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 Abstract 

 

To facilitate early-stage life-cycle techno-economic modeling of emerging technologies, here we 

identify scaling relations between unit price and sales quantity for a variety of chemical products 

of three categories - metal salts, organic compounds, and solvents. We collect price quotations 

for lab-scale and bulk purchases of chemicals from both U.S. and Chinese suppliers. We apply a 

log-log linear regression model to estimate the price discount effect. Using the median discount 

factor of each category, one can infer bulk prices of products for which only lab-scale prices are 

available. We conduct out-of-sample tests showing that most of the price proxies deviate from 

their actual reference prices by a factor less than ten. We also apply the bootstrap method to 

determine if a sample median discount factor should be accepted for price approximation. We 

find that appropriate discount factors for metal salts and for solvents are both -0.56, while that 

for organic compounds is -0.67 and is less representative due to greater extent of product 

heterogeneity within this category.  

 

 
1. Introduction 

 

Prospective life-cycle techno-economic modeling of emerging technologies is a growing 

research field, combining scenario analysis with consequential life-cycle assessment (LCA) to 

assess the potential impacts of technologies and infrastructure systems that are not yet operating 

at commercial scale. This modeling method can produce insights that may help guide 

fundamental research and stimulate effective innovation in the most critical areas. Recent 

examples of techno-economic analysis include Van Dael et al. (2015) for ultrasonic production 

of biofuels and Kuppens et al. (2015) for fast pyrolysis for the valorization of short rotation 

coppice. This type of early-stage modeling, when applied to technologies that involve chemical 

synthesis processes, may require knowledge of the sales price structure for a wide variety of 

chemical reagents and solvents in various quantities. Lab-scale prices of chemicals are usually 

standardized and easily accessible (e.g., supplier Sigma Aldrich). However, discovering their 

bulk prices is more difficult, typically requiring extensive inquiries and sometimes bilateral 

negotiations. In this work, we propose a price scaling method that can facilitate the prospective 

techno-economic modeling process, by quickly deriving proxies of bulk prices of chemicals at 

quantities of interest, in place of ad hoc solicitation of price quotations from actual suppliers.  

 

It is widely understood that suppliers offer price discounts for purchases in larger quantities. 

Munson and Rosenblatt (1998) surveyed the literature on quantity discounting and distinguished 

between buyer’s perspective, seller’s perspective, and joint buyer-seller models of price 

discounts. They supplemented this literature review with interviews of numerous industrial 

buyers and sellers to determine how quantity discounting theory corresponds with actual 

practice. However, they offered no quantitative guidelines of actual price discount factors in 

industry. Anderson (2009) identified detailed cost components and demonstrated a bottom-up 

cost estimation approach. He also noticed the price discount effect without quantified 

characterization. Hart and Sommerfeld (1997) collected price data on 24 chemical products at 

lab-scale and medium scale (approximately 25 kg) quantities, and used a log-log linear 

regression model to derive quantity discount factors. They found that a discount factor of -0.75 

most accurately described the observed price reductions. However, they did not consider larger 

bulk quantities, and they did not distinguish between different types of chemical products. Here, 



2 
 

we build on this knowledge of quantity discounting of chemical products by applying a log-log 

price discount model to different categories of chemicals including metal salts, organic 

compounds and solvents, in larger quantities up to metric tons. We also provide a validation 

framework to provide additional insights on the uncertainties and limitations of the 

methodology. 

 

Our method consists of two parts. In the modeling part, we use a log-log linear regression model 

to relate the unit sales price of a chemical product (e.g. in units of dollars per kg) to the amount 

of the purchased product (e.g. in units of kg). We consider the slope coefficient obtained from 

the ordinary linear regression as the price discount factor for each chemical product in the given 

data set. The mean and median of those discount factors within each product category (metal 

salts, organic compounds and solvents) become representatives of the discount factor for that 

category.  Consequently, rapid and informed estimation of prices of specific chemicals can be 

obtained as inputs to prospective techno-economic modeling of emerging technologies, based on 

current sales prices for laboratory scale quantities.  

 

In the validation part, we first test the price approximation errors using out-of-sample mean and 

median discount factors. Then we propose a bootstrap method to systematically test whether the 

sample median of each category is sufficiently robust as a representative value. This information 

is revealed by examining the “fatness” of the distribution of bootstrapped medians for each 

product category. We show from our price data set that the sample medians of the metal salts 

and the solvents can be accepted as representative discount factors, while that of the organic 

compounds cannot, if we set 1.5 as the acceptance/rejection threshold width of the 90% 

confidence interval of the bootstrapped median distribution.   

 

The remainder of this report is organized as follows: Section 2 describes the modelling process 

of identifying individual price discount factors and inferring prices of materials of the same 

category. Section 3 validates the proposed approach by first testing the price approximation 

accuracy and then applying the bootstrap method. Section 4 concludes this report.  

   

 

2. Modelling the price discount effect 

 

2.1 Log-log linear regression model 

 

We obtained price quotations for a variety of chemical reagents and solvents (25 metal salts, 11 

organic compounds and 16 solvents) at different transaction scales (from grams to tons). The 

quotes were obtained from several chemical suppliers through their company websites and 

through personal communication with sales representatives. Specifically, the lab-scale quotes 

were queried from the U.S. supplier Sigma-Aldrich, and the bulk-scale quotes were from U.S. 

supplier BOCSCI and from Chinese suppliers registered at the Alibaba.com online platform. 

The bulk-scale quotes are “free on board” (FOB), meaning that the transportation costs to the 

shipping port is paid by the supplier. Data were collected during the time window from 2011 to 

2014. BOCSCI quotes for 20 metal salts and four organic compounds were obtained in 2011 and 

the rest of the data were collected during the year of 2014.  

 

Our objective is to quantitatively determine the price discount factors. For each material, we fit 
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the collected price data into models that characterize the relation between the price and the order 

quantity. Consequently, we identify the model described by Equation (1) to be the most accurate 

in terms of R2 goodness of fit: 

 

                  (1) 

 

where  

p is the unit price (e.g., $/kg) as a function of the order quantity q (e.g., kg) 

b is a scale parameter 

γ is the quantity discount factor.  

 

In theory, γ < 0 because of quantity discount and γ > -1 to guarantee p(q) is still increasing in q. 

However, these inequalities may not necessarily hold empirically, given that the effect of 

supplier non-homogeneity is not fully controlled.  

 

The two parameters γ and b are the parameters to be estimated. Their best estimates (in the sense 

of least squared error) can be readily solved for by standard linear regression, since the model 

has its linear equivalent described by Equation (2): 

 

     (2) 

 

Given the limited number of price points for each chemical in the data set, the model must be 

very parsimonious to avoid over-fitting. In equation (2), γ has clear interpretation – it is the rate 

of change of the order of magnitude of the price with respect to the order of magnitude of the 

quantity.   

 

 

2.2 Individual price discount effects 

 

For each material, we estimate γ first using the bulk prices exclusively from BOCSCI, the U.S. 

domestic vendor, and then using the bulk prices exclusively from Alibaba.com suppliers. For 

both sets of bulk price data, we use the same set of lab-scale prices from Sigma-Aldrich.   

 

The price discount profiles of all the considered materials are available in Figures A1-A3 in the 

Appendix A. Figure 1 shows the price discount of a representative chemical product, cobalt(II) 

chloride. The horizontal and the vertical axes represent the quantity (in kilogram) and the per 

unit price, respectively, both on the log10 scale. The red crosses represent lab-scale data points. 

The blue diamond shapes represent U.S. domestic bulk prices from BOCSCI and the black 

circles represent those from Alibaba suppliers. The blue dashed lines fit with BOCSCI prices as 

well as the lab-scale prices, while the black solid lines fit with Alibaba prices as well as the lab-

scale prices. The slope of each line is the price discount factor γ. The price unit is 2014 U.S. $.  

 

Figure 1. Price discount of cobalt(II) chloride.  

 

  log
10

(price)  
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The fitting overall is accurate with high R-squared values and significant t-values. This is partly 

due to a careful choice of model and partly due to limited data points. Figures A1-A3 show that 

bulk prices offered by Alibaba suppliers are in general lower than by the U.S. domestic supplier. 

While it is reasonable to infer that the Chinese suppliers tend to offer lower prices, this price 

difference may also be partly due to how the data are collected. Specifically, most of the sales 

quantities provided by the Chinese suppliers are labeled as “minimum” sales quantities that 

support their associated price, while the BOCSCI prices were all offered at the sales quantities 

that we specified in our inquiry. It can thus be expected that those Alibaba.com prices may be 

biased. On the other hand, both BOCSCI and Alibaba.com prices that we collected could be 

systematically higher than the actual transaction prices, since bulk prices, in general, can 

decrease as bilateral negotiations proceed.   

 

Hereafter we only consider data from Alibaba suppliers as bulk price data for brevity of 

discussion, since we have more of those data available than those from BOCSCI. Figure 2 

shows histograms of the distributions of the values of the resulting discount factors.  

 

 

Figure 2. Distributions of cost discount factors. 

 

 
 Discount factor γ  

Freq. #  

log
10

(quantity) 
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Figure 2 shows that the discount factors of metal salts and of the solvents are more narrowly 

distributed than those of the organic compounds. Given insufficient samples, it is still early to 

draw general conclusion on the price discount behavior of the category of organic compounds. 

One reason for the wider distribution may be that organic compounds have more sophisticated 

and varied molecular structures, requiring specialized production processes for different 

compounds at different costs. Furthermore, we do not fully control the purity of the materials by 

the bulk suppliers, as we accept the quotes as long as the supplier indicates that the purity is at 

least 95%. Another factor may contribute to the dispersion of discount factors with overseas 

sourcing, as we do not fully control the heterogeneity of those suppliers but accepted an Alibaba 

supplier as long as it provided quotes of the product.  

 

 

2.3 Inferring prices of a new product 

 

Our goal of this work is to be able to predict the bulk price of a chemical product when only its 

lab-scale prices are available. To this end, we propose to use the median of the sampled discount 

factors of its product category as the representative value of price discount for the material of 

interest. Two natural candidates of such representative values are the median and the mean of 

the sample price discount factors. We opt for the sample median, denoted as γm, since the 

sample mean is more sensitive to outliers when data points are few and is thus less statistically 

robust, as justified by the numerical tests in the next section. The values of γm for metal salts, 

organic compounds and solvents are -0.56, -0.67, and -0.56, respectively.  

 

  

Consequently, at any bulk order quantity , the price proxy  can be given by:  
 

                                           (3) 

 

where  and  are the price and the quantity of a given lab-scale data point, respectively.  

 

 

3. Validating the price inference 

 

3.1 Out-of-sample test errors 

 

To test the effectiveness of the method described above, we first evaluate the out-of-sample 

prediction accuracy. Specifically, for a category with N chemical products for which the prices 

are available and the individual discount factors are learned, we split the materials such that N-1 

materials are in the training group and the remaining one is used for testing. The median price 

discount factor of the training group serves as the representative discount value γm. As for the 

testing material,  and  are chosen to be the largest lab-scale quantity where a price quote is 

available and the associated price, respectively. Similarly,  are the largest available bulk 

quantity and the associated price, respectively. We compute the price proxy  according to 

Equation (3), and then compare it against the actual value . We repeat this procedure N times, 

each time with a different material being used for testing.   
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The test errors in terms of the magnitude that  differs from  are summarized in Table 1. The 

results with the mean discount factors of training groups as the representative values are also 

included for comparison purposes. Notice that p should not be treated as the exact value, since it 

is provided by a single supplier, involving internal volatility and bias. For this reason we do not 

present the relative errors of   with respect to p. 

 

 
Table 1. Percentage of tests that result in the specified magnitude of difference between price 

proxy  and its true value . 

 

Product 
group 

Choice of γm Magnitude of difference 

    
Metal salts Median 

Mean 
 

81.0 
81.0 

76.2 
76.2 

52.4 
47.6 

Organic 
compounds 

Median 
Mean 

66.7 
55.6 

33.3 
44.4 

11.1 
22.2 

     
Solvents Median 

Mean 
86.7 
88.7 

66.7 
66.7 

26.7 
26.7 

 

Table 1 shows that most of the price proxies (81.0% of metal salts, 66.7% of organic compounds 

and 86.7% of solvents) deviate from their actual reference prices by a factor less than ten. 

However, the approximation is not fully accurate, since only a small portion (52.4% of metal 

salts, 11.1% and 26.7%) of the proxies deviate from the reference values by a factor smaller than 

two. Therefore, given the data that we experiment with, the proposed method is likely to 

correctly estimate the order of magnitude of the product price, but is unreliable for finer 

estimation. Table 1 also shows that using the mean discount factor of the training groups is less 

robust, with more occurrences of estimation off by a certain factor.  

 

We expect an enhancement of estimation accuracy if the data set is enriched with additional 

quotations. However, the enhancement may be limited by the inherent discrepancies between 

different chemical materials as well as the uncertainties in suppliers, purities, etc. The results 

shown in Table 1 are conservative, since we choose the maximum available bulk quantity and 

the associated price for testing. In general, smaller bulk quantities incur less price volatility.  

 

3.2 Bootstrapping-based validation approach 

 

Our recommended discount factor of each product category for future analyses are the median 

of the sampled discount factors, as explained in Subsection 2.3. Ideally, the best representative 

discount factor of each product category is the median of the discount factors of all its products. 

However, such population-level statistic is unachievable with finite samples. Subsequently, a 

natural question arises as to how robustly the sample median approximates the population 

median. The level of this robustness is a strong indicator of the effectiveness of our bulk price 

approximation, since one can expect gross price misestimates if the sample median value of the 

discount factors changes dramatically by replacing only a few sample materials with some 

others. 
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In this subsection, we apply the bootstrap method to quantify the robustness level of , the 

median of the sample discount factors. The bootstrap method is primarily used to infer 

probabilistic information (e.g., distribution, confidence interval, etc.) of sample statistics of 

interest, such as moments, quantiles, etc. It is particularly appropriate when the underlying 

population distribution is unknown or intractable and/or the sample size is not large enough. The 

reader may refer to reference Davison and Hinkley (1997) for a general introduction as well as 

extensive applications of the bootstrap method.  

 

We adopt the basic bootstrap method in our context. We assume that the sample of M price 

discount factors obtained from Section 2.2 for each product category are randomly drawn from 

the population of discount factors of all the chemicals of that category. Starting from this 

original sample, we consecutively construct B =100,000 “bootstrap” samples of the discount 

factors. Each bootstrap sample is of size M and is constructed by randomly replacing one 

discount factor in its preceding sample with another discount factor that is randomly sampled 

from the original sample. Since each bootstrap sample, by our assumption, is a representation of 

the unknown population, the median discount factor of each sample is also a representation of 

the population median. The dispersion of those bootstrapped medians reflects our uncertainty 

about the true population median. In fact, bootstrapped (common) statistics asymptotically 

converge to their true values under mild regularity conditions as the sample size goes to infinity 

(Bickel & Freedman (1981)). 

 

We implement the above bootstrapping procedure to our samples and obtain the distributions of 

the bootstrapped medians of price discount factors for the three product categories, as shown in 

Figure 5. Apparently, the bootstrapped medians are more narrowly distributed in the cases of 

metal salts and solvents, compared with those in the case of organic compound. We thus expect 

that the representative discount factors that we choose for the metal salts and solvents are likely 

to generate more accurate price estimates than in the case of organic compound, which is 

consistent with the results in Table 1.  

 

Figure 3. Distribution of bootstrapped medians of cost discount factors. 
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We next demonstrate a simple quantified method for interested researchers to determine if γm 

should be accepted for price approximation based on the distribution of the bootstrapped 

medians. Specifically, one can specify a certain degree of dispersion of the bootstrapped 

medians as the threshold rule of acceptance/rejection. Such rule can be made on an ad hoc basis: 

it reflects the error tolerance of the interested life-cycle techno-economic modeling, contingent 

on the modeling purposes and/or stages. To illustrate, suppose we set the rule to be “accept the 

sample median of discount factors for price approximation only if the 90% confidence interval 

length of its bootstrap distribution is no larger than 0.15”. Then, we accept the sample median 

discount factors of the metal salts and the solvent, but reject that of the organic compounds, 

since their 90% confidence interval lengths 0.12, 0.12 and 0.25, respectively.  Figure 6 is a 

boxplot illustration, where the horizontal edges of each box are the 25th and the 75th percentiles 

of the bootstrap distribution, the whiskers delimit the 90% confidence interval and the red dots 

represent the bootstrapped medians outside of the 90% confidence interval.   

 

Figure 4. Boxplot illustration of the bootstrapped median distribution. 

 

Freq. #  
(104) 

Bootstrapped medians of  γ  
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4. Discussion and conclusions 

 

In this work, we develop a framework of analyzing price discount effect of chemical products. 

We consider a model that is able to characterize the price discount by linear regression of log-

log relations. Using lab-scale and bulk-scale quotations from U.S. and Chinese suppliers, we 

identify discount factors for 25 metal salts, 11 organic compounds and 16 solvents. Using the 

median discount factor of each category, a price proxy of a material at any bulk purchase scale 

can be readily computed. The out-of-sample tests show that most of the price proxies deviate 

from their actual reference prices by a factor less than ten. We also apply the bootstrap method 

to determine if a sample median discount factor should be accepted for price approximation. 

Through this work, we find that the degrees of price discount of the sample metal salts and 

solvents have smaller variation within their respective categories, compared with those of the 

sample organic compounds.  We also find that sourcing from overseas brings down the order 

cost, but with greater cost uncertainty.  

 

Our work focuses on price discounts that are primarily driven by quantities of individual 

purchases. It should be noted that other scaling mechanisms may also affect the price of 

chemical products. For example, Lieberman (1984) noted a learning curve effect in the chemical 

industry, where price reductions occurred due to increasing cumulative production quantities of 

a product. This may be particularly relevant for emerging technologies that require specialty 

chemicals that are currently produced and used at small scale, but may be used in much larger 

quantities if the technology scales up considerably. In addition to estimating the cost of a single 

chemical product, various methodologies for project-level cost-estimation were discussed in 

Dysert (2003).   
 

The price discount factors identified in this work can enable more robust prospective techno-

economic modeling of emerging technologies. On the other hand, their accuracy can be further 

enhanced with an augmented data set, finer categorization of the materials and more control of 

the factors such as supplier attributes and product purities.  
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Appendix A: Price Discount of Materials 

 

Figures A1-A3 show the price discount profiles of 25 metal salts, 11 organic compounds and 16 

solvents, respectively. The horizontal and the vertical axes represent the quantity (in kilogram) 

and the per unit price, respectively, both on the log10 scale. The red crosses represent lab-scale 

data points. The blue diamond shapes represent U.S. bulk prices from BOCSCI and the black 

circles represent those from Alibaba suppliers. The blue dashed lines fit with BOCSCI prices as 

well as the lab-scale prices, while the black solid lines fit with Alibaba prices as well as the lab-

scale prices. The slope of each line is the price discount factor γ. The price unit is 2014 U.S. $. 

The quantity unit is kilogram for solids and liter for liquids. Data of bulk prices either in the 

U.S. or from Alibaba suppliers are not available for some materials.   
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Figure A1. Price discounts of 25 metal salts. 

 

 
 

 

log
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log
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(quantity) 



13 
 

Figure A2. Price discounts of 11 organic compounds. 

 

 
  

 

 

Figure A3. Price discounts of 16 solvents. 

                          

 

 
 

 

 

 

Table A1. Price quotes collected from Sigma Aldrich, BOSCI and Alibaba 

 

log
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Chemical Name Category

Quantity 

Unit Sigma Aldrich BOSCI Alibaba

kg 1 5 1000 20000

Calcium chloride metal salt 40.7 32.4 1.9 0.18

kg 0.5 2.5 1000 500 25000

Calcium nitrate tetrahydrate metal salt 90 79.4 3.9 2.4 0.325

kg 0.05 0.25 0.5 3000 1 1000 1000 10000

Ceric ammonium nitrate metal salt 860 514 395 22 12.5 0.38 0.415 0.2

kg 0.001 0.01 0.05 1000

Chromium(0) hexacarbonyl metal salt 31100 8630 5950 290

kg 0.005 0.025 1000 5000

Chromium(II) chloride metal salt 17760 13920 7.9 3

kg 0.005 0.1 0.5 1000 1 25

Cobalt(II) chloride metal salt 6340 875 659 23 65 13

kg 0.005 0.1 0.5 1000 1000

Cobalt(II) nitrate metal salt 6420 480 380 28 7.2

kg 0.05 0.25 1 1000

Copper(II) chloride metal salt 466 184.4 136.5 19

kg 0.005 0.025 0.1 1000 1000

Copper(II) nitrate metal salt 5020 2568 2130 13 3.75

kg 0.01 0.05 0.05 2000 700 2000

Indium(III)  acetate metal salt 9210 7570 5397.8 798 318 630

kg 0.005 0.025 0.05 1

Indium(III) acetylacetonate metal salt 17000 15200 19120 4635

kg 0.025 0.25 1000 1000

Iron(II) chloride metal salt 2796 1678 3.9 0.425

kg 0.1 0.25 0.5 1 1000 1000

Iron(III) chloride metal salt 188 143.2 117.2 99 2.9 0.705

kg 0.1 1 5 25000

Magnesium chloride metal salt 235 36.4 24.2 0.155

kg 1 6 1000 25000

Magnesium nitrate hexahydrate metal salt 50.8 33.58 4 0.24

kg 0.1 0.5 1000 1000

Manganese chloride metal salt 293 166.6 4.9 1.35

kg 0.025 0.5 1 1000

Manganese nitrate metal salt 1220 114.4 106 5.9

kg 0.05 0.25 1000 1000

Nickel(II) chloride metal salt 634 488 19 5.8

kg 0.25 1 1000

Nickel(II) nitrate metal salt 150.4 126.5 23

kg 0.005 0.025 0.05 0.1 1000

Nitrosonium tetrafluoroborate metal salt 12340 9140 5900 6895 165

kg 0.005 0.03 100 100

Tin(II) acetate metal salt 12920 8640 98 60

kg 0.005 0.01 0.05 1000 25000

Zinc chloride metal salt 11120 7390 4770 4.7 1

kg 0.1 0.5 7 1000 1000

Zinc nitrate metal salt 147 96 48.76 3.9 2

kg 0.01 0.1 1 500 1000 10000 500 1000

Tungsten hexachloride metal salt 4830 2325 96.5 78.8 77.5 76.8 86.5 79.50

kg 0.025 0.1 1 5 10 1000

Cesium chloride metal salt 2464 1690 100 72.58 85 47.5

kg 0.1 1 100 1000

Trimethylamine N-oxide dihydrateOC 1760 5 6.5 8

kg 0.0005 100 5000 10000
Elvacite 2041 (polymethylmethyacrylate)OC 439000 125 1.3 1.65

kg 0.05 0.1 0.25 1000 10000

Polyacrylic acid OC 810 922 678 1.33 1.23

kg 0.005 0.1 0.5 1

SRA OC 5180 312 220 50

kg 0.005 0.025 1

2,5-dihydroxyterephthalic acid OC 27300 18840 100

kg 0.005 0.025 1000 25

2-bromoterephthalic acid OC 12080 8040 600 50

kg 0.005 0.025 1000 1

4,4'-biphenyldicarboxylic acid OC 13260 9140 86 100

kg 0.005 0.025 1000 10

4,4'-dipyridyl OC 5660 3112 450 5000

kg 0.01 0.1 0.5 4000 2000

Myristic acid OC 3420 622 152.8 14.9 5.75

kg 0.005 0.1 0.5 40000 1000

Oleylamine OC 5840 316 124.92 7.5 4.65

kg 0.25 0.5 200

PVB OC 324 275 11

kg 0.005 0.05 1 10 100

Ionic liquid (IL) solvent 32300 9980 975 800 560

L 0.1 1 2 1283.70 15404.36

Cyclohexane solvent 465 90.9 63.25 2.73 1.29

kg 0.25 1 6 60 100 1000 5000

Tetraethylene glycol dimethyl ethersolvent 159.6 110 191.67 52.42 18 15 10  
 

 

Table A1 (continued). Price quotes collected from Sigma Aldrich, BOSCI and Alibaba 
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Chemical Name Category

Quantity 

Unit Sigma Aldrich BOSCI Alibaba

kg 1 8 20 1000 10000 25000 21000

Isopropyl Alcohol solvent 62 20.75 14.35 1 1.75 1 0.85

L 0.025 0.1 1 2.5 1267.43

1-Octadecene solvent 908 630 31.8 23.44 3.23

kg 1 6 1000
Acetone solvent 79.4 66.17 1.57

L 0.1 1 2 6 8 200000 1272.26

Acetonitrile solvent 520 98.8 76.5 82.33 63.75 5.9 2.11

L 0.001 0.01 0.1 200 1234.57

Butanol solvent 25600 18200 13630.25 4.5 1.05

L 0.025 0.1 0.5 1 2.5 40000 3378.38 13513.51

Chloroform solvent 1244 1025 108.2 65.3 42.6 3.5 1.55 0.90

L 0.005 0.01 0.025 11.15

Dimethylformamide solvent 13200 10550 5280 42.61

L 0.5 1 4 100000 1267.43

Ethanol solvent 129.4 108.5 74.25 2.8 0.79

L 0.1 1 2 6 30000 1515.15

Hexane solvent 478 83.1 63.75 69.25 6.6 0.99

L 0.1 1 2 30000 1422.48

Octane solvent 1205 239.5 170.75 5.3 2.81

L 0.1 1 2 6 8 30000 1124.86

Tetrahydrofuran solvent 500 94.9 72.75 81.33 60.56 6.1 3.38

L 0.1 1 2 6 400000

Toluene solvent 304 52.2 37.25 42.17 3.4

kg 0.001 0.005 0.025 1000 14.4

Oleic acid solvent 19800 12360 7900 1.5 1450  




