weight; some noise level measurements; fuel-flow rate at 
various load levels; in some cases HC (hydrocarbon), CO (carbon monoxide), NOx, PM 
(particulate matter), and SOx (sulfur oxide) emissions rates; exhaust temperature; and 
fuel-tank capacity. Equipment costs were collected from the manufacturer when 
possible. The fuel-flow rate was used along with an assumed heat content for diesel and 
natural gas fuel and the kW rating to estimate the heat-rate conversion efficiency. 

The current diesel-fuel cost of $0.29/L ($1.1 0/U.S. gallon) and energy content for diesel 
fuel #2 were used to calculate the variable and levelized cost of operating each diesel 
generator. This calculation assumes a 12.5-year loan term' (equivalent to the expected life 
span ofthe generator) at an annual rate of9.5%. The heat content of diesel was assumed 
to be 38,228 kJ/L (137,157 Btu/U.S. gallon) and was taken as the average of various 
external sources, and the full-load heat rate was used. The levelized cost calculation 
assumes a 100% capacity factor and a fuel price of $8.46/GJ for the diesel generators. 
Microturbines, FCs and natural gas generators assume a natural gas price of$8.25/GJ. 
The levelized cost estimate for the Cummins/Onan model DNAC was not available 
because oflack of fuel-flow data from the manufacturer's specifications. 

The electrical costs of installing this technology type were roughly estimated using the 
RSMEANS handbook (Chiang 2000). This source estimates the electricity-related costs, 
so estimates of the turnkey cost can also be determined (Mossman 2000). Cost 
information from this book was assumed to account for roughly all the electrical and 
mechanical costs, at least for a first approximation. Figure 1 shows the function of 
declining installation costs for generators with increasing kW size. Shown for both the 
diesel and natural gas generators, this figure clearly shows the economies of scale and 
how much more economical a larger unit can be on a per kW basis. Using installation 
cost information for selectively sized units provided from a generator manufacturer, the 
proportion of installation to kW rating size was used to derive an installation cost for all 
diesel and gas back-up generators considered in this data set. 
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Although mass production and marketing of reciprocating-engine generators may lower 
their delivered costs, this technology is the most established of the DER technologies, so 
no changes in cost or technical specification were deemed necessary for the 10-year 
outlook. 
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3. Technology Cost Forecasting 

In order to assess potential DG (distributed generation) system adoption in the year 2010 
case, it is necessary to forecast the potential costs ofDG system types that are not yet 
mature products. This primarily includes various FC types and PV systems although 
microturbines and wind turbines are also likely to continue to decline in cost. 

Unfortunately, forecasts of technology cost improvement are inherently difficult for 
many reasons. First, new technologies are constantly in flux with regard to design, 
materials, and the manufacturing processes implied by the design, so it is very difficult to 
forecast future generations of technology design with any certainty. Second, it is often 
difficult to obtain data on the costs associated with adding value to materials at each 
production step, particularly for projected higher manufacturing volumes with different 
scales of equipment than are used in prototype or low-volume production. Third, cost 
data are often particularly sensitive to the individual companies in an industry, and thus, 
to the extent that critical cost data do exist, they are often proprietary. Further, 
understanding manufacturing costs may or may not yield good insight into market prices 
because emerging technology markets may not yet have evolved into competitive ones, 
and various product-pricing models can be used during the introduction of new 
technologies. Finally, basic materials costs themselves are subject to fluctuations on 
commodities markets, and in some cases these fluctuations can be quite volatile. For 
example: in August of 1999, platinum (a key catalyst material for PEM FC electrodes) 
traded for approximately 12.35 $/g on the New York metals exchange; currently, in mid-
2001 it trades for more than 21.16 $/g (this figure has been converted using 2835 g/oz). 
For all of these reasons, technology cost estimation and forecasting carries a considerable 
degree of inherent uncertainty. 

3.1 Issues and Methods 

Despite these limitations, however, different types of cost estimation and forecasting are 
possible and are routinely performed. For business strategy planning, policy analysis, 
and manufacturing contracts between large original equipment manufacturer (OEM) 
companies and their suppliers. One method of cost analysis and forecasting involves 
detailed estimation of materials costs and/or complete manufacturing costs, including 
labor, overhead, expendable tools, energy costs, and general and administrative expenses. 
Other methods of analysis are more formulaic in nature. The following sections briefly 
discuss a few of these methods followed by an assessment of potential cost reductions for 
the immature DG technologies considered in this analysis. 

3 .1.1 Detailed Cost Estimation 

With sufficient data on costs for product materials, materials processing equipment, 
labor, energy, expendable tools, facilities, and other general and administrative expenses, 
potential technology manufacturing costs and retail prices can be estimated. With data on 
how these costs vary by production volume, costs can be estimated for different 
production volumes and thus forecasted into the future to some extent. However, in the 
context of these detailed cost-estimation exercises, it is difficult to account explicitly for 
the potential future improvements in design and manufacturing process efficiency. 
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Furthermore, the data needed to conduct this type of detailed cost estimation are 
extensive and often the detailed data on product and process design and materials, which 
are needed for a truly detailed analysis, are proprietary and thus difficult to obtain and 
impossible to publish. Nevertheless, if sufficient data and time are available to conduct 
this type of analysis, it tends to be the best way to estimate accurately technology 
manufacturing costs, particularly in the near term. 

3.1.2 Cost Forecasting With Experience Curves/Progress Functions 

An alternative way to understand technology production costs is a manufacturing 
experience curve or progress function appro(!ch. Although there are only sufficient data 
to explicitly apply this method to one of the technologies considered in this report, 
P AFCs, there is an extensive literature on this method, and some discussion of that 
literature is appropriate. It is also worth noting that the U.S. Department of Energy 
(DOE) cost forecasts for PV and wind-power systems are based on the National Energy 
Modeling System (NEMS), which uses manufacturing progress functions to predict cost 
declines during the initial stages of product commercialization. 

Experience curve/progress function analysis traces its roots back to 1936, when T.P. 
Wright discovered a relationship between the labor hours needed to manufacture metal 
frames for aircraft and the total number of such airframes built. Wright found that each 
time the total quantity of airframes produced doubled, the labor hours required to 
assemble an airframe decreased by a stable percentage (Wright 1936). Since this early 
work, hundreds of studies have been conducted on the nature and variability of learning 
curves in industries as diverse as electric power, microchips, beer, and automobiles 
(Boston Consulting Group 1972; Dino 1985; Ghemawat 1985; Argote and Epple 1990). 
These studies have allowed the concept of the learning curve, which initially considered 
only improvements in the labor component of production, to be extended to help explain 
the dynamics of overall production costs as technologies move from low-volume, 
prototype production,' to "learned-out" mass production. These overall cost curves have 
come to be known as "manufacturing experience curves" or "manufacturing progress 
functions." -

Thus, in contrast to Wright's learning curves, experience curves describe the cost path of 
a manufactured product, beginning with the early history of manufacturing and 
continuing to the "nth" unit produced. While learning curves describe only 
improvements in the efficiency of the labor component of total manufacturing cost, the 
experience curve applies to the total cost of manufacturing the product. Cost reductions 
result from four primary factors: 1) scale economies, 2) technological improvements in 
production processes, 3) improvements in product design (i.e., reduced parts counts and 
improved design for manufacturability), and 4) improved production worker and 
organizational efficiency. 

Although many different functional forms for the experience curve are possible and have 
been investigated, the most commonly used expression is the simple log-linear form 
shown below: 
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where: 
CN = Cost of manufacturing nth unit 
C1 =Cost of manufacturing 1st unit 
VN =Cumulative production at nth unit 

= Experience curve slope (0-1 00+%, generally 70-90%) 

This relationship predicts that the constant dollar cost of adding value to a product falls 
by a fixed percentage each time accumulated manufacturing experience doubles. For 
example, an 80% experience curve predicts that the constant dollar cost of a product will 
fall by 20% with each doubling of cumulative production volume. Hence, cost 
reductions are relatively dramatic during the early stages of manufacture as scale 
economies are captured and the production process is perfected and then drop off as 
doublings of volume take longer to achieve. 

3 .1.3 Historical Experience Curves 

In addition to being used for forecasting, experience curve analyses can be applied 
retrospectively. One classic example is in the early history of the automobile industry. 
Figure 2 depicts the decline in the price of the Model-T Ford from 1909 to 1923. During 
this period, the price fell from more than $3,000 (in 1958 dollars) to less than $1,000 
(Abernathy and Wayne 1974). Note that the same data plotted on a log-log scale in 
Figure 3 are linear. 
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Figure 2. Path ofModei-T Ford (1909-1923) with Standard Scale 

Source: (Abernathy and Wayne 1974) 
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Figure 3. Price Path ofModel-T Ford (1909-1923) with Log-Log Scale 

Source: (Abernathy and Wayne 1974) 

10,000 

Since a landmark study by the Boston Consulting Group in 1972 that examined the 
evolution in unit costs of about 2,000 different products (Boston Consulting Group 1972), 
many additional experience curve studies have been conducted. These studies have 
shown that the typical rate of unit cost reduction is very oftenin the range of 10% to 30% 
each time the cumulative production experience doubles, with rates of around 20% on 
average (Dutton and Thomas 1984; Ghemawat 1985). This clust.ering of experience 
curve slopes has led to the common assumption of an 80% curve for strategic technology 
forecasting purposes or a 20% decline in costs with each doubling of accumulated 
production. 

The difficulty with conducting ex ante experience curve analyses is that it is impossible 
to know for sure what experience curve slope is appropriate for the product in question, 
and it is also necessary for the product to have at least some cost or price history (or 
detailed knowledge of costs). Even if some production cost data are available to estimate 
the initial part of the curve, experience curve slopes are not always stable for a given 
product, and simply extrapolating the entire curve from the initial portion may not be 
accurate. In order to contend with this issue, some form of probabilistic analysis is 
warranted. This could take the form of simply forecasting two or more different cases, 
with different corresponding curve slopes, or a more elaborate type of analysis such as 
Monte Carlo simulation (Lipman and Sperling 1997). 

Consider laser diodes produced by Sony starting in 1982; these devices have been 
produced in great numbers because they are components of the compact disc player, a 
highly successful consumer product. Figure 4 shows manufacturing cost data for this 
product from 1982 until 1994 and a set of three manufacturing progress functions with 
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different slopes. There are two interesting features of this figure: first, the overall pattern 
of cost reduction is reasonably well approximated by an 80% curve slope; second, the 
data do not perfectly track any given curve slope but rather "wander" considerably. Thus, 
depending on the time line of the forecast, an analysis based on a constant slope may be 
more accurate at certain points than at others. 
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Figure 4. Sony Laser Diode Prices (1982-1994) 

Source: (Wood 1998; Wood and Brown 1998) 

3.2 Estimates of Fuel-Cell System Costs in 2010 

The manufacturing experience curve method of forecasting was applied to the case of the 
P AFC because it is a commercial product with enough history to permit estimation of the 
basic parameters needed to calculate a range of manufacturing experience curves. For 
the PEM and SOFC technologies, for which experience curve projections are more · 
speculative, detailed analyses found in the literature for high-volume production costs of 
these technologies were used. In other words, rapid deployment of these technologies 
has been assumed. 

The 200-kW P AFC unit that is currently commercially available was developed by 
United Technologies' ONSI division and is now being developed and marketed by 
United Technologies' spin-off partner, International Fuel Cells (IFC). Approximately. 
200 P AFC units have been placed in service with purchase prices of about $4,000 per kW 
and installed costs of approximately $4,500 per kW. ONSI has produced three different 
generations of this technology with improved performance but relatively constant prices. 
With significant increases ip orders, IFC believes it could reduce costs significantly 
though the 1996 forecast (Figure 5 below) now seems somewhat optimistic. 
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Cost Reductions for IFC.ONSi 2.00-kW PAFC System 
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Figure 5. IFC/ONSI 200-kW Phosphoric-Acid Fuel-Cell System Cost Reduction 
Projections 

Source: (Whitaker 1998) 

3.2.1 Phosphoric-Acid Fuel-Cell System Cost Forecast 

Similar to the example in Figure 5 but with adjusted data, the manufacturing experience 
curve technique was used to extrapolate costs from current costs of$3,000 to $4,000 per 
kW (it is unclear what, if any, profit margin ONSI is realizing with current sales prices) at 
~50 MW of cumulative production (200 200-kW systems have been sold by IFC, plus 
some early prototype production). Three cases are examined with 75%, 80%, and 85% 
curves in order to capture a range of variation that is possible for the slope of the 
experience curve (see the learning/experience curve literature cited above for discussions 
of the statistical distributions ofhistorical experience curve slopes). Figure 6 shows these 
three P AFC system cost forecasts .. 
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Figure 6. PAFC System Cost Forecast 

The central case estimate for PAFC (80% curve) yields 2010 costs of$1,300 per kW 
(year-2000 dollars). This assumes that an additional I GW ofFC production is PAFC by 
2010. This estimate is based on a forecast that a cumulativel5 GW ofFC will have been 
installed by 2010 (Ozbek 2001). This is considered an optimistic case for the PAFC 
technology, which is expected to face strong competition from PEM, SOFC, and molten­
carbonate fuel cell technologies when they are commercialized during the next few years. 
The low-cost-case estimate (75% curve) would predict a cost of about $850/kW in 2010, 

, also with 1 GW of additional cumulative production. To these capital costs, one should 
add approximately $75,000 to $100,000 for installation, depending on the site 
requirements for grading, security fences, building integration, and fuel and electrical 
connections. 

3.2.2 Solid-Oxide Fuel-Cell System Cost Estimates 

Relatively few detailed estimates ofSOFC system costs are available in the public 
domain, and because SOFC systems are not yet commercial, forecasting costs with 
manufacturing progress functions is not yet possible. The U.S. Department of Energy has 
set goals of$800 per kW by 2003 and $400 per kW by 2010 for SOFC stacks, with 
additional costs for auxiliary systems, power electronics and controls, and installation 
(Singhal2001). 

SOFC system cost estimates are based on a study performed by Chen et al. (1996) in a 
collaborative effort between Bechtel Corporation, TDA Research, and the Gas Research 
Institute. This study examined potential SOFC system costs based on a wide range of 
potential operating temperatures and pressures. In this study, the lowest electricity costs 
are seen for systems operating at -800 °C. The corresponding capital costs for the -800 
0 -C systems were estimated to be approximately $700-800 per kW. Based on these 
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estimates and in light of the U.S. DOE goal to drive down SOFC costs, an estimate of 
$750 per kW has been used for SOFC systems in the year 2010 (in year-2000 dollars), 
including manufacturer profit but not including installation and building integration costs. 

3.2.3 Proton-Exchange-Membrane Fuel-Cell System Cost Estimates 

Several PEM system cost forecasts have been performed, based either on detailed or 
experience curve methods. These estimates, most of which have focused on light-duty 
automotive applications ofPEM technology, tend to forecast dramatic declines in the 
current prices ofPEM systems. However, the ultimate cost for PEM FCs in high-volume 
production is the product of many complex assumptions and depends significantly on the 
stack design, the quantity and cost of platinum catalyst material, and the assumed level of 
efficiency of operation of the FC stack (because this affects stack size and material 
requirements). 

The small PEM systems currently available have been sold or leased for several thousand 
dollars per kW and have been applied to only a few specialized and demonstration 
applications. However, there is intense industry activity around the development ofPEM 
FCs, and large production volumes are forecast by 2010. 

The PEM system cost estimates used in this study are based on a recent analysis by 
Kreutz and Ogden (2000), which draw on the detailed analysis performed on automotive 
FCs and adjusts the results of that analysis for a range of stationary PEM system sizes. 
Kreutz and Ogden estimated potential purchase prices for sizes of from 1 kW to 50 kW, 
and in lower- (10,000 units/year) and higher-volume production (100,0000+ units/year) 
scenarios. In lower-volume production, they estimate that a 10-kW system would have a 
price of$1,600/kW or $16,000 per unit, a 25-kW system would be priced at $1,000/kW 
or $25,000, and a 50-kW system would be $800/kW or $40,000. In higher-volume 
production, the 10-kW system would be $500/kW or $5,000, the 25-kW system would be 
$300/kW or $7,500, and the 50-kW system would be $240/kW or $12,000 (Kreutz and 
Ogden 2000). 

Because it is not clear whether PEM systems will be in very high-volume production by 
2010 (at or greater than 100,000 units per year), Kreutz and Ogden's lower production 
volume estimates were used for this study. It seems as though PEM system development 
will take some time to achieve these cost levels with consistent system durability of 
40,000 to 50,000 hours between major system overhauls and that the PEM market may 
take more than 10 years to grow to the level at which production is at the multiple-GW­
per year scale. Kreutz and Ogden's estimates have been adjusted upward slightly 
because they include installation costs and the present value of maintenance costs in these 
estimates but do not appear to include any contingency costs or manufacturer profit. We 
added operation and maintenance costs and used the resulting estimates as installed 
system costs. Because system costs do not seem to decline very much as system sizes 
approach 50 kW, an installed PEM FC system cost estimate of$750 per kW was used for 
systems in the 200 to 250 kW size range. 
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3.2.4 Fuel-Cell Vehicles as Stationary Generators 

In addition to being used as clean transportation technologies, FCVs could, in principle, 
act as generators when parked at homes, offices, and shopping centers. Kempton et al. 
(2001) and Lipman (2001) have recently investigated the potential of different types of 
electric-drive vehicles to produce electricity for the peak-power, emergency back-up 
power, and utility grid ancillary services markets. FCV s were found to be potentially 
attractive as generators for peak power, backup power, or as spinning reserves. The cost 
of electricity from fuel FCV s is sensitive to the assumed fueling arrangement and the 
price of fuel as well as to the degree and cost of FC system degradation from the 
additional usage. Optimistic costs of perhaps 0.80 $/kWh to 0.10 $/kWh are possible 
based on the assumption that early generation FCV s will be equipped with fuel reformers 
that are capable of reforming natural gas as well as methanol or gasoline (such "multi­
fuel" reformers are currently being developed). If a dedicated off-board reformer is 
needed to support one or more vehicles, then the cost will be higher (Kempton, Tomic et 
al. 2001; Lipman 2001 ). 

FCVs are included among the other DG-technology options for 2010, and it is assumed 
that the vehicles are fueled with natural gas hookups that feed multi-fuel reformers that 
are integrated into the vehicles. Further, it is assumed that the natural-gas price is the 
same as in the base case, and that the cost of FC degradation is a stack replacement and 
system refurbishment cost of$75/kW, with an effective stack life of 10,000 h in 
stationary generating mode (we assume that relatively low-power stationary operation has 
double the approximately 5,000 h of life of dynamic operation for transportation). These 
assumptions, along with an estimate of $2,500 per vehicle for natural-gas and electricity 
connections for each vehicle in a group of vehicles that is connected to ail office building 
load for eight to 10 hours per day, result in a cost of electricity of approximately 
$0.075/kWh for this potential generation source. 

3.3 Additional Costs and Performance Measures 

For FC and other technology operating and maintenance costs, published data and 
analyses of the fixed and variable costs expected for minor and major (e.g., stack 
refurbishment) system maintenance, expressed as $/kW/a plus $/kWh, are very helpful. 
Installation costs for FC systems are based on data obtained from IFC for typical P AFC 
system installation costs, and on published estimates for PEM and SOFC installation 
costs. PV solar and wind-system installation costs are based on data obtained from 
manufacturers and retailers of these systems (see Table 3). 

Adjustments were made to estimate the costs for PV systems in 2010 similar to the 
adjustments made for FCs. Taking what was used in 2000 as a base, the equipment costs 
were adjusted as a percent reduction predicted in EPRI's TAG (EPRI 1999 November). 
The percent change between the 2000 and 2010 TAG equipment cost estimates was used 
to adjust the 2000 costs for the 10-year outlook to reflect the significant change in costs 
during the 10 years. In general, the equipment cost was reduced by approximately 50%. 
The installation and various operations and maintenance costs were kept consistent with 
the 2000 estimates because of a lack of data to forecast such cpsts. 
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In general, the heat rates for FC systems in 2010 are expected to be lower than those of 
competing systems, with a range ofab·out 6,700 kJ!kWh for SOFC systems to 10,800 
kJ/kWh for small PEM systems. These compare with heat rates of 12,000 to 18,000 
kJ!kWh for gas and diesel generator systems, and 11,300 to 12,200 kJ/kWh for 
microturbines (see Table 2). These FC system heat rates are somewhat uncertain given 
potential advances in technology and the fact that heat rates for FCs and generators vary 
with load and thus are to some extent dependent on how the systems are operated. The 
overall efficiency ofFCs could also be increased substantially with the use of waste heat, 
particularly with high-temperature FC systems although lower-temperature FCs and 
microturbines also have significant cogeneration potential. 
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4. Preparation and Selection of Building Electrical Load Shapes 

4.1 Introduction 

This section describes the preparation of the load shapes employed in the modeling effort. 
A central objective of this work was to obtain and apply real-world load shapes in the 
distributed energy resources customer adoption model, and considerable effort was 
undertaken to achieve this objective. The reasons for using actual metered data are 
twofold: first, the analysis reported here is more valuable to real-world applications; and 
second, developing a collection of customer load shapes with submetered end-use data is 
an integral precursor to planned future analysis that includes CHP technologies and direct 
load control. 

4.2 Background 

This analysis uses metered end-use load shape data in an effort to assess the DER 
adoption behavior of a commercial building owner. Without a realistic set of customer 
load profiles, DER-CAM results would likely not properly represent the most cost­
minimizing deployment ofDER technology. Although simulated and hybrid load shape 
data are the function of a flGrid under specific realistic economic conditions available 
[e.g., from the market analysis and information systems (MAISY) data set and from 
DOE-2 simulations] and have been used in prior work, actual metered data are 
statistically preferable. However, metered loads for commercial buildings are not easy to 
find. Berkeley Lab had an available archived set of commercial hourly load data that had 
been collected by SCE in 1988-1989 (SCE 1989; Akbari 1993). Even though the data 
may be regarded as old, this is not a problem for this work since our analyses are meant 
as examples of how a flGrid might work in a particular situation. Berkeley Lab 
recovered these data and recreated load shapes to use in current modeling efforts. 

4.3 Data Description and Preparation 

The initial version of the SCE load data set consisted of a statistical analysis software 
(SAS) data set containing hourly load data for 53 commercial premises located in the 
SCE service territory. For each business site, the data spanned approximately one year, 
from June 1988 to June 1989. For confidentiality reasons, detailed information on the 
businesses were suppressed, but for most premises, business type, total floor area, 
conditioned floor area, and a corresponding set of hourly weather data were available. 
Table 3 summarizes the data available by business type. 
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Table 3. Number of Premises for which Load Data were Available, by Business 
Type 

Building Type Number of premises 
Grocery 14 
Office 12 

Restaurant- Fast Food 4 
Restaurant- Sit-Down 10 
Retail 10 
Warehouse 3 

Based on the hourly data, Berkeley Lab calculated a variety ofload shapes, each 
corresponding to a predefined set of days, for each business site. These load shapes 
served as input data for our modeling efforts (see Section 5). Following the conventions 
used in an earlier report (Rubio et al. 2001 ), load shapes were calculated for the following 
periods: 

• average weekday by calendar month (1 day type x 12 months) 
• average weekend by calendar month (1 day type x 12 months) 
· • average of the three "peak" days per month where peak is defined as the highest 

daily load, which we calculated as the sum of the 24 hourly loads (1 day type x 12 
months) 

For each hour of an average load shape for a particular business site, the hourly values 
were the average of all loads for that hour and day type. The result was a library that 
contained 36 load shapes for each business site. 

The load-shape data used for this analysis were taken from a report by Akbari et al. 1993, 
which uses this same SCE data set. Figure 7 illustrates a sample building type (here, an 
office) and its corresponding hourly load profile by end use. Office site #5 was a 10,925 
m 2 (117,600 ft?) building that typically accommodated 435 people daily at the time the 
data were measured in 1989. The building typical business hours were from 7 am to 6 
p.m. This graph shows the average hourly loads that were obtained by monitoring the 
building's energy use. The end:-use categories in this example are heating, ventilation, 
and air conditioning (HV AC), lighting, and "other", which included the building plug 
loads and for all of the energy that was unaccounted for between the total observed load 
and the monitored end-use loads (Akbari 1993). 
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Figure 7. End-Use Load for Office #5 

4.4 Selection of Microgrid Oaks Businesses 

oOther 

alighting 

[JHVAC 

The sites used to make up Microgrid Oaks were selected with many considerations in 
mind though not using a scientific process. The aim was simply to select a diverse group 
ofbusinesses that one might reasonably expect to see in a typical southern California1 

strip mall. Because businesses with high electricity requirements are more likely to find 
DER attractive, these types of businesses were favored. Also, the focus was on 
customers for whom the available data were most complete. It is worth restating here 
that our choice of businesses for Microgrid Oaks does not imply that these are the 
business types which DER would be particularly attractive. In fact, the commercial 
sector as a whole may well not be the most fertile ground for DER. This work focuses on 
the likely patterns ofDER technology adoption with an eye to limiting the technical 
problems to be solved to make DER viable; we did not attempt either a full market 
assessment or a detailed planning study for a particular site. 

Some sites have peaky electricity load patterns; others have higher load factors (ratio of 
average load to peak load). For example, the office building has much higher peak 
demands during the week and the business hours of 6 a.m. to 6 p.m. Another feature of 
the office load shape is much higher loads in the summer, largely because of air 
conditioning use. Figure 8 shows the monthly peak-day loads of the office for each hour. 

1 San Diego was chosen as the J!Grid location because it is one of the few cities in the United States where 
the county government has collected a large amount of GIS land use data and made most of it available free 
to the public. It is assumed that the electrical load data would be similar for the different utility service 
regions, at least within the natural variability resulting from local climate conditions within a service region 
(such as proximity to the coast). Furthermore San Diego has stringent air quality regulations that influence 
DER technology adoption such as limiting the number of hours diesel generators may operate. 
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Figure 8. Great Vistas Real Estate Office Monthly Peak Load 

Other sites, for example one grocery, have flatter loads, as can be seen in Figure 9. In a 
site with loads of this type, steady energy consumption is most likely by end uses that are 
usually on at all hours of the day, such as the grocery lighting, refrigeration, freezing, and 
air conditioning. Because of the similar energy load during most hours ofthe day, this 
site's loads show small deviations between the peak and average loads. 

The office was the only building selected for Microgrid Oaks that contained missing data. 
Although complete data sets were desirable, in this instance the site was chosen for its 
unusual load profile and small size. A simple average of the adjacent months was 
performed to estimate the missing data for the month of June. 
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Eight sites were selected to constitute Microgrid Oaks. Table 4 illustrates the 
composition ofMicrogrid Oaks for this analysis. 
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Table 4. Summary of Microgrid Oaks Mall 
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I. Supermarket Dangerway 1,536 1,708,581 1,112 255 Septl5:00 76% complete 

2. Office Great Vistas Real Estate 223 40,269 181 26 July 16:00 18% june missing 

3. Sitdown Restaurant Nan Hideaway 1,003 529,231 528 110 Septl7:00 · 55% complete 

4. Fast Food Restaurant Burger Queen 339 487,973 1,439 100 July 12:00 55% complete 

5. Deli Restaurant Sub Safe Harbor 674 199,553 296 56 July 13:00 41% complete 

6. Department Store Spacy's 6,466 1,459,949 226 309 Sept 12:00 & 15:00 54% complete 

7. Retail Store Drum Buster Stereo 1,347 ' 263,367 196 81 July 13:00-16:00 37% complete 

8. Warehouse Store Ram's Club N/A 1,821,001 N/A 299 July 15:00 69% complete 

9. Total Microgrid Microgrid Oaks Mall 11,588* 6,370,206 405* 1253 July 14:00 58% june missing 

• not mcludmg warehouse smce floor area data IS not available 

Besides the grocery and the office, three restaurants, two retail stores and one warehouse 
were included in the mall. All businesses were given fictional names that parady 
mainstream stores of the same type. It is important to differentiate these businesses using 
more detailed classifications than, for example, restaurant or retail because the load 
shapes of different types of restaurants or retail shops vary. 

Table 4lists the fictitious names, the floor area in m2
, annual energy usage (kWh), 

combined energy density per floor space (kWh/m2·a), peak load (kW) and hour it occurs, 
and load factor(%) for each of the eight building sites. The Ram's Club warehouse 
consumes the largest share of energy in Micro grid Oaks. Burger Queen fast food 
restaurant has the highest energy use per square meter of floor space at 1,439 kWh/m2.a 
(floor space data were not available for the warehouse site). The Great Vistas real estate 
office, uses the smallest amount of energy, only 181 kWh/m2•a, with a peak load of26 
kW. The largest peak load belongs to Spacy's department store at 309 kW; the Ram's 
Club warehouse peak load is 299 kW, and the Dangerway supermarket is not far behind 
with a peak load of255 kW. Not surj,risingly, the real estate office also exhibits the 
smallest load factor at only 18%. The warehouse has a 69% load factor,' but the 
supermarket shows an even higher factor of76% for the given year. All these sites peak 
either in July or September although the time of day varies. 
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5. Environmental and Regulatory Issues 

The DER-CAM results indicate the need to address environmental concerns associated 
with DER deployment. The results do not always describe outcomes that are 
environmentally favorable to the siting location. Therefore, it is important not only to 
assess the environmental impacts from each scenario, but also to address any pertinent 
legislation affecting DER use. In California, the energy crisis has drawn attention to use 
of diesel back-up generators, and legislation is in the making to control the permitting 
and emissions ofDER-sized technologies. This section describes this situation as well as 
control technologies that can help reduce emissions from some DER options. 

5.1 Recent Executive Orders by Governor Gray Davis (California) 

California is currently experiencing a generating capacity shortfall. Although measures 
to expedite the permitting of new generators have been implemented to address this 
energy crisis, the relatively slow process of siting and constructing new power plant 
facilities means that new power plants are unlikely to solve the problem quickly. This 
energy crisis has resulted in implementation of some measures to encourage the use of 
DER technologies, especially during high peak demand periods. In addition to speeding 
up power plant permitting procedures, the state is also promoting conservation measures 
and ways of allowing existing on-site back-up generators to generate under looser air 
quality restrictions. 

Most on-site generators currently in place are back-up generators fueled by diesel. More 
than 10,000 of these emergency or standby generators are operating in California with 
more than two thousand of them in the San Francisco Bay Area (California Air Resources 
Board 2000). Significant electricity demand relief could be achieved if these generators 
were able to run during peak power periods without constraints on total operating hours. 
However, there are serious environmental concerns associated with these generators, 
which should be addressed as the Governor has used his executive powers to temporarily 
override some pre-existing legislation limiting the number of hours during which these 
generators can operate. 

Beginning in early February 2001, Governor Gray Davis began issuing a series of 
executive orders to address the state's energy crisis and help prepare for the coming high 
summer electricity demand. These orders addressed expediting the application process 
for power plants, increasing public awareness of energy conservation through media 
campaigns, offering customer rebates and other rewards for reduced energy use, and 
lifting operating caps on the number of hours during which small generators can run. 
Executive Order D-24-01, issued on February 8, 2001, gave local air pollution and air 
quality management districts the power to set their own limits on the number of hours 
that small generators could operate. 

As a result, the South Coast Air Quality Management District (SCAQMD) established its 
own series of executive orders. Executive order 01-01 was issued on January 26, 2001 
and allows internal combustion engine generators to operate up to 500 hours in any one 
year (up ·from 200 h/a) if using diesel fuel below 15 ppm (parts per million) sulfur. 
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Small-scale back-up generators are limited to operating only during an imminent or 
actual blackout if over the 200 h/a operation time. 

Executive order 01-03 pertained to the REgional CLean Air Incentives Market 
(RECLAIM) program and was terminated and superceded as amendments to the 
RECLAIM program were issued May 11,2001. The amendments basically called for a 
removal of power generators from the RECLAIM program. Prohibited from buying 
excess emissions credits from the RECLAIM market, SCAQMD set up a mitigation fee 
program designed to offer emissions credits based on a set fee to generators who emit 
beyond their allowance. 

Adopted in 1993, the RECLAIM program was designed to limit the amount ofNOx and 
SOx each stationary power plant could emit, with caps decreasing each year through 
2003. The amendments passed on May 11,2001 allow power plants to generate more 
electricity while minimizing their impact on the environment. Power plants are separated 
from the RECLAIM program and required to install of pollution control equipment 
during the next 2 to 3 years; they must pay a mitigation fee of$16.50/kg ($7.50 per 
pound) to emit NOx over the RECLAIM allocation. The funds collected will be used to 
clean up some of the dirty equipment that has so far eluded air pollution regulations to 
ensure permanent reductions ofboth smog-forming emissions and cancer-causing diesel 
soot. 

The San Diego area is the focus region for this analysis. Within this area, the recent 
executive orders in California have affected DER. The San Diego Air Pollution Control 
District established a strict limit on the number of hours that diesel emergency and non 
emergency generators can operate. Because of the severe air quality problems within this 
air district, the regulations are more restricted than in other parts of California. Under 
the rules and regulations, emergency generators are permitted 100 h of maintenance each 
year and an additional 52 h for generating during near-stage-3 electricity emergency 
episodes. If the DER generator is located at a nuclear plant, it is allowed 100 h of 
generator use in addition to the 100 h of maintenance. For this analysis, some DER­
CAM model scenario runs were performed incorporating varying annual operating 
constraints for the diesel back-up generators. Sensitivity case analysis based on these 
annual restrictions of 52 h/a and even some extreme cases of more than 1000 h/a to was 
performed to determine the importance of varying the operating use. 

5.2 Senate Bill1298 

On September 25, 2000, Governor Gray Davis signed SB 1298 into law, which resulted 
in the establishment of a working group in January of2001 to help the California Air 
Resources Board (CARB) develop the regulations and guidance this law requires. The 
law requires the California Air Resources Board (CARB) to adopt a certification program 
and uniform emissions standards for distributed generation currently exempt from 
permitting requirements (typically smaller-scale generators). Starting on January 1, 
2003, all electrical generation technologies are required to be certified by the state board 
or permitted by the air district prior to use or operation. Authority is given to the local air 

30 



Modeling of Customer Adoption of Distributed Energy Resources 

districts to establish DG technology emissions standards that are more stringent than 
those established by the CARB. 

The CARB is also required, as part ofSB1298, to offer guidance to local air districts on 
the permitting or certification of electricity generation technologies under the air districts' 
regulatory jurisdiction. This gives the local air districts support in developing the steps 
necessary to comply by the start date and becoming district more prepared for the 
transition. 

This bill will undoubtedly have a significant impact on the siting of new DER. As part of 
the legislation, a working group was established to determine the logistics of the 
legislation, the entities to which it will apply, and what limits will be placed on those 
entities. As of June 2001, the working group has decided to ignore the existing 
population of small diesel generators, focusing only on new installed systems. Although 
this simplifies the permitting and emissions tracking process, it does not address the need 
to improve the existing inventory of operating generators, especially dirty ones. 

5.3 Environmental Control Technologies 

Some DER technologies are friendlier to the environment than others, making it 
important to consider control technologies that could further minimize emissions impacts 
on local air quality. 

This section covers techniques for reducing air emissions o'fDER technologies. Air 
emissions may be reduced through energy efficiency, technology choice, limitations on 
hours of operation, combustion modification, or post-combustion treatment. The type of 
generating technology influences the options for combustion modifications and post­
combustion treatment. All of these techniques have their benefits and drawbacks. 
Common drawbacks include cost, reduction in efficiency, and a potential increase in 
emissions of other pollutants. 

Combustion modifications for reciprocating spark-ignition engines include lean-bum 
combustion control land-rich bum with a catalytic after-treatment (OIT 1999). Lean-bum 
engines decrease temperatures in the combustion chamber by consuming 50 to 100% 
excess air as a way of reducing the creation ofNOx, CO and non-methane hydrocarbons 
(OIT 1999). . 

Using rich-burning engines with a catalytic after-treatment is another technique for 
emissions reduction. Catalytic converters can perform reducing and oxidizing functions. 
A reducing catalyst converts NOx to N2 and oxidizes some of the CO to C02 (OIT 1999). 
Electronic ignition also helps to reduce the amount of emissions from the combustion 
process. 

Diesel engines may employ post-combustion technologies such as selective catalytic 
reduction where ammonia is injected into the exhaust gas. This technique is expensive 
and maintenance intensive, however. Particulate emissions are a major problem of diesel 
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engines. Particulate traps designed for diesel engines are about 90% effective (OIT 
1999). The filters also require maintenance and regeneration of the catalyst. 

In addition to emissions controls, another potentially serious concern when siting DER is 
noise control. Noise and vibration problems may be addressed by installing generation 
equipment on a shock-isolated pad. Silencing equipment for the exhaust is available for 
turbines and engines. In general, noise-abatement techniques have worked, so noise has 
not caused siting problems in residential and commercial areas, but wider deployment of 
DER sources could result in strong neighbor opposition (EPRI 1999 November). 

Although a number of emissions control technologies exist to reduce air-quality impacts, 
the regulatory permitting is far from ideal in terms of ensuring a smooth process. From 
surveys ofDER installation sites it was found that the most challenging aspects of the 
siting and permitting process were the paperwork, regulatory interpretation, and annual 
testing procedures involved in obtaining an air pollution permit. Sites in California's 
South Coast Air Basin have to comply with a limit for all pollution sources aggregated at 
the location. The most costly aspects of environmental controls are the site testing (if 
required) along with legal and engineering fees (EPRI 1999 November). 

5.4 Environmental Impacts from DER Deployment 

Although DER shows promise for alleviating constraints on the central station power grid 
and improving electricity reliability, it also presents some environmental concerns. Many 
DER technologies are environmentally friendly, e.g. PV and wind, but some DER 
technologies, e.g. diesel-fueled generators, can be more polluting than central station 
power plants. 

The mature internal combustion engine and its widespread use of diesel fuel for 
emergency and back-up utility generators (BUGs) create a potentially serious 
environmental problem. Diesel BUGs are the most common DER technology in use 
today. According to the SCAQMD, each diesel BUG emits approximately 300 times 
more smog-forming pollution than a new power plant (SCAQMD 2001). By itself, a 
single diesel BUG doesn't contribute significant airborne pollution, but in large numbers 
these generators can adversely affect the air quality conditions in an air district. 

Given the differences in environmental impacts of different DER technologies, it is 
important to determine the level of environmental stress created by customer adoption 
scenarios. A comparison of the environmental impact of the various scenarios is shown 
in Table 6. Table 5 presents the range of present-day scenario emissions factors that are 
assumed for the selected unit sizes of the various DER technology options in DER-CAM. 
Underneath each line in parentheses is an example range from other sources. These 
sources include a report prepared for the California Air Resources Board (CARB) by 
Joseph Iannucci et al., where emissions from DER are estimated based onDER economic 
potential (Iannucci 2000). DER emissions factors from the Environmental Protection 
Agency's (EPA) AP-42 source were also used, and other sources, including data 
presented by Ron Ishii (Alternative Energy Systems Consulting) at the annual meeting of 
the West Coast section of Air & Waste Management Association (EPA 1997; Ishii 2001). 
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(The abbreviation N/ A indicates cases that the data were not available or emissions do 
not apply for that DER technology.) Estimates from these various sources are used to 
illustrate the variability in obtaining realistic emissions factors from DER. The lack of 
real-world test data contributes to this large range of emissions rates and illustrates the 
difficulty in deriving credible estimates ofDER environmental impacts. 

Table 5 shows that the emissions rates assumed in this analysis tend to fall on the lower 
end of the given ranges. This is especially true for microturbines because the emissions 
rates are taken from the manufacturers' technical specifications, which are likely to be 
optimistic. Emissions rates from diesel and natural-gas back-up generators fall in the mid 
range relative to the ranges presented from external sources. With limited data available 
for comparison, it is easy to see how the emissions factors could fall on either end of our 
spectrum, given the wide range of the external literature. Clearly, the NOx emissions 
rates of the natural gas back-up generators are the worst of the DER technologies 
presented (PV and wind were not included because no air emissions result from operation 
of these technologies). The diesel BUGs are also dirty, especially the NOx emissions 
from smaller units. 

Table 5. Present-Day DER Technology Emissions Rates in g/kWh 

NOx co PM 

Fuel Cell 

250kW N/A N/A N/A 
(0.01-0.02) (0.01-0.05) 

Microturbine 

75kW 0.24 0.24 N/A 
(0.24-0.64) (0.24-1.29) (0.01-0.04) 

Diesel Back-up 

7.5kW 8.17 3.26 0.54 

500kW 8.57 0.54 0.16 
(7.71-18.61) (0.54-13.6) (0.16-1.36) 

Gas Back-up 

55kW 6.05 N/A N/A 
500kW 25.29 5.66 N/A 

(0.1-25.29) (0.7-5.66) (0.27-2.15) 

Encina 0.351 0.219 0.002 
.. 

sources: (EPA 1997; lannuccJ2000; !shu 2001) 

Using the above emissions factors and the results from the DER-CAM scenarios, we 
derived rough estimates of annual NOx and CO emissions for selected cases for the 
grocery and for the entire J.!Grid as shown in Table 6. In addition to providing the kg/a, 
the table also illustrates how these DER emissions compare to the emissions from a 
running central station, like the Encina natural gas power plant in San Diego County. 

33 



Modeling of Customer Adoption of Distributed Energy Resources 

This pla_nt was selected to represent a typical central station power plant in the San Diego 
area. Emissions factors for NOx and CO were derived from the Environmental 
Protection Agency's National Emissions Trends Data inventory (EPA 2001 ). Also 
included are the comparable automobile emissions showing the number of equivalent 
miles driven on the road, considering the average car, which includes both cars that meet 
California State smog regulations and those that do not. This parameter is denoted in 
vehicle miles traveled by the average car on the road. 

Selected results are presented in Table 6 for the grocery and J-!Grid cases for the present­
day scenario. Within these cases, three different scenario results are shown- the 75% 
PV subsidy, the IERN (imbalance energy revenue neutrality), and the low natural gas 
price. A brief comparison to the 2010 results for these same cases is also provided. 

Table 6. Present-Day Emissions Results from Selected DER-CAM Scenarios 

NOx co .. PM 

DERCAM possible range 
eqUivaleirt car mite 

DER.CAM 
posslbie. ·equivalent cclrnlue 

DER· 
poSsible eqUrvatent carmne 

kg/a (kg/a) 
central equiV~Iel'!t -kgla .. 

r.mge cent~ I equivalent 
CAMkgla 

range ~nfral .. eql,!fva.fent 
station kgloi {VMT) ·{kgla) station kg/a {VMT) {kg/a) station kgla {VMT) 

GROCERY 

I ERN 
203 N/A 299 112654 203 39+. 186 11 928 N/A N/A 2 N/A 

Low Natural Gas 
358 N/A 527 198 627 358 N/A 328 21 031 N/A N/A 3 N/A 

75%PVSub 
1 482 186-4 473 378 823 198 N/A N/A 236 3606 N/A N/A 2 N/A 

·-·~ . -~"" - --- ___ _.._.. . -- JA-~-P• -,.,.,..~.,..,'AI--

~,, ____ 
J.LGRID 

I ERN 
83462 518-83 462 1 282 46 36794 91 N/A 799 5336 N/A N/A 8 

Low Natural Gas 
140039 518-83 462+ 2163 77 799 56 156 N/A 1 348 9203 N/A N/A 14 

75%PVSub 
29 970 660-31,594+ 1 718 16 649 99f 211 N/A 1 070 12427 N/A N/A 11 

The results in Table 6 indicate that for the grocery year-2000 case, emissions are not 
always cleaner than the Encina central station power plant. Under the 75% PV Subsidy 
case, DER-CAM chooses two 100-kW PV systems, one 75-kW microturbine, and two 
55-kW gas generators for a total installed DER capacity of 385 kW. This makes the NOx 
emissions from the grocery site nearly four times dirtier than Encina, amounting to more 
than 820,000 car equivalent vehicle miles traveled (VMT). This value is based on an 
average car in the state of California, including both registered and· non registered 
vehicles on the road for a realistic estimate of a typical mile traveled on the road. The 
IERN and low natural gas cases both install three 75-kW microturbines, which total225 
kW of self-generating capacity. NOx missions from these cases are estimated to be 
approximately 32% cleaner than the emissions from Encina. This case is almost 9% 
worse for CO emissions relative to central station generation in the IERN case and 
equivalent to nearly 12,000 VMT. 

For the Microgrid Oaks year 2000 case, the 75% PV subsidy case installs three 75-kW 
microturbines, eight 1 00-kW PV units, and one 500-kW gas generator, which results in 
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significant NOx emissions. Because of the installation of the large gas generator, the 
total NOx emissions are more than 17 times that from the Encina plant, equivalent to 
nearly 17 million VMT. The IERN and low natural gas cases produced more than 80,000 
kg and more than 140, 000 kg ofNOx/a, respectively. This is more than 65 times the 
amount ofNOx estimated from Encina under both cases for the same amount of 
generation and this is equivalent to 46 to 78 million VMT for an average car in California 
for the IERN and low natural gas cases, respectively. 

For the 2010 scenario, only the IERN case is modeled of the three scenarios assessed; it 
indicates how the forecasted cost curves presented in Section 3 can influence a forecast 
scenario. Modeling both the grocery and Microgrid Oaks scenarios under the IERN case 
resulted in the sole installation of the 250-kW PEM FC by Ballard. In the grocery case, 
the customer installs one 250-kW PEM FC; saving the equivalent of 365 kg ofNOx at 
the Encina station, assuming zero NOx emissions. In the Microgrid Oaks case, the 
customers install four 250 kW PEM FCs, reducing NOx emissions by 1,425 kg, the 
amount equivalent to the Encina station. Thus, the 2010 scenario significantly improves 
the deployment of cleaner DER technologies, like FCs, allowing the cost to compete 
better with the other established and dirtier technologies. 
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6. Mathematical Model 

6.1 Introduction 

This section presents the latest version ofDER-CAM. This version of the model has 
been programmed in GAMS. 2 This section contains a brief description of the GAMS 
software and the reasons behind its selection for the task, concluding with a description 
of the present version of the model as well as its mathematical formulation. The results 
presented are not intended to represent a definitive analysis ofthe benefits ofDER 
adoption but rather as a demonstration of the current DER-CAM. For example, the only 
equipment first-cost data available were from the manufacturer; delivery and installation 
costs are estimated. Indeed, developing better estimates of realistic customer costs is a 
key area in which improvement is not just possible but essential. While the model might 
underestimate equipment cost, it also excludes benefits accruing from reliability and CHP 
applications. Hence, although the model's results may not be completely accurate, they 
are not clearly biased in any particular direction. DER-CAM executes a straightforward 
optimization of one year's operation. Given the electricity purchasing options available, 
the cost of fuels, and the costs and operating characteristics ofDER technologies 
available, DER-CAM picks the optimal combination ofDER for any customer during 
that year and 2>hows an optimal output schedule for that DER combina~ion. 

6.2 Model Description 

In a previous report, the first spreadsheet version of the Customer Adoption Model was 
described and implemented (Mamay 2000); a subsequent report describes the model's 
programming in GAMS (Rubio 2001). The model's objective function, which has not 
changed, is "to minimize the cost of supplying electricity to a specific customer by 
optimizing the installation of distributed generation and the self-g-eneration of part or all 
of its electricity."3 In other words: the focus of this work continues to be strictly 
economic. To address this focus, we consider the following issues: 

• Which is the lowest-cost4 combination of distributed generation technologies that 
a specific customer can install? 

• What is the appropriate level of installed capacity of these technologies that 
minimizes cost? 

• Will disconnecting from the grid be economically attractive to any kind of 
customer? 

• How should the installed capacity be operated so as to minimize the total 
customer bill for its electricity load? 

For this study, it is assumed that the customer wishes to install distributed generation to 
minimize the cost of electricity consumed on site. Consequently, it should.be possible to 

2 GAMS is a proprietary software product used for high-level modeling of mathematical programming 
problems. It is owned by the GAMS Development Corporation (http://www.gams.com) and is licensed to 
Berkeley Lab. 
3 Mamay, et aL, 2000. 
4 Here, costs include turnkey (purchase, delivery, and installation) costs as well as fixed and variable 
operational costs. 
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determine the technologies and capacity the customer is likely to install, to predict when 
the customer will be self-generating and/or transacting with the grid, and to determine 
whether it is worthwhile for the customer to disconnect entirely from the grid. 

Key inputs into the model are: 

• The customer's load profile. 
• The customer's electricity purchasing option, which could be open market prices, 

or the default San Diego Gas and Electric (SDG&E) tariff. 
• The capital, O&M, and fuel costs of the various available DER technologies, 

together with the interest rate on customer investment. 
• The basic physical characteristics of alternative generating technologies. 

Outputs to be determined by the model are: 

• Optimal cost-minimizing technology or combination of technologies. 
• Optimal capacity of each technology to be installed. 
• When and how much of the capacity installed will be running. 
• Total cost of supplying electricity. 

Some of the assumptions that were established from the previous study (Rubio 2001) 
have been maintained and others have changed (see Section 6.3). The key assumptions 
that were maintained are as follows: 

• Customer decisions are to be based only on direct economic criteria. In other 
words, the only DER benefit that the customer can achieve is a reduction in 
electricity bill. 

• All the electricity generated in excess of that consumed is sold to the grid. No 
technical constraints to selling back to the grid at any particular moment are 
considered. If more electricity is consumed than generated, the customer will buy 
from the grid under pre-determined contractual agreements or at the default tariff 
rate. No other market opportunities, such as sale of ancillary services or bilateral 
contracts, are considered. 

• No deterioration in output or efficiency during the lifetime of the equipment is 
considered. Furthermore, start-up and other ramping constraints are not included. 

• CHP benefits, reliability and power-quality benefits, and economies of scale in 
O&M costs for multiple units of the same technology are not taken into account. 

• Possible reliability or power quality improvements accruing to customers are not 
considered. 

• DER equipment is perfectly reliable. That is, there are no forced outages. 

6.3 Additions to the Model 

The main advantage ofDER-CAM is its flexibility. The use ofGAMS enables the model 
to be complex without hindering the ability of researchers to make adjustments in the 
details. Consequently, run time is minimal, and ultimately this code could be embedded 
in a broader customer adoption decision tool. 

38 



Modeling of Customer Adoption of Distributed Energy Resources 

The new features added to the customer adoption model are good examples of the 
flexibility that has been previously mentioned. In the previous study (Rubio 2001 ), the 
following features were added: 

• Evaluation of more DER options. Currently, almost 30 different types of 
distributed energy generation options are considered simultaneously. 

• Endogenous determination of more detailed hourly operation of adopted 
equipment. 

• Improvement to make the optimal investment combination and associated hourly 
operation almost always feasible and quickly identified. 

• Ease access to some important information, such as the effective marginal price of 
electricity t6 the customer, which could be either the net effect of the customer's 
monthly bill of an incremental kW in a certain hour or the marginal operating cost 
of an adopted technology. 

• Ease of implementation of new tariffs. 
• Increased solution speed - typically in seconds. 
• Addition of options: three different ways to handle sales, three different ways to 

purchase electricity, and application of a stand-by charge at will. These options 
will be explained later. 

• In the current work, the following additions have been made: 
• A greater variety ofDER options, including PV systems is now available. To this 

end, solar insulation data have been collected to determine the power that PV can 
provide during any hour of the year. 

• More reliable DER technology data, as described Section 2, are available. 
• Electricity market prices have been updated to include the (remarkable) 2000 

data. 
• More accurate customer load data have been gathered to use in constructing a 

viable J.!Grid, as described in Section 4. 
• Constraints on hours ofdiesel generation that approximate California air-pollution 

permitting are implemented. The shadow prices on these constraints yield the 
marginal value of hours allotted for diesel generation. 

6.4 Justification for Using GAMS 

Electricity utility expansion planning and operations simulation has a long history, and 
many methods have been developed for solving the utility-scale problem that is very 
similar to the one addressed in this work. Some of the established approaches are based 
on rule-of-thumb chronological simulation of system operation, some are based on 
mathematical approximations of actual system operation, and yet others apply 
optimization techniques (Marnay 1989). The reason the economics of customer adoption 
can be readily modeled by a mathematical optimization problem rests on the assumption 
that the customer always tries to minimize internal cost. Moreover, the use of 
optimization techniques has the added advantage of offering robust and powerful tools 
that can almost guarantee finding an optimal solutio'n quickly. 
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Obviously, the use of classic optimization techniques has some significant limitations; 
notably, some customer decisions (adoptions) are likely to be more qualitative than 
quantitative. For example: some "benefits," such as greater perceived control over 
electricity supply, cannot be easily translated to economic values. However, in the 
context of the present work these limitations are not expected to be important although 
efforts will certainly be made in subsequent years to address them. There are additional 
purely mathematical limitations that will eventually arise. For example, neither the 
turnkey nor the operating costs of small-scale generators are fixed, as is required in DER­
CAM's current formulation, but will tend to decrease as a customer's experience with a 
certain technology accumulates. In other words, while the first unit of a certain 
generating technology may not be the most attractive to a customer, subsequent units may 
become attractive as the customer gains experience with the technology. 

In other work at Berkeley Lab, some less mature simulation tools, such as autonomous 
agents models, were also reviewed. These are being applied to DER operational 
problems in some cases (Gibson 1999). 

Ultimately, the GAMS software was selected because it: 

• Provides a high-level language for the compact representation of large and 
complex models. 

• Allows changes to be made in model specifications simply and safely. 
• Allows unambiguous statements of algebraic relationships. 
• Permits model descriptions that are independent of solution algorithms. 

While there are some other optimization software packages that have these same 
qualities, GAMS is widely used and well known to the research team. 

6.5 Mathematical Formulation 

This section describes in detail the core mathematical problem solved by DER-CAM. 
The solution process has three main parts. First, the names of all input parameters are 
listed. Second, the decision variables are defined. And third, the mathematical 
formulation is presented for two possible tariff options. 
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Variables and Parameters Definition 
6.5.1.1 Parameters (input information) 

Customer Data 

Name Description 

Cloadm,t,h Customer Load in kW during hour h, day type) t, and month m. 

Market Data 

Name Description 

RTPower..p Regulated demand charge under the default tariff for season() sand 
period7 p ($/kW) 

RTEnergy m 1 h Regulated tariff for energy purchases during hour h, type of day t, 
and month m ($/kWh) 

RTCCharge Regulated tariff customer charge ($) 

RTF Charge Regulated tariff facilities charge ($/k W) 

IEMmth CAISO (California Independent System Operator) IEM (imbalance 
energy market) price during hour h, type of day t, and month m 
($/kWh) 

Distributed Energy Resource Technologies Information 

Name Description 
DERmaxp,. Nameplate power rating of technology i ( kW) 

DERlifetime,. Expected lifetime of technology i (years) 

DERcapcost,. Overnight capital cost of technology i ( $/kW) 

D~ROM.fix,. Fixed annual operation and maintenance costs of technology i ($/kW) 

DEROMvar,. Variable operation and maintenance costs of technology i ($/kWh) 

DERCostkWh,. Production cost of technology i ($/kWh) 

DERhours,. Maximum number of hours per annum that technology i is allowed to 
generate (hours) 

5 There are three day types: peak (the average of the three days with the biggest load), week (the remaining 
working days), and weekends. 
6 There are two seasons: summer and winter. 
7 There are three different time-of-use periods (for tariff purposes only): on-peak, mid-peak, and ~ff-peak. 
Every tariff, TOU-8 for example, has a different definition of these periods. 
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Other parameters 

Name Description 
IntRate Interest rate onDER investments ( %) 
Dis coER UDC (utility distribution company) non-commodity revenue 

neutrality adder8 ($/kWh) 
FixRate Fixed energy rate (¢/kWh) applied in some cases" 
StandbyC Standby charge in $/kW /month that SCE currently applies to its 

customers with autonomous generation 

Solarm,h Average solar insulation as a percentage of the maximum possible 
during hour h and month m (%) 

6.5.1.2 Variables 

Name Description 
InvGen; Number ofunits of the i technology installed by the customer 

GenLi,m,t,h Generated power by technology i during hour h, type of day t, and 
month m to supply the customer's load ( kW) 

GenX; m, h Generated power by technology i during hour h, type of day t, and 
month m to sell in the wholesale market ( kW) 

DRLoadmth Residual customer load (purchased power from the distribution 
company by the customer) during hour h, type of day t, and month m 
(kW) 

Only the three first variables are decision variables. The fourth one (power purchased 
from the distribution company) could be expressed as a relationship between the second 
and third variables. However, for the sake of the model's clarity, it has been maintained. 

6.5.2 Problem Formulation 

There are two slightly different problems to be solved depending on how the customer 
acquires the residual electricity needed in addition to the power that is self-generated:\ 

• buying that power from the distribution company at the regulated tariff 
• purchasing power at the IEM price plus an adder that would cover the non­

commodity cost of electricity 

In this work, a surcharge was introduced in the form of a revenue reconciliation term that 
was added to the IEM price or the fixed price. This term was calculated such that, if the 
customer's usage pattern was identical under the IEM pricing option and the tariff option, 
the Utility Distribution Company (UDC) would collect identical revenue from the 
customer. 

8 This value is added to the IEM price when the customer buys its power directly to the wholesale market. 
9 Ifthe model user selects this option the customer always buy its energy at the same price. 
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6.5.2.1 Option 1: Buying at the Default Regulated Tariff 

The mathematical formulation of the problem follows: 

mm L RTPCharge . max(DRLoad m,t,h) + L RTCCharge lnvGen, GenL, GenX 

Subject to: 

m m 

+I I I RTPowe"s.p · max(iJRLoadm,(t,h)ep) 
s mes p 

+ IIII(GenLi,m,t,h +GenXi,m,l,h)·DERCostkWh; 
i m I h 

+ IIII(GenLi,m,t,h +GenXi,m,l,h)·DEROMvar; 
i m I h 

+I InvGen; · (DERcapcost; + DEROMfix; )· AnnuityF 
i 

+I I InvGen; · DERmaxp; · StandbyC 
m i 

-I I I I (Genxi,m,t,h . !EM m,t,h) 
i m I h 

Cloadm,l,h =I GenLi,m,l,h + DRLoadm,t,h v m,t,h 

GenL;,m,t,h + GenXi,m,t,h ~ InvGen; · DERmaxp; Vi,m,l,h 

Genxi,m,t,h = 0 if I GenLi,m,t,h < Cloadm,t,h vi,m,t,h 

A 
. . D IntRate 

nnuztyr =-o----------,--

( 
1

- (1 + IntRa:e Y'ERlifm<m•, J 

(1) 

(2) 

(3) 

(4) 

(5) 

GenL1,m,t,h + GenX1,m,t,h ~ InvGen1 · DERmaxp1 · Solarm,h V m,t,h if j E {PV} (6) 

III(GenLi,m,t,h +GenXi,m,t,h)~InvGen; ·DERmaxpi ·DERhours; vi 
(7) 

m t h 

• Equation ( 1) is the objective function, which says that the customer will try to 
minimize total cost, consisting of: total facilities and customer charges, total 
monthly demand charges, total on-site generation fuel and O&M costs, total DER 
investment cost, total standby charges, and minus the revenues generated by any 
energy sales to the grid. 

• Equation (2) enforces energy balance. 
• Equation (3) enforces the on-site generating capacity constraint. 
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• Equation (4) prohibits the customer from buying and selling energy at the same 
time. When this constraint is removed, the model assumes that the customer has a 
"double meter," i.e., the customer can buy from the UDC and sell to the IEM at 
the same time but cannot buy from the UDC and resell the same energy to the 
IEM. Indeed, this would create an unbounded arbitrage possibility in some 
circumstances. 

• Equation (5) simply annualizes the capital cost of owning on-site generating 
equipment. 

• In Equation (6), the actual energy output of any customer operating PV cells is the 
customer's rated capacity scaled down by the amount of solar insulation. 

• Finally, in Equation (7), the maximum total amount of energy that any given 
generator i can produce throughout the year is effectively restricted by the 
parameter DERhoursi. This constraint is intended mainly to prevent the diesel 
generators from operating more than the maximum legal allowable number of 
hours. 

6.5.2.2 Option 2: Buying from Alternative Energy Providers 

The problem mathematical formulation follows: 

min 

InveGen, GenL, GenX 

Subject to: 

L L L DRLoad m,l,h 0 (!EM m,l,h +Dis coER) 
m I h 

+ L I I I ( GenLi,m,l,h + GenXi,m,l,h )· DERCostkWh; 
i m I h 

+ L:III(GenLi,m,t,h +GenXi.m,l,h)·DEROMva'i 
i m t h 

+ L InvGeni · (DERcapcost; + DEROM]zx; )· AnnuityF 
j 

+ L I InvGen; · DERmaxpi · StandbyC 
m i 

- L ILL ( Genxi,m,l,h 0 !EM m,t,h) 
i m I h 

Equations (2) through (7) 

(la) 

This formulation differs only in the objective function, equation (la), which now charges 
the IEM energy price for each hourly time step plus the non-commodity revenue 
neutrality adder. Note that the same mathematical formulation can be used if the model 
user wants to simulate a fixed price for all customer energy purchases. In that case, all 
IEM hourly prices are simply set to the desired fixed value. 
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7. Results 

This section discusses the various operating scenarios for distributed generation 
technologies, results from the analysis based onDER-CAM described in the previous 
section, and the sensitivity of certain variables to changes in parameters. First, the run 
cases will be described and then the results and sensitivity analysis will be presented. 

7.1 Scenarios 

The base case in this study is imbalance energy revenue neutrality. The customer is free 
to install generation equipment and can purchase electricity at the CAISO IEM price plus 
an adder that guarantees revenue neutrality for the UDC under equivalent usage patterns. 
Variations on the base case examine how the results change in response to different 
economic and regulatory environments. Table 7 lists the scenarios and their descriptions. 
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Table 7. Scenarios for Purchasing Electricity 

Scenarios Description 
IERN (IEM +revenue neutrality) In this scenario the customer can buy all of its 

electricity at the IEM price, but it also has to pay an 
extra fee (named DiscoER in the mathematical 
formulation) in order to achieve revenue neutrality 
for the distribution company (compared with the 
tariff scenario, later described). 

With the extra fee, the customer's purchase costs 
are the same as in the "tariff' scenario (see below). 

Diesel generators are limited to 52 hla of operation. 
The customer buys diesel at 8.46 $/GJ and natural 
gas at 8.25 $/GJ constant prices. 

This scenario is selected as the base case because it 
is the most representative. 

Diesell 052hr. Operation constraint is relaxed to 1,052 hours per 
annum for each diesel generator. 10 

Diesel2052hr. Operation constraint is relaxed to 2,052 hours per 
annum for each diesel generator. 

Diesel3052hr. Operation constraint is relaxed to 3,052 hours per 
annum for each diesel generator. 

Diesel4052hr. Operation constraint is relaxed to 4,052 hours per 
annum for each diesel generator. 

Diesel8760hr. Diesel generation constraint is removed. 
IERN-Sales This is the similar to the first scenario, but now the 

customer can sell its electricity at the IEM price 
without fully meeting its own load. 11 

50%-PV-Subs Turnkey cost of all PV equipment is given a 50% 
subsidy. 

75%-PV-Subs Turnkey cost of all PV equipment is given a 75% 
subsidy. 

HighDiscoER DiscoER term is doubled. 
IERN-2010 Same as the first scenario, but now year 2010 

technology data are used. 
LowNatGas The current spot price of natural gas is halved. 
PXRN-1999 Same as the first scenario, but 1999 PX prices 

replace 2000 CAISO IEM prices. 

10 In all of the diesel generation constraint relaxation scenarios, the number of hours of diesel generation 
permitted is increased by the same number of hours for all generators regardless of their capacities. 
11 In all cases except "IERN-Sales," the customer cannot sell power into the IEM market. This case relaxes 
that constraint and .allows the customer to sell power. 
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7.2 Outline of Results 

For each scenario, the following annual results are obtained: 

• Total customer electricity supply cost($) 
• Energy payments to the distribution company during peak hours ($) 
• Energy payments to the distribution company during mid-peak hours ($) 
• Energy payments to the distribution company during off-peak hours ($) 
• IEM Purchases ($) 
• Power payments to the distribution company ($) 
• Self-generation investment costs ($) 
• Self-generation variable costs ($) 
• Energy sales to the IEM ($) 
• Consumed energy (kWh) 
• Average paid price ($/kWh) 
• Installed capacity (kW) and number of units of each DER technology type 

installed 
• Hourly marginal cost of electricity supply ($/kWh) 
• Hourly electricity production of every DER technology 

7.3 Grocery Results 

In this subsection, we present the full set of example results for the grocery store, 
Dangerway. We present this customer's results in detail as an example of complete 
results from the analysis. Also, Dangerway is an interesting case because its flat load is 
similar to the load ofMicrogrid Oaks as a whole, and its high and flat refrigeration end­
use load may present an interesting CHP opportunity for future work. The next section 
provides a summary of results that gives an overview of all customers' decisions. 

7.3.1 Grocery Do-Nothing Scenario 

It is important to review the characteristics of the grocery prior to reviewing this 
customer's autonomous generation adoption under the various scenarios and sensitivities; 
in other words, this section defines the do-nothing scenario. 

In Table 8, the total cost of purchasing from the IEM is presented along with the 
breakdown of energy and power payments. 

Table 8. Breakdown of Electricity Purchase Costs for Grocery (Do-Nothing-IERN 
Scenario) 

Total Su 232,146 
232,146 
1,708,581 
13.59 
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Dangerway has the flattest load among the members ofMicrogrid Oaks. As can easily be 
seen in Figures 15 and 16the maximum demand is not much larger than the average, 
which results in a high load factor of0.76 12

• Annual average demand is 195 kW, the 
maximum demand is 255 kW, and the base load of 100 kW is driven by one anomalous 
month, October, which may suggest a data inaccuracy, or an exceptional event. 

12 This is the ratio of the average load to the peak load. 
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Figure 11. Grocery Week Load Shape 
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Other illuminating data include the hourly marginal price of electricity consumed by 
Dangerway. The hourly marginal price of electricity in the do-nothing-IERN scenario can 
be compared to the hourly marginal price using on-site generation. The marginal price 
patterns for the three types of days are presented in Figure 13 through Figure 15. 
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Figure 13. Marginal Price (peak hours) 
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Because the grocery is purchasing all of its electricity through the IEM, the different 
shapes of the marginal prices simply reflect the pattern, of the IEM price during the year 
2000. As the figures suggest, the IEM price was low and stable during the first half of 
2000, even during peak days and the high-demand afternoon hours. After June 2000, 
however, as binding transmission constraints, high fuel costs, and exercise of market 
power by independent generators began to influence the situation, the IEM price cleared 
in excess of $1 00/MWh, even during weekends. This sharp contrast in the level of IEM 
prices impacts the adoption and operation of on-site generation technologies by 
customers. 

Prices in the CAISO-IEM hit the varying level of the cap many times in the later part of 
2000. The highest prices, not shown in Figure 15, were in June when the prevailing cap 
of75 ¢/kWh was reached. The December weekday marginal price curve shows that 
prices settled at the then-cap-level of 25 ¢/kWh for most ofthe time; that is, the effective 
price to Dangerway was 25¢ plus an adder, or 28.5¢. While these prices are, hopefully, 
exceptional, they offer an excellent opportunity to exercise DER-CAM. 

7.3.2 Base Scenario: IERN 

As indicated in Section 7.1, the base case is IERN. That is, the customer can buy its 
electricity from the IEM but is subject to an adder to the IEM price to compensate the 
UDC for the non-energy costs of power delivery, transmission distribution, taxes, etc. 
This additional term means that customers pay exactly the same amount for energy as 
they would pay under the SDG&E tariff under their base patterns and levels of 
consumption. 
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Table 9. Breakdown of Electricity Purchase Costs for the Grocery Base Case 
(IERN) 

Total Supply Cost (k$) 161.246 
IEM Energy Purchases (k$) 58.708 
Self-Generation Investment Costs (k$) 22.596 
Self-Generation Variable Costs (k$) 79.941 
Percentage of Consumed Energy Self- 50% 
Generated 
Installed DER Capacity as a Percentage of 88% 
Peak Load 
Average Price (¢/kWh) 9.44 
Installed Capacity (kW) 225 
Technologies 3 -MT-HW-75 

As shown in, the installation ofDER technologies reduces the average price of electricity 
from 13.59 ¢/kWh to 9.44 ¢/kWh. It is interesting here to observe the residual demand 
(the demand that the distribution company serves, i.e., calculated by subtracting the self­
generation from the original customer load) because it indicates the extent of the 
customer's exposure to market prices. A rational response by the customer would be to 
reduce market exposure by using on-site generation extensively during periods of high 
IEM prices. In this case, Dangerway installs three microturbines of the MT-HW-75 type, 
for a total capacity of225 kW, 30 kW shy of its peak load of255 kW. This choice of 
only one technology is unusual among the cases we ran, but is not surprising given 
Dangerway's flat load shape. 
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Figure 16. Grocery IERN Residual 
Demand (peak) 
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Figure 18. Grocery IERN Residual 
Demand (week) 
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Figure 20. Grocery IERN Residual 
Demand (weekend) 
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Figure 17. Grocery IERN Total Output 
Generation (peak) 
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Figure 19. Grocery IERN Total Output 
Generation (week) 

Total Output Generation (weekend) 

300 

250 

~ 1\. ~ ........ 

I~ ~ ~ -- ................... -+-january 

-*·-april 

-august 

200 

~ 150 

100 
_...,_december 

w 

~ ... ..,.,.,. ~~Ote--t+Pr+:f~~~~,o.~~~.olfZf, 
1 3 5 7 9 11 13 15 17 19 21 23 

hours 

Figure 21. Grocery IERN Total Output 
Generation (weekend) 

Figure 16 through Figure 21 indicate that the grocery's generators produce enough 
electricity to cover the demand most of the time during the second half of the year. 
Because it is not economic to cover the peak demand through self-generation, the IEM 
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usually supplies the remaining energy during these hours and during most of the hours in 
the first four months of the year when IEM prices are low. The high IEM price during 
the second half of the year encourages the grocery to increase its self-generation. 

Because the combination ofDER installed is so simple in this case, it is only necessaryto 
note that the microturbines follow the load shape. Furthermore, without any operating 
constraints on microturbines, the grocery is free to tum them on at will during periods of 
high IEM prices such as during hours 20 and 21 of the April peak day. Clearly, this is an 
unrealistic situation because, although microturbines can ramp to full power in a matter 
of minutes, duty cycles as seen in Figure 17, Figure 19, and Figure 21 are highly unlikely 
because of the high implied O&M and labor costs. Incorporating these considerations is 
an area of possible future work. 

The last piece of relevant information about the IERN results is the marginal price, which 
indicates how much the customer is paying for electricity at any given hour. The graphs 
of these marginal prices shown in Figure 22 through Figure 24 indicate that the 
installation ofDER reduces and equilibrates their values relative to the do-nothing-IERN 
scenario. Now these curves show the IEM adder price when Dangerway is buying 
electricity and the fuel plus O&M cost when it is fully self-providing. The level 
December curves show the MT-HW-75 marginal cost is 9 ¢/kWh . 
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Figure 22. Grocery IERN Marginal Price 
(peak) 
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Figure 23. Grocery IERN Marginal Price 
(week) 

Marginal Price (weekend) 

0.6 .----------------------

0.5 +--------------------

0·4 +-------------------- ~ ....... -jan-uafY--,I 

1 03 +---------1~--.~r--r---+\----- _--*-_· ::~ 
-1r-december 

02 +----/-+---+---\-

0.1 ~:a:l~~"m~!'P"" Jl'l •. .,.. !:1-l:i ,.,... 

1 3 5 7 9 11 13 15 17 19 21 23 

hours 

Figure 24. Grocery IERN Marginal Price 



i I 

Modeling of Customer Adoption of Distributed Energy Resources 

0.6 

0.5 

0.4 
.s: 
~ 0.3 
;;; 

0.2 

0.1 

Marginal Price (peak) 

/" \ 

I \ 
"'! \ 

~L \ 
",....,.,.,.,..,.. .. 

·~ 

1 3 5 7 9 11 13 15 17 19 21 23 

hours 

-+-january 

--*--april 

-august 

-lr-decembef 
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Figure 26. Grocery IERN Marginal Price 
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Figure 27. Grocery IERN Marginal Price 
(weekend) 

In other words, the new marginal price curves have the characteristic that they are almost 
always constant, except during the peak hours, when autonomous generation is not able 
to cover the whole demand. The different marginal prices during the peak are due to the 
volatile IEM prices in these hours. 

7.3 .3 Relaxed Diesel Constraints 

7.3.3.1 1,052 Hours Per Annum 

In this scenario; the customer still purchases electricity from the IEM, but also has its 
diesel generation constraint relaxed by an additionall,OOO hours per annum beyond the 
IERN limit of 52 h. 
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Table 10. Breakdown of Electricity Purchase Costs for the Grocery 1,052 Hours 
Diesel Scenario 

Total Supply Cost (k$) 158.927 
IEM Energy Purchases (k$) 68.583 
Self-Generation Investment Costs (k$) 26.608 
Self-Generation Variable Costs (k$) 63.737 
Fraction of Consumed Energy Self- 44% 
Generated 
Installed DER Capacity as a Percentage 218% 
of Peak Load 
Average Price (¢/kWh) 9.30 
Installed Capacity (kW) 555 
Technologies 1-DE-C-500 

1-GA-K-55 

Once the diesel generation constraints are relaxed, the total supply cost is reduced by a 
tiny 1.43% from the level in the IERN case (see 
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Table 10), but the technologies chosen are totally different: one 500-kW diesel generator 
and one 55-kW natural-gas-fired generator. Note that this level of installed capacity is 
far more than required. There are several levels to understanding this strange result. 
First, the low cost of diesel compared to the other DER options encourages as much 
diesel generation as possible, hence the large diesel capacity. Second, in order to meet its 
electricity needs, the grocery operates the diesel generator frequently, which in tum 
makes the 500-kW diesel generator more cost effective than, for example, a 300-kW one 
because of its lower fuel consumption. And third, even when all the allowed diesel 
generation has been exhausted, there are still enough high IEM price hours to justify the 
second 55-kW natural gas unit. The fact that the shadow price on the diesel constraint is 
positive ($0.04/hour) implies that the grocery would find it profitable (by four cents) to 
have the diesel generator operate for an additional hour. The effects of the IEM prices 
that appeared in the IERN case are also apparent here as the grocery exposes itself less to 
market forces by self-generating more during months of high IEM prices. Hence, 
although the investment decisions of the grocery are different in this scenario, the 
operation of the equipment follows a pattern similar to that in the IERN case. The 
residual demand and total generation output are presented below (see Figure 28 through 
Figure 33). 
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Figure 28. Grocery 1,052 Hours Diesel 
Residual Demand (peak) 
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Figure 30. Grocery 1,052 Hours Diesel 
Residual Demand (week) 
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Figure 32. Grocery 1,052 Hours Diesel 
Residual Demand (weekend) 
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Figure 29. Grocery 1,052 Hours Diesel 
Total Output Generation (peak) 
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Figure 31. Grocery 1,052 Hours Diesel 
Total Output Generation (week) 
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In Figure 34 through Figure 36, the marginal cost is plotted. Compared to the IERN case, 
there is a reduction in the peak period marginal cost as the diesel capacity has a relatively 
inexpensive fuel cost and it serves to meets all load during hours of IEM price spikes. 
Consequently, the marginal price is almost always in the $0.06-$0.12/k.Wh range. 
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Figure 34. Grocery 1,052 Hours Diesel 
Marginal Price (peak) 
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Figure 35. Grocery 1,052 Hours Diesel 
Marginal Price (week) 
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Figure 36. Grocery 1,052 Hours Diesel 
Marginal Price (weekend) 

Here, the diesel generation constraint is relaxed by an additional 1,000 hours per annum, 
resulting in a 10% cost reduction from the IERN case. This makes it possible for the 
grocery to minimize its electricity costs using only the 500-kW diesel generator (see 
Table 11 ). This excess capacity also results in a zero shadow price on the diesel 
generation constraint. The pattern of generation is similar to that observed in the 
previous cases with investment: the grocery self-generates more during periods of high 
IEM prices (see Figure 37 through Figure 42) yielding a constant level of marginal price 
for the year (see Figure 43 through Figure 45). 
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Table 11. Breakdown of Electricity Purchase Costs for'tbe Grocery 2,052 Hours 
Diesel Scenario 

Total Supply Cost (k$) 145.278 
IEM Energy Purchases (k$) 42.969 
Self-Generation Investment Costs (k$) 21.710 
Self-Generation Variable Costs (k$) 80.599 
Fraction of Consumed Energy Self- 60% 
Generated 
Installed DER Capacity as a Percentage 196% 
ofPeak Load 
Average Price (¢/kWh) 8.50 
Installed Capacity (kW) 500 
Technologies 1-DE-C-500 
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Figure 37. Grocery 2,052 Hours Diesel 
Residual Demand (peak) 
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Figure 39. Grocery 2,052 Hours Diesel 
Residual Demand (week) 
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Figure 41. Grocery 2,052 Hours Diesel 
Residual Demand (weekend) 
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Figure 38. Grocery 2,052 Hours Diesel 
Total Output Generation (peak) 

Total Output Generation (week) 

300 ,------------------------

-+-january 

--.J~~-- april 

-august 

1oo +---------,
1
H--+---+--++-+-­ _._december 

I 
so l I 

0 ~·-=-..;.,.-....w:M.-.l.1J~· .,.,.....,_(_~. 
1 3 5 7 9 11 13 15 17 19 21 23 

hours 

Figure 40. Grocery 2,052 Hours Diesel 
Total Output Generation (week) 
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Figure 42. Grocery 2,052 Hours Diesel 
Total Output Generation (weekend) 
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Figure 43. Grocery 2,052 Hours Diesel 
Marginal Price (peak) 

7.3.3.3 3,052 Hours Per Annum 
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Figure 44. Grocery 2,052 Hours Diesel 
Marginal Price (week) 
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Figure 45. Grocery 2,052 Hours Diesel 
Marginal Price (weekend) 

When the diesel generation constraint is relaxed by another 1,000 hours per annum, the 
solution is not affected. 

7.3.3.4 4,052 Hours Per Annum 

Ifthe diesel generation constraint is relaxed by a further 1,000 hours per annum, 
surprisingly, the optimal solution for the grocery changes. Although there is little 
reduction in the supply cost from the other diesel generation scenarios, the grocery now 
installs four 7.5-kW and one 200-kW diesel generators. With additional hours of diesel 
generation now permitted, the grocery does not optimize by investing in a singl~ large 
generator in order to produce ample electricity during a reli:ttively small number of hours. 
Instead, because it can produce during more hours than before, less capacity generates the 
same amount of energy per annum. Also, the greater operational flexibility of more 
numerous smaller units outweighs the greater economy of larger ones, tipping the scales 
against investment in the large 500-kW diesel generator. Interestingly, the shadow prices 
on the diesel generation constraints are zero, implying that even if the constraints were 
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relaxed by an additional hour, the grocery would not find it profitable to operate the 
generators further. 

Table 12. Breakdown of Electricity Purchase Costs for the Grocery 4,052 Hours 
Diesel Scenario 

Total Supply Cost (k$) 143.610 
IEM Energy Purchases (k$) 53.907 
Self-Generation Investment Costs (k$) 13.625 
Self-Generation Variable Costs (k$) 76.078 
Fraction of Consumed Energy Self- 53% 
Generated 
Installed DER Capacity as a Percentage 90% 
ofPeak Load 
Average Price (¢/kWh) 8.41 
Installed Capacity (kW) 230 
Technologies 4-DE-C-7 

1-DE-C-200 

The pattern of self-generation is again similar to that in previously discussed scenarios. 
The only change is that now the 200-kW diesel generator covers base load, and the 7.5-
kW diesel generators meet peak load (see Figure 46 through Figure 51). This is precisely 
the result one would expect because operating costs are lower on larger generators. 
Furthermore, because the grocery does not have excess capacity in this case, it is often 
forced to purchase electricity from the IEM during peak demand periods, which 
correspond with peak IEM prices. This can be seen in Figure 52 through Figure 54. 
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Figure 46. Grocery 4,052 Hours Diesel 
Residual Demand (peak) 
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Figure 48. Grocery 4,052 Hours Diesel 
Residual Demand (week) 
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Figure 50. Grocery 4,052 Hours Diesel 
Residual Demand (weekend) 
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Figure 47. Grocery 4,052 Hours Diesel 
Total Output Generation (peak) 
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Figure 49. Grocery 4,052 Hours Diesel 
Total Output Generation (week) 
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Figure 52. Grocery 4,052 Hours Diesel 
Marginal Price (peak) 

Figure 53. Grocery 4,052 Hours Diesel 
Marginal Price (week) 
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Figure 54. Grocery 4,052 Hours Diesel 
Marginal Price (weekend) 

7.3.3.5 8, 760 Hours Per Annum (Unrestricted) 

If the diesel generation constraint is completely eliminated, then the resulting optimal 
solution for the grocery is identical to the one for the 4,052 hours per annum constraint. 

Table 13. Breakdown of Electricity Purchase Costs for the Grocery 8, 760 Hours Diesel Scenario 

Total Supply Cost (k$) 143.610 
IEM Energy Purchases (k$) 53.907 
Self-Generation Investment Costs (k$) 13.625 
Self-Generation Variable Costs (k$) 76.078 
Fraction of Consumed Energy Self- 53% 
Generated 
Installed DER Capacity as a Percentage 90% 
ofPeak Load 
Average Price (¢/kWh) 8.41 
Installed Capacity (kW) 230 
Technologies 4-DE-C-7 

1-DE-C-200 
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7.3.4 IERN With Sales 

In this scenario, the customer is allowed to sell electricity into the IEM without first 
meeting its own demand. Because ofthe high levels ofiEM prices in 2000, this turns out 
to be a perverse scenario in which the grocery realizes profits of almost $22 million per 
annum. Essentially, the grocery installs all the generators allowed on its premises and 
effectively becomes a generation plant rather than a grocery store. DER-CAM arbitrarily 
caps the number of units of each type of generator at 100 although further refinements to 
the model could permit the number of units to correspond to a feature of the customer's 
site, e.g., amount of floor space. This case serves primarily as a reminder that the 
prevailing conditions in 2000 were exceptional and that all the results presented here 
must be viewed in that light. One of the reasons that on-site generation became so 
attractive is that DER-CAM could not accommodate varying fuel prices, which under the 
conditions in 2000, made generation unrealistically attractive in the model. This 
limitation ofDER-CAM has since been rectified. 

7.3.5 50% PV Subsidy 

In this scenario, the grocery is given a 50% subsidy of the turnkey costs of all PV 
equipment. However, this subsidy did not affect the grocery's DER investments. The 
optimal solution in the IERN case is also optimal here, with identical patterns of 
generation and marginal prices. In other words, this level of subsidy, given all other 
assumptions, is not sufficient to make PV attractive. 

7.3.6 75% PV Subsidy 

Once the grocery is given a 75% subsidy of the turnkey costs ofPV equipment, 
installation of two units of the 100-kW PVs becomes cost effective. From Table 14, it 
can be seen that the grocery achieves 11.5% savings on its total supply cost in 
comparison to the IERN case. Besides the PVs, a 75-kW microturbine and two 55-kW 
gas back-up generators are also installed. Because PVs are often not running at their 
power rating, installing other generators to back up PV s becomes cost effective, and the 
total amount of capacity installed (385 kW) is greater than the grocery's peak load (255 
kW). The pattern of generation output (see Figure 55 through Figure 60) indicates that 
the PV s are used during daylight hours to meet the grocery's base load while the 
microturbine and gas backup generators are used at night and to meet the peak load. The 
consequent marginal prices (see Figure 61 through Figure 63) also indicate this usage 
pattern: interestingly the marginal price is zero or very low, because the operating cost of 
PV is zero during daylight hours but peaks at night when the grocery is forced to buy 
electricity from the IEM or self-generate using more expensive natural gas. These results 
also raise some interesting questions that cannot be answered within the limitations of the 
.current framework. One is: does any additional benefit to the customer, or the grid, result 
from the (economic) overcapacity? Another is: how would storage compete with the 
surplus generators? 
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Table 14. Breakdown of Electricity Purchase Costs for the 75% PV Subsidy Scenario 

Total Supply Cost (k$) 142.689 
IEM Energy Purchases (k$) 44.411 
Self-Generation Investment Costs (k$) 50.281 
Self-Generation Variable Costs (k$) 47.997 
Sales at the IEM Price ($) 0 
Fraction of Consumed Energy Self- 63% 
Generated 
Installed DER Capacity as a Percentage of 151% 
Peak Load 
Average Price (¢/kWh) 8.35 
Installed Capacity(kW) 385 
Technologies 1-MT-AS-75 

2-GA-K-55 
2-PV-100 
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Figure 55. Grocery 75% PV Subsidy 
Residual Demand (peak) 
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Figure 57. Grocery 75% PV Subsidy 
Residual Demand (week) 
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Figure 59. Grocery 75o/o PV Subsidy 
Residual Demand (weekend) 
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Figure 56. Grocery 75% PV Subsidy 
Total Output Generation (peak) 
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Figure 58. Grocery 75% PV Subsidy 
Total Output Generation (week) 
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Figure 60. Grocery 75% PV Subsidy 
Total Output Generation (weekend) 

The characteristic midday hump or valley in Figure 55 - Figure 60 shows the PV output, 
which follows the rate of solar insolation. The marginal cost results in Figure 61 -Figure 
63 are revealing. There are basically three levels of marginal cost. First, in sunny 
months, near midday, marginal cost falls to zero, showing that PV is providing all of 
Dangerway's electricity. Second, for many hours marginal cost is flat between around 
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0.07 to 0.1 $/kWh when the gas-fired generators are marginal. And third, when 
Dangerway is purchasing electricity, marginal cost is the IEM+adder price, which, in 
December, is often near the cap of28.57 ¢/kWh. 
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Figure 61. Grocery 75% PV Subsidy 
Marginal Price (peak) 

7.3.7 High DiscoER 
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Figure 62. Grocery 75% PV Subsidy 
Marginal Price (week) 
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Figure 63. Grocery 75% PV Subsidy 
Marginal Price (weekend) 

In this scenario, the DiscoER term is doubled (from 3.57 cents/kWh to 7.14 cents/kWh), 
implying that the grocery is required to pay a higher adder to the IEM price. While the 
total supply cost increases by more than 13% relative to the IERN case, the optimal DER 
investment remains the same (see Table 15). The higher adder, however, spurs the 
grocery to avoid IEM purchases. Hence, it self-generates more in comparison to the 
IERN case (see Figure 64 through Figure 69), with more stable marginal prices (see 
Figure 70 through Figure 72) reflecting the variable costs ofmicroturbine generation. 
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Table 15. Breakdown of Electricity Purchase Costs for the High DiscoER Scenario 

Total Supply Cost (k$) 182.429 
IEM Energy Purchases (k$) 19.253 
Self-Generation Investment Costs (k$) 22.596 
Self-Generation Variable Costs (k$) 140.580 
Sales at the IEM Price ($) 0 
Fraction of Consumed Energy Self- 88% 
Generated 
Installed DER Capacity as a Percentage 88% 
ofPeak Load 
Average Price (¢/kWh) 10.68 
Installed Capacity (kW) 225 
Technologies 3-MT-AS-75 
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Figure 64. Grocery High DiscoER 
Residual Demand (peak) 
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Figure 66. Grocery High DiscoER 
Residual Demand (week) 
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Figure 68. Grocery High DiscoER 
Residual Demand (weekend) 
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Figure 65. Grocery High DiscoER Total 
Output Generation (peak) 
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Figure 67. Grocery High DiscoER Total 
Output Generation (week) 
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Figure 70. Grocery High DiscoER 
Marginal Price (peak) 

7.3.8 IERN with Year 2010 Technologies 
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Figure 71. Grocery High DiscoER 
Marginal Price (week) 
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Figure 72. Grocery High DiscoER 
Marginal Price (weekend) 

In this scenario, technology data based on year 2010 forecasts (as described in Section 2) 
are used in the model. Total supply costs decrease by 8.5% as a single 250-kW PEM FC 
is installed. The patterns of generation (see Figure 73 through Figure 78) indicate that the 
FC is used primarily to meet base-load demand. The marginal prices (see Figure 79 
through Figure 81) confirm this pattern as the prices stay stable with only a few spikes 
when the grocery is forced to purchase from the IBM. 
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Table 16. Breakdown of Electricity Purchase Costs for the.IERN with 2010 
Technologies Scenario 

Total Supply Cost (k$) 147.665 
IEM Energy Purchases (k$) 41.435 
Self-Generation Investment Costs (k$) 25.548 
Self-Generation Variable Costs (k$) 80.682 
Sales at the IEM Price($) 0 
Fraction of Consumed Energy Self- 61% 
Generated 
Installed DER Capacity as a Percentage 98% 
of Peak Load 
Average Price (¢/kWh) 8.64 
Installed Capacity (kW) 250 
Technologies 1-PEM-BA-250 
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Figure 73. Grocery IERN 2010 
Technologies Residual Demand (peak) 
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Figure 75. Grocery IERN 2010 
Technologies Residual Demand (week) 
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Figure 77. Grocery IERN 2010 
Technologies Residual Demand 

(weekend) 
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Figure 74. Grocery IERN 2010 
Technologies Total Output Generation 
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Figure 76. Grocery IERN 2010 
Technologies Total Output Generation 
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Figure 79. Grocery IERN 2010 
Technologies Marginal Price (peak) 

7.3.9 Low Natural Gas Price 
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Figure 80. Grocery IERN 2010 
Technologies Marginal Price (week) 
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Figure 81. Grocery IERN 2010 
Technologies Marginal Price (weekend) 

In this scenario, the natural gas price is decreased from $8.25/GJ to $5.06/GJ, reflecting a 
50% decrease in the spot price component. 13 This is quite an unrealistic scenario given 
that the IERN natural gas prices are already too favorable. But this scenario serves as a 
revealing sensitivity because, as in the High DiscoER scenario, Dangerway retains its 
investment in the three microturbines. However, the lower fuel cost naturally encourages 
the grocery to use the microturbines more frequently because they are more cost effective 
relative to IEM purchases. The low fuel price reduces Dangerway's total supply cost by 
25% in comparison to the IERN case (see Table 18). The patterns of generation (see 
Figure 82 through Figure 87) indicate that the grocery reduces most of its exposure to the 
high IEM prices. Meanwhile, the marginal prices are stable, as in the High DiscoER 
scenario (see Figure 88 through Figure 90). 

13 The natural gas transmission cost is left unchanged. 
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Table 17. Breakdown ofEiectricity Purchase Costs for the Low Natural Gas Price 
Scenario 

Total Supply Cost (k$) 120.563 
IEM Energy Purchases (k$) 11.518 
Self-Generation Investment Costs (k$) 22.596 
Self-Generation Variable Costs (k$) 86.449 
Sales at the IEM Price (k$) 0 
Fraction of Consumed Energy Self- 88% 
Generated 
Installed DER Capacity as a Percentage 88% 
of Peak Load 
Average Price (¢/kWh) 7.06 
Installed Capacity (kW) 225 
Technologies 3-MT-AS-75 
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Figure 82. Grocery Low Natural Gas· 
Prices Residual Demand (peak) 
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·Figure 84. Grocery Low Natural Gas 
Prices Residual Demand (week) 
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Figure 86. Grocery Low Natural Gas 
Prices Residual Demand (weekend) 
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Figure 83. Grocery Low Natural Gas 
Prices Total Output Generation (peak) 
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Figure 85. Grocery Low Natural Gas 
Prices Total Output Generation (week) 
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Figure 88. Grocery Low Natural Gas 
Prices Marginal Price (peak) 

7.3 .1 0 PXRN with Year 1999 Prices 
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Figure 89. Grocery Low Natural Gas 
Prices Marginal Price (week) 
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Figure 90. Grocery Low Natural Gas 
Prices Marginal Price (weekend) 

In order to determine the effect that low and relatively stable 1999 prices would have on 
DER-CAM results, this scenario replaces 2000 IEM prices with 1999 PX ones. 
Somewhat surprisingly, Dangerway is content, in this case, to purchase all of its 

/electricity from the open market, thereby realizing total cost savings of almost 30% over_ 
the IERN case. In addition, ifPXRN 1999 marginal prices (see Figure 97 through Figure 
99) are compared to those for the do-nothing-IERN case (see Figure 13 through Figure 
15), the differences in 1999 PX and 2000 IEM prices become apparent; the former are 
low and stable whereas the latter are high and volatile. Hence, the grocery's rational 
response is to install on-site generation in the latter case and to purchase from the market 
in the former. Therefore, this sensitivity proves quite illuminating, with the stark result 
that 2000 IEM prices lead to significant DER adoption while 1999 PX prices lead to 
none. And these are not extreme, alternative inputs, just the real-world California 
experience in back-to-back years. 

78 



Modeling of Customer Adoption of Distributed Energy Resources 

Table 18. Breakdown ofElectricityPurchase Costs for the PXRN 1999 Sensitivity 

Total Supply Cost (k$) 113.037 
PX Energy Purchases (k$) 113.037 
Self-Generation Investment Costs (k$) 0 
Self-Generation Variable Costs (k$) 0 
Sales at the PX Price (k$) 0 
Fraction of Consumed Energy Self- 0% 
Generated 
Installed DER Capacity as a Percentage 0% 
ofPeak Load 
Average Price (¢/kWh) 6.62 
Installed Capacity (kW) 0 
Technologies None 
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Figure 91. Grocery PXRN 1999 Prices 
Residual Demand (peak) 
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Figure 93. Grocery PXRN 1999 Prices 
Residual Demand (week) 
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Figure 95. Grocery PXRN 1999 Prices 
Residual Demand (weekend) 
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Figure 92. Grocery PXRN 1999 Prices 
Total Output Generation (peak) 
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Figure 94. Grocery PXRN 1999 Prices 
Total Output Generation (week) 
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Figure 96. Grocery PXRN 1999 Prices 
Total Output Generation (weekend) 
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Figure 97. Grocery PXRN 1999 Prices 
Marginal Price (peak) 

7.3.11 Summary OfResults 
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Figure 98. Grocery PXRN 1999 Prices 
Marginal Price (week) 
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Figure 99. Grocery PXRN 1999 Prices 
Marginal Price (weekend) 

This section briefly summarizes of all results of this study. For each customer (grocery, 
restaurant, deli, department store, fast food restaurant, office, retail store, warehouse · 
store, and the Microgrid Oaks) and for every scenario, the adopted technologies, the total 
savings, and the power and energy coverage ofDER are presented. 

7.3.11.1 Adopted Technologies 

The following tables summarize the capacity installed in all cases. Although the 
technologies adopted vary across customers and their circumstances, we find that if 
customers join together to form a ~Grid, then the pattern of adopted technologies is more 
stable than if customers act separately. For example, the ~Grid usually selects two gas 
back-up generators or diesel generators whereas customers acting on their own select a 
medley of technologies. This result implies that customers acting as a ~Grid would be 
more robust in various market environments than individual customers would. 
Intuitively, this seems plausible because a larger customer is able to pool its resources in 
order to capitalize upon the economies of scale inherent in many DER technologies. 
Micro grid Oaks clearly purchases larger units, the 500-kW natural-gas generator. The 
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500-kW diesel replaces the natural gas model in the relaxed diesel constraint cases. Also 
the adopted 100-kW PV systems of the 75% PV subsidy case suggest that more 
economical large systems may have penetrated the 50% case. 

Table 19. Technologies Adopted (Grocery and Restaurant) 

Scenario Grocery (Dangerway) Restaurant (Nan 
Hideaway) 

PXRN 1999 None None 

Low Natural Gas 3 MT-AS-75 I MT-AS-75 

Prices 
IERN Sales 2000 100 MTL-C-30 I 100 MTH-C-30 IOOGA-K-5001 IOOGA-K-215 

I 00 MT -AS-75 I I 00 GA-K-25 100 GA-K-100 I 100 GA-K-55 
100 GA-K-55 I 100 GA-K-100 100 GA-K-25 I 100 MT-AS-75 
100 GA-K-215 I 100 GA-K-500 100 MTH-C-30 I 100 MTL-C-30 

IERN2000 3 MT-AS-75 I MT-AS-75 

IERN 2010 I PEM-BA-250 2 GA-K-55 

High DiscoER 3 MT-AS-75 I MT-AS-75 

Do-Nothin~ IERN None None 

Diesel 8, 760 Hours I DE-C-200 I 4 DE-C-7 I DE-C-100 

Diesel 4,052 Hours I DE-C-200 I 4 DE-C-7 I DE-C-100 

Diesel 3,052 Hours I DE-C-500 I DE-C-100 

Diesel 2,052 Hours I DE-C-500 I DE-C-200 

Diesel1,052 Hours I GA-K-55 I I DE-C-500 2 DE-C-7 I I MT-AS-75 

75% PV Subsidy 2 PV-100 I 2 GA-K-55 I PV-50 /I PV-20 I I MT-AS-75 
I MT-AS-75 

50% PV Subsidy 3 MT-AS-75 I MT-AS-75 

Table 20. Technologies Adopted (Deli and Department Store) 

Scenario Deli (Sub Safe Harbor) Department Store 
(Spacy's) 

PXRN 1999 None None 

Low Natural Gas 1 GA-K-55 I GA-K-55 I 3 MT-AS-75 

Prices 
IERN Sales 2000 100 GA-K-500 I 100 GA-K-215 I 00 GA-K-500 I I 00 GA-K-21 5 

100 GA-K-100 I 100 GA-K-55 100 GA-K-100 I 100 GA-K-55 
100 GA-K-25 I 100 MT-AS-75 100 GA-K-25/100 MT-AS-75 
100 MTH-C-30 I 100 MTL-C-30 100 MTH-C-30 I 100 MTL-C-30 

IERN 2000 I GA-K-55 2 GA-K-55 I 2 MT-AS-75 

IERN 2010 I GA-K-55 I PEM-BA-250 

High DiscoER I GA-K-55 I GA-K-55 I 3 MT-AS-75 

Do-Nothin~ IERN None None 

Diesel 8, 760 Hours 6 DE-C-7 1 DE-C-500 

Diesel 4,052 Hours 6 DE-C-7 I DE-C-500 

Diesel 3,052 Hours 6 DE-C-7 1 DE-C-500 

Diesel 2,052 Hours 7 DE-C-7 I DE-C-500 

Diesel1,052 Hours 1 GA-K-55 I GA-K-55 I 1 DE-C-500 

75% PV Subsidy 1 PV-20 I I GA-K-55 2 PV-100 I 1 PV-50 I 2 MT-AS-75 

50% PV Subsidy 1 GA-K-55 2 GA-K-55 I 2 MT-AS-75 
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Table 21. Technologies Adopted (Fast Food Restaurant and Office) 

Scenario Fast Food Restaurant Office (Great Vistas Real 
(Burger Queen) Estate) 

PXRN 1999 None None 

Low Natural Gas Prices 1 MT-AS-75 None 

IERN Sales 2000 100 GA-K-500 I 100 GA-K-215 100 GA-K-500 I 100 GA-K-2I5 
IOO GA-K-100 I 100 GA-K-55 100 GA-K-100 I 100 GA-K-55 
100 GA-K-25 I 100 MT-AS-75 100 GA-K-25 I 100 MT-AS-75 
100 MTH-C-30 I 100 MTL-C-30 100 MTH-C~30 I 100 MTL-C-30 

IERN 2000 I MT-AS-75 None 

IERN 2010 I GA-K-55 None 

High DiscoER I MT-AS-75 None 

Do-Nothine IERN None None 

Diesel8,760 Hours 11 DE-C-7 2 DE-C-7 

Diesel 4,052 Hours 11 DE-C-7 2 DE-C-7 

Diesel 3,052 Hours II DE-C-7 2 DE-C-7 

Diesel 2,052 Hours I DE-C-100 2 DE-C-7 

Diesel1,052 Hours I DE-C-7 I 1 MT-AS-75 2 DE-C-7 

75% PV Subsidy I PV-50 I 1 PV-20 11 GA-K-55 2 PV-5 

50% PV Subsidy 1 MT-AS-75 None 

Table 22. Technologies Adopted (Retail and Warehouse Store) 

Scenario Retail Store (Drum Buster Warehouse Store (Ram's 
Stereo) Club) 

PXRN 1999 None None 

Low Natural Gas Prices 1 GA-K-55 I GA-K-55 I 3 MT-AS-75 

IERN Sales 2000 100GA-K-5001 100GA-K-215 100 GA-K-500 I 100 GA-K-215 
100 GA-K-100 I 100 GA-K-55 100 GA-K-100 I 100 GA-K-55 
100 GA-K-25 I 100 MT-AS-75 100 GA-K-25 I 100 MT-AS-75 
100 MTH-C-30 I 100 MTL-C-30 100 MTH-C-30 I 100 MTL-C-30 

IERN 2000 1 GA-K-55 2 GA-K-55 I 2 MT-AS-75 

IERN 2010 I GA-K-55 I PEM-BA-250 

High DiscoER 1 MT-AS-75 1 GA-K-55 I 3 MT-AS-75 

Do-Nothine IERN None None 

Diesel8,760 Hours 8 DE-C-7 1 DE-C-500 

Diesel 4,052 Hours 8 DE-C-7 I DE-C-500 

Diesel 3,052 Hours 8 DE-C-7 I DE-C-500 

Diesel 2,052 Hours 9 DE-C-7 I DE-C-500 

Diesel1,052 Hours I GA-K-55 I I DE-C-7 I GA-K-55 I I DE-C-500 

75% PV Subsidy 1 PV-50 I I GA-K-55 2 PV-IOO I I GA-K-55 I 2 MT-AS-75 

50% PV Subsidy I GA-K-55 I GA-K-55 I 3 MT-AS-75 
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Table 23. Technologies Adopted (J..LGrid) 

Scenario J.1Grid (Microgrid Oaks) 
PXRN 1999 None 

Low Natural Gas 2 GA-K-500 II MT-AS-75 

Prices 
IERN Sales 2000 100 GA-K-500 1100 GA-K-215 

100 GA-K-100 I 100 GA-K-55 
100 GA-K-251100 MT-AS-75 
100 MTH-C-30 1100 MTL-C-30 

IERN 2000 2 GA-K-500 II MT-AS-75 

IERN 2010 4 PEM-BA-250 

High DiscoER I GA-K-500 18 MT-AS-75 

Do-Nothing IERN None 

Diesel8,760 Hours 2 DE-C-500 17 DE-C-7 

Diesel 4,052 Hours 2 DE-C-500 I 7 DE-C-7 

Diesel 3,052 Hours 2 DE-C-500 II DE-C-200 

Diesel 2,052 Hours 3 DE-C-500 

Diesel1,052 Hours I GA-K-500 12 DE-C-500 

75o/o PV Subsidy 9 PV-100 II GA-K-500 13 MT-AS-75 

50% PV Subsidy 2 GA-K-500 II MT-AS-75 

7.3.11.2 Savings 

We see from Figure 100 that installation ofDER generation capacity results in significant 
savings over the do-nothing-IERN scenario. As discussed previously, customers acting 
together as Microgrid Oaks are able to realize greater savings because they can take 
advantage of economies of scale. In particular, it can be noted that customers with higher 
load factors (i.e., flatter loads) are able to achieve greater percentage cost savings. This is 
because they need not install additional capacity or purchase from the IEM to meet 
peaking loads that are uneconomic to self-provide. Figure 101 indicates that this 
relationship is indeed a strong one. 
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Figure 101. Effect of Load Factor on Customer Cost Savings 

7.3.11.3 Power and Energy Coverage 

Figure 102 and Figure 103 show that customers typically cover most of their peak 
demand and about half of their energy needs through installed capacity. The load factor 
again determines these results as the customers with lower load factors (e.g., the office, 
retail store, and deli) have relatively high peaks and install comparatively less capacity 
than other customers. Hence, they necessarily cover smaller fractions of their peak 
demand through installed capacity. 
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Percentage of Peak Demand Covered Through Installed Capacity 
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7.3.11.4 Comparison ofGrocery with Microgrid Oaks 

In this section, the advantages of belonging to a f..lGrid over isolated on-site generation 
are illustrated. The benefits of joining a f..lGrid arise from the fact that customers are 
better able to coordinate their activities. By sharing load information with other members 
ofMicrogrid Oaks, a typical customer benefits from the installation of on-site generation 
that realizes economies of scale. This allows for both greater flexibility in self-generation 
and some insulation from the potentially negative effects of high IEM prices. In effect, a 
typical customer gains most from the diversification of risks that is afforded by belonging 
to a f..lGrid. 

Table 24. Comp;;arison of Technologies Adopted (Grocery and f.!Grid) 

Scenario Grocery (Dan~erway) Microgrid Oaks 
PXRN 1999 None None 

Low Natural Gas Prices 3 MT-AS-75 2 GA-K-500 I I MT-AS-75 

IERN Sales 2000 100 MTL-C-30 I 100 MTH-C-30 100 GA-K-500 I 100 GA-K-215 
100 MT-AS-75 I 100 GA-K-25 100 GA-K-100 I 100 GA-K-55 
100 GA-K-55 I 100 GA-K-100 100 GA-K-25 I 100 MT-AS-75 
100 GA-K-215 I 100 GA-K-500 100 MTH-C-30 I 100 MTL-C-30 

IERN 2000 3 MT-AS-75 2 GA-K-500 I l MT-AS-75 

IERN 2010 I PEM-BA-250 4 PEM-BA-250 

High DiscoER 3 MT-AS-75 l GA-K-500 I 8 MT-AS-75 

Do-Nothin~ IERN None None 

Diesel8,760 Hours l DE-C-200 I 4 DE-C-7 2 DE-C-500 17 DE-C-7 

Diesel 4,052 Hours I DE-C-200 I 4 DE-C-7 2 DE-C-500 I 7 DE-C-7 

Diesel 3,052 Hours l DE-C-500 2 DE-C-500 I l DE-C-200 

Diesel 2,052 Hours l DE-C-500 3 DE-C-500 

Diesel1,052 Hours l GA-K-55 I l DE-C-500 I GA-K-500 I 2 DE-C-500 

75% PV Subsidy 2 PV-100 I 2 GA-K-55 9 PV-100 I l GA-K-500 I 3 MT-AS-75 
l MT-AS-75 

50% PV Subsidy 3 MT-AS-75 2 GA-K-500 I I MT-AS-75 

In Table 24, the technologies adopted by the grocery and f..lGrid are compared. Because 
of its larger load, the f..lGrid installs more onsite generation except in the perverse IERN­
Sales-2000 scenario. It is of note that the DER technologies chosen for the grocery are 
also selected by the f..lGrid. Furthermore, the total capacity installed by the customers 
acting individually is less than the total capacity of the corresponding f.! Grid scenario. 
This reflects the economy of scale aspect ofthe model: the f..lGrid is able to install larger 
generators that produce cheaper energy per kWh than a set of smaller generators would. 

In Figure 104 and Figure 105, the installed capacities and peak loads for the grocery and 
f.!Grid, respectively, are presented. In each case, the PXRN-1999 scenario discourages 
any onsite installation whereas both the Diesel-2,052-hour and 75%-PV-Subs scenarios 
encourage installation of diesel and PV technologies, respectively. The f..lGrid's ability to 
capture economies of scales is illustrated in the other three scenarios. In particular, the 
f.!Grid installs larger-capacity units (greater than 500 kW each) to meet its base load, and 
smaller capacity units (such as the 75-kW microturbine) to cover some of its peak load. 
In contrast, the grocery usually installs several units of the smaller capacity generators to 
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meet its base load. Only in the Diesel-4,052-hour scenario is the grocery able to install a 
generator specifically to cover its peak load. Hence, this implies that the J.tGrid realizes 
cost savings by installing generators that have specific purposes, e.g., to cover peak load. 
Because of its smaller size and lack of coordination with other market participants, the 
grocery is unable specialize. Consequently, it is often forced to meet its peak load needs 
through the IEM, a potentially negative market exposure that the JlGrid is able to avoid. 
Also, the lumpiness of technology favors the larger install action. This shows up in the 
diesel-2,052-hour scenario, which results in a much more extreme overinvestment for 
Dangerway than for Microgrid Oaks. 
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Figure 104. Installed Capacity and Peak Load for Grocery 
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Figure 106. Comparison of Results for Grocery and J.1Grid 

From Figure 106, it is evident that the J.1Grid realizes greater cost savings than the 
grocery does. Again, the J.1Grid's ability to install specialized machines and to coordinate 
the actions of the market participants appear to contribute to its lower costs. Indeed, 
across all scenarios, the grocery installs more capacity (as a percentage of its peak 
demand) than does the J.1Grid. Nevertheless, the J.1Grid usually covers more of its energy 
needs with this reduced installed capacity than does the grocery. This result is an 
illustration of the gains in efficiency that can be achieved through the strategic 
coordination that the J.1Grid enables. 
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7.4 Conclusions 

In general, we find that installation of generation capacity is attractive to customers under 
a variety of circumstances. Only in the case with low and stable 1999 PX prices is it 
unattractive for the grocery to install any capacity. Although this installed capacity is 
used to generate a significant proportion of the customer's energy (more than 50% in 
most cases), there are no scenarios, given the set of IEM prices, in which the customer 
opts to disconnect fully from the grid (see Figure 103). 

A comparison of the results for the J.tGrid and the grocery indicate that the J.tGrid is able 
to make more efficient use of its installed capacity. This is because of its ability to 
coordinate the actions of the various customers in order to realize economies of scale and 
install specialized on-site equipment. The customers in a J.tGrid, therefore, are able to 
diversify their risks by insulating themselves from the negative effects of high IEM prices 
or other external factors. 
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8. Summary, Conclusions, and Future Work 

This report describes work recently completed for the CEC at the Berkeley Lab under the 
CERTS DERI project. Work has focused on the continued development and application 
ofDER-CAM, an economic model of customer adoption ofDER, implemented in the 
GAMS optimization software. DER-CAM finds the cost-minimizing combination of on­
site generation that a customer could have had installed during a test year, the year 2000 
for this study. The contrast between the early and late parts of the year and the high and 
volatile prices created provide an excellent opportunity to exercise DER-CAM. 

Work focused on two areas: first, the acquisition of somewhat more accurate data than 
previously used for onDER technologies, including the development of methods for 
forecasting cost reductions for these technologies; and, second, the creation of a credible 
California example J.!Grid that can be applied in this study and in future work. 

Data were collected from diverse sources to form a data set containing reasonable cost 
and performance parameters for about 30 DER options available for installation today. 
The data set includes two microturbines, a commercial FC, small wind and PV systems, 
and a wide range of reciprocating engines burning both diesel and natural gas fuel. 
Installation costs for these technologies were estimated using a standard engineering 
h~dbook. A data set representing possible equivalent data for 2010 was also developed, 
with some emphasis on forecasting ofFC costs for that year. Consequently, the 2010 
data set includes two additional FC technologies and an FCV. Costs for these 
technologies were estimated using a combination of experience curves and literature 
review. 

DER-CAM makes these technologies available to a group of eight customers in a 
hypothetical strip mall in San Diego called Microgrid Oaks. The businesses that make up 
this mall are a supermarket, an office, a department store, a warehouse store, a smaller 
store, and three restaurants. These fictitious businesses have electricity loads that are 
based on actual end-use metering of southern California commercial buildings. In the 
scenarios reported below, each of the customers was individually offered the same 
options to self-generate electricity. Additionally, Microgrid Oaks, formed as the 
consolidation of its member customer loads, is also run through DER-CAM to find the 
optimal combination for the mall as a whole. 

DER-CAM was run for the businesses in Microgrid Oaks individually and for the mall as 
a whole under 13 different scenarios. In the base, IERN, scenario, customers buy 
electricity at the IEM price and cannot sell electricity; natural gas costs 8.25 $/GJ, and 
diesel fuel costs 8.46 $/GJ. Use of diesel generators is restricted for air quality reasons to 
52 h/a. Customers who install DER significantly lower their electricity costs over a do­
nothing scenario, in the case of the grocery from 13.6 to 9.4 ¢/kWh. Microturbines are 
the most attractive technology to customers with high load factors, and gas-fired 
reciprocating engines appear in the choices ofMicrogrid Oaks as a whole and of several 
individual customers. In the case ofMicrogrid Oaks, a large (500-kW) natural gas engine 
is chosen because it offers noticeable economies of scale. 

91 



Modeling of Customer Adoption of Distributed Energy Resources 

When the constraints on use of diesel engines are relaxed, diesel generators prove to be 
highly attractive, and, economies of scale make bigger machines more desirable. It 
appears that improvement in the environmental performance of these machines (resulting 
in looser permit conditions) could make them highly attractive, from a regulatory 
viewpoint, for self-generation. 

When PV systems are heavily subsidized, they become an attractive option. 
Interestingly, because PV power is only available in daylight hours, gas engines and 
microturbines are typically installed as well, yielding the interesting result that, when PV 
is selected as part of a customer's DER mix, most customers individually and Microgrid 
Oaks as a whole install more generating capacity than their own peak demand, an 
outcome rare elsewhere. In this case therefore, Microgrid Oaks would be able to sell 
power, even at the time of its own peak demand. Unfortunately, sales to the grid could 
not be allowed in this study because the IEM price was so high relative to the fuel price 
that generation became enormously profitable and Micro grid Oaks would essentially be 
turned from a retail mall into a power generating station, a perverse result. In future 
work, however, the phenomenon of PV resulting in higher capacity installation could 
prove very interesting because it permits Micro grid Oaks to readily participate in 
interruptible load markets. 

In most ofthe reasonable scenarios, customers save 20 to 40% on their 2000 electricity 
bills by self-generating, and higher-load-factor and larger customers do better. Joining 
customers together in the J..!Grid both raises load factor and increases overall size, so 
customers do gain by forming the J..!Grid although not enormously. However, to restore 
perspective, the PXRN assumptions, which replace the 2000 IEM prices with the 1999 
PX prices, result in no DER adoption at all, and customers still save about 50% on their 
bills relative to the IERN case. 

Although installed capacities for the year 2000 are quite high in this study, almost always 
between 60 and 100 % of peak demand, shares of energy self-provided are much lower, 
typically 40 to 60% of consumption. Naturally, self-provision is uneven during the year, 
there is less in the low-price first few months than during the high-price periods of the 
latter part of the year. 

Future work will progress in several directions. The first and most important 
improvement to DER-CAM will be, the incorporation ofCHP technology and the joint 
optimization of electricity and heat (in the case of California, invariably natural gas) 
consumption .. The use of waste heat on site could be one ofDER's strongest attractions, 
and evaluating this size ofthis potential benefit for California's moderate climate will 
significantly improve the value ofDER-CAM's results. To this end, data on CHP 
technologies are being collected, estimates of heat load shapes for Microgrid Oaks that 
were, not available in the original data set are being made, and DER-CAM is being 
extended to accommodate these data. The second imminent enhancement to DER-CAM 
will be the incorporation of interruptible load market participation into the J..!Grid's 
economic opportunities. Another economic benefit of on-site generation stems from the 
opportunity it creates to offer load shedding to grid operators. In California, this would 
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most likely be in the form of participation in a program akin to the CAISO's Demand 
Response Program (DRP). In this program, customers receive a fixed capacity payment 
during the summer months for offering to shed load in response to CAISO requests and 
also receive an energy payment equivalent to the IEM price for the unserved energy. A 
J.!Grid could readily participate in such a market by employing its on-site generation to 
displace a fraction of its load at times that it would otherwise not expect to be self­
providing. Although it may seem that the times of CAISO interest in invoking the DRP 
are likely to also be times of high electricity prices so that the J.!Grid would likely already 
be self-providing and could not reduce load, in fact DRP has been lucrative even when 
capacity prices were high enough to possibly stimulate the installation of higher DER 
capacities. One of the keys to analyzing this problem correctly is enhancing the model to 
account for the random nature of calls for load shedding. 

Beyond these issues, numerous other improvements to DER-CAM are on the agenda, 
including simulation of forced equipment outages and optimization over longer time 
periods, so that the effect of improving technology can be directly addressed, along with 
joint optimization of loads and generation. 

93 



Modeling of Customer Adoption ofDistributed Energy Resources 

REFERENCES 

Abernathy, W. J. and K. Wayne. 1974. "Limits of the Learning Curve." Harvard 
Business Review. vol. 52(5), pp. 109-119. 

Akbari, H., L. Rainer, K. Heinemeier, J., Huang, and E. Franconi. 1993. "Measured 
Commercial Load Shapes and Energy-Use Intensities and Validation of the LBL End-use 
Disaggregation Algorithm." Berkeley, Lawrence Berkeley National Laboratory, pp. 224. 

Argote, L. and D. Epple. 1990. "Learning Curves in Manufacturing." Science. vol. 247 
(February 23), pp. 920-924. 

Boston Consulting Group. 1972. "Perspectives on Experience." Boston. 

California Air Resources Board, C.-A. 2000. "Risk Reduction Plan to Reduce Particulate 
Matter Emissions from Diesel-Fueled Engines and Vehicles." Sacramento, CA, 
California Air Resources Board, CA-ARB, pp. 38. 

Chiang, J. H., Ed. 2000. "RSMeans Electrical Cost Data 23rd Annual Edition." 
RSMeans. Kingston, MA, RSMeans Company, Inc. 

Dino, R.N. 1985. "Forecasting the Price Evolution ofNew Electronic Products." Journal 
of Forecasting. vol. 4(1 ), pp. 39-60. 

DOE, U.S. D.O.E. 1999. "Review of Combined Heat and Power Technologies." Office 
of Industrial Technologies {OIT), created by ONSITE SYCOM Energy Corporation. 

Dutton, J. M. and A. Thomas. 1984. "Treating Progress Functions as a Managerial 
Opportunity." Academy of Management Review. vol. 9(2), pp. 235-247. 

Environmental Protection Agency, E. P. A. 1997. "Compilation of Air Pollutant Emission 
Factors AP-42." Triangle Park, Environmental Protection Agency. 

Environmental Protection Agency, E. P. A. 2001. "1996 National Emission Trends 
Data," EPA. 2001. 

EPRI. 1999 November. "Technical Assessment Guide (TAG) Volume 5: Distributed 
Resources. " Palo Alto, CA, EPRI. 

EPRI, 1997. "Renewable Energy Technology Characterizations." Washington, D.C., 
Department of Energy. 

Ghemawat, P. 1985. "Building strategy on the experience curve." Harvard Business 
Review. vol. March-April1985, pp. 143-149. 

95 



·Modeling of Customer Adoption of Distributed Energy Resources 

Gibson, G., Ronald K. Ishii. 1999. "Preliminary Domain Analysis." California Energy 
Commission. 

Hamilton, S. 1999. "Micro Turbine Generator (Distributed Generation) Project." 
Irwindale, CA, California Energy Commission, pp. 30. 

Iannucci, J., Susan Horgan, James Eyer, and Lloyd Cibulka. 2000. "Air Pollution 
Emissions Impacts Associated with Economic Market Potential of Distributed Generation 
in California." Livermore, Distributed Utility Associates, pp. 81. 

Ishii, R. 2001. "Applications and Emissions Profiles ofFuel Cells: Meeting California's 
Critical Power Needs - The Air Pollution Challenge. " Annual Meeting of the West 
Coast Section of Air & Waste Management Association, San Diego, CA. 

Kempton, W., J. Tomic, et al. 2001. "Vehicle-to-Grid Power: Battery, Hybrid, and Fuel 
Cell Vehicles as Resources for Distributed Electric Power in California." Davis, Institute 
ofTransportation Studies, pp. 96. 

Kreutz, T. G. and J. M. Ogden. 2000. "Assessment of Hydrogen-Fueled Proton Exchange 
Membrane Fuel Cells for Distributed Generation and Cogeneration." Proceedings of the 
2000 U.S. DOE Hydrogen Program Review NREL/CP-570-28890, U.S. Department of 
Energy. 

Lipman, T. E. 2001. "Grid-Connected Fuel Cell Vehicles as Supplemental Power 
Sources. " Fuel Cells and Distributed Generation Planning Conference, San Antonio, 
Texas. 

Lipman, T. E. and D. Sperling. 1997. "Forecasting Cost Path of Electric Vehicle Drive 
System: Monte Carlo Experience Curve Simulation." Transportation Research Ret;ord. 
vol. 1587, pp. 19-26. 

Mamay, C., Todd P. Strauss. 1989. "Chronological Model Comparison." Berkeley, 
CPUC. 

Marnay, C., Raquel Blanco, Kristina S. Hamachi, Cornelia P. Kawaan, Julie G. Osborn, 
and F. Javier Rubio. 2000. "Integrated Assessment ofDispersed Energy Resources 
Deployment." Berkeley, Lawrence Berkeley National Laboratory, pp. 121. 

Mattson, N. and C. Wene. 1997. "Assessing New Energy Technologies Using an Energy 
System Model with Endogenized Experience Curves." International Journal of Energy 
Research. vol. 21, pp. 385-393. 

Mossman, M. J., Ed. 2000. "RSMeans Mechanical Cost Data 23rd Annual Edition. " 
RSMeans. Kingston, MA, RSMeans Company, Inc. 

96 



Modeling of Customer Adoption of Distributed Energy Resources 

Ozbek, A. 2001. "Stationary Fuel Cells: US and Global Early Market Opportunities." 
Oyster Bay, Allied Business Intelligence. 

Rubio, F. J., Afzal S. Siddiqui, Chris Marnay, and Kristina S. Hamachi. 2001. "CERTS 
Customer Adoption Mode." Berkeley, Lawrence Berkeley National Laboratory, pp. 131. 

SCAQMD, S.C. A. Q. M.D. 2001. "AQMD Extends Operations Limit on Emergency 
Generators," South Coast Air Quality Management District. 2001. 

SCE, S.C. E. 1989. "End use metered data for commercial buildings." ADM for SCE, 
pp. 222. 

Shell International Petroleum. 1994. "The evolution oftheworld's energy system 1860-
2060." Development and Deployment of Technologies to Respond to Global Climate 
Change Concerns, Paris, France. 

Singhal, S.C. 2001. "Where is SOFC Today? What Can We Expect?" Early Markets for 
Stationary Fuel Cells, Seattle, Washington. 

Whitaker, R. 1998. "Investment in volume building: the 'virtuous cycle' in PAFC." 
Journal of Power Sources. vol. 71, pp. 71-74. 

Wood, S. 1998. 

Wood, S.C. and G. S. Brown. 1998. "Commercializing Nascent Technology: The Case 
of Laser Diodes at Sony." Journal of Product Innovation and Management. vol. 15, pp. 
167-183. 

Wright, T. P. 1936. "Factors Affecting the Cost of Airplanes." Journalof Aeronautical 
Science. vol. .3(122). 

97 



~ ~ ~ ®l!I•J::!Il!IY$'\7 ~~ ~ii@lfJ\'7 

@ooa: ~ ~ ~ ~~ ~~'W~ 

I 




