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Abstract 

This study examined neural activity associated with inductive 
inference using functional Near Infrared Spectroscopy 
(fNIRS). Induction is a powerful way of generating new 
knowledge by generalizing known information to novel items 
or contexts. Two key bases for identifying targets for induction 
are perceptual similarity, and rules that specify category-
relevant features. Similarity- and rule-based induction have 
been argued to represent distinct mechanisms, such that only 
rule-based induction requires executive function processes 
associated with the prefrontal cortex (PFC), namely: active 
maintenance of representations and inhibition of salient but 
irrelevant features. Here, we address the lack of direct 
empirical evidence supporting this possibility by recording 
PFC activity using fNIRS while adult participants (n=24) 
performed an inductive inference task. We found that PFC 
activity during induction was greater when participants had 
been taught a category-inclusion rule versus when participants 
could only rely on overall similarity. 

Keywords: inductive inference; fNIRS; PFC 

Introduction 

Inductive inference is a powerful component of learning 

because it allows us to use what we already know to derive 

new information. For instance, knowledge that one’s cat has 

a four-chambered heart can be generalized to other entities, 

such as one’s dog. However, in order for inductive inference 

to provide a useful source of information, targets for 

generalization must be identified based on bearing some 

relationship to the known entity. 

Behavioral evidence from studies of adult cognition and 

developmental research suggest a distinction between 

similarity-based induction, in which targets chosen for 

inductive inference are those that are globally similar to the 

known entity, and rule-based induction, in which targets are 

those that share specific critical features (Sloutsky, Kloos, & 

Fisher, 2007; Yamauchi & Markman, 2000). This behavioral 

distinction may emerge because these two forms of inference 

involve qualitatively different processes. For instance, 

similarity-based induction may involve a global assessment 

of the degree to which known entities and potential targets 

share features, whereas rule-based induction may involve 

maintenance of the rule-relevant feature in memory and/or 

inhibition of rule-irrelevant features (Sloutsky, 2010).   

One critical implication of this proposal is that rule-based 

induction should recruit prefrontal cortex (PFC) regions 

associated with active memory maintenance and inhibition of 

salient task-irrelevant information (Konishi, Kawazu, et al., 

1999; Konishi, Nakajima, et al., 1999) to a greater extent than 

similarity-based induction. Indirect support for this 

possibility comes from evidence that rule- and similarity-

based processes in other forms of reasoning recruit distinct 

brain circuitry (Grossman et al., 2002; Koenig et al., 2005; 

Nomura et al., 2007; Seger & Cincotta, 2002). However, no 

studies have yet directly tested this possibility. 

Here, we first review behavioral evidence for a qualitative 

distinction between similarity- and rule-based induction, and 

neuroimaging evidence for distinct patterns of brain activity 

associated with similarity- and rule-based processes in other 

forms of reasoning. Then, we present a study investigating 

whether similarity- and rule-based induction is associated 

with distinct patterns of neural activity. 

Similarity- versus Rule-Based Induction 

Studies of both adult and developing cognition have yielded 

evidence for a qualitative distinction between similarity- and 

rule-based induction. For instance, in a number of 
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experiments with adults (e.g., Yamauchi & Markman, 2000) 

researchers taught participants two artificial bug categories 

that were each associated with typical anatomical features 

and a category label, then investigated the basis on which 

participants either inferred the value of a bug’s occluded 

anatomical feature in the presence of its category label, or the 

value of a bug’s label in the presence of all its anatomical 

features. In the presence of a label, adults tended to make 

inductive inferences consistent with the label regardless of 

other anatomical features in a rule-based manner, whereas in 

the absence of a label, adults made inferences consistent with 

the degree to which an item’s anatomical features were 

typical of each category in a similarity-based manner.  

Developmentally, several studies suggest that rule- and 

similarity-based induction emerge at different ages. For 

instance, recent research has shown that although 4- to 5-

year-olds can learn a category-inclusion rule for a set of 

unfamiliar items, children often fail to use it as the basis for 

inductive inferences (Badger & Shapiro, 2012; Sloutsky, 

Fisher, & Kloos, 2015; Sloutsky et al., 2007) (cf. Gelman & 

Davidson, 2013). With age, children shift towards making 

rule-based inductive inferences (Badger & Shapiro, 2012). 

Therefore, whereas similarity-based inference is evident 

from early childhood, rule-based induction appears to 

develop gradually. 

Neural Distinction between Similarity- and Rule-

Based Reasoning 

As previously noted, the behavioral distinctions between 

similarity- and rule-based inductive inference may be 

associated with a neural distinction between the brain 

circuitry recruited during reasoning. Specifically, it has been 

suggested that rule-based induction is associated with greater 

recruitment of processes associated with the PFC than 

similarity-based induction (Sloutsky, 2010). Indirect 

evidence for this possibility comes from observations of 

neural distinctions between rule- and similarity-based 

processes in other forms of reasoning. 

The primary source of indirect evidence for this distinction 

comes from comparisons of brain activity observed across 

different studies and tasks. For instance, tasks that require 

rule learning, such as the Wisconsin Card Sorting Task, yield 

significant PFC activity (e.g., Konishi, Kawazu, et al., 1999). 

In contrast, similarity processing is associated with more 

posterior brain regions (de Beeck, Torfs, & Wagemans, 2008; 

Weber, Thompson-Schill, Osherson, Haxby, & Parsons, 

2009). Similarly, tasks that require implicit extraction of a 

category prototype from similarities between exemplars 

involve visual regions that overlap with those associated with 

similarity judgments (Reber, Stark, & Squire, 1998; 

Zeithamova, Maddox, & Schnyer, 2008). Together, these 

findings suggest that rule-based reasoning recruits PFC, 

whereas processing visual similarity recruits visual cortex 

regions. However, this contrast between rule- and similarity-

based processes is based on a comparison between studies 

that used very different paradigms. 

Indirect evidence from comparisons made within studies 

comes from a smaller body of research that has primarily 

focused on novel category learning. These studies have also 

found neural distinctions between processes that are related 

to, but do not directly map onto the rule- versus similarity- 

based induction distinction of interest (Grossman et al., 2002; 

Koenig et al., 2005; Nomura et al., 2007; Seger & Cincotta, 

2002). Many such studies compare rule-based reasoning to 

processes that do not involve similarity perception, such as 

learning categories by integrating perceptual information 

from multiple dimensions. The small subset of studies that 

have compared rule- to similarity-based reasoning have done 

so in domains that require additional processes, such as 

retrieving previously experienced exemplars or semantic 

knowledge from memory (Grossman et al., 2002; Koenig et 

al., 2005). Accordingly, the nature of this distinction varied 

as a result of the different processes evoked by different tasks.  

Such distinctions support the possibility that rule- vs. 

similarity-based induction recruit distinct brain regions. At 

the same time, the fact that different tasks used across studies 

yielded different neural distinctions suggests that the nature 

of a potential neural distinction between similarity- and rule-

based induction cannot be inferred from those observed for 

other forms of reasoning. Therefore, this review underscores 

the importance of obtaining direct empirical evidence to test 

the prediction that inductive reasoning, similar to other forms 

of reasoning, relies on neurally distinct mechanisms 

associated with rule-based and similarity-based processing.  

Present Experiment 

We focused on differences in PFC activity between 

similarity- and rule-based induction for two reasons. First, as 

noted above, the qualitative behavioral distinction between 

rule- and similarity-based induction may emerge because 

rule-based induction uniquely requires processes such as 

focusing on a specific feature to the exclusion of others and 

maintaining rules in working memory (Badger & Shapiro, 

2012; Sloutsky, 2010) that are associated with PFC activity 

(Konishi, Kawazu, et al., 1999; Konishi, Nakajima, et al., 

1999). Second, the most consistent neural distinction 

observed between rule- and similarity-based processes in 

other forms of reasoning is that rule-based processing 

involves PFC activity (Konishi, Kawazu, et al., 1999), 

whereas similarity processing involves activity in more 

posterior regions (de Beeck et al., 2008; Weber et al., 2009).  

Accordingly, the present experiment tested whether rule-

based induction is associated with greater PFC activity than 

similarity-based induction using functional Near Infrared 

Spectroscopy (fNIRS), a neuroimaging technology that uses 

cortical changes in infrared light absorption to measure brain 

activity. To test this prediction, we recorded PFC activity 

using fNIRS while adult participants completed one of two 

versions of an inductive inference task modeled on a 

paradigm introduced by Sloutsky et al. (2007) and updated 

with natural kind-like stimuli by Badger and Shapiro (2012). 

In this paradigm, participants are asked to infer which of two 

“match” items shares a property attributed to a “target”. In 
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the “Rule-Given” version, participants were taught the 

category inclusion rule, whereas in the “No-Rule” version, 

participants were not taught the rule. We predicted that the 

Rule-Given version would yield high rates of rule-consistent 

match inference choices and significant PFC activity, 

whereas the No-Rule version would yield high rates of 

similarity-consistent match inference choices and no 

significant PFC activity. 

Method 

Participants 

Participants were 24 adults (15 female, Mage=19 years) 

recruited from the undergraduate community at a 

Northeastern university who received partial course credit. 

Materials and Apparatus 

Stimuli were presented on a Dell computer screen with 

physical dimensions 60 cm x 34 cm and pixel dimensions 

1920 x 1080. Participants were seated at a desk facing the 

screen with their heads about 2 feet away from the screen.  

Neural activity was recorded using a continuous wave 

(CW6) real-time fNIRS system (TechEn, Inc.), with 4 light 

sources, each containing 690-nm (12 mW) and 830-nm (8 

mW) laser light, and 8 detectors, to give oxygenation 

measures in 10 channels on the prefrontal cortex. The sensors 

were arranged in the layout depicted in Figure 1. Sensors 

were snapped into a cap strip built from foam sheet and 

plastic mesh, and connected to the fNIRS system by via optic 

cables. For each participant, the cap strip was positioned on 

the head, centered on position FpZ by the international 10-20 

coordinate system standard, and extending over the 

Brodmann area 10 (anterior prefrontal cortex) and area 46 

(dorsolateral prefrontal cortex) bilaterally. The strip was 

secured to the head using a neoprene scuba cap.  

Induction Task 

This task was presented using E-Prime (Psychology Software 

Tools, 2012). Stimuli were modeled on those created by 

Badger and Shapiro (2012), and consisted of bugs with five 

anatomical features that could each take one of two values: 

Head shape (pointy or round), body shape (triangular or 

round), body color (purple or green), spot color (brown or 

grey), and eye color (blue or orange). Of these features, body 

shape and color took up a larger proportion of the stimuli than 

the others. Following Badger and Shapiro, one of the smaller 

features, head shape, was selected as the category rule-

inclusion feature. Specifically, bugs with pointy heads were 

“Rockbugs”, and bugs with round heads were “Sandbugs”. 

All other features were category-irrelevant. 

We used these stimuli to create 16 induction trials, and 51 

baseline trials. Each induction trial presented a triad of bugs 

consisting of a Target, a Rule Match, and a Similarity Match, 

arranged with the Target on top and the Matches on the 

bottom to either the right or left (Figure 2).  

In half of the induction trials, the Target was a Rockbug, 

and in the other half, the Target was a Sandbug. The 

assignment of Rule and Similarity Matches to the bottom 

right or left locations was randomized separately for triads 

with Rockbug and Sandbug Targets. In each triad, the Rule 

Match belonged to the same category as the Target but 

appeared dissimilar overall, whereas the Similarity match 

belonged to a different category but appeared similar. To 

accomplish this, the Rule Match had different values for all 

features from the Target except head shape and one of the 

smaller category-irrelevant anatomical features (eye or spot 

color), whereas the Similarity match had the same values for 

all features as the Target except head shape and one of the 

smaller features (see Figure 2). Independently for triads with 

Rockbugs and Sandbugs as Targets, we randomly assigned 

whether the small feature shared by the Rule Match and not 

the Similarity match was eye or spot color. All triads were 

pseudo-randomized such that no more than two triads with a 

Target bug from the same category or the Rule and Similarity 

Matches in the same locations appeared consecutively. 

For baseline trials, we used the bugs to create a simple 

congruent Flanker task (Eriksen & Eriksen, 1974) (see 

Procedure). Specifically, each baseline trial presented three 

identical bugs that were all oriented to face either left or right.  

We approximately equated the number of times all bugs faced 

either left or right. Baseline trials were integrated with 

induction trials such that three baseline trials followed each 

induction trial, and one set of three baseline trials preceded 

the first induction trial. This ratio was used to ensure that 

there was a sufficient amount of baseline recording (i.e., 

approximately 5-10 s per each set of baseline trials, to mirror 

the length of time on the Induction trials). Baseline trials were 

pseudo-randomized such that, in each set of three baseline 

trials, no more than two featured bugs from the same category 

or bugs facing the same direction. 

 

Figure 2. Example of induction trial. Top: Target, Bottom 

Left: Rule Match, Bottom Right: Similarity Match. 

 

 

 

Figure 1. Probe layout including 4 sources (S1-4) and 8 

detectors (D1-8), overlaid on overhead view of a head. 

Black lines represent source-detector channels. Source-

detector distance was 2.8 cm. 
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The Induction task was presented in two conditions: A 

“Rule-Given”, condition and a “No-Rule” condition. The No-

Rule condition consisted of only the inductive inference and 

baseline trials. The Rule-Given condition supplemented these 

trials with two Rule Demonstration slides, and 16 

Categorization trials. Each Rule Demonstration slide 

depicted a pair of either Rockbugs or Sandbugs. Each pair of 

bugs had opposite values for all non-head shape features. 

Each Categorization trial presented a single Rockbug or 

Sandbug, with equal numbers of trials for each category. We 

assigned half of the Categorization trials for each category to 

appear before and half to appear after the baseline and 

induction trials. We pseudo-randomized each subset of 

Categorization trials such that no more than two bugs from 

the same category appeared consecutively. 

Procedure 

Participants were tested in a quiet space. One experimenter 

administered the Induction Task, and another managed 

fNIRS data collection (see details below). 

Induction Task Participants were randomly assigned to 

complete either the Rule-Given or No-Rule condition of the 

task. The procedure for participants assigned to each 

condition was identical for Inductive Inference and Baseline 

trials. During Induction trials, participants were told that the 

Target possessed a novel biological property (e.g., “plaxium 

hormone”, “tulvex nerve cells”), and asked to decide which 

of the two Match items shared the property. Baseline trials 

were modeled on the “congruent” version of the Eriksen 

Flanker Task, in which participants respond to some 

characteristic of a central stimulus in the presence of flanking 

stimuli that possess the same characteristic. This task was 

chosen as a baseline based on evidence that it elicits relatively 

little frontal activity (Bunge, Hazeltine, Scanlon, Rosen, & 

Gabrieli, 2002). In our version, participants were asked to 

point in the direction that the middle bug was facing.  

Only Inductive Inference and Baseline trials were 

presented to participants in the No-Rule condition. In the 

Rule-Given condition, Inductive Inference and Baseline trials 

were presented in between an initial Rule Demonstration and 

Categorization phase, and a final Categorization phase. To 

demonstrate the rule, the experimenter showed the participant 

the two Rule Demonstration Slides, and provided the 

following descriptions of Rockbugs and Sandbugs: “These 

two pictures are of [Rockbugs]/[Sandbugs]. [Rockbugs live 

in rocks, and all have pointy heads that they use to dig in the 

rocks]/[ Sandbugs live in sand, and all have round heads that 

they use to burrow in the sand]. [Rockbugs][Sandbugs] come 

in many different shapes and colors, but they all have [pointy 

heads that they use to dig in the rocks]/[round heads that they 

use to burrow in the sand].” 

To test rule retention, participants were asked to identify 

the bug on each Categorization trial preceding and following 

the Induction and Baseline trials. 

fNIRS Recording fNIRS data was recorded for each 

participant using custom data collection software described 

in Abdelnour and Huppert (2009).  The fNIRS cap was first 

fitted on the head of the participant and the signal quality 

checked and adjusted if needed to make sure the fNIRS fiber 

optics made good contact with the scalp of the 

participant.  After initial setup, the fNIRS data was collected 

at 20Hz at two wavelengths (690nm and 830nm). Following 

signal quality checking, the experimenter started the 

induction task. During the induction task, the timing of 

stimulus onset and offset as presented in Eprime were synced 

and marked in the fNIRS data by an automated analog signal 

sent from the computer port (of the stimulus presentation 

computer) to the fNIRS machine. 

Results 

Behavioral Results 

We first determined that all participants in the Rule-Given 

condition successfully learned the category inclusion rule 

(i.e., all Rule-Given participants were 100% accurate on the 

initial and final Categorization Trials).Responses on the 16 

Induction Trials were then analyzed to compare the degree to 

which participants in the Rule-Given and No-Rule conditions 

chose the Rule Match. The Rule Match was chosen 

significantly more often by participants in the Rule-Given 

condition (M=60.94%) than by than participants in the No-

Rule condition (M=10.42%) (t(22)=5.001, p<.0001). 

fNIRS Results 

Pre-Processing The raw fNIRS data at the two wavelengths 

were converted into estimates of oxy- and deoxy-hemoglobin 

using the modified Beer-Lambert law (Cope et al., 1988) with 

a differential pathlength factor of 6 for both 

wavelengths.  The data was resampled to 4Hz for statistical 

analysis using an autoregressively pre-whitened weighted 

least-squares regression model (Barker, Aarabi, & Huppert, 

2013).  In brief, the stimulus timing of the induction trials are 

used to construct a hypothesis of the timing of the expected 

response based on a canonical hemodynamic response.  This 

model is then statistically compared against the data using a 

general linear model and brain activity is inferred from the 

statistical tests of the coefficients of this linear model.  The 

iteratively whitened weighted least-squares regression 

described in Barker et al was used to solve this general linear 

model and had been previously shown to have substantially 

improved sensitivity and specificity and control of type-I 

errors compared to other regression methods for fNIRS data 

in the presence of physiological noise and potential motion-

artifacts from slippage of the head cap.  This analysis is 

similar to the general linear model and statistical parametric 

modeling methods commonly used in functional magnetic 

resonance imaging (fMRI) (e.g. SPM; Tak, Uga, Flandin, 

Dan, and Penny (2016)). 

fNIRS Analysis Processed fNIRS data were analyzed to first 

compare activity during induction trials to baseline trials for 
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each condition, and then directly compare activity during 

induction trials in each condition (see Figure 3). The 

canonical general linear model for regression used in fMRI 

analysis, based on convolving the neural responses with the 

standard hemodynamic response function basis from SPM8, 

was used for statistical testing of neural activity between 

conditions (Friston et al., 1994). The comparison to baseline 

analyses revealed that Induction Trials in the Rule-Given 

condition were associated with significantly stronger activity 

in channels S1-D1 (Source 1 to Detector 1; t(440)>4.249, 

p<2.616e-05) and S4-D8 (t(440)>2.827, p<0.005), which 

corresponds approximately to Brodmann area 46, bilaterally, 

and channel S1-D2 (t(440)>2.419, p<0.05), which 

corresponds approximately to right Brodmann area 10. In 

contrast, no channels revealed significantly greater than 

baseline activity during induction trials in the No-Rule 

condition (all ts<1.031, all ps>.065). The direct comparison 

between induction trial-activity in each condition revealed 

significantly stronger activity in the Rule-Given than the No-

Rule condition in channel S1-D1 (t(440)>2.815, p<0.006), 

which corresponds approximately to Brodmann area 46. 

Discussion 

The purpose of this study was to use fNIRS to investigate the 

possibility that rule-based induction recruits PFC, a brain 

region associated with executive functions, to a greater extent 

than similarity-based induction. Participants completed an 

inductive inference task in which they could infer that a novel 

property attributed to a Target item was shared by either a 

similar looking item from a different rule-based category, or 

a dissimilar looking item from the same rule-based category. 

Participants who were taught the category rule prior to the 

induction task both tended to choose the dissimilar looking 

same-category item, and revealed significant PFC activity in 

comparison to baseline. In contrast, participants who were 

not taught the rule tended to choose the similar looking 

different-category item, and did not reveal PFC activity 

above baseline. Finally, participants in the Rule-Given 

condition showed stronger PFC activity during induction 

than participants in the No-Rule condition.  

These results support the proposal that rule- and similarity-

based induction represent qualitatively distinct processes. 

Specifically, rule-based induction may uniquely require 

executive functions associated with PFC such as the active 

maintenance of rules in memory, and/or inhibition of rule-

irrelevant input (Badger & Shapiro, 2012; Konishi, Kawazu, 

et al., 1999; Konishi, Nakajima, et al., 1999; Sloutsky, 2010). 

This distinction is consistent with similar distinctions 

observed between rule- vs. similarity-based processes in 

other forms of reasoning (Grossman et al., 2002; Koenig et 

al., 2005; Nomura et al., 2007; Seger & Cincotta, 2002). 

These results also support the proposal that the more 

protracted development of rule- vs. similarity-based 

induction implicates a greater role for the slow-maturing PFC 

in rule-based than in similarity-based induction. The findings 

presented here provide a foundation for further investigation 

into currently unresolved questions about inductive inference 

processes, as described below. 

Limitations and Future Directions 

The present study sets the stage for pursuing several 

questions that follow on from the present findings and remain 

currently unresolved. First, the past research that inspired the 

prediction that PFC activity should be evoked to a greater 

extent with rule- vs. similarity-based induction also predicts 

that activity in posterior regions associated with visual 

processing should be evoked to a greater extent with 

similarity- vs. rule-based induction. The present study 

investigated only a one-way dissociation; future research 

should investigate the predicted double-dissociation to 

provide further insight into the distinction between rule- and 

similarity-based inductive inference. 

Second, although participants in the Rule-Given condition 

chose the category match more often than t in the No-Rule 

condition, they did not always do so. This may reflect 

variability in the degree to which different individuals 

perform rule-based induction. Future research should 

therefore test whether such variability both within and across 

individuals is associated with differences in PFC activity. 

Finally, the current work provides a foundation from which 

to investigate the neural underpinnings of the previously 

observed distinction between the developmental trajectories 

of rule- and similarity-based induction. The present study was 

inspired in part by the possibility that rule-based induction 

emerges more gradually than similarity-based induction 

because the former uniquely recruits brain circuitry involving 

the slow-maturing PFC. However, no research has directly 

tested this possibility. Because the present study used a child-

appropriate paradigm and imaging technology, the approach 

used here could be used to study the development of the role 

of the PFC in rule- versus similarity-based induction.  

No-Rule  

vs 

Baseline 

Rule-Given 

vs 

Baseline 

No-Rule 

vs 

Rule-Given 

 

 
 

 
 

Figure 3. Group-level contrasts of oxy-hemoglobin 

signals for No-Rule minus baseline, Rule-Given minus 

baseline, and No-Rule minus Rule-Given. The color of 

the line for each source-detector represents the contrast 

t-statistic as marked on the color bar on the right. Solid 

lines represent significant t-statistics. 
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Conclusion 

This study investigated whether a proposed qualitative 

distinction between rule- vs. similarity-based induction (in 

which the former uniquely involves memory maintenance 

and/or inhibition) corresponds with a neural distinction in 

which rule-based induction uniquely recruits PFC. The 

findings presented here are consistent with the proposed 

neural distinction, and lay a foundation for further research 

into the development of rule-based induction. 
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