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Abstract

Fluid-driven Fractures in Heterogeneous Environments

by

Sri Savya Tanikella

Fluid-driven subsurface fractures interact with a variety of heterogeneous elements

in the surrounding environment, including fluid-filled pores, material discontinuities, and

other cracks and fissures. Their complex propagation is governed by fluid-solid interac-

tions, characterized by nonlinear and coupled dynamics between the flow and the fracture.

This thesis focuses on addressing a variety of such problems related to fluid-driven frac-

tures or hydraulic fractures within increasingly realistic situations. Initially, we examine

the post-shut-in behavior of a hydraulic fracture in the viscous regime, where viscous

dissipation is the dominant form of energy dissipation. Subsequently, we investigate the

propagation of a hydraulic fracture driven by displacement flows of two immiscible fluids

and the propagation of a hydraulic fracture across a material discontinuity.

When pressurized fluid is injected in a homogeneous infinite solid medium, a simple

penny-shaped fracture forms and grows in the direction of the minimum confining stress.

This type of fracture offers a representative focus for experimental investigations in a

laboratory environment, serving as a powerful tool to understand the various physical

mechanisms governing the growth of the fracture. Throughout the thesis, we vary dif-

ferent material properties of the solid media and fracturing fluids, including the Young’s

modulus of the solids, the viscosity of the fluids and, the flow rate of the injection. Gelatin

serves as the clear brittle elastic solid medium, that allows us to observe and record the

fracture growth because of its transparent nature.

In the first study, we examine the post-shut-in behavior of a penny-shaped hydraulic

ix



fracture in the viscous regime. We measure both the fracture aperture and radius, noting

that the fracture radius continues to grow slowly over time even after injection stops, until

it reaches a saturation point.

Next, we investigate the injection of an immiscible fluid at the center of a liquid-filled

fracture. We study the displacement of the interface between the two fluids and its effect

on fracture propagation. We conduct experiments and derive scales to predict the growth

dynamics of the fracture.

Finally, we present an experimental investigation into the propagation of hydraulic

fractures in layered brittle media in the toughness regime, where the creation of new

fracture surfaces is the dominant means of energy dissipation. We report that the relative

stiffness of the initiating layer significantly influences fracture propagation: A fracture

that forms in a soft layer remains trapped, whereas a fracture that originates in a stiffer

layer experiences a rapid fluid transfer into the neighboring softer layer upon reaching

the interface. Additionally, we present a quantitative model that captures the competing

effects of elastic deformation and fracture propagation and report good agreement with

experiments.
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Chapter 1

Introduction

Hydraulic fracturing results from the injection of a pressurized fluid in low-permeability

solid media. Hydraulic fracturing was developed as a technique to extract oil and gas

trapped in shale rocks (unconventional reservoirs), which otherwise have low permeability,

making it difficult to extract using conventional methods. For oil and gas extraction, the

process involves injecting a fluid comprised mostly of water, sand, and chemicals (< 2%)

into the shale rock [1] as shown in figure 1.1. The chemicals help suspend the sand in the

water and also reduce the effective viscosity of the suspension, helping make the process

more economically viable. The injected fluid creates tensile fractures in the rock, that are

initiated and propagated due to the pressure in the fluid. The sand particles are used as

”proppants”, which ensure that the fractures stay propped open once the injection stops.

These fractures help create a pathway for the trapped oil/gas to reach the well-bore.

Apart form oil and gas extraction, hydraulic fracturing is also used to improve per-

meability in geothermal energy reservoirs. Another recent application has been in carbon

sequestration. Because of the considerable risks and expenses associated with CO2 trans-

portation, storage in a reservoir near the emission source is preferred [2, 3]. Yet, local

reservoirs may not possess the most favorable characteristics for storing large fluid vol-

1



Introduction Chapter 1

Figure 1.1: Composition of typical hydraulic fracturing fluid for oil and gas applica-
tions as reported by FracFocus [1].

umes, requiring hydraulic fracturing to improve permeability [4].

However, the injection of large amounts of fluid into geological formations poses en-

vironmental and public health risks associated with water footprint, seismic activity,

and leakage of the fracture content [5, 6, 7]. Carbon sequestration commonly relies on

cap rocks to prevent leaks [8]. Yet injection can induce fracture propagation within the

reservoir and cap rock [9, 10, 11, 12], compromising long-term storage. Leakage can also

contaminate groundwater reservoirs, directly impacting local ecosystems and populations

[13]. Therefore, the mapping of underground mechanics and development of predictive

models are essential for safe fluid injection and storage.

The complex mechanics of fluid-driven fractures are governed by the elastic defor-

mation of the solid medium, fluid flow within the fracture, and the criteria for fracture

propagation at the tip of the tensile fracture [14]. When pressurized fluid is injected from

a point source into an infinite, homogeneous solid medium, a penny-shaped hydraulic frac-

2



Introduction Chapter 1

ture forms and grows in the direction of the minimum confining stress. Seminal work on

the stress distribution in a penny-shaped fracture [15] and the injection of viscous fluids

to form fractures [16, 17] led to the development of self-similar solutions for fractures

whose propagation is limited by the viscous dissipation in the fluid [18]. Further work on

the crack front or tip region identified two asymptotic regimes for the tip geometry and

fracture propagation [19, 20, 21, 22, 23]; In the viscous-dominated regime, the viscous

dissipation in the flow opposes the elastic stress of the deformable boundary to control the

fracture evolution. Whereas, in the toughness-dominated regime, the material toughness

opposes the propagation of the fracture and determines the growth dynamics. Moreover,

if the surrounding solid medium is porous, some of the injected fluid will escape from the

fracture into the surroundings, thus modifying the growth dynamics of the hydraulic frac-

ture. Therefore, the growth of a hydraulic fracture depends on the relative importance

of two dissipative mechanisms and two storage mechanisms [24].

Numerous experimental studies have been conducted to validate tip asymptotes,

study near-surface fractures, and understand the initiation and early-stage growth of

fluid-driven fracture [25, 26, 27, 28, 29, 30, 31, 32]. Additionally, recent experimental

studies have explored increasingly complex systems to gain better insights into the prop-

agation dynamics of hydraulic fractures in rock formations [33, 34, 35, 36]. These studies

contribute significantly to our understanding of the physical mechanisms associated with

fracture coalescence, fracture propagation induced by the injection of heterogeneous fluids

like foam, observations of fracture propagation in the presence of material stratification,

and fracture surface roughness. They also offer insights into developing more realistic

models for predicting fracture initiation and growth. However, a gap exists in understand-

ing and modelling the propagation dynamics of the fracture in complex heterogeneous

systems. Specifically, we aim to investigate scenarios where the injected fluid interacts

not directly with the impermeable rock but with another fluid within the rock. Consid-

3



Introduction Chapter 1

ering the well-known stratification of rocks inside the Earth, we explore questions about

the impact when the injected fluid encounters an interface. Additionally, we delve into

the effects when the flow is shut off, examining whether the fracture ceases propagation

or continues.

1.1 Methodology overview

Throughout this thesis, we focus on developing theoretical frameworks for complex,

heterogeneous systems. This enables direct comparison with existing theories designed

for single fracture propagation. Using simple scaling analysis tools, we aim to construct

comprehensive theories capturing intricate dynamics. To validate and refine these theo-

ries, we conduct experiments in clear hydrogels. This combined theoretical-experimental

approach forms the core of our methodology, providing a robust foundation for under-

standing heterogeneous systems.

When a fluid is injected into a solid to induce fracture, numerous mechanisms come

into play. We make assumptions regarding fluid flow and fracture propagation to simplify

the system. Given the low injection rates, the fracture propagates at equilibrium, and

the liquid and fracture fronts coincide at all times, with no fluid lag. Additionally, the

surrounding solid medium is considered impermeable, eliminating fluid leak-off from the

fracture.

The growth of the fluid-filled fracture is given by the coupled equations that describe

(a) the viscous flow in the fluid phases (b) the elastic deformation of the solid material or

fracture walls, (c) the stress intensity factor at the tip of the fracture, and (d) the volume

conservation. These sets of equations are coupled by the net pressure in the fracture. As

mentioned earlier, two different sets of scales can be derived depending on whether the

primary mechanism of energy dissipation is viscous dissipation in the fluid (the viscous

4
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regime) or the creation of new fracture surfaces (the toughness regime). The derived

scales are then verified by conducting experiments in gelatin. Gelatin has been used to

experimentally study many different fluid driven fracture systems including buoyancy

driven magma transport [37, 38, 39] and hydraulic fractures [28, 29, 40, 34, 41, 42].

Gelatin is a clear gel whose properties can be easily tuned by varying the wt% of gelatin

powder added to water [43]. Gelatin’s transparency allows easy visualization of the

fracture, facilitating different methods to record fracture geometry evolution, such as

radius and thickness.

We compare the experimentally derived fracture data with the theoretical model by

scaling relevant physical quantities, such as fracture radius, thickness, and pressure, using

the appropriate scales.

1.2 Outline

This thesis is structured as follows: The core of the work revolves around understand-

ing fluid-driven fractures in increasingly heterogeneous environments. In this thesis, we

investigate three main problems, (i)fracture propagation in viscous regime after the in-

jection stops,i.e., post ”shut-in”, (ii) fracture propagation driven by two immiscible fluids

and, (iii) fracture propagation across a material interface. Each of the studies is writ-

ten as a separate chapter. Below, a concise summary of each chapter, touching on the

motivation and some of the key findings, is provided.

Chapter 2: Dynamics of fluid-driven fractures in viscous dominated regime

During hydraulic fracturing, the injection of a pressurized fluid in a brittle elastic medium

leads to the formation and growth of fluid-filled fractures. A disc-like or penny-shaped

fracture grows radially from a point source during the injection of a viscous fluid at a

constant flow rate. We report an experimental study on the dynamics of fractures propa-

5
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gating in the viscous regime. We measure the fracture aperture and radius over time for

varying mechanical properties of the medium and fluid and different injection parameters.

Our experiments show that the fracture continues to expand in an impermeable brittle

matrix, even after the injection stops. In the viscous regime, the fracture radius scales

as t4/9 during the injection. Post shut-in, the crack continues to propagate at a slower

rate, which agrees well with the predictions of the scaling arguments, as the radius scales

as t1/9. The fracture finally reaches an equilibrium set by the toughness of the material.

The results provide insights into the propagation of hydraulic fractures in rocks.

Chapter 3: Axisymmetric displacement flows in fluid-driven fractures

Displacement flows are common in hydraulic fracturing, as fracking fluids of different

composition are injected sequentially in the fracture. The injection of an immiscible

fluid at the center of a liquid-filled fracture results in the growth of the fracture and the

outward displacement of the interface between the two liquids.

We study the dynamics of the fluid-driven fracture which is controlled by the com-

petition between viscous, elastic, and toughness-related stresses. A model experiment is

used to characterize the dynamics of the fracture for a range of mechanical properties of

the fractured material and fracturing fluids. A liquid-filled pre-fracture is first formed in

an elastic brittle matrix of gelatin. The displacing liquid is then injected. The radius

and aperture of the fracture, and the position of the interface between the two liquids

are recorded in the experiments.

In a typical experiment, the axisymmetric radial viscous flow is accommodated by the

elastic deformation and fracturing of the matrix. We model the coupling between elastic

deformation, viscous dissipation, and fracture propagation and recover the two fracturing

regimes identified for single fluid injection. For the viscous-dominated and toughness-

dominated regimes, scaling equations are derived that describe the crack growth due

to a displacement flow and show the influence of the pre-existing fracture on the crack

6
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dynamics through a finite initial volume and an average viscosity of the fluid in the

fracture.

Chapter 4: Dynamics of fluid-driven fractures in layered materials

Fluid-filled fractures in underground formations allow large-scale energy and waste stor-

age. Hydraulic fractures are, therefore, essential to various industrial processes ranging

from oil and gas extraction to storage of carbon dioxide. The geological formations

selected for storage commonly have a multilayered reservoir and caprock structure. Un-

derstanding fracture propagation in stratified formations is vital for performance and

environmental impact assessment.

This chapter focuses on the analysis of fracture profiles ensuing from the injection

of a low-viscosity fluid into a two-layer hydrogel block. The layers are characterized

by different stiffness and are separated by an interface. Experimental findings highlight

the influence of the initiating layer on fracture dynamics. Fractures that form in the

softer layer are confined, with no penetration in the stiffer layer. Conversely, fractures

initiated within the stiffer layer experience rapid fluid transfer into the softer layer when

reaching the interface. We record the fracture geometry and pressure for different injec-

tion conditions to characterize the unexpected dynamics. We model the coupling between

elastic deformation, material toughness, and volume conservation. After a short transient

regime, scaling arguments capture the dependence of the fracture geometry on material

properties, injection parameters, and time.

These results show that stiffness contrast can accelerate fracture propagation while

extending its reach. These results have implications for climate mitigation strategies in-

volving the storage of heat and carbon dioxide in stratified underground rock formations.

Finally, in chapter 5, we summarise the key points and results of the thesis and

provide directions for future work.

7
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1.3 Permissions and Attributions

1. The content of chapter 2 is in collaboration with Emilie Dressaire and Marie C.

Sigallon, and has previously appeared in Proceedings of the Royal Society A. DOI:

http://doi.org/10.1098/rspa.2022.0460.

2. The content of chapter 3 is in collaboration with Emilie Dressaire and has previously

appeared in Journal of Fluid Mechanics. DOI: https://doi.org/10.1017/jfm.

2022.954.

3. The content of chapter 4 is in collaboration with Emilie Dressaire and Marie C.

Sigallon and is under preparation as a journal paper.

4. The content of Appendix A is the result of a collaboration with Nathan D. Jones

and Emilie Dressaire and previously appeared in ASME 2021 International Me-

chanical Engineering Congress and Exposition. DOI: https://doi.org/10.1115/

IMECE2021-69668.
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Chapter 2

Dynamics of fluid-driven fractures in

viscous dominated regime

2.1 Introduction

Hydraulic fracturing is a well-stimulation technique used to recover natural gas and oil

from reservoirs with low permeability, such as shale formations. The US Environmental

Protection Agency reports that the natural gas production from hydraulically fractured

wells in the United States saw a 10-fold increase between 2000 and 2015 [44]. The

formation of fractures in rocks has other applications, including carbon sequestration and

geothermal energy extraction [45, 46]. It is estimated that almost 1 million wells have

been hydraulically fractured since the 1940s. As hydraulic fracturing has become more

prevalent, so has the need to characterize the associated risk to the local environment

and populations. Over the past two decades, groundwater contamination and induced

seismicity have been linked to hydraulic fracturing operations. Between 2000 and 2013,

there was at least one hydraulically fractured well system within 1 mile of the water

sources of 3900 public water systems in the continental United States [47]. The water
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from these systems was distributed to more than 8.6 million people year-round in 2013.

Another major concern is the induced earthquakes associated with hydraulic fracturing

[48].

Earthquakes of magnitude 4.0 can be caused by the disposal of wastewater in frac-

tured reservoirs [49, 50, 51, 5]. The associated risks increase as the distance between

stimulated wells and groundwater wells or fault lines decreases. Therefore, understand-

ing the dynamics of a fracture during and after the fluid injection is critical for risk

assessment.

When a pressurized Newtonian fluid is injected from a point source into a uniform

impermeable brittle matrix, a disk-like hydraulic fracture forms and propagates. This

penny-shaped fracture results from the coupling of three mechanisms: (1) the elastic

deformation of the fracture surfaces, (2) the propagation of the fracture at the rim of

the fluid-filled region, and (3) the flow of the fluid in the fracture. Theoretical and

numerical modeling of the penny-shaped crack has been developed since the seminal work

of Sneddon & Mott [15]. Yet the fracture dynamics remain complicated to model owing

to the multi-scale nature of the problem, [14, 52], with viscous dissipation associated with

fluid transport through the volume and the stress concentration at the tip of the fracture.

In limiting regimes, in which the viscous dissipation or the fracture opening controls the

dynamics of the fracture, tip asymptotes can be defined [18, 53, 22, 20, 21, 54, 43].

In the viscous-dominated or zero-toughness regime, the elastic stresses drive the radial

fracture propagation, which is limited by the viscous stresses. In the toughness-dominated

regime, the stress concentration or stress intensity factor controls the fracture expansion,

and the viscous stresses are negligible. To study the two-propagation regimes, laboratory-

scale experiments use hydrogels, whose brittle elastic properties are analogous to those

of rocks. For example, gelatin is a clear material that allows fracture visualization for a

wide range of mechanical properties [28, 26]. Upon injection of an aqueous solution or oil
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Figure 2.1: Diagram showing the radial fracture geometry.

from a needle, a penny-shaped fracture forms at the injection point and expands radially

through the gelatin, perpendicularly to the needle. Radius and aperture measurements

(see figure 2.1) in experimental model systems agree with the theoretical predictions

during the fluid injection. [28, 26, 29, 32].

The dynamics of a fracture after the injection, i.e., post-shut-in, differs depending

on the propagation regime [24]. Here we assume that the fracture propagates in a mo-

bile equilibrium with no fluid lag. The influence of gravity on fracture propagation is

negligible [55]. In the toughness-dominated regime, the fluid-filled fracture propagates

when the stress intensity factor is equal to the toughness of the matrix. When the fluid

injection stops, the elastic pressure is no longer sufficient to sustain the propagation of

the fracture. In the toughness regime, the final geometry of the fracture is reached when

the injection stops. In the viscous regime, however, the material’s toughness does not

limit the propagation of the fracture. The viscous dissipation in the fluid balances the

elastic stresses during and after the injection. This chapter focuses on the dynamics

of fractures that propagate in the viscous-dominated regime during and post-injection.

Previous experimental studies have investigated the fracture dynamics during the in-
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jection of a viscous fluid in a hydrogel matrix [28, 32] and the closure of the fracture

post-injection in porous materials like cement and plaster with a typical Young’s modu-

lus of the order of 1 GPa [56]. Those studies characterized the decline in pressure inside

the fracture post-shut-in, where the pressure decrease is due to various phenomena such

as leak-off. Numerical studies predicted fracture growth and pressure reduction after

shut-in in non-permeable matrices [57, 58]. Here, we conduct injection experiments in

gelatin blocks to study the post shut-in dynamics of a fracture in the viscous regime. The

fracture initially forms and propagates during the injection of a viscous Newtonian liquid.

The injection is stopped, and we record the time dependence of the fracture radius and

aperture until both properties become constant, indicating that the fracture has reached

its equilibrium configuration. We observe that the fracture created in the viscous regime

continues to propagate even after the injection stops. Consequently, we identify three

different regimes of propagation in our experiments: (1) propagation during injection,

(2) propagation post shut-in or at constant volume, and (3) saturation. To the best of

our knowledge, the experiments presented here are the first observations for the three

regimes in a hydrogel matrix, and the data agree well with the corresponding scaling

laws [24, 56, 58].

This chapter is structured as follows. In §3, we discuss the experimental set-up and

methods and our observations. In §4, we summarize the scaling arguments and derivation

of the dimensionless parameters. The experimental results and theoretical predictions

are compared in §5. Our conclusions are summarized in §6.

2.2 Experiments and observations

To study the fracture dynamics in the viscous-dominated regime, we inject a viscous

liquid into a high Young’s modulus and low toughness gelatin block. Using dyed silicone
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camera

 gelatin

fluid (μ0, Q0, V0)

needle

washer

125 mm
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Figure 2.2: Experimental set-up: (a) schematic and (b) penny-shaped fracture formed
by injecting silicone oil of viscosity µ = 10 Pa.s at a flow rate Q0 = 10 ml.min−1) into
a block of gelatin with a Young’s modulus E = 88 kPa. The oil is dyed with a red
oil-soluble food color.

oil, we can characterize the geometry of the fracture, i.e., its radius and aperture, as a

function of the radial distance from the injection point during and after the injection.

2.2.1 Experimental methods

The gelatin is prepared by heating ultra-pure water to 60oC and slowly adding gelatin

powder (Gelatin type A; Sigma-Aldrich, USA) while mixing. The gelatin is then allowed

to be set over 24 hours at room temperature in a cubic clear container (12.5 cm × 12.5

cm × 12.5 cm) around a blunt needle as represented in figure 2.2. The Young’s modulus

of the gelatin E is measured with cylindrical samples of height and diameter equal to

2.5 cm. The cylinders are tested under compression using a custom-built displacement-

controlled load frame. The Young’s moduli range between 88 to 144 KPa ±10% for mass

fractions of gelatin powder in water between 20 - 25%. The fracture energy and Poisson’s

ratio of the gelatin are assumed constant with γS ≈ 1 J.m−2 and ν ≈ 0.5 respectively

[38]. The inner diameter of the blunt needle is equal to 2.15 mm. A plastic washer of
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diameter of about 6 mm is placed at the tip of the needle to ensure the propagation of the

fracture in a plane perpendicular to the needle and parallel to the lens of the camera. We

inject silicone oils of different viscosity µ to fracture the gelatin. Viscosity measurements

are conducted using an MCR 92 Anton Parr rheometer with a parallel plate measuring

system. The values obtained at 20oC are listed in table 2.1 and have an error of ±1%.

We use a syringe pump (KDS Legato 200 series infusion syringe pump) to inject the

fracturing fluid at a controlled flow rate Q0 ranging from 5 to 28 ml.min−1. The injection

stops when a volume V0 of fluid has been injected.

To ensure that the experiments are in the viscous regime, we estimate the ratio of the

toughness-related pressure and the viscous pressure. This ratio is called the dimensionless

toughness (Ks), and its maximum value is reached at the time of shut-in [24]

Ks = K ′ t
1/9
s

E ′13/18µ′5/18Q
1/6
o

, (2.1)

with the effective viscosity µ′ = 12µ, the effective toughness K ′ = 4
(
2
π

) 1
2 KIC , the tough-

ness KIC =
√
2γSE ′ and the effective Young’s modulus E ′ = E/(1− ν2). The dimen-

sionless toughness is of order 1 for all experiments as presented in table 1. We, therefore,

expect the fracture propagation to be limited by the viscous dissipation associated with

the fluid flow in the fracture.

The silicone oil is dyed using oil-based food color to help visualize the propagation of

the fracture. The list of experiments and the corresponding parameters are summarized

in table 2.1. The propagation of the fracture is recorded using a Nikon D5300 camera

with a Phlox® LED panel ensuring uniform backlighting. The images are processed using

a custom-made MATLAB code to determine the radius of the fracture R.
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Exp. Markers E (kPa) µ (Pa.s) Q0 (ml.min−1) V0 (ml) Ks

1 •◦ / ◦ 88 10.3 15 6 1.6
2 ▲ △ / △ 88 10.3 5 6 2.17
3 ▲△ /△ 88 10.3 10 6 1.79
4

▲△

/

△

88 10.3 25 4.3 1.34
5

▲△

/

△

88 10.3 28 4.3 1.30
6 ♦♢ / ♢ 88 10.3 15 8 1.65
7 ×□ /× 88 10.3 15 4 1.53
8 ■ / □ 88 20 25 3 1.06
9 +□ /+ 116 10.3 10 4 1.61
10 ■□ / □ 144 10.3 20 3 1.23
11 ■□ / □ 144 30 15 3.5 0.996

Table 2.1: List of Experiments. The markers on the left and right of the / symbol
correspond to the data recorded during and after the injection respectively.

2.2.2 Thickness measurements

We use the light absorption technique pioneered by Bunger [59] to measure the frac-

ture aperture using a soluble dye in the injected fluid. In our system, white light illumi-

nates the sample and a filter is placed on the camera to measure the light intensity at a

single wavelength. The filtered wavelength corresponds to the maximum absorbance of

the dye. At this wavelength, the absorbance Aλ follows Beer’s law:

Aλ = − log10

(
Iλ
Iλ,0

)
= ϵλc h (2.2)

where Iλ,0 is the background intensity and Iλ is the intensity of light after it passes

through a fluid layer of thickness h, with a dye concentration c. The fitting parameter

ϵλ depends on the dye-fluid combination and the concentration and is obtained through

calibration. Here, the fracturing fluid is dyed with Nile Red at a concentration of 0.2

g.L−1, and the wavelength of the optical filter used was 632 nm. The value of the fitting

parameter ϵλc = 3.54 × 10−3 mm−1 is obtained through the calibration process using

liquid layers whose thickness ranges from 0.14 mm to 2 mm.
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2.2.3 Observations

During the injection process, the fracture forms at the tip of the needle and propagates

along the washer and beyond, expanding radially. Figure 2.3 presents a time series of

the fracture propagation (see also electronic supplementary material, Movie S1). As the

fracture grows radially, its thickness w increases as its color becomes darker. When the

injection stops, the fracture expands radially at a slower pace. As the fracture grows, its

color fades, indicating that the aperture decreases with time. Since the amount of fluid

in the fracture needs to be conserved, as the radius increases, the width of the fracture

decreases. Finally, the fracture stops growing. The radius R of the fracture vs time for

the experiments listed in the table 2.1 is plotted in figure 2.4(a). To ensure that the finite

volume of material and the bounding container walls are not affecting fracture growth,

we experimented with a larger volume of gelatin (see Appendix 2.1 of the chapter for

more details). The maximum fracture radius is independent of the size of the gelatin

block, indicating that the viscous-dominated fracture stops expanding when it reaches

equilibrium.

2.3 Scaling arguments

The fracture results from the injection of a high-viscosity Newtonian fluid in a brittle

elastic matrix that is impermeable. We assume there is no lag between the fracture tip

and the fluid front. The fracture is initially driven by an incompressible fluid of viscosity

of µ pumped at a constant flow rate Q0. The elastic medium is characterized by Young’s

modulus E, Poisson’s ratio ν, and toughness KIC . The injection through a point source

leads to the formation and radial propagation of a penny-shaped fracture with no lag

between the fluid and the fracture tip, as represented in figure 2.1. The experiments

conducted in this study are in the viscous-dominated regime during the injection. The
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: Fracture growth during and after the injection. The fluid is dyed with red
food color to enhance the contrast. The grayscale images presented here are obtained
by filtering the red channel from the color images. The first images are recorded
during the injection: (a) t = 0 s, (b) t = 18 s, (c) t = 36 s. The fracture continues to
grow after the injection stops (d) t = 54 s, (c) t = 126 s, (f) t = 198 s, (g) t = 270
s. The recording ends when the fracture has reached its equilibrium configuration (h)
t = 396 s. The experimental parameters are: Young’s modulus E = 88 KPa, flow rate
Q0 = 10 ml/min, volume injected V0 = 6 ml and fluid viscosity µ = 10 Pa.s.

viscous dissipation associated with fluid transport in the fracture limits growth. The

material toughness is negligible and does not contribute to the fracture dynamics during

the injection.

The evolution of the radius and width of the fracture in the viscous dominated regime

can be modeled using scaling arguments, derived for both the injection and post ”shut-in”

stages of the propagation [22, 24] We make the following assumptions: (i) the stresses at

the crack tip are well described by Linear Elastic Fracture Mechanics (LEFM), (ii) the lu-

brication theory can be used to model the flow; (iii) the fracture propagates continuously

in a mobile equilibrium; and (iv) the matrix is impermeable (no leak-off). To describe the

fracture aperture w(r, t), radius R(t), and pressure p(r, t), we solve the coupled equations

that describe (a) the viscous flow of the fracturing fluid in the time-dependent fracture,

see equation (2.3), (b) the elastic deformation of the solid material, see equation (2.4),

(c) the fracture propagation criteria based on LEFM, see equation (2.5), and the global
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mass balance or fluid mass conservation, see equations (2.6) or (2.7). The net pressure

couples these equations. The non-dimensional forms of the equations are summarised

below, and a detailed derivation is provided in Appendix 2.2 of the chapter. The equa-

tions are non-dimensionalized with R = RoR̂, w = woŵ, p = poP̂ , and t = tot̂, where Ro,

wo, po and to represent the characteristic radius, aperture, pressure of the fracture and

timescale of the propagation, respectively. As proposed by Savitski and Detournay [22],

we define the effective viscosity µ′ = 12µ, the effective toughness K ′ = 4
(
2
π

) 1
2 KIC and

the effective Young’s modulus E ′ = E/(1− ν2). The dimensionless lubrication equation

writes [32]:

∂ŵ

∂t̂
=

t0w
2
0p0

µ′R2
0

1

r̂

∂

∂r̂

(
r̂ŵ3∂p̂

∂r̂

)
. (2.3)

The elastic deformation leads to the following:

ŵ =
8

π

p0R0R̂

w0E ′

∫ 1

r̂/R̂

ξ√
ξ2 − (r̂/R̂)2

∫ 1

0

xp̂√
1− x2

dxdξ. (2.4)

The fracture propagation requires:

K ′

p0R
1/2
0

=
27/2

π
√

R̂

∫ R̂

0

p̂√
R̂2 − r̂2

r̂ dr̂. (2.5)

Since the gelatin is considered impermeable, the volume of the fracture is equal to the

volume of fluid injected. During the injection, the volume of the fracture is equal to

Q̂t̂ = 2π
R2

0w0

Q0t0

∫ R̂

0

r̂ŵ dr̂. (2.6)

18



Dynamics of fluid-driven fractures in viscous dominated regime Chapter 2

The injection stops when the fracture volume is equal to V0 = Q0t0. After the injection,

the volume of the fracture is:

V̂ = 2π
R2

0w0

V0

∫ R̂

0

r̂ŵ dr̂. (2.7)

To determine the fracture dynamics during and after the injection, we now solve the

sub-set of equations relevant to each stage of fracture propagation.

2.3.1 Viscous regime: constant flow rate propagation

To obtain the scaling relations that describe the fracture dynamics during the injection

at a constant flow rate, we assume that the major form of dissipation of energy in the

fracture is the viscous dissipation of the fluid flow. We set the dimensionless parameters

in equations (2.3), (2.4) and (2.6) equal to 1. We recover the scaling relations for the

radius Ro and aperture wo of the fracture originally derived by Savitski and Detournay

[22]:

R0 ≈
(
Q3

0E
′t40

µ′

)1/9

(2.8)

w0 ≈
(
µ′ 2Q3

0t0
E ′ 2

)1/9

(2.9)

During the injection, both the radius and the aperture are increasing functions of

time, which is consistent with our observations.

2.3.2 Viscous regime: propagation at constant volume

Once the injection is complete, the volume inside of the fracture is constant [24]. The

viscous dissipation of the fluid is assumed to be the limiting factor in the propagation
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of the fracture. Setting the dimensionless parameters of equations (2.3), (2.4) to 1 and

(2.7) and solving for the characteristic radius R0 and aperture w0, we get:

R0 ≈
(
V 3
0 E

′t0
µ′

)1/9

(2.10)

w0 ≈
(
µ′ 2V 3

0

E ′ 2t20

)1/9

. (2.11)

The radius is still increasing with time, at a slower rate than during the injection. The

aperture of the fracture is now a decreasing function of time. This is consistent with

the fact that the total volume of fluid in the fracture (∝ R2
0w0) needs to be conserved,

independent of time.

2.3.3 Toughness regime: saturation

Based on the scaling relations derived for the viscous regime, the fracture radius is an

increasing function of time at constant fracture volume. Yet, the elastic pressure in the

fracture is a decreasing function of time, as the wall deformation decreases. Eventually,

the material toughness is no longer negligible. Indeed, if the pressure in the fracture is

too low, the material no longer fractures and the propagation of the fracture stops. We

assume that saturation, unlike the previous two stages of propagation, is controlled by the

fracture opening or material toughness. The fracture opening criterion as a function of

the pressure and stress intensity factor is given by equation (2.5). This equation coupled

with the elastic stress in the gelatin matrix, equation (2.4) and the volume conservation

of the fracture, equation (2.7) leads to the following scaling [24]:

R0 ≈
(
V0E

′

K ′

)2/5

(2.12)

w0 ≈
(
K ′ 4V0

E ′ 4

)1/5

. (2.13)
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Where, K ′ = 4
(
2
π

)1/2
KIC . The radius and the aperture of the fracture are now functions

of the volume of fluid and mechanical properties of the matrix. They are independent of

time.As the material toughness increases, the arrest radius decreases because it is more

difficult to create a new fracture surface.

2.4 Results and observations

In the following section, we report quantitative experimental results, and their com-

parison with the scaling arguments derived above for both the radius and width of the

fracture.

2.4.1 Radius measurements

We first measure the radius of the fracture as a function of time for the experimental

parameters summarized in table 2.1. The raw experimental data are shown in figure

2.4(a). The solid symbols correspond to the values recorded during the injection. In

contrast, the open markers indicate that the data were recorded after the injection. For

some of the experiments, such as experiment 8, we see a 50% increase in the radius of

the fracture after the injection stops.

We successively rescale the data using the scaling laws derived above and obtain

figures 2.4(b-d), where the fit line is shown in black. On the log-log plot, the slope

of the line is set to the value of the power-law derived using scaling arguments. The

y-intercept is obtained by minimizing the mean squared error and corresponds to the

prefactor, which can be predicted theoretically [21]. The propagation dynamics exhibit

three stages described by (i) the viscous-dominated propagation during the injection, (ii)

the viscous-dominated propagation at constant volume after the injection stops, and (iii)

a toughness-controlled saturation. For the fracture dynamics during the injection [regime
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Figure 2.4: Radius of the fracture formed during experiments 1-9, see table 2.1 for
corresponding parameters. Data collected during and after the injection are displayed
with solid and open symbols, respectively. (a) The radius of the fracture over time.
(b) Rescaled radius using equation (2.8) for the regime (i) as a function of time. (c)
Rescaled radius using equation (2.10) for the regime (ii) as a function of time. (d)
Rescaled radius using equation (2.12) for the regime (iii) as a function of time. For
each regime, the best fit line is represented by a solid black line.

(i) and figure 2.4(b)], we rescale the data using the viscous scaling. After the early times

that correspond to the fracture formation and its propagation over the washer, the data

points collapse onto a best-fit line which has a prefactor, k1 = 0.28 and an exponent,
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α1 = 4/9 where

R(t) = k1

(
E ′Q3

0

µ′

)1/9

tα1 . (2.14)

The theoretical prefactor derived by Savitski and Detournay [21] is equal to 0.7. The

low value of the prefactor obtained in our experiments is consistent with measurements

previously reported for the viscous-dominated regime [28, 32].

In the next regime [regime (ii) and figure 2.4(c)], the fracture fluid continues to

propagate after the injection stops, and the open symbols collapse on the best fit line

R(t) = k2

(
E ′V 3

0

µ′

)1/9

tα2 , (2.15)

which has a prefactor k2 = 0.39 and an exponent, α2 = 1/9. The results indicate that

the propagation continues to be dominated by viscous dissipation. For time values above

100 s, the increase in radius no longer follows the best fit line: the radius reaches its

maximum or equilibrium value.

In the saturation regime, regime (iii), and figure 2.4(d)], we rescale the data using

the volume of the fracture and the mechanical properties of the gelatin matrix. All

data collapse on an average value represented with a horizontal line whose y-intercept

k3 ≈ 0.58 where,

R(t) = k3

(
E ′V0

K ′

)2/5

. (2.16)

The experimental prefactor of 0.58 is comparable to the expected theoretical prefactor of

0.85 [24]. This result indicates that the propagation controlled by the viscous dissipation

stops when the stress intensity factor at the tip of the fracture is too low to sustain the

formation of the fracture.

The time dependence of the radius demonstrates the succession of three regimes

of fracture propagation: growth at constant flow rate, growth at constant volume and
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Figure 2.5: (a) Fracture profiles measured during and after the injection for
t = [9, 21, 33, 81, 105, 117, 762] s with time increasing from clear red to dark blue.
(b) Rescaled fracture profiles using the scaling laws derived for the injection in §2.1.
(c) Rescaled fracture profiles using the scaling laws derived for the constant volume
propagation in §2.2. Experimental parameters: E = 88 KPa, Q0 = 10 ml.min−1,
V0 = 6 ml, and µ = 10 Pa.s
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saturation. The growth of the fracture at constant volume is characterized by its duration

and the relative change in fracture radius. The duration and the relative change in radius

decrease as the dimensionless toughness of the injection increases [24]. Indeed the larger

the value of κs, the closer to the toughness regime the injection is. The fracture is arrested

immediately after the injection stops for a cut-off value of Ks = 2.5. For the experiments

conducted in this study, the Ks values have been listed in table 2.1 and range between

0.996-2.17, which explains why the growth at constant volume lasts a few minutes for a

relative change in radius is about 50%.

2.4.2 Thickness measurements

To further characterize the three propagation regimes, we measure the fracture aper-

ture with the dye absorption method and plot the profiles of the fractures in figure 2.5.

During the injection, both the radius and aperture of the fracture increase. Upon rescal-

ing, the data collapse on a self-similar fracture profile, after an initial transient regime,

as shown in figure 2.5(b). After the injection, the radius of the fracture increases as the

aperture decreases. The rate of propagation is slower than it was during the injection.

Upon rescaling, all data collapse on a second self-similar profile which corresponds to the

viscous propagation of a fracture of constant volume (see figure 2.5(c)).

2.5 Conclusion

As a pressurized fluid is injected in an elastic brittle material, a penny-shaped fracture

forms and propagates. The complex fracture dynamics depend on the matrix and fluid

properties and the injection parameters. During the fluid injection, modeling and exper-

imental studies have demonstrated two asymptotic regimes. The fracture expansion is

either controlled by the viscous dissipation in the fluid, in the viscous-dominated regime
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or the toughness of the material, in the toughness-dominated regime. Upon shut-in, the

continued propagation of the fracture at constant volume has been observed in porous

materials and predicted for impermeable matrices. In this study, we experimentally

study the propagation regimes of a viscous-dominated fracture in a hydrogel matrix. We

demonstrate the existence of three propagation regimes: injection growth, post shut-in

propagation, and saturation. For each regime, we show a good agreement with the scaling

laws derived for the growth of fractures in the viscous-dominated regime during injection

at a constant flow rate and post shut-in. The saturation values of the fracture radius and

aperture are reached when the stress intensity factor at the tip of the fracture becomes

lower than the material’s toughness. The experimental results and corresponding model

allow for predicting the relative growth of the fracture after the injection stops, i.e., the

final size of the fracture and how long it takes for the fracture to reach this equilibrium

geometry once the injection stops.
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Appendix 2.1: Effect of box dimensions

All experiments are conducted in a 12.5 cm × 12.5 cm × 12.5 cm block of gelatin set

in an acrylic box of the same dimensions. To test the influence of the box size or edge

effects on the fracture dynamics and the saturation radius, we performed experiment 3

(see table 2.1 for experimental parameters in a larger volume of gelatin of dimensions 15

cm × 15 cm × 15 cm. The radius of the fracture is recorded over time and plotted in

fig.2.6, for the two block sizes. The results demonstrate that the evolution of the radius

does not depend on the size of the block of gelatin. The saturation radius is not set by

edge effects.
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Figure 2.6: Influence of matrix dimensions on fracture propagation. Radius vs time
for experiment 3 (see table 2.1 for experimental parameters) conducted in a box of
size 12.5 cm × 12.5 cm × 12.5 cm (▲△) and a box of size 15 cm × 15 cm × 15 cm (▲

△).
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Appendix 2.2: Governing equations

We review the mathematical derivations that define the radius and aperture of penny-

shaped fracture driven by a fluid [32].

The mechanical deformation in the elastic matrix associated with the fracture thick-

ness w relates to the pressure p in the fracture and the fracture radius R through the

following integral relation, initially derived by Sneddon & Lowengrub [61].

w(r, t) =
8R

πE ′

∫ 1

r/R

ξ√
ξ2 − (r/R)2

∫ 1

0

xp(xξR, t)√
1− x2

dx dξ. (2.17)

To describe the fluid flow in the fracture, we use the non-linear lubrication equation called

the Reynolds equations [62] which relates the aperture of the fracture to the pressure and

the fracture radius.

∂w(r, t)

∂t
=

1

12µ

1

r

∂

∂r

(
rw3(r, t)

∂p

∂r

)
(2.18)

The stress intensity factor KI defines the stress concentration at the tip of the fracture.

The fracture propagates if the stress intensity factor KI is equal to KIC , i.e., the material

toughness. For a penny-shaped fracture, the stress intensity is equal to [63]:

KI =
2√
πR

∫ R(t)

0

p(r, t)√
R2 − r2

r dr. (2.19)

where r is the radial distance from the center of the fracture (refer to figure 2.1) .

The boundary conditions are set by the fracture geometry. The integral representation

of the fluid mass conservation in the fracture is in equation (2.20). The fracture thickness

at the tip is 0, equation (2.21). There is no flow through the tip of the fracture in the
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elastic medium, equation (2.22).

Qt = 2π

∫ R(t)

0

rw(r, t)dr (2.20)

w = 0, r = R(t) (2.21)

w3(r, t)
∂p(r, t)

∂r
= 0, r = R(t) (2.22)

In this study, this set of coupled equations and boundary conditions are used to derive

scaling laws for the fracture radius and aperture.
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Chapter 3

Axisymmetric displacement flows in

fluid-driven fractures

3.1 Introduction

Fluid-driven or hydraulic fracturing results from the injection of a pressurized fluid

in low permeability solid media. The formation and propagation of the fluid-filled tensile

fracture is commonly observed in engineering and natural geophysical processes. For ex-

ample, the formation of magma-driven dykes is due to density differences that generate

pressure large enough to propagate a vertical fracture in the surrounding rock [55, 64].

The most common industrial application of hydraulic fracturing is well stimulation to

facilitate the extraction of oil and gas from shale formations [65]. A fluid is injected

at high pressure to expand fractures initiated with small-scale explosions in unconven-

tional reservoirs. The fractures constitute new flow pathways, facilitating fluid transport

and storage in low permeability and low porosity rock formations. Other applications

leverage the enhanced transport. For example, fractures connecting wells can be used

to extract geothermal energy as the fluid pumped through the fracture heats up as it
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travels underground [66, 46, 67]. Fractures are also used for storage, including carbon

sequestration [45, 68] and disposal of liquid waste [69, 70].

The complex mechanics of fluid-driven fractures are controlled by the deforming

boundary, fluid flow and stress singularity at the tip of the tensile fracture [14]. Field

testing, laboratory-scale experiments, and predictive modelling evidence that the fracture

propagation is characterized by multiple length and time scales. When a Newtonian fluid

is injected from a point source, in an infinite, homogeneous, and impermeable medium, a

single fracture propagates radially. The elastic stress in the medium leads to the growth

of a penny-shaped fluid-filled fracture in the direction of minimum confining stress. The

propagation of such fractures has been studied extensively as it is essential to the mod-

elling of more complex geological situations, including those involving a finite medium

[25], complex fluids [71, 72, 34], and interacting fractures [33]. Seminal work on the

stress distribution in a penny-shaped fracture [15] and the injection of viscous fluids to

form fractures [16, 17] led to the development of self-similar solutions for fractures whose

propagation is limited by the viscous dissipation in the fluid [18]. Further work on the

vicinity of the crack front or tip region identified two asymptotic regimes for the tip

geometry and fracture propagation [19, 20, 23, 22, 21]. In the viscous-dominated scaling,

the viscous dissipation in the flow opposes the elastic stress of the deformable bound-

ary to control the fracture evolution. In the toughness-dominated regime, the material

toughness opposes the elasticity-driven propagation of the fracture and determines the

system’s behaviour. Laboratory-scale experiments commonly rely on clear brittle elas-

tic gels to study the crack tip region and the penny-shaped fracture [37, 39, 43, 73].

Injections of water, glycerol, and oil in gelatin and polyacrylamide have validated the

existence of two propagation regimes and the corresponding scaling laws [28, 29, 32].

The behaviour of the crack tip region was studied by injecting liquid between two plates

of polymethylmethacrylate (PMMA) glued by an adhesive [26].
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Figure 3.1: Schematic of a penny-shaped fracture formed by successively injecting
two liquids, first the outer fluid (dark gray) and then the inner fluid (light gray). The
fracture is axisymmetric.

Most hydraulic fracturing processes involve multiphase flows and in particular, dis-

placement flows [72, 52, 34, 74, 75]. During hydraulic fracturing operations several fluids

are injected ranging from low-viscosity fluids to high-viscosity polymer solutions [76, 75]

and proppant slurries [72, 74, 77]. This sequence of injections aims at increasing the

surface area of the fracture and at keeping the fracture open during the hydrocarbon

extraction. For example, carbon dioxide injection is a promising strategy to enhance oil

recovery after primary production of shale oil reservoirs [45, 68]. The rapid injection of

supercritical CO2 in water-filled fractures is followed by the slower permeation of CO2

into the rock and the migration of the oil into the fracture. This strategy increases the

amount of oil recovered while storing carbon in the rock. Finally enhanced geother-

mal systems rely on fractures in hot rocks to connect the injection and extraction wells

[66, 46, 78]. Fracturing fluids are injected first, and then the working fluid, commonly

water or CO2 is pumped into the fracture to extract heat.

Displacement flows in porous media can give rise to complex out-of-equilibrium flow

patterns when the invading fluid has a lower viscosity than the fluid which occupies the
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porous medium, and is referred to as the displaced or defending fluid. Practically, the

patterns generated by liquid-liquid or gas-liquid displacement flows lead to preferential

flow pathways in the porous medium. Extensive work has therefore been dedicated to

the formation and geometry of the patterns, ranging from experimental to numerical and

theoretical [79, 80, 81, 82, 83, 84, 85, 86]. Viscous and capillary forces can contribute

to fluid/fluid displacement in a porous medium. A displacement flow is characterized

by two dimensionless parameters: the viscosity or mobility ratio M = µinv/µdef and

the capillary number of the invading fluid Ca = µinvu/γ where µinv and µdef are the

viscosities of the invading and defending fluids, respectively, u is the characteristic velocity

and γ is the surface tension of the interface between the two fluids. The influence of the

two dimensionless parameters on the geometry of the invading front is summarized in

Lenormand’s phase diagram [84], which was recently revisited by Primkulov et al. (2021)

[87] to include wettability. In summary, for large Ca, the viscous forces control the system

dynamics and the interfacial forces are negligible. If the invading fluid is more viscous

than the defending fluid (M ≥ 1), a compact front or interface moves through the porous

medium. If the invading fluid is less viscous than the defending one (M << 1), the

Saffman-Taylor instability leads to an unstable front with the formation of a viscous

fingering pattern, observed in porous media of different complexity, from Hele shaw cells

[79, 88] to intricate networks of pores and throats [89, 90]. For low Ca, the interfacial

forces contribute to the system dynamics and result in more complex patterns at the

interface between the two fluids, depending on the local pore geometry and wettability

[91, 92]. The rich dynamics of displacement flows is reported in various model porous

media, including networks of microchannels and rough fractures [93, 94, 95]. Yet, the

system geometry can delay the onset of viscous fingers and even suppress the Saffman-

Taylor instability. In a converging Hele-Shaw cell, the stability of the interface depends

on the mobility ratio, but also the characteristic velocity, the gradient of cell depth,
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and the contact angle at the interface [96, 97, 98]. Below a critical capillary number,

a compact front is observed in a converging Hele-Shaw cell despite the unfavourable

nature of the displacement. Similar results are reported in flexible cells, whose geometry

depends on elastohydrodynamic interactions, such as displacement flows under elastic

membranes [99, 100, 101, 102]. Two physical mechanisms contribute to the stabilization

of the interface under an elastic membrane that deforms as fluid is injected. Firstly, the

local increase in cell depth leads to a depth gradient which has been shown to delay

viscous fingering for rigid converging cells. Secondly, the increase in depth reduces the

characteristic velocity or capillary number corresponding to a given injection flow rate.

The purpose of the present chapter is to model axisymmetric two-phase flows in fluid-

filled growing fractures. Experiments and theoretical modelling focus on immiscible two-

phase flows with a mobility ratio smaller than or of order 1 and a low capillary number,

ensuring the propagation of a compact front. We build on the approach of Savitski &

Detournay (2002) [22] to study the coupling between the two-phase flow and the fracture

growth, in the viscous and toughness regimes (§ 3.3). We derive new scalings for the radius

and aperture of the fracture and the position of the interface for immiscible displacement

flows in elastic, brittle, and impermeable media (§ 3.4). To test the scalings, we conduct

injection experiments in gelatin, which is a common model medium (§ 3.5). During the

two consecutive injections, we record the geometrical parameters of the fracture and

compare their time dependence with scalings (§ 3.6). Finally, we discuss the timescales

of the fracturing displacement flow (§ 3.7).

3.2 Theoretical models

In this section, we model the displacement flow that is responsible for the propagation

of a crack during the successive injections of two immiscible fluids. The mathematical
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models presented build on the framework originally introduced by Spence & Sharp (1985)

[18] and further developed in recent studies of single fluid injection [22, 28, 32]. Past

work has focused on the injection of a single incompressible fluid in an elastic brittle

solid through a point source (see figure 3.1), forming a penny-shaped crack. The fracture

dynamics depend on the material properties, such as the Young’s modulus E, Poisson’s

ratio ν, and toughness KIC , and the injection parameters, i.e. the constant flow rate Q

and liquid viscosity µ. As the injection stops, the fracture reaches its final configuration

and volume V0.

This study addresses the injection of an immiscible liquid in a pre-formed penny-

shaped crack. The fluid is injected through the same point source at the centre of the

penny-shaped crack. The displaced fluid fills an outer annular region of the fracture (see

figure 3.1). In what follows, we use the subscript “in” to refer to the injected liquid and

“o” to the displaced fluid. The surface tension of the interface is noted γ and the contact

angle with the solid θ. Over the timescale of an experiment, typically a few minutes,

the solid is not porous to the liquids and the volume of the fracture is equal to the total

volume of fluid injected.

We make assumptions regarding fluid flow and fracture propagation to model the

system dynamics. As the injection rates are low, we assume that the fracture propagates

at equilibrium and the liquid and fracture fronts coincide at all times, with no fluid lag.

The fluid injection results in linear elastic deformation of the surrounding material.

To describe the crack aperture w(r, t), radius R(t) and pressure p(r, t), as well as the

position of the interface RI , we need to solve the coupled equations that describe (a)

the viscous flow of the two fluid phases in the time-dependent fracture, (b) the elastic

deformation of the solid material or fracture walls, (c) the stress intensity factor at the

tip of the fracture, and (d) the volume conservation. These sets of equations are coupled

by the net pressure in the fracture. The fluid domain is divided into two regions. The
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outer region is composed of the displaced fluid and bound by the liquid-liquid interface

at r = RI and the crack tip at r = R. The injected fluid fills the inner region of the

crack from the injection point to the fluid-fluid interface at r = RI . Both regions are

axisymmetric as shown in figure 3.1.

3.2.1 Fluid flow in the crack

3.2.1.1 Lubrication theory

The low Reynolds number flow in the elongated fracture allows to simplify the Navier

Stokes equation and use lubrication theory. The fluid is injected in a pre-formed crack

whose aspect ratio is small:

w << R. (3.1)

The Reynolds number of the flow through the crack is defined for the injected fluid as

Re = ϵ
ρU w

µ
=

ρinQinw(r = 0)

2πµinR2
≤ 1, (3.2)

where ϵ is the aspect ratio of the crack. As a result the flow of both fluids can be modeled

with the lubrication theory, similarly to the single-phase flows in a penny-shaped fracture

[22, 103, 104, 28, 32]. For the 2-fluid system, the lubrication equations write:

∂w(r, t)

∂t
=

1

12µin

1

r

∂

∂r

(
rw3(r, t)

∂p

∂r

)
for 0 ≤ r ≤ RI (3.3)

∂w(r, t)

∂t
=

1

12µ0

1

r

∂

∂r

(
rw3(r, t)

∂p

∂r

)
for RI ≤ r ≤ R (3.4)
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3.2.1.2 Liquid interface

The interface between the two fluids moves outward during the injection and is de-

scribed by the dynamics boundary condition:

n·
(
−p−I + µin

(
∇ u− +(∇u−)T

))
·n+γκ = n·

(
−p+I + µ0

(
∇ u+ +(∇u+)T

))
·n (3.5)

where n = er is the vector normal to the interface and κ the sum of the principal

curvatures of the interface. The + and − exponents indicate that the value of the

variable is determined at r = RI + ϵ and r = RI − ϵ respectively with ϵ << RI . We

note τ = µ
(
∇u+ (∇u)T

)
. We assume that the fluids are perfectly wetting the gel and

neglect the thin film deposited by the outer fluid. The normal stress balance writes

p− − p+ = σI = γ

(
1

RI

+
2

wI

)
− n ·

(
τ+ − τ−) · n (3.6)

= γ

(
1

RI

+
2

wI

)
− 2µ0

∂u

∂r
|r=R+

I
−2µin

∂u

∂r
|r=R−

I
, (3.7)

where wI is the width of the fracture at the interface. The expression can be further

simplified as RI > wI and the viscous normal stresses are negligible. Indeed the capillary

number of the invading fluid is

Cain =
µin U

γ
=

µinQin

2γπRw(r = 0)
<< 1. (3.8)

The pressure change across the interface is:

p− − p+ ≈ 2γ

wI

. (3.9)
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As the fluid-fluid interface moves, we can write the following kinematic condition using

Reynolds equations:

q− = q+ = − w3
I

12µin

∂p

∂r
|r=R−

I
= − w3

I

12µ0

∂p

∂r
|r=R+

I
. (3.10)

3.2.1.3 Volume conservation

Finally, through volume conservation, the volume of the crack is equal to the volume

injected. We note V0 the volume of the pre-fracture which is equal to the volume of the

outer fluid. The injection begins at t = 0:

V0 +Qin t = 2π

∫ R

0

rw(r, t)dr, (3.11)

and

Qin t = 2π

∫ RI

0

rw(r, t)dr. (3.12)

3.2.2 Fracture equations

3.2.2.1 Linear elasticity

Similarly to the single-fluid fracture [22], the linear elasticity equation writes

w(r, t) =
8 (1− ν2)R

πE

∫ 1

r/R

ξ√
ξ2 − (r/R)2

∫ 1

0

xp(xξR, t)√
1− x2

dx dξ. (3.13)

3.2.2.2 Fracture propagation

In a small region at the tip of the crack, the material undergoes plastic deformation.

The tensile fracture propagates when the mode I stress intensity factor KI reaches a

critical value called the toughness of the material KIC =
√

2E ′ γS, where γS is the
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fracture surface energy of the solid material [105] and E ′ = E/(1− ν2). For a penny-

shaped crack, the stress intensity factor near the tip is defined as [63]:

KI =
2√
πR

∫ R(t)

0

p(r, t)√
R2 − r2

rdr. (3.14)

3.2.3 Boundary conditions at the fracture tip and injection

point

At the tip of the crack, the width w(R) goes to zero:

w = 0, r = R(t), (3.15)

and the flow rate also goes to zero:

w3(r, t)
∂p(r, t)

∂r
= 0, r = R(t). (3.16)

At the point source, the local flow rate is equal to the injected flow rate

2π lim
r→0

r q(r, t) = Qin. (3.17)

3.3 Scaling

The equations are non-dimensionalized by identifying the characteristic scales in both

phases as listed in table 3.1.

The characteristic radius and aperture of the fracture are R and W0 respectively, with

R the radius of the fracture and W0 the maximum aperture of the fracture at r = 0. The

position of the interface is RI . The characteristic pressure in both the fluids is taken to
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Parameter Inner region Outer region
Radius r = RI r̂ r = Rr̃
Width w = W0ŵ w = W0ŵ
Pressure p = P0p̂ p = P0p̂

Table 3.1: Rescaled parameters

be P0. We define effective material parameters µ′ E ′, and K ′ as proposed by Savitski &

Detournay (2002) [22]:

µ′
in = 12µin, µ

′
0 = 12µ0, K

′ = 4

(
2

π

) 1
2

KIC , and E ′ =
E

1− ν2
. (3.18)

To compare the viscosity of the two liquids, we introduce the parameter M = µ′
in/µ

′
0.

When the two fluids are present in the fracture, we used a weighted average to define the

resulting viscosity µe and the corresponding effective value µ′
e = 12µe.

Using the characteristic parameters summarized in table 3.1 and the effective material

properties, we obtain the following set of equations to describe the displacement flow and

fracture propagation:

1. Lubrication theory (from equations 3.3-3.4)

µ′
eR

2

W 2
0 P0

∂ŵ

∂t
=

1

r̂

∂

∂r̂

(
r̂ŵ3∂p̂

∂r̂

)
(3.19)

2. Linear elasticity (from equation 3.13)

ŵ =
8R

πE ′W0

[
P0

∫ 1

0

∫ 1

0

xp̂(xξR, t)√
1− x2

dxdξ

]
(3.20)
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3. Fracture propagation (from equation 3.14)

K ′

P0

√
R

=
27/2√
π

∫ 1

0

p̃ r̃√
1− r̃2

dr̃ (3.21)

4. Global mass balance (from equations 3.11-3.12)

Qin t

2π R2
I W0

=

∫ 1

0

r̂ŵ dr̂ (3.22)

and

V0

2π R2W0

=

∫ 1

0

r̃ŵ dr̃ −
(
RI

R

)2 ∫ 1

0

r̂ŵ dr̂. (3.23)

As the fluid is injected, the elastic pressure drives the propagation of the crack,

which is resisted by the viscous dissipation associated with the motion of the injected

and displaced fluids and the fracture toughness. We first assume that the interfacial

pressure is negligible compared to the viscous and toughness-related stresses. We then

assume that one of the resisting stresses controls the propagation and balances the elastic

stress. Studies on single fluid injection have validated this approach, with experimental

evidence of the two asymptotic regimes. If the viscous stresses in the fluids are larger

than the fracture-opening stress, the fracture propagation is said to be in the viscous

regime. Alternatively, the propagation is in the toughness regime. For both regimes, we

can derive scaling arguments from the dimensionless groups in equations 3.19-3.23.

3.3.1 Toughness regime

For the toughness scaling, we set the non-dimensional groups in equations 3.20-3.23

equal to one. Indeed the viscous stresses are negligible and the crack opening is limited
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by the toughness of the material. The scaling relations are:

W0E
′

P0R
= 1 (3.24)

K ′

P0

√
R

= 1 (3.25)

Qint

R2
IW0

= 1 (3.26)

V0

W0

= R2 −R2
I . (3.27)

We define the characteristic time scale T = V0/Qin and the corresponding dimensionless

time t̃ = t/T . By combining those groups, we obtain the toughness-dominated scaling of

the fracture properties:

W0 =

(
K ′

E ′

)4/5

V
1/5
0

(
1 + t̃

)1/5
, (3.28)

R =

(
E ′ V0

K ′

)2/5 (
1 + t̃

)2/5
, (3.29)

RI =

(
E ′ V0

K ′

)2/5

t̃ 1/2
(
1 + t̃

)−1/10
, (3.30)

and

P0 = K ′
(

K ′

E ′ V0

)1/5 (
1 + t̃

)−1/5
. (3.31)

3.3.2 Viscous regime

For the viscous scaling, we set the non-dimensional groups in equations 3.2-3.3 and

3.22-3.23 equal to one. Here the propagation of the fluids follows the lubrication equation
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Fracture Viscous regime Toughness regime

Radius R ≈
(

E′

µ′
eQin

)1/9
V

4/9
0

(
1 + t̃

)1/3 (
α + t̃

)1/9 R ≈
(
E′ V0

K′

)2/5 (
1 + t̃

)2/5
Interface RI ≈

(
E′

µ′
eQin

)1/9
V

4/9
0

√
t̃
(
1 + t̃

)−1/6 (
α + t̃

)1/9 RI ≈
(
E′ V0

K′

)2/5
t̃1/2

(
1 + t̃

)−1/10

Aperture W0 ≈
(

µ′
eQin

E′

)2/9
V

1/9
0

(
1 + t̃

)1/3 (
α + t̃

)−2/9

W0 ≈
(
K′

E′

)4/5
V

1/5
0

(
1 + t̃

)1/5

Table 3.2: Scaling relations for a penny-shaped fracture driven by a displacement
flow. The time evolution of the geometrical properties of the fracture depends on the
dominant resisting stress, which can be viscous or toughness-related.

and the viscous dissipation limits the propagation of the fracture:

W0E
′

P0R
= 1 (3.32)

µ′
eR

2

W 2
0 P0 (t+ V0/Q0)

= 1 (3.33)

Qint

R2
IW0

= 1 (3.34)

V0

W0

= R2 −R2
I (3.35)

We define the effective viscosity of the volume of fluid in the fracture as a weighted

average. The effective viscosity depends on the viscosities of the two fluids in the fracture

and their relative volumes at time t̃:

µ′
e =

µ′
0 + µ′

int̃

1 + t̃
(3.36)

43



Axisymmetric displacement flows in fluid-driven fractures Chapter 3

We obtain the viscous-dominated scaling of the variables:

W0 =

(
µ′
eQin

E ′

)2/9

V
1/9
0

(
1 + t̃

)1/3 (
α + t̃

)−2/9
, (3.37)

R =

(
E ′

µ′
eQin

)1/9

V
4/9
0

(
1 + t̃

)1/3 (
α + t̃

)1/9
, (3.38)

RI =

(
E ′

µ′
eQin

)1/9

V
4/9
0

√
t̃
(
1 + t̃

)−1/6 (
α + t̃

)1/9
, (3.39)

P0 =

(
µ′
eQinE

′2

V0

)1/3 (
α + t̃

)−1/3
(3.40)

with α = Qin/Q0. The results are summarized in table 3.2.

3.3.3 Discussion

We consider the single-fluid limit of the two asymptotic regimes. Indeed for a pre-

fracture volume equal to zero, V0 = 0, or for large values of the injection time t >> 1, the

expressions derived above should be equal to those previously obtained for single fluid

injection. In the toughness regime, we recover the single-fluid scaling relations [22, 29, 32]:

W0 =

(
K ′

E ′

)4/5

(Qin t)
1/5 , (3.41)

R =

(
E ′

K ′

)2/5

(Qin t)
2/5 , (3.42)

and

P0 = K ′
(

K ′

E ′ Qin t

)1/5

. (3.43)
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In the viscous regime, we also recover the scaling relations for a single fluid injection:

W0 =

(
µ′
in

E ′

)2/9

Q
1/3
in t1/9, (3.44)

R =

(
E ′

µ′
in

)1/9

Q
1/3
in t4/9, (3.45)

and

P0 =

(
µ′
inE

′ 2

t

)1/3

. (3.46)

The fluid and matrix properties determine whether the fracture propagation is in the

viscous or toughness regime. Past studies in single fluid injection have defined criteria to

predict the propagation regime. The regime is defined by the largest of the two stresses

that oppose the elastic stress: the toughness-related stress ∆Pm ≈ K′
√
R

and the viscous

stress ∆Pv = µ′Q
W 3

0
. In the viscous regime, we can use the scaling relations for R and W0

to estimate the ratio:

(
∆Pm

∆Pv

)
v

=

(
K ′ 9 t

E ′13/2Q3/2 µ′5/2

)1/9

=

(
t

tmk

)1/9

= κ. (3.47)

where

tmk =

(
E ′13/2Q3/2 µ′5/2

K ′ 9

)
(3.48)

is the characteristic timescale of the system and κ is the dimensionless toughness. Simi-

larly, we can define the relative magnitude of both stresses in the toughness regime using

the corresponding scaling relations:

(
∆Pm

∆Pv

)
m

=

(
t

tmk

)2/5

= κ18/5. (3.49)

The viscous-dominated propagation is therefore associated with small values of κ, i.e.
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κ or t/tmk ≲ 1 and the toughness-dominated dynamics for κ or t/tmk >> 1.

Similarly, we can define the propagation regime of the fracture formed by a displacement

flow. The toughness related stress remains ∆Pm ≈ K ′/
√
R, while the viscous stress

becomes ∆Pv = µ′
eQinR

2 (R2
I W

3
0 + αV0W

2
0 )

−1
as defined in equations 3.25 and 3.33.

In the viscous regime, we substitute R, RI , and W0 by the scaling relations defined in

table 3: (
∆Pm

∆Pv

)
v

=
K ′V

1/9
0 (α + t̃)5/18

E ′13/18µ
′5/18
e Q

5/18
in (1 + t̃)1/6

(3.50)

Similarly, in the toughness regime, we estimate the ratio to be

(
∆Pm

∆Pv

)
m

=

(
∆Pm

∆Pv

)18/5

v

(3.51)

The ratio of the viscous and toughness-related stresses is a function of time, that increases

as t̃1/9 for large values of t̃. In consequence, the propagation becomes toughness-controlled

for long time or large-volume injections. This result is consistent with what is known

for a single fluid injection. Contrary to the single fluid criterion however, there is no

explicit solution for the threshold injection time in the case of displacement flow. We

can determine the propagation regime at time t̃ by comparing the pressure ratio with 1.

3.4 Experiments

Laboratory-scale experiments commonly use hydrogels as rock analogues to study

hydraulic fracturing in brittle elastic materials [31, 73]. In particular, gelatin is a clear

gel whose elasticity can easily be tuned by varying the volume fraction of gelatin powder

in water [43, 39, 28]. Because gelatin expands as it sets in the container, the material is

spontaneously compressed, which furthers the analogy with soft rocks for fracture studies.
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3.4.1 Material preparation and characterisation

The properties of the gelatin and the injected fluids control the fracture dynamics and

are, therefore, systematically characterized. The gelatin is prepared by heating ultra-pure

water to 60oC. While stirring the heated water, we slowly add gelatin powder (Gelatin

type A; Sigma-Aldrich, USA) at a mass fraction of 10 to 30% to vary Young’s modulus

of the resulting gel. The gelatin then cools down to room temperature and sets over

24 hours prior to testing or fracturing. The Young’s modulus of gelatin is measured

with a custom-built displacement-controlled load frame. The sample is compressed by

a ballscrew stage whose speed is set by a stepper motor Parker Compumotor OS22B

controlled by a controller Parker Compumotor ZL6104. A load cell, Eaton 3108-10 (10

lb. capacity) measures the force generated by the compressed sample. We record force-

displacement values for cylindrical samples of gelatin of diameter and height equal to 1 in

and compute the stress-strain curves of the material. At small strain, all gelatin samples

exhibit a linear elastic response to the compression. As listed in table 3.3, Young’s

modulus ranges between 15 to 116 kPa with a measurement error of ±10%. The fracture

energy and Poisson’s ratio of the gelatin are assumed constant in our experiments with

γS ≈ 1 J.m−2 and ν ≈ 0.5 [38].

To study displacement flows in fluid-filled fractures, we use immiscible Newtonian

liquids. Silicone oils of different viscosity are used to form the pre-fracture. An aqueous

solution composed of water, glycerol or corn syrup is then injected. The silicone oil

is dispalced outward, further expanding the fracture in the gelatin. We measure the

viscosity of the fluids and the surface tension at the oil/water and oil/syrup interfaces.

Viscosity measurements are conducted using an MCR 92 Anton Parr rheometer with a

parallel plate measuring system at 20oC. The values obtained have a measurement error

of ±1% and are listed in table 3.3. Surface tension measurements are conducted using
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the pendant drop method with an Attension Theta Flex tensiometer: the surface tension

between silicone oil and water is γo/w ≈ 35±2 mN.m−1 and between silicone oil and syrup

is γo/s ≈ 50±2 mN.m−1. The fluid properties are selected to study the propagation of the

pre-fracture and fracture in a single regime of during the experiment. For example, the

values of κ at the end of the injection forming the pre-fracture, for experiments 1 through

10 varies between 35 ≤ κ ≤ 55. Those experiments are expected to be in the toughness

dominated regime. Similarly, for experiments 11 through 16, 1.7 ≤ κ ≤ 1.9 at the end

of the formation of the pre-fracture: these experiments target the viscous-dominated

propagation. These values are consistent with previous work on the formation of fluid-

driven fractures in a bloc of gelatin. During the formation of the fracture through the

displacement flow, we estimate the pressure ratio in the viscous regime
(

∆Pm

∆Pv

)
v
at the

end of the injection. The ratio varies between 24 and 58 for experiments 1 through 10,

which are therefore expected to be in the toughness regime. The ratio varies between 1.9

and 2.5 for experiments 11 through 16, which are therefore expected to be in the viscous

regime.

3.4.2 Set-up

The injection experiments are conducted in a large block of gelatin to avoid boundary

effects on the propagation of the fracture. The gelatin is set in a cubic clear container

(15 cm × 15 cm × 15 cm) around a blunt needle as represented in figure 3.2. We

use a thin needle (inner diameter, ID = 1 mm) for low-viscosity injections and a wide

needle for high-viscosity injection (ID = 2.15 mm). In our system, the confining stress

is minimum in the vertical direction, the fracture, therefore, propagates horizontally, in

the direction that opposes the least resistance. To avoid small tilts of the fracture that

would compromise the quality of the recording, a plastic washer is placed at the tip of
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Q
0

150 mm

camera

 gelatin

fluid 1 fluid 2

needle
(ID = 1 mm

washer
(OD = 6.5 mm)

L = 100 mm)

(a)
(b) (c)

(d) (e)

5 cm

Q
in

Figure 3.2: (a) Schematic of the experimental set-up. (b − e) Time evolution of the
fracture formed in experiment 1. The water dyed with blue food colour is injected
at Qin = 0.5 ml.min−1 in a pre-fracture formed with silicone oil dyed with red food
colour. The recording starts when the water injection begins and the experimental
images are taken at (b) t = 50 s, (c) t = 300 s, (d) t = 1300 s and at (e) t = 2800 s. The
supplementary movies 1 and 2 show the complete time evolution of the pre-fracture
and fracture, respectively. The movies are available at [to be added].

the needle to initiate the fracture in the horizontal plane. Two fluids are successively

pumped into the gelatin. For each fluid, we use a kdScientific® Legato 200 syringe pump

to set the injection flow rate at a value between 0.1 and 20 ml.min−1 with an accuracy

of ±0.35%. Both fluid-filled syringes are connected to the same injection needle using a

switch valve. First, a silicone oil of viscosity µ0 is injected at a constant volumetric flow

rate Q0 in the gelatin matrix to form the pre-fracture. The injection stops when a volume

V0 of silicone oil has been dispensed. The valve is then switched to inject the aqueous

phase of viscosity µin into the pre-fracture at a flow rate of Qin. The injection stops when

the fracture tip is within 2 cm of the container walls to avoid confinement effects [27].

The two fluids are dyed to allow visualizing the propagation of the fracture and interface

between the two liquids in the clear gelatin: we use a blue water-based food dye for the

aqueous phase and a red oil-based food dye for the oil phase as shown in figure 3.2. The

propagation is recorded using a Nikon D5300 camera with a Phlox® LED panel ensuring
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uniform backlighting. The images are processed using a custom-made MATLAB code to

determine the radius of the fracture R and the position of the interface between the two

liquids RI .

3.4.3 Measurement of the fracture width

To measure the thickness of the fracture during the propagation, we use a light

absorption method [59, 26]. This method consists in selecting a soluble dye and the cor-

responding optical filter. The filter should transmit light to the camera at the wavelength

at which the dye absorbance A is maximum Aλ. The absorbance follows Beer’s law:

Aλ = − log10

(
Iλ
Iλ,0

)
= ϵλc h (3.52)

where Iλ,0 is the background intensity and Iλ is the intensity when light passes through a

liquid layer of thickness h, with a dye concentration c. The parameter ϵλ characterizes the

absorbance of the dye at the selected wavelength and is obtained through calibration. To

measure the thickness of both liquids in the fracture, we use two dyes, one water-soluble

and one oil-soluble and record the absorbance using a single optical filter. To get accurate

measurements, we select dyes with a large absorbance at the same wavelength. In all

experiments, the water-soluble dye is nigrosin (Sigma-Aldrich) at 0.05 g.L−1. Nigrosin

is a black dye that absorbs at all wavelengths. We use different dyes depending on the

viscosity of the silicone oil, because of their solubility limit. We dilute sudan red (Sigma-

Aldrich) in the low-viscosity silicone oils, i.e. 10 and 20 mPa.s silicone oils, at 0.05 g.L−1,

and nile red (Sigma-Aldrich) in high-viscosity silicone oils, i.e. 10,300 and 30,000 mPa.s

silicone oils, at 0.2 g.L−1. For experiments with sudan red in the oil phase and nigrosin

in the aqueous phase, we use a 520 nm optical filter. When nile red dyes the oil phase

and nigrosin the aqueous phase, we use a 632 nm optical filter.
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Figure 3.3: Calibration. (a) Schematic of the calibration experiment for low-viscosity
fluids. (b) The intensity gradient was recorded for a wedge filled with water dyed
with nigrosin at 0.05 g.L−1 through the 520 nm filter. (c) Absorbance measured for
nigrosin-dyed water at λ = 520 nm (▲), nigrosin-dyed syrup at λ = 632 nm (•), sudan
red-dyed 10 mPa.s-silicone oil at λ = 520 nm (△), and nile red-dyed 10 Pa.s-silicone
oil at λ = 632 nm (◦). The solid lines are the best linear fit for each calibration data
set.

To measure the thickness of the fracture, we first conduct calibration experiments for

each dye solution. For the low-viscosity solutions (water, 10 and 20 mPa.s silicone oils),

we use a glass wedge with an aperture that increases linearly from 0 to 10 mm as shown

in figure 3.3. The wedge is placed on the LED panel and the light intensity is obtained

by taking a picture of the wedge with the optical filter mounted on the camera. The

background intensity corresponds to an empty wedge. The light intensity of a liquid-

filled wedge decreases as the thickness of the aperture increases (see figure 3.3(b)). The

grey values are used to determine the absorbance as a function of the liquid thickness, as

plotted in figure 3.3(c). Using a linear fit, we get 1/ϵλc = 47.2 mm for sudan red in oil and

1/ϵλc = 32.6 mm for nigrosin in water for λ = 520 nm. For the high-viscosity samples,

we use rectangular cells that are easier to fill. The cell thickness or height ranges from

0.3 to 3 mm. For each cell, we measure the background intensity of the empty cell and

the intensity of the cell filled with the viscous fluid, i.e. syrup, 10,000 mPa.s or 30,000

mPa.s silicone oil. We obtain the absorbance for a set of thickness values as shown in

figure 3.3. Using a linear fit, we get 1/ϵλc = 56.5 mm for nile red in oil and 1/ϵλc = 44
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Figure 3.4: Dynamics of the pre-fracture for low-viscosity oils. (a) Dependence of
rescaled fracture radius on time for experiments 1 to 10 (see table 3.3 for corresponding
injection parameters). The radius is rescaled using equation 3.42 in the toughness
scaling for single fluid injection. The origin for time is set when the oil enters the
gelatin. The black curve represents the best linear fit with a slope of 2/5. Inset:
dependence of the radius R on time t. (b) Rescaled fracture thickness profiles based
on equations 3.41 and 3.42 at t = [245, 370, 495, 620, 745] s with time increasing from
clear to dark gray. Experimental parameters: E = 30 kPa, µ0 = 10 mPa.s, Q0 = 0.3
ml.min−1.

mm for nigrosin in water for λ = 632 nm. The fitting parameters obtained are then used

to obtain the width of the fracture using Beer’s law:

h =
Aλ

ϵλc
=

− log10

(
Iλ
Iλ,0

)
ϵλc

(3.53)

The concentrations of dyes chosen for this study, some of which are limited by solubil-

ity, are all sufficiently low for the absorbance to vary linearly with the sample thickness

or fracture aperture. The accuracy of the measurements is limited by the noise due to

low absorbance values.
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3.5 Results

In this section, we present the results of the experiments listed in table 3.3. We

measure the radius and aperture of the pre-fracture and fracture and compare the data

with the scalings obtained for the viscous and toughness regimes.

The fracture propagates radially upon injection of the fluid. Viscous fingering is

not observed in our experiments, as illustrated in figure 2.2(b)-(e). The viscosity ratio

M = µin

µout
varies between 0.05 and 1, and the thickness of the crack is of the order of

a few millimetres, so the characteristic wavelength of the instability is larger than the

perimeter of the injected fluid region. We estimate the experimental error by conducting

an error analysis based on the scaling laws and the measurement error of the various

parameters: 10% for the Young’s modulus E, 10% for the fracture toughness K, 0.35%

for the flow rate Q, 1% for the viscosity µ and 5% for the volume V0. In the toughness

regime, the experimental error on the radius is estimated to be ∼ 10%. In the viscous

regime, the error is ∼ 4%.

3.5.1 Single Fluid Injection

We prepare the pre-fracture by injecting silicone oil into the gelatin cube. After an

initial pressure build-up, the oil propagates rapidly over the washer at the tip of the

needle. A radial fracture then forms around the washer, propagating more slowly with

the oil filling the gap between the two gelatin surfaces. The homogeneous properties of

the gelatin result in axisymmetric fractures for both low and high-viscosity fluids. The

radius of the fracture is measured during the injection and compared with the scaling for

the toughness and viscous-dominated regimes for a single fluid (equations 3.42 and 3.45,

respectively). Experiments 1-10 are in the toughness regime as low-viscosity silicone oil

is injected in soft gelatin (see table 3.3). Experiments 11-16 are in the viscous regime
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as high-viscosity silicone oil is injected in harder gelatin. In figure 3.4(a), we plot the

results of the experiments in the toughness regime. The radius increases with time and

the rescaled radius follows a t2/5 power law which is consistent with equation 3.42. In

the log-log scale, the best fit line with a slope 2/5 has a prefactor k = 0.7 which is

in agreement with the theoretical prefactor of 0.85 derived by Savitski & Detournay

(2002) [22]. These results are also consistent with previous experimental data in this

regime [29, 32]. In figure 3.5(a), we report the data obtained in the viscous regime. The

experimental conditions for those experiments are similar and the results demonstrate

the high reproducibility of the experiments [30]. The radius increases as a power law of

time. Upon rescaling the radius with the viscous scaling parameter, the data collapse on

a line of slope 4/9 with a prefactor of k = 0.36. This result differs from the theoretical

prefactor of 0.7, yet it is comparable to the values obtained in previous experimental

studies in the viscous regime [28, 32]. Due to the initiation transient and finite size of the

container, the power-law fits span about a decade of the log-log plots, which is common

for laboratory-scale experiments.

For each regime, we measure the fracture aperture using a dye whose absorbance

varies linearly with the aperture. The results presented show the evolution of the fracture

cross-section over time for one experiment in the toughness regime (see figure 3.4(b))

and one in the viscous regime (see figure 3.5(b)). For both experiments, the curves show

the aperture as a function of the radial position at different injection times. Because the

needle disturbs the absorbance measurement near the center of the fracture, the aperture

is not measured near the needle, i.e. for small values of the radius. Upon integration

of the thickness curve recorded when the injection is complete, we obtain the value of

V0 ± 0.5 ml. The aperture-radius curves are rescaled using the scaling for the aperture

and radius. In both regimes, the curves collapse on a self-similar profile. The two data

sets presented here are representative of the prefacture obtained for all the experiments
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Figure 3.5: Dynamics of the pre-fracture for high-viscosity oils. (a) Dependence of
rescaled fracture radius on time for experiments 11 to 16 (see table 3.3 for correspond-
ing injection parameters). The radius is rescaled using equation 3.45 in the viscous
scaling for single fluid injection. The black curve represents the best linear fit with a
slope of 4/9. Inset: dependence of the radius R on time t. (b) Rescaled fracture thick-
ness profiles based on equations 3.44 and 3.45 at t = [9, 11.5, 14, 16.5, 19] s with time
increasing from clear to dark gray. Experimental parameters: E = 88 kPa, µ0 = 10
Pa.s, Q0 = 10 ml.min−1.
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Figure 3.6: Dynamics of the fracture for low-viscosity aqueous phase. (a) Dependence
of the position of the interface on time for experiments 1 to 10 (see table 3.3 for
corresponding injection parameters). (b) Rescaled interface position as a function of
rescaled time, based on the toughness scaling laws in table 3.2. (c) Dependence of the
fracture radius on time. (d) Rescaled radius as a function of rescaled time, based on
the toughness scaling laws in table 3.2. The black curves represent the best linear fit
with a slope of 1.

conducted in this study and are similar to results previously reported [29, 32].

3.5.2 Displacement flow

Once the pre-fracture is formed, the valve is immediately switched to the second

immiscible to avoid further propagation of the pre-fracture [24]. The material proper-

ties of the gelatin contribute to the definition of the propagation regime. Low stiffness

gelatin allows the observation of the toughness regime, while the toughness regime is most
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commonly reached in stiffer hydrogel. Thus, we characterize the displacement flow and

fracture propagation in the toughness regime with the experimental systems 1 through

10 (see table 3.3), in which the pre-fracture is also formed in the toughness regime. The

injected fluid is water. Similarly, we investigate the viscous regime in experiments 11

through 16. The displacing fluid is a syrup whose high viscosity is of the same magni-

tude as the silicone oil in the pre-fractures. During the displacement flow, the fracture

continues its radial expansion but with a different dynamic from the one observed during

the formation of the pre-fracture. To study the radial expansion of the fracture during

the injection, we track the position of the interface between the two fluids RI and the

radius of the fracture R over time. In figure 3.6, we plot the results of the experiments in

the toughness regime. The radial position of the interface increases with time, similarly

to what was observed for a single fluid injection. The annular region of displaced fluid

between RI and R moves outward and its thickness R − RI decreases over time. Using

the equations in table 2, we plot the rescaled radii with respect to the relevant dimen-

sionless time on the log-log scale. The rescaled radial positions of the interface collapses

on a line of slope 1 and prefactor 1. The rescaled radii of the fracture collapses on a

line of slope 1 with a prefactor of 0.3. We note that for large values of time t̃ >> 1, the

fracture dynamics for the displacement flow is expected to become similar to the fracture

dynamics for a single fluid. Indeed, if we plot the dimensionless radius as R5/2 K′

E′V0
, the

prefactor of 0.3 for the displacement flow is comparable with the prefactor for a single

fluid 0.75/2 ≈ 0.4.

In figure 3.7, we plot the results of the displacement flow experiments in the viscous

regime. The results can be rescaled using equations in the corresponding column of table

2. We plot the rescaled radii with respect to the relevant functions of the dimensionless

time on the log-log scale. The rescaled radial positions of the interface collapse on a

line of slope 1 and prefactor 0.37. The rescaled radii of the fracture collapses on a line
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Figure 3.7: Dynamics of the fracture for high-viscosity aqueous phase. (a) Dependence
of the position of the interface on time for experiments 11 to 16 (see table 3.3 for
corresponding injection parameters). (b) Rescaled interface position as a function of
rescaled time, based on the viscous scaling laws in table 3.2. (c) Dependence of the
fracture radius on time. (d) Rescaled radius as a function of the rescaled time, based
on the viscous scaling laws in table 3.2. The black curves represent the best linear fit
with a slope of 1.

59



Axisymmetric displacement flows in fluid-driven fractures Chapter 3

of slope 1 with a prefactor of 0.36. We note that for large values of time t̃ >> 1, the

fracture dynamics for the displacement flow is expected to become similar to the fracture

dynamics for a single fluid. Since at large values of t̃,
(
1 + t̃

)1/3 (
α + t̃

)1/9 ≈ t̃4/9, the

identical prefactor for the scaling of the radius for the pre-fracture and the fracture

indicates that indeed the single fluid behavior is recover for large injection times. We

also note that for large values of the fracture radius, the experimental data fall below

the trend line. This is due to the slow down of the growth due to the confinement of the

gelatin bloc. Experimentally, this is associated with the tilting of the fracture and the

formation of finger-like structures.

For the displacement flows, we measure the fracture aperture in the two fluids si-

multaneously, relying on two different dyes (see figures 3.8 and 3.9). Since the two dyes

absorb the light differently, the absorbance profile presents a discontinuity across the

interface. The absorbance values are converted to thickness measurement using Beer’s

law and the calibration parameters. The experimental results plotted in figures 3.8(a)

and 3.9(a) show that the aperture is a continuous function of the radial position. The

aperture-radius curves are rescaled using the scalings for both the aperture and radius.

In the toughness regime, both the rescaled aperture and radius collapse resulting in over-

lapping profiles, see figure 3.8(b). In the viscous regime, the rescaled profiles collapse on

a single curve, see figure 3.9(b). The two data sets presented here are representative of

all the experiments. In summary, the experimental observations establish the existence

of two regimes and validate the respective scaling relations.

3.6 Conclusion

In this study, we model the properties of fractures driven by displacement flows by

revisiting the theoretical framework established for single fluid injections. We derive
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Figure 3.8: Fracture profile for low-viscosity aqueous phase. (a) Fracture profiles at
t = [150, 250, 350] s with time increasing from clear to dark gray. (b) Rescaled frac-
ture profiles using the toughness scaling laws in table 3.2. Experimental parameters:
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Figure 3.9: Fracture profile for high-viscosity aqueous phase. (a) Fracture profiles at
t = [5, 10, 40] s with time increasing from clear to dark gray. (b) Rescaled fracture
profiles using the viscous scaling laws in table 3.2. Experimental parameters: E = 88
kPa, µ0 = 10 Pa.s, Q0 = 10 ml.min−1, V0 = 8 ml, µin = 8.6 Pa.s, Qin = 10 ml.min−1.
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scaling relationships for the position of the interface between the two fluids, the radius

and aperture of the fracture in a brittle elastic matrix in the viscous-dominated and

toughness-dominated regimes. We define a dimensionless time, which is equal to the

ratio of the volume of displacing fluid injected over the volume of the pre-fracture. In the

toughness regime, the propagation dynamics is independent of the fluid properties. As a

result, the fracture dynamics for the displacement flow are the same as the dynamics for

a single fluid, with the addition initial finite volume V0. In the viscous regime, however,

the two fluids that fill the fracture contribute to the viscous dissipation. Over time,

the relative volume of the two fluids changes. To describe the viscous dissipation in the

fracture, we therefore define an average viscosity which accounts for the relative volume

of displaced and displacing fluid. The scalings are compared to experimental results

obtained by successively injecting an oil phase and an aqueous phase in a gelatin block.

The experiments confirm the existence of two regimes of fracture propagation and are in

good agreement with the derived relationships.

This study focuses on displacement flows of immiscible fluids with comparable viscosi-

ties. Other types of displacement flows are common in fracture. For example, industrial

applications involve the sequential injection of miscible aqueous fluids, some of which

can be complex fluids such as suspensions of particles or polymer solutions. Recent and

future efforts to characterize and model multiphase flows in fractures should ultimately

support efficient hydraulic fracturing operations.
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Chapter 4

Dynamics of fluid-driven fractures in

layered materials

4.1 Introduction

Fractures in rock formations are essential to underground energy extraction and stor-

age [106, 107, 108, 109], carbon sequestration [110, 111, 112] and waste containment

[113]. Safe operations require understanding how fluid transport and reservoir properties

control fracture dynamics [14, 114]. Hydraulic fractures are driven by the injection of a

pressurized fluid in a rock formation of low permeability. This industrial practice emerged

in the 1940s when the first gas drilling company took up the challenge to commercially

extract the oil and gas trapped in the tiny pores of shale rock [115]. Hydraulic fractur-

ing has since become a common practice [47], with new applications including carbon

sequestration [116].

Because of the considerable risks and expenses associated with CO2 transportation,

storage in a reservoir near the emission source is preferred [2, 3]. Yet, local reservoirs may

not possess the most favorable characteristics for storing large fluid volumes, requiring
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hydraulic fracturing to improve permeability [4].

The injection of large amounts of fluid into geological formations poses environmental

and public health risks associated with water footprint, seismic activity, and leakage of

the fracture content [5, 6, 7]. Carbon sequestration commonly relies on cap rocks to

prevent leaks [8]. Yet injection can induce fracture propagation within the reservoir and

cap rock [9, 10, 11, 12], compromising long-term storage. Leakage can also contaminate

groundwater reservoirs, directly impacting local ecosystems and populations [13].

Geomechanics govern fracture propagation and transport of the injected fluid. More

precisely, the composition and structure of geological formations control fracture dynam-

ics. Rocks exhibit natural discontinuities (such as stratification), fissures, faults, and

cracks. The mapping of underground mechanics and the development of predictive mod-

els that account for rock heterogeneity are essential for safe fluid injection and storage. To

that end, recent experimental studies have looked at increasingly complex systems to gain

better insights into the propagation dynamics of hydraulic fractures [33, 34, 35, 41, 36].

Previous work on heterogeneous media has shown that stress and/or stiffness contrast

affect fracture propagation, leading to changes in propagation planes, non-axisymmetric

fractures, and arrested growth [117, 118, 119, 120, 121].

This study focuses on the interaction of a penny-shaped fracture with a material

discontinuity in a brittle elastic medium with no stress contrast. The fluid is injected in

a hydrogel block composed of two layers that exhibit different stiffness. Since the material

toughness governs the fracture propagation, the stiffness contrast determines the fate of

the fracture as it reaches the interface between the two layers. We are particularly

interested in the fracture dynamics when it propagates from a stiff into a soft layer

exhibiting a growth spur, which, to the best of our knowledge, has never been reported.

Our experiments characterize hydraulic fractures formed with various injection pa-

rameters, fluid, and material properties. The theoretical model of the propagation dy-
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namics relies on scaling arguments to reproduce experimental results and yields good

agreement. While the experiments and model simplify the situations encountered during

industrial processes, they provide valuable insights into the underlying physics.

4.2 Experimental methods

We conduct laboratory-scale experiments that rely on soft hydrogel to model the

dynamics of hydraulic fractures propagating through stratified rocks. We prepare a

hydrogel substrate with two gelatin layers of comparable height in an acrylic cube of

dimensions 150 x 150 x 150 mm. The bottom layer is labeled 1, and the top layer 2.

The layers have different Young’s moduli noted E1 and E2, respectively. The fluid is

injected into the bottom layer (layer 1) through a needle (ID = 1 mm) inserted 55 mm

above the bottom of the cube as shown in figure 4.1(a). For imaging purposes, a small

plastic washer is fitted onto the tip of the needle so the fracture propagates in the plane

perpendicular to the needle. The thickness of the gelatin layers and needle position

ensure that the fracture propagation is not affected by the finite size of the transparent

cube [27].

The layers are made of gelatin, a clear gel whose Young’s modulus can be tuned

by varying the weight fraction of gelatin powder (Gelatin type A; Sigma-Aldrich, USA)

in ultra-pure water. Gelatin has been extensively used to study hydraulic fracturing

[43, 39, 28, 42]. The gelatin of the first layer is prepared by heating water to 60 °C

and slowly adding the mass of gelatin powder needed to achieve the Young’s modulus

E1 [41]. The mixture is poured into the cube. The gel cools down for 2 hours at room

temperature. The gelatin for the second layer is prepared using a different amount of

gelatin powder to obtain a Young’s modulus E2. To avoid softening the first layer and

blurring the interface, the gelatin mixture for the second layer is cooled down to 40 °C
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Figure 4.1: Experimental set-up and observations. (a) Schematic of the experimental
set-up. (b) Times series of the fracture propagation in the fracture plane, for exper-
iments 1 (top row) and 2 (bottom row) at times t = [0, 120, 180, 330, 660] s, with
t = 0 the onset of the fracture in layer 1. The silicone oil (µ = 20 mPa.s) is injected at
Q = 1 ml.min−1. The two layers have Young’s moduli Esoft = 15 kPa and Estiff = 30
kPa. In Exp. 1, layer 1 is softer, and in Exp. 2, layer 1 is stiffer. (c) Fracture formed
upon injection of silicone oil (µ = 20 mPa.s) at Q = 1 ml.min−1 for 500 s in two layers
of Young’s modulus E = 30 kPa (Experiment 3, see figure 4.6 for corresponding time
series). (d) Fracture reach or maximum distance between the injection point and the
fracture tip, as a function of the volume injected for Experiments 1(■□) and 2(♦♢).
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before pouring on top of the first layer. This temperature allows for good bonding of the

gelatin layers. The two layers subsequently cool down to room temperature and set over

24 hours before fracturing [35].

To study the fracture propagation, we inject a volume VT of silicone oil of viscosity

µ at a constant flow rate Q with a syringe pump (kdScientific Legato 200). The oil is

stained with a red dye (Sudan red) for visualization. After a volume V0 < VT of oil is

injected, the fracture reaches the interface between the two layers. The propagation is

recorded using a Nikon D5300 camera with an LED panel, ensuring uniform backlighting.

The images are processed using a custom-made MATLAB code to determine the contour

of the fracture. A membrane pressure sensor (ATO-PRES-P350) measures the pressure

of the injected fluid. We record the fracture aperture using the light attenuation method

[59, 41]. The fractures propagate in the toughness-dominated regime; their growth is

limited by the toughness of the material rather than the viscous dissipation in the flow

[22, 28, 32].

We study the influence of material stiffness and injection parameters on fracture

dynamics. The parameters are summarized in table 4.2. We explore a range of Young’s

modulus ratios between the two layers, from 1 to 4. Additionally, we vary the viscosity

of the fluid within an order of magnitude, from 0.01 to 0.1 Pa.s. Furthermore, the

volumetric flow rate spans from 0.1 to 1 ml.min−1. These parameters ensure the fracture

propagation occurs within the toughness-dominated regime for both layers [22, 28, 32].

A fracture growing in a single material experiences a viscous-dominated growth early on,

followed by a toughness-dominated growth for times larger than a threshold or transition

time. The transition time noted tvt = µ′5/2Ei
′13/2Q3/2/Ki

′9, where i = {1, 2}, spans

from 6 × 10−15 to 3 × 10−9 s for our study. These values corroborate that the fracture

propagation occurs in the toughness-dominated regime. The material properties are

measured in the laboratory as described in [41]. The experimental error is estimated
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E1 E2 VT µ Q V0 R1,f

Exp. (kPa) (kPa) (ml) (Pa.s) (ml/min) (ml) (m)

1† ■□ 15 30 12 0.02 1 - -
2*† ♦♢ 30 15 12 0.02 1 2.77 0.016
3 ★9 30 30 10 0.02 1 - -
4 ▲△ 15 30 10 0.01 0.5 - -
5

▲△

15 60 10 0.02 1 - -
6* •◦ 30 60 10 0.02 0.5 - -
7 ♦♢ 30 15 12 0.1 0.5 3.85 0.018
8

▲△

60 15 10 0.02 1 3.35 0.016
9 ▲ △ 60 15 12 0.02 0.5 3.68 0.021
10* ■□ 60 30 10 0.02 0.5 4.04 0.022
11 ■□ 30 15 10 0.01 0.1 7.79 0.026
12* •◦ 88 60 10 0.02 0.5 2.88 0.018
13 •◦ 30 15 10 0.01 0.5 5.3 0.023
2r ♦♢ 30 15 12 0.02 1 1.7 0.012

Table 4.1: List of experiments: symbols and parameters. Pressure measurements for
experiments with a ∗ and aperture measurements for experiments with a †. The values
of V0 and R1,f are measured. For experiments with no value listed for V0 and R1,f ,
the fracture is trapped in layer 1.

by conducting an error analysis based on the scaling laws and measurement errors for

the parameters: 10% for Young’s modulus E, 10% for the fracture toughness K, 0.35%

for the flow rate Q and, 1% for the viscosity µ. Using these values, the experimental

error for radius measurements is around 10% in the toughness regime. We measure the

fracture aperture for experiments 1 and 2 using the light attenuation method [59]. Sudan

red is added to the silicon oil at a concentration of 0.025 g.L−1. The light absorbance at

λ = 520 nm varies linearly as a function of the fracture aperture. We obtain aperture

values across the fracture after calibration in a custom-made acrylic wedge [41]. We also

measure the pressure for experiments 2, 6, 10, and 12.
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4.3 Observations: Stiffness contrast controls growth

dynamics

As oil is injected into the gelatin, a fracture forms around the needle. An axisymmetric

fracture propagates over and beyond the washer, expanding radially towards the interface

between layers 1 and 2, as shown in figure 4.1(b). To determine how the stiffness contrast

between the two layers affects the fracture propagation, we inject oil in gelatin blocks

with matching Young’s moduli for the soft and stiff layer, respectively 15 and 30 kPa. For

experiment 1, layer 1 is the softer layer, and the fracture growth is presented in the top

row of figure 4.1(b). For experiment 2, layer 1 is the stiffer layer, and the results are in

figure 4.1(b). Despite identical injection parameters (Q = 1 ml.min−1 and µ = 20 mPa.s),

the fractures produced exhibit different geometry and propagation dynamics once they

reach the interface. In experiment 1, the fracture continues to propagate in the soft layer,

adopting an elongated geometry [122]. In experiment 2, the fracture crosses over to the

second and softer layer upon reaching the interface. The fracture initially adopts a half-

disk shape in the soft layer. In comparison, when the two layers have the same Young’s

modulus, the fracture adopts a circular geometry (see figure 4.1(c)). This observation

indicates that the contrast in stiffness between the layers is responsible for the modified

shape and dynamics, and not the presence of an interface between two gelatin layers.

To complete this comparison between the two dynamics at the interface, we consider

the fracture reach in figure 4.1(d). The reach or the maximum distance between the

tip of the needle and the contour of the fracture depends on the relative stiffness of the

injection layer. The reach of a fracture that originates in the stiffer layer and eventually

propagates in the softer layer is greater than that of a fracture that forms and remains

trapped in the softer layer. These observations show that the relative stiffness of the layer

in which the fracture forms compared to the adjacent layer determines if, how much, and
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how fast the fracture will propagate into the adjacent layer.

To understand the response of the fracture to a stiffness contrast, we consider the

ratio of the pressure required to propagate the fracture in the different layers. The ratio

depends on the material stiffness and can be approximated as P2/P1 ∝
√

γ1G1/γ2G2,

where γ is the fracture energy and G the shear modulus [123]. Since both layers are

made of gelatin and have the same fracture energy γ ≈ 1 J.m−2, and Poisson’s ratio

ν ≈ 0.5 [38], the relation simplifies to P2/P1 ∝
√

E1/E2. Therefore, when the fracture

reaches the interface between the two layers, it preferentially propagates in the layer

with the lowest Young’s modulus or lowest propagation pressure. This is consistent with

the trapping of the fracture that originates in the softer layer and the mushroom-like

geometry of the fracture in the softer layer 2.

We now focus on the dynamics of a fracture that grows from a stiff into a soft layer;

we measure the pressure and geometrical features of the fracture for Experiment 2. In

figure 4.2(a) we present side views of the growing fracture. The corresponding pressure

values are plotted in figure 4.2(b). At the start of the injection (point 1), the fluid

pressure increases until it reaches a critical value necessary to initiate and propagate

the crack [30]. Once the fracture forms (point 2), there is a rapid pressure release,

and then the propagation becomes quasi-steady. Upon further injection, the fracture

reaches the interface (point 3), and the pressure drops rapidly. After this transient, the

pressure evolution becomes quasi-steady again until the end of the injection (point 4).

The corresponding radius measurements are presented in figure 4.2(c). The radius values

are obtained from the area of the sub-fractures, allowing us to define an effective radius

for non-axisymmetric fractures. The fracture grows in the stiffer layer until it reaches the

interface (point 3). Then, the fracture stops expanding in layer 1, while its radius in layer

2 increases rapidly. In summary, the propagation into the softer layer arrests the radial

growth of the fracture in the stiffer layer. Simultaneously, the aperture of the fracture
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Figure 4.2: Fracture dynamics in Experiment 2: (a) Time series of side views of the
fracture. (b) Fluid pressure during the injection. (c) Effective radius of the fracture in
layer 1 •◦ and in layer 2 •◦. (d) Aperture of the fracture. The heat map indicates the
local aperture in layers 1 and 2. We note: 1 the onset of the injection, 2 the initiation
of the fracture in the stiffer layer (layer 1), 3 the crossing of the interface toward the
softer layer (layer 2), and 4 the profile at the end of the injection.
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decreases in layer 1 and increases in layer 2, as shown in figure 4.2(d). These observations

are reminiscent of the backflow dynamics reported by Lai et al [40]. In backflow processes,

the hydraulic fracture is connected to an outlet at atmospheric pressure with tubing,

which offers less resistance to the flow than the fracture propagation. The backflow is

due to the fracture collapse: its aperture decreases while its radius remains constant.

In our experiments, the propagation in the soft layer requires a lower pressure than the

growth in the stiffer layer, driving fluid from layer 1 into layer 2.

4.4 Results and discussion

To model the dynamics of a fracture that propagates through a stiffness contrast,

from a stiff to a soft layer, we start by reviewing the scaling laws that describe the

fracture growth in a homogeneous material. We then model the couplings between the

two “sub-fractures”, as fluid flows from the sub-fracture 1 in the stiffer layer 1 into the

growing sub-fracture 2 in the softer layer 2.

4.4.1 Theoretical model

When the fracture forms and grows in a homogeneous material i, the propagation

dynamics are driven by the elastic deformation and limited by the fracture opening

or toughness of the material. In all experiments presented here, the viscous dissipa-

tion associated with the flow in the fracture is negligible. This mode of propagation is

toughness-dominated. The fluid injection starts at t = 0 (point 2 in figure 4.2). At time

t, the volume of the fracture is equal to V = Qti ≈ R2
iwi, where Ri and wi are the radius

and maximum aperture of the fracture. Assuming there is no fluid lag [124], the theory

of Linear Elastic Fracture Mechanics (LEFM) holds. The fracture propagates in mobile

equilibrium and the pressure scales as Pi ≈ E ′
iwi/Ri, where E ′

i = Ei/(1 − ν2). The
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fracture propagation criterion yields Ki ≈ Pi

√
Ri ≈ 4

√
2E ′

iγ/π with Ki stress intensity

factor for a penny-shaped fracture set equal to the fracture toughness KIC . Solving these

three equations, we get the scaling expressions governing Ri, wi and Pi [22, 103],

Ri ≈
(
E ′

i

K ′
i

)2/5

V 2/5 (4.1)

wi ≈
(
K ′

i

E ′
i

)4/5

V 1/5 (4.2)

Pi ≈

(
Ki

′6

Ei
′

)1/5

V −1/5 (4.3)

In the toughness-dominated regime, the propagation dynamics depends on the material

properties and flow rate at which the liquid is injected Q. These scaling or power-law

expressions describe the fracture growth in layer 1.

We now consider the growth dynamics of the fracture when it reaches a softer material

in layer 2. The rapid growth in the soft layer is due to the material properties and is fueled

by the collapse of the sub-fracture in layer 1. Based on experimental observations, we

assume that the radius of the fracture in layer 1 remains constant, equal to R1,f , and the

maximum aperture w1(t) decreases over time. Since the fracture propagation in layer 1 is

toughness-dominated, the material toughness sets the pressure. As the fracture crosses

the interface, the pressure in the fluid is greater than necessary to propagate in layer

2. This is consistent with the initial sudden drop in pressure observed in Experiment

2, see figure 4.2(b). The pressure decreases from the value set by the toughness of

layer 1 to the value set by the toughness in layer 2. After a short transient regime,

the pressure is considered constant throughout the fracture, with the pressure in the

two layers P ≈ P1 ≈ P2. We use a similar mathematical framework as for the fracture

propagating in a uniform material. We derive expressions for the effective radius R2

and maximum aperture w2 in layer 2, maximum aperture w1 in layer 1, and pressure
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P . We note V0 the fracture volume when it reaches the interface. After crossing the

interface, the fracture volume is V ≈ V0 + Qt2 ≈ R2
1,f w1 + R2

2 w2 where t2 = 0 is

the time at which the fracture crosses the interface (point 3 in figure 4.2). The elastic

pressure scales as P1 ≈ E ′
1w1/R1,f and P2 ≈ E ′

2w2/R2 with P ≈ P1 ≈ P2. Since the

fracture grows in layer 2, the propagation criterion is set by the material properties of

layer 2: K2 ≈ P
√
R2 ≈ 4

√
2E ′

2γ/π. We employ an iterative approach to solve this

system of equations, as detailed in §4.6. This approach yields closed-form expressions

that model fluid transfer from sub-fracture 1 to sub-fracture 2 while preserving the long-

term toughness scaling in layer 2. In solving for the fracture parameters and pressure,

we can estimate V ′
0 , the volume of fluid transferred from sub-fracture 1 into sub-fracture

2 at time t2:

V ′
0 ≈ V0 −

R3
1,f

E1
′

(
K2

′6

E2
′

)1/5

(V0 +Qt2)
−1/5. (4.4)

V ′
0 is an increasing function of time with V ′

0 → V0 at large time. This result indicates that

fluid drainage from sub-fracture 1 into sub-fracture 2 is a function of the stiffness of the

two layers and the volume of the fracture when it reaches the interface. The fluid transfer

does not depend on the fluid viscosity, which is consistent with the toughness-dominated

regime studied here. Using V ′
0 +Qt2 as the volume of sub-fracture 2, equations 4.1, 4.2,

and 4.3 describe the evolution of the effective radius and maximum aperture in layer 2

and the fracture pressure, respectively. The maximum aperture of sub-fracture 1 is

w1 ≈

(
K2

′6

E2
′

)1/5(
R1,f

E1
′

)
(V0

′ +Qt2)
−1/5 (4.5)

The volume of fluid in sub-fracture 2 is the sum of the volume injected by the syringe

pump after the fracture reaches the interface and the volume transferred from sub-fracture

1. As the volume transferred is an increasing function of time, the properties of the
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fracture are not captured by power laws until V ′
0 ≈ V0. At long timescale, V ′

0 ≈ V0, those

equations recover the scalings derived for the toughness-dominated propagation in layer

2 for a fracture volume equal to the total volume injected, V ≈ V0 +Qt2.

4.4.2 Comparison with experimental results

Experimentally, we vary the stiffness of the two layers, the fluid viscosity, and the

injection parameters (flow rate and total volume), as detailed in Table 4.2. We report

the volume injected when the fracture reaches the interface between the two layers and

crosses into layer 2. We measure the fracture radius in the first layer R1, and report the

data in figure 4.3(a). Upon rescaling the radius values using equation 4.1, all data sets

collapse onto a single curve in figure 4.3(b). The best-fitting power law for this curve is

described by R1 = α1(E
′
1/K

′
1)

2/5(Qt)2/5, with α1 = 0.65, a value which is consistent with

previous studies [22, 29, 32]. Similarly, the fracture aperture and pressure scale are in

agreement with equations 4.2 and 4.3 as shown in figures 4.9 and 4.10(a) and (b). We

note that those measurements include experiments with a softer injection layer. These

results indicate that the propagation dynamics in layer 1 are not modified by the interface

(figure 4.7), even when a stiffer material across the interface confines the propagation to

layer 1, resulting in an elongated fracture.

When layer 1 is stiffer than layer 2, the fracture crosses over to layer 2 when it reaches

the interface. We measure the effective radius of the fracture in layer 2; the results are

presented in figure 4.3(c). Initially, we observe a rapid increase in radius, characteristic

of the swift transfer occurring between the two layers. Upon rescaling the data using

equation 4.1 with V = V ′
0 + Qt2, the profiles converge onto a master curve as shown in

figure 4.3(c). The proposed model captures the fracture dynamics within a few seconds

of the interface crossing. The best-fitting power law for this unified curve is described
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Figure 4.3: Comparison between experiments and modeling. (a) Effective fracture
radius in layer 1 R1 as a function of time for Experiments 1 to 13. t1 = 0 marks
the initiation of the fracture. We report values for the growth phase of the fracture,
i.e., until the fracture crosses over to layer 2, when applicable. (b) Rescaled fracture
radius in layer 1 for Experiments 1 to 13 using equation 4.1. (c) Effective radius in
layer 2 R2 as a function of time t2 for Experiments 2, 7-13. t2 = 0 marks the onset of
the fracture propagation in layer 2. (d) Scaled radius in layer 2 for the corresponding
experiments using equation 4.4.
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by R2 = α2(E
′
2/K

′
2)

2/5(V ′
0 + Qt2)

2/5, with α2 = 0.57. This is consistent with the values

obtained in the toughness regime. At later times, when the rate of drainage of sub-

fracture 1 is negligible compared to the injection rate, sub-fracture 2 grows according to

the power-law of time, as expected for a fracture propagating in a single material (see

figure 4.11). The fracture aperture is measured along a line normal to the interface and

going through the injection point, as shown in figure 4.4(a). We can, therefore, measure

the aperture of both sub-fractures. The results presented in figure 4.4(b) show that the

aperture of sub-fracture 1 decreases as the aperture of sub-fracture 2 increases over time.

We rescale the fracture profiles using equations 4.1 and 4.2 and present the results in

figure 4.4(c). We see that the fracture profiles in layer 2 collapse, whereas fracture profiles

in layer 1 do not. If we rescale the fracture aperture using equation 4.5 and a fixed radius,

R1,f , the fracture profiles in layer 1 collapse onto each other, as shown in figure 4.4(d).

The pressure values recorded during the fracture growth in layer 2 follow the scaling in

equation 4.3 as shown in figure 4.10(c) and (d).

In summary, the radius, aperture, and pressure measurements offer conclusive evi-

dence of the fluid transfer from layer 1 to layer 2. The growth dynamics of the fracture in

layer 2 result from the combination of fluid transfer or fracture history and fluid injection

at a constant flow rate.

4.5 Conclusions and Perspectives

Fluid injection and sequestration in geological formations constitute a practical ap-

proach to achieving net-zero greenhouse gas emissions. Hydraulic fractures increase the

storage capacity of low-permeability reservoirs. Yet, in stratified rocks, the nonuniform

material properties and stress fields can reorient the propagation plane of the fracture,

resulting in complex fracture trajectories and geometry [123, 117, 119, 35]. In this paper,
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Figure 4.4: Aperture measurements. (a) Heat map of a fracture aperture from Ex-
periment 2. The white line depicts the line along which the thickness of the fracture
is measured. (b) Aperture values w or fracture profile measured during Experiment
2 at t2 = [21, 111, 201, 291, 381, 471] s, with time increasing from light to dark purple.
(c) Rescaled aperture profiles using equations 4.1 and 4.2, for the propagation in layer
2. (d) Rescaled aperture profiles using R1,f and equation 4.5 to describe the fracture
collapse in layer 1.
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we have shown that the fracture can undergo enhanced or confined propagation because

of differences in stiffness between two neighboring layers. Our results demonstrate that a

fracture growing from a stiff into a soft layer experiences faster expansion dynamics due

to the transfer of fluid from the stiff to the soft layer. Once the fluid originally in the stiff

layer is drained, the fracture propagation slows down to its toughness-dominated growth

rate set by the injection flow rate and the toughness of the material. A fracture formed

in a stratified rock formation will behave differently due to the complexity of the rock

structure and stress field, yet stiffness contrasts will still cause variations in the propa-

gation dynamics. The fracture geometry will depend on the growth history and relative

stiffness of the layers encountered. We, therefore, anticipate that our findings should

have practical implications for the selection of injection sites and operation conditions,

as the propagation dynamics are highly sensitive to the properties of the successive rock

layers encountered.

4.6 Appendix

Mathematical model

In this section, we provide the derivation of the model that describes the fracture

growth into a softer layer after reaching a stiffness contrast.

Governing equations

When the fracture propagates from layer 1 to layer 2, it exclusively grows within layer

2. The thickness of fracture w1 in layer 1 gradually decreases over time, while the radius

R1 remains constant at R1,f [40].

For a penny-shaped fracture growing in a material with a Young’s modulus E, the
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radius R, fracture aperture w and pressure P verify [18, 22]:

w(r, t) =
8(1− ν2)R

πE

∫ 1

r/R

ξ√
ξ2 − (r/R)2

∫ 1

0

xP (xξR, t)√
1− x2

dx dξ. (S1)

In the two-layer system, we use the index i = {1, 2} to specify the sub-fracture and

layer of interest. We label the geometry of the sub-fractures (R and w), pressure P , and

Young’s modulus E accordingly. Using a dimensional approach and the characteristic

parameters, we can approximate the fracture aperture in both layers as follows:

w1 ≈
P2R1,f

E ′
1

(S2)

w2 ≈
P2R2

E ′
2

(S3)

where E ′
i = Ei/(1− ν2) where ν is the Poisson’s ratio.

When the fracture is propagating in layer 2, the growth is limited by the energy

required to create new fracture surfaces. The fracture propagates when the mode 1

stress intensity factor (K2) is equal to or greater than the plane strain fracture toughness

(KIC) of the material [105]. This can be written as

K2 = KIC (S4)

After a rapid transition, experimental measurements indicate that the pressure can

be considered uniform. Since the fracture is propagating in the toughness regime, the

pressure in the fracture is set by the stress intensity factor at the propagating tip and

can be approximated as

P2 ≈ P1 ≈ K ′
2/
√

R2 (S5)

where K ′
2 = 4(2/π)0.5

√
2E ′

2γ and γ = 1 J/m2 is the fracture energy for gelatin [33, 63].
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If V0 is the volume in the fracture right before the fracture penetrates into layer 2 at

time t2 = 0, the net volume in the fracture at t2 is

V0 +Qt2 = 2π

∫ R1,f

0

r1w1(r1, t2)dr + 2π

∫ R2

0

r2w2(r2, t2)dr, (S6)

Therefore,

V0 +Qt2 ≈ R2
1,f w1 +R2

2 w2. (S7)

To predict the evolution of R2, w2, w1, and P , we can solve equations S2, S3, S5, and S7.

This coupled system of equations yields a 6th-order polynomial equation whose exact

roots are not conducive to capturing the core physics of the phenomenon. Consequently,

we adopt an alternative approach to derive approximate solutions.

We assume that all of the fluid in layer 1 has drained into layer 2, which is a late-time

behavior. The fracture pressure P is

P ≈ K2
′6/5

E2
′1/5

(V0 +Qt2)
−1/5 (S8)

Substituting equation S8 in equation S2 and solving for w1 we get,

w1 ≈
K2

′6/5

E2
′1/5

(V0 +Qt2)
−1/5R1,f

E1
′ (S9)

Experimental results show that the fracture grows in layer 2 while sub-fracture 1 drains.

Therefore, we assume the fluid injected Qt2 is entirely contributing to the growth of the

fracture in layer 2. In addition, the fluid draining out of sub-fracture 1 goes into layer 2.

Substituting equation S9 in equation S7, we derive an expression for the volume of the
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fluid V ′
0 moving from layer 1 to layer 2 as a function of time,

V0
′ ≈ V0 −

K2
′6/5

E2
′1/5

(V0 +Qt2)
−1/5

R3
1,f

E ′
1

. (S10)

Using the above-corrected volume to account for the draining of fracture in layer 1, we

get the following equations

P ≈ K2
′6/5

E2
′1/5

(V0
′ +Qt2)

−1/5 (S11)

w1 ≈
K2

′6/5

E2
′1/5

(V0
′ +Qt2)

−1/5R1,f

E1
′ (S12)

w2 ≈
K2

′4/5

E2
′4/5

(V0
′ +Qt2)

1/5 (S13)

R2 ≈
E2

′2/5

K2
′2/5

(V0
′ +Qt2)

2/5 (S14)

These equations have the same form as the scaling relations for the toughness regime,

but here, the volume of the fracture is not a linearly increasing function of time. The

power-law dependence in the toughness regime is recovered when V0 << Qt2.

Comparison between scaling and analytical roots

We assess the performance of our scaling expressions and compare them against the

permissible roots of the 6th-order equation obtained from equations S2, S3, S5, and S7.

For this evaluation, we focus on Experiment 2 and employ the corresponding experimental

parameters to determine the roots of the polynomial equation. Upon solving, we observe

that only one admissible real root exists. Subsequently, we generate a plot showcasing

the actual values of various quantities and those calculated using our scaling expressions.

As illustrated in figure 4.5, our scaling expressions closely approximate the actual roots
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for R1, w2, P , and w1.

Additional experimental results

Identical layers

In experiment 3, we conducted an injection into two layers, both constructed the same

way as in our other experiments, but with an important difference: the layers had the

same Young’s modulus. We did this to investigate the impact of the interface we create

while producing our layered gelatin material. As illustrated in figure 4.6, the fracture

initiates in layer 1 and expands outward radially towards layer 2 and the interface. When

it reaches the interface (indicated by the dashed black line), the fracture continues to

propagate as if there were no material boundary. This continuity is also evident in the

radius data presented in figure 4.7(a). When we scale the radius using the toughness-

limited penny-shaped fracture scaling used for layer 1, we observe consistent scaling

behavior (figure 4.7(b)).

Reproducibility

We conducted Experiments 2 and 2r to test repeatability. Because we do not control

the volume of gelatin poured precisely, we measure the volume V0 and fracture radius

R1,f upon crossing of the interface. We compare R1 in figure 4.8(a) and see that after the

initial variations, the fractures behave similarly. When we rescale the fracture radii in

layer 1, they match, as shown in figure 4.8(b). After crossing the interface, the fracture

aperture w2 and radius R2 depend on V0 and R1,f . As a result, we see differences in

the early times as shown in figure 4.8(c). But as time goes on, the fractures display

similar growth patterns. This supports our hypothesis that, at later times, the fracture

in layer 2 behaves like a single-layer penny-shaped fracture limited by the toughness of
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Figure 4.5: Comparison between approximate scaling solution (+) and exact solution
generated using Mathematica® (x)
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Figure 4.6: Fracture propagation when both layers have the same Young’s modulus
(Exp. 3). The black dotted line denotes the interface between the two layers.

Figure 4.7: Fracture growth in two identical layers: (a) Radius of the fracture as a
function of time and (b) rescaled fracture radius using the toughness scaling for a
single layer. The black line represents the best-fit line for all the experiments in layer
1 and has a slope equal to 2/5.
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the material. When we scale the data, we see that the fracture profiles coincide, even at

early times because we take into account the differences between V0 and R1,f , as shown

in figure 4.8(d).

Fracture aperture in layer 1

During experiment 1, we obtain the fracture profile by measuring the aperture along

the diameter of the growing fracture in layer 1 at different times. We report the aperture

as a function of radial position in figure 4.9(a). Upon rescaling using the toughness scaling

laws [22, 29, 32], we see that the fracture profiles collapse onto each other (figure4.9(b)).

Scaling of pressure data

Using a membrane sensor, we measure the pressure in experiments 2, 6, 10, and 12.

The sensor measures the pressure of the fluid in the tubing. The viscous pressure drop

in the tubing and needle is two orders of magnitude lower than the toughness-dominated

pressure in the fracture, assuming a fully developed pipe flow. The pressure recorded

by the sensor is, therefore, primarily due to fracture propagation. In figure 4.10(a), we

present the pressure values corresponding to the propagation in layer 1. When we rescale

the data, we observe that the pressure data collapse on a single curve, see figure 4.10(b).

The best-fitting power law is P = α3(K1
′6/E1

′)1/5(Qt)−1/5, with α3 = 0.6. In figure

4.10(c), we report the pressure values once the fracture has advanced into layer 2. When

rescaled, the pressure data converge into a horizontal line, as depicted in figure 4.10(d).

The best-fit line is given by P = α4(K2
′6/E2

′)1/5(V0
′ +Qt2)

−1/5, where α4 = 0.65.

Toughness scaling in layer 2

In figure 4.11(a), we plot the fracture radius as a function of time in layer 2 for

Experiments 2 and 7 to 13. Upon using the scaling relations developed for the toughness-
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Figure 4.8: Comparison between two experiments with identical parameters (Exp. 2
and Exp 2r): (a) time evolution of R1 when the fracture is propagating in layer 1,
(b) rescaled R1 as a function of time using the toughness scaling (c) time evolution
of the effective fracture radius R2 in layer 2, and (d) rescaled R2 using equations 4.1
and 4.4.
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Figure 4.9: Fracture profiles in layer 1 (Exp. 1): (a) fracture aperture as a function of
the radial position at t = {100, 200, 300, 400, 500, 600, 700} s, with time increasing
from light to dark green and, (b) rescaled fracture profiles using the toughness scaling.

dominated propagation, with a fracture volume equal to Qt2, we observe that the radius

values only collapse at long times, see figure 4.11(b). The best fit long-term scaling line

is given by R2 = α5(E2
′2/5/K2

′2/5)(Qt2)
2/5 where α5 = 0.65.
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Figure 4.10: Pressure profiles: (a) pressure as a function of time when the fracture
grows in layer 1 for Exp. 2, 6, 10, and 12, (b) rescaled pressure in layer 1; the black
line represents the best fit with a slope of -1/5, (c) pressure as a function of time
when fracture propagates in layer 2 and, (d) rescaled pressure data in layer 2 using
equations 4.3 and 4.4. The black line represents the best-fit line with a slope of 1.
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Figure 4.11: (a) Effective radius R2 as a function of time and (b) rescaled R2 using the
single material toughness scaling with a fracture volume equal to the volume injected
Q, t2. The black line represents the best-fit line with a slope of 2/5.
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Conclusion and future work

In real-world scenarios where hydraulic fractures are created to enhance the permeabil-

ity and porosity of rock, the fractures interact with many heterogeneous elements in

the surrounding environment. These interactions encompass fluid-filled pores, material

discontinuities, other cracks, fissures, etc. Understanding such a complex system is a

formidable task, particularly due to the non-linear nature of fluid propagation and the

singularity at the fracture tip. Therefore, laboratory scale experiments involving simple

penny-shaped fractures offer a powerful tool to isolate and study the effects of various

such complexities [33, 34, 40]. This thesis addresses multiple aspects of such complex

hydraulic fracture propagation.

The first study presented in Chapter 2 was an experimental investigation focused

on the propagation of a penny-shaped hydraulic fracture upon shut-in of injection in

the viscous regime (viscous effects dominate), with no fluid leak-off to the surroundings.

Depending on the injection regime, excess elastic energy may be stored in the solid

medium, leading to the fracture continuing to grow even after the injection stops. We

conducted a series of experiments varying the Young’s modulus of the solid medium, the

viscosity of the injected fluid, and the flow rate of injection.
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We identified three different regimes of propagation: (i) constant flow rate, (ii) con-

stant volume, and (iii) toughness-controlled saturation. In the fracture propagation dur-

ing the constant flow rate injection, the radius of the fracture increases as t4/9, whereas

the thickness of the fracture increases as t1/9. Once the injection stops, the fracture

continues to propagate at constant volume. This implies that as the fracture radius is

increasing as t1/9, the fracture thickness has to reduce as t−2/9 to conserve the volume in

the fracture as there is no leak-off. The fracture continues to grow ever so slowly until

it reaches saturation when the stress intensity factor at the tip of the fracture becomes

lower than the material’s toughness.

After a detailed study of a penny-shaped fracture created by a single fluid, the next

study presented in Chapter 3 focused on the propagation of a “pre-filled” fracture due to

the injection of an immiscible fluid. This allowed us to understand how the growth of a

hydraulic fracture is modified by the successive injection of an oil phase and an aqueous

phase in a gelatin block. We modeled the growth of the fracture and the interface

between the two fluids by revisiting the theoretical framework established for a single

fluid. Subsequently, we conducted a series of experiments in both the viscous-dominated

regime and the toughness-dominated regime to experimentally validate the derived scales.

We observed that in the toughness regime, the fracture dynamics for a displacement

flow are the same as that of a single fluid, with the additional volume of the “pre-filled”

fracture fluid. This is in stark contrast to the viscous regime, where the viscous dissipation

in both the fluid phases contributes to the growth dynamics, and therefore, we use an

effective viscosity that is averaged by accounting for the volume of the displaced and

displacing fluid.

In Chapter 4, our focus shifted to studying the propagation dynamics when encoun-

tering distinct material layers. Our experimental findings demonstrated that when a

fracture is initiated in the softer layer, it keeps propagating within that layer. Con-
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Figure 5.1: Injection in 15 KPa gelatin at 1 ml/min flow rate at times t = [12, 82,
152, 222] s. The red color is the silicone oil that was injected initially to make sure
the fracture propagates in the right plane and the needle does not get clogged.

versely, if the fracture starts in the stiffer layer, it crosses the interface, experiences rapid

fluid transfer into the softer layer, resumes propagation within the softer layer, while its

growth is arrested within the stiffer layer. To capture these phenomena, we developed a

model for fracture growth in the softer layer and collapse in the stiffer layer using an it-

erative approach. Our results highlight that stiffness contrast can significantly accelerate

the growth of a fracture when it comes into contact with a material interface.

While the studies presented in this thesis further our understanding of hydraulic

fractures in complex scenarios, there’s still much to discover. Emerging technologies

like carbon sequestration pose new challenges, requiring ongoing research in hydraulic

fractures. Below I discuss some of the ideas that can be explored in the future.

Experimental investigation of buoyant fractures: An interesting area of research

would be experimenting with a model system to create a single buoyant fracture [125].

This system presents an opportunity to study carbon sequestration in a low-permeability

reservoir. A key focus could be to understand the transition of a radial hydraulic penny-

shaped fracture from the toughness regime to a late-time toughness controlled buoyant

fracture [126]. In an experiment conducted in the lab (see figure 5.1), we observed that

the fracture starts out axisymmetric. Upon further injection of air it becomes buoy-

ant and starts preferentially propagating upwards, finally breaking through the surface.
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10 mm

Figure 5.2: Injection of 2 M Na2CO3 solution at a flow rate of 1 ml/min in 30 Kpa
gelatin with a ”pre-fracture” of 10 ml 2 M CaCl2 solution at t = [1, 75, 150, 225, 300]
s. The red color is due to a water based dye added to help visualise the fracture.

Therefore, lab scale experiments would be a good approach to investigate caprock frac-

ture due to the buoyant motion of the fracturing fluid. This study would represent a

step towards understanding and eventually preventing the leakage of CO2 back into the

atmosphere, thereby contributing to the viability of geological CO2 storage as an effective

solution for climate change mitigation.

Reactive fracturing: Another interesting area of research would be to study reactive

fracture fronts, where the fracturing fluid can either react with already existing fluid

in the fracture, or with the surrounding solid medium. In an experiment conducted

in a block of gelatin, we observed that when injecting Na2CO3 into a fracture already

filled with CaCl2, a spontaneous reaction occurs between the two fluids, creating CaCO3,

which is insoluble in water. As can be seen in figure 5.2, the two clear fluids react and

form an opaque phase comprised of CaCO3. This would be especially relevant to mineral

sequestration where injected CO2 undergoes chemical reactions that can deposit it in

mineral form.

Hydraulic fracture in brittle elastic medium with rigid inclusions: A recent

experimental study [36] has demonstrated that fractures generated in heterogeneous sys-

tems are rough due to the perturbation of the fracture front. This observation prompts

further questions: Does the roughness affect the growth dynamics of the fracture? If so,

can we utilize ”effective” material parameters to accurately describe the long-term scaling
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behavior? Another interesting area of research would be exploring how the interaction of

fractures with rigid inclusions in striated rock formations modifies the fracture growth.

This research could yield valuable insights into the complexities of fracture propagation

in real-world geological settings, contributing to a more comprehensive understanding of

fluid-driven fractures, their interactions with heterogeneous subsurface structures, and

the development of predictive numerical models.
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Appendix A

Fluid flow through hairy surfaces

In the course of my PhD I also had the opportunity to work on flow through cylindrical

hair arrays. Hair-covered surfaces present in low Reynolds number (Re) flows are ubiq-

uitous across biological systems in nature, ranging from the epithelial cilia in the human

trachea to mechanosensory setae in crustaceans. These examples illustrate active cilia,

which beat to drive a flow, or passive cilia, which control flow patterns in response exter-

nal currents, respectively. Many filter-feeding species utilize microscopic passive hairs to

filter and divert food particles to feed [127, 128, 129]. The adult barnacle Semibalanus

balanoides, for example, controls the local flow through and around its short cirri by

sweeping its long cirri at different speeds and for various durations. In engineered sys-

tems, transport through cylinders in into fluid channels has been investigated in recent

years [130, 131, 132]. Bio-inspired devices utilizing hair array geometries analogous to

those seen in marine crustaceans have the potential to mimic the particle capture and

flow redirection properties that these biological examples exhibit. Being able to predict

how the fluid behaves in the presence of these structures remains a challenge due to the

nontrivial and nonlinear couplings at play.
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We have published conference proceedings exploring the effect of surface coverage of

hairs on filtration, presented below. Additionally, we have a manuscript in preparation

where we investigate the effect of confinement on the flow through a square array of

hairs in a rectangular channel. Sean Bohling, a fellow group member, has extended the

study and is currently conducting additional research on flow through hair arrays in a

cylindrical channel.

A.1 Effect of surface coverage on filtration perfor-

mance of hair arrays: Numerical Study

A.1.1 Abstract

Biological filtration systems offer a sustainable alternative to existing engineered so-

lutions. In this computational work, we seek to optimize the surface coverage by an

array of hairs to capture particles in channels. A variety of aquatic organisms rely on

arrays of hairs to interact with their fluidic environments. The hair functionality can vary

from sensing to smelling, filtration to flow control depending on the species considered.

Among those organisms are filter-feeders that rely on suspension-feeding, one of the most

widespread feeding mechanisms and one of the oldest. Baleen whales are filter-feeders

that catch their prey by using the baleen, a complex structure composed of plates and

bristles in their mouth. The hairs are hollow cylindrical structures with a diameter of

a few hundred micrometers that can extend over tens of centimeters. The baleen filters

out the prey while letting the seawater through. The baleen is composed of flexible and

elongated structures whose properties fit the feeding habits of the whale.

The porosity of the structure depends on the flow feature. Effectively, the flow can

tune the filter properties, which sets biological filters apart from their engineered coun-
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terpart. Previous mechanical studies have shown that an array of hairs can either act

as a sieve, allowing all the fluid to flow through it, or as a rake, forcing the fluid to flow

around it instead. As the speed increases, the behavior shifts from rake to sieving for

a given hair spacing. From a filtration perspective, the rake regime is not favorable as

particles do not enter the array. For a fixed fluid velocity, the flow transitions from rake

to sieve as the spacing between the hairs in the array increases. Our recent work has also

demonstrated that the confinement of the channel influences the sieve to rake transition.

The filtration mechanisms that filter-feeder organisms use to capture food particles

exhibit complex fluid-structure interactions that have yet to be leveraged in engineered

systems. To guide the development of hair-covered surfaces capable of trapping particles

in channel flows, we investigate how different geometric factors affect the fluid transport

and capture of particles by the array. In previous work, a small number of hairs, typically

25, were considered. Here, we vary the array geometry, the Reynolds number of the flow,

and the surface coverage to study the transport through this confined porous structure.

We compare arrays based on their optimal efficiency and the (sub-optimal) operating

conditions which make the filter versatile.

A.1.2 Introduction

Particle filtration involves the separation of particles from the fluid flow, often using

porous media. Fibrous filters commonly filter solid particles from aerosols and suspen-

sions [133]. However, fibrous filters are also ubiquitous in Nature, where they exhibit

improved performances. For example, biological filters provide a reliable source of food

over the lifetime of the organism. Filter-feeding fish, including goldfish, suspension-feeder

crabs, baleen whales, and sharks, manage to filter small prey from vast volumes of water

without clogging their oral filters [134, 135]. Biologists have long assumed that filter-
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feeding fish sieve particles of interest, effectively selecting particles that are too big to

enter the fibrous structure [136]. But such biological filters also remove particles much

smaller than the mesh size indicating a more complex filtration process. Rubenstein and

Koehl [136] considered the biological trapping of particles through the mechanisms known

to capture particles in industrial aerosol filters. They enumerated different mechanisms

responsible for particle capture by filter feeders: direct interception, inertial impaction,

gravitational deposition, and motile particle deposition. In direct interception, the par-

ticles follow the streamlines and are captured if the center of mass of the particles comes

close enough to the fiber surface. The capture distance depends on the surface properties

of both the particles and the fiber. In inertial impaction, the particles stop following

the streamlines and adhere to the fiber surface if they come within the capture distance,

at low enough speed that they do not bounce off. The gravitational interception occurs

when the particle settles in the fluid and comes within the capture distance of the fiber.

Finally, motile particles can migrate close enough to the fiber to get trapped. Direct

interception is the most common capture mechanism for micrometer-scale non-motile

particles in low-velocity flows.

Our study, therefore, focuses on the filtration of particles by a direct interception in a

bio-inspired filter. For the sake of simplicity, the filter is a square array of long hair-like

structures, similar to those that decorate the feeding appendages of crustaceans. The

fluid carries density-matched particles along the streamlines and into the patch of hair-

like obstacles. It is possible to model the system as two-dimensional, because of the

aspect ratio of the hairs. Previous work has shown that the flow through a patch of hairs

or filter structure exhibits different regimes under laminar conditions [137, 128, 132].

The flow regime transitions from rake to deflection and eventually sieve as the spacing

between the hairs or flowrate increases. For small spacing and low flow rates, the array

acts as a rake that deflects the flow. This regime corresponds to very little flow through
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the fibrous structure. As the spacing and the flow rate increase, the streamlines start

entering the array. In this intermediate regime, the streamlines bend, and the flow exits

the array laterally. Finally, at large spacing and a large flowrate, the array acts as a

sieve. Most streamlines travel from the upstream to the downstream faces of the array.

In this study, we are interested in determining the influence of the flow regimes on the

filtration performance of the array.

To study the filtration efficiency of different arrays of cylindrical hairs, we rely on finite

element-based simulations. In the second and third sections, we describe the numerical

methods and show that we recover the three flow regimes previously reported in the

literature. In the fourth section, we define the filtration efficiency and compare the

performance of different arrays under varying flow conditions. We conclude by discussing

strategies to improve the efficiency of bio-inspired filters.

A.1.3 Numerical simulations

A.1.3.1 Governing equations

The two-dimensional model filter consists of circular fibers in a rectangular channel,

as presented in fig. A.1. The fibers have a diameter d, and a center-to-center spacing

noted δ. The axis of the fibers is perpendicular to the direction of the flow. The channel

has a width W and a length L. The origin is set at the center of the channel. The density

of the Newtonian fluid is ρ and the viscosity µ. We assume that the flow at the inlet is a

fully developed Poiseuille flow for a rectangular channel whose velocity field is given by

ũ(y). The average velocity of the flow is equal to

UO =
1

W

∫
ũ(y) dy (A.1)

In the channel, the steady Navier-Stokes’ and continuity equations govern the velocity
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Figure A.1: Schematic of the channel.

field u and the pressure p of the flow

µ∇2u−∇p = ρu ·∇u (A.2)

∇.u = 0 (A.3)

Subject to the boundary conditions:

u = 0, on the cylinder surfaces (A.4)

u(y = ±W/2) = 0, on the channel walls (A.5)

u(x = −L/2) = ũ, at the inlet. (A.6)
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A.1.3.2 Simulations

We solve the system of equations described above by applying a finite element method

using COMSOL Multiphysics. We model the flow in two dimensions. For all the simula-

tions, W = 60 mm, d = 1mm, L = 400 mm, and δ varies from 2 to 10 mm. The flow is

fully developed at the inlet X = −L/2. We define the Reynolds number Re of the flow

with the average undisturbed velocity in the channel and the diameter of the cylinders:

Re =
ρ dU0

µ
(A.7)

We explore a range of Re from 10e-03 to 40 for ρ = 1000 kg.m−3 and µ = 10e-03 Pa.s.

At the outlet, we set the pressure to the atmospheric pressure. The fluid flow along the

channel walls and the surface of the cylinders are assumed to satisfy the no-slip condition.

We use COMSOL Multiphysics’ built-in meshing function to mesh the geometry at fine

setting. The mesh around the cylindrical surfaces is automatically set to extra fine

to account for the boundary layer surrounding them. We use free triangular elements

and execute steady simulations as time-dependent or inertial effects are negligible in the

system.

To study the performance of the hair array as a filter, we consider the direct inter-

ception mechanism. We assume that the particles to be filtered have a smaller diameter

than the fiber:= d/20. A particle is intercepted if it travels on a streamline that comes

close enough to the surface of a cylinder [138]. The progressive deposition of particles

can modify the flow field [139] and even clog some of the narrowest regions of the array

[138, 140, 141, 142]. Here we assume that only the particles whose surface comes in

contact with a cylinder get trapped irreversibly. We can express this condition mathe-

matically: if the distance between the center of mass of the particle and the surface of

the cylindrical fiber is less than one particle radius, then the particle sticks irreversibly.
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An annular region with an inner diameter d and outer diameter d + (d/20) gives this

sticking/capture region around each cylindrical surface. Therefore, we define the proba-

bility of capturing a particle as the flux of fluid into the capture regions divided by the

total flow through the channel. Before studying the filtration process, we determine the

flow field through the array and around each cylinder for different array sizes and array

arrangements to compare their filtering efficiency.

A.1.4 The three flow regimes

Previous work by Hood et al. 2019 [132] has shown the existence of three flow regimes

when fluid flows through an array of cylindrical hairs. Our simulations, presented in

fig.A.2, evidence the same three flow regimes. We conduct a series of simulations with

increasing Reynolds numbers from 10−3 to 40 as we keep the spacing between the hairs

constant equal to δ = 4 mm. At a low flow rate, the array acts as a sieve, and most

of the fluid flows around fig.A.2(a). On the contrary, when the flow rates are high and

the spacing between the hairs is larger, the fluid flows through the array, which behaves

like a sieve fig.A.2(c). The transition regime between the rake and sieve is called the

deflection flow regime fig.A.2(b): the fluid enters the array and exits the array laterally

through the sides.

This phenomenon can be understood by looking at the change in boundary layer

thickness around a single hair as the flow rate in the channel increases (see fig.A.3).

When the flow rates are high, the boundary layer of a hair is thin. The width of the

boundary layer is smaller than the spacing between two hairs. The boundary layers

of two neighboring hairs do not overlap, and fluid can flow through the arrays. When

the flow rate is low, the boundary layer thickness exceeds half the spacing between two

neighboring hairs. The overlapping boundary layers dramatically reduce the fluid flow
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Figure A.3: Boundary layer thickness around a single cylindrical fibre.

through the array. As we assume the transport of particles along streamlines, we expect

those flow regimes to influence the probability of particle capture.

A.1.5 Filtration

A.1.5.1 Efficiency definition

The first step in understanding filtration by an array of cylinders is to study the

particle capture by a single cylindrical fiber. We will then compare the performance of

the arrays with the performance of a single fiber, which is the unit structure of the system.

We consider a single fiber located at the center of the channel. The cylinder disturbs

the velocity profile in the channel. Because of the no-slip condition on the surface of

the cylinder, we see a steep velocity gradient region in the boundary layer (see fig.A.3).

The thickness of the boundary layer influences the filtration efficiency. To compare the

performance of different filters, we use the capture efficiency, a parameter commonly used

to describe engineered filters. For a cylindrical fiber, we define the filtration efficiency as
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Figure A.4: Schematic of the capture region.

e =
Qcapture

Uc d
(A.8)

where Qcapture is the 2D fluid influx through the sticking/capture region around the

cylinder, as shown in fig.A.4, and Uc is the average velocity through the cylinder in the

undisturbed flow.

It is important to note that measuring the probability of capture leads to similar

results. However the probability of capture cannot exceed 1, while the capture efficiency

coefficient can, for example when the capture region is wide. We estimate the flow rate

through the capture region and the undisturbed flow velocity using Comsol Multiphysics

simulations and compute the filtration efficiency of a single hair. Figure A.5 presents

the efficiency of a single hair as a function of the Re number of the flow. The efficiency

is an increasing function of the Re. Since the boundary layer is thicker at lower Re

numbers, there is not much flow influx through the capture region. As the Re number

increases, the percentage of flow influx through the capture region increases. This also
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Figure A.5: Single hair Vs array: Comparision of total efficiency.

explains the different behavior observed at lower and higher Re. At low Re, the filtration

efficiency is almost constant and independent of the Re. There is a strong dependence

of the boundary layer thickness and efficiency on the Re out of the Stokes regime. In

consequence, larger velocities are desirable to improve filtration efficiency.

A.1.5.2 Filtration by a 5×5 array

To define the efficiency of an array, we consider both the total efficiency of the array

and the average efficiency of a single hair. For an array, we sum the filtration efficiency

over every cylinder for the total efficiency E. To obtain the average efficiency, we divide

the total efficiency by the number of cylinders in the array,

E =
N∑
i=1

Qcapture

Uc,id
(A.9)

where N is the number of cylindrical fibers in the array.

We first consider a square 5×5 array with an inter-fiber spacing of 4 mm. We compare
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the total filtration efficiency of a single cylindrical fiber and the array. As we can see in

fig.A.5, the total filtration efficiency of the array is higher than the single hair because

the array has more cylinders that can capture more particles. The dependence of the

filtration efficiency on the Re is the same for both systems, consistent with our analysis

based on the boundary layer thickness. It is interesting to note that although the total

filtration efficiency of the array is higher than the efficiency of the single hair, the ratio

of the total efficiencies is smaller than 25, which is the number of hairs in the array. In

average, a hair in the array is less efficient at capturing particles than a single hair. This

means that, on average, the single fiber is much more efficient at filtering than a 5×5

array with a spacing of inter-fiber spacing of 4 mm. To understand the cause of this loss

in filtration efficiency and minimize it, we look at different array structure.

A.1.5.3 Effect of varying the array dimensions

We systematically vary the array dimensions in both the x and y directions, i.e., we

change the number of columns and rows of hairs. We consider different arrays of the

form i× j where i is the number of rows and j is the number of columns. The inter-fiber

spacing δ is kept constant equal to 4 mm. All the arrays are centered at the origin of the

channel.

We first vary the number of rows while keeping the number of columns constant at 5.

In figure A.6(a), we observe that all the arrays show the same qualitative behavior over

the range of Re considered. The average filtration efficiency e is independent of the Re

at lower values. At higher Re, the efficiency becomes an increasing function of the Re.

If we now compare the average efficiency of a hair in the different arrays, we note that

the efficiency is an increasing function of the number of rows for all Re. Interestingly,

for an array with ten rows and five columns of hairs, the average efficiency is comparable

to the efficiency of a single hair. We note that the average efficiency of the array even
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Figure A.6: Average efficiency as a function of Re, for different arrays. We vary the
number of rows and columns in the array: (a) number of rows goes 1 to 10, for 5
columns and (b) number of rows is 5, while the number of columns goes from 1 to 10.

exceeds the efficiency of the single hair a low Re numbers. Still, it remains an order of

magnitude below the efficiency of the large Re. We consider the flow through the system

to rationalize the capture efficiency. As the number of rows increases, the open channels

on either side of the array are progressively more restricted [143]. At low Re, this does

not significantly modify the flow properties in the array but increases the average velocity

in the side channel, which means that the cylinder lining the array will see its efficiency

improve. Overall this improvement results in a modest increase in the efficiency with

the number of rows at low Re. At large Re numbers, the restriction of the flow in the

side channel increases the flow rate through the array, which further reduces the size of

the boundary layer and significantly increases the average efficiency of the array. These

results indicate that the confinement of the array is beneficial to the filtration process

both at low and high Re.

Next, we vary the number of columns while keeping the number of rows constant and
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equal to five. The average efficiency is a decreasing function of the number of columns,

for all values of the Re considered. This is consistent with the decrease in speed of the

flow as the number of rows increases. The efficiency loss as a function of the number of

columns is greater for the first few columns, indicating that additional columns eventually

add a slight but constant increase in total efficiency.

It is interesting to note that the efficiency for the 5×1 array is more than that for the

single cylinder at higher Re. The confinement effect described above is responsible for

increasing average efficiency for the column of hairs over a single hair. In conclusion, the

average filtration efficiency depends on the aspect ratio of the array and its confinement.

We can conclude that a wide array with fewer rows will lead to the most efficient filtration.

A.1.5.4 5×5 array with different spacing

Based on the previous result, we now compare the performance of square arrays. We

vary the spacing between the cylinders for a symmetric 5×5 array to understand the

effect of δ on the filtration efficiency. Figure A.7 reports the efficiency of different arrays

as a function of the Re. At all values of Re, the performance of arrays with large spacing

exceeds the performance of arrays with small spacing. For example, at lower Re, the

efficiency of the δ = 12 mm, δ = 10 mm, and δ = 8 mm is much higher than that of a

single fiber. At higher Re, the single fiber crosses these two, and the efficiency for the

single fiber is the highest at high Re. At high Re, we notice that after a point, increasing

the spacing between the elements does not improve the efficiency.

To understand those results, we need to account for two effects. First, we know

that confinement improves filtration efficiency. Increasing the spacing between posts

reduces the space available for the flow around the array. As a result, more fluid flows

through an array with larger spacing than through an array with smaller spacing. In

addition, we should compare the spacing between posts with the size of the boundary
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Figure A.7: Influence of spacing on the efficiency of a square array (5 x 5).

layer of the cylinders. As the spacing increases, the overlap between the boundary layers

of two neighboring posts is reduced, which increases the filtration efficiency. Note that

the overlap of the boundary layers determines the efficiency at low Re. Therefore, the

improvement in filtration efficiency due to spacing increases is much more significant at

low Re than the confinement effect alone. In conclusion, the increase in efficiency due

to spacing between neighboring cylinders is valuable at all Re number. Compare to the

confinement strategy through the addition of rows; the spacing approach yields greater

results at low Re. The design of a filter with comparable performances at low and high

Re will most benefit from increases in the cylinder spacing. In summary, the results of

the numerical simulations indicate that, over the range of intermediate Re considered

here, the efficiency increases with the width of the array and the spacing between the

rows and columns.
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A.1.6 Conclusion

This numerical study considers the efficiency of arrays of cylindrical fibers to filter

buoyant particles that travel along the streamlines of a liquid flowing through a rectan-

gular channel. We consider laminar flows and assume direct interception of the advected

particles, as these conditions are prevalent in biological filters, like those of filter-feeders.

Relying on two-dimensional simulations using Comsol Multiphysics, we compare the filter

efficiency of different array geometries to improve the efficiency of square arrays of fibers.

We find that the efficiency of all arrays increases with Re. The efficiency of an array

is greater than the efficiency of a single hair. However, in most cases, the interactions

between hairs reduce the individual efficiency of each hair, called the average efficiency.

Comparing arrays of different aspect ratios, we show that the lateral confinement of the

arrays improves efficiency. However, an increase in the number of columns decreases the

average efficiency of the array. Similarly, we show that increasing the spacing between

the cylinders improves the efficiency of capture. A filter needs to operate at higher Re (in

the sieve regime), and the flow needs to be confined to improve the efficiency of the filter.

Still, the rows and columns need to be placed as far from each other as possible, so the

fluid influx through the capture region is higher. In the future, experimental work should

test those findings and determine the upper bound of Re that maximizes the capture ef-

ficiency in the direct interception regime while minimizing inertial effects. In conclusion,

this study identifies inter-cylinder spacing and lateral confinement as important design

parameters to optimize filtration for the geometry described.
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[24] A. Möri and L. Brice, Arrest of a radial hydraulic fracture upon shut-in of the
injection, Int. J. of Solids Struct. 219-220 (2021) 151–165.

[25] A. Bunger and E. Detournay, Asymptotic solution for a penny-shaped
near-surface hydraulic fracture, Eng. Fract. Mech. 72 (2005), no. 16 2468–2486.

115



[26] A. P. Bunger and E. Detournay, Experimental validation of the tip asymptotics
for a fluid-driven crack, J. Mech. Phys. Solids 56 (2008) 3101–3115.

[27] A. Bunger, E. Gordeliy, and E. Detournay, Comparison between laboratory
experiments and coupled simulations of saucer-shaped hydraulic fractures in
homogeneous brittle-elastic solids, J. Mech. Phys. Solids 61 (2013), no. 7
1636–1654.

[28] C. Y. Lai, Z. Zheng, E. Dressaire, J. S. Wexler, and H. A. Stone, Experimental
study on penny-shaped fluid-driven cracks in an elastic matrix, Proc. R. Soc.
Lond. A 471 (2015) 20150255.

[29] C. Y. Lai, Z. Zheng, E. Dressaire, and H. A. Stone, Fluid-driven cracks in an
elastic matrix in the toughness-dominated limit, Phil. Trans. R. Soc. Lond. A 374
(2016) 20150425.

[30] B. Lecampion, J. Desroches, R. Jeffrey, and A. Bunger, Experiments versus theory
for the initiation and propagation of radial hydraulic.pdf, J. Geophys. Res. Solid
122 (2017), no. 2 1239–1263.

[31] N. O’Keeffe and P. Linden, Hydrogel as a Medium for Fluid-Driven Fracture
Study, Exp. Mech. 57 (10, 2017) 1 – 11.

[32] N. J. O’Keeffe, H. E. Huppert, and P. F. Linden, Experimental exploration of
fluid-driven cracks in brittle hydrogels, J. Fluid Mech. 844 (2018) 435–458.

[33] N. O’Keeffe, Z. Zheng, H. Huppert, and P. Linden, Symmetric coalescence of two
hydraulic fractures, Proc. National Acad. Sci. USA 115 (2018), no. 41 10228 –
10232.

[34] C.-Y. Lai, B. Rallabandi, A. Perazzo, Z. Zheng, S. Smiddy, and H. Stone,
Foam-driven fracture, Proc. National Acad. Sci. USA 115 (2018), no. 32 8082 –
8086.

[35] S.-M. Ham and T.-H. Kwon, Photoelastic observation of toughness-dominant
hydraulic fracture propagation across an orthogonal discontinuity in soft,
viscoelastic layered formations, Int. J. Rock Mech. Min. 134 (2020) 104438.

[36] W. Steinhardt and S. M. Rubinstein, How material heterogeneity creates rough
fractures, Phys. Rev. Lett. 129 (Sep, 2022) 128001.

[37] A. Takada, Experimental study on propagation of liquid-filled crack in gelatin:
Shape and velocity in hydrostatic stress condition, J. Geophys. Res. 95 (1990),
no. B6 8471–8481.

116



[38] T. Menand and S. R. Tait, The propagation of a buoyant liquid-filled fissure from
a source under constant pressure: An experimental approach, J. Geophys. Res.
107 (2002) ECV 16–1–ECV 16–14.

[39] J. Kavanagh, T. Menand, and K. Daniels, Gelatine as a crustal analogue:
Determining elastic properties for modelling magmatic intrusions, Tectonophysics
582 (2013) 101–111.

[40] C.-Y. Lai, Z. Zheng, E. Dressaire, G. Z. Ramon, H. E. Huppert, and H. A. Stone,
Elastic Relaxation of Fluid-Driven Cracks and the Resulting Backflow, Phys. Rev.
Lett. (2016).

[41] S. S. Tanikella and E. Dressaire, Axisymmetric displacement flows in fluid-driven
fractures, J. Fluid Mech. 953 (2022) A36.

[42] S. S. Tanikella, M. C. Sigallon, and E. Dressaire, Dynamics of fluid-driven
fractures in the viscous-dominated regime, Proc. R. Soc. A 479 (2023) 20220460.

[43] D. E. Giuseppe, F. Funiciello, F. Corbi, G. Ranalli, and G. Mojoli, Gelatins as
rock analogs: A systematic study of their rheological and physical properties,
Tectonophysics 473 (2009) 391–403.

[44] U.S. Environmental Protection Agency, Hydraulic fracturing for oil and gas:
Impacts from the hydraulic fracturing water cycle on drinking water resources in
the united states, tech. rep., Office of Research and Development, Washington,
DC, 2016.

[45] H. E. Huppert and J. A. Neufeld, The fluid mechanics of carbon dioxide
sequestration, Annu. Rev. Fluid Mech. 46 (2013), no. 1 255–272.

[46] R. A. Caulk, E. Ghazanfari, and J. N. Perdrial, Experimental investigation of
fracture aperture and permeability change within enhanced geothermal systems,
Geothermics 62 (2016) 12–21.

[47] S. Jasechko and D. Perrone, Hydraulic fracturing near domestic groundwater
wells, Proc. Natl. Acad. Sci. 114 (2017) 13138–13143.

[48] H. Yu, R. M. Harrington, H. Kao, Y. Liu, and B. Wang, Fluid-injection-induced
earthquakes characterized by hybrid-frequency waveforms manifest the transition
from aseismic to seismic slip, Nat. Commun. 12 (2021) 6862.

[49] P. Folger and M. Tienmann, Human-induced earthquakes from deep-well injection:
A brief overview, Congr. es. Serv. 42 (2016).

[50] R. Schultz, G. Atkinson, D. W. Eaton, Y. J. Gu, and H. Kao, Hydraulic
fracturing volume is associated with induced earthquake productivity in the
duvernay play, Science 359 (2018) 304–308.

117



[51] U.S. Environmental Protection Agency, Minimizing and managing potential
impacts of injection-induced seismicity from class ii disposal wells: Practical
approaches, tech. rep., Underground Injection Control National Technical
Workgroup, Washington, DC, 2016.

[52] A. A. Osiptsov, Fluid mechanics of hydraulic fracturing: a review, J. Petrol. Sci.
Eng. 156 (2017) 513–535.

[53] A. A. Savitski and E. Detournay, Similarity solution of a penny-shaped
fluid-driven fracture in a zero-toughness linear elastic solid, C. R. Mec. 329
(2001) 255–262.

[54] D. I. Garagash, E. Detournay, and J. I. Adachi, Multiscale tip asymptotics in
hydraulic fracture with leak-off, J. Fluid Mech. 669 (2011) 260–297.

[55] J. R. Lister and R. C. Kerr, Fluid-mechanical models of crack propagation and
their application to magma transport in dykes, J. Geophys. Res. 96 (1991)
10049–10077.

[56] D. P. Van Dam, de P., and R. Romijn, Analysis of hydraulic fracture closure in
laboratory experiments, SPE Production Facilities 15 (2000), no. 03 151–158.

[57] D. I. Garagash, Plane-strain propagation of a fluid-driven fracture during
injection and shut-in: Asymptotics of large toughness, Eng. Fract. Mech. 73-4
(2006) 456–481.

[58] A. Lakirouhani, E. Detournay, and A. P. Bunger, A reassessment of in situ stress
determination by hydraulic fracturing, Geophysical Journal International 205-3
(2016) 1859–1873.

[59] A. P. Bunger, A photometry method for measuring the opening of fluid-filled
fractures, Meas. Sci. Technol. 17 (2006) 3237.

[60] S. Tanikella, M. Sigallon, and E. Dressaire, Data from: Dynamics of fluid-driven
fractures in the viscous-dominated regime, 2022.

[61] I. N. Sneddon and M. Lowengrub, Crack Problems in the Classical Theory of
Elasticity. Wiley, 1969.

[62] G. K. Batchelor, An introduction to fluid dynamics. Cambridge University Press,
1967.

[63] J. R. Rice, Mathematical analysis in the mechanics of fracture. Academic Press,
N. Y., 1968.

[64] A. Rubin, Propagation of Magma-Filled Cracks, Annu. Rev. Earth Planet. Sci. 23
(1995), no. 1 287 – 336.

118



[65] L. Cueto-Felgueroso and R. Juanes, Forecasting long-term gas production from
shale, Proc. National Acad. Sci. USA 110 (2013), no. 49 19660–19661.

[66] H. Murphy, J. Tester, C. Grigsby, and R. Potter, Energy extraction from fractured
geothermal reservoirs in low-permeability crystalline rock, J. Geophys. Res. 86
(1981), no. B8 7145–7158.

[67] J. Luo, Y. Zhu, Q. Guo, L. Tan, Y. Zhuang, M. Liu, C. Zhang, W. Xiang, and
J. Rohn, Experimental investigation of the hydraulic and heat-transfer properties
of artificially fractured granite, Sci. Rep. 7 (2017), no. 1 39882.

[68] B. Jia, J.-S. Tsau, and R. Barati, A review of the current progress of CO2
injection EOR and carbon storage in shale oil reservoirs, Fuel 236 (2019) 404–427.

[69] X. Bao and D. Eaton, Fault activation by hydraulic fracturing in western Canada,
Science 354 (2016), no. 6318 1406–1409.

[70] D. Alessi, A. Zolfaghari, S. Kletke, J. Gehman, D. Allen, and G. Goss,
Comparative analysis of hydraulic fracturing wastewater practices in
unconventional shale development: Water sourcing, treatment and disposal
practices, Can. Water Resour. J. 42 (2017), no. 2 1–17.

[71] A. Barbati, J. Desroches, A. Robisson, and G. McKinley, Complex Fluids and
Hydraulic Fracturing, Annu. Rev. Chem. Biomol. Eng. 7 (2016) 415–453.

[72] S. Hormozi and I. Frigaard, Dispersion of solids in fracturing flows of yield stress
fluids, J. Fluid Mech. 830 (2017) 93–137.

[73] T. Baumberger and O. Ronsin, Environmental control of crack propagation in
polymer hydrogels, Mech. Soft Mater. 2 (2020), no. 1 14.

[74] J. Wang, D. Elsworth, and M. Denison, Propagation, proppant transport and the
evolution of transport properties of hydraulic fractures, J. Fluid Mech. 855 (2018)
503–534.

[75] A. Bessmertnykh, E. Dontsov, and R. Ballarini, Semi-Infinite Hydraulic Fracture
Driven by a Sequence of Power-Law Fluids, J. Eng. Mech. 147 (2021), no. 10
04021064.

[76] F.-E. Moukhtari and B. Lecampion, A semi-infinite hydraulic fracture driven by a
shear-thinning fluid, J. Fluid Mech. 838 (2018) 573–605.

[77] B. Barboza, B. Chen, and C. Li, A Review on Proppant Transport Modelling, J.
Petrol. Sci. Eng. 204 (2021) 108753.

[78] F. Parisio and K. Yoshioka, Modeling Fluid Reinjection Into an Enhanced
Geothermal System, Geophys. Res. Lett. 47 (2020), no. 19.

119



[79] P. Saffman and G. Taylor, The penetration of a fluid into a porous medium or
Hele-Shaw cell containing a more viscous liquid, Proc. R. Soc. Lond. A 245
(1958), no. 1242 312–329.

[80] L. Paterson, Radial fingering in a Hele Shaw cell, J. Fluid Mech. 113 (1981),
no. -1 513–529.

[81] C.-W. Park and G. Homsy, Two-phase displacement in Hele Shaw cells: theory, J.
Fluid Mech. 139 (1984) 291–308.

[82] J.-D. Chen, Growth of radial viscous fingers in a Hele-Shaw cell, J. Fluid Mech.
201 (1989) 223–242.

[83] G. Homsy, Viscous Fingering in Porous Media, Annu. Rev. Fluid Mech. 19
(1987), no. 1 271–311.

[84] R. Lenormand, E. Touboul, and C. Zarcone, Numerical models and experiments
on immiscible displacements in porous media, J. Fluid Mech. 189 (1988) 165–187.

[85] S. Tanveer, Evolution of Hele-Shaw interface for small surface tension, J.
Geophys. Res. 343 (1993), no. 1668 155–204.

[86] B. Primkulov, A. Pahlavan, X. Fu, B. Zhao, C. MacMinn, and R. Juanes,
Signatures of fluid–fluid displacement in porous media: wettability, patterns and
pressures, J. Fluid Mech. 875 (2019) 133 – 13.

[87] B. Primkulov, A. Pahlavan, X. Fu, B. Zhao, C. MacMinn, and R. Juanes,
Wettability and Lenormand’s diagram, J. Fluid Mech. 923 (2021) A34.

[88] P. Tabeling, G. Zocchi, and A. Libchaber, An experimental study of the
Saffman-Taylor instability, J. Fluid Mech. 177 (1987) 67–82.

[89] R. Lenormand, C. Zarcone, and A. Sarr, Mechanisms of the displacement of one
fluid by another in a network of capillary ducts, J. Fluid Mech. 135 (1983)
337–353.

[90] B. Zhao, C. MacMinn, and R. Juanes, Wettability control on multiphase flow in
patterned microfluidics, Proc. National Acad. Sci. USA 113 (2016), no. 37
10251–10256.

[91] J. Stokes, D. Weitz, J. Gollub, A. Dougherty, M. Robbins, P. Chaikin, and
H. Lindsay, Interfacial Stability of Immiscible Displacement in a Porous Medium,
Phys. Rev. Lett. 57 (1986), no. 14 1718–1721.

[92] C. Cottin, H. Bodiguel, and A. Colin, Drainage in two-dimensional porous media:
From capillary fingering to viscous flow, Phys. Rev. E 82 (2010), no. 4 046315.

120



[93] R. Glass, H. Rajaram, and R. Detwiler, Immiscible displacements in rough-walled
fractures: Competition between roughening by random aperture variations and
smoothing by in-plane curvature, Phys. Rev. E 68 (2003), no. 6 061110.

[94] Y. Chen, S. Fang, D. Wu, and R. Hu, Visualizing and quantifying the crossover
from capillary fingering to viscous fingering in a rough fracture, Water Resour.
Res. 53 (2017), no. 9 7756–7772.
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