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Department of Physiology and Nutrition, School of Pharmacy, University of Navarra, 31008 Pamplona, Spain
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(Requests for offprints should be addressed to M J Moreno-Aliaga; Email: mjmoreno@unav.es)

Abstract

We have previously demonstrated that insulin-stimulated glucose metabolism, and not insulin per se, mediates the effects
of insulin to increase the transcriptional activity of the leptin promoter in adipocytes. Here, we sought to identify the specific
cis-acting DNA elements required for the upregulation of leptin gene transcription in response to insulin-mediated glucose
metabolism. To accomplish this, 3T3-L1 cells and primary rat adipocytes were transfected with a series of luciferase
reporter genes containing portions of the mouse leptin promoter. Using this method, we identified an element between
—135 and —95 bp (relative to the transcriptional start site) that mediated transcription in response to insulin-stimulated
glucose metabolism in adipocytes. This effect was abolished by incubation with 2-deoxy-p-glucose, a competitive inhibitor
of glucose metabolism. Gel shift electrophoretic mobility shift assays confirmed that the stimulatory effect of insulin-
mediated glucose metabolism on leptin transcription was mediated by a previously identified Sp1 site. Consistent with
these findings, incubation of primary rat adipocytes with WP631, a specific inhibitor of specificity protein (Sp)1-dependent
transcription, inhibited glucose- and insulin-stimulated, but not basal, leptin secretion. Together, these findings support a

key role for Sp1 in the transcriptional activation of the leptin gene promoter by insulin-mediated glucose metabolism.

Journal of Molecular Endocrinology (2007) 38, 537-546

Introduction

Leptin is a 167 amino acid-secreted protein produced
mainly by adipocytes that maintains energy homeostasis
by exerting pleiotropic effects on energy intake and
energy expenditure (Havel 2004). Leptin acts primarily as
a signal of nutritional deprivation, where decreases of
circulating leptin initiate an adaptive response to
conserve energy, characterized by hyperphagia,
decreased energy expenditure and inhibition of repro-
ductive, and other endocrine systems. Genetic deficiency
of either leptin or its receptor in mice and humans results
in severe early onset obesity (Farooqi & O’Rahilly 2005).

A more complete understanding of the molecular and
biochemical mechanisms regulating leptin secretion in
adipocytes may lead to new therapeutic opportunities for
managing obesity and related metabolic diseases (Havel
2004, Rosenbaum et al. 2005). Several major signaling
systems affecting leptin production have been identified.
Leptin synthesis and secretion are increased by insulin
(Saladin et al. 1995, Leroy et al. 1996, Bradley & Cheatham
1999) and glucocorticoids (Slieker et al. 1996, Kolaczynski
et al. 1997), and are inhibited by adrenergic agonists
(Trayhurn et al. 1996, Moreno-Aliaga et al. 2002) and
activators of peroxisome proliferator activated receptor
(PPAR)-v, such as thiazolidinediones (De Vos et al. 1996).

Journal of Molecular Endocrinology (2007) 38, 537-546
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We have demonstrated previously that insulin-stimu-
lated glucose metabolism, rather than a direct effect of
insulin per se, mediates the actions of insulin to increase
the leptin (0b) gene expression and leptin secretion in
isolated adipocytes (Mueller et al. 1998). During
incubation of isolated adipocytes with physiological
concentrations of insulin (0-16-16 nM), we demon-
strated that the increase of leptin secretion was much
more closely related to the amount of glucose taken up
by the adipocytes than to the concentration of insulin.
Consistent with this finding, competitive inhibition
of glucose transport and phosphorylation with 2-deoxy-
p-glucose (2-DG) caused a concentration-dependent
inhibition of leptin release in the presence of 1:6 nM
insulin. Other inhibitors of glucose transport
(phloretin and cytochalasin B) or metabolism (iodoa-
cetate and fluoride) also inhibited leptin secretion, in
direct proportion to glucose uptake (Mueller et al.
1998). Additional studies suggested that, not only
glucose uptake, but also oxidative metabolism of
glucose beyond pyruvate, is required for insulin-
mediated leptin secretion (Mueller et al. 2000). We have
also demonstrated that insulin-mediated glucose meta-
bolism is involved in the activation of the leptin
promoter transcription by glucose and insulin in 3T3-
L1 cells (Moreno-Aliaga et al. 2001).
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While the structure of the promoter region has been
well characterized, there is a paucity of data which directly
addresses the question of how insulin-stimulated glucose
metabolism stimulates leptin synthesis in adipocytes.
Fukuda & Iritani (1999) joined two copies of the rat
leptin promoter sequence from —101 to —83 (which
contains a consensus Spl-binding site) to a luciferase
reporter gene, and found that the activity of this reporter
gene in transfected primary rat adipocytes was upregu-
lated by the addition of 0-1 pM insulin compared with
incubation in 20 mM glucose alone. Mutation of this Sp1
site in the reporter gene then abolished its responsiveness
to glucose and insulin. Other studies have mutated the
equivalent Spl site in the proximal human (Zhang et al.
2002) and murine (Mason et al. 1998) promoters and
have also observed a reduction in reporter gene activity.
Subsequent gel shift experiments by Fukuda & Iritani
(1999) confirmed the binding of a protein from adipose
tissue nuclear extract to the —101 to —83 sequence.
Formation of this DNA—protein complex was inhibited to
some degree by competition with a DNA probe
containing an Spl-binding sequence and also by
preincubation with an anti-Spl antibody. A recent study
also observed that mutation in Spl motif of the bovine
leptin gene decreases the promoter-binding capacity for
nuclear proteins and reduces leptin gene expression
(Adamowicz et al. 2006).

Overall, these data indicate that insulin-stimulated
glucose metabolism might activate Spl-mediated tran-
scription of leptin via this Spl site in the proximal
promoter. However, in the experiments of Fukuda &
Iritani (1999), co-transfection of an Spl expression
vector with their reporter gene decreased promoter
activity in adipocytes, suggesting that Spl inhibited
transcription through this element. This result was
clearly inconsistent with the prevailing view that
deletion of the Spl site reduces promoter activity in
adipocytes (Mason ef al. 1998, Fukuda & Iritani 1999,
Zhang et al. 2002).

Therefore, the aim of the present study was to
investigate the mechanisms underlying the transcrip-
tional regulation of the leptin gene by insulin-
stimulated glucose metabolism. First, we carried out
deletion mapping studies in adipocytes to identify the
cisacting DNA sequences in the proximal promoter
mediating the effects of insulin-stimulated glucose
metabolism to increase leptin gene transcription.
Secondly, we performed electrophoretic mobility shift
assays (EMSAs) to test the hypothesis that the
transcription factor Spl mediates the stimulatory effects
of insulin-mediated glucose metabolism. Finally, we
incubated primary adipocyte cultures with a specific
inhibitor of Spl-mediated transcription and found that
while this intervention had no effect on basal leptin
secretion, it abolished insulin-stimulated leptin
secretion.

Journal of Molecular Endocrinology (2007) 38, 537-546

Materials and methods

Cell culture and differentiation

Low-passage (3-9) 3T3-L1 cells (American Type Culture
Collection, Rockville, MD, USA) were used in all studies.
Cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) containing 25 mM glucose and 10%
calf serum, and were maintained in a waterjacketed
incubator set to 37 °C and 5% carbon dioxide. Confluent
cells were induced to differentiate by incubating for 72 h
with differentiation medium containing 1 uM dexa-
methasone, 0-5 mM isobutylmethylxanthine (IBMX),
and 10% fetal bovine serum in DMEM. Cells were then
maintained in DMEM containing 10% fetal bovine
serum, but without dexamethasone or IBMX (post-
differentiation medium), for 48 h prior to transfection.

Primary culture of adipocytes

Adipocytes were isolated from epididymal fat pads of male
Wistar rats, as described by Mueller et al. (1998). First, fat
pads were minced in Krebs—-Ringer HEPES buffer (pH
7-4; containing 5 mM p-glucose, 2% BSA, 135 mM Na(l,
22 mM CaCly2H,0, 1-25 mM MgSO,4-7H,0, 0-45 mM
KHyPOy4, 2:17 mM NayHPO,, and 10 mM HEPES).
Secondly, tissue fragments were digested in the above
buffer supplemented with type I collagenase (1-25 mg/
ml per 0-5 g tissue; Worthington, Lakewood, NJ, USA) at
37 °C for 30 min with gentle shaking (60 cycles/min).
The resulting cell suspension was diluted in HEPES-
phosphate buffer; isolated adipocytes were then separ-
ated from the undigested tissue by filtration through a
400 pm nylon mesh and washed thrice. Isolated adipo-
cytes were resuspended in DMEM supplemented with 1%
FBS and incubated for 30 min at 37 °C.

Plasmids

Cells were transfected with plasmids containing
different constructs of the mouse leptin promoter
preceding a luciferase reporter gene (p(—762)lep—
luc, p(—135)lep-luc, p(—95)lep-luc, p(—85)lep-luc,
m(—140 to —135), and m(—100 to —95)), kindly
provided by Dr Marc Reitman (Diabetes Branch,
National Institute of Diabetes and Digestive and
Kidney Diseases, National Institute of Health; He et al.
1995, Mason et al. 1998). Plasmid DNA was transformed
into One Shot competent cells (Original TA Cloning
Kit, Invitrogen) and all vectors were prepared using an
EndoFree Plasmid Maxi kit (Qiagen, Inc.). The
concentration of plasmid DNA was determined by
both spectrophotometry and restriction enzyme diges-
tion followed by agarose gel electrophoresis and
comparison with known DNA standards.

www.endocrinology-journals.org
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Transient transfection of 3T3-L1 cells

Five days after the induction of differentiation, 3T3-L1
adipocytes were transfected with 6 ug plasmids
containing the leptin promoter constructs using a
calcium phosphate method (Moreno-Aliaga et al.
2001). The pRL-SV40 plasmid (4 ng), encoding Renilla
luciferase, was used to control for transfection effi-
ciency. After 16-20 h of incubation, the culture
medium was removed and cells were washed with
Dulbecco’s PBS. Cells were then incubated for 48 h in
medium containing 25 mM glucose, with or without
insulin (16 nM). The effects of 2-DG (50 mg/dl) on
leptin promoter activity in the absence or presence of
insulin (16 nM) were also examined. We have pre-
viously demonstrated that this concentration of 2-DG
induces a marked (>90%) suppression of leptin mRNA
expression and leptin secretion in primary cultured rat
adipocytes, but does not induce cytotoxic effects, as 18S
RNA was unaffected and lipoprotein lipase activity was
only modestly reduced (Mueller et al. 1998).

Transient transfection of primary adipocytes by
electroporation

An aliquot of 200 pl adipocyte suspension was placed into
0-4 cm gap electrocuvettes containing 10 pg leptin
promoter constructs and 3:5ng pRL-SV40 plasmid.
Cells were electroporated by administering 1 pulse at a
voltage of 200V and a capacitance of 950 pF. After
electroporation, adipocytes were transferred to poly-
styrene tubes containing 2 ml DMEM (5 mM glucose)
with 1% fetal bovine serum (FBS) and 1-6 nM insulin with
or without 10 mg/dl 2-DG, as reported in the results.

Dual luciferase assay

After 20 h (primary adipocytes) or 48 h (3T3-L1 cells)
of treatment, cells were lysed, and firefly and Renilla
luciferase assays were performed on the lysate using the
Dual Luciferase Reporter Assay System (Promega),
according to the manufacturer’s standard protocol.

Electrophoretic mobility shift assays (EMSASs)

Nuclei were isolated from primary adipocytes, treated
without or with insulin (1-6 nM) in the absence or
presence of 2-DG, according to the method of Dignam
et al. (1983) with minor modifications. Nuclear extracts
were then prepared from these nuclei by a slight
modification of the method of Lavery & Schibler
(1993). EMSA studies were performed as described
by Moreno-Aliaga & Matsumura (1999). The sequences
of double-stranded oligonucleotides for the Sp1-binding
assays were as follows: wt—112/—83 (5-GCCCGCT-
GGGTGGGGCGGGAGTTGGCGCTC-3'), mut—112/ —

www.endocrinology-journals.org

83 (5-GCCCGCTGGGTGaaGCitGAGTTGGCGCTGY).
Spl consensus oligonucleotide (5'-ATTCGATCGGG-
GCGGGGCGAGC-3') was obtained from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Oligonucleotides
were end-labeled using [v->?P]JATP (Amersham Life
Sciences) and T4 polynucleotide kinase (Promega)
according to the standard methods.

Nuclear extracts (10 pg) were incubated in a buffer
containing 25 mM HEPES (pH 7-9), 10% glycerol, and
0:-5mM dithiothreitol, with 3 ng poly (d(I—C))
(Boehringer Mannheim, Indianapolis, IN, USA), and
5 ng acetylated BSA for 30 min at 4 °C. A 100-fold excess
of specific competitor was added to some samples.
Lastly, the different radiolabeled double-strand oligo-
nucleotides (50 000 c.p.m.) were added and incubated
for an additional 20 min at room temperature. For
supershift assays, a specific antibody against Sp1 (Santa
Cruz Biotechnology) was added. Oligonucleotide—
nuclear factor complexes were determined by electro-
phoresis in a non-denaturing 4% polyacrylamide gel at
150-200 V for 2-3 h. Gels were dried and exposed to
film with an intensifying screen at —80 °C.

Measurement of leptin secretion, glucose utilization,
and lactate production in cultured primary rat
adipocytes

Epididymal rat adipocytes (150 pl of 2:1 ratio of packed
cells to medium), isolated as previously described, were
plated on 500 pl collagen matrix (Vitrogen 100, Cohesion
Technologies, Palo Alto, CA, USA) in six-well culture
plates. After a 45-min incubation at 37 °C, culture media
(5mM glucose DMEM) containing the different treat-
ments (1-6 nM insulin and/or 0-1 uM WP631) were
added, and the cells were maintained in an incubator at
37°Cin 5% COq for up to 48 h. Leptin concentrations in
the media were determined with an RIA for rat leptin
(Linco Research, St Charles, MO, USA). Glucose util-
ization and lactate production were assessed by measuring
their concentration in the media with an Autoanalyzer
(Cobas Roche Diagnostic). The amount of carbon
released as lactate per amount of carbon taken up as
glucose over 48 h was calculated as A (lactate) /A (glucose),
where A is the change and expressed as a percentage.

Real-time PCR analysis

Total RNA was extracted using TRIZOL reagent
(GIBCO-Life Technologies, Inc.) according to the
manufacturer’s instructions and incubated with
RNase-free kit DNase (Ambion, Austin, TX, USA) for
30 min at 37 °C. RNA concentrations were measured
spectrophotometrically and its quality was verified by
ethidium bromide staining after agarose gel
electrophoresis.

Journal of Molecular Endocrinology (2007) 38, 537-546
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For each sample, 1-5 ug RNA were reverse tran-
scribed to cDNA using the high-capacity cDNA archive
kit (Applied Biosystems, Foster City, CA, USA) in a total
volume of 26-6 pl. Reverse transcription was performed
under the following conditions: 60 min at 37 °C and
5min at 95°C. ¢cDNA samples were then frozen at
—20 °C in several aliquots until gene expression assays
were performed.

For real-time PCR analysis, 9 pl cDNA per reaction
were used. Reagents for real-time PCR analysis of leptin,
Spl, and 18S (Assays-on-Demand, TagMan Universal
PCR Master mix) were purchased from Applied
Biosystems and the conditions were used according to
manufacturer’s protocol. Amplification and detection
of specific products were performed with the ABI
PRISM 7000HT Sequence Detection System (Applied
Biosystems). A standard curve was plotted for each
primer—probe set with a decimal serial dilution of
several cDNA samples to ensure that the end of the
reaction for control and different treatment samples
was in the middle of the exponential curve of
amplification.

18S ribosomal primer—probe was used to normalize the
expression levels between samples allowing data to be
expressed relative to 18S rRNA, therefore, compensating
any difference in reverse transcriptase efficiency. All
standards and samples were analyzed as duplicates. Data
were obtained as Ct values (the cycle where the emitted
fluorescence signal is significantly above the background
levels and is inversely proportional to the initial template
copy number) according to manufacturer’s guidelines,
and used to determine ACt values (ACt=Ct of the target
gene — Ct of the housekeeping gene 18S) of each sample.
Fold changes of gene expression were calculated by the
27 24% method (Livak & Schmittgen 2001).

Statistical analysis

For the transfection studies, the means were
compared by one-way ANOVA followed by a
Bonferroni’s post hoc test (GraphPad Prism, Graph-
Pad Software, San Diego, CA, USA). The statistical
analysis of the effects of WP631 on leptin secretion,
glucose utilization and the percentage of glucose
converted to lactate were performed by a repeated-
measures ANOVA followed by a Bonferroni’s post hoc
test, because of the high variability between
adipocytes cultures from different rats; for this
reason, the experimental results from each adipo-
cyte suspension prepared from a single animal were
analyzed in relation to a control well from the
same suspension (Perez-Matute et al. 2005). Differ-
ences were considered as statistically significant at
P<0-05.

Journal of Molecular Endocrinology (2007) 38, 537-546

Results

Identification of cis-acting DNA sequences involved in
the regulation of leptin gene by glucose metabolism

To define the cis-acting DNA sequences required for the
upregulation of leptin gene by insulin-mediated
glucose metabolism, we performed a deletion analysis
of the leptin promoter in differentiated 3T3-L1
adipocytes and primary rat adipocytes. 3T3-L1 cells
were transiently transfected with a series of reporter
constructs containing various portions of the leptin
promoter sequence. Previous studies have shown that
the proximal promoter (up to —161 bp from the
transcriptional start site) is sufficient for leptin
expression in adipocytes (He et al. 1995).

As shown in Fig. 1, insulin and glucose-stimulated
reporter gene activity of the —762 and —135
constructs at least twofold in 3T3-L1 adipocytes.
This increase was abolished by incubation with
2-DG (data not shown). In contrast, a marked
reduction in insulin-stimulated luciferase activity was
observed when reporter genes of —95 and —85 bp
were transfected. Similar results were observed in
primary adipocytes transfected with the —135 and
—95 constructs (Fig. 2). The transcriptional activity
of the leptin promoter, as assessed by increased
luciferase activity, was increased threefold in the
presence of a physiological concentration of insulin
(1-6 nM) in cells transfected with the p(—135)
construct but was unaffected in the p(—95) con-
struct. Furthermore, the increase of transcriptional
activity induced by insulin was abolished by co-
incubation with the inhibitor of glucose metabolism,
2-DG. Thus, these data indicate that the cisacting
DNA sequence which mediates the activation of the
leptin promoter in response to insulin-stimulated
glucose metabolism is located between positions
—135 and —95 of the leptin gene.

The sequence centered at —97 is an exact match to
Spl core motif sequence (Mason et al. 1998). To study
the contribution of this region of the promoter to the
insulin and glucose responsiveness, primary adipocytes
were transfected with a plasmid m(—100/—95)
containing four point mutations between bases —100
and —95. These mutations resulted in a loss of
promoter activation (Fig. 3). As a control, we also
transfected a mutated —140/—135 construct, which
contains an intact Spl sequence centered on —97. In
primary cells transfected with this construct, insulin
induced a twofold increase of transcriptional activity
that was abolished by 2-DG. Together, the results
demonstrate that mutation of the Spl site, but not an
upstream site, results in a loss of responsiveness to
insulin-stimulated glucose metabolism.

www.endocrinology-journals.org
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Figure 1 Locations of insulin-mediated glucose metabolism
regulatory sequences in the leptin promoter in 3T3-L1 adipo-
cytes. Cells were transfected with the —762, —135, —95, and
—85 bp plasmid constructs and treated for 48 h without or with
insulin (16 nM). A pRL-SV40 plasmid was co-transfected to
control for transfection efficiency. The mean +s.e.m. of at least four
independent experiments is shown.

Identification of trans-acting factor involved in the
regulation of the leptin gene by glucose metabolism

The data from the previous experiments suggest that
the transcription factor, Sp1, mediates the activation of
the leptin promoter in response to insulin-stimulated
glucose metabolism. While previous studies have
reported that Spl binds to this site (or to its equivalent
in the rat gene; Mason et al. 1998, Fukuda & Iritani
1999), there are currently no available data addressing
whether this Spl-mediated transcription is regulated by
insulin-stimulated glucose metabolism. To test this
hypothesis, EMSAs were performed with adipocyte
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Figure 2 Effects of 2-DG on the action of insulin on leptin promoter
activity in primary rat adipocytes. Cells were transfected with the
p(—135)lep—luc or p(—95)lep—luc plasmids and treated for 20 h
without or with insulin (1-6 nM) in the absence or presence of 2-
DG (10 mg/dl). A pRL-SV40 plasmid was co-transfected to control
for transfection efficiency. Data are expressed as fold of increase
of the activity in the absence of insulin. The mean+s.e.m. of six
independent experiments is shown. *P<0-05 compared with the
control cells. #P<0-05 compared with the insulin-treated group.
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Figure 3 Effects of insulin and 2-DG in cells transfected with the
mutant plasmids m(—140/—135) and m(—100/—95) of leptin
promoter in primary rat adipocytes. Cells were treated for 20 h
without or with insulin (1-6 nM) in the absence or presence of 2-
DG (10 mg/dl). A pRL-SV40 plasmid was co-transfected to control
for transfection efficiency. Data are expressed as fold of increase
of the activity in the absence of insulin. The mean +s.e.m. of six
independent experiments is shown. *P<0-05 compared with the
control cells. #P<0-05 compared with the insulin-treated group.

nuclear extracts from control and insulin-treated cells
(in the absence or presence of 2-DG).

Using nuclear extracts from cells treated in the absence
of insulin, DNA-protein complexes of the same mobility
were observed for the wild-type sequence of the leptin
promoter from bases —112 to —83 (wt(—112/—83),
Fig. 4, lane 1) and for an Sp1 consensus oligonucleotide
(Iane 8). Subsequently, treatment with insulin (1-6 nM)
increased the abundance of the Sp1-DNA complex (lane
1 versus lane 2 and lane 8 versus lane 9), and this increase
was abolished by the addition of 50 mg/dl 2-DG (lanes 3
and 10). The intensity of the Spl-DNA complexes was
also markedly decreased upon preincubation with an
antibody directed against Spl, indicating that Spl is
present in the complex (lanes 4-6 and 11). The specific
binding of Sp1 to the wt— 112/ — 83 probe was eliminated
by competition with an excess of homologous unlabeled
probe (lane 7). Also, mutation offour bases in the Sp1 site
(in oligonucleotide m(—112/—83)) prevented the
formation of a DNA-Spl protein complex under these
conditions (lanes 12-14).

Inhibition of Sp1-mediated transcription prevents the
stimulatory effects of insulin-stimulated glucose
metabolism on leptin secretion

To verify that increased leptin secretion in response to
insulin-stimulated glucose metabolism involves Spl-
mediated transcription, primary adipocytes were incu-
bated with WP631, a bisintercalating anthracycline
drug, which specifically inhibits Spl-dependent tran-
scription (Botella et al. 2001, Mansilla et al. 2004).

Journal of Molecular Endocrinology (2007) 38, 537-546
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Probe wt(—112/-83) Spl m(—112/-83)
Competition #

Spl-Ab - - - + + + - - - - + - - -
2-DG - - + - - + - - - + - - - +
Insulin - + + - + + - - + + + - + +
Lane no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Spl-DNA

Figure 4 Effects of 2-DG on insulin-stimulated binding of Sp1 to its consensus sequence in the leptin
promoter. Gel shift analysis was performed in nuclear extracts prepared from primary rat adipocytes treated
for 24 h without or with insulin (1-6 nM) in the absence or presence of 2-DG (50 mg/dl). Sp1 consensus
oligonucleotide and wild-type (wt—112/—83) and mutant (m—112/—83) oligonucleotide sequences of the
leptin promoter were used as probes. For supershift complexes, nuclear extracts were also incubated with a
specific anti-Sp1 antibody. #A competition assay using a 100-fold excess of corresponding unlabeled
oligonucleotide was performed to obtain non-specific-binding activity. Each shift is representative of three

independent experiments.

Treatment with WP631 (0-1 uM) for 48 h had no effect
on basal leptin secretion in cultured primary rat
adipocytes, but completely suppressed insulin-stimu-
lated leptin secretion (Fig. bA). These results were
confirmed by RT-PCR, where the insulin-stimulated
increase in leptin mRNA expression was blocked by
WP631 (Fig. 5B). The effects of WP631 on glucose
utilization and lactate production were also
determined. Figure 5C and D shows that WP631

Journal of Molecular Endocrinology (2007) 38, 537-546

treatment did not significantly modify either glucose
utilization or the percentage of glucose carbon
released as lactate, suggesting that the compound
does not exert non-specific effects on cellular metab-
olism which could affect insulin stimulation of leptin
secretion. Therefore, the suppression of insulin-stimu-
lated leptin secretion caused by WP631 (0-1 uM) is
likely to be due to its inhibitory properties of Spl-
dependent transcription.

www.endocrinology-journals.org
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Figure 5 Effects of WP631 on basal and insulin-stimulated leptin secretion (A), leptin gene expression (B),
glucose utilization (C), and the percentage of glucose carbon released as lactate (D) after 48 h of culture.
Isolated adipocytes were incubated in the absence or presence of insulin (1-6 nM) with WP631 (0-1 uM).
N=8. *P<0-05, **P<0-01, ***P<0-001 compared with control (basal group). #P<0-05, °P<0-001

compared with the insulin-stimulated group.

Effects of okadaic acid (OA) on insulin-stimulated
leptin expression and secretion

Several studies have demonstrated that changes in
the phosphorylation status of Spl are controlling the
ability of this transcription factor to bind to DNA
(Samson & Wong 2002). The effects of okadaic acid
(OA), a potent phosphatase inhibitor, on leptin gene
expression and protein secretion were also examined.
The results showed that both leptin secretion (Fig. 6)
and leptin mRNA levels (data not shown) were
inhibited by OA from the first 4h of culture in
primary adipocytes.

In addition, our data showed that the expression
levels of Spl were not changed as a result of insulin
treatment of adipocytes, suggesting that the overall
quantity of Spl does not seem to be increased (data not
shown).

Together, these data suggest a potential role for
dephosphorylation, likely involving Spl in the tran-
scriptional regulation of leptin by insulin-stimulated
glucose metabolism.

www.endocrinology-journals.org
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Figure 6 Effects of okadaic acid (OA 25 and 500 nM) on insulin-
stimulated leptin secretion in cultured adipocytes. N=6 in all
groups. *P<0-05 compared with control group. bp<0.01 and
°P<0-001 compared with the insulin-stimulated group.
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Discussion

The present study was conducted to investigate the
mechanisms by which insulin-stimulated glucose metab-
olism stimulates leptin secretion in adipocytes. Leptin is
a major determinant of body weight/adiposity in
mammals via its actions to regulate both food intake
and energy expenditure (Havel 2004). A thorough
understanding of the mechanisms regulating leptin
synthesis and secretion may yield new therapeutic
strategies to prevent recidivism following weight loss
(Rosenbaum et al. 2005). We have previously reported
that insulin-stimulated glucose metabolism, rather than
adirect action of insulin itself, is a major determinant of
leptin production in adipocytes (Mueller et al. 1998,
2000, Moreno-Aliaga et al. 2001), and our findings have
been corroborated by in vivo data from human subjects
(Wellhoener et al. 2000). In the present study, we first
identified a region of the leptin promoter (—135 to
—95 bp, relative to the transcription start site) required
to increase the transcriptional activity of the leptin
promoter in response to insulin-stimulated glucose
metabolism in 3T3-L1 cells and in primary cultured rat
adipocytes. This sequence contains a consensus Spl
site, centered at —97 bp, and a mutation of four
nucleotides at this site, but not at an upstream site,
prevents the increase of transcription induced by
insulin. Again, this was demonstrated to be mediated
by insulin-stimulated glucose metabolism as it was
abolished by co-incubation with 2-DG, a competitive
inhibitor of glucose uptake and phosphorylation. This
inhibitory effect of 2-DG is unlikely to be due to a
depletion of adipocyte energy stores, as it is known that
adipocytes can generate energy (ATP) by oxidizing fatty
acids via mitochondrial B-oxidation (Mayers 1993,
Moore et al. 1996). Using gel shift assays, we showed
that insulin increased the binding of Spl to this site,
and that formation of the Spl-DNA complex in
response to insulin was prevented by treatment with
2-DG, demonstrating a requirement for glucose metab-
olism. Consistent with these results, we also found that
incubating primary adipocyte cultures with a specific
inhibitor of Spl-mediated transcription had no effect
on basal leptin secretion, but completely prevented the
increase of leptin secretion induced by insulin.

Spl is a ubiquitously expressed transcription factor
that recognizes GCrich sequences and may function as
a cellular glucose sensor (Vaulont et al. 2000). Low
glucose levels have been shown to attenuate the DNA-
binding activity of Spl via hypo-GlcNAcylation (Kang
et al. 2003), a post-translational modification that
involves the covalent linkage of the monosaccharide
O-GlIcNACc to serine and threonine residues. In this case,
this is followed by proteolytic degradation (Han &
Kudlow 1997). Interestingly, Kang et al. (2003) have
reported that 2-DG downregulates Spl activity,
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although via hyper-GlcNAcylation, which does not
attenuate Sp1’s DNA-binding activity but rather appears
to interfere with its activation domain. In our previous
study (Moreno-Aliaga et al. 2001), we did not detect
significant changes in leptin promoter activity in
response to 2-DG in the absence of insulin, suggesting
that its effects on the leptin promoter are specific for
insulin-mediated glucose metabolism. Other genes
regulated by Spl in response to glucose include ACC
(Daniel & Kim 1996), aldolase A and pyruvate kinase
M2 (Schafer et al. 1997), and plasminogen activator
inhibitor-1 (Chen et al. 1998). Spl and the closely
related Sp3 transcription factors also appear to be
involved in glucose- and insulin-dependent expression
of fatty acid synthase and ATP citrate-lyase (Fukuda et al.
1999). A growing body of evidence suggests that the
DNA-binding and transcription activity of Spl may
increase or decrease in response to changes in
phosphorylation (Samson & Wong 2002, Lam et al.
2003). Thus, dephosphorylation of Spl by protein
phosphatase 1 has been involved in the glucose-
mediated activation of the acetyl-CoA carboxylase,
aldolase, and pyruvate kinase (Daniel et al. 1996,
Schafer et al. 1997). Our data also suggest a potential
role for dephosphorylation, likely involving Sp1 in the
transcriptional regulation of leptin by insulin-stimu-
lated glucose metabolism.

Although the Spl site in the leptin promoter has
been identified in prior studies (Mason et al. 1998,
Fukuda & Iritani 1999), the present work is significant
and novel in that we identified this site by determining
which regions of the promoter were required to
stimulate leptin transcription in response to insulin-
stimulated glucose metabolism. Moreover, our finding
that inhibition of Spl-mediated transcription (with
WP631) prevents the increase in leptin secretion from
adipocytes cultured in the presence of glucose and
insulin has not been previously reported.

The present results conflict with those previously
reported in some other studies, however, Fukuda &
Iritani (1999) also found that Spl bound to the
equivalent site in the rat leptin promoter, but their
data suggested that Spl inhibited leptin transcription
in adipocytes. The authors constructed a reporter gene
containing two copies of the —101 to —83 bp leptin
promoter sequence, which was then transfected into
adipocytes cultured in 20 mM glucose and 0-1 pM
insulin. When an Spl expression vector was co-trans-
fected, a significant inhibition of transcription was
observed after 48 h. Mutation of the Spl site in their
reporter gene also resulted in a loss of responsiveness to
glucose and insulin, leading the authors to conclude
that Spl might inactivate leptin transcription by
binding to this sequence. The discrepancies between
the present study and the findings of Fukuda & Iritani
(1999) may be resolved by considering that native leptin
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mRNA or protein levels in response to Spl transfection
were not assessed in their study, and that the reporter
gene used to perform the experiments was relatively
simple (they used two repeats of a 19 bp sequence
compared with the larger 135 bp promoter sequence in
the present study). Moreover, it is plausible that binding
sites for additional transcription factors, such as
C/enhancer binding protein (EBP)-a. (He et al. 1995),
may be required to accurately assess the full response to
Sp1 co-transfection. Finally, the concentrations of glucose
and insulin in those previous studies were much higher
than we employed in the present study (5 mM and
1:6 nM), which are within the physiological range.
However, their data concerning the binding of Spl to
this sequence and concomitant increase in transcrip-
tional activity in response to glucose and insulin
treatment are entirely consistent with the present study.

Other investigators (Wang et al. 2000) have identified
a glucose- and insulin-responsive element in the
sequence between —1698 and —1692bp of the
mouse leptin promoter. Glucose and insulin prevented
the binding of a nuclear protein to this promoter
element. The authors did not detect any glucose/
insulin-responsive region in the mouse proximal
promoter after transfection of 3T3-L1 adipocytes with
constructs with serial deletions of the mouse leptin
promoter. We do not dispute their results; however, we
maintain that the elements controlling expression of
leptin in adipocytes are likely to be proximal, as others
have found that deletion of bases —762 to —135 of the
leptin promoter does not compromise its expression in
adipocytes (He et al. 1995, Mason et al. 1998). Our view
is further supported by the results of Zhang el al.
(2002), who found evidence for a glucose-responsive
element is located within the proximal portion of the
human leptin promoter (—219 to +29 bp). It must
also be mentioned that the proximal ~150 bp of the
leptin promoter is highly conserved (60-80%) between
mice, rats, and humans (as represented on the VISTA
Genome Browser, available at www.pipeline.lbl.gov
(Couronne et al. 2003)).

In summary, the results of this study reveal a role for
the ubiquitous transcription factor Spl in the
regulation of leptin synthesis and secretion in response
to insulin-stimulated glucose metabolism in adipocytes.
First, we identified the region (—135 to —95 bp) of the
proximal promoter that mediates the increase in leptin
transcription in response to glucose and insulin, and
found that mutation of a consensus Spl-binding site
abolished this response. Next, we demonstrated that
the binding of Sp1 to this site was increased in response
to insulin treatment, and was inhibited when glucose
metabolism is blocked by 2-DG treatment. To sub-
sequently confirm the involvement of Spl in this
process, we found that inhibition of Spl-mediated
transcription prevented insulin-stimulated leptin
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secretion in adipocytes. These novel findings are
consistent with the known role of Spl as a mediator
of transcriptional events in response to glucose
(Vaulont et al. 2000) and significantly enhance our
understanding of how leptin synthesis and secretion by
adipocytes are linked to changes in glucose metabolism
and nutritional status in mammals.

Acknowledgements

This work was supported by the Department of
Education (Navarra Government, Spain), Proyecto
Especial Investigacién ‘Nutricién, Obesidad y Salud’
(University of Navarra), and the US-Spain Science &
Technology Program 2000. We thank Ana Lorente for
her helpful technical assistance. The authors declare
that there is no conflict of interest that would prejudice
the impartiality of this work.

References

Adamowicz T, Flisikowski K, Starzynski R, Zwierzchowski L & Switonski
M 2006 Mutation in the Spl motif of the bovine leptin gene affects
its expression. Mammalian Genome 17 77-82.

Botella LM, Sanchez-Elsner T, Rius C, Corbi A & Bernabeu C 2001
Identification of a critical Spl site within the endoglin promoter
and its involvement in the transforming growth factor-beta
stimulation. Journal of Biological Chemistry 276 34486-34494.

Bradley RL & Cheatham B 1999 Regulation of 0b gene expression and
leptin secretion by insulin and dexamethasone in rat adipocytes.
Diabetes 48 272-278.

Chen YQ, Su M, Walia RR, Hao Q, Covington JW & Vaughan DE 1998
Sp1 sites mediate activation of the plasminogen activator inhibitor-1
promoter by glucose in vascular smooth muscle cells. Journal of
Biological Chemistry 273 8225-8231.

Couronne O, Poliakov A, Bray N, Ishkhanov T, Ryaboy D, Rubin E,
Pachter L & Dubchak I 2003 Strategies and tools for whole-genome
alignments. Genome Research 13 73-80.

Daniel S & Kim KH 1996 Spl mediates glucose activation of the
acetyl-CoA carboxylase promoter. Journal of Biological Chemistry 271
1385-1392.

Daniel S, Zhang S, DePaoli-Roach AA & Kim KH 1996 Depho-
sphorylation of Spl by protein phosphatase 1 is involved in the
glucose-mediated activation of the acetyl-CoA carboxylase gene.
Journal of Biological Chemistry 271 14692-14697.

Dignam JD, Lebovitz RM & Roeder RG 1983 Accurate transcription
initiation by RNA polymerase II in a soluble extract from isolated
mammalian nuclei. Nucleic Acids Research 11 1475-1489.

Farooqi IS & O’Rahilly S 2005 New advances in the genetics of early
onset obesity. International Journal of Obesity and Related Metabolic
Disorders 29 1149-1152.

Fukuda H & Iritani N 1999 Transcriptional regulation of leptin gene
promoter in rat. FEBS Letters 455 165-169.

Fukuda H, Iritani N, Sugimoto T & Ikeda H 1999 Transcriptional
regulation of fatty acid synthase gene by insulin/glucose, poly-
unsaturated fatty acid and leptin in hepatocytes and adipocytes in
normal and genetically obese rats. European Journal of Biochemistry
260 505-511.

Han I & Kudlow JE 1997 Reduced Oglycosylation of Spl is associated
with increased proteasome susceptibility. Molecular and Cellular
Biology 17 2550-2558.

Journal of Molecular Endocrinology (2007) 38, 537-546

545


http://www.pipeline.lbl.gov

546

M J MORENO-ALIAGA and others Sp1 and regulation of leptin

Havel PJ 2004 Update on adipocyte hormones: regulation of energy
balance and carbohydrate/lipid metabolism. Diabetes 53 S143-S151.

He Y, Chen H, Quon MJ & Reitman M 1995 The mouse obese gene.
Genomic organization, promoter activity, and activation by
CCAAT/enhancer-binding protein alpha. journal of Biological
Chemistry 270 28887-28891.

Kang HT, Ju JW, Cho JW & Hwang ES 2003 Down-regulation of Spl
activity through modulation of O-glycosylation by treatment with a
low glucose mimetic, 2-deoxyglucose. Journal of Biological Chemistry
278 51223-51231.

Kolaczynski JW, Goldstein B] & Considine RV 1997 Dexamethasone,
OB gene, and leptin in humans; effect of exogenous hyper-
insulinemia. Journal of Clinical Endocrinology and Metabolism 82
3895-3897.

Lam JK, Matsubara S, Mihara K, Zheng XL, Mooradian AD & Wong NC
2003 Insulin induction of apolipoprotein Al, role of Sp1.
Biochemistry 42 2680-2690.

Lavery DJ & Schibler U 1993 Circadian transcription of the cholesterol
7 alpha hydroxylase gene may involve the liver-enriched bZIP
protein DBP. Genes and Development 7 1871-1884.

Leroy P, Dessolin S, Villageois P, Moon BC, Friedman JM, Ailhaud G &
Dani C 1996 Expression of ob gene in adipose cells. Regulation by
insulin. Journal of Biological Chemistry 271 2365-2368.

Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression
data using real-time quantitative PCR and the 2(—Delta Delta
C(T)) method. Methods 25 402-408.

Mansilla S, Priebe W & Portugal ] 2004 Sp1-targeted inhibition of gene
transcription by WP631 in transfected lymphocytes. Biochemistry 43
7584-7592.

Mason MM, He Y, Chen H, Quon MJ & Reitman M 1998 Regulation of
leptin promoter function by Sp1, C/EBP, and a novel factor.
Endocrinology 139 1013-1022.

Mayers PA 1993 Lipid transport and storage. In Harper’s Biochemistry, pp
250-265. Eds RK Murray, DK Granner, PA Mayes & VW Rodwell.
Norwalk: Appleton and lange.

Moore KH, Tsatsos P, Staudacher DM & Kiechle FL. 1996 Counter
modulation of adipocyte mitochondrial processes by insulin and
S-oxalylglutathione. International Journal of Biochemistry and Cell
Biology 28 183-191.

Moreno-Aliaga MJ & Matsumura F 1999 Endrin inhibits adipocyte
differentiation by selectively altering expression pattern of CCAA-
T/enhancer binding protein-alpha in 3T3-L1 cells. Molecular
Pharmacology 56 91-101.

Moreno-Aliaga MJ, Stanhope KL & Havel P] 2001 Transcriptional
regulation of the leptin promoter by insulin-stimulated glucose
metabolism in 3T3-L1 adipocytes. Biochemical and Biophysical
Research Communications 283 544-548.

Moreno-Aliaga MJ, Martinez JA, Stanhope KL, Fernandez-Otero MP &
Havel P] 2002 Effects of Trecadrine, a beta3-adrenergic agonist, on
leptin secretion, glucose and lipid metabolism in isolated rat
adipocytes. International Journal of Obesity and Related Metabolic
Disorders 26 912-919.

Mueller WM, Gregoire FM, Stanhope KL, Mobbs CV, Mizuno TM,
Warden CH, Stern JS & Havel PJ 1998 Evidence that glucose
metabolism regulates leptin secretion from cultured rat adipocytes.
Endocrinology 139 551-558.

Journal of Molecular Endocrinology (2007) 38, 537-546

Mueller WM, Stanhope KL, Gregoire F, Evans JL. & Havel PJ 2000
Effects of metformin and vanadium on leptin secretion from
cultured rat adipocytes. Obesity Research 8 530-539.

Perez-Matute P, Marti A, Martinez JA, Fernandez-Otero MP,
Stanhope KL, Havel PJ & Moreno-Aliaga MJ 2005 Eicosapen-
taenoic fatty acid increases leptin secretion from primary
cultured rat adipocytes: role of glucose metabolism. American
Journal of Physiology. Regulatory, Integrative and Comparative
Physiology 288 R1682-R1688.

Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L,
Heymsfield S, Gallagher D, Mayer L, Murphy E & Leibel RL 2005
Low-dose leptin reverses skeletal muscle, autonomic, and neuro-
endocrine adaptations to maintenance of reduced weight. Journal of
Clinical Investigation 115 3579-3586.

Saladin R, De Vos P, Guerre-Millo M, Leturque A, Girard J, Staels B &
Auwerx ] 1995 Transient increase in obese gene expression after
food intake or insulin administration. Nature 377 527-529.

Samson SL & Wong NC 2002 Role of Sp1 in insulin regulation of gene
expression. Journal of Molecular Endocrinology 29 265-279.

Schafer D, Hamm-Kunzelmann B & Brand K 1997 Glucose regulates
the promoter activity of aldolase A and pyruvate kinase M2 via
dephosphorylation of Spl. FEBS Letters 417 325-328.

Slieker L], Sloop KW, Surface PL, Kriauciunas A, LaQuier F, Manetta J,
Bue-Valleskey ] & Stephens TW 1996 Regulation of expression of ob
mRNA and protein by glucocorticoids and cAMP. Journal of Biological
Chemistry 271 5301-5304.

Trayhurn P, Duncan JS, Rayner DV & Hardie L] 1996 Rapid
inhibition of 0b gene expression and circulating leptin levels in
lean mice by the beta 3-adrenoceptor agonists BRL 35 135A and
7D2079. Biochemical and Biophysical Research Communications 228
605-610.

Vaulont S, Vasseur-Cognet M & Kahn A 2000 Glucose regulation of
gene transcription. Journal of Biological Chemistry 275 31555-31558.

De Vos P, Lefebvre AM, Miller SG, Guerre-Millo M, Wong K, Saladin R,
Hamann LG, Staels B, Briggs MR & Auwerx ] 1996 Thiazolidine-
diones repress ob gene expression in rodents via activation of
peroxisome proliferator-activated receptor gamma. Journal of
Clinical Investigation 98 1004-1009.

Wang FN, Ma CG, Zhang YL, Zhang NX, Chen YM, Tang QQ & Song
HY 2000 Identification of glucose-responsive and insulin-responsive
elements in promoter of mouse ob gene. Sheng Wu Hua Xue Yu Sheng
Wu Wu Li Xue Bao (Shanghai) 32 541-544.

Wellhoener P, Fruehwald-Schultes B, Kern W, Dantz D, Kerner W, Born J,
Fehm HL & Peters A 2000 Glucose metabolism rather than insulin
is amain determinant of leptin secretion in humans. Journal of Clinical
Endocrinology and Metabolism 85 1267-1271.

Zhang P, Klenk ES, Lazzaro MA, Williams LB & Considine RV 2002
Hexosamines regulate leptin production in 3T3-L1 adipocytes
through transcriptional mechanisms. Endocrinology 143 99-106.

Received in final form 16 February 2007
Accepted 12 March 2007
Made available online as an Accepted Preprint 13 March 2007

www.endocrinology-journals.org



	Outline placeholder
	Introduction
	Materials and methods
	Cell culture and differentiation
	Primary culture of adipocytes
	Plasmids
	Transient transfection of 3T3-L1 cells
	Transient transfection of primary adipocytes by electroporation
	Dual luciferase assay
	Electrophoretic mobility shift assays (EMSAs)
	Measurement of leptin secretion, glucose utilization, and lactate production in cultured primary rat adipocytes
	Real-time PCR analysis
	Statistical analysis

	Results
	Identification of cis-acting DNA sequences involved in the regulation of leptin gene by glucose metabolism
	Identification of trans-acting factor involved in the regulation of the leptin gene by glucose metabolism
	Inhibition of Sp1-mediated transcription prevents the stimulatory effects of insulin-stimulated glucose metabolism on leptin secretion
	Effects of okadaic acid (OA) on insulin-stimulated leptin expression and secretion

	Discussion
	Acknowledgements
	References




