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Overall Introduction 

 A common situation that arises in theoretical chemistry and physics involves 

finding an accurate computational method that describes molecular systems, ranging from 

simple single atoms to complex many-body molecular systems.1 Many quantum 

mechanical modelling theories have been developed that attempt to describe the behaviors 

of electrons within these systems. More specifically, they attempt to provide an 

approximate solution to the time-independent Schrodinger equation that finds energy levels 

via the electronic wavefunction.2 While the Schrodinger equation can be solved for the 

simplest atom, hydrogen, it is nearly impossible to quantify the complex electronic and 

nucleic interactions in systems containing more than one electron. The Hartree-Fock (HF) 

theory provides a simple, yet reasonable approximation to this problem that approximates 

the N-electron wavefunction using a product of N one-electron wavefunctions, where the 

product is known as the Slater determinant.2  

 There are also more-recently developed methods that implement the concepts of 

HF theory in addition to providing other approximations in an attempt to give a more 

accurate description of electronic interactions within many-body systems. The main theory 

focused on in this paper was first introduced in 1964 by Hohenberg and Kohn3 and further 

described in 1965 by Kohn and Sham4 and is known today as density functional theory, or 

DFT. While this theory took many decades to gain credibility, it is one of the most 

commonly used molecular theories today and is praised for providing a significantly more 

accurate description of electronic structures when compared to HF. DFT essentially 

describes the ground state energy (E0) of molecular systems based on the electron density 
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of that system.5 In other words, DFT uses functionals, or functions of a function, that are 

based on the number of electrons and their positions in relation to one another to describe 

ground-state properties like electron affinities and molecular orbital energies. This 

provides a vast improvement to other post-HF theories that tend to have high computational 

costs. 

 One downfall to DFT is that the exact functionals that describe the exchange-

correlation energies (Exc) between electrons is not known for systems containing more than 

a single electron. To fix this, one must approximate this Exc by combining a variety of 

functionals with an appropriate basis set, which is essentially a finite set of functions 

composed of atomic orbitals or plane-waves that are used to provide solutions to the 

Schrodinger equation. In this thesis, an investigation into the accuracy of various DFT 

functionals and basis sets is provided for select complex molecular systems, namely 

systems involving anions and halogen-bonding molecules. 
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Chapter 1: Accurate Electron Affinities and Orbital Energies of Anions from a 

Nonempirically Tuned Range-Separated Density Functional Theory Approach 

 

Abstract 

The treatment of atomic anions with Kohn–Sham density functional theory (DFT) 

has long been controversial because the highest occupied molecular orbital (HOMO) 

energy, EHOMO, is often calculated to be positive with most approximate density 

functionals. We assess the accuracy of orbital energies and electron affinities for all three 

rows of elements in the periodic table (H–Ar) using a variety of theoretical approaches and 

customized basis sets. Among all of the theoretical methods studied here, we find that a 

nonempirically tuned range-separated approach (constructed to satisfy DFT-Koopmans’ 

theorem for the anionic electron system) provides the best accuracy for a variety of basis 

sets, even for small basis sets where most functionals typically fail. Previous approaches 

to solve this conundrum of positive EHOMO values have utilized non-self-consistent 

methods; however, electronic properties, such as electronic couplings/gradients (which 

require a self-consistent potential and energy), become ill-defined with these approaches. 

In contrast, the nonempirically tuned range-separated procedure used here yields well-

defined electronic couplings/gradients and correct EHOMO values because both the potential 

and resulting electronic energy are computed self-consistently. Orbital energies and 

electron affinities are further analyzed in the context of the electronic energy as a function 

of electronic number (including fractional numbers of electrons) to provide a stringent 

assessment of self-interaction errors for these complex anion systems. 
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Introduction: 

 The quantum mechanical description of weakly-bound anions and their unusual 

properties continues to garner immense interest in the atomic/molecular physics and 

condensed-phase chemistry communities. In particular, the weak binding of an extra 

electron to a stable neutral atom/molecule is central to the study of Rydberg states,6-8 few-

body quantum systems,9 and their couplings to the electronic continuum.10-12 Within the 

rapidly-growing field of condensed-phase chemistry, loosely-bound electrons are present 

as solvated electrons in which an extra electron is not associated to any one particular 

molecule but is collectively bound by a cluster of solvent molecules.13-15 In the broader 

fields of chemistry and materials science, anions and radicals play a vital role in 

semiconducting molecular clusters,16-17 fullerenes,18-19 charge transfer,20 and solar cells.21-

22 

To describe these highly complex processes and electronic environments, an 

accurate quantum mechanical treatment is necessary, and advances in density functional 

theory (DFT) have enabled first-principles calculations with reasonable accuracy (mean 

absolute errors around 0.2 eV).23 However, during the formative stages of DFT in quantum 

chemistry, serious concerns were raised that Kohn-Sham DFT was not appropriate for the 

study of anions since the HOMO energy was often calculated to be positive – typically for 

small basis sets, and surprisingly for atomic species with sizeable electron affinities.24-28 A 

positive HOMO eigenvalue is problematic since this implies that the anion is unbound, and 

the calculation is, in principle, unreliable.29 At the time, these problematic cases were 

shown to arise from the deficiency of LDA/GGA exchange-correlation functionals since 
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Kohn-Sham potentials obtained from these approximations exhibit the wrong asymptotic 

behavior.30 Still, other researchers have argued that electron affinities calculated using 

reasonable basis sets (even with these conventional DFT methods) are still reliable when 

calculated as a difference between the self-consistent total energies of the anion and neutral 

species.31 These controversial issues continue to interest DFT purists, and recent parallel 

studies by Burke32 and Jensen33 have demonstrated that anions which should be bound 

states in reality are actually described as metastable electronic resonances by many 

approximate DFT methods. Burke and co-workers32 have attributed these discrepancies to 

strong self-interaction errors (SIEs) that arise from a net negative charge, resulting in an 

effective potential where the last electron is actually unbound. 

 Numerous publications have appeared using DFT methods to calculate electron 

affinities23, 34-36 (including recent developments in extended Koopmans’ Theorem 

approaches37-39), and three solutions have been proposed to address the conundrum of 

positive EHOMO values in Kohn-Sham DFT: (1) Ignore warnings on positive HOMO 

energies:23 This viewpoint is a pragmatic approach to simply “march on” and compute 

electron affinities as energy differences between the anion and neutral species; however, 

the presence of a formally problematic, positive HOMO energy is unsettling since one 

“obtains the right answer for the wrong reason”; (2) Use an orbital-dependent self-

interaction correction scheme:40-41 This approach can, in principle, directly eliminate SIE 

terms in an orbital-by-orbital procedure; however, a detailed study by Scuseria and co-

workers28 has shown that these self-interaction corrections can severely impair equilibrium 

properties, in addition to introducing computational difficulties due to the invariance of the 
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energy with respect to unitary transformations; (3) Self-consistently compute orbitals using 

Hartree-Fock (HF), but use the HF density to non-self-consistently evaluate the energy 

with DFT:32, 42 While this most recently proposed approach will formally result in a bound 

anion with a negative EHOMO, the calculation of electronic properties, such as electronic 

couplings or gradients, becomes ill-defined since the potential is evaluated with one 

approach while the energy is non-self-consistently evaluated with another approximation. 

In this work, we instead propose the following alternative: use a non-empirically 

tuned procedure to satisfy DFT-Koopmans’ theorem for the anionic (N+1) electron system, 

and use the resulting tuned XC functional to self-consistently evaluate both orbital energies 

and electron affinities. This procedure should yield correct EHOMO values and well-defined 

electronic couplings/gradients since both the potential and resulting electronic energy are 

computed self-consistently. We test the accuracy of this approach by computing both the 

orbital energies and electron affinities for all three rows of elements in the periodic table 

(H-Ar). We have chosen to focus our attention on individual atoms since SIEs are 

particularly severe for isolated atoms where the extra electron is strongly localized.43 A 

variety of theoretical methods and extremely diffuse, customized basis sets are used in this 

work (containing exponents less than 10-10), which require special modifications to existing 

codes to achieve convergence at the basis set limit. Finally, we examine the orbital energies 

and electron affinities in the context of the electronic energy, E, as a function of electronic 

number, N, including fractional numbers of electrons.44 These tests of deviations from 

linearity provide a stringent assessment of SIEs inherent to the underlying functional itself 

as well as a critical diagnostic of the basis set used in the calculation.45 We give a detailed 
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analysis of these E vs. N curves and discuss the implications of using a non-empirically 

tuned approach for obtaining accurate and formally-correct bound anions with well-defined 

electronic properties in a fully self-consistent approach. 

 

Methodology 

The main purpose of this work is to (1) assess the accuracy of non-empirically tuned 

range-separated DFT and (2) understand the effects of non-standard, extremely diffuse 

basis sets for simultaneously computing electron affinities and orbital energies for anions– 

both of which are briefly reviewed here. 

Non-Empirically Tuned Range-Separated DFT: In contrast to conventional 

hybrid functionals, the range-separated formalism24, 25 mixes short range density functional 

exchange with long range HF exchange by partitioning the electron repulsion operator into 

short and long range terms (i.e., the mixing parameter is a function of electron coordinates): 

 
   12 12

12 12 12

1 erf erf1
.

r r

r r r

   
    (1) 

The erf term denotes the standard error function, r12 is the interelectronic distance between 

electrons 1 and 2, and µ is the range-separation parameter in units of Bohr-1. The second 

term in Eq. (1) is of particular importance since it enforces a rigorously correct 100% 

contribution of asymptotic HF exchange, which we46-50 and others51-52 have found to be 

essential for accurately describing long-range charge-transfer excitations, orbital energies, 

and valence excitations in even relatively simple molecular systems. For pure density 

functionals (such as the generalized gradient BLYP used here or the PBE kernel) which do 
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not already include a fraction of nonlocal HF exchange, the exchange-correlation (XC) 

energy within the range-separated formalism is 

        SR LR

,DFT ,DFT ,HF .xc c x xE E E E        (2) 

,DFTcE  is the DFT correlation functional, 
SR

,DFTxE  is the short-range DFT exchange 

functional, and 
LR

,HFxE  is the HF contribution to exchange computed with the long-range part 

of the Coulomb operator. Baer and Kronik53-54 have shown that the range-separation 

parameter, µ, is system dependent but can be non-empirically tuned to satisfy DFT-

Koopmans’ theorem.55-57 In summary, this theorem states that the HOMO energy equals 

the negative of the ionization potential (IP); the latter is typically obtained from the 

difference of two separate energy calculations via a ΔSCF procedure. Within the Kohn-

Sham DFT formalism, this condition is fulfilled for the exact XC-functional; therefore, 

adjusting the range-separation parameter in this self-consistent manner provides a 

theoretical justification for this procedure. While the original non-empirical tuning 

procedure focused on computing the HOMO and IP for neutral systems, we have slightly 

modified this procedure to non-empirically compute electron affinities and orbital energies 

of anions by minimizing the following objective function:  

      
2

2

HOMO 1 EA ,J N N         (3) 

where  HOMO 1N   is the HOMO energy of the anionic (N+1)-electron system and 

 EA N
 is the electron affinity computed via a ΔSCF energy difference between the N 

and N+1 electron systems with the same range-separation parameter: 
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     EA 1N E N E N     . Note that the electron affinity,  EA N
, used in this work 

is defined as a positive number, which is the same convention used by Jensen,33 Burke,32 

and Tozer45 in their previous studies of electron affinities. It should also be noted that with 

this definition, the electron affinity of the N-electron system is equal to the IP of the (N + 

1)-electron system (i.e.    EA IP 1N N   ), so the objective function in Eq. (3) is a 

non-empirical approach to satisfy DFT-Koopmans’ theorem for anions. To obtain the 

optimal µ values for each oligomer, several single-point energy calculations for each of the 

individual anions were carried out by varying μ from 0.1 to 0.6 (in increments of 0.05) for 

each of the N and N – 1 electron states. The objective function, 𝐽2 (Eq. 3), was computed 

as a function of µ for each anion, and spline interpolation was subsequently used to refine 

the minimum for each individual system. 

Non-Standard, Extremely Diffuse Basis Sets: Throughout this work, we compare 

two basis sets for computing the electron affinities and orbital energies in atomic anions: a 

conventional aug-pc-2 basis58 (a triple-zeta quality basis augmented with diffuse functions) 

and a customized diffuse basis set which we denote as aug-pc-∞. Following the same 

approach as Jensen,33 this customized aug-pc-∞ basis set was constructed by adding both 

diffuse s- and p- functions to the aug-pc-4 basis by scaling the outer exponent in a 

geometric progression with a factor of √10 until the exponent of the most diffuse function 

became less than 10-10. Furthermore, we have used the aug-pc-2 and aug-pc-∞ basis sets in 

their uncontracted forms to avoid any possible contraction errors. The uncontracted basis 

sets for all the anions are listed in the Supporting Information for completeness. As 

demonstrated by Jensen,33 calculations with extremely diffuse basis functions of this 
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magnitude pose a variety of numerical issues that standard settings in many computational 

chemistry codes are not capable of handling. As such, all calculations were carried out with 

a locally modified version of the Gaussian 09 package59 specifically tailored to handle these 

non-standard, extremely diffuse basis sets. Specifically, all integral thresholds were 

tightened to machine precision and density matrices were converged to at least 10-8. The 

XC potential was calculated using an extremely dense Euler-Maclaurin radial grid60 with 

5000 points in combination with a Lebedev angular grid with 434 points by setting 

int(acc2e=20,grid=5000434) in the Gaussian route section. Previous work by Jensen33 has 

shown that these large radial and angular grids are necessary for numerical integration 

involving basis functions having small exponents such that the Davidson radial norm 

criterion is fulfilled to within 10-6. In addition, threshold screenings for discarding 

integration points with low density were disabled by changing the constant SmlExp from 

1.0d-6 to 1.0d-15 in the Gaussian routines utilnz.F and l301.F. Most importantly, we61 and 

others33 have found that XC-functionals containing a large percentage of exact exchange 

can converge to saddle points in the electronic parameter space, especially when near-

degenerate orbitals are present61 or when extremely diffuse basis sets are used.33 As such, 

all SCF solutions were verified to be genuine minima in the electronic parameter space by 

carrying out a stability analysis to converge (if possible) toward a lower-energy broken-

symmetry solution (by setting both scf(qc,conver=9) and stable=opt in the Gaussian route 

section), which allows for an unrestricted spin state as well as a reduction in symmetry of 

the orbitals. 
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Results and Discussion 

Figure 1 shows the smooth curves that result from computing J2 as a function of  

for the first three rows of elements in the periodic table (H – Ar). The upper panel (a) in 

Figure 1 depicts the J2 plots using the smaller aug-pc-2 basis, and the lower panel (b) shows 

the corresponding plots for the same atoms with the customized diffuse aug-pc-∞ basis. 

The optimally-tuned μ values for all anions obtained with both basis sets are summarized 

in Table 1. 

 

 

Figure 1. Plots of J2 as a function of µ for all three rows of elements in the periodic table (H-Ar) 

using (a) the smaller aug-pc-2 and (b) the customized diffuse aug-pc-∞ basis sets. 
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Table 1. Nonempirically-tuned μ values (Bohr-1) for all three rows of elements 

in the periodic table (H-Ar). 

Anion aug-pc-2 aug-pc-∞ Anion aug-pc-2 aug-pc-∞ 

H 0.22939 0.21759 Ne – – 

He – – Na 0.18633 0.18614 

Li 0.17396 0.17209 Mg 0.24821 – 

Be 0.28572 – Al 0.21966 0.21218 

B 0.27586 0.26903 Si 0.28778 0.28643 

C 0.36178 0.35958 P 0.29623 0.29661 

N 0.36519 0.37228 S 0.33761 0.33593 

O 0.40676 0.40425 Cl 0.38736 0.38556 

F 0.47631 0.47418 Ar – – 

 

Based on the tabulated values of µ and their corresponding plots in Fig. 1, it is 

interesting to note that increasing the diffuseness of the basis set has a negligible effect 

(less than 1%) on the non-empirically tuned range-separated parameter. Minor exceptions 

to this trend include the Be and Mg atoms which exhibit J2 minima for the smaller aug-pc-

2 basis but show nearly flat lines for the customized diffuse aug-pc-∞ basis. This 

discrepancy arises since the Be and Mg atoms have a closed shell electronic configuration, 

and the addition of an extra electron leads to a strong inter-electronic repulsion. As such, 

the customized diffuse aug-pc-∞ basis possesses enough flexibility to allow the extra 

electron to drift off to infinity (discussed further at the end of this section), whereas the 

extra electron in the smaller aug-pc-2 basis is artificially confined to remain close to the 

nucleus. It should also be noted that both the aug-pc-2 and aug-pc-∞ basis do not exhibit 

J2 minima for any of the noble gas atoms (He, Ne, and Ar) as both basis sets correctly 

predict these anions to be unbound. To further understand the sensitivity of our results to 

the range-separation parameter, µ, we carried out a series of benchmark tests, presented in 

full detail in the Supporting Information. In short, we also investigated the more 
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commonly-used IP-tuning procedure by minimizing the following objective function:

     
2

2

HOMO IP ,J N N       where  HOMO N  is the HOMO energy of the neutral N-

electron system and  IP N
 is the ionization potential computed via a ΔSCF energy 

difference between the N-1 and N electron systems. With this common tuning procedure, 

Fig. SI-1 in the Supporting Information shows that the resulting J2 plots are qualitatively 

different than the curves shown in Fig. 1 within the main text. In particular, the optimal µ 

values obtained with the IP-tuning procedure are larger (µ ~ 0.5) than the corresponding µ 

values obtained with the EA-tuning procedure in Eq. (3). As a result, these benchmark 

results support our rationale for using the objective function in Eq. (3) for accurately 

calculating electron affinities, as opposed to the more commonly-used IP-tuning procedure 

typically used for neutral systems. 

Finally, before we compare these results to other XC functionals, it is worth noting 

that the short-range DFT exchange in Eq. (2) decays exponentially on a length scale of 

~1/µ and, therefore, smaller non-empirically tuned µ values are associated with larger 

systems (i.e., a smaller value of µ enables the short-range Coulomb operator to fully decay 

to zero on the length scale of the system). To demonstrate this trend, we plot the spatial 

extent, <R2> (i.e., the expectation value of R2), for each anion as a function of 1/μ obtained 

with the extremely diffuse aug-pc-∞ basis (the <R2> vs. 1/μ plot obtained with the smaller 

aug-pc-2 basis is similar and is given in the Supporting Information). Indeed, the optimal 

µ values generally reflect these trends and follow a nearly linear behavior (with the 
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exception of the small H- anion) with the larger-sized anions having smaller values of µ 

than smaller anions. 

 

Figure 2. Plot of the spatial extent, <R2> (expectation value of R2), for each anion as a function of 

1/μ obtained with the customized diffuse aug-pc-∞ basis. The outlier value near 1/μ = 0.46 (which 

corresponds to the H- anion) was excluded when creating the best fit line. 

 

Turning our attention to previous reports of unbound anions and anomalous orbital 

energies in conventional XC functionals, we compare our non-empirically tuned results to 

electron affinities and HOMO energies obtained with the BLYP, B3LYP, BHHLYP, and 

HF approaches. We have chosen these specific methods for comparison due to their 

widespread use in previous findings32-33 and also because they represent different extremes 

of global hybrids where the HF exchange contribution ranges from 0.20 to 1.00.  For 

example, the pure BLYP functional contains no HF exchange, the popular B3LYP hybrid 

functional is parameterized with 20% exchange, the half-and-half BHHLYP functional is 

constructed with 50% exchange, and the HF method is defined with 100% exchange. 
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Moreover, a comparison of these XC functionals allows a fair and consistent evaluation 

since all of the DFT methods have similar LYP correlation62 portions. It is worth noting 

that we also obtained similar results with other range-separated functionals such as LC-

BOP, LC-PBE, and LC-ωPBE, which is consistent with previous work by us47-49 and 

Jensen33 indicating that the long-range 
LR

,HFxE  exchange term in Eq. (2) plays a more 

dominant role compared to either ,DFTcE  or 
SR

,DFTxE  in these systems. We do not consider 

the heavily-parameterized Minnesota functionals in our study since the emphasis of this 

work is on non-empirically tuned functionals, and very recent reports have shown that most 

of the Minnesota functionals do not obey rigorously known constraints of the exact 

functional.63-64 Table 2 summarizes the electron affinities computed via a ΔSCF procedure 

(using the same EA = E(N) – E(N + 1) expression defined in the Theory and Methodology 

section) for the first three rows of elements in the periodic table. Total energies calculated 

with BLYP, B3LYP, BHHLYP, HF, and LC-BLYP for all three rows of elements in the 

periodic table are given in the Supporting Information. We emphasize that these non-

standard calculations were incredibly difficult to converge, and the same integral 

thresholds, grid sizes, and computational settings described in the Theory and Methodology 

section were used. In addition, all SCF solutions were verified to be genuine minima in the 

electronic parameter space by carrying out a stability analysis to converge toward a lower-

energy broken-symmetry solution.61 Electron affinities for all of the noble gas atoms (He, 

Ne, and Ar) computed with the smaller aug-pc-2 basis were not included since these basis 

sets are unable to describe these unbound anions. Fig. 3 presents a graphical analysis of 

Table 2 by plotting the corresponding error (EA – EAexpt.) in the electron affinity. 
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Figure 3. Errors in the electron affinity computed via a ΔSCF procedure, EA = E(N) – E(N + 1), 

for all three rows of elements in the periodic table using the (a) aug-pc-2 and (b) customized diffuse 

aug-pc-∞ basis sets. 

Table 2. Electron affinities (in eV) computed via a ΔSCF procedure, EA = E(N) – E(N + 1), for 

all three rows of elements in the periodic table using the aug-pc-2 and customized diffuse aug-pc-

∞ basis sets. 

 

EAexpt
a 

HF BLYP B3LYP BHHLYP LC-BLYP 

 

aug-

pc-2 

aug-

pc-∞ 

aug-

pc-2 

aug-

pc-∞ 

aug-

pc-2 

aug-

pc-∞ 

aug-

pc-2 

aug-

pc-∞ 

aug-

pc-2 

aug-

pc-∞ 

H– 0.75 -0.28 -0.33 0.85 1.21 0.91 1.09 0.67 0.71 0.83 0.84 

He– 0.00 – 0.00 – 0.08 – 0.07 – 0.02 – 0.01 

Li– 0.62 -0.06 -0.03 0.45 0.65 0.55 0.65 0.43 0.46 0.50 0.50 

Be– 0.00 -0.97 -0.01 -0.62 0.38 -0.53 0.29 -0.69 0.07 -0.61 0.02 

B– 0.28 -0.30 -0.30 0.46 0.92 0.47 0.76 0.18 0.35 0.42 0.43 

C– 1.26 0.46 0.45 1.37 1.72 1.38 1.53 1.04 1.03 1.39 1.39 

N– 0.00 -1.64 0.00 0.40 1.14 0.25 0.81 -0.25 0.23 0.23 0.23 

O– 1.46 -0.55 -0.57 1.85 2.22 1.70 1.85 1.13 1.11 1.83 1.83 

F– 3.40 1.21 1.17 3.70 3.80 3.55 3.53 2.92 2.90 3.76 3.74 

Ne– 0.00 – 0.00 – 0.11 – 0.09 – 0.02 – 0.02 

Na– 0.55 -0.05 -0.05 0.49 0.69 0.58 0.67 0.45 0.47 0.53 0.53 

Mg– 0.00 -0.58 0.00 -0.42 0.23 -0.31 0.19 -0.45 0.05 -0.45 0.01 

Al– 0.43 0.03 0.01 0.39 0.71 0.47 0.65 0.28 0.36 0.35 0.36 

Si– 1.39 0.87 0.85 1.24 1.43 1.35 1.40 1.16 1.15 1.26 1.25 

P– 0.75 -0.32 -0.32 0.91 1.24 0.97 1.13 0.72 0.74 0.90 0.90 

S– 2.08 0.90 0.88 2.14 2.25 2.21 2.21 1.96 1.95 2.19 2.19 

Cl– 3.61 2.39 2.37 3.58 3.58 3.68 3.67 3.44 3.42 3.68 3.67 

Ar– 0.00 – 0.00 – 0.11 – 0.09 – 0.02 – 0.00 

MAEb – 1.03 0.69 0.21 0.33 0.17 0.23 0.24 0.14 0.20 0.11 
aExperimental electron affinities from References 65-67. bMean Absolute Errors relative to experimental 

electron affinities.  



 17 

 Based on the tabulated mean absolute errors (MAE) for the customized aug-pc-∞ 

basis set, the non-empirically tuned LC-BLYP functional gives the best prediction of the 

ΔSCF electron affinities with a MAE of 0.11 eV, followed by the BHHLYP and B3LYP 

functionals with MAEs of 0.14 and 0.23 eV, respectively. The pure BLYP functional yields 

a larger MAE of 0.33 eV as this method does not contain any nonlocal exchange, whereas 

the HF method significantly underestimates electron affinities for several atoms (cf. Fig. 

3), resulting in an even larger MAE of 0.69 eV due to its lack of explicit electron 

correlation. For all levels of theory and basis sets examined in this work, the largest errors 

in ΔSCF-computed electron affinities were observed in the halogen atoms (F and Cl) which 

arise from the strong electron repulsion that the extra electron feels when it is added to a 

nearly complete p-shell. In general, both Table 2 and Fig. 3 clearly demonstrate that XC 

functionals containing a larger percentage of HF exchange yield the most accurate electron 

affinities; however, there is an intricate balance between exchange and correlation, and 

incorporating only 100% nonlocal exchange without correlation as in the HF method (or 

conversely, neglecting nonlocal exchange completely as in the pure BLYP functional) can 

severely corrupt the prediction of electron affinities. 

We now turn our attention to the central issue of unbound anions and positive 

HOMO energies originally mentioned in the Introduction. Table 3 summarizes the electron 

affinities computed from the negative HOMO energy of the anion, –EHOMO for the first 

three rows of elements in the periodic table. Again, electron affinities for all of the noble 

gas atoms (He, Ne, and Ar) computed with the smaller aug-pc-2 basis were not included 

since these basis sets are unable to describe these unbound anions. Fig. 4 presents a 



 18 

graphical analysis of Table 3 by plotting the corresponding error (–EHOMO – EAexpt.) in the 

electron affinity. It is interesting to note that while the plots in Figs. 3 and 4 were calculated 

using two different metrics (ΔSCF vs. –EHOMO), the resulting plots obtained with the LC-

BLYP functional are nearly identical since the non-empirically tuned approach was 

constructed to satisfy the constraint in Eq. (3) as closely as possible. As mentioned in the 

Introduction, the sign of EHOMO for anions is a more stringent test of these XC functionals 

since a positive EHOMO implies that the anion is formally unbound. As clearly shown in 

Table 3, the non-empirically tuned LC-BLYP functional correctly predicts negative EHOMO 

values for both basis sets (note that Table 3 lists –EHOMO values) and for all anions, with 

the exception of the Be, Mg, and noble gas atoms – all of which are experimentally 

unbound. To highlight the robustness of these LC-BLYP results, we also carried out two 

benchmark tests in the Supporting Information to (1) ascertain the effect of using other 

basis sets and (2) compare electron affinities obtained with a fixed value of µ against the 

non-empirically tuned LC-BLYP results listed in Table 3. Tables SI-1 and SI-2 in the 

Supporting Information give the total energies and electron affinities calculated with the 

LC-BLYP functional (fixed at µ = 0.3) for all three rows of elements in the periodic table 

using the aug-cc-pVTZ, aug-pc-2, and customized diffuse aug-pc-∞ basis sets. We have 

chosen µ = 0.3 for our benchmark tests since 0.3 is the numerical average of the µ values 

listed in Table 1 for all three rows of elements in the periodic table (H-Ar). As demonstrated 

by the total energies in Table SI-1, Jensen’s aug-pc-2 basis set is marginally better than 

Dunning’s triple-zeta aug-cc-pVTZ basis, with the aug-pc-2 basis providing slightly lower 

total energies across the board. Interestingly, our benchmark test in Table SI-2 
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demonstrates that the electron affinities calculated with a single value of µ (= 0.3) exhibit 

impressively low MAE values that are only marginally worse (~ 0.04 eV larger in error) 

than the non-empirically tuned LC-BLYP results. Most importantly, the LC-BLYP results 

(fixed at µ = 0.3) are still considerably more accurate than the electron affinities obtained 

from the other conventional functionals. To further demonstrate the applicability of this 

approach beyond single atoms, we have also calculated the electron affinities of molecules 

in the G2-1 data set, which was previously examined in a communication by Burke and 

co-workers.42  Table SI-3 in the Supporting Information lists –EHOMO for molecular anions 

in the G2-1 set computed with the BLYP, B3LYP, BHHLYP, HF, and LC-BLYP 

approaches. In agreement with previous work by Burke and co-workers,42 most molecular 

species (except Cl2) are predicted to have positive EHOMO values with conventional DFT 

methods (i.e., BLYP, B3LYP, and BHHLYP), indicating an incorrect unbound nature with 

these functionals. Only HF and LC-BLYP correctly predict negative EHOMO values in Table 

SI-3; however, the HF values are significantly overestimated, resulting in a large MAE of 

0.73 eV. In contrast, the LC-BLYP functional gives the lowest MAE of 0.29 eV and 

correctly predicts negative EHOMO values for all molecular species, which highlights the 

robustness of the range-separation approach in general. Returning to our original 

discussion on non-empirically tuned approaches for atoms, it should be noted that while 

the other functionals also give negative EHOMO values in Table 3 for the extremely diffuse 

aug-pc-∞ basis, their mean absolute errors are still significantly higher than the non-

empirically tuned LC-BLYP (MAE = 0.12 eV) functional: HF has a MAE of 0.31 eV, 

followed by the BHHLYP and B3LYP functionals with MAEs of 0.62 and 0.87 eV. The 
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pure BLYP functional exhibits the largest MAE of 0.92 eV when the aug-pc-∞ basis is 

used since almost all of the anions predicted by this functional are unbound or nearly 

unbound. 

 

Table 3. Electron affinities (in eV) computed from the negative HOMO energy of the anion, –

EHOMO, for all three rows of elements in the periodic table using the aug-pc-2 and customized 

diffuse aug-pc-∞ basis sets. 

 

EAexpt
a  

HF BLYP B3LYP BHHLYP LC-BLYP 

 

aug-

pc-2 

aug-

pc-∞ 

aug-

pc-2 

aug-

pc-∞ 

aug-

pc-2 

aug-

pc-∞ 

aug-

pc-2 

aug-

pc-∞ 

aug-

pc-2 

aug-

pc-∞ 

H– 0.75 -0.07 1.26 -1.76 0.02 -1.00 0.01 -0.11 0.01 0.83 0.84 

He– 0.00 – 0.00 – 0.02 – 0.01 – 0.01 – 0.03 

Li– 0.62 0.62 0.67 -1.02 0.00 -0.59 0.00 -0.21 0.00 0.50 0.50 

Be– 0.00 -0.49 0.00 -2.48 0.01 -2.36 0.00 -1.73 0.00 -0.62 0.03 

B– 0.28 0.77 0.78 -1.83 0.03 -1.28 0.02 -0.62 0.01 0.42 0.43 

C– 1.26 2.12 2.13 -1.98 0.01 -1.10 0.01 -0.01 0.01 1.39 1.39 

N– 0.00a -1.46 0.00 -2.95 0.00 -2.22 0.00 -1.39 0.00 0.23 0.23 

O– 1.46 2.19 2.17 -2.35 0.00 -1.26 0.00 0.19 0.21 1.83 1.83 

F– 3.40 4.93 4.92 -1.43 0.01 0.02 0.05 1.97 1.97 3.76 3.74 

Ne– 0.00 – 0.00 – 0.03 – 0.02 – 0.01 – 0.03 

Na– 0.55 0.56 0.58 -1.02 0.00 -0.59 0.00 -0.21 0.00 0.52 0.53 

Mg– 0.00 -0.42 0.00 -1.89 0.04 -1.49 0.03 -1.16 0.02 -0.45 0.03 

Al– 0.43 0.60 0.61 -1.40 0.01 -0.93 0.00 -0.45 0.00 0.35 0.36 

Si– 1.39 1.69 1.69 -1.31 0.01 -0.61 0.01 0.17 0.17 1.26 1.25 

P– 0.75 0.64 0.63 -1.79 0.00 -1.09 0.00 -0.29 0.00 0.90 0.91 

S– 2.08 2.32 2.33 -1.17 0.00 -0.26 0.00 0.84 0.84 2.19 2.18 

Cl– 3.61 4.09 4.09 -0.33 0.00 0.79 0.79 2.17 2.17 3.68 3.67 

Ar– 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 

MAEb – 0.54 0.31 2.75 0.92 2.04 0.87 1.16 0.62 0.20 0.12 
a Experimental electron affinities from References 65-67. b Mean Absolute Errors relative to 

experimental electron affinities. 
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Figure 4. Errors in the electron affinity computed from the negative HOMO energy of the anion, –

EHOMO, for all three rows of elements in the periodic table using the (a) aug-pc-2 and (b) customized 

diffuse aug-pc-∞ basis sets. 

 

In stark contrast to the qualitatively good trends obtained with the aug-pc-∞ basis, 

we encounter particularly worrisome results for the conventional XC functionals when the 

smaller aug-pc-2 basis is used. While the non-empirically tuned LC-BLYP functional 

correctly gives negative EHOMO values for both basis sets, the majority of the aug-pc-2 

EHOMO values predicted by all other DFT (not including HF) functionals are positive, 

incorrectly implying that these anions are formally unbound. These positive EHOMO values 

severely affect their accuracy, resulting in MAEs ranging from 1.16 eV (BHHLYP) to as 

high as 2.75 eV (BLYP) for the smaller aug-pc-2 basis set. While the purely nonlocal HF 

method does give negative EHOMO values, the MAEs obtained with this approach are nearly 

twice that of the non-empirically tuned LC-BLYP approach. Recognizing that the HF 

method correctly gives negative EHOMO values, Burke and co-workers32 recently proposed 

the following solution to compute electron affinities: compute the orbitals using HF (where 

EHOMO is correctly predicted to be negative) but use the HF density to non-self-consistently 
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evaluate the energy with an XC potential that contains both exchange and correlation. 

While this procedure will formally give a properly bound anion with a negative EHOMO, 

various complications naturally arise: the calculation of electronic gradients becomes ill-

defined since the electronic potential is evaluated with one approach while the energy is 

non-self-consistently evaluated with another approximation. Instead, we propose the 

following alternative: use a non-empirically tuned procedure (such as Eq. (3)) to satisfy 

DFT-Koopmans’ theorem for the anionic (N+1) electron system, and use the resulting 

tuned XC functional to self-consistently evaluate both orbital energies and electron 

affinities. As a result, this procedure should yield correct EHOMO values and well-defined 

electronic gradients since both the potential and resulting electronic energy are computed 

self-consistently. 

Finally, to complete our analysis of orbital energies and electron affinities of 

anions, we present a deeper analysis of the electronic energy as a function of electronic 

number (including fractional numbers of electrons). For an exact functional, Janak proved 

that E is a piecewise linear function of N, with derivative discontinuities at integer number 

of electrons.44 As such, a test of this deviation from linearity provides a stringent 

assessment of self-interaction errors inherent to the underlying functional itself as well as 

a diagnostic analysis of the basis set used in the calculation, as pointed out by a recent study 

by Tozer and co-workers45 (discussed at the end of this section). Fig. 5 plots the variation 

of the electronic energy, E, as a function of electron number, N, for one piece of the E(N) 

curve applied to the fluorine atom using the aug-pc-2 and customized aug-pc- basis sets. 

Both the variation of E vs. N, (a) and (c), as well as the deviation from linearity, (b) and 
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(d), are also shown in Fig. 5. We have chosen to focus on fluorine since there have been 

strong discussions about this anion in several previous studies;29, 31, 45 however, the main 

qualitative results discussed in this section equally apply to the other atomic anions.  

 

Figure 5. Variation of the electronic energy, E, as a function of electron number, N, applied to the 

fluorine anion using the (a)-(b) aug-pc-2 and (c)-(d) customized diffuse aug-pc-∞ basis sets. The 

variation of E vs. N is shown in (a) and (c), whereas the deviation from linearity is shown in (b) 

and (d). The nearly-exact straight line obtained with the non-empirically tuned LC-BLYP 

functional (for all plots (a)-(d)) implies that this method is nearly SIE-free for the fluorine anion. 

 

As expected, the HF method yields a concave E(N) curve and an energetic 

destabilization at fractional charges. In contrast, the pure BLYP and hybrid 

B3LYP/BHHLYP functionals tend to overdelocalize the anion, leading to a convex E(N) 
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curve and an over-stabilization (i.e. a lower energy) of the system at fractional charges. 

The non-empirically tuned LC-BLYP functional yields a nearly-exact straight line as a 

function of the fractional charge in the system (cf. Figs. 5(a) and (c)). Furthermore, plots 

of the deviation from linearity in Figs. 5(b) and (d) imply that the non-empirically tuned 

LC-BLYP is nearly SIE-free for the fluorine anion. 

As we conclude this discussion, it is worth mentioning a few subtle points 

concerning basis sets that can be seen in Figs. (a) and (c), which were recently discussed 

in a study by Tozer and co-workers.45 For any functional, Janak proved that the slope of 

the E(N) curve at integer number of electrons is related to the orbital energies. Specifically, 

the limiting value of 𝜕𝐸 𝜕𝑁⁄  to the left of an integer M is the HOMO energy, 𝜀HOMO(𝑀): 

  HOMO
0

lim ,
N M

E
M

N





 





  (4) 

and the limiting value of 𝜕𝐸 𝜕𝑁⁄  to the right of an integer M is the LUMO energy, 

𝜀LUMO(𝑀): 

  LUMO
0

lim .
N M

E
M

N





 





  (5) 

For the case of the fluorine system shown in Fig. 5, the N = 9 endpoint corresponds to the 

electron number of the neutral fluorine atom, and N = 10 is the electron number of the 

anion. Fig. 5(a) shows that the limiting value of 𝜕𝐸 𝜕𝑁⁄  to the left of N = 10 for the BLYP 

functional is slightly positive; consequently Eq. (4) states that the HOMO energy of the 

fluorine anion is also positive at the BLYP/aug-pc-2 level of theory, and the anion is 

formally unbound. However, the E(N) curve for BLYP also possesses a shallow minimum 
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at N = 9.85 in Fig. 5(a), and the energy of the fluorine anion could, in principle, be further 

stabilized by reducing the electron number to N = 9.85 with the remaining 0.15 fraction of 

an electron drifting off to infinity with zero energy. As pointed out by Tozer and co-

workers,45 the use of a small basis set prevents this from happening since all of the electrons 

are artificially confined to remain close to the nucleus. However, if the basis was 

sufficiently augmented with diffuse functions to enable fractional electron loss, the E(N) 

curve would approach an idealized flattening and give HOMO 0   according to Eq. (4). 

Indeed, we do observe an idealized flattening of the E(N) curve for the BLYP functional 

in Fig. 5(c), leading to a nearly zero HOMO  value (cf. Table 3) when the aug-pc- basis is 

utilized. This same assessment, in regards to the flattening of the E(N) curve, can also be 

applied to the numerical BLYP results in Table 2, where the electron affinities computed 

via the ΔSCF procedure are observed to increase when the aug-pc-2 basis is systematically 

increased towards the larger aug-pc-∞ basis set. Using a similar analysis for concave 

behavior, the E(N) curve for HF possesses a shallow maximum at N = 9.35 in Fig. 5(a), 

and the system could, in principle, lower its energy by reducing the electron number in that 

vicinity to N = 9; however, a small basis set again prevents this. When the extremely diffuse 

aug-pc- basis is used, the HF curve flattens near N = 9 and approaches the idealized 

behavior described by Tozer and co-workers. With this analysis, we now point out that the 

non-empirically tuned LC-BLYP functional does not exhibit any tendency towards a 

flattening or fractional electron loss (similar to the CAM-B3LYP analyses in Ref. 45), 

resulting in an accurate fluorine orbital energy/electron affinity and a correctly bound anion 

for both basis sets. 



 26 

Conclusions 

In this study, we have assessed the accuracy of orbital energies and electron 

affinities for all three rows of elements in the periodic table (H-Ar) using a variety of 

theoretical approaches and customized basis sets. Specifically, we have closely examined 

the electron affinities of these anions using two different metrics, ΔSCF vs. –EHOMO, to 

understand the accuracy and intrinsic limitations of each theoretical approach. Among all 

of the theoretical methods studied here, we find that a non-empirically tuned range-

separated approach (constructed to satisfy DFT-Koopmans’ theorem for the anionic (N + 

1)-electron system) provides the best accuracy for both metrics (ΔSCF and –EHOMO) as 

well as for both basis sets. In contrast, the electron affinities obtained from “converged” 

EHOMO calculations with conventional XC functionals and smaller basis sets exhibit severe 

problems – the majority of these EHOMO values are predicted to be positive, incorrectly 

implying that these anions are formally unbound. While the purely nonlocal HF method 

does give negative EHOMO values and bound anions, there is a delicate balance between 

exchange and correlation, and the lack of electron correlation in HF yields errors that are 

nearly twice that of a non-empirically tuned range-separated approach (which correctly 

balances short range correlation with long-range exchange by satisfying DFT-Koopmans’ 

theorem). 

To address this conundrum of positive EHOMO values, other researchers have 

suggested to compute the orbitals using HF (where EHOMO is correctly predicted to be 

negative) but use the HF density to non-self-consistently evaluate the energy with an XC 

potential. While this procedure will formally result in a bound anion with a negative EHOMO, 
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the calculation of electronic properties, such as electronic couplings or gradients, becomes 

ill-defined since the potential is evaluated with one approach while the energy is non-self-

consistently evaluated with another approximation. We instead propose the following 

alternative: use a non-empirically tuned procedure to satisfy DFT-Koopmans’ theorem for 

the anionic (N+1) electron system, and use the resulting tuned XC functional to self-

consistently evaluate both orbital energies and electron affinities. This procedure should 

yield correct EHOMO values and well-defined electronic couplings/gradients since the 

potential (and, hence, the electronic energy) is obtained from the derivative of an energy 

functional. Finally, we examine the orbital energies and electron affinities in the context of 

the electronic energy, E, as a function of electronic number, N, including fractional 

numbers of electrons. We find that the non-empirically tuned LC-BLYP functional yields 

a nearly-exact straight line as a function of the fractional charge in the system, and plots of 

the deviation from linearity imply that the non-empirically tuned LC-BLYP is nearly SIE-

free. Moreover, a deeper analysis of the E vs. N curves demonstrates that the non-

empirically tuned LC-BLYP functional does not exhibit any tendency towards a flattening 

or fractional electron loss, resulting in anions that are accurately described and correctly 

bound for both basis sets. Taken together, these calculations and analyses provide a natural 

methodology for obtaining accurate and formally-correct bound anions with well-defined 

electronic properties (such as electronic gradients and couplings) in a fully self-consistent 

approach. 
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Chapter 2. Halogen Bonding Interactions: Revised Benchmarks and a New 

Assessment of Exchange vs. Dispersion 

 

Abstract 

We present a new analysis of exchange and dispersion effects for calculating 

halogen-bonding interactions in a wide variety of complex dimers (69 total) within the 

XB18 and XB51 benchmark sets. Contrary to previous work on these systems, we find that 

dispersion plays a more significant role than exact exchange in accurately calculating 

halogen-bonding interaction energies. In particular, we find that even if the amount of exact 

exchange is non-empirically tuned to satisfy known DFT constraints, we still observe an 

overall improvement in predicting dissociation energies when dispersion corrections are 

applied, in stark contrast to previous studies (J. Chem. Theory Comput. 2013, 9, 1918-

1931). In addition to these new analyses, we correct several (14) inconsistencies in the 

XB51 set, which is widely used in the scientific literature for developing and benchmarking 

various DFT methods. Together, these new analyses and revised benchmarks emphasize 

the importance of dispersion and provide corrected reference values that are essential for 

developing/parameterizing new DFT functionals specifically for complex halogen-

bonding interactions. 

 

Introduction 

 Over the past decade, halogen bonding (XB) interactions have emerged as new 

bonding motifs that are now recognized to play a significant role in biochemistry,68-69 
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materials chemistry,70-71, enzyme-substrate interactions, and polymer interactions.72 The 

XB concept is analogous to conventional hydrogen bonding73 (HB) in that a non-covalent 

bond forms between an electron donor and acceptor. On an electronic level, XB occurs 

when a halogen atom X acts as a Lewis acid (the XB donor) by accepting an electron from 

a neighboring atom (the XB acceptor). This bonding interaction is illustrated in Figure 6 

for the specific case of Br2···pyridine where the halogen atom X (i.e., Br) forms a halogen 

bond with a Lewis base, B (i.e., pyridine). 

 

Figure 6. A prototypical halogen bond (XB) in which a halogen atom X (Br) forms a non-covalent 

bond with a Lewis base B (pyridine). 

 

While halogen atoms often interact with electrophilic molecules due to the 

halogen’s partial negative charge, bonds between halogens and negatively charged 

molecules can form as well. Both experimental and computational data74-78 support these 

claims and show that halogens in close proximity to electrophiles (less than the sum of the 

atom’s van der Waals radii) form bonds between 90°–120° relative to the R–X bond, 

whereas bonds form at angles close to 180° in nucleophiles. The latter interaction between 

halogens and nucleophilic molecules is considered halogen bonding. 

The notion of halogens bonding to both types of molecules was initially puzzling 

since it implied that halogens could be treated as being either entirely positive or entirely 
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negative. This idea was heavily investigated by Politzer in 200879 and further justified in 

2010,80 where it was shown that this halogen/nucleophilic interaction occurs as a result of 

inductive effects of the attached R group. Depending on the size and net charge of R, the 

electron density can be pulled away from the attached halogen atom, and a small positive 

electrostatic potential is created directly across the R group on the outermost portion of the 

halogen’s surface. This positive region is referred to as the σ-hole81 and is the site of XB 

formation. Consequently, since the σ-hole is formed at a 180° angle with respect to the R 

group,82 the interaction between nucleophiles and halogens is necessarily linear. 

The strength of the XB depends not only on the electron-withdrawing power of the 

attached R group but also on the stability of the halogen atom. It has been observed80, 82 

that less electronegative halogens produce stronger halogen bonds: iodine forms stronger 

halogen bonds than bromine, bromine forms stronger halogen bonds than chlorine, and so 

forth. While it was once thought that only iodine, bromine, and chlorine were capable of 

forming halogen bonds, recent work has indicated that fluorine can participate in halogen 

bonding interactions as well, under special circumstances.83 

Because of their unique bonding interactions, halogen bonding has attracted 

significant attention from theoretical and computational chemists to test the accuracy of 

various computational methods by decomposing XB contributions due to electrostatics, 

dispersion, polarization, and charge transfer.80, 84 Recently, in 2013, Kozuch and Martin85 

carried out an extensive study of these contributions in two groups of dimers: 18 small 

dimers (the “XB18” benchmark set) and 51 larger dimers (the “XB51” set) with a broad 

range of dissociation energies. Based on their extensive benchmarks, the authors concluded 
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with the following statements: (1) “A high amount of exact exchange is necessary for good 

geometries and energies,” and (2) “dispersion corrections tend to be detrimental, in spite 

of the fact that XB is considered a noncovalent interaction.” In particular, we found the 

second statement on dispersion corrections to be particularly puzzling since, as previously 

mentioned, XB is a noncovalent interaction and should, therefore, be more accurately 

captured with dispersion corrections than without. 

Motivated by these surprising findings, we re-assess the effects of exact exchange 

vs. dispersion on these halogen-bonding interactions using (1) both conventional range-

separated and non-empirically tuned range-separated functionals and (2) a variety of 

dispersion corrections. While one can arbitrarily add a portion of exact exchange in any 

DFT functional, we use the non-empirical tuning procedure in this work to provide a 

rigorous way of incorporating exchange to both satisfy known DFT constraints and to 

contest previous claims that exact exchange plays a dominant role in halogen bond 

interactions.85 In addition to these new calculations, we correct several, (i.e., 14) of the 

discrepancies in the widely-used XB51 benchmark set by providing revised benchmarks in 

this work. Finally, we give a detailed analysis of exact exchange vs. dispersion effects in 

halogen-bonding systems, and we discuss their relative importance in accurately 

calculating the complex interactions in these challenging systems. 

 

Methodology 

 Figures 7 and 8 depict the various molecular dimers included in the XB18 and 

XB51 benchmark sets, respectively. The XB18 set was intentionally constructed by 
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Kozuch and Martin85 to only contain halogen bonding interactions for small systems, 

allowing for highly accurate CCSD(T)/aVQZ geometry optimizations and single-point 

energies at the CCSD(T)/CBS level of theory. Specifically, this set contains all nine 

combinations of diatomic halogen donors (Br2, BrI, ClBr, ClI, FBr, FI, HBr, HI, and I2) 

with two halogen acceptors (NCH and H2CO). As shown in Figure 7, all of the dimer 

geometries that include the cyanide molecule are linear, and all geometries with 

formaldehyde are planar. 

 

 
Figure 7. Molecular geometries in the XB18 benchmark set. This set contains all nine combinations 

of diatomic halogen donors (Br2, BrI, ClBr, ClI, FBr, FI, HBr, HI, and I2) with two halogen 

acceptors (NCH and H2CO). 

 

The XB51 set (also constructed by Kozuch and Martin85) is much broader than the 

XB18 set and consists of six series of 10 dimers in which three series vary the Lewis acid, 

and three vary the Lewis base (Figure 8). This more extensive benchmark set was designed 

to cover a broad distribution of dissociation energies ranging from the weak FCCH-based 

dimers to the strongly bonded organometallic systems that include PdHP2Cl. Due to the 

larger sizes of the XB51 dimers, Kozuch and Martin carried out geometry optimizations at 
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the ωB97X/aVTZ level of theory with single-point energies computed using an MP2-based 

extrapolation of the CCSD(T) energy, denoted as 𝐸CBS/MP2(Q5)
CCSD(T)/aVTZ

 in their original paper. We 

critically test the contributions of exact exchange and dispersion in both of these sets (in 

addition to providing revised benchmark values for the XB51 set), as described in detail 

below. 
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Figure 8. Molecular geometries in the XB51 benchmark set. This set covers a broad distribution of 

dissociation energies ranging from the weak FCCH-based dimers to the strongly bonded 

organometallic PdHP2Cl-based dimers. 
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Contributions from Exact Exchange: Motivated by Kozuch and Martin’s 

assessment that exact exchange may play the most important role in halogen bond 

formation,85 we first focused on non-empirically tuning the contribution of exact exchange 

in a range-separated functional. While one can arbitrarily add a portion of exact exchange 

in any DFT functional, the non-empirical tuning procedure used here provides a rigorous 

way of incorporating exchange to both satisfy known DFT constraints (i.e. Koopman’s 

theorem86) and to critically test previous claims that exact exchange plays a dominant role 

in halogen bond interactions. Throughout this entire study, all calculations were carried out 

with the long-range corrected ωPBE functional (LC-ωPBE), which is composed of (1) a 

short-range ωPBE approximation that satisfies the exchange-hole normalization condition 

for all values of ω and (2) a long-range portion of exact exchange that enforces a rigorously 

correct 100% contribution of asymptotic Hartree-Fock exchange, which we46-50, 87 and 

others51-52 have found to be essential for accurately describing long-range charge-transfer 

excitations, anions, orbital energies, and valence excitations.  

In contrast to conventional hybrid functionals that use a constant fraction of 

Hartree-Fock exchange, range-separated functionals88-89 mix short range density functional 

exchange with long-range Hartree-Fock exchange by partitioning the electron repulsion 

operator into short and long range terms (i.e., the mixing parameter is a function of electron 

coordinates). In its most general form, the partitioning of the interelectronic Coulomb 

operator is given by:90-91 

 1

𝑟12
=

1 − [𝛼 + 𝛽 ∙ erf(𝜔 ∙ 𝑟12)]

𝑟12
+

𝛼 + 𝛽 ∙ erf(𝜔 ∙ 𝑟12)

𝑟12
. 

(4) 
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The “erf” term denotes the standard error function, 𝑟12 is the interelectronic distance 

between electrons 1 and 2, and ω is the range-separation parameter in units of Bohr-1. The 

other parameters, 𝛼 and 𝛽, satisfy the following constraints: 0 ≤ 𝛼 + 𝛽 ≤ 1, 0 ≤ 𝛼 ≤ 1, 

and 0 ≤ 𝛽 ≤ 1. The 𝛼 parameter allows for a contribution of Hartree-Fock exchange over 

the entire range by a factor of 𝛼, and the parameter 𝛽 allows us to incorporate long-range 

asymptotic Hartree-Fock exchange by a factor of 𝛼 + 𝛽. Previous work by us49 and 

others92-93 has shown that maintaining a full 100% asymptotic contribution of HF exchange 

(i.e. fixing 𝛼 + 𝛽 = 1.0) is essential for accurately describing electronic properties in even 

relatively simple molecular systems. However, the expression 𝛼 + 𝛽 = 1.0 still contains 

one degree of freedom, and the choice of 𝛼 will automatically fix the value of 𝛽. More 

recent work from us61, 94 and others95-98 has shown that some amount of short-range 

Hartree-Fock exchange (i.e., nonzero values for 𝛼) can lead to improved electronic 

properties and charge-transfer effects. Therefore, for the LC-ωPBE functional used in this 

work, we chose the fixed values of 𝛼 = 0.2 and 𝛽 = 0.8 in conjunction with tuning the 

range-separation parameter ω via the non-empirical procedure by Baer and Kronik55-57 

discussed below. These particular values for 𝛼 and 𝛽 were chosen based on a recent study 

by Kronik et al.97, which showed that (non-empirically tuned) values of 𝛼 ~ 0.2 (i.e., 20% 

short-range Hartree-Fock exchange) in conjunction with long-range exchange were able to 

accurately predict the electronic properties of various chemical systems. 

As stated above, the range-separation parameter ω can be non-empirically tuned by  

satisfying Koopman’s theorem,86 which ensures the equality of the ionization potential (IP) 

and the negative of the highest occupied molecular orbital (HOMO) energy for an N-
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electron system. The individual IP(𝑁) values are found by taking the difference in ground 

state energies (ΔSCF) between the 𝑁 and 𝑁 − 1 electron systems. Self-consistently tuning 

ω with this procedure is theoretically justified by the fact that the exact exchange-

correlation functional would automatically satisfy this condition. Although several 

numerical schemes exist, a range-separation parameter, ω, that approximately satisfies this 

condition can be obtained by minimization of the following function for each molecular 

system:  

 𝐽2(𝜔) = [𝜀HOMO
𝜔 (𝑁) + IP𝜔(𝑁)]2 + [𝜀HOMO

𝜔 (𝑁 + 1) + IP𝜔(𝑁 + 1)]2, (5) 

In the expression above, both 𝜀HOMO
𝜔 (𝑁) and IP𝜔(𝑁) are calculated with the same value 

of the range-separation parameter, ω. The 𝑁 + 1 energies in the second term of Eq. 5 are 

included as a way of indirectly tuning the HOMO and LUMO energies of the N-electron 

system, since a formal equivalent of Koopman’s theorem does not exist that relates the 

LUMO energy to the electron affinity. All 𝜀HOMO
𝜔  and IP𝜔 values in this work were 

calculated for each dimer with the LC-𝜔PBE𝛼=0.2,𝛽=0.8 functional. In order to determine 

the optimal range-separation value for each halogen-bonding dimer, we carried out several 

single-point energy calculations by varying ω from 0.05 to 0.7 (in increments of 0.05) for 

each of the 𝑁, 𝑁 + 1, and 𝑁– 1 electron states. Spline interpolation was used to refine the 

minimum of each curve, providing the optimal ω for each halogen-bonding dimer. With 

the optimal ω determined for each dimer, the dissociation energy was calculated with the 

following expression. 

 𝐸dissociation(𝜔) = 𝐸monomer1(𝜔) + 𝐸monomer2(𝜔) − 𝐸dimer(𝜔). (6) 
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It is important to note in Eq. (6) that 𝐸monomer1(𝜔), 𝐸monomer2(𝜔), and 𝐸dimer(𝜔) are all 

calculated with the same value of the range-separation parameter which we always take to 

be the optimal ω value for the dimer. We choose the dimer as a suitable reference point for 

determining ω for all three chemical species in Eq. (6) due to size-consistency issues 

inherent to the non-empirical tuning procedure.99 

Finally, to provide a systematic comparison to Kozuch and Martin’s prior work,85 

we used the same basis sets (aVQZ for XB18 and a counterpoise-corrected aVTZ+CP basis 

set for XB51) used in their previous work. It should also be mentioned that Kozuch and 

Martin only incorporated BSSE and counterpoise corrections in the XB51 set (and not the 

XB18 set), and to ensure a direct comparison to their prior work, we also only included 

counterpoise corrections in the XB51 set. 

Contributions from Dispersion: To assess the importance of dispersion 

corrections in halogen-bonding interactions, we assessed two different types of “D3” 

dispersion corrections100  that were used in the original work by Kozuch and Martin.85 

Conventional DFT methods lack long-range dispersion forces, and Grimme’s D3 approach 

adds an atomic pairwise dispersion correction to the Kohn-Sham portion of the total energy 

(𝐸KS−DFT) as  

 𝐸DFT−D3 = 𝐸KS−DFT + 𝐸disp , (7) 

where Edisp is given by 

 

𝐸disp = − ∑ ∑ 𝑓d,6(𝑅𝑖𝑗)
𝐶6,𝑖𝑗

𝑅𝑖𝑗
6 + 𝑓d,8(𝑅𝑖𝑗)

𝐶8,𝑖𝑗

𝑅𝑖𝑗
8

𝑁at

𝑗=𝑖+1

𝑁at−1

𝑖=1

, 

(8) 
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and the summation is over all atom pairs i and j, with 𝑅𝑖𝑗 denoting their interatomic 

distance.  The 𝐶6,𝑖𝑗  and  𝐶6,𝑖𝑗 parameters are sixth- and eighth-order dispersion coefficients 

that are geometry dependent and are adjusted as a function of the local geometry around 

atoms i and j. In order to avoid near-singularities for small interatomic distances, fd,6 and 

fd,8 are damping functions for the additional 𝑅𝑖𝑗
−6 and 𝑅𝑖𝑗

−8 repulsive potentials, respectively. 

In the original DFT-D3Zero method, the fd,6 and fd,8 damping functions (and thus Edisp) 

were constructed to approach zero when Rij = 0. A critical disadvantage of this zero-

damping approach is that at small and medium distances, the atoms experience repulsive 

forces leading to even longer interatomic distances than those obtained without dispersion 

corrections.101 As a practical solution for this counter-intuitive observation, Becke and 

Johnson102-104 proposed the DFT-D3BJ method which contains modified expressions for 

fd,6 and fd,8 that lead to a constant contribution of Edisp to the total energy when Rij = 0. We 

assess the performance of both the D3Zero and D3BJ dispersion corrections by adding 

them to the standard LC-𝜔PBE𝛼=0,𝛽=1.0(ω = 0.47) functional (abbreviated simply as LC-

ωPBE throughout the rest of this work) and to our non-empirically tuned LC-

𝜔PBE𝛼=0.2,𝛽=0.8 approach for all of the halogen-binding dimers in this work. It is worth 

mentioning that the D3 dispersion correction is a post-SCF add-on to the Kohn-Sham total 

energy via Eq. 7 and, therefore, the D3 correction does not alter the 𝜀HOMO
𝜔  or IP𝜔 energies 

in the expression for 𝐽2(𝜔) in Eq. 5. As such, the non-empirical tuning approach is 

numerically independent from the D3 dispersion correction, allowing us to simply add both 

of these contributions together to obtain the resulting halogen-bonding interaction energies. 
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To make a consistent comparison with the previous study by Kozuch and Martin, 

identical molecular geometries obtained from Ref. 85 were used throughout this work. 

Similaraly, all of our dissociation energies were compared to their reference benchmark 

values obtained with CCSD(T)/CBS for XB18 dimers and CCSD(T)/CBS-MP2(Q5) for 

XB51 dimers to quantify the relative errors for each method. All DFT calculations were 

carried out with the Gaussian 09 package105 using default SCF convergence criteria 

(density matrix converged to at least 10-8) and the default DFT integration grid (75 radial 

and 302 angular quadrature points). The additional D3 dispersion corrections (D3Zero and 

D3BJ) were calculated by adding these to the DFT total energies using the DFT-D3 

program by Grimme et al.106 For future reference and reproducibility, all of our ground 

state energies and dissociation energies can be found in the Supporting Information. 

 

Results and Discussion 

It is extremely important to mention that during the compilation and analysis of our 

results, we noticed several discrepancies in the reference dissociation energies provided by 

Kozuch and Martin for the XB51 series. Specifically, the reference energies listed in their 

Supporting Information are not consistent with those listed in Table 5 within the main text 

of their work,85 giving different theoretical values for 14 of these dimers. In addition, there 

are also internal inconsistencies within the same table that define two (significantly) 

different reference dissociation energies for the dimers Br2···NCH, Br2···NH3, FI···NCH, 

and FI···NH3. We were able to determine the correct reference energies by comparing the 

values provided in their main text to the CCSD(T)/AVTZ + DF-MP2(Q5) values in their 
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Supporting Information (Figure SI-1 in our Supporting Information gives a detailed, color-

coded comparison of these inconsistencies). To bring closure and correct the scientific 

literature on these important benchmark values, we provide the corrected values in Table 

4, and it is these dissociation energy values that we use as our reference for comparison. 

 

Table 4. Revised benchmark dissociation energies (in kcal/mol) for the XB51 set, at the 

𝐸CBS/MP2(Q5)
CCSD(T)/aVTZ

 level of theory. Energies shown in bold are values that have been corrected from 

ref. 85. 

  X acc.     X donor  

X donor PCH NCH NH3  X acc. MeI BrBr FI 

PhBr 0.85 1.15 2.02  FCCH 0.50 0.74 0.29 

MeI 0.85 1.42 2.73  PCH 0.85 1.18 2.74 

PhI 0.92 1.87 3.33  NCH 1.42 3.61 9.33 

F3CI 0.89 3.61 5.88  FMe 1.70 2.87 5.97 

Br2 1.18 3.61 7.29  OCH2 2.39 4.41 9.94 

NBS 1.19 4.32 8.02  NH3 2.73 7.29 17.11 

FCl 1.16 4.81 10.54  OPH3 3.34 5.95 13.36 

NIS 1.53 5.91 10.99  Pyr 3.61 9.07 20.34 

FBr 2.07 7.53 15.30  HLi 3.62 23.11 33.79 

FI 2.74 9.33 17.11  PdHP2Cl 5.05 9.00 17.66 

 

With these corrected benchmark values in hand, we first discuss the effect of 

incorporating exact exchange on the halogen-bonding interactions for the XB18 and XB51 

benchmark sets. Figure 9 shows the smooth curves that result from computing 𝐽2 as a 

function of ω for a representative set of halogen-bonding dimers. The optimally tuned ω 

values for all of the halogen-bonding dimers are summarized in Table 5. To create succinct 
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figures and graphs similar to the ones in Kozuch and Martin’s study, we split the XB51 

series into two groups: the first group contains dimers with the halogen acceptors PCH, 

NCH, and NH3, (each with the same set of donors) and the second group contains dimers 

with the halogen donors MeI, Br2, and FI (each with the same set of acceptors). 

 

Figure 9. Plots of J2 (Eq. 2) as a function of ω for a representative set of halogen bonding dimers. 
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Table 5: Optimal ω values for each halogen-bonding dimer in units of bohr-1. 

 XB18 Dimers XB51 Dimers 
 

Opt ω 
 

Opt ω 
 

Opt ω 

Br2···NCH 0.283 NCH···F3CI 0.257 Br2···FCCH 0.297 

Br2···OCH2 0.279 NCH···FBr 0.297 Br2···FMe 0.292 

BrI···NCH 0.304 NCH···FCl 0.324 Br2···HLi 0.202 

BrI···OCH2 0.232 NCH···NBS 0.221 Br2···NCH 0.284 

ClBr···NCH 0.288 NCH···NIS 0.217 Br2···NH3 0.267 

ClBr···OCH2 0.284 NCH···PhBr 0.206 Br2···OCH2 0.281 

ClI···NCH 0.259 NCH···PhI   0.201 Br2···OPH3 0.269 

ClI···OCH2 0.239 NH3···F3CI 0.254 Br2···PCH 0.266 

FBr···NCH 0.295 NH3···FBr 0.295 Br2···PdHP2Cl 0.176 

FBr···OCH2 0.294 NH3···FCl 0.299 Br2···pyr 0.237 

FI···NCH 0.269 NH3···NBS 0.214 FI···FCCH 0.304 

FI···OCH2 0.257 NH3···NIS 0.212 FI···FMe 0.288 

HBr···NCH 0.332 NH3···PhBr 0.205 FI···HLi 0.262 

HBr···OCH2 0.296 NH3···PhI 0.199 FI···NCH 0.271 

HI···NCH 0.299 PCH···F3CI 0.258 FI···NH3 0.278 

HI···OCH2 0.282 PCH···FBr 0.259 FI···OCH2 0.258 

I2···NCH 0.250 PCH···FCl 0.279 FI···OPH3 0.264 

I2···OCH2 0.223 PCH···NBS 0.218 FI···PCH 0.260 
  

PCH···NIS 0.212 FI···PdHP2Cl 0.222 
  

PCH···PhBr 0.187 FI···pyr 0.218 
  

PCH···PhI 0.205 MeI···FCCH 0.267 
    

MeI···FMe 0.267 
    

MeI···HLi 0.442 
    

MeI···NCH 0.266 
    

MeI···NH3 0.264 
    

MeI···OCH2 0.262 
    

MeI···OPH3 0.257 
    

MeI···PCH 0.251 
    

MeI···PdHP2Cl 0.219 
    

MeI···pyr 0.229 
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Contributions from Exact Exchange: As previously mentioned, Kozuch and 

Martin stated that “a high amount of exact exchange is necessary for good geometries and 

energies.”85 To critically test this claim, we compared their PBE (no Hartree-Fock 

exchange) and “default” LC-𝜔PBE (ω fixed at 0.47) benchmarks to dissociation energies 

obtained from our non-empirically tuned LC-𝜔PBE𝛼=0.2,𝛽=0.8 functional. Figure 10 gives 

a visual comparison of the absolute errors in the dissociation energy, and Table 6 

summarizes the mean absolute errors (MAEs) and mean signed errors (MSEs) for each of 

the DFT methods. Taken together, both Figure 10 and Table 6 show an overall degradation 

in the accuracy of LC-𝜔PBE compared to PBE (the MAE increases from 1.14 to 1.35 

kcal/mol), suggesting that an un-tuned (ω = 0.47) amount of exchange actually worsens 

the dissociation energies for these XB dimers. However, when we applied the non-

empirical tuning procedure to the LC-𝜔PBE𝛼=0.2,𝛽=0.8 functional (which, again, satisfies 

known DFT constraints), we found that the MAEs were not significantly better than PBE 

(see Table 6). For the smaller dimers in the XB18 series, the absolute error in the 

dissociation energies actually increased for FBr···NCH and FI···NCH compared to the 

untuned LC-𝜔PBE functional (although these energies were still more accurate than the 

values obtained with the bare PBE functional). Nevertheless, we observed more severe 

problems with the following XB51 dimers: NH3···FBr, FI···FCCH, FI···HLi, FI···NCH, 

FI···NH3, and FI···OPH3 all exhibited dissociation energies that were all worsened by the 

tuning process. We attribute these errors to the high electronegativity of fluorine in these 

small molecules, which has been known to be problematic in prior computational studies 

for accurately calculating XB interactions.81-83 As a whole, these results demonstrate that 
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the inclusion of exact exchange–even with a non-empirically tuned amount of exchange–

only has a marginal effect on improving the accuracy in computing halogen-bonding 

interactions, in contrast to previous studies.85  
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Figure 10. Absolute errors in the dissociation energy predicted by various DFT functionals without 

dispersion for halogen-bonding dimers within the (a) XB18 and (b and c) XB51 benchmark sets. 
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Table 6. Mean absolute errors in kcal/mol for halogen-bonding dissociation energies obtained with 

various DFT methods. 

 PBEa LC-𝜔PBEb 
LC- ωPBE 

(opt ω) 

LC-ωPBE 

+ D3BJb 

LC-ωPBE 

+ D3BJ 

(opt ω) 

LC-

ωPBE + 

D3Zero 

LC-ωPBE 

+ D3Zero 

(opt ω) 

XB18 0.73 1.18 0.78 0.30 0.57 0.38 0.40 

XB51 1.28 1.41 1.06 0.65 0.99 0.57 0.75 

Overall 1.14 1.35 0.99 0.56 0.88 0.52 0.66 
a Based on benchmarks from Ref. 85  
b Based on the default range-separation value of ω = 0.47 used in Ref. 85 

 

Contributions from Dispersion: We next investigated the effects of adding two 

different types of dispersion corrections based on Kozuch and Martin’s assertion that 

“dispersion corrections tend to be detrimental” for accurately calculating XB dissociation 

energies.85 Figure 11 gives a visual comparison of the absolute errors, and Table 6 

summarizes the MAEs and MSEs for each of the DFT methods. In general, adding either 

the D3BJ or D3Zero corrections to the standard LC-ωPBE functional significantly 

improved the overall accuracy, in contrast to Kozuch and Martin’s assessment that 

dispersion corrections worsen XB dissociation energies. Specifically, the final MAEs for 

the XB51 set are nearly three times lower for each D3 method compared to the parent LC-

ωPBE functional. While the D3Zero correction performed slightly better than D3BJ, the 

total difference between the two methods is negligible. It is interesting to note that both 

dispersion corrections give even lower MAEs for smaller dimers in the XB18 set, with 

errors that are almost four times lower than the standard LC-ωPBE functional. In the XB18 

series, the FI···NCH dimer was the only exception in which the D3BJ correction increased 

the absolute error. For the XB51 series, two dimers were more accurate before the inclusion 

of either dispersion corrections (NH3···FBr and FI···NH3). In addition, there were a few 
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cases where D3Zero improved results whereas the D3BJ correction worsened them 

(NCH···NIS, FI···NCH, and FI···OPH3) and only one case where D3BJ improved whereas 

D3Zero worsened them (FI···FCCH).  Regardless of these few exceptions, we observed a 

clear overall improvement in predicting dissociation energies when the D3BJ or D3Zero 

corrections are applied to the standard LC-ωPBE functional (regardless if the exchange 

was non-empirically tuned or not), which is in stark contrast to previous studies.85 
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Figure 11. Absolute errors in the dissociation energy predicted by the standard LC-ωPBE functional 

(ω = 0.47), with and without dispersion for halogen-bonding dimers within the (a) XB18 and (b 

and c) XB51 benchmark sets. 
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It is interesting to note that the error analysis becomes slightly more complicated 

when dispersion corrections are added to the non-empirically tuned LC-𝜔PBE𝛼=0.2,𝛽=0.8 

functional (see Figure SI-2 in the Supporting Information). For approximately one-third of 

the dimers, we incur larger errors when dispersion corrections are added to the non-

empirically tuned LC-𝜔PBE𝛼=0.2,𝛽=0.8 functional, regardless of the type of D3 correction 

used. More interestingly, we also noticed from Figure SI-2 that nearly every dimer whose 

accuracy was worsened with dispersion involved a fluorine-containing halide, which again 

corroborates previous studies that found fluorine to be problematic for accurately 

calculating XB interactions.81-83 We have summarized the mean signed error (MSE), root 

mean square deviation (RMSD), and maximum error for each method in Figure 12 and 

Table 7. Taken together, both Figure 12 and Table 7 clearly indicate that adding the D3BJ 

or D3Zero corrections to the standard LC-ωPBE functional gives the lowest overall MSE 

and RMSD values (with LC-𝜔PBE+D3BJ boasting a nearly zero MSE). We also note that 

both the LC-𝜔PBE+D3Zero and LC-𝜔PBE+D3BJ functionals gave significantly lower 

MSE and RMSD values than their non-empirically tuned counterparts, indicating that non-

empirically tuned exchange actually worsens XB interaction energies. Collectively, 

Figures 10-12 and the MSE errors summarized in Table 7 indicate that dispersion 

corrections play a much larger role than exact exchange in capturing halogen-bonding 

interactions (regardless if the exchange is non-empirically tuned or not).  
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Figure 12. Root mean square deviation (RMSD) and mean signed error (MSE) for halogen-bonding 

dissociation energies obtained with various DFT methods. 

 

Table 7. Mean signed error (MSE), root-mean-square deviation (RMSD), and maximum error for 

halogen-bonding dissociation energies obtained with various DFT methods. 

  XB18 Series XB51 Series Overall 

  MSE RMSD 

Max 

Error MSE RMSD 

Max 

Error MSE RMSD 

Max 

Error 

PBEa 0.50 0.93 2.11 0.75 1.95 6.58 0.68 1.74 6.58 

LC-ωPBEa -1.18 1.30 -1.71 -1.41 1.70 -6.20 -1.35 1.59 -6.20 

LC-ωPBE (opt 

ω) -0.57 0.92 -1.40 -0.50 1.32 4.89 -0.51 1.22 4.89 

LC-ωPBE + 

D3BJ -0.16 0.35 0.69 -0.03 1.34 6.88 -0.06 1.16 6.88 

LC-ωPBE + 

D3BJ (opt ω) 0.45 0.39 2.33 0.88 1.83 7.78 0.77 1.63 7.78 

LC-ωPBE + 

D3Zero -0.36 0.46 -0.68 -0.39 0.92 -5.24 -0.38 0.82 -5.24 

LC-ωPBE + 

D3Zero (opt ω) 0.26 0.23 1.88 0.52 1.33 5.57 0.45 1.19 5.57 

a Based on benchmarks from Ref. 85 
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Conclusions 

In this extensive study, we have revisited and analyzed several halogen-bonding 

interactions in a wide variety of complex dimers within the XB18 and XB51 set. To 

critically assess the effects of exact exchange and dispersion on these complex halogen-

bonding interactions, we calculated new dissociation energies using both conventional 

range-separated and non-empirically tuned range-separated functionals in conjunction with 

a variety of dispersion corrections. These new calculations extend previous benchmark 

calculations on these systems as well as shed critical insight on the relative importance of 

exact exchange vs. dispersion in accurately calculating these interactions. 

Contrary to previous studies on these systems, our analyses and results suggest that 

dispersion plays a more significant role than exact exchange in accurately calculating 

halogen-bonding interactions. While our numerical benchmarks verify the importance of 

dispersion in these systems, our analysis is also chemically intuitive – halogen-bonding 

effects are noncovalent interactions and should, therefore, be more accurately captured 

with dispersion corrections than without. Ultimately (and probably most importantly), we 

correct several (14) of the inconsistencies in the XB51 benchmark set by providing revised 

benchmarks in this work. A reference search in the Thomson Reuters Web of Science107 

shows that the original XB51 benchmarks have already been cited over 120 times, and the 

present study brings closure and corrects the scientific literature on these important 

benchmark values. In terms of DFT functional development for specifically improving 

halogen-bonding interactions, our analysis suggests that more emphasis should be placed 
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on improving dispersion effects rather than exact exchange, in contrast to prior studies on 

these systems. 
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Overall Conclusions 

 Throughout the first chapter of this thesis, we assessed the accuracy of orbital 

energies and electron affinities for the first three rows of elements on the periodic table (H-

AR) by implementing multiple theoretical approaches in combination with standard and 

customized basis sets. During these calculations, electron affinities were found for these 

anions with the ΔSCF procedure and were then compared to the negative EHOMO values. 

This is justified by Koopman’s theorem for the anion and is meant to give a deeper insight 

to the limiting factors within each theoretical method. In summary, the nonempirically 

tuned range-separated method provides the best accuracy in both cases for the standard and 

the customized basis sets. While the HF method obtains negative EHOMO values for the 

anions, suggesting that the atoms remain bound throughout the calculation, there exists a 

fine balance between the exchange and correlation potentials and the lack of electron 

correlation in HF produces errors that are almost twice as large as the nonempirically tuned 

range-separated method.  

 Also in Chapter 1, we found that the nonempirically tuned LC-BLYP functional 

yields nearly a straight line when comparing the electronic energies, E, as a function of 

electronic number, N, while the other cases deviate from linearity when including fractional 

numbers of electrons. This further suggests that the LC-BLYP functional results in an 

accurate description of bound anions, even with the smaller basis set, and provides a natural 

and self-consistent approach to defining accurate electronic properties of anions. 

 When applying the standard and nonempirically tuned long-range corrected 

methodology to halogen bonding dimers in Chapter 2, we saw that including exact 
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exchange was less effective at providing accurate dissociation energies. Additionally, our 

results suggest that one can obtain more accurate results when including dispersion 

corrections like D3Zero and D3BJ as opposed to solely relying on the effects of exact 

exchange to improve the results. We were also able to correct several inconsistencies that 

were provided in the original XB51 benchmark set, as noted and referenced in Chapter 2, 

and we show that a greater emphasis should be placed on improving dispersion effects 

instead of exact exchange when it comes to studying halogen-bonding interactions.  
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Appendix A 

Supporting Information for Chapter 1: 

Plot of <R2> vs. 1/μ obtained with the smaller aug-pc-2 basis, total energies for all three 

rows of elements (H – Ar) of the periodic table calculated at the HF, BLYP, B3LYP, 

BHHLYP, and LC-BLYP levels of theory with the aug-pc-2 and aug-pc- basis sets, and 

uncontracted aug-pc-2 and aug-pc-∞ basis sets for all three rows of elements (H – Ar) of 

the periodic table. 

 

(See attachment) 
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Appendix B 

Supporting Information for Chapter 2: 

Detailed, color-coded comparison of inconsistencies within the XB51 set, absolute errors 

in the dissociation energy predicted by the non-empirically tuned LC-ωPBE functional for 

halogen-bonding dimers within the XB18 and XB51 benchmark set, and total electronic 

energies and dissociation energies for all 69 dimers in the XB18 and XB51 sets. 

 

(See attachment) 




