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Chromatin Regulatory Signatures inSaccharomyces cerevisiae
Randy Wu

Abstract

Eukaryotic transcriptional regulation is mediated by ttganization of chromatin
in promoter regions. This thesis describes three psoyeeich examine the relationships
between chromatin and transcriptional regulation enbihdding yeast S. cerevisiae. First
we describe a novel computational algorithm fREDUCREHerelicitation of regulatory
motifs given sequence and expression data as input®URE is used to find JC
motifs, novel repetitive sequences occurring prominenitlyimvnucleosome-free regions
of promoters. The second chapter describes the meatms between,C and chromatin
structure in fine details. We conclude thgCTmotifs constitute directional signature
sequences which likely play roles in defining the locatmimsucleosome-free regions in
a majority of yeast promoters. Finally, we also underaquantitative and systematic
examination of the relationship between transcriptatdrs, their binding sites, and
their corresponding chromatin environments. We find tiiatyeast transcriptome
encompasses a diverse set of signature TF-chroneédiionships. Taken together, these
three studies examine multiple facets of the intricatteire of chromatin regulation in a

simple eukaryotic organism.
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Introduction

Chromatin refers collectively to the intricate cdexes of protein and nucleic
acids that make up chromosomes inside the nuclei of yatiacells. The fundamental
packing unit of chromatin is the nucleosome, which ciasif 147 base pairs of DNA
wrapped around a core octamer of histone proteins[1,2]. Individicdéosomes
connected by intervening linker DNA comprise the “beads-@tring”[3] model of
chromatin organization at its lowest level. The “beadsa-string” are further packed
into a hierarchical scheme of successively more compbecromolecular structures, the
largest of which is the metaphase chromosome (Figure 1).

The elaborate organization of eukaryotic DNA as chromatthought to serve
several essential biological functions. First, chatin condenses the immense amounts
of genomic DNA (3 billion base pairs in human), allowihtp be packaged into the
small volume of typical cells (microns in diameteran orderly way. Second, chromatin
provides DNA with a structural scaffold, giving it the plogiintegrity required for
cellular events such as mitosis and meiosis in wlaigdelscale genomic restructuring
takes place. Finally, chromatin serves multiple raguy functions that control DNA
replication and gene expression.

Chromatin can exert regulatory influences on the exjpregsitterns of
underlying genes through 1) the structural repression of geret@ochromatin[4], 2)
the alteration of expression through covalent posistedional modifications of histone

C-termini tails (reviewed in [5,6]) and 3) the more subtfeience on transcription factor



binding sites (TFBS) exerted by nucleosome-positioning. Antbese categories of
chromatin regulation, the last is perhaps the leaditumderstood and is the focal topic of
this thesis.

It is generally appreciated that the nucleosomal cotiextTFBS is an important
determinant of its function. Perhaps the most bestvkrgystem for examining the
detailed relationship between nucleosome-placement amgttiation is thes. cerevisae
PHOS5 promoter. PHO5, encoding an alkaline phosphatase, is under regulationthem
transcription factor Pho4p. The Pho4p binding site istsitli;m thePHOS promoter in a
nucleosome-free region which is flanked by four positiometdeosomes[7]. The
placement of the Pho4p site in a nucleosome-freemagjion this case, critical to correct
gene function[8]. In a more recent study, it has lEsmonstrated that both binding sites
that are nucleosome-occupied as well as those thaualeosome-free can contribute to
transcriptional regulation, albeit with different fuiomal roles[9]. In this case, it was
found thatextra-nucleosomal binding sites are initially recognized by taedtription
factor and contribute to the induction of transcriptiwhile intra-nucleosomal binding
sites are initially hidden from the transcription fadbat contribute to the steady state
levels of gene activation.

The complex interplay between nucleosome positioningtemscription is made
possible by the fact that nucleosomes do not occupy DNévawal hoc way. It is now
well established that nucleosomes generally occupy preticad well-defined
positions in eukaryotic genomes with only modest (but fanatly significant)
variations over different environmental conditionss sAich, with the advent of high

throughput methods (including tiling microarrays and sequendihg)sibeen possible to



reconstruct the genome-wide nucleosomal “atlas” foersdwrganisms[10,11]. The
availability of these data allows unprecedented oppoiegrivr the detailed
computational study of how nucleosomes relate to teerlying genes. This thesis
presents a set of three studies, each of which add@ssegiestion related to the

phenomena of transcriptional regulation through nucleosgatement.

fREDUCE: detection of degenerate regulatory motifs using aeeelation with
expression

One of the central questions this thesis attempts to ssldre how do DNA
sequences affect the positioning of overlying nucleosomé&?firbt two chapters of this
thesis address this question in two successive parts.ithsrsiecessary to identifyhat
candidate sequences may contribute to the positions afasorhes. Because we are
concerned primarily with transcriptional regulation wstriet our analysis to intergenic
sequences that lie 5’ to genes. Thus we desire an algonhose inputs consist of
promoter sequences and nucleosome positioning data and whcitsdDNA motifs.
While many existing algorithms (reviewed in Chapter 1) haveetlsbaracteristics, we
were concerned that, unlike TF binding sites with highly ddfmetifs, nucleosome-
influencing sequences are likely to be degenerate maisrong in high copy number.
Thus, traditional algorithms may potentially miss impartzandidates.

To address this concern we devised the novel algorithm fREDWMA@Ich is an
improved version of its predecessor REDUCE (RegulattegnEnt Detection Using
Correlation with Expression). Intuitively, REDUCE rks by considering input

sequence and expression data as vectors; a defined satifefare processed into



vectors of motif counts per promoter, vectors are taed with expression data, and
those motifs with the most significant correlations ehosen. fREDUCE allows the
consideration of motifs expressed in the form of IUPM@bols for multiple bases,
allowing the systematic treatment of degenerate sitdbeiREDUCE scheme. Key to
the fREDUCE algorithm are a number of computationaltshits which dramatically

improve its efficiency.

Directed A/T-tracts: a novel signature for nucleosome-freeegions in yeast

One potential motifs are identified, they must be aredyfor how they relate to
the positions of nucleosomes. Many of the top-scoriggeseces candidates identified
by fREDUCE take the form of poly-A and poly-T repeatfie3e A/T-tracts generally
appear to negatively correlate with positions of nudetes, indicating early on that they
may function to repel nucleosomes. Another curiousmasion from the fREDUCE
analysis is that many of the tracts appear as GAn Gt that is, there appears to be a
G/C cap that is placed onto the ends of A/T tracesdirectionally specific manner. In
the second chapter, we describe a set of computationh wiwaracterize the specific
distributions of A/T tracts as well as the mannerthefr capping in yeast intergenic
regions.

Our results were twofold. First, we observed that #h&Ets followed a
characteristic distribution within nucleosome-freeioag: A-tracts appear 3’ relative to
T-tracts and the two are symmetric relative to theraénoordinate or the NFR.
Furthermore, the width of the NFR appears to correspatictie locations of the A/T-

tracts in a strongly quantitative way. Second, Gighbo& of A/T-tracts, while a



phenomenon occurring in intergenic regions in generagpisaally prominent within
NFRs. The highly characteristic placement of cappedtfd@ts led us to hypothesis that
they play formative functions in defining the bounds @impoter NFRs, and that their

directionality may be important in this capacity.

Surveying TF-chromatin profiles in the yeast genome

Having analyzed in extensive detail the functions of a p@taet of NFR-
directing sequences, in Chapter 3 we step back and tdwwanucleosome positions
affect transcriptional regulation. We try to addressiaber of questions such as 1) Do
TF binding sites on the whole prefer to lie in nucleosdmeregions, where are are
presumably more free form steric hinderance? 2) Hownudteosomes affect the ability
of TFs to bind to their cognate sites? 3) How do rasdenes affect the ability of bound
transcription factors to carry out their intended fumc® All of these questions can be
asked independently for each of the 122 TFs surveyed.

We do this by considering the nucleosome-occupation, TF-bindimhsequence
conservation data collectively and creating a set abeliparameters each of which
answers one of the stated questions. The TF-chronedditionships of each
transcription factor can thus be characterized by afdeur derived parameters. By
clustering TFs according to the derived parameters, weaggiobal view of trends in

TF-chromatin relations in the transcriptome.



Figures

Figure 1. Views of chromatin at various levels of detail.
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Figure 2. ThePHOS5 gene as a model system for examining the role of asctae
context in transcription (Lam et al. 2008YHO5 contains two binding sites for the
transcription factor Pho4p: a strong site located indeosome and a weak site located
in a nucleosome-free region. It was observed thanthection profiles of genes
containing mutant promoters behaved as if the nucleosorndpMdite was masked.
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Figure 3. The determination of genome-wide nucleosome positiong @sfiling-array
approach (Lee et al. 2007).
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Chapter 1

fREDUCE: Detection of Degenerate Regulatory Elemest

Using Correlation with Expression

Abstract

The precision of transcriptional regulation is madesfiibs by the specificity of physical
interactions between transcription factors and thegnate binding sites on DNA. A
major challenge is to decipher transcription factor inigaites from sequence and
functional genomic data using computational means. Whikemtumethods can detect
strong binding sites, they are less sensitive to degenandiis. We present fREDUCE,
a computational method specialized for the detectioneakvor degenerate binding
motifs from gene expression or ChlP-chip data. fREDUKJguilt upon the widely
applied program REDUCE, which elicits motifs by global statal correlation of motif
counts with expression data. fREDUCE introduces seadgatithmic refinements that
allow efficient exhaustive searches of oligonucleotidiék a specified number of
degenerate IUPAC symbols. On yeast ChlIP-chip benchnf&E®UCE correctly
identified motifs and their degeneracies with accuracieatgr than its predecessor
REDUCE as well as other known motif-finding programs. Wiee also used fREDUCE
to make novel motif predictions for transcription fastaith poorly characterized

binding sites. We demonstrate that fREDUCE is a valuablgfor the prediction of
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degenerate transcription factor binding sites, especialiy firray datasets with weak

signals that may elude other motif detection methods.

Introduction

Transcriptional regulation is modulated by a complex nétwf interactions
between regulatory proteins and their binding targets oA.DNo comprehensively
understand gene regulation at a systems level, a prgoaityis to decipher the
“regulatory code” that consists of knowledge of alhteriptional regulators, their DNA
binding profiles, and their regulatory targets [1]. Regulaiioiormation can be inferred
from the combined analysis of genomic sequence with amd@mce of microarray based
methods such as ChIP-chip (chromatin immunoprecipitatiomicroarray)[2-3] and
transcription factor perturbation experiments [4-5]. Idoer, highly reliable regulator
specificies have been unattainable for many regulatorgg@royp such genomic-scale
methods [1] since weak signals from regulators are etteydifficult to isolate from
experimental noise.

Thus, from a computational standpoint, a major challenge develop
techniques that can extract maximal regulator specificioymation from imperfect data.
A common strategy among computational tools developedhifoptirpose is to first
obtain a small group of genes in which a given motif imagtatistically over-
represented, from which the motif can then be eliaigdg methods such as position
weight matrix updating and word enumeration [5-10]. Whildlyigffective in some
cases, a potential drawback of this approach is that tleegs of isolating a subgroup of

sequences, typically done using clustering, cutoffs, or ifumat categorization, can be
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arbitrary. The delineation of signal from background in@yoor for noisy experimental
data, where cutoffs can lead to significant loss of médion. Other algorithms, such as
dictionary- [11] or steganalysis-based [12] methods, deatpion clustering but can
benefit from subgroup selection.

A technique used by many motif-finding algorithms is to integeapgession data
into the search process [12-14]. For example, the gigoREDUCE (Regulatory
Element Detection Using Correlation with Expressiavyids subgroup selection in a
natural way by genome-wide fitting of motif counts to @gsion data [15]. REDUCE is
a deterministic method that first enumerates oligonuidestand then identifies words
whose occurrence in promoter sequences correlate tnosgly with expression data.
This procedure is applied iteratively to produce a setigdaucleotides that produce the
best simultaneous fit to the data. REDUCE requires asingle expression dataset and
makes use of the entire genomic dataset (both sighaleakdriound) to assess the
significance of individual motifs. This method, whiclslaready been widely applied
[16-21], allows greater sensitivity to weak transcripti@ignals and facilitates the
discovery of combinatorial effects between regulators.

One weakness of REDUCE is that it can miss weak lblddically significant
variants of the regulator site. Highly degenerate muatifsse individual variants fall
below the detection threshold will be missed altogetfdns is particularly the case for
regulators in higher mammalian genomes, which can extibmg site to site variation
in specificity. Thus, we have generalized the REDU@R@ach to examine words
containing degenerate IUPAC symbols representing multgded(i.e. S=C or G).

However, a straightforward extension of REDUCE usixigaestive enumeration of

12



degenerate motifs becomes impractical when the magtheor number of degenerate

positions increase. Specifically, by includimgUPAC symbols in a word of lengtithe

| m
motif search space increases by a factome(fll'—)l[lzlj where 11 is the number of
-m)!

IUPAC symbols (excluding A,C,G,T). For example, tbenputational cost is increased
by 340-fold forl=10 andm=2, and by 3500-fold fom=3. Therefore, we have developed
fast-REDUCE (fREDUCE), a significant re-implemernpatiof the REDUCE algorithm
that allows efficient searches of the extended sphdegenerate motifs. We have
applied fREDUCE to detect multiple motifs for transadptfactor binding sites in yeast

as well as human.

Results

Algorithm. The original version of REDUCE identifies motifs byhaustively

correlating all oligonucleotides up to lendtim promoter sequences with expression data.
However, the direct computation of the Pearson cdioel@oefficient is computationally
laborious and is not well suited for analyzing large spad¢elegenerate oligonucleotides.
fREDUCE uses the following strategy to efficiently compthie Pearson coefficients of
the most significant degenerate motifs (Figure 1): listoff degenerate motifs that can
be derived from the sequence data is generated. 2) Fodegeherate motif, we can
quickly compute a “pseudo-Pearson” coefficient, an eséiroathe actual Pearson
coefficient. The pseudo-Pearson coefficient is guaeari@ be an upper-bound on the
actual Pearson coefficient and is used as a filteiiorelte most (typically >99.9%) of

the motif list. 3) Actual Pearson coefficients apenputed and the top motif is found and

13



4) The contribution from the top motif is subtractemhirthe expression data to form a

residual, which is used for subsequent rounds of motif searching.

Performance Assessment with Yeast ChIP-chiplo assess the performance of
fREDUCE, we applied the algorithm to 352 ChIP-chip experimieata Harbinsoret. al.
[1] involving 203 known and putative transcription factors miadding yeass
cerevisae. For each ChlIP-chip experiment, we correlated thealized array data to
the corresponding yeast intergenic sequences, elicitingsnodtip to length 8 and
containing up to 2 IUPAC degenerate symbols. In order tify\tbe correctness of our
predictions, we compared these results to a benchmamdingssisting of 65 high
confidence motif logos assembled from the predictiorsxa$eparate motif finding
algorithms [1]. For 47 of 65 benchmarks fREDUCE produced an @matif that was
identical to the annotated motif, including correct degemesddable 1). In comparison,
we ran AlignACE [22-23] on the same 65 ChIP-chip experimedtsng the same
filtering and comparison criteria, we found that AlignA@&ected the annotated motif
for only 36 of 65 regulators. We also compared the perfocenaf fREDUCE with
those of the other 5 motif finding algorithms used to as&ethke benchmark motifs
(Figure 2). Even though the benchmark motifs are likelyetbiased toward the six
programs from which they were originally found, fREDUGH stood out as having the
best individual performance.

We also examined the performance of fREDUCE on 38 regulimovenich

Harbisonet. al. detected motifs with lower confidence. Noting that mahghese 38
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predicted motifs could contain inaccuracies, fREDUCEched 7 of these predictions

while alignACE matched 3.

Comparision to the original REDUCE and to MatrixREDUCE To assess the ability
of fREDUCE to correctly capture motif degeneraciesswstematically compared the
predictions made by fREDUCE to those made by its predec&EDUCE on the subset
of benchmark motifs containing significant degeneracy. Of ffgmierate benchmark
motifs, fREDUCE assigned IUPAC degenerate symbols ic&htito the benchmark in
11 cases (Table 2a). In the 4 remaining cases (HAP1, MSNES and SUM1)
fREDUCE made a prediction which is consistent withidaachmark motif while having
a different degeneracy (e.g. CGGKGWTA vs. CGGwsTTAS®B5). In all of these
cases, fREDUCE assigns the degenerate motif a monécagt p-value than the
corresponding non-degenerate motif. We note that iresm@®es motif degeneracies can
be detected by the original REDUCE as separate motifqii@as. This is especially
true for regulators with strong signal (AFT2, CIN5, FHGICN4, SFP1 and YAP7).
However, in 5 cases degeneracies successfully predicRERYJCE were not
detectable at all by REDUCE (CAD1, PHO4, SNT2, TEC1 and MAH his is typically
characteristic of regulators with weaker signal.

We also compared the performance of fREDUCE to MaERRCE, a recently
introduced REDUCE-variant that refines motifs elicitedRBDUCE into Position
Specific Affinity Matrices (PSAM) [24-25]. MatrixREDUCHatched 43 of the 65
benchmarks as well as 6 of 38 motifs in the lower contideset. In the high confidence

set, six predictions were specific to fREDUCE (HAP4HR1SINO4, LEU3, NFG1 and

15



THI2) while two were specific to MatrixREDUCE (MCML1, SIP4$pecific predictions
from the lower confidence set included ROX1, SWI5, UMBIREDUCE and PUT3,
RLM1 for MatrixREDUCE. Overall, fREDUCE has a sligghstronger joint

performance with 9 uniquely correct predictions from the $ets versus
MatrixREDUCE's 4. In the former cases, MatrixREDU@E not seem to begin with

the correct seed, suggesting that an enumeration stiatbggeficial for some regulators.
In the latter cases, fREDUCE does not find the comettf because the long and fuzzy
nature of these motifs makes them too costly for enatiogr. We note that some of
these differences are dependent on run parametersheiffatameters we have used
MatrixREDUCE took an order of magnitude longer to run omaye than fREDUCE

(data not shown).

Prediction of novel motifs from yeast ChIP-chip Next we looked to see whether
fREDUCE was capable of detecting novel motifs for trapsion factors with
uncharacterized specificities. Of the remaining trapgon factors in the ChlP-chip
study with no benchmark logo, we found 24 cases where fREDtd&de nontrivial (not
repetitive poly-dA/dT sequences) motif predictions withatues under 18 (Table 3).

In all of these cases, there has been little toxper@mental information available
regarding the specificity, and existing computation methads lyielded little additional
insight. Nevertheless, in a few cases we found evidient® literature which supports
the novel motif predictions we have made with fREDUCr example, the binding site
of AROS8O0, a regulator of the aromatic amino acid strutgeaes, has been

characterized in two genes as being tandem repeats séghences TAACCG and

16



TTGCCG [26]. From the ChIP-chip data, fREDUCE elicitke motif GATAACCG

with high significance (p=1¢) as well as the degenerate motif T(A/G)CCG(A/C) (p =
10°9), which is similar to both of the characterized remaments and reflects their
degeneracies. We also considered the regulator MTH1, whgdtively regulates the
glucose sensing signal transduction pathway by interagfihgthe transcriptional
repressor Rgtlp [27]. Although it is unknown whether Mthag intrinsic DNA
sequence specificity, Rgtlp has been shown to have théigpe€@GGANNA [28].
fREDUCE found the matching motif GGAGRA (p=1®), which is compatible with the

notion that Mth1p binds to DNA in association with Rgtlp.

Motif Elicitation in Human Hepatocytes In higher eukaryotes, motifs tend to be more
degenerate and dispersed among longer intergenic regiocemmon benchmark set
used to evaluate the performance of computational algarithimigher eukaryotes is the
liver specific dataset [29]. Krivan et. al compiled acfeexperimentally defined
regulatory elements upstream of genes that were expressiedively in liver or in a
small number of tissues including liver. From this sejesfes, they found that
hepatocyte-specific gene expression is mainly regulatedsoyall set of transcription
factors (TFs), including HNF-1, HNF-3, HNF-4, and C/EBMNF-1, HNF-4, and
C/EBP are known to be transcriptional activators th@aseTRANSFAC [30] annotation.
We ran fREDUCE on human adult hepatocyte expressitatdaapture binding
sites of liver-specific transcription factors. fREDUC&ptured both the forward and
reverse complement of the HNF-4 binding site as welvaskey degeneracies in the

motif core as published in Krivaat. al. (Table 2b). HNF-4 is known to be linked to gene
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expression in mature liver [29], which is consistent \hig expression data set used in
our analysis. In contrast, REDUCE was not able to caphe known binding sites,
which is most likely due to the degeneracy involved in trenkmconsensus. These
results show the potential of using fREDUCE to identfgulatory elements in higher

eukaryotes, including human.

Discussion

Despite the availability of powerful techniques suclBH>-chip, the binding
specificities of many transcription factors remainharacterized. This can be due to
several reasons, including 1) regulators that have fewngiertargets 2) regulators which
interact weakly or indirectly with their targets aé)dregulators which bind to their
maximal set of targets only under very specific environalantes, which may be hard
to find experimentally. fREDUCE offers increased sensijtivi these cases because it 1)
uses the entire array data set for correlation anddtgkes all possible degeneracies.
While fREDUCE is in some respects similar to motif ssgior [14] and matrixREDUCE,
a key distinction is that fREDUCE detects degeneratésrae novo by exhaustive
enumeration. In contrast, matrixREDUCE refines degemesdrom non-degenerate
seeds and motif regressor selects among candidateesaising correlation with
expression. Thus, fREDUCE may be advantageous whéfs rae difficult to detect in
a non-degenerate form or are missed in the candidate s

By comparison to 65 benchmark logos in yeast, we s¢¢RE®UCE is
comparable to or greater in detection power versus algaiikenAlignACE for strong

motifs that are relatively easy to detect. Everhese cases, fREDUCE outperforms the
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original REDUCE algorithm by accurately predicting known daegacies. The most
advantageous use of fREDUCE, however, is for the deteofiweak motifs which may
lie at the border of detection. It is difficult torifg the correctness of many of the motifs
elicited in these cases because of their poor charatien. Nevertheless, we have
found two cases where fREDUCE was sensitive to sulgifals: AROS80, for which
sites are highly degenerate, and MTH1, which may haveal gignal due an indirect
interaction with DNA. We have also shown that fRECRJis capable of capturing the
HNF-4 binding site in hepatocytes, demonstrating that tharighm is generally

applicable to the detection of degenerate motifs in marmmaells.

Conclusions

We have presented the motif prediction algorithm fREDU&Eefined variation of
REDUCE specialized for the detection of degenerate maolife two primary strengths
of fREDUCE are 1) it maximizes data utilization byifig all expression data and 2) it
searches motif degeneracies in a comprehensive and unbiaged\ig have shown that
fREDUCE is an improvement upon the existing REDUCE algorifor degenerate
binding profiles and that it can outperform existing mimifling methods on yeast ChiP-
chip benchmarks. Furthermore, fREDUCE is able to detechdegfe signals in yeast
and human. Thus, fREDUCE should be a valuable computakibfor the detection of

subtle motifs.

Methods

Algorithm .
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The pearson correlation between expression valuesoamiscof a possibly

degenerate motD is given by:

G J—

> (E -E)(n° -n®)
P(D) = El

\/Z(Eiz _Ez) * \/Z(niDniD _ﬁz)

Wherei is an index over genek, is the expression of gefnen?® is the number of motif

counts matching in sequencé T is the average af® over all genes an@ is the total

: . E -E
number of genes. Lef be the normalized gene expressiag): = ' , SO

|2 (E-E)

G G
that > g, =0and ) g7 =1. Then the Pearson coefficient reduces to:

i=1 i=1

G

> gin’

=1

Ji(n?n? —n?)

i=1

P(D) =

Sincen? =) n®, where the sum is over all non-degenerate nudeatiotifsS that match
S

G
D, we can pre-compute and store a tabl@njiniS for all Sand readily construct the
i=1

numerator oP(D) for anyD. However, the denominator is not lineamin and cannot

be expressed as a sum o8erNevertheless we can compute a pseudo-Pearson

coefficient:

G

~ 2.an’
P(D) = 2
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G
wherei? =>">"nn® can be constructed as a sum oSer
S i=1

Sincei n°n’ = Z(z nslj(z n%j ZZEnﬁnﬁ > A2, we havéP(D)| < ‘|5(D)‘.
B s s

=
Hence the magnitude of pseudo-Pearson coefficseamt upper bound for the magnitude
of the actual Pearson coefficient, allowing rapcesning of all degenerate motifs.
Actual Pearson values can then be computed foradl subset of motifs with pseudo-
Pearson values above a given threshold. This ssleeffective except for motifs where
n% <Gn?, in which case the Pearson coefficient must bepeea directly. Thus,
fREDUCE will give a computational advantage as lasghe average motif countis
less than one.

Specifically, fREDUCE uses the following procedure

(1) For each oligonucleotide strirgjof lengthL that appears in the sequence, we pre-
G

.. S 1 —s &
compute the quantitig,” = > g,n° ,i° =G n®,andn’ =) 'n°n®
i=1 =1

i i=1
(2) We generate a list of all possible nucleotides@airig up td degeneracies
matching the set &

(3) We rapidly compute corresponding quantities fodatjenerate strindg3

G

matchingS p, = ZQIn, Zpd : é n®=>n°, and
=1 S

G
n>=>>n°n’= Zn > and use them to construct the pseudo-Pearson
S i=1

coefficient p, /4/n” —Gn* . We save only those motifs whose pseudo-Pearson

coefficients exceed a threshold correspondingeqthialue cutoff for its motif
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class. For the motifs whose pseudo-Pearson coetoeamnot be calculated

directly (becausé” < Gn?), we compute the true Pearson.

(4) We sort the remaining motifs in decreasing ordehefmagnitudes of their
pseudo-Pearson and compute true Pearson coeffigretitis order. We stop
computing when the magnitude of the pseudo-Peaaloe of the current motif
in the list falls below the magnitude of the trusaPson coefficient of the top
motif.

(5) Finally, we compute the residual gene expresgion g — P(D)n°, that is, the
expression data after the effect of m@tihas been taken into account. After a
renormalization, the residual is used to carrysuliisequent rounds of motif
finding.

To estimate the statistical significance of motis, note that since |P(D)|<<1, its

distribution is well approximated by a Normal distition. We convert P(D) into a z-

Z(D) = P(D)J%

This z-score is used to derive the p-value [15]:

score:

P
pvalue:i Je 2 dt
277- Z(D)

To correct for multiple testing, we first apply atfderroni correction factor of

L
[mJD’ML‘mto each motif of length containingm IUPAC symbols. This factor

corresponds to the total number of motifs in tlesslol. andm, whereD=11 or 15

depending on whether 3-fold IUPAC symbols are ideth We then apply a second
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correction factor for the total number of motif clesg&xamined for a particular run. For
example, with the settings (L=7 and m=1) we would exaraiheotifs in the classes
(6,0), (6,1), (7,0) and (7,1) giving a second correction faaftdrfor each motif (we
require a minimum motif length of 6). This weighted metbbdorrection has the
advantage of accounting for the fact that motif clagsslarger values af andm tend

to give higher numbers of false positives.

fREDUCE performance testing. We ran fREDUCE on the REB1_YPD ChIP-chip data
from Harbison et. al. [1] for varying andm on an 2.40 GHz Intel Xeon processor. In all
runs, the known Reblp binding site CGGGTAA or close vagiappeared as the top

motif (data not shown).

Motif Detection from Yeast ChIP-chip. We applied fREDUCE to 354 yeast ChIP-chip
experiments involving 203 known and putative transcriptiorofadtl]. Each
experiment was analyzed with fREDUCE using the correspgrset of yeast intergenic
sequences, searching all motifs up to length 8 containing up to-lviIUPAC
degenerate symbols. We filtered the set of motifsddoneach fREDUCE run by three
criteria. First, since yeast intergenic sequences teagvely low G/C content, we
eliminated motifs which only contained the letters A/Té#/such motifs tend to have
inflated correlation coefficients. From the remaglist of motifs, we chose the top
three most significant motifs for further comparis@tcounting for the fact that we are
eliciting motifs from several hundred experiments, vge a@iscarded motifs with

corrected p-values less significant tharf 10f the given transcription factor was
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associated with ChIP-chip data under multiple environmenotaditions, then filtered
motifs from all conditions were combined and the tope¢hethosen. The final motifs for
each transcription factor were compared to referencésnpoédicted by Harbinsoet. al.
based on a composite of several motif finding algoritiiths YWe extracted IUPAC
representations of reference motifs from [31], whichtaimed 102 specificities of which
65 were considered high confidence. Each reference motitovapared to their
corresponding fREDUCE predictions using a sliding windowgtcomparison.
Predicted motifs are considered a match if thereleaat one window where all IUPAC
characters are consistent between both stringsif petlictions made for transcription

factors with no reference motifs were compared évditure.

Comparison to non-degenerate REDUCE From the 65 high confidence benchmarks,
we selected cases where the annotated motif had ableafJPAC character. In 15 of
these cases, both fREDUCE and REDUCE made corfect, correctly degenerate
predictions. In 11 of these 15 cases fREDUCE made tiheatdUPAC assignments.

For each of these 11 cases, we considered whether theedsmgecan be assembled from

non-degenerate motifs with p<0.01 predicted by REDUCE.

Comparison to other motif-finding algorithms. We obtained the alignACE package
and ran all ChlP-chip data with the default parametergysiobes with p-values below
0.001. The output alignment was converted into an IURAGgsusing the method

described by Cavenet. al. [32] and the resulting motifs were compared to reference

motifs in the same way as the fREDUCE motif prediasi Details of alignACE motifs
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found and comparisons to alignACE motifs from Harbieoal. are available in Supp.
Table 1. We also obtained MatrixREDUCE [33] and ran hIRcchip data against the
provided yeast sequence file Y5 600 Bst.fa. Default paranveteesused except that
we set max_motif=10 for consistency with our fREDUQES. For the other five
algorithms, we tallied the total number of referencesatch algorithm from the list of

matrices on Harbisoé al. supporting website [34].

Motif Detection from Human Liver Tissue. 158 custom made Affymetrix gene
expression arrays for 79 different human tissues (2 e#piceach) were obtained from
Novartis in a publicly available database [35-36]. Thayarwere normalized using
gcrma [37-38] and the probes were annotated using Ensemblmgestateon [39] for
human build 35. To study adult liver specific gene expresgierfirst normalized
expression values for each liver tissue replicate aigdnasaverage expression of all other
tissues (excluding the 2 liver tissue experiments) Theesgmn value of each gene in

liver tissue experiments is represented as the followAscpre:

n,
E™%iver _,Ugother

g g other

z"9 =

Wheren is the liver tissue experiment replicate numigds, the index over genel)%ver
is the expression value of geqén replicaten, Lomer IS the mean expression value of gene
g in non-liver tissue experiments, aggher is the standard deviation of gegpé non-

liver tissue experiments.
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Human genomic sequences (build 35) were extracted 1000bp up$toeathe
transcriptional start site (TSS) if known, or frone tihitiation codon, based on Ensembl
v35 [40]. The repeat masked promoter sequences were mapmeceg8ponding z-
scores, which represent gene expression. This resaleetinal set of 11,710 paired z-
scores and promoter sequences for input into fREDUCEthéeran fREDUCE on the
z-scores for each replicate of the liver tissue enbdsis that a higher z-score translates
to higher expression in liver tissues compared to the afiseies. Two different sets of
parameters were run on each replicate as followgtheB with 0 IUPAC symbols and

length 8 with 2 JUPAC symbols.

Software Availability and Requirements

* Project Name: fREDUCE

* Project Home Page: http://genome3.ucsf.edu:8080/freduce
* Operating system:Linux

* Programming languages: C++

Source code and example usage are included in the réledBEDUCE-1.0.tar.gz.
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Tables

Table 1L fREDUCE predictions from 65 yeast ChlP-chip experiments oHarbinson
et. al. Check marks\) indicate that fREDUCE matched the IUPAC string

corresponding to the benchmark logo. The results ohgasianalysis for AlignACE is
given in the right column.

Factor Known Site Condition Motif p- fREDUCE AlignhACE
value match? Match?

ABF1 rTCAVL....Acg YPD rTGATmM 22.4

ACE2 tGCTGGT YPD kGCTGGy 6.2 N

AFT2 GGGTGy H202Lo rGGTGy 91.5 \ \
AZF1  YwTTkcKKTyyckgykky YPD mTTTTw 14.8

BAS1 TGACTC YPD TGACTCCG 37.2 \ \
CAD1 mTTASTmMAKC YPD GMTTASTA 4.2 \ \
CBF1 tCACGTG YPD CACGTG 90.7 \ \
CIN5 TTAygTAA YPD TTAYrTAA  59.4 N 3
DAL82 GATAAGa RAPA GATAAG 9.4 N

DIG1 TgAAAca YPD TGAAACA 18 N

FHL1 rTGTayGGrtg YPD GTAYGGIT 141.2 \ \
FKH1 tTgTTTac YPD yTGTTKAC  28.8 N

FKH2 aaa.GTAAACAa YPD GTAAACA 237 \ \
GAL4 CGG........... cCg YPD TTCGGAGC 4.9 N
GAT1 aGATAAG RAPA GATAAG 13.3 N

GCN4 TGAsTCa YPD ITGASTCA  166.7 \ \
GLN3 GATAAGa.a RAPA GATAAG 38.2 N

HAP1 GGmraTA.CGs YPD KTTATCGG  60.3 \ \
HAP4 g.CcAAtcA YPD CCAATSAr 217 \ \
HSF1 TTCya....TTC H202Hi  TTCyrGAA  109.5 \ \
IME1 H202Hi

INO2 CAcaTGc YPD kCACATGC 12.8 N

INO4 CATGTGaaaa YPD CAYITG 89.2 \ \
LEU3 cCGgtacCGG YPD CGGKACCG 10.8 \ \
MBP1 rACGCGt YPD ACGCGT  126.9 \ \
MCM1 tttCC.rAt..gg Alpha yTTCCTAA 57 N
MET4  RMmAwsTGKSgyGsc SM CrCGyG 14.8

MSN2 MAGGGGsgg H202Hi rGGGGy 20.8 N

NDD1 tt.CC.rAW..GG YPD CTCGAGGC 123 N
NRG1 GGaCCCT YPD AGGGTCs  11.3 \ \
PDR1 ccGCCgRAwra YPD CCrwACAT 11.4

PHD1 sc.GC.gg YPD mTGCAk 21.1 N
PHO2 SGTGCGsygyG Pi-

PHO4 CACGTGs Pi- SsCACGTGs 14.1 N

RAP1 tGyayGGrtg SM GyrTGGGT  57.1 \ \
RCS1 ggGTGca.t H202Lo GGGTGCA  43.6 \ \
RDS1 kCGGCCGa H202Hi TCCGCGG  35.6 N

REB1 CGGGTAA YPD CGGGTAAy 136.7 \ \
RFX1 TTgccATggCAAC YPD GTCGTCCG 3.2 N
RLR1 ATTTTCHCwTt YPD

RPN4 TTTGCCACC H202Lo TyGCCACC 109.8 N N
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SFP1 ayCcrtACay SM yCCITACA  31.6 \ \
SIG1 ArGmMAWCIrAmMAA H202Hi

SIP4 CGG.y.AATGGIT SM CTCGGCCC 58.4

SKN7 G.C..GsCs H202Lo GsCyGGCC 37.7 N

SNT2 yGGCGCTAyca YPD GITAGCGC  96.1 \ \
SOK2 tGCAg..a BUT14 GGTrCAGA 56

SPT2 ymtGTmTytAw YPD TkyATA 6.2
SPT23 rAAATsaA YPD WTKAAA 25.1

STB1 rracGCsAaa YPD wCGCGT 4 N

STB4 TCGg..CGA YPD CGGryCGA 7.1 \ \
STB5 CGGwstTAta YPD CGGKGWTA 24 N
STE12 tgAAACa YPD TGAAACA 389 \ \
SUM1 gyGwCAswaaw YPD GyGTCAs  25.0 N N
SUT1 gcsGsg..sG YPD WCKCCG 49.8

SWi4 raCgCsAAA YPD CGCsAAAA 126 \ \
SWI6 tttcGCGt YPD TTTCsk 11.6 N

TEC1 MGAATG YPD MGAATGT  22.4 N

THI2 gmAAcy.twAgA Thi- GGAAACYS 45 N

TYE7 tCACGTGAyY YPD TCACGTGr 70.8 \ \
UME6 taGCCGCCsa YPD GCsGCy 154.3 \ \
YAP1 TTaGTmAGC YPD mTKACTAA 136 \ \
YAP7 mTkAsTmAk H202Hi mMTTASTAA 121.9 \ \

YDRO026¢ ttTACCCGGm YPD CCGGGTAA 23.2 N N

ZAP1 ACCCTmMAAGGTYIT YPD WAYATT 16.5
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Table 2a: fREDUCE predictions in comparison to non-degeneratpredictions made
by REDUCE. Benchmark logos and their corresponding motifs are sHomreference.
P-values are shown as —jegalues.

TGACTAA( 15. 9)

TF REDUCE f REDUCE Benchmar k Logo Benchnar k
(p-val ue) (p-val ue) Mot i f
AFT2 | GGGTGC(61. 8) GGTGy(91. 5) GGIGy
GGGTGT( 31. 6) AW TV
CADL | ATTAGTA(2.9) | GWTASTA(4. 2) TT MI TAS TMAKC
. A TAA C
F=N ——— 1
CIN6 | TATGTAA(17. 8) TTAyr TAA TTAYGTAA
TACGTAA( 15. 6) (59. 4) TTAE_TAJ&
FHLL | TGTACGH 59. 4) GTAYGG' T r TGTayGar t
GTATGGEH 30. 5) (159. 7) TUT as =
GON4 | TGACTCA( 103. 3) r TGASTCA TGASTCA
GAGTCAT( 36. 4) (166. 7) T _ACTCA
HAPL | TATCGE 38. 8) KTTATCGG GG aTA. CGs
- (60. 3) __aTA C o
MBN2 | AAGGGG 8. 6) r GGGGy ( 20. 8) MAGGGGs gg
) ;::A eV 3EE
PHO4 | CACGTGC( 6. 4) SCACGTGs CACGTGS
- (14. 1) CAC T =
SFP1 | CCGTACA(12. 2) yCCr TACA ayCcr t ACay
CCCATAC( 10. 4) (31. 6) A_«.;CQ ATAC A
SNT2 | GGOGCTA(49. 7) GCGCTAYC yGGOGCTAyca
CGCTATC( 7. 0) (96. 1) GG CTA_Q )
STB5 | CGGTGIT( 7. 0) CGCKGNTA CCOnst TAL a
: (24.0) CGL_orTA~
SUML | TGICAC(11. 4) GNCAGTAA gy GrCAswaa
TGACAC( 8. 9) (25.0) - *CAE Al
TECL | AGAATG( 13.0) rr GAATGT rr GAATG
- (22. 4) .G AET
YAPL | ATTAGI(10.9) TTAGTTAK o TTaGImAGe
i (13. 6) TT_& TQA c
YAP7 | TTACTAA(50. 1) TTASTAAK MTKAS TmAk
TTAGTAA( 41. 7) (118. 6) GTTA-:TA"’*
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Table 2b: fREDUCE elicitation of the HNF-4 binding site from humanhepatocyte
expression data.

TF REDUCE f REDUCE Benchmar k Logo Benchmar k
(p-val ue) (p-val ue) Mot i f
HNF- 4 - GRMCTTTG( 7. 4) TG nCTTTG

To{T.

b
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Table 3. fREDUCE predictions for regulators with poorly characterized
specificities. We searched the literature for evidence supporting ouf pretlictions
and the matching examples are highlighted. *The annotatétsrfor Rgtlp.

Requlator Predicted Site P-value Motif from Literature
Search
ARGS80 TTYTCY 34.3 CYNYYAANKRMAR
ARO80 TRCCGM 5.6 TWRCCG
ASK10 AYTTKA 9.1
CST6 TYAAWA 7.0
DAT1 WTTSAA 16.7
ECM22 GCRSCC 16.2 TCGTATA
EDS1 TWTTSA 8.4
FAP7 WTRAAG 11.3
GAT3 CCTSGGC 15.2
GCR2 TTCAWW 5.0 CTTCC
HAL9 WTTRAA 14.7
HIR3 WTTRAA 22.0 ACGCTAAA
IME4 YACACAC 17.8
MAL13 CCASSG 11.6
MAL33 GCRCAS 13.8
MET18 WTTCAA 8.2
MGA1 TTTRAY 5.9
MSN1 MMCCCA 3.8
MTH1 GGAGRA 3.4 CGGANNA *
OAF1 CGCASY 4.9 CGGNNNTNAN.1,CCG
RGM1 CSGSCC 27.1
RTG1 ATYTRA 10.3
SIP3 WTCAAW 7.6
SMK1 WTGWAG 3.9
STB2 CAAGGYC 3.1
STB6 TATSAW 5.6
STP4 AARMTT 24.1
TOS8 RCACMC 20.7
UPC2 MATSAA 4.5
WAR1 TYAAGW 6.6
YBR239c WATAYT 16.8
YDR049W AWTGAW 3.5
YERO51w AKYACT 3.9
YER130C CAARTW 3.1
YFLO52w WTCAAK 3.6
YGRO067C TTYAAW 4.6
YKR064W WGTTRA 6.3
YLR278C KTTMAA 7.2
YMLO81W WCAAMT 3.7
YNRO63W TCAARTA 2.4
YPR196W WTCAAW 10.3
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Figures

Figure 1. The fREDUCE algorithm. A set of possible IUPAC strings are generated
from the input sequence. For each IUPAC string, we congppseudo-Pearson
coefficient, which is an estimate and upper bound orrtigeRearson coefficient. After
the vast majority of motifs are filtered out using gseudo-Pearson value, we then
compute true Pearson coefficients for the remainingfenatid select the top motif. The
residual expression value is then used to iteratively deuleequent motifs.
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Figure 2. Comparison of fREDUCE to six other algorithms on 65 yeast ChiRhip
benchmarks. AlignACE* indicates results of running AlignACE from stirla, while the
performance of other methods were compiled from thdisanet. al supporting website.
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Figure 3. Scalability of fREDUCE. The performance of fREDUCE on yeast ChIP-chip
experiment REB1_YPD for various motif lengths and numbkdggeneracies.
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Chapter 2

Directed A/T-tracts:

A Novel Signature for Yeast Nucleosome Free Regions

Abstract

Eukaryotic transcriptional regulation is mediated by ttganization of
nucleosomes in promoter regions. A highly stereotypedh@dtio organization is seen in
mostS. cerevisiae promoters, where nucleosome-free regions (NFR) ankethby well-
ordered nucleosomes. By analyzing groups of promoters aifting nucleosome
occupancy patterns, we found that yeast promoters withdethed NFRs are
characterized by positioned patterns of poly(dA:dT) traits two signature features.
First, poly(dA:dT) tracts are highly localized in aastd-dependent fashion where
poly(dA) tracts lie proximal to transciptional start siend poly(dT) tracts are distal.
Collectively the inverted tracts define an axis of synmgesdinciding with NFR centers.
Second, poly(dA:dT) tracts exhibit a novel “cappingeetfwhere tracts preferentially
terminate in G:C residues in a direction-dependent marinédFRs, capping is greatly
increased and is localized to the poly(dA:dT) symmetris.aBioth signature features
guantitatively co-vary with fine positional variatiobstween NFRs, establishing a
closely-knit relationship between poly(dA:dT) tracts,itlsapping patterns, and the
central coordinates of NFRs. Based on our data, we hgpiaéhthat localized stretches

of short poly(dA:dT) tracts constitute directional sifmin yeast promoters which

38



facilitate NFR placement in a manner independent afispéranscription factors. We
present a model of NFR origination in yeast in whiclected poly(dA:dT) tracts
contribute to the definition of a central NFR nucleatsite, and provide data which
distinguishes this model from an alternative model whrax@s act as boundary elements

that anchor flanking nucleosomes.

Introduction

Eukaryotic DNA is packaged as chromatin: highly organized/amwé
nucleosomes which profoundly affect the functions of ugaey sequence[1,2,3].
Because chromatin structure plays critical regulatomsfd], promoter sequences must
not only dictate their own regulatory logic but alemiinate the patterns of
nucleosomes that are superimposed upon them. Current hgg®thescribing how
genomic sequence is mapped to nucleosome positioning are elssethjbg two
paradigms. Because DNA affinities to the histone carediffer over a 1000-fold range
depending on sequence[5], one view is thaivo nucleosome positions can largely be
specified by the thermodynamic preferences of nuclecsdonggenomic DNA[6].
Recent efforts have attempted to deduce nucleosome positfoomgeriodic
dinucleotide patterns that confer physical properties &hlerfor the sharp DNA bending
required for incorporation into nucleosomes|[6,7], but theadictive power over random
guessing is modest [8,9,10]. An contrasting view is tismbal number of strategically
positioned nucleosomes can serve as boundaries againbtailiie nucleosomes fall
into place through statistical packing[11,12,13,14]. The positid these key “barrier”

nucleosomes must be highly regulated, and is likely to wevalcombination afis
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acting sequences that work through intrinsic DNA-histoteractions as well asans
acting sequences that signal transcription factors amshnetiin remodeling
complexes[2,15]. The balance between these two paradigms clear and is likely to
depend on genomic context.

The barrier nucleosome paradigm is likely to be esggemlevant in promoters
where nucleosomes are organized around nucleosome-freag¢iFR), spans of
nucleosome-deficient sequence emanating in the 5’ direftom transcriptional start
sites (TSS)[16]. Prevalent in yeast[10,16,17], fly[18] amch&n[19], NFRs appear to be
a conserved mode of promoter nucleosomal organizatio#t eukaryotes. 18
cerevisae, NFRs appear in up to 95% of promoters[11], have a typpzat of
~140bp[10,17] and incorporate the histone variant H2A.Z intiiftey
nucleosomes[20,21]. It has been suggested that the hightedefucleosomes flanking
NFRs anchor a large part of nucleosome organizatioreiattharomyces genome
using the barrier nucleosome principle[11]. The key queséiorains, however, of how
the positions of the “keystone” boundary nucleosomeseeified through sequence.

High-throughput nucleosome mapping studies in yeast have uniydirgedd
nucleosome-free regions with the enrichment of poly(dAtddcts[10,16], contiguous
stretches of homopolymeric dA or dT that are over-igreed in the intergenic regions
of many eukaryotes[22,23]. In addition, two recent compartatiapproaches to
nucleosome prediction have found that poly(dA:dT) trastshort as length 3 have
significant discriminative power in distinguishing nucleosbwsa non-nucleosomal
sequence[9,24]. This association between NFRs and poly(¥&aftTs is typically

attributed to the latter’s physical rigidity[25], whichti®ught to destabilize nucleosomes.
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However, the impact of poly(dA:dT) rigidity on nuclesse positioning has not been
clearly demonstrated: long tracts>(0) only modestly destabilize nucleosomes
vitro[26], and than vivo impact of shorter tracts is not known.

In this study we explore in detail two novel charastas of poly(dA:dT) tracts
in theS. cerevisiae genome and their relationships with patterns of nucleesose
regions. First, we show that positional distribns®f poly(dA) tracts and their inverse
poly(dT) tracts are related by symmetry across the @iediR axis. Second, we
demonstrate that poly(dA:dT) tracts in NFRs exhibit aerted, terminal specific
“capping” by G:C. We demonstrate not only that bothuiess are specific to NFR-
containing promoters, but also that they co-vary witk frariations among NFRs of
different sizes and localizations. The highly organiedement of poly(dA:dT) tracts
in promoters, their orientation-specific terminal cleteastics and their intricate
correlations with NFRs suggest that directed poly(dA:ddgts may constitute signature
sequences which influence NFR placement. Models of hoy¢d&dT) tracts may

guide NFR formation and mechanistic implications areudised.

Results

Promoters classification into “strong” and “weak” NFR classes

We re-examined the genome-wide nucleosome positioning maprpeel by Lee
et al[10], aligning promoters according to mapped transcridtgiag sites (TSS). To
avoid possible convoluting effects of divergently transcfitegions, we exclude these
except in cases where the divergent TSSs are sufficiantirom each other (>1000bp).

We used a Self-organizing Map (SOM)[27] to arrange the firigrdd set of 2118
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promoters in a visually coherent manner (FiglA). Two cataltly distinct nucleosome
occupancy patterns were evident from the SOM (Fig1B). riidwerity of promoters
(84%) comprise the “strong-NFR” class, which are chiaraed by a single well-
defined nucleosome-free region (NFR) emanating fronT&@ that occupies the core
promoter region (-150 to 0). The remaining promoters comgreséveak-NFR” class,
which have non-stereotyped nucleosome occupancy pattearecterized by diffuse
nucleosome deficiency in the entire promoter region ug@06. The weak-NFR
promoters encompasses a broad range of atypical nucle@chitectures, featuring
delocalized nucleosomes and promoters with multipldilmmhNFRs of varying lengths.
Divergently transcribed promoters are overrepresentdeeiweak class, but their
inclusion did not qualitatively affect the overall nudeme-occupancy patterns of either
class (FigS1). The biological significance of this groggias been investigated by
Tirosh et al., who made a similar classification aad differences in many features
including histone turnover, binding site locations, H2A.Zuggancy, expression noise,
and expression diversity[28]. We observed similar tremasir grouping: for example,

the weak-NFR class was overrepresented in TATA-comipiomoters (FigS2).

First poly(dA:dT) signature: localized, strand-dependentracts symmetrically
distributed about NFR centers

We examined the frequencies of poly(dA:dT) tracts of veyyengths as a
function of distance from the TSS, considering pa(end poly(dT) tracts separately
(FiglC). To facilate comparison between tracts oying lengths, we expressed each

frequency as a percent enrichment relative to backgroweayenic tract frequencies. In
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the strong-NFR promoter class, this analysis reveastidking poly(dA:dT) localization
pattern. For lengths greater tHa®, poly(dA) enrichment is strongly peaked near -60
and fall off sharply to background at -90 and -30. Surprisjnuly(dT) tracts have a 5’
offset from poly(dA): they are enriched between -120 &ddwith a shallower peak near
-100. Within peak regions, location-specific enrichmeftsooh poly(dA) and poly(dT)
increase monotonically with repeat length. FinallyyfA) enrichment is usually
greater than that of poly(dT) for similar-length traéts the longest tracts ¢= 6),
maximum enrichments exceed +200% for poly(dA) and +175%diy(gT). In contrast,
these characteristics are not observed in the weakd¥sR, where poly(dA:dT)
enrichments are generally much smaller in magnitudeithdo@ strong-NFR class. We
observe a slight enrichment of poly(dT) downstrean66fand a slight deficiency of
poly(dA) in the same region, but these trends do notfgigntly increase for longer tract
lengths.

It is telling to take the difference between the poly(dAdl poly(dT) enrichments
(FiglD). The resulting enrichment difference curves tthekasymmetry between the
inverted tracts; their x-intercepts give the coordinateshathnpoly(dA) tracts become
more abundant than poly(dT). For the strong-NFR cthgsenrichment differences of
all six length-classes intercept the x-axis at -80, mgéhere with a common point of
inflection. This curve has an approximatesgmmetry: rotation of the curve about the
coordinate -80 by 180 degrees will result in a similar cuAisimilar G symmetry
about -80 is manifest in the underlying sequence: from thé pbinew of an observer
situated at -80, tracts in both directions appear identi@lthe symmetry is broken by a

gene on one side (FiglE). From here on we will refeBO simply as the “symmetric
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axis”. Note that the coordinate of each poly(dA:dT¢ttreas assigned according to its
5’-most base, introducing a slight 5’shift. Therefore sgmmetric axis is closer to -75
when the discrete lengths of tracts are considerecingla directly at the center of the

core promoter region.

Poly(dA:dT) positions correlate with fine NFR variations

We have shown that strong NFRs in yeast are assoadiie a sequence pattern
consisting of poly(dA:dT) tracts whose positional disitions are symmetric about NFR
centers. This result suggests that poly(dA:dT) tnaetg directly influence NFR
placement but leaves open the alternative that bathries are independently associated
with the biological specialization of genes in th@st-NFR class. To resolve this issue,
we analyzed how poly(dA:dT) tract localization relai@$éine NFR positional variations
within subgroups of the strong-NFR class. Strong-NFR ptera ordered by the self-
organizing map gave a graded arrangement where 5’ NFR boural& iesogressively
shifted toward the TSS (Fig2A). By comparison, 3’ NFRirmtaries shifted little, and
some of this variation may be attributable to expertalesrror in TSS determination.
Taken together, this amounts to a gradual narrowing of B \Wdth from 202bp to
98bp (inferred from peak-to-peak distances of boundary nucles3amwer 1781
promoters.

We segmented the ordered strong-NFR promoters into 6 edgabsips (I-V1).
Group | promoters are the most similar to the weak-NERs: they have the longest
NFRs and have the most NFR positional variability,fazZiness”. Group VI, which

contains the shortest NFRs, also had a high degreeiabiity; the remaining
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subgroups were more homogeneous. The peak-to-peak NFR caortéinate shifted
toward the TSS by approximately 15bp per subgroup (fittedlivitar regression),
spanning a range from -130 to -50. We then plotted the poly(dAwriichment
difference as before for each subcluster (Fig2B; sg&3or raw enrichment values).
As expected, the overall magnitude of each subgroup’sdnaicthments is dependent on
its degree of fuzziness. Group | enrichments peak near +b@yeas Group IV, the
most localized subgroup, reached peak enrichments of +300%.

The overall qualities of poly(dA:dT) enrichment are attir every subgroup,
with 5’ poly(dT) bias and a symmetric 3’ poly(dA) bias. Wwkver, the symmetric axis
for each group is shifted in a way that directly corresisao its fine NFR position: wide
NFRs have axes shifted away from the TSS, whereaswm&FRs have axes shifted
toward the TSS. To quantify this relationship, we ptbdgmmetric axis coordinates
versus their corresponding NFR center coordinatesdon subgroup (Fig2C). Linear
regression gave an excellent fit & 0.90) with a slope very close to 1: a 1bp shift in the
poly(dA:dT) symmetric axis will produce a corresponding 1tuft é1 the NFR center
position. Their concordance with fine positional vaoias between NFRs reinforces the
notion that poly(dA:dT) tracts distributed symmetrigaltross a central axis may have a

direct influence on NFR placement.

Poly(dA:dT) tracts show independence from transcriptionfactor binding sites
Poly(dA:dT) have long been implicated as regulatorgnelas inS
cerevisiag[29,30], and in particular they have been seen to infludrecesgulatory

behavior of transcription factors with adjacent binditgs[31]. For example, the
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insertion of a Reb1 binding site juxtaposed with a3s@quence was sufficient to induce
NFR formation even in the context of a coding region[2RJirthermore, Lee et al.
recently showed that binding sites for Reb1 and Abfl aaiked specifically to a
narrow region centered at -100bp upstream of the TSS[10}hvislightly upstream of
the symmetric axis. These observations not only suggegtergistic relationship
between poly(dA:dT) tracts and these particular trapison factors, but also raises the
guestion of whether localized tract enrichments are sekely as a consequence of
juxtaposition with localized transcription factor bindisites (TFBS).

To address this question, we first used the set of alldband functionally
conserved transcription factor binding sites[31] to survbigclvfactors may be spatially
coupled to tract enrichment. Because tract localizasiseen only in the strong-NFR
class, we first screened factors using their relatWBS abundances in strong- vs. weak-
NFR promoters (Fig3A). Interestingly, the TFBSshad tmajority of factors are vastly
overrepresented in the weak-NFR class; for example; glkors weak-NFR promoters
by more than 10:1 (normalized by class size). Only 4 o&dtofs examined (Rebl,
Hsfl, Abfl and Rpn4) were overrepresented in the strong-¢\#&d8, and of these only
Rebl and Abfl have bound and functionally conserved si@significant number of
promoters genome-wide (226 and 209, respectively).

We reasoned that if localized poly(dA:dT) tracts are faahimostly in the
context of abundant and localized sites such as tHdReldd/Abfl, then by restricting
our analysis to promoters containing high-confidence Reb1 dr gitds poly(dA:dT)
enrichment signals should be greatly enhanced over tidmeckground promoters.

However, this is not the case: tract enrichmentsiandar in magnitude between
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Reb1/Abfl-site containing promoters and background (Fig3B). Twisether
poly(dA:dT) localization could arise from general jypaition with other transcription
factors, we also assessed tract enrichment in & $3&B5-depleted promoters: strong-
NFR promoters from which promoters containing annotatedSTik#/e been excluded.
To maximize the stringency of this exclusion step, tABS used for filtering include
non-conserved sites as well as sites with lesgystninbinding thresholds (p < 0.005) for
118 transcription factors. The final set of TFBS-depl@@anoters (n=674), however,
show no decrease in localized poly(dA:dT) tract enriaitsieompared to the unfiltered
set (Fig3B). In fact, TFBS-depleted promoters actudmsslightly increased
poly(dA:dT) enrichment. Thus, while it is possible thalypdA:dT) enrichments can be
explained by juxtaposition to other abundant, localizedN#Ad-specific transcription
factors not covered by the Maclssac et al. study, thst likely interpretation is that
poly(dA:dT) positioning patterns arise from TF-independeatt function.

Curiously, both Abfl- and Rebl-specific tract enrichmeatfiles have slight
variations from the overall strong-NFR profile. B@&hfl and Rebl have sharper
poly(dT) enrichments than background, and the Rebl poly(dK)ipashifted by ~30bp
to the opposite side of the symmetric axis. Rebl atsdesla prominent poly(dA) peak.
These factor-specific deviations from average poly(dA:ddalieations likely reflect

individualized factor-tract relationships.

Independent assortment of poly(dA) and poly(dT) tracts suggesthat individual

promoters do not require dual symmetric tracts

a7



By analyzing the averaged localization profiles of poly@A tracts over large
numbers of promoters, we have seen a characteristic sygnaf opposing tracts with
respect to the NFR center. There are two ways in whisltollective symmetry could
arise: either promoters are individually symmetrither symmetry is a consequence of
overlaying individually asymmetric promoters. We addressdhestion by considering
whether the number of promoters containing both poly@#) poly(dT) tracts in
enriched regions exceed the expected number given indeperssertment of poly(dA)
and poly(dT). For this purpose we analyze the 297 well-adignemoter sequences of
strong-NFR subgroup IV: because these promoters are higlitym, we can estimate
the number of functional poly(dA:dT) tracts in eachrpoter by counting them in fixed
windows centered at tract-enriched positions. This aogiainalysis is presented in
Table 1, which shows the fraction of promoters containirigeest a single copy of
poly(dA) or poly(dT) in their respectively enriched &g in comparison to the fraction
of promoters containing both. For all length cutoffg, tamber of promoters with co-
occuring poly(dA) and poly(dT) is comparable to or lowertlthe overlap expected
from independent assortment. This data is consistehtanitodel where poly(dA) tracts
proximal to the TSS are positioned independently with respgmly(dT) tracts distal to
the TSS. Therefore, this counting analysis disfawardels where poly(dA:dT) tracts are

mechanistically constrained to act as inverted pairs iwishail promoters.

Second poly(dA:dT) signature: NFR-specific and terminalqsecific G:C capping of

tracts
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Our analysis of poly(dA:dT) tracts has suggested thatplecement in
promoters is not constrained by functional coupling taeeitranscription factors or to
symmetric counterpart tracts. Nonetheless, it icdif to imagine that poly(dA:dT)
tracts can functional entirely autonomously givenrtley information content.
Therefore, we investigated the possibility that theradiditional information content in
sequences flanking poly(dA:dT) by looking at the terminakbaair composition at both
ends of poly(dA:dT) tracts of various lengths. Firsg, @xamined the background set of
all yeast intergenic sequences (Fig4A), where poly(dA) ahd@di were pooled due to
the lack of reference directions. Surprisingly, evethis background set we saw that,
relative to poly(dA), tracts have a significant prefece for the incorporation of G
nucleotides at both terminal positions (accordingly, poly(tave terminal bias for C).
We refer to this phenomenon as “G:C capping” of poly(dAaid we define the G:C
capping rate as the proportion of poly(dA:dT) tracts widgminate in this manner. In
the yeast intergenic background, the G:C capping ratste&adily increasing function of
tract length; for very long tracts the capping ratecsh bermini is greater than 40%
(Fig4A), a significant increase from the expected c&t25.7% (computed by
renormalizing single base frequencies; see Methods).

An interesting feature of “G:C capping” is that theransasymmetry in capping
rates between the two tract termini. By conventwa designate the G:C capping
terminus relative to the poly(dA) strand: tracts mastigesGA, andT,C will be referred
to as “5’ G:C capped” whereas tracts of the féy@® andCT,, will be referred to as “3’

G:C capped” (Fig4A). In the yeast intergenic background,apparent that 5’ capping
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rates are consistently greater than 3’ capping raiffeeence which tends to increase
for longer tract lengths.

To see whether oriented G:C capping could play a rgely(dA:dT)
specification of NFRs, we considered the location depecylof G:C capping in the
context of promoter regions (strong and weak NFR classesdered together) (Fig4B).
In this context, we now consider poly(dA) and poly(dTpasately due to the symmetry
breaking TSS. Intriguingly, 5’ G:C capping has many fesgsimilar to poly(dA:dT)
enrichment. For poly(dA), 5’ capping rates are farvabmackground at the center of the
core promoter region(-150 to 0). Near its peak, 5’ poly(@#ping is an increasing
function of tract length, with capping rates of >64%tfact lengths 6 and above. 5’
capping rates fall back to background levels at the edgbe @abre promoter region as
well as in distal promoter regions (-300 to -150). An icahteffect is seen for the 5’
G:C capping of poly(dT) tracts. However, in contradthie strongly context dependent
5’ G:C capping rates, 3’ G:C capping rates are uniform ih bore and distal promoter
regions, where their modest dependencies on tract langttonsistent with background
capping rates.

Finally, we de-convoluted 5’ G:C capping into contributifnasn the strong-NFR
vs. weak-NFR promoters (Fig 45 shown). Whereas the 5’ G:C capping rate for
strong NFR promoters is strongly peaked in core prometgoms, the 5’ G:C capping
rate is much more delocalized in weak-NFR promotersvelik-NFR promoters,
poly(dT) tracts show a relatively uniform capping ratbath core and distal promoters
regions while poly(dA) capping rates actually declinedare promoter regions. In both

cases, local capping rates in weak-NFR promoters diffestantially from the typical
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pattern seen in strong-NFR promoters. These obsengadre consistent with the notion
that NFRs are arranged in delocalized and atypical waty® weak class.

Thus, our data suggests that there are two separatesefteich contribute to the
observed G:C capping of poly(dA:dT) tracts. First, therebackground G:C capping
effect that is prevalent in the bulk of intergenic yesesjuences. This background G:C
capping is non-specific: it is present in both corm @istal promoter regions, increases
at a moderate rate as tract lengths increase ang@yl@imilar between the 5’ and 3’
termini. Superimposed on top of this background effecsecand G:C capping effect
which is both 5’ terminal-specific (relative to poly(dAhd NFRs-specific and which
most strongly affects poly(dA:dT) tracts near the syt axis. It is this second G:C
capping effect which constitutes an additional poly(dA:dd3eal sequence signature for

NFRs.

Tract capping is skewed toward the symmetric axis

Although trends in 5’ G:C capping have many similaritiethyoly(dA:dT)
enrichment, there is one important distinction: 5 @apping for poly(dA) and poly(dT)
both occur directly at the symmetric axis, whereascament for poly(dA) is distinct
from poly(dT) and occur at regions flanking the symmetxis.aTo highlight this
distinction, we chose a particular length cldsS), renormalized their capping and
enrichment curves relative to their range of valuescanplotted them (Fig5A).
Relative to enrichment peaks, there is a ~20bp shift inG’capping toward the NFR

central axis for both poly(dA) and poly(dT). Thus, whapping biases are
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superimposed on top of tract enrichments, the resuiatseach tract population contains
a 5’ capped subpopulation that is skewed toward the symmetric

We offer two interrelated interpretations of this skdwapping effect. First,
capped tracts are directional signals, both in theesdvag capping is specific to the 5’
terminus and in the sense that capping occurs on sketged toward the NFR central
axis. Thus, capped tracts may highlight a sense of doEaitation in promoter regions;
either they “point” toward the central axis of the N&Raway from the NFR’s
boundaries. Second, the fact that capping is local@éaetsymmetric axis suggests that
capping reinforces some aspect of poly(dA:dT) tract fondtnat is especially significant
near NFR centers. Most promoters contain multi@ets in poly(dA:dT) enriched
regions (Table 1), and capping may give additional spégific particular tracts as a
way of “highlighting” them in the context of a group cdi¢ts. Based on the size of the
shift between enrichment and capping curves (~20bp), we ¢éstiheatypical length of a
poly(dA:dT) enriched region to be ~40bp in a single promolteisummary, both the
position and directionality of poly(dA:dT) tract cappimgy important for facilitating the

manner in which tracts relate to NFR positions (Fig5B).

Discriminating between “Central” and “Boundary” NFR definition models
Assuming that poly(dA:dT) tracts act as directionahalg with roles in NFR
specification, we consider two general NFR definitiordais which describe how
poly(dA:dT) tracts can potentially influence NFR forrmat(Fig6). In the “Central”
definition model, poly(dA:dT) tracts mark a specific looa within the promoter as the

center of a nascent NFR. Once the central sdefiaed, a set of downstream events
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allows nucleosomes to be spaced equidistantly in opptisgtetions to create the
nucleosome-free region. This model is supported by thegsfirdo-1 concordance
between tract enrichments and positions of NFR centaugthermore, NFR-specific 5’
capping localizes specifically to the central axis anddtcplay a role in the definition of
the hypothetical center. An additional advantage ofrtimdel is that, in principle, only a
single tract or set of unidirectional tracts is reedito specify each NFR. However, one
drawback of the Central model is that it does not expiaw the extent of each NFR is
specified.

An alternative to the Central model is the “Boundary” mioddich posits that
poly(dA:dT) tracts act as directional boundary elemamtich anchor the NFR'’s flanking
nucleosomes. In this model, nucleosomes are directay famm the capped ends of
poly(dA:dT) tracts. This model requires poly(dA:dT) teattd be present in correct
orientations at both nucleosome boundaries in each N requirement is an obvious
drawback, as we demonstrated earlier that such a sceantikely.

In order to differentiate between these two modelsnove consider the detailed
relationships between poly(dA:dT) locations and NFR pmsitg. We use the centroids
of poly(dA:dT) enrichment as single numerical indicatof tract location. Intuitively,
the centroid corresponds to the expected position of thyéd@odT) tract after taking a
weighted average across the enrichment peak. We scballgatepresent the positions
of five promoter elements: 5’ nucleosome boundary, 3'eastdme boundary, NFR
center, poly(dT) centroid and poly(dA) centroid acrdesdix strong-NFR subgroups
(Fig7). We then assign a best-fit slope to eacheofithe promoter elements using linear

regression. The slope of each element, with unitgisiibgroup, represents the average
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number of base pairs the element shifts toward the T6E&aph group of 297 promoters
from the SOM.

If the Boundary model is correct, we would expect poly(dA tract positions to
vary in lockstep with the positions of boundary nuclecsgnirhis is not the case: the
slope of 5’ nucleosomes is 24 bp/group whereas the slope atifacent poly(dT) tracts
is only 10bp/group. The lack of coordination between 5’ensmdmes and poly(dT) is
clear by contrasting groups | and VI: in the former ¢hsgwo features are separated by
over 80bp, whereas in the latter case the separatiessishan 10bp. A lack of
coordination in the opposite sense is manifest bet@eeucleosomes and poly(dA): 3’
nucleosomes barely shift (slope = 5 bp/group) whereas @9lydcts have much greater
shift (slope =13 bp/group). Globally, it is apparent thatdisés between poly(dA) and
poly(dT) do not narrow as NFRs do. This lack of coordamabetween shifts in
poly(dA:dT) positions and their respective nucleosome batexlargues against the
Boundary model. On the other hand, the slope of the ¢&ARal coordinate (15
bp/group) is similar to slopes of poly(dA) and poly(dT) cexis. Poly(dA) and poly(dT)
tracts tend to remain at a relatively fixed distamoenfeach other (~40-50bp) and
maintain the NFR center between them regardles$=8&f pbsition or width. The
alignment preference of poly(dA:dT) tracts toward teetral axis, rather than toward

boundaries, favors the Central model of relating trauts NFRs.

Discussion

We have reported the computational characterizatiow@previously unknown

features of poly(dA:dT) tracts in yeast promoters: &rand-specific localization that is
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approximately @ symmetric about the center of the core promoter negial 2) a
terminal-specific capping by G:C residues. The assoaidetween these two
poly(dA:dT) tract characteristics and nucleosome-feggons in promoters is supported
by both qualitative and quantitative lines of evidence.t,Hasth strand-dependent tract
enrichment and 5’ G:C tract capping were found to haveactexistic, localized
distributions that are specific to the strong-NFR slafspromoters. Second, shifts in
NFR positions across different sets of promoters werered by corresponding shifts in
tract positions. Collectively, they argue that a direechanistic relationship between
poly(dA:dT) tracts at defined promoter positions andsihecification of NFR placement
at these promoters is highly plausible.

Our work also suggests several mechanistic guidelineot@pbly(dA:dT) tracts
may translate into NFRs. First, we believe thatdinectionality of tracts is important for
providing a sense of local orientation in promoters, ggsHor binding of a factor that
recognizes the direction of DNA. This directionalgymanifest in multiple aspects: in
the G symmetry of tracts about NFR centers, in the terhgpacific tract capping
preferences and in the way that capping is spatially skésweard the symmetric axis.
Second, individual promoters are unlikely to require complaary tracts on both sides
of the symmetric axis (although in many cases theseb@ayesent) even though this is
seen after tract profiles are averaged over many peymoT hird, our work suggests that
poly(dA:dT) tracts have better spatial correlatiorviNtFR centers than with boundary
nucleosomes. Thus, we believe that positioned poly(dAmiEts are not likely to act as
boundary elements but instead play a role in definingN#R center coordinate. Finally,

tract specification of NFRs does not generally seeped@ on transcription factors.

55



However, tracts may have specialized relationships particular transcription factors
which occur prominently in strong-NFR promoters such dslRexd Abfl.
Shortcomings of our current model are that it dogésrplain 1) how the extent of each
NFR is defined and 2) how the -1 and +1 nucleosomes are spgedstantly from the
central region.

NFRs appear in most promoter regions and have well-defimatiZations; thus
the sequences that collectively define the spatial patteofiNFRs must be highly
abundant as well as highly specific. An ongoing challesage understand how low
information content sequences such as poly(dA:dT) tastsontribute to both criteria.
There is a tradeoff of coverage for specificity asttt@angths increase: longer tracts are
more specific but will occur in fewer promoters. Howdadoes a poly(dA:dT) tract
have to be in order to exert a functionally significdfea? Assuming that poly(dA:dT)
tracts underlie a general NFR-specification mechanisntanesstimate an upper bound
on the minimal functional tract length. In order &rong-NFR promoters to be covered
by at least one functionally relevant poly(dA:dT) tracicts as short as length 4 must be
invoked (Table 1; 96% of promoters are covered in this cdadged, our analysis has
shown that even poly(dA:dT) tracts shorter than ledgtlave significant enrichment
peaks (FiglC). Thus is it very likely that short tramtghe order of length 4 make non-
negligible contributions to NFR specification in mangipoters.

Short tracts alone, however, seem to lack the napespecificity. Therefore, we
reasoned that short poly(dA:dT) tracts must work witlantext: there must be
additional sequence signals specific to NFRs which aflowtionally significant

poly(dA:dT) tracts to be distinguished from decoy tra@ecause the typical promoter
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contains multiple co-localized tracts (Table 1), onssgality is that tracts benefit from
cooperativity. G:C tract capping, which increases irdotmation content, is likely to
be another important source of specificity. Becaus# trapping is centered at the
poly(dA:dT) symmetric axis, capped tracts seem to be & tocation-specific indicator
of the central NFR coordinate than tracts in generals, both capped and uncapped
tracts appear to be important: uncapped tracts providetextamwhich capped tracts
are emphasized. Together, they may act as a dirdgted that helps to “point out”
where NFRs should be centered.

Our work represents a departure from the view that palg(D) tracts are
haphazardly positioned promoter elements which genbrigisplace nucleosomes by
virtue of their physical rigidity. Here it is importait emphasize that much of the work
which suggest that poly(dA:dT) tend to exclude nucleosdoyeidity pertain only to
very long (>20) tracts[33,34,35,36]. Effects are modest for shortetstraObp
poly(dA:dT) tracts only destabilize nucleosomes by ~0.2-0aBrkol[32], while
incorporating an A tract into the middle of nucleosomal DNA only resulied 1.7 fold
(0.35 kcal/mol) destabilization[26]. In this shorter lengthge (181<20) poly(dA:dT)
tracts can in many cases be incorporated into postiimucleosomes vitro[33,34,35]
andin vivo[36]. Even if tracts at these lengths can perturb msome positions, they are
likely to affect only a minority of promoters genome-w{géd4% of strong-NFR
promoters by Table 1). By contrast, the lengths of pély(d) tracts for which we have
shown to be functionally correlated to NFRs are minchiter. While tracts as short as
length 4 have been seen to adopt straight strudtuk@go[25], it is unlikely that their

rigidity alone can exert thermodynamically signifitancleosome exclusion effects.
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Finally, in vitro selection experiments have found that even the tlst digbavorable
sequences destabilize nucleosomes by only modest amouhi&Keal/mol relative to
bulk genomic DNA)[5]. Even if core promoter sequencesatigze nucleosomes by
comparable amounts, these free energy differencesmnaiee order of thermal
fluctuations and would be insufficient to keep NFR boundanfaosomes in their fixed
positions.

We conjecture that poly(dA:dT) tracts, rather thamacas static nucleosome-
repelling elements, play an integral role in a serfegedl-orchestrated chromatin-
remodeling events that transform a random distributigeraioter nucleosomes into the
characteristic open NFR architecture (Fig8). One hypatiethat poly(dA:dT) tracts
can facilitate interaction with chromatin remodelem@zymes which remove nucleosomes
and/or slide them away from the NFR center; the pisef multiple tracts may
facilitate remodeling processivity. Yeast contains nwmgicandidate chromatin
remodeling complexes including Swi2/Snf2, Ino80, Isw1l, Isw2, ard[®3. For
example, RSC is known to mediate nucleosome slidifpbll promoters [38,39] and its
ATPase subunit, Sthl, can track along one strand of diNexwith 3’ to 5’
polarity[40]. It will also be interesting to see whethi2A.Z, which is deposited at both
NFR boundary nucleosomes, plays a role in NFR-spetditéhat is coordinated with
poly(dA:dT) tracts.

Despite unresolved mechanistic details, we have providecinsig a class of
promoter-specific sequences which correspond to the pusitio key nucleosomes. By
postulating that poly(dA:dT) motifs form the basis afiyaamic mechanism of NFR

formation, we bring a fresh perspective on this ubiquitdass of sequences. Finally,
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the essential features of NFRs are seen in the prosrmmitenulticellular eukaryotes with
small variations. It is not yet known whether chégsastic poly(dA:dT) sequences
patterns are seen in NFR-containing promoters of higlgaméms, but even if sequence
patterns have diverged the mechanistic principles of MiFR&tion suggested in yeast

may still be preserved.

Methods

Promoter classification.

S cerevisiae nucleosome positioning data mapped at 4bp resolution (g et
was aligned relative to 4799 mapped transcriptional stag @avid et al.) from -400 to
+400. For all single direction promoters we considehedlistance between the TSS and
the corresponding start codon, filtering out promotdiere the TSS is downstream or
>500bp upstream of ATG. Furthermore, we excluded short pevsof less than 150bp,
yielding a total of 1842 filtered single direction promotefsis analysis was repeated in
divergently transcribed intergenic regions where th8 ¥STSS distance was greater
than 1kb. Inthese cases the opposing termini weract®d separately to give 276
additional promoters. All promoters were oriented redato the direction of
transcription. Self-organizing Map analysis was perfaronging Cluster with default
parameters (Xdim=49 and Ydim=1) and visualized with Treevimth are available

from the Eisen Lab (http://rana.Ibl.gov/EisenSoftwiaira).

Poly(dA:dT) enrichment analysis.
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We computed background frequencies of all poly(dA:dT) sequenties ail
yeast intergenic sequences (3.5Mb) as motif count per emaésce length. Motif
counts were tabulated only according to the longestodddracts; e.gGAAAAT
registers a®\AAA but notAAA or AA. For the background set, poly(dA) and poly(dT)
were pooled due to lack of reference direction. Positigesagent frequencies in
promoter sequences were computing in 21bp sliding windowsreehat the reference
position. Any poly(dA:dT) tract whose 5’ end was locatethis window was tabulated
to occur in this window. For each window, frequencieseveemputed as total motif
number over all sequences per window size. For both aokdrand location-specific
analyses tracts ¢ 6 were counted as a single class. Enrichment scorescamputed

as:

freqobs - freqbackground
freqbackground

Enrichment =

Transcription factor binding site analysis
We used TFBS annotation from Maclssac et al. with cihlip p<0.001 and

conservation in 2 additional yeasts spedi(//fraenkel.mit.edu/improved_map/For

each factor we counted the number of promoters congabound and conserved binding
sites (brfs_by_factor_p0.001_cons2. txt”) for factor in strong- and weak-NFR
classes. Only factors with sites in more than 30 preragenome-wide (45 factors total
meet this criterion) were considered. For factorsrepgesented in the weak-NFR
cluster the p-value i®g;0(P(X<n)) whereas for factors overrepresented in the strong-

NFR cluster the p-value #0g:0(P(X>n)), wheren is the number of promoters occuring
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in the strong-NFR class. For the TFBS exclusion amlye excluded from the 1781

strong-NFR promoters all promoters in the fibe f's_by_fact or_p0. 005_consO. t xt ”.

Tract counting analysis

Non-overlapping tracts were counted in fixed windows of2&¢ aligned
promoters of strong-NFR subgroup 1V. Windows were 80bp widiecantered at -60 for
poly(dA) and at -100 for poly(dT). The expected numbesrofmoters with both
poly(dA) and poly(dT) coverage given independent assortnigraly(dA) and poly(dT)

is given by:

total

wheren, is the number of promoters containing poly(dA) tractss the number of

promoters containing poly(dT) tracts, amgl is the total number of promoters.

G:C capping analysis

Background capping rates were found by pooling all instanceslyidA) and
poly(dT) in all yeast intergenic sequences and computing 53ataiminal base
compositions separately for each length class. To contipaitexpected background
capping rate, we renormalize background single base frequefigigisen that the
capping bas& is different than the tract ba¥e
iy

2. f,

gzY

r(x,Y)=

thus:
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fo 1738
fo+ fg+f, .1779+.1738+.3245

r(G,A) = =.257=r(C,T)

In promoter sequences, we define capping rategsataam and downstream ternmigi

andc,®™"" by baseX for Y-tracts of length. at coordinaté as:

cP(X\Y,i)=p(lo_,=X|o_%Y,0,

i+L

Y, 0, =Y,isk<i+l)
and

cl (X,Y,i)=p(o, =X |0, 2Y,0, £Y,0, =Y,i<k<i+L)
that is: the probability that the upstream or dstneam capping baseXsgiven

contiguous basegat positions throughi+L-1 flanked by nor¥ bases ait-1 andi+L.

Capping rates shown were smoothed over 41bp windew®red at

Nucleosome boundary calculations

For each subgroup, we computed the average nucheogocupancy profile
using aligned data (Lee et al.). The maxima okpe&arresponding to +1 and -1
nucleosomes were taken to be their average ceatoadlinates within each subgroup.

Boundary coordinates were inferred by adjustingreg¢ioordinates by 73bp.

Poly(dA:dT) centroid calculations

For each subgroup, we first computed an extended emwichment profile from
-300 to +50, which was then smoothed using a Gangs5bp). We then selected a
promoter region that was inclusive of the major@mment peaks for length classes 4, 5,

and 6+. This region is defined according to tingdat region spanned by x-intercepts of
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the smoothed enrichment curves of these three lengeslasThe centroids for each

length class was calculated within this region as fadtow

DIE,
Centroid, =

z Ei

Wherei is the promoter position relative to T84, 5 or 6+ is an index over motif
length classes, artelis the enrichment. To filter out background signals @dgtions
with enrichment values above 0% were tabulated. Tia d¢entroid position for the

subgroup was taken as the median value among the thgtle &asses.
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Tables

Table 1: Poly(dA:dT) coverage (fraction of promoters containingtyrand copy
number (average number of tracts per promoter) in strdtig-$ibgroup IV core
promoters (n=297)

Tract dA +dT
Poly(dA) | Poly(dT) | dA ordT dA avg. dT avg.
Length coverage
coverage | coverage | coverage copies copies
Cutoff (expected)
3 96% 96% 100% | 92%(92%) 3.02 3
4 80% 80% 96% | 65%(64%) 1.71 1.44
5 59% 57% 83% | 32%(33%) 0.89 0.83
6 34% 31% 58% 7%(11%) 0.42 0.37
7 23% 21% 41% 3%(5%) 0.27 0.23
8 15% 13% 27% 1%(2%) 0.16 0.14
9 10% 8% 18% 0%(1%0) 0.11 0.084
10 9% 6% 14% 0%(1%0) 0.088 0.064
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Figures

Figure 1. Poly(dA:dT) tracts in strong- and weak-NFR promoters. A) Nucleosome
occupancy data of 2118 cerevisiae promoters were clustered using a Self-Organized
Map and partitioned into strong- and weak-NFR classesvwsual basis.B) Averaged
nucleosome occupancy for strong- and weak-NFR promotémsngSNFR promoters are
characterized by a single defined nucleosome-free regifmmning the TSS whereas
weak-NFR promoters exhibit a variety of diffuse nucleos@atterns across the entire
promoter. C) Location-specific enrichment (vs. intergenic backgroungjodf(dA) and
poly(dT) tracts of varying lengths, taken over 21bp windo@slors represent differing
tract lengths. Tracts of lengths 6 and greater weradsmesl collectively for statistical
accuracy. Coordinates are relative to transcription sitas (TSS). Note the lack of
significant tract enrichments in weak-NFR promotdd3.Difference between poly(dA)
and poly(dT) enrichment; values above the x-axis indigegater poly(dA) enrichment.
Dashed line: symmetric axis at -88) lllustrating the G symmetry of poly(dA:dT)
tracts with respect to the symmetric axis.
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Figure 2. Poly(dA:dT) track fine variations in NFR positions A) The 1781 strong-
NFR promoters, which show progressive decrease in NiitRheare divided into 6
equal subgroups I-VIB) Poly(dA:dT) enrichment differences in each subgroupows
denote locations of symmetric axes for individual subgro@)d.inear regression plot
of subgroup NFR center positions vs. symmetric axis coateé, showing 1-to-1
tracking. The multiple points per subgroup are enrichrdéference x-intercepts for
poly(dA:dT) lengths from 2 to 6+.
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Figure 3. Poly(dA:dT) enrichments occur independently ofampled transcription
factor binding sites. A)Ranking of transcription factors by overrepresentatiolmound
and functionally conserved sites (Maclssac et akjriosng-NFR promoters. Most
transcription factors have large numbers of sites imkadFR promoters and few in
strong-NFR promoters. Prominent exceptions include getraracription factors Rebl
and Abfl. B) Poly(dA:dT) tract enrichments (length) for subsets of strong-NFR
promoters: Abfl-containing, Rebl-containing, or TFBS-deplefdeBS-depleted
promoters were selected by excluding promoters containing atetiebound (p<0.005)
binding sites (no conservation requirement) for any of IASK
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Figure 4. NFR-specific 5’ G:C capping of poly(dA:dT) tracts A) Background (all
yeast intergenic regions) G:C capping rates of poly(dA:tikcts for 5’ and 3’ termini
over different tract lengths. Examples of both 5’ an@X capping are illustrated: with
respect to poly(dA), tracts tend to incorporate G residieerminal positions at higher
than expected frequencieB) Promoter-specific G:C capping rates (strong- and weak-
NFR classes combined). 5’ capping for poly(dA) and poly&iOw prominent increases
in core promoter regions (-150 to 0, shaded) but not in gisbatoter regions; 3’

capping remains at background levels in core and distalgtesmegions. Dashed line:
symmetric axis. Thus motifs of the foi@&\, andT,C occur prominently in NFR central
regions. C) 5’ capping rates for strong- vs. weak-NFR promoters.
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Figure 5. Poly(dA:dT) capping is offset from tract enritiments toward the NFR
central axis. A)Poly(dA:dT) enrichments (blue) and capping rates (rede¢ach
renormalized to their respective range of values and cteglofA ~20bp shift capping
shift toward the central NFR axis is manifest for batly@A) and poly(dT).B)
lllustrating a hypothetical set of poly(dA:dT) tractgpromoters, where capped
poly(dA:dT) tracts exist as a subpopulation of “leadequsmces that directionally orient
spans of tracts. Blue regions denote poly(dA:dT) eactched regions and red arrows
denote capped tracts that point toward the 5’ capped terminus.
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Figure 6. Two contrasting mechanistic models of NFR defirn by poly(dA:dT)
signals. In the “Central” NFR definition model, tracts definsiagle location within the

promoter as the NFR center, and a separate mechanises speteosomes equidistantly
from the center. In the “Boundary” NFR definition mgdeparate tracts at each end of
the NFR act as directional boundary elements thaeptawicleosome incursion into the

NFR.
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Figure 7. Locations of promoter elements in strong-NFR subgups favors the

Central Definition model. Five promoter elements (5’ and 3’ nucleosome boundaries,
NFR center, and poly(dA)/(dT) centroid locations) af@esented for each strong-NFR
subgroup. The slopes of each element, which represetst shdach element per
subgroup, were derived using linear regression. Poly(dA:dTjaids track not with

NFR boundaries but with NFR centers, thus supporting ther@eNFR definition model.
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Figure 8. Summary of mechanistic hypotheses describing hgwoly(dA:dT) tracts

can lead to the formation of nucleosome-free region’ G:C capped tracts in
conjunction with uncapped tracts mediate the definiibthe NFR central coordinate.
Tracts may facilitate the action of a chromatin-oei@ling complex such as RSC, which
gives rise to the nucleosome-free pattern. H2A.Z dapnositto NFR-flanking
nucleosomes may also be functionally relevant inglogess.

Span of poly(dA:dT) tracts

GRRAA-AR—A---RARA-T
CTRET-TT-T-=~-TTT-&

NFR definition site

Chromatin remodeling

TSS
H2A.Z H2A.Z
e GMJAA—PA—Am ’\_ﬂ -
¥ eTTTT-TT- Tﬂz-_s_'__// '
A +—— NFR —» - 2

74



Supplementary Figure 1 A) Average nucleosome profiles for divergently-transatibe
vs. single-direction promoter8) Observed vs. expected number of divergently-
transcribed promoters in strong- vs. weak-NFR classes.
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Supplementary Figure 2 Observed vs. expected number of TATA-box containing
promoters in strong- vs. weak-NFR classes.
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Supplementary Figure 3 Poly(dA:dT) enrichments in subgroups of the strong-NFR
class.
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Chapter 3

Transcription Factor-Chromatin Profiles in the Yeas Genome

Abstract

When transcription factors interact with their cograteling sites on DNA, this
interaction must take place in the context of the ctatin environment in which the
DNA is situated. Transcription factor binding sites vilgce located in the context of
nucleosomal DNA may have different binding and funalgroperties than sites which
are located in nucleosome-free DNA. In this study vetesyatically survey 122
transcription factors in th& cerevisiae genome to determine how each is affected by
chromatin context. High throughput data for TF bindingysesvation, and nucleosome
occupation is integrated into several numerical parasé&eevery TF, each of which
indicates individual relationships between the transomatiregulator and its
nucleosomal setting. While the spectrum of TF-chrom@atifiles in the yeast genome is
quite diverse, we find that certain signatures, such &sprgference for binding and
conservation in nucleosome-free regions, predominBes our survey presents a
valuable first step in the systematic assessment-@hfématin relationships in a whole

organism.
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Introduction

The physical accessibility of regions of eukaryoticayait DNA to its
interacting protein machinery is strongly influenced alachromatin structure. When
Transcription Factors (TFs) recognize their cognate iling sequences, they must
do so in the context of the chromatin’s physical spactuiitively, because contact with
nucleosomes sterically occludes a substantial fractivine DNA’s binding surfaces, it
seems that nucleosomes should tend to hinder the bindmgstfproteins. Indeed, the
binding of certain TFs (e.g. Pho4p) have been shown tbiexhstrong dependence on
nucleosomal context, where TF binding depends on the rémbleeal nucleosomes
through ATP-dependent remodeling[1,2]. This notion is alpparted by the general
correspondence between transcriptional activation amtigier nucleosome
deficiency[3]. It may not be the case, however, tdmabmatin must hinder the binding of
all DNA-interacting proteins. Hypothetically, nucleosgsimay actually enhance the
binding of DNA-interacting proteins by providing cooperative iat#ions. Currently,
this question has not yet been systematically addressed.

A separate but related question to consider is how chioaifects the
functionality of TFs once they are actually bound toADNt may be that some TFs
behave identically regardless of underlying nucleosomele wthier TFs exhibit
behaviors that strongly depend on chromatin contegtaddress these questions, we
must consider the functional role of TFs in chromatintexts in a manner which is
independent from TF binding.

In this study, we use a novel computation method to candide

interrelationships between three different and possilolgpendent binary parameters for

82



all known TF binding sequences: TF binding, TF functiopalitd nucleosome
occupation. This is made possible by the recent availabflsuch data on a genome-
wide scale folS cerevisae. These include 1) a comprehensive catalog of motifs and
binding sites for 122 TFs[4,5], 2) the mapping of conserved regulaequences through
comparative genomic analyses using additieaadu stricto yeasts[6] and 3) the high-
resolution (4bp) mapping of nucleosome positions in thet yamwme[7] (Figl). These
data offer an unprecedented opportunity to systematicatgct the relationships
between TF binding, nucleosome positions, and TF functioa genome-wide scale. In
our approach, for every TF we compile several parametach of which quantifies a
particular TF-chromatin relationship. These paramete@ggregate, form a nuanced
and complex portrait of the relationship between regojdextors and chromatin in a

simple eukaryotic organism.

Results

Tabulation of binary parameters for each TFBS

To comprehensively identify Transcription Factor BindinggS{TFBS) in thé&
cerevisae genome, we used annotated position-specific scoringcesiiPSSM) to
select the top 1000 sites for each of 122 TFs. For eaBB,TWwe tabulated three
independent binary parameters:

a true if TFBS is in a nucleosome-free region, faideerwise

b: true if TFBS is bound to factor, false otherwise

c. true if TFBS is functionally conserved, false otthise
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Where nucleosome-free regions are demarked by troughes sntoothed nucleosome-
occupancy tiling array data, binding is assigned accordii@htB-chip, and functional
conservation is assigned according to sequence consaraat@mngsensu stricto yeasts
(see Methods for details). Thus, the set of param@glsc) describe each TFBS in the
yeast genome according to the independent criteria ddowmme-occupancy, regulator
protein binding, and functional conservation. Finally,dach TF we tabulate the
number of TFBS in each of the eight categories defirved the space of all possible

values of(a, b, c).

Derived parameters capture TF-chromatin relationships foreach TF

After tabulating these parameters for all TFs actessntire genome, we
compute for each TF a set of three derived parametets oéavhich measures a
particular TF-chromatin relationship. The first deriyastameterga, measures the

intrinsic tendency for a TF to have sites located RISt

_ ""Bor

- NFR%ORbg

WhereNFR is the number of TFBS in nucleosome-free regidi@R is the number of

a

TFBS in nucleosome-occupied regions, &lfidRyg andNOR™ are the total lengths of

NFR and NOR sequences in the genome. This parametettlyggvestio of binding sites
for a given TF in NFRs vs. NORs and is normalized byettpected ratio given by the
relative lengths of such sequences. Intuitively, if lhegment of sites for a given TF

has no preference or aversion for nucleosomes,ahgmnity.
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We also introduce another derived param@ievhich quantifies the relative
likelihood that a given TF will be bound to its cognsi®e in nucleosome-free versus

nucleosome-occupied regions:

NFRoung
ﬁ —

- NFRunbound
NOR g
NORunbound

Where the subscripts indicate that we only considesetisties wherb=true forbound
andb=false forunbound. Here the ratio in the numerator gives the intcieglds that a
TF will be bound to a given site in a nucleosome-feggan. The denominator gives a
similar ratio for nucleosome-occupies regions. Tdi®rof these two ratios, then, gives
the relative odds that a TF will bind with the presencalbsence of a nucleosome and
addresses the gquestion of how the nucleosomal enrivorafiects TF binding. TFs
with £>1 have a built-in preference for preferring to bind to @asbme-free regions
whereas those TFs wiik1 prefer to bind to nucleosome-occupied regions.

We also introduce a derived paramgterhich is similar td3 except that it
addresses functionally conserved sites rather than Isstescd

NFR

‘conserved

NFR

- NORoonserved
NOR

nonconserved

4

nonconserved

Thus, similarly to the function ¢#, yaddresses the question of how nucleosomal context
affects the likelihood that a TFBS is functionallyneerved. TFs witlp>1 are more
likely to be functionally conserved in nucleosome-fregions whereas TFs wijk1 are

more likely to be functionally conserved in nucleosesueupied regions.
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Finally, we introduce the derived paramedewhich measures a quantity similar
to a except that only bound and conserved sites are takeadntant. This metric can
been seen as a more accurate versianwlien a TF has a large number of bound and

conserved sites, but may be less accurate otherwise.

N F Rbound ,conserved
NORbound ,conserved

NFR%ORbg

0=

Distributions of derived parameters for the yeast transciptome

The distributions of all four derived parameters arevshim Figure 2 as
logarithmic values. The histogram farshows a relative normal distribution with a
slight skew toward negative values. This indicates thathe whole, unfiltered
transcription factor binding sites are largely unbiasddnms of preference for
nucleosome-free or nucleosome-occupied positions. ImaginTFBS which are both
bound and conserved have a fairly strong bias for nuclem$e®a regions, as is evinced
by the distribution 0b. Despite this bias, a large peak is present for gtalalition ofo
at 0, indicating that a significant portion of TFshe tyeast genome have little NFR bias
even when binding and conservation are taken into accdinat.binding and
conservation preferences of TFs also show a fairlgdepectrum. The distribution Gf
has a slight positive bias where the distribution, @fter correction for overall

conservation bias, is fairly centered at 0.

Hierarchical clustering of TFs based on derived parameters

In order to order TFs into coherent groups with similafchromatin properties,
we hierarchically clustered all 122 TFs according to theesbf the four derived
parameters (Figure 3). Several prominent patterns emeael of the most striking
groupings consists of 11 TFs which have positive valuesliftour derived parameters
(cluster 3). These TFs, which include the general trgmgnr factors Reblp and Abflp
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(see Chapter 2 for the significant thereof), are dtareed by some of the strongest
values ofo among all TFs, indicating the strongest intrinsic @rerfice to reside in NFRs.
TFs in this group also have consistently positive valii¢samdy: sites are more likely
to be bound and conserved in nucleosome-free regions.

Related to cluster 3 is cluster 2, a large group of 34 TFshwihclude, among
others, the general factors Raplp and Cbflp, the adaptor pviateitp, and the Gen4
regulatory protein. The true distinction between clus?eand 2 is unclear: cluster 2
generally has smaller valuesafbut remains similar in terms df the differences
between these two groups are subtle.

In direct contrast to clusters 2 and 3 are clustersl®awhich are characterized
by predominantly negative valuesaff3, andy. Our interpretation of these groups is
that they represent TFs which preferentially bind to swiélsin nucleosome-occupies
stretches of DNA. Similarly, those sites within lmosome-occupies regions are more
likely to be functionally relevant. While the reasdoissuch preference are not currently
understood, some of this preference may be based on stifueasons. Intriguingly,
cluster5 contains a large number of transcriptiorofgodf the bZIP family such as Arrlp,
Cst6p and Yap6p (Saccharomyces Genome Database, wwgereasie.org). Thus, the
preference of these TFs for nucleosomal sites maigtéo their structures.

Finally, in two of the observed groups the valueB béve the opposite signs as
the values of. In group 1B tends to be positive arychegative, while in group 3 the
exact opposites are true. This demonstrates thatrilegipreferences and functional
preferences of a given TF need not be in accord wieis to their chromatin

environment.

Conclusion

We have described a preliminary but systematic compuégtibndy of the
relationships between TFs and their chromatin envirorsrfentl22 TFs in the yeast
genome. Our survey reveals substantial diversity in $&ebhromatin relationships.
While a majority of TFs, as might be expected, preddsind and function within
nucleosome-free environments, a significant minorityle$ have exactly the opposite
behavior and instead prefer nucleosomal environments. hA&nogsult is that the binding
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preferences and functional preferences of TFs appder tedependent of one another, as
many TFs have opposing values. These initial data shooNdbpra good foundation for
continuing work in eludicating how chromatin context etféetranscription factor

function.

Methods

Regulator binding site annotation We obtained position-specific scoring matrices for
122 yeast regulators from the Fraenkel lab website
(http://fraenkel.mit.edu/improved_map/) and used them tedber~3 megabases of
yeast intergenic sequence. The top 1000 scoring positionselerted to represent the
most likely binding sites for each regulator. We atspased a minimum score of 7.8,
which effectively filters out hits from very short maes (typically 5-6 bases in length)
with low information content. We designate the lowszsire for each regulator as its
minimum scoring criteria. We consider a site to beseoved if the aligned positions of
at least twesensu stricto orthologs meet the minimum scoring criteria for tfegulator.
We consider a site to be bound by its regulator if thalpe of its corresponding probe
for the YPD ChIP-chip experiment is below 0.01.

Nucleosome-free region annotation.To locate nucleosome-free regions, we applied a
heuristic peak-selection strategy to the whole-genomieosmme occupancy data by
Lee et al (http://chemogenomics.stanford.edu/supplements/@Bteschtml). First, we
smoothed out local irregularities in the array datagdpjacing each probe value with the
median value of an 11-probe window centered on the proben, for each non-3’only
intergenic region, we took the mean and standard deviatialhprobes between 500 bp
upstream and 500 bp downstream of the IGR. Troughs in e data which fell below
one standard deviation were considered as NFR candidatesghs with center-to-
center distances below 200 bp were iteratively merged.fifiddeset of troughs which
were within 1000 bp of a start codon and which were at EdXbp in length were

selected as nucleosome-free regions.
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Normalization of y Because nucleosome-free regions in yeast typicairg higher
conservation rates and are more easily alignablejaloes ofy., collectively show a
large skew toward ratios below 1. To normalize thesgssts, we permute the PSSM
for each regulator 10 times and annotate sites formachuted matrix in the same way

as the original ones. The corrected conservatioraede is then:

ycorrected = yraw - rnedl an(ypermuted)
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Figures

Figure 1. Deriving TF-chromatin profiles for transcription facton theS. cerevisiae
genome. A preliminary set of TFBS are derived by scanningntéegenic sequence
with 122 PSSMs. Sites are further filtered using ChlP-chigibg datasensu stricto

sequence conservation data, and nucleosomal occupation data
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Figure 2. Distributions of the derived parametersg, y; o.
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Figure 3. Hierarchical clustering analysis of 122 TFs accordindetived parameters.
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