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Abstract 
Recent studies suggest that five-year-old children can add and 
compare large numerical quantities through approximate 
representations of number. However, the nature of this 
understanding and its susceptibility to influence from 
canonical, learned mathematics remain unclear. The present 
study examined whether children’s early competence depends 
on the canonical problem format (i.e., arithmetic operations 
presented on the left-hand side of space). Children (M age = 5 
years, 3 months) viewed events that required them to add and 
compare large numbers. Events were shown in a canonical or 
non-canonical format. Children performed successfully on all 
tasks, regardless of format; however, they performed better 
when problems were presented in the canonical format. Thus, 
children’s approximate number representations support 
arithmetic reasoning prior to formal schooling, but this 
reasoning may be shaped by learned mathematics. 

Keywords: cognitive development; mathematical cognition; 
approximate arithmetic; competence/performance 

 
Mathematics is important to our lives, whether we are 
engineers testing the strength of a beam or parents splitting 
four cookies between five children. Thus, it is no surprise 
that scientists have a long history of studying the 
foundations of mathematical thinking. After decades of 
research in this area, there is growing consensus that 
humans and nonhuman animals share a non-verbal system 
for representing approximate number (Dehaene, 1997; 
Brannon, 2006; Feigenson, Dehaene, & Spelke, 2004; 
Gordon, 2004; Gallistel & Gelman, 2000). This approximate 
number system operates according to Weber’s Law and 
appears to be functional in infants as young as 6 months old 
(Brannon, Abbot, & Lutz, 2004; Lipton & Spelke, 2003; Xu 
& Spelke, 2000). This means that babies, children, and 
adults detect a difference between two numerical quantities 
based on the ratio between the quantities, not on their 
absolute difference. Some researchers have even suggested 
that this approximate number system supports arithmetic 
reasoning early in life without influence from learned 
mathematics (Barth, La Mont, Lipton, & Spelke, 2005; 
Gilmore, McCarthy, & Spelke, 2007; McCrink & Wynn, 
2004). In the present study, we examine whether aspects of 
learned mathematics influence children’s use of the 
approximate number system to reason arithmetically. 

Barth and colleagues (2005) were among the first to 
provide evidence that young children use the approximate 
number system to reason about large numbers 
arithmetically. In Barth et al.’s approximate addition task, 
children see sets of animated dot events that represent 
addition problems. First, a set of blue dots appears on the 
left side of the screen and moves down behind an occluder. 
Then, another set of blue dots appears on the left and moves 
behind the occluder. Finally, a set of red dots appears on the 
right side of the screen and moves down beside the 
occluder. The blue and red dots differ by a specific ratio 
(e.g., 4:7, 3:5, 2:3, or 4:5 depending on the study). 
Children’s goal is to judge whether there are more blue dots 
or more red dots. Five-year-old children are able to identify 
whether the sum of the blue dots is larger or smaller than the 
number of red dots at a rate significantly greater than 
chance. These results have been used to suggest that 
children can use their approximate number system to reason 
arithmetically before they learn arithmetic in school. 

Until recently, early competence with approximate 
arithmetic was assumed to be limited to nonsymbolic 
stimuli, such as dots or tones, in which the mapping 
between the stimuli and the numerical magnitude is concrete 
(Barth et al., 2005; cf. Levine, Jordan, & Huttenlocher, 
1992). However, a recent study by Gilmore et al. (2007) 
demonstrated early competence with symbolic number. The 
term “symbolic” here is used to refer to abstract 
representations of number (e.g., Arabic numerals and 
number words) that do not directly involve sets of concrete 
stimuli. In Gilmore et al.’s symbolic approximate addition 
task, the events unfold similarly to those in Barth et al., but 
the events are presented in the context of a boy and girl 
receiving candies. Instead of dots or actual candies, children 
see bags (of candy) with Arabic numerals written on them. 
Children’s goal is to judge who gets more candies. Again, 
five-year-old children are able to identify whether the sum 
of the candies presented on the left side is larger or smaller 
than the number of candies presented on the right side at a 
rate significantly greater than chance. Thus, children seem 
to be able to draw on their approximate number system 
when performing symbolic arithmetic. These findings are 
consistent with the view that children map symbolic 
numbers onto their approximate number representations as 

329



early as age five (Lipton & Spelke, 2005; Temple & Posner, 
1998).  

The idea that the approximate number system plays a role 
in knowledge of symbolic mathematics is not new. 
Researchers have long argued that learned forms of 
mathematics, from Arabic numerals to basic addition facts, 
are automatically mapped onto preexisting approximate 
number representations (Dehaene, 1997; Dehaene, Dupoux, 
& Mehler, 1990; Moyer & Landauer, 1967, but see Ansari, 
2008 for an alternative view). According to this account, 
understanding of symbolic mathematics is mediated by the 
approximate number system (Gallistel & Gelman, 2005; 
Halberda, Mazzocco, & Feigenson, 2008). This account 
generally implies that the influence is unidirectional 
(approximate numerical reasoning influences symbolic 
mathematical reasoning, not vice versa). Consistent with 
this view, some researchers have suggested that the 
approximate number system is a “core” system that lays the 
groundwork for higher-order mathematical knowledge 
(Dehaene, 1997; Feigenson et al., 2004). 

Some findings, however, challenge the notion that the 
approximate number system is automatically deployed when 
reasoning about symbolic mathematics. For example, Booth 
and Siegler (2006) asked children to estimate solutions to 
large number symbolic addition problems, such as “Is 34 + 
29 closest to 40, 50, or 60?” This task should be easy for 
five- and six-year-old children if they draw on their 
approximate number representations because they have the 
acuity to discriminate numbers differing by a 5:6 ratio 
(Halberda & Feigenson, 2008). However, kindergarteners 
only selected the more accurate estimate on 36% (SE = .03) 
of the problems (chance = 33%). First graders performed 
better, but they still only selected the more accurate estimate 
on 52% of the problems. These results suggest that children 
may not always utilize their approximate number system 
when reasoning about symbolic arithmetic problems. They 
also leave open the possibility that children’s knowledge of 
symbolic, learned mathematics may affect when and how 
the approximate number system is used. Several researchers 
seem to be open to this view: Gallistel and Gelman (2005) 
discuss possible bidirectional effects between the 
approximate and symbolic number systems over the course 
of development; Ansari (2008) speculates that the 
acquisition of symbolic representations may alter pre-
existing approximate number representations; and Dehaene 
(1997) suggests that poor instruction in exact, symbolic 
mathematics may suppress children’s use of the 
approximate number system in mathematical reasoning. 

In the present study, we examined whether an aspect of 
learned, symbolic mathematics affects children’s 
performance on approximate addition tasks. Specifically, we 
tested whether children’s success on approximate addition 
tasks depends on the canonical problem format. Research 
has shown that children’s understanding of and performance 
solving exact arithmetic facts depends heavily on the 
canonical problem format, which has arithmetic operations 
on the left-hand side of space and the “answer” on the right-

hand side (e.g., 3 + 4 = 7, Behr et al., 1980; Baroody & 
Ginsburg, 1983; Seo & Ginsburg, 2003). Children’s 
behavior on a variety of math tasks suggests that children 
have internalized this canonical “operations on left side” 
format (McNeil & Alibali, 2004, 2005). For example, when 
children are asked to check the “correctness” of math 
sentences written by a child who “attends another school,” 
most mark sentences such as 10 = 6 + 4 as “incorrect” and 
change them to 6 + 4 = 10, 4 + 6 = 10, or even 10 + 6 = 4 
(Cobb, 1987; see also Behr et al., 1980, Baroody & 
Ginsburg, 1983; Rittle-Johnson & Alibali, 1999). Similarly, 
when children are asked to reconstruct a problem such as   
“3 + 5 = 6 + __” after viewing it briefly, many write “3 + 5 
+ 6 = __” (McNeil & Alibali, 2004). Children’s 
misinterpretation of non-canonical problem formats such as 
“__ = 6 + 4” and “8 + 4 = __ + 5” appears as early as first 
grade (Carpenter, Franke, & Levi, 2003). 

It is not known whether young children’s understanding 
of approximate addition tasks also depends on the canonical 
format because previous studies have only presented 
problems in the canonical format. At first blush, it seems 
that the problem format should not affect performance 
because the approximate number system “[does] not emerge 
through learning or cultural transmission” (Feigenson et al., 
2004, p. 307), and researchers have argued that success on 
approximate addition tasks does not depend on experience 
with learned, symbolic arithmetic (Barth et al., 2005; 
Gilmore et al., 2007). However, several studies have shown 
that experience with learned, exact symbolic mathematics 
has the potential to change how children represent 
approximate numerical quantities (Opfer & Siegler, 2007; 
Siegler & Opfer, 2003). This work leaves open the 
possibility that children’s success on approximate addition 
tasks may also depend on the canonical problem format. 

It is important to test whether or not children’s 
performance on approximate addition tasks depends on the 
canonical format not only because it can shed light on 
potential bidirectional effects between learned, exact 
symbolic mathematics and the approximate number system, 
but also because it can provide much needed data about the 
nature of children’s early understanding of arithmetic. When 
children misinterpret non-canonical problem formats, it 
reveals their tendency to interpret addition events (x + y = z) 
operationally, rather than relationally. The term 
“operational” here should not be confused with Piaget’s use 
of the term. It is used in mathematics education to refer to 
children’s tendency to see x + y = z as a directional process 
with x + y producing the result z, rather than as an 
equivalence relation between x + y and z. This type of 
operational thinking is problematic because makes it 
difficult for children to learn algebra down the road (Knuth, 
Stephens, McNeil, & Alibali, 2006). We already know that 
elementary school children interpret exact arithmetic facts 
this way (Baroody & Ginsburg, 1983; Carpenter et al., 
2003; McNeil & Alibali, 2005); however, we do not know 
whether children exhibit this bias prior to formal schooling 
when relying on their approximate number representations. 

330



Based on children’s success on approximate arithmetic 
tasks in previous studies, it is tempting to conclude that 
young children understand the general principles of 
arithmetic, including the equivalence relation inherent in the 
structure, regardless of problem format. However, the 
problems in all previous studies were presented in the 
canonical “operations on left side” format, so children could 
have succeeded with only an operational, directional view. 
The next logical step is to test if young children can also 
succeed on approximate arithmetic problems presented in a 
non-canonical format. We tested the effect of the canonical 
problem format on children’s performance on approximate 
arithmetic tasks in an experiment designed to replicate and 
extend the experiments of Barth et al. (2005) and Gilmore et 
al. (2007). Children solved approximate addition problems 
presented either in the canonical format with the operation 
on the left-hand side of space, or in a non-canonical format 
with the operation on the right-hand side. 

 
Method 

Participants  
Participants were 60 children (M age = 5 years, 3 months; 
27 boys and 33 girls). The study was conducted at childcare 
centers located on two college campuses in the Midwest. 
The centers are open to the community, but they use a 
weighted lottery system, with equal first precedence given 
to children of staff, students, and faculty at the universities. 
Tuition is based on a sliding scale, and 30% of children 
receive some form of reduced tuition. 

Design 
Children participated in one of four conditions in a 2 
(number representation: non-symbolic or symbolic) x 2 
(problem format: canonical or non-canonical) factorial 
design. In the non-symbolic condition, number was 
represented by arrays of dots. In the symbolic condition, 
number was not represented by sets of concrete stimuli, 
such as dots, but by Arabic numerals (e.g., 10) and the 
corresponding words (e.g., “ten”). In the canonical problem 
format condition, the two values to be added were presented 
first on the left side of the screen, and then the comparison 
value was presented on the right side of the screen. In the 
non-canonical problem format condition, the comparison 
value was presented first on the left, and then the two values 
to be added were presented on the right (see Figures 1 and 
2). All problems, regardless of format, were read from left 
to right by the experimenter. 

Procedure  
Testing took place in a quiet room in the daycare. All 
problems were presented as animated events on a Mac 
Laptop with screen resolution 1440 x 900. The problems 
were the same as those used at a 2:3 ratio by Barth et al. 
(2005) and Gilmore et al. (2007). This ratio is appropriate 
for children ages 4-5 (Halberda & Feigenson, 2008). All 
participants received four practice problems at a 1:5 ratio, 

Canonical “operations on left side” problem format 

 
“Look, here come              “Now they’re               “Here come some 
  some blue dots.”               covered up.”                 more blue dots.” 

 

 
“Now they’re all           “And here come               “Are there more  
     back there.”             some red dots.”                 blue dots or 

                 more red dots?” 
 
Non-canonical problem format 

 
     “Look, here come              “And here come               “Now they’re 
        some red dots.”                some blue dots.”                covered up.” 
 

 
     “Here come some              “Now they’re all             “Are there more  
       more blue dots.”                    back there.”                   blue dots or 

                  more red dots?” 
 
Figure 1: Example of a nonsymbolic, approximate addition 
problem presented in the canonical format (top panel) and 
the non-canonical format (bottom panel) 

 
 

followed by 8 test problems presented at a 2:3 ratio. The 
procedure used in each condition is described next. 

 
Non-symbolic condition. The procedure was a replication 
of Barth et al. (2005). Children were told that they would be 
playing a game in which they would guess whether there 
were more blue dots or more red dots. They were then 
presented with animated events accompanied by a narrative 
(see Figure 1).  The animated events consisted of arrays of 
5-51 dots (either 2 mm or 3 mm) in virtual enclosure of one 
of two sizes (7 x 5 cm or 9 x 6 cm).  As in Barth et al. 
(2005), dot size, total contour length, summed dot area, and 
density were negatively correlated with number on half of 
the trials; on the remaining trials, the correlations were 
reversed. Blue dots were the same size within trials. In the 
canonical condition, an occluder appeared on the bottom 
left of the screen (1300 ms). A set of blue dots then moved 
in from the upper left side of the screen (1300 ms) and down 
behind the behind the occluder (1450 ms). After a pause 
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Canonical “operations on left side” problem format  

         
          “Tom gets 25 candies.”  “Then he gets 20 more.” 

 

 
         “Mary gets 30 candies.”  “Who got more candies,  

        Tom or Mary?” 
 
Non-canonical problem format 

 
         “Mary gets 30 candies.”  “Tom gets 25 candies.” 
 

 
         “Then he gets 20 more.”  “Who got more candies,  

        Tom or Mary?” 
 
Figure 2: Example of a symbolic, approximate addition 
problem presented in the canonical format (top panel) and 
the non-canonical format (bottom panel) 
 
 
(1300 ms), another array of blue dots moved in from the 
upper left side and behind the occluder with the same 
timing. After both sets of blue dots were behind the 
occluder, a set of red dots moved in from the upper right 
side of the screen (1300 ms) and came to rest beside the 
occluder (1450 ms), after which the question was posed: 
“are there more blue dots or more red dots?” Half of the 
children saw the problems presented in this way, and the 
other half saw the same sequence with two occluders, one 
for the blue dots and one for the red dots. Preliminary 
analyses revealed no significant effect of the number of 
occluders, so the data were collapsed in the main analysis.  
The events in the non-canonical condition were the same as 
those in the canonical condition, except the red dots were 

presented first on the left side before the two sets of blue 
dots were presented on the right side. On half of the trials, 
the number of blue dots exceeded the number of red dots, 
and on the other half, the number of red dots exceeded the 
number of blue dots. 
 
Symbolic condition. The procedure was a replication of 
Gilmore et al. (2007). Children were introduced to two 
characters, Tom and Mary, and were told they would have 
to figure out who gets more candy. They were then 
presented with animated events accompanied by a narrative 
(see Figure 2). In the canonical condition, a boy and a girl 
were presented on each side of the screen. One blue bag of 
candies appeared above the head of the character on the left 
(1500 ms). Then, a second blue bag appeared (1500 ms). 
Finally, one red bag appeared above the character on the 
right. An Arabic numeral was written on each bag. In the 
non-canonical condition, the procedure was the same, 
except the red bag appeared above the character on the left 
side and the two blue bags above the character on the right 
side. On half of the trials, there were more candies in the 
two blue bags, and on half of the trials there were more 
candies in the red bag.  Also, Tom had more candy on half 
of the trials, and Mary had more candy on half the trials. 

Results 
Children performed significantly above chance on the 
problems, M = 5.60, t(59) = 10.24, p < .001. This result 
held for the youngest half of participants (M age = 4 years, 
10 months), M = 5.47, t(31) = 6.42, p < .001, and for the 
oldest half of participants (M age = 5 years, 8 months), M = 
5.75, t(27) = 8.34, p < .001. Children performed 
significantly above chance in every condition: non-symbolic 
canonical format, M = 5.64, t(13) = 5.34, p < .001; non-
symbolic non-canonical format, M = 5.00, t(13) = 2.46, p = 
.03; symbolic canonical format, M = 6.19, t(15) = 8.92, p < 
.001; and symbolic non-canonical format, M = 5.50, t(15) = 
6.21, p < .001. Across all conditions, only two (of 60) 
children answered fewer than four problems (out of 8) 
correctly. Thus, consistent with Barth et al. (2005) and 
Gilmore et al. (2007), young children were able to add two 
values together and compare that sum to a third value, 
regardless of whether number was represented non-
symbolically or symbolically. Moreover, they were able to 
do so even when the problems were not presented in the 
canonical format. 

We performed a 2 (number representation: non-symbolic 
or symbolic) x 2 (problem format: canonical or non-
canonical) ANOVA with number correct (out of 8) as the 
dependent measure. Results revealed a main effect of 
problem format, F(1, 56) = 4.89, p = .03, 

€ 

η p
2
 = .08. Children 

performed better when problems were presented in the 
canonical problem format (M = 5.92, SE = 0.21) than when 
they were presented in the non-canonical problem format 
(M = 5.25, SE = 0.21). Neither the main effect of number 
representation, nor the interaction between number 
representation and problem format was significant, F(1, 56) 
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= 3.01, p = .09 and F(1, 56) = 0.01, p = .94 respectively. 
Results were unchanged when controlling for age: main 
effect of problem format, F(1, 55) = 4.82, p = .03; main 
effect of number representation, F(1, 55) = 1.92, p = .17; 
interaction, F(1, 55) < 0.01, p = .96. 

Discussion 
Children successfully added and compared large 

numerical quantities. Surprisingly, they did so not only 
when problems were presented in the canonical “operations 
on left side” format, but also when problems were presented 
in a non-canonical “operations on right side” format. These 
findings add to the evidence suggesting that young children 
can draw on their approximate number representations to 
understand the logic of large number addition, even before 
they receive formal arithmetic instruction in school (Barth et 
al., 2005; Gilmore et al., 2007). The findings also provide 
some initial support for the notion that children understand 
the equivalence relation inherent in the structure of 
arithmetic before they enter school, and only develop the 
operational bias after receiving formal arithmetic instruction 
(McNeil, 2007). Teachers may be able to build on this early 
understanding of equivalence to improve children’s 
comprehension of non-canonical problem formats when 
working with exact symbolic arithmetic problems in school.  

Although children successfully solved approximate 
addition problems regardless of format, they did perform 
significantly better when problems were presented in the 
canonical “operations on left side” format. This finding 
supports the view that children’s use of the approximate 
number system may be susceptible to early influence from 
the environment. Although there are other possible 
explanations for this finding (e.g., disproportionate attention 
to the left-hand side of space that is either innate or learned 
through early experiences with non-mathematical stimuli), it 
is consistent with the suggestion that there may be 
bidirectional effects between the approximate and symbolic 
number systems (e.g., Gallistel and Gelman, 2005). 
Specifically, experiences with exact, symbolic arithmetic 
problems may shape children’s ability to reason 
arithmetically based on their approximate number system. 

When young children see arithmetic problems in books, 
on toys, or during TV shows, the problems are typically 
presented in the canonical “operations on left side” format 
(e.g., 1 + 1 = 2). The internalization of this convention may 
facilitate children’s performance on both exact and 
approximate mathematics problems that are presented in the 
canonical format. However, it may hinder performance on 
problems presented in non-canonical formats, and it may 
ultimately lead to the conceptual difficulties with the equal 
sign that children develop in elementary school (e.g., 
Baroody & Ginsburg, 1983; McNeil, 2007). 

According to this account, we should expect to see the 
difference in performance between the canonical and non-
canonical versions of approximate addition tasks to increase 
over the course of the elementary school years. This is 
because as children progress from kindergarten to third 

grade, they continue to gain experience and practice with 
the canonical problem format (McNeil, 2007). If experience 
with and internalization of this format negatively affects 
children’s ability to deploy their approximate number 
system in the face of non-canonical problems, then the 
discrepancy in performance on canonical versus non-
canonical approximate addition problems should be even 
greater for older elementary school children than it was for 
the five-year-old children in the present study. 

Of course, we do not yet have empirical evidence to 
support this prediction, and it is possible that the opposite 
pattern could hold. Indeed, other environmental factors may 
play an important role in children’s ability to deploy their 
approximate number system, and at least some of these 
factors could, theoretically, work to hinder children’s 
performance on canonical approximate addition problems. 
For example, as children begin formal instruction in 
arithmetic, they not only gain experience with the canonical 
problem format, but also learn that their goal is to determine 
the “right answer.” The “right answer” is almost always an 
exact value, as opposed to an approximate one (e.g., 
children will not be given credit for answering “9” to the 
problem 4 + 4 = __). If children learn to devote all of their 
resources to getting the right answer when they are 
presented with a canonical arithmetic problem, then their 
ability to deploy their approximate number system may 
suffer on these problems (cf. Dehaene, 1997). According to 
this account, the difference between performance in the 
canonical and non-canonical versions of approximate 
addition tasks may decrease—and possibly even reverse 
direction—over the course of the elementary school years. 
Future research should examine theoretically relevant 
aspects of the environment and how they affect children’s 
ability to deploy their approximate number system. 

More generally, the results of the present study highlight 
the classic tension between competence and performance. 
Just as we cannot dismiss the fact that children may have 
richer conceptual knowledge of arithmetic than they are able 
to show when asked to solve exact symbolic arithmetic 
problems (e.g., Gilmore & Spelke, 2008), we also cannot 
dismiss the possibility that children who perform well on 
approximate addition tasks may nonetheless have important 
limitations in conceptual knowledge that might be revealed 
in certain testing situations (e.g., Booth & Siegler, 2006). As 
Sophian (1997) argued, to truly understand the nature of 
developing knowledge, “we need to pay attention not just to 
the conditions in which performance is best, but also to 
those in which children have more difficulty” (pp. 290-291).  
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