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Abstract 

Object Recognition in Spatial and Temporal Context: 
Crowding and Serial Dependence 

by 

Wesley James Chaney 

Doctor of Philosophy in Vision Science 

University of California, Berkeley 

Professor David Whitney, Chair 

Object recognition is a fundamental function of the human visual system. Our visual 
system must recognize objects under a wide variety of environmental conditions and despite 
inherent noise in the nervous system. How the brain accomplishes such accurate and reliable 
performance on object recognition tasks is widely studied but poorly understood. Less 
understood still is how the brain accomplishes object recognition in a broader spatial and 
temporal context, as many studies focus on studying the recognition of objects in isolation. 
Objects in the real world are more often seen and recognized in both a surrounding visual 
environment, and for more than one moment in a dynamic world. Here we address these 
questions by examining the phenomena of crowding and serial dependence. Crowding is an 
interaction of spatial context; it is the inability to recognize an object when it is surrounded by 
other similar objects, which would otherwise be resolved in isolation. Serial dependence is an 
interaction of temporal context; a target appears more similar to a previously seen stimulus. First, 
we ask what types of information survive crowding and what types of representations can crowd 
one another. Through computational modeling, we present evidence that crowding is a 
perceptual decision level phenomenon that occurs when we must make examine a distributed 
representation with limited attentional resources. Next, in a behavioral experiment, we show that 
lighting information in the context of a scene can influence how nearby object representations 
interact in crowding. Finally, we show that temporal context can influence the perception of even 
high level dynamic stimuli like point-light walkers through the mechanism of serial dependence.  
Together, these experiments show that both spatial and temporal context play an important role 
in object recognition and that the brain uses high level object representations that can interact in 
both space and time to accomplish recognition.
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Chapter 1: Introduction 

Object recognition is one of the most fundamental tasks of the human visual system. We 
effortlessly perceive and recognize objects in the world around us across a wide variety of 
environments and conditions, such as lighting changes, object movement and rotation, and the 
presence of distracting information in a scene. The complexity of this task is masked by the 
apparent ease with which our brain is capable of recognizing objects, from simple objects such as 
the characters in this text to the very precise high level discrimination, such as identity of human 
faces.  

Accurate discrimination of an object's component features is crucial for recognition and many 
factors affect the discriminability of these features, from simple properties such as contrast and 
orientation to more cognitive processes such as attention. Generally, object recognition is 
thought to primarily consist of a sequential processing stream that builds increasingly complex 
features from visual input, from occipital to temporal cortex. However, the processes underlying 
the recognition of single objects are still not fully understood, and research in this domain has 
been made even more complicated by the fact that spatial and temporal context influence object 
recognition at many different levels of this processing stream. The influence of context on object 
recognition includes effects of scene context, negative aftereffects, temporal effects such as 
recency, and long term adaptation. Here, I investigated two specific ways in which object 
recognition varies in spatial and temporal context: crowding and serial dependence. 

Crowding occurs in the spatial domain. It is the "deleterious effect of surrounding clutter on 
object recognition" (Whitney & Levi, 2011) and it is a fundamental limit on our ability to 
recognize objects. Crowding occurs over the vast majority of our visual field and places limits on 
recognition in the periphery that go far beyond the limits of visual acuity. Objects that can easily 
be recognized in isolation at a particular location in the visual field can become completely 
unrecognizable in the presence of nearby flankers. Crucially, crowding impairs only the 
identification/discrimination of features and objects, leaving detection unaffected. Hence, it is 
considered an important tool for investigating visual processing, as it impairs only a specific, 
intermediate step of object recognition. Understanding crowding is also critical for understanding 
the types of computation that happen over large parts of the human visual field. 

Serial dependence, on the other hand, occurs in the temporal domain. It is the systematic 
attraction of the current percept to a similar recently seen stimulus. Like crowding, serial 
dependence leads to illusory changes in the appearance of stimulus features that are used for 
object recognition. However, serial dependence is different from crowding in that it may serve to 
facilitate object recognition. Objects in the world are highly autocorrelated, as they generally do 
not disappear at random and rarely undergo dramatic changes in their characteristics. Therefore, 
a systematic attraction to what was previous seen, tuned by similarity, helps to generate 
perceived stability from otherwise noisy and rapidly changing visual inputs. Serial dependence 
provides evidence for a continuity field, a spatio-temporal operator in the human system that 
serves to integrate object representations over time in a manner that promotes stability of visual 
perception.  

Many theories of crowding posit a loss of information and representational power that occurs in 
low level visual processing. However, these models cannot account for crowding between high 
level holistic representations, such as faces. In Chapter 2, we present a computational model of 
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crowding called the Hierarchical Sparse Selection Model (HSSM) that can resolve these conflicts 
between existing models and the known data. The HSSM makes testable predictions and shows 
how crowding occurs at multiple levels in the visual system during the read-out process of a 
population code. This allows a high-fidelity population level representation to pass through 
successive layers of visual processing, preserving the necessary information for high-level object 
recognition, while also predicting the crowding effect for stimuli at each level of visual 
processing. 

In Chapter 3, I present evidence that lighting interpretation in a simple scene can affect the 
magnitude of crowding. This presents a further problem for low level crowding models: I show 
that crowding of a simple feature (orientation) can be affected by the interpretation of 3D shape 
from shading under a specific assumption of a single light source from above. This effect has 
several hallmark properties of visual crowding and cannot be explained by most competing 
models of crowding.  

In Chapter 4, in the temporal domain, I show that serial dependence can also occur between 
perceived biological motion from point-light walkers. Serial dependence has been previously 
shown to attract the perception of a current stimulus to the perception of a previous stimulus 
across many levels of the visual system from orientation, to numerosity, to face identity, 
emotion, and attractiveness. Recently, serial dependence was also shown for motion direction. 
However, this is the first work to provide evidence for serial dependence in dynamic, global 
stimuli. Our work extends the domain of serial dependence to include object representations in 
the visual system that require the integration of high level form over time. 

In sum, I provide evidence that both serial dependence and crowding are general phenomena 
which operate on a wide variety of object representations, including 3D form and temporal 
dynamics. In order to understand object recognition, we must take into account spatial and 
temporal context at multiple levels from low level features, such as orientation, to high level 
features like lighting interpretation and biological motion, and allow for the top-down influence 
of our prior assumptions about lighting and form.   
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Chapter 2: The Hierarchical Sparse Selection Model of Crowding 
 

Introduction 

 Peripheral vision is not what it seems. Despite the subjective experience of seeing rich 
detail throughout the visual field, if we are pressed to report the identity of one individual object 
among others in the periphery, we are very often unable to do so due to the phenomenon of 
crowding (Levi 2008) (Fig. 1). Crowding occurs when an object appears among clutter; we lose 
individual access to the identities of objects spaced too closely together. Access to individual 
objects is replaced with access to textures of objects – we have an impression of the kind of 
“stuff” that occupies different regions of space, but no awareness of individual items (Cavanagh 
2001; Tyler and Likova 2007; Balas, Nakano et al. 2009; Greenwood, Bex et al. 2009; Freeman 
and Simoncelli 2011). Crowding imposes a fundamental limitation on our ability to identify 
objects in everyday life (Whitney and Levi 2011). 

 

Figure 2.1: Visual crowding. a) When fixating the penny on the left in the upper panel, the center 
object on the right is difficult to identify, although it is clear that something is present in the 
center. In the lower panel, in the absence of surrounding clutter, identifying the same object at 
the same eccentricity is much easier. Crowding impairs the ability to recognize (but not the 
ability to detect) objects amidst visual clutter. b) Faces crowd each other. While fixating the 
orange dot in the upper panel, it is relatively difficult to recognize the identity of the central face 
due to crowding from the flanking faces. In the lower panel, in the absence of flanking faces, the 
central face is easier to identify. Crowding between faces is not simply due to crowding of low-
level features such as edge information – inverting or scrambling the flanking faces, which 
preserves low-level features but disrupts holistic face information, reduces crowding between 
faces (Louie, Bressler et al. 2007; Farzin, Rivera et al. 2009; Fischer and Whitney 2011). 

 Yet there is another sense in which our visual experience in the periphery is misleading: 
the experience of crowding seems to imply that the brain simply lacks the bandwidth to represent 
individual objects outside of those that we scrutinize at the fovea; indeed, nearly all current 
models of crowding posit that the experience of crowding reflects an underlying irreversible loss 
of information due to a visual processing bottleneck (He, Cavanagh et al. 1996; Levi 2008; Pelli 
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2008; Balas, Nakano et al. 2009; Greenwood, Bex et al. 2009; Freeman and Simoncelli 2011; 
Nandy and Tjan 2012). However, emerging research shows that much more information survives 
in the periphery than previously thought, albeit sometimes outside the reach of conscious 
awareness. One clue comes from the fact that we can readily recognize objects that require 
configural processing, such as faces, when we see them in the periphery (McKone 2004; Louie, 
Bressler et al. 2007), despite the fact that the features of a face in the periphery crowd each other 
(Martelli, Majaj et al. 2005). How does the brain reconstruct the arrangement of the features of a 
face after those features have been jumbled together? That crowding happens at many different 
representational scales, occurring between basic features (Levi 2008), object parts (Martelli, 
Majaj et al. 2005), and whole objects (Louie, Bressler et al. 2007; Farzin, Rivera et al. 2009; 
Wallace and Tjan 2011), is paradoxical if crowding at early stages of visual processing destroys 
the information required by higher-level stages. 

 We recently directly tested the degree to which object-level information can survive 
crowding for use in subsequent visual processing (Fischer and Whitney 2011). We presented sets 
of faces in the periphery and asked observers to report either the expression of an individual 
(crowded) face from the set, or the average expression of the set as a whole. We found that even 
for sets of faces where observers were at chance in discriminating the expression of the crowded 
face, that particular face contributed with high precision to the perceived average of the set, an 
effect that cannot be explained by a contribution of low-level features alone. Individual object 
information is not lost amid the clutter in the crowded periphery, it is simply inaccessible to 
perception. In support of these findings, another recent study found that illusory contour 
formation, a process that relies on the configuration of the inducer stimuli, can also survive 
crowding of the individual inducers (Lau and Cheung 2012) (but see (Banno and Saiki 2012) for 
data suggesting that size information does not survive crowding). Further, crowded objects can 
unconsciously influence behavior by priming subsequent responses (Faivre and Kouider 2011; 
Yeh, He et al. 2012) and biasing preferences (Kouider, Berthet et al. 2011). 

 Thus, a satisfactory theory of crowding must account for not only for the perceptual 
degradation that crowding produces, but also for how certain information survives crowding and 
can contribute to downstream processes. The most prominent current models of crowding posit 
that crowding results from excessive integration of information appearing in the periphery, due 
to the number of neurons representing a given location in space (Pelli 2008; Pelli and Tillman 
2008), lateral connections shaped by image statistics during development (Nandy and Tjan 
2012), or the resolution of visual attention (He, Cavanagh et al. 1996). Some over-integration 
models can successfully account for most or all of the classical properties of crowding, but all 
posit information loss due to a resolution bottleneck, and thus cannot explain how crowded 
visual features or objects can be available with high fidelity to downstream processes. Another 
related model of crowding, the positional averaging model (Greenwood, Bex et al. 2009), posits 
that crowding results from pooling position information to reduce positional uncertainty. 
Positional averaging may also account for object-level crowding (Dakin, Cass et al. 2010), but it 
still posits information loss, and cannot account for how holistic object information survives 
crowding and influences ensemble perception (Fischer and Whitney 2011). Thus, while the 
general idea of involuntary pooling captures many aspects of crowding and likely plays a role, 
overintegration is not the whole story. Other models of crowding, including substitution 
(Wolford 1975; Chastain 1982) and contrast-gain or masking based models (Krumhansl and 
Thomas 1977; Chastain 1981; Petrov and Popple 2007) are not more successful; they similarly 
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require that information about crowded objects is lost or substantively modified, a prediction that 
has been overturned (Faivre and Kouider 2011; Fischer and Whitney 2011; Kouider, Berthet et 
al. 2011; Lau and Cheung 2012; Yeh, He et al. 2012). 

 Here we propose a new model of visual crowding, the hierarchical sparse selection 
(HSS) model, in which unconscious object processing continues unencumbered by clutter in the 
scene. Our model accounts for the known characteristics of crowding, and generates several 
predictions for future tests (Box 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 1: HSS Model Predictions 

The HSS model makes a number of concrete predictions at both the behavioral and 
neural levels for future testing: 

1) The HSS model predicts that crowded stimuli are represented robustly in the 
brain even though they are blocked from conscious individuation. Thus, it should be 
possible with both fMRI pattern analysis and neurophysiological recordings to find 
precise representations of crowded objects in the brain. 

2) The HSS model predicts that the critical spacing of crowding is different for 
different stimulus categories (e.g., gratings, faces, bodies, objects, etc.) because 
crowding is a function of receptive field size within the cortical map in which the 
stimulus is represented. There is already some evidence that critical spacing differs 
across stimulus categories (see (Whitney and Levi 2011) for a review), but the 
spatial extent of crowding has not yet been precisely characterized for a wide 
variety of stimuli, nor has there been a test of the relationship between receptive 
field size and the extent of crowding across stimulus categories. 

3) In the HSS model, precise information about crowded objects persists in the 
visual processing stream despite the perceptual experience of crowding. Thus, 
information about crowded targets may be available to other processes in addition 
to ensemble perception and priming. For example, action may not suffer from 
crowding as much as perception (Bulakowski, Post et al. 2009). 

4) A prediction of the HSS model is that with extensive experience viewing a 
particular stimulus category at a particular position in the visual field, it may be 
possible to reduce crowding through training. If information about a crowded target 
is present but requires fine-tuned connections to decode, it may be possible to train 
up the required connections. However, such training should not transfer to other 
sufficiently different stimulus categories even at the same spatial location because 
crowding depends on connections to the particular map that the stimuli are 
represented in. There is indeed evidence that training can reduce the strength and 
extent of crowding (Wolford, Marchak et al. 1988; Chung 2007; Hussain, Webb et 
al. 2012), but the specificity of the reduced crowding to object category remains to 
be tested. 
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The Hierarchical Sparse Selection model of visual crowding 

 Our proposed model rests on two principles. First, large receptive fields or integration 
regions do not imply the loss of fine-scaled information. While it is true that the output of a 
single neuron with a large receptive field will carry highly integrated, spatially- and featurally-
ambiguous information in the presence of visual clutter, a population of many such neurons can 
carry sufficient information to resolve details on a scale far smaller than the receptive field size. 
Indeed, the feature or object at a precise location can be isolated from amongst clutter by 
combining the outputs of many highly overlapping receptive fields, as has been described in 
detail in the ensemble- and coarse-coding literature (Eurich and Schwegler 1997; Pouget, Dayan 
et al. 2000; Purushothaman and Bradley 2004), and large receptive fields may in fact be a more 
efficient means of carrying fine spatial information than small receptive fields (Baldi and 
Heiligenberg 1988; Snippe and Koenderink 1992; Eurich and Schwegler 1997). Figure 2.2a 
depicts this concept: neurons tuned to facial features have receptive fields that cover many 
features at once for a face seen in the periphery. Each individual neuron signals ambiguous 
information about the features present at a given location, yet with a proper decoding scheme, a 
combination of the outputs of many neurons can resolve the feature present at a given location. 
Thus, object processing can proceed unencumbered by clutter given precise enough wiring from 
one stage to the next. This notion is consistent with the fact that higher-level visual areas that are 
closely tied to the perception of object identity and position (Williams, Dang et al. 2007; Fischer, 
Spotswood et al. 2011; Maus, Fischer et al. 2013) have large receptive fields even in central 
vision (Raiguel, Hulle et al. 1995; Amano, Wandell et al. 2009), yet we can resolve and identify 
closely spaced objects in central vision. 
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 Figure 2.2: The hierarchical sparse selection model of visual crowding. Unambiguous 
information about features or objects is passed between processing stages via an ensemble- or 
coarse-coding scheme, using a sufficient number of receptive fields with dense connections to 
avoid information loss through over-integration (a). Perceptually accessing an object from a 
given map relies on a sparse selection of a subset of the receptive fields or connections from that 
particular map only, resulting in the read-out of an ambiguous conscious percept (b). Thus, an 
object that is perceptually crowded can nonetheless be passed, intact, to a subsequent texture 
processing stage (c). 

 If high-fidelity information can be transmitted through a neural system with large 
receptive fields, why does crowding occur? The second component of our proposal is that while 
the feed-forward cortical object processing hierarchy possesses the copious and fine-tuned 
connections necessary to resolve the relevant features at every stage, the operation which “reads 
out” selected cells’ outputs to conscious perception does not. Key to this notion is that within a 
coarse coding framework, unambiguous features and objects need not be explicitly represented 
by individual neurons at any stage of processing. Rather, information about an individual visual 
feature is encoded across a population of cells, and this information is decoded between stages of 
processing by the precise pattern of connections between neurons in one stage and the next. In 
the example in Figure 2.2, no single neuron at the facial feature processing stage unambiguously 
represents the nose, nor does any single neuron at the face identification stage. However, the 
presence of the nose at its precise location is conveyed between the facial feature processing and 
face identification stages by a specific and finely-tuned pattern of connections. If the selection of 
information from a given map for perception relies on connections to a subset of the units in this 
map (a “sparse selection”), there may be insufficient information available to unambiguously 
decode the selected feature (Fig. 3b). Thus, it is only possible for an observer to perceptually 
individuate an object when it can be unambiguously decoded from this limited sparse selection 
of the information in the neural population representing it, and this requires that the object is 
sufficiently separated from the clutter around it. However, object processing carries on regardless 
of whether this condition of sufficient separation is met (Figure 2.3c). It is important to 
differentiate sparse selection from the unrelated notion of sparse coding. Here, by “sparse 
selection” we mean capitalizing on information from a limited and sometimes insufficient 
number of units, whereas “sparse coding” refers to a sufficient coding scheme that favors having 
the smallest number of active units possible. 

 Why would perceptual selection only sample a subset of the relevant information 
available for resolving objects in the periphery? There are two likely reasons: First, attention 
must be highly flexible, able to select any feature from any position in the visual field. The 
number of connections required to perfectly sample information from any visual map in the brain 
is prohibitive. Putative attentional regions in the fronto-parietal network (Corbetta, Miezin et al. 
1993; Buschman and Miller 2007) and the pulvinar (Petersen, Robinson et al. 1987; Fischer and 
Whitney 2012) possess widespread connectivity throughout the brain, but connect with only a 
subpopulation of the cells in a given brain region (Curcio and Harting 1978; Schall, Morel et al. 
1995; Kaas and Lyon 2007). Second, the integrated ensemble information that we perceive in the 
periphery is useful for providing a rapid gist of the scene (Oliva 2005), as well as guiding 
attention and saccades (Torralba, Oliva et al. 2006). Trading off individual object information for 
ensemble representations in the periphery might be a benefit rather than a hindrance. 
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Figure 2.3: Computational model results. a) Example display for model training and testing. One 
symbol (the target item) was positioned in the center of the image, and two other randomly 
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selected symbols (flankers) were positioned in random locations elsewhere in the image. b) 
Schematic depiction of the neural network decoding model. Twenty-four receptive fields were 
tiled in random locations over the image. RFs had random tuning functions, but an equal number 
of RFs were optimally tuned to each of the three symbols (8 RFs optimally tuned to each of 
circles, triangles, and Xs). The model contained a ten unit hidden layer and a three unit output 
layer. Each node in the hidden layer was connected with each of the 24 RFs, and with each of the 
three nodes in the output layer. The three output layer nodes corresponded to the three symbols, 
and stimulus decoding was determined by taking the maximally responsive node in the output 
layer in a winner-take-all fashion. c) Comparison of performance for the full model vs. the sparse 
selection model. While the full model classified the target symbol with high accuracy (90.4% 
correct) despite the presence of flankers (blue data), classification performance of the sparse 
selection model decreased monotonically as more connections were removed (red data). Thus, 
although fine-scaled information can be decoded from a population of neurons with large 
receptive fields, robust decoding of crowded stimuli relies on a full sampling of the information 
present in the neural population. d) RF scaling with eccentricity yielded the inner-outer 
asymmetry characteristic of visual crowding. We tested the model performance using images 
with one flanker positioned either on the foveal side of the target symbol (here shown to the left 
of the target symbol) or on the eccentric side of the target symbol. Classification was 
significantly worse when an outer flanker was present vs. an inner flanker (p < 0.001), mirroring 
effects found in human performance (Bouma 1973; Petrov, Popple et al. 2007). e) Using the 
same test images as those used to test the inner-outer asymmetry, we found that when the model 
made a classification error, it was significantly more likely to report the flanker as the target than 
to report the symbol that was absent from the display (p < 0.001). This is consistent with human 
performance; observers frequently substitute a flanker for the target in a crowded display 
(Wolford 1975; Chastain 1982). f) We varied RF ellipticity in the model from 1.0 (circular) to 
0.5 (half as tall as wide). For each value of RF ellipticity, we tested model performance with 
images in which flankers were positioned either to the left and right of the target (LR flankers; 
positioned along the radial dimension relative to the fovea) or above and below the target (AB 
flankers; positioned along the tangential dimension). We computed the ratio of performance 
when AB flankers were present to performance when LR flankers were present as a measure of 
radial bias in model performance. Radial bias increased monotonically as RFs became more 
elliptical, demonstrating that asymmetrically shaped RFs are a plausible source of the radial bias 
in crowding. However, the validity of the HSS model does not hinge on elliptical RFs. Other 
potential sources of the radial bias in crowding such as saccadic influences on the development 
of lateral connections (Nandy and Tjan 2012) could be similarly integrated into the HSS model. 
g) A visualization of the crowding zone based on the neural network model performance (the 
region of space around the target within which the presence of a flanker crowds the target). The 
white cross marks the location of the target; model performance was tested with a single flanker 
positioned at every possible location within the display. Here, we expanded the size of the 
display space by 50% relative to previous tests of model performance in order to visualize the 
full extent of the crowding zone. The visualized crowding zone is reminiscent of the elongated 
spatial interaction zones found by Toet and Levi (1992). 

 Importantly, our proposal is not that crowding results from the same limit on the spatial 
resolution of attention proposed by He and Cavanagh (He, Cavanagh et al. 1996). Their model 
asserts a smallest area of the visual field over which attention can operate; our model is about the 
sparsity of sampling within that region. Attentional sampling could be highly spatially specific, 
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yet if attention samples from a limited number of receptive fields at the selected location, the 
object at that location cannot be resolved. Further, the sparse selection we propose can happen at 
any level of processing and is not limited by a single resolution of attention. It is the size of the 
receptive fields at a specific level of analysis, coupled with a sparse sampling of the information 
represented at that level of analysis for perceptual access, that causes crowding. The HSS model 
predicts that the critical spacing for crowding (the maximum distance at which a flanker can be 
positioned from the target and still cause crowding, as a function of eccentricity) differs for 
different stimulus classes (see Discussion), whereas the attentional resolution model predicts a 
single critical spacing for all stimuli based on the smallest possible attentional window at a given 
eccentricity. 

Computational model 

 To test the outcome of drawing a sparse sample from coarse-coded visual information, 
we constructed a computational model aimed at decoding crowded visual features based on the 
output of randomly tiled receptive fields. 

i) Model construction 

 The display images were 101 x 101 pixel images consisting of white symbols drawn on a 
black background (Fig. 3a). There were three possible symbols: a triangle, an X, and a circle, 
each drawn within a 20 x 20 pixel area in the images. In all display images, one symbol was 
placed at the center of the image; this center symbol was the crowded item that the model aimed 
to decode. In training images, two additional random symbols (flankers) were placed at random 
locations within the image; the training set comprised 120 such images – 40 images with a 
triangle at the center, 40 images with an X at the center, and 40 images with a circle at the center. 
Model testing was conducted on an independent set of 60 images constructed in the same fashion 
for basic model testing or with the flankers placed at specific locations for testing of asymmetries 
and substitution errors (described below). 

 The model consisted of receptive fields tiled over the image space (the input layer) whose 
outputs were fed into a neural network with one ten unit hidden layer and a 3 unit output layer 
(Fig. 3b). On each iteration of model training and testing, we tiled 24 receptive fields over the 
image space in random locations. Receptive fields had a mean diameter of 50 pixels. The left 
side of the image was treated as being more foveal and the right side of the image more 
eccentric, such that the image represented a patch of the right visual field. Receptive field size 
scaled linearly with eccentricity with a slope of 0.7, consistent with the scaling in extrastriate 
object-selective cortical regions (Amano, Wandell et al. 2009). Each receptive field was 
preferentially tuned to one of the three symbols but responded to some degree to each of the 
symbols. The response of a receptive field was computed by convolving a filter (a 20 x 20 image 
of the symbol that the RF was maximally tuned to) over the entire image and then taking the 
maximum of the convolution output within the region of the display image that the RF covered. 
Thus, when the optimal stimulus was present anywhere within an RF, the RF response was 1.0; 
if the preferred stimulus was partially within the receptive field or a nonpreferred stimulus fell 
within the receptive field, the response was less than 1 but greater than zero. We applied a 
rectification that mapped negative convolution values (possible if two stimuli fell close together 
within the RF) to zero. If no stimulus fell within a receptive field, its response was zero. 
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 The set of 24 receptive fields comprised the input layer to the neural network; each RF 
had a connection to each of ten units in the hidden layer, and each unit in the hidden layer had a 
connection to each of three units in the output layer (Fig. 3b). The three output layer units 
corresponded to the three stimulus categories; stimulus decoding was determined in a winner-
take-all fashion on the three output units. Training of the model weights was conducted with 
scaled conjugate gradient backpropagation implemented with the Matlab Neural Network 
Toolbox (MathWorks, Natick, MA). Model performance was then taken as the proportion of 60 
independent test images correctly classified by the model. We conducted 1,000 iterations of 
model training and testing, randomizing the stimuli, RF locations, and RF tuning on each 
iteration, and we report the average model performance across all iterations. To test the 
significance of the model performance, we generated an empirical chance distribution by 
shuffling the stimulus labels prior to model training, then testing on an independent set of images 
with the correct labels. Repeating this shuffling procedure 1000 times produced a distribution of 
performance estimates that would be expected by chance; the significance of the model 
performance was taken as the proportion of the chance distribution that was larger than the actual 
estimated model performance. 

 To test whether the same model predicts crowding at the fovea, we adjusted the overall 
display size to 61x61 pixels from 101x101 pixels to keep target, flankers, and receptive fields 
within a smaller eccentricity range and closer to the fovea. The same three images were used 
(white circle, X, and triangle on black background) at the same sizes as before (20x20 pixels 
each). The target was presented in the center of the display image with two flankers randomly 
placed in nonoverlapping positions. The number of receptive fields in the model was increased 
from 24 to 45. This increase combined with the reduction in overall display image size lead to an 
increase in RF density (ratio of number of RFs to pixel area) by a factor of 5, consistent with an 
estimate of cortical magnification from V1 (Sereno, Dale et al. 1995; Engel, Glover et al. 1997; 
Qiu, Rosenau et al. 2006) assuming target eccentricity of 5 degrees in the previous model and 1 
degree or less in the foveal model. This is a conservative estimate because cortical magnification 
is greater in extrastriate visual cortex than in V1 (Harvey and Dumoulin 2011), and object 
crowding likely occurs beyond V1 (Whitney and Levi 2011; Farzin and Rivera 2009). The 
remainder of the model was left unchanged: we used 10 hidden units, 120 training images, and 
60 test images to run 1000 iterations of the model. 

 Finally, in order to further illustrate and clarify the hierarchical nature of the model, we 
present simulations of performance on two additional tasks, identifying either features or an 
object constructed from those features, using the same feature-tuned receptive fields in the input 
layer. In these simulations, there were two possible tunings for receptive fields, a horizontal line 
and a vertical line. The display images were again 101x101 pixel images with a target at the 
center. For the feature task, the target and flankers were either a horizontal or vertical lines.  For 
the object task, the receptive field tuning remained the same, but the target and flankers consisted 
of “tumbling Ts”: the letter T oriented in one of the four cardinal directions. The size of the 
receptive fields was reduced to an average of 20 pixels diameter and the number of receptive 
fields was increased to 48, modeling a region with selectivity for lower-level features. All other 
aspects of the model were identical to the original implementation and we tested the model by 
performing 1000 iterations with randomized target and flanker identities, flanker locations, and 
receptive field locations within the 101x101 display image. 
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ii) Model performance 

 Target shape decoding performance was 90.4% correct, significantly greater than chance 
(chance performance = 33.3% correct; p < 0.001). This result establishes that target identity in a 
cluttered array can be resolved from the pooled output of a population of RFs, even when no 
individual RF is small enough to encompass the target alone. To test the effect of sparse 
sampling from the simulated neural population, we repeated the above analysis, this time 
removing a portion of the receptive fields from the network  and then retraining (assigning new 
connection weights) after the removal of units and prior to testing. This procedure simulates the 
case where decoding of stimuli for conscious perception relies on a network of connections 
entirely distinct from that of feed-forward processing, connected to a sparsely selected subset of 
units. The results of this analysis are shown in Figure 2.3c: reducing the number of units sampled 
for the readout of the crowded central target led to a monotonic decrease in model performance, 
with performance  dropping to 90% of the full model performance when 85% percent of the 
input units were sampled. Removing a portion of the receptive fields from the trained network 
without retraining prior to testing (simulating the case where attentional selection taps into the 
same network that robustly represents the target identity, but only has access to a subset of the 
units in the network) produced a comparable pattern of results. Similarly, removing individual 
connections rather than entire RF units from the model also resulted in a monotonic decrease in 
performance, though at a slower rate than removing entire receptive fields. The principle of 
“sparse selection” therefore holds irrespective of whether it is entire units or individual 
connections between units that are selected. In short, decoding target identity from a population 
of cells requires connections with a sufficient proportion of the cells to resolve those stimuli that 
are spaced closer together than the size of a receptive field. 

We next asked if model performance followed the well-established property of inner-
outer asymmetry: a flanker presented in a more eccentric location relative to the target produces 
stronger crowding than a flanker presented at the same distance from the target but in a more 
foveal position (Bouma 1973; Petrov, Popple et al. 2007). To test for an inner-outer asymmetry, 
we trained the model in the same fashion as above, but tested on images with just one flanker, 
positioned either 25 pixels to the left or 25 pixels to the right of the target. In this case the flanker 
was not allowed to be the same symbol as the target; thus, there were twelve total images in the 
test set. The sparse selection model for this and subsequent tests was generated by dropping a 
random selection of 50% of the RFs in the full model post-training. A comparison of model 
performance for test images where the flanker was more foveal than the target (positioned to the 
left) vs. the images where the flanker was more eccentric revealed an asymmetry in line with 
psychophysical results: the presence of an eccentric flanker yielded significantly worse model 
performance (p < 0.001; Fig. 3d). This asymmetry was absent without sparse selection – the 
inner/outer asymmetry emerges from the model as a result of the interaction between receptive 
field eccentricity scaling and sparse selection. 

 Another well-established aspect of crowding is that when observers make errors in 
reporting a crowded target, they report a flanker rather than another potential symbol with above-
chance frequency (substitution errors; (Wolford 1975; Chastain 1982)). Using the same set of 
test images as described above for testing the inner-outer asymmetry, we asked whether the 
model more commonly reported the flanker, rather than the third symbol which was not present 
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in the display, when it made an error. This was in fact the case: 70.4% of errors arose from 
reporting the flanker as the target, rather than reporting the symbol that was not present (Fig. 3e). 

 In behavioral tests, flankers positioned radially in relation to the target (eg, to the left and 
right of the target for a target appearing on the horizontal meridian) crowd more strongly than 
flankers positioned tangentially (above and below the target in the same example), an effect 
known as a radial bias (Toet and Levi 1992). A simple addition to our model could account for 
the radial bias in crowding: if receptive fields are elliptical rather than circular (Motter 2009), 
elongated in the radial direction, a radial bias emerges in the model performance. We tested this 
effect by using test images with two flankers either 25 pixels to the left and right of the target or 
25 pixels above and below the target. We then varied the ellipticity of the receptive fields in the 
model from zero (perfectly circular) to ½ (half as large in the vertical direction as in the 
horizontal direction). The relative performance for test images with left/right flankers vs. images 
with up/down flankers decreased monotonically with increasing RF ellipticity. That is, the radial 
bias in model performance increased with more elliptical RFs, and was significant (a significant 
departure (p < 0.05) from a left/right vs. upper/lower performance ratio of 1, which reflects no 
bias) with ellipticity values of 0.8 or smaller (Fig. 3f). 

 There is strong evidence for elliptical receptive fields throughout the visual processing 
stream in mammals, for example in V4 of rhesus monkeys (Motter 2009), in macaque ventral 
visual areas (Op De Beeck and Vogels 2000, Pigarev et al. 2002), in areas 7, 21a, and claustrum 
of cats (Sherk and Levay 1981, Rodinova et al. 2004) and in RF subregions in mouse visual 
cortex (Smith and Häusser 2010). As such, it is important to incorporate elliptical receptive fields 
in a computational model of crowding in ventral cortical regions. Ellipticity is one possible 
explanation for the radial bias in crowding , and it would dovetail with the aforementioned 
neurophysiological literature. However, there are other potential contributors to the radial bias in 
crowding such as saccadic influences on the development of lateral connections (Nandy and Tjan 
2012) that could be similarly integrated into the HSS model. Even without elliptical receptive 
fields, cortical magnification factor in the random placement of the RFs and eccentricity-
dependent size scaling introduced some radial bias into our model. Our model does not hinge on 
any particular mechanism for the production of a radial bias; rather, the HSS model can be 
thought of as a module that can be added to many current models of crowding in order to extend 
them to account for how high fidelity information can survive crowding. 

 Next, we generated a visualization of the spatial extent of crowding produced by the HSS 
model (Fig. 3g). We used training and test images that were 150% of the size used in previous 
model testing (now 151 x 151 pixels); symbols were still 20 x 20 pixels. To accommodate the 
larger display image space, we increased the number of RFs in the model to 48, and the number 
of training images to 240. The ellipticity of RFs in the model was set to 0.5. On each of 100 
iterations, we trained the model using the 240 training images (each had a target at the center of 
the image and two randomly positioned flankers), and then tested the model performance on a 
series of test images in which a flanker was positioned at every possible location in the display 
image. For each possible flanker location, there were six test images corresponding to all 
pairings of one symbol type as the target and a different symbol type as the flanker. Within a 
given flanker location, overall model performance was the % of the 6 test images correctly 
classified. In Figure 2.3g, the color at a given location in the image corresponds to the model 
performance when a flanker was positioned at that location and a target was positioned at the 
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center of the image. The performance shown in Figure 2.3g is average performance over 100 
iterations. The resulting visualized “crowding zone” is reminiscent of the elongated spatial 
interaction zones found by Toet and Levi (1992), and additionally shows an inner/outer 
asymmetry: the region within which a flanker degrades performance extends further into the 
periphery than toward the fovea. 

 Evidence for whether crowding occurs in central vision is mixed (Levi, 2008), but 
crowding is generally thought to be at least weaker near the fovea than in the periphery. Our 
foveal model (Fig 4a) with a modest increase in RF density and a bias toward locating RFs at 
lower eccentricities in accordance with the V1 cortical magnification factor (Sereno, Dale et al. 
1995; Engel, Glover et al. 1997; Qiu, Rosenau et al. 2006) showed higher overall target 
identification performance, correctly identifying a target in 98.18% of trials, significantly greater 
than chance (chance performance = 33.3% correct; p < 0.001). Furthermore, performance in the 
foveal model required removing 75% of the RF units to reach 90% of the full model 
performance, 20% more than the peripheral model and equivalent to a 44% reduction of the RFs 
remaining in the peripheral model. We do not, however, want to stress too strongly the specific 
values we obtain. The parameters used here reflect extrapolations of cortical magnification and 
receptive field scaling into the most foveal portion of the human visual field, which affect the 
performance of the model. Rather, the results should be taken to qualitatively show that 
increased density of receptive fields and reduction of the size of the receptive fields could 
explain why sparse selection at the fovea would not result in crowding or would cause much 
weaker crowding than in the periphery. 

 



15 
 

 Figure 2.4: Computation model results. a) Comparison of performance for the full model 
vs. the sparse selection model at the fovea. Increased receptive field density yields higher full 
model performance than in the periphery (98.18%). Sparse selection of receptive field units leads 
to a much slower performance decrease demonstrating reduced crowding in the fovea. Increased 
receptive field density in foveal regions can reduce or eliminate the effect of sparse selection. b) 
Demonstration that feature-tuned receptive fields can perform well on both a feature 
discrimination task (98.73%) and an object discrimination task (91.06%) in the presence of 
flankers (solid lines). Sparse selection of feature-tuned receptive fields leads to a monotonic 
decrease in performance and crowding of features (dashed blue), showing that the model predicts 
crowding at any behaviorally relevant level of processing. Sparse selection occurs at only one 
level, avoiding the degradation of object level encoding that would occur if object representation 
depended on the sparse selection of features (shown in dashed red). 

 Finally, to demonstrate the hierarchical aspect of the model, we conducted a simulation 
of crowding performance using feature-tuned receptive fields, as opposed to objects or letters. In 
order to show that the model predicts crowding for features as well as objects, we first trained 
and tested the model with target and flankers that were horizontal and vertical lines (Fig 4b). 
Overall model performance was 98.73%. The model dropped below 90% of full model 
performance (88.86%) when 75% of the receptive fields were removed before retraining, 
indicating that crowding would occur in the identification of horizontal and vertical lines, if there 
were sparse selection of feature-level information, a simple task and only 2AFC as opposed to 
the 3AFC tasks in previous simulations. This demonstrates the hierarchical aspect of the model: 
the model can account for crowding of both features and whole objects when it is applied at any 
behaviorally relevant level.   

 The HSS model states that attention sparsely selects from the behaviorally relevant level 
of the visual hierarchy (Fig 2b), not that there is a cumulative effect of sparse selection at each 
level of the hierarchy. To show why, we trained the full model of this same network with feature 
detector receptive fields to identify “tumbling Ts” at a surprisingly high 91.06% correct 
performance (Fig 4b). This is a 4AFC task where every target and flanker contains both of the 
possible features that any given receptive field is tuned to and only relative location information 
is useful for the task. At 75% removal of feature tuned receptive fields, enough to cause 
crowding of features, “tumbling T” performance dropped to 66.6% correct. This scenario shows 
what would happen if degraded feature information was passed forward to subsequent visual 
processing stages – object-level information would be severely degraded. This contradicts many 
studies that have demonstrated that object level information gets through the bottleneck of 
crowding (Fischer and Whitney 2011). That is, if sparse selection occurred cumulatively at each 
level in the hierarchy (which is not what we are proposing), it would suffer from the same 
weaknesses as other crowding models: it could not account for the preservation of object 
information evidenced by object ensembles, priming and other effects (Faivre and Kouider 2011; 
Kouider, Berthet et al. 2011; Lau and Cheung 2012; Yeh, He et al. 2012) 

 Because the HSS model of crowding posits that sparse selection occurs only at the 
behaviorally relevant level of representation (selection occurs at the feature level of 
representation when the task is to identify a crowded feature and at the object level when the task 
is to identify the object), the object representation is preserved in the full feed-forward hierarchy. 
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Crowding can still occur at either level through a sparse selection of either feature or object level 
information for conscious awareness.  

The model performance demonstrates that, in principle, the hierarchical sparse selection 
model can give rise to the known properties of visual crowding while supporting the 
transmission of high precision information within the cortical object processing hierarchy. This 
computational model is not intended to provide quantitative predictions about the number of 
neurons required in a coarse-coding framework or the number of neurons sampled by attention, 
but rather to provide a conceptual verification that: 1) fine-scaled information can be decoded 
from a population of neurons with large receptive fields, 2) a sparse selection from a neural 
population with large receptive fields results in rapid degradation of target identification and 
flanker-target confusions in the periphery but not in the fovea, 3)  sparse selection at the 
behaviorally relevant level of processing nonetheless leaves high-fidelity stimulus information 
intact in the feed-forward visual processing stream, and 4) properties of receptive field scaling 
(in this case, larger receptive fields in more peripheral locations) can give rise to the asymmetries 
that are diagnostic of crowding. 

Discussion 

The hierarchical sparse selection model accounts for both the broad array of previously 
known characteristics of crowding and for recent findings that information can survive crowding, 
influencing ensemble perception (Fischer and Whitney 2011; Lau and Cheung 2012), priming 
behavior (Faivre and Kouider 2011; Yeh, He et al. 2012), and biasing preferences (Kouider, 
Berthet et al. 2011). The computational implementation of the HSS model described above deals 
with the simple case of decoding target identity from a small, discrete set of stimuli. The 
computational model itself is not intended to provide an exhaustive account of how sparse 
selection leads to crowding, but rather to provide a proof of concept that simply reducing the 
amount of information sampled for perceptual readout at any particular level of analysis gives 
rise to many of the known characteristics of crowding. 

A hallmark of the HSS model is that it posits that crowding occurs between stimuli that 
are represented in the same cortical maps but not between stimuli that are represented in distinct 
maps (here, by “map” we mean an organized representation of visual space and/or basis 
dimensions within an object category). This feature of the HSS model accounts for why flankers 
of a different object category than the target are not effective crowders (Louie, Bressler et al. 
2007; Farzin, Rivera et al. 2009). Since categorically different objects and features are coded in 
separate maps in the cortex (Op de Beeck, Haushofer et al. 2008), a target will be isolated in its 
cortical map and thus recognizable if the surrounding flankers are sufficiently different to be 
represented in a different cortical region. Likewise, this feature of the HSS model explains how 
grouping the flankers into an object can break down crowding (Livne and Sagi 2007; Saarela, 
Sayim et al. 2009) by causing the object formed by the distracters to be processed in a different 
cortical map than the target. Even when the target and flankers are of the same object category 
(e.g. a Gabor crowded by Gabors or a letter crowded by letters), a large difference between the 
target and flankers along dimensions such as color, orientation, and spatial frequency, and others 
can attenuate crowding (Andriessen and Bouma 1976; Nazir 1992; Kooi, Toet et al. 1994; 
Chung, Levi et al. 2001; Põder 2007). This could also be the result of compulsory grouping of 
the target and flankers into separate objects (Kooi, Toet et al. 1994), but another possibility 
exists: when the target and flankers differ markedly along one of these dimensions, even a sparse 
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sample may be sufficient to successfully resolve the target from the flankers because of the large 
target/flanker signal difference. The fact that visual “pop-out” can alleviate crowding (Põder 
2007) may simply be due to the target and flankers being different enough to resolve from the 
sparse sample of neural outputs available to conscious perception. 

 The HSS model also naturally accommodates the finding that a crowded target can 
produce adaptation and aftereffects despite being perceptually inaccessible (He, Cavanagh et al. 
1996; Aghdaee 2005; Whitney 2005; Harp, Bressler et al. 2007; Bi, Cai et al. 2009): a crowded 
object fatigues the same population of cells that it would if it was presented in isolation – the 
perceptual phenomenon of crowding does not interfere with the underlying stimulus 
representation. 

 In sum, we present a novel model for visual crowding which posits that crowding occurs 
at multiple levels throughout the visual processing hierarchy, rather than at a single bottleneck. 
Counterintuitively, information about crowded objects is represented robustly in the brain, but 
may be inaccessible to conscious perception due to a sparse selection of information on which 
perception relies. The model is not intended to replace all existing models of crowding, but it 
could be a complementary component of any existing model; the HSS model does help account 
for many puzzling findings in the crowding literature that have otherwise gone unexplained.   
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Chapter 3: Lighting interpretation within scenes determines crowding 
 
 

Introduction 
 
Crowding is the impairment of object recognition in closely spaced clutter (Levi, 2008; 
Strasburger & Wade, 2015). Given its ubiquity in everyday life, it is considered a fundamental 
bottleneck of object recognition in visual scenes (Pelli & Tillman, 2008; Strasburger, Rentschler, 
& Jüttner, 2011; Whitney & Levi, 2011). Crowding impairs the recognition of objects that are 
well above acuity thresholds, jumbling their appearance into indiscriminable high contrast 
clutter. Crowding occurs over the vast majority of the visual field, where objects that can easily 
be identified in isolation become unrecognizable in the presence of surrounding flankers. 
 
Crowding is characterized by three main spatial properties. First, the strength of crowding is 
eccentricity dependent and the region around a target in which flankers will interfere with 
recognition scales with the eccentricity of the target. This is known as Bouma's window (Bouma, 
1970; Pelli & Tillman, 2008). Second, the radial-tangential anisotropy: there is stronger 
crowding by flankers placed along the same line from fixation than for flankers placed 
orthogonal to this line (Toet & Levi, 1992). Third, the inner-outer asymmetry: flankers placed at 
a greater eccentricity than the target tend to cause a larger crowding effect than flankers placed 
more foveally (Bex, Dakin, & Simmers, 2003; Bouma, 1973; Petrov & Meleshkevich, 2011). 
These asymmetries can be used to distinguish crowding from other phenomena such as visual 
masking (Petrov, Popple, & McKee, 2007).  
 
Behavioral experiments have demonstrated that crowding occurs selectively at many levels along 
the visual hierarchy, from orientation to faces (Whitney & Levi, 2011). It occurs not only for 
single features and object parts (Andriessen & Bouma, 1976; Levi, Klein, & Aitsebaomo, 1985; 
Westheimer & Hauske, 1975), but also for whole objects (Wallace & Tjan, 2011). This can be 
observed in mid level visual stimuli, such as words composed of letters (Huckauf, Heller, & 
Nazir, 1999), and higher level stimuli, such as faces composed of facial features (Louie, Bressler, 
& Whitney, 2007; Sun & Balas, 2014). It even occurs selectively for two-tone Mooney faces, 
which are recognized holistically and are not defined by any set of particular features (Farzin, 
Rivera, & Whitney, 2009). Furthermore, there is evidence for crowding in the representation of 
heading direction of biological motion walkers that occurs only when these stimuli can be 
perceived as whole walkers (Ikeda & Watanabe, 2016; Ikeda, Watanabe, & Cavanagh, 2013).  
 
While behavioral evidence shows that crowding is ubiquitous throughout the visual processing 
hierarchy, there is limited consensus on the neural locus of crowding. Crowding occurs 
dichoptically, with the target and flankers presented monocularly to separate eyes, indicating that 
crowding occurs in the cortex (Flom, Weymouth, & Kahneman, 1963). Indirect arguments have 
been made for the locus of crowding, such as using estimates of receptive field size from 
behavioral data (Tyler & Likova, 2007). These findings point to many different early to mid 
level visual areas, from V1 to V8, depending on the stimulus and task used. Most of these 
approaches implicitly assume that crowding occurs at a single stage in the visual processing 
hierarchy (Freeman & Simoncelli, 2011). Evidence for physiological markers of crowding has 
been found in V1, V2, and other regions beyond these early visual processing areas (Anderson, 
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Dakin, Schwarzkopf, Rees, & Greenwood, 2012; Bi, Cai, and Fang, 2009; Millin, Arman, 
Chung, & Tjan, 2014). 
 
There are several theories of crowding, including compulsory pooling and excessive integration, 
averaging, and contrast-gain/masking based models (Balas, Nakano, & Rosenholtz, 2009; 
Freeman & Simoncelli, 2011; Parkes, Lund, Angelucci, Solomon, & Morgan, 2001; Pelli, 
Palomares, & Majaj, 2004; Wilkinson, Wilson, & Ellemberg, 1997). Most models of crowding 
assume either an early stage loss of information or a loss of information at each stage. However, 
all these theories have been strongly challenged by recent behavioral results. A few others may 
more easily accommodate top-down effects. One model proposes that crowding is due to a 
limited resolution of attention. Two models have been proposed that suggest crowding happens 
during the readout process from population responses and can address crowding at multiple 
levels of representation (Chaney, Fischer, & Whitney, 2013; Harrison & Bex, 2015).  These 
models have several advantages over lossy early stage models. First, it is difficult to reconcile 
these early stage models with crowding of higher level categories like faces (Farzin et al., 2009; 
Louie et al., 2007). Second, despite information loss from crowding, some information survives 
crowding (Faivre, Berthet, & Kouider, 2012; Kouider, Berthet, & Faivre, 2011; Yeh, He, & 
Cavanagh, 2012). For example, crowded objects can still cause priming and aftereffects and they 
still contribute to ensemble percepts (Atas, Faivre, Timmermans, Cleeremans, & Kouider, 2014; 
Faivre & Kouider, 2011; He, Cavanagh, & Intriligator, 1996). Third, crowding was shown to be 
modulated by precueing attention to the target location (Yeshurun & Rashal, 2010). Fourth, 
influence of certain contextual features can break crowding. Crowding can be modulated by 
many other factors including similarity (Kooi, Toet, Tripathy, & Levi, 1994), perceived depth 
(Astle, Mcgovern, D.P. & Mcgraw, 2014), pop-out, and grouping (Herzog & Manassi, 2015; 
Herzog, Sayim, Chicherov, & Manassi, 2015). Similarity often depends on more than simple 
local edge information and pop-out is the result of top-down influence. Strict lossy feedforward 
models such as compulsory pooling are unable to explain contextual effects in crowding like 
grouping. In fact, it was found that grouping between target and flankers can strongly determine 
the strength of crowding (Livne & Sagi, 2007; M. Manassi, Hermens, Francis, & Herzog, 2015; 
M. Manassi, Lonchampt, Clarke, & Herzog, 2016; Mauro Manassi, Herzog, Sayim, & Herzog, 
2012; Mauro Manassi, Sayim, & Herzog, 2013; Saarela, Sayim, Westheimer, & Herzog, 2009). 
Grouping often occurs preattentively and automatically (Erlikhman et al., 2013; Roelfsema, 
2006), but necessarily requires higher level processing than simple edge detection. Nonetheless, 
grouping influences the strength of crowding in tasks that require only the most basic of feature 
comparisons like the Vernier discrimination task (Manassi et al., 2012; Sayim, Westheimer, & 
Herzog, 2010). Focusing on the order of functional cognitive processes, particularly those such 
as grouping which precede the information loss associated with crowding, can serve to highlight 
weaknesses in these models. 
 
Similarly to grouping, there is evidence that the brain interprets and discounts lighting and 
shadows preattentively (Ramachandran, 1988). Therefore, we might expect that the 
computations associated with lighting and shadows occur prior to the deleterious influence of 
crowding, much in the same way as grouping. Ramachandran has shown that the brain defaults 
to a straightforward explanation of simple scenes favoring an interpretation of a single light 
source located above the scene. This lighting interpretation can generate popout leading to 
relatively flat search times for stimuli that are consistent with this lighting-from-above 
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assumption. Further evidence in visual search has shown that the visual system rapidly interprets 
shadows as shadows and that this interpretation has a subsequent negative effect on the speed of 
processing for relatively fine discriminations of these shadows (Rensink & Cavanagh, 2004). 
Because crowding is a fundamental limit to our capacity for object recognition (Whitney & Levi, 
2011), and since shadows and shading are ubiquitous in natural scenes, it is important to see 
whether the visual system is capable of analyzing and utilizing lighting information to avoid 
crowding from these additional contours or even to alleviate crowding in some circumstances. 
Various forms of specialized processing occur for lighting and shadows, including discounting 
the illuminant, preattentively discounting shadows, and perceiving shape-from-shading, amongst 
others, but it is unknown whether the loss of information in crowding functionally follows or 
precedes these processes. 
 
The purpose of this paper is to examine whether crowding of orientation can be determined by 
the lighting interpretation within a scene. Rather than placing crowding at a specific physical 
location in the visual hierarchy, before or after lighting interpretation occurs, which may well be 
an ill posed problem to begin with, we test its place in a particular hierarchy of cognitive 
processes that contribute to perception. Focusing on this more abstract level of functional 
processes requires no assumptions about a singular neural locus for crowding, about the roles of 
feedforward and feedback connections, or about the parallel nature of visual processing, but 
instead emphasizes behavioral understanding of the crowding phenomenon that can also inform 
our physically based models. 
 
We asked whether specialized processing for lighting information determines crowding. If the 
visual system computes and utilizes information about lighting direction prior to the deleterious 
effects of crowding, then shape-from-shading may be used to create conditions which predict a 
reduction in the strength of crowding. We compared performance between arrays consisting of a 
single Gabor target and surrounding checkerboard flankers, each superimposed on dots shaded in 
one of four possible directions, which differed only in the direction of the shading gradient 
(Experiment 1). To ensure that this result was not confounded with the relation of the lighting 
direction to the angle of the stimulus from the fovea, we repeated the experiment in the lower 
visual field (Experiment 2). Finally, we presented a single flanker on either side of the target to 
determine whether any inner/outer asymmetry was present and whether flanker-flanker grouping 
could be responsible for any observed effects (Experiment 3).  
 
General Methods 
Apparatus 
Stimuli were generated on a Macintosh computer running PsychoPy2 and presented on a 
gamma-corrected CRT Sony Multiscan G500 monitor. The refresh rate of the display was 60 Hz 
and the resolution was 1024 x 768 pixels. Stimuli were viewed from a distance of 57 cm. 
Subjects used a keyboard for all responses (left-right arrow keys to indicate -45° and +45° 
orientation of the target Gabor). Five subjects participated in the experiment (3 male, 2 female). 
All had normal or corrected to normal acuity. All experimental procedures were approved by and 
conducted in accordance with the guidelines and regulations of the UC Berkeley Institutional 
Review Board. Participants were affiliates of UC Berkeley and provided informed consent in 
accordance with the IRB guidelines of the University of California at Berkeley. 
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Stimuli 
 
The stimulus consisted of three major elements: the target Gabor patch, the surrounding 
checkerboard flankers, and the shaded dots that made up the background (Figure 3.1). The 
sinusoidal wave in the target Gabor had a spatial frequency of 3 cycles/degree and a phase shift 
of one half cycle. The Gaussian window had a standard deviation of 0.13°. The contrast of the 
target Gabor was 40% (Michelson contrast). The orientation of the target Gabor differed from 
trial-to-trial and was either -45° (tilted left) or +45° (tilted right) from vertical. The checkerboard 
flankers were made of the same two Gabors that were used as targets, superimposed with an 
increased contrast of 90% (Michelson contrast). The shaded dots each subtended 1° of visual 
angle and could have one of four possible shading directions. We refer to a light-dark gradient 
from left (or top) to right (or bottom) as "left shading" (or "top shading"). The shading luminance 
ranged from 0.36 cd/m2 at the dark end to 150 cd/m2 at the brightest end.  
 
The stimulus configuration on each trial was an array consisting of a central Gabor patch and 
eight evenly spaced surrounding checkerboards, with each element (Gabor or checkerboard) 
superimposed on one of nine shaded circles (Figure 3.1). Each dot subtended 1 degree of visual 
angle and the superimposed Gabor patches subtended approximately 0.8° (6 standard 
deviations). In order to control for any possible configural, pooling or summary statistic effects, 
each checkerboard flanker contained both possible target orientations in the array and all 
possible arrays of target and flankers were displayed equally often. Target orientations of -45° 
and +45° were chosen so that the difference between the direction of the shading gradient on the 
background dot and the orientation of the target would be equal under all conditions. 
 
The central Gabor patch was presented at 10° of eccentricity to either the left or right of fixation 
(fixed for each block) and the surrounding checkerboards were radially arranged and evenly 
spaced at positions subtending 45° increments at the target location, a total of 8 flanking 
checkerboards around the central Gabor target. The center-to-center spacing of the target Gabor 
and surrounding checkerboards varied randomly trial-by-trial from 1.2 to 3.6 degrees in steps of 
.3 degrees for a total of 8 possible separations, each appearing equally often.  
 
Four different shading conditions were examined by randomly selecting the shading of the 
central dot under the superimposed target Gabor from one of the four cardinal directions on a 
trial-by-trial basis. The dot could be shaded up, down, left, or right and we adopt the convention 
of using "left" to refer to when the bright side of the dot is on the left and the dark side is on the 
right (see Figure 3.1A and 3.1B). The four conditions were balanced across the block of trials 
and the shading of the flanking eight dots was always uniform and rotated 180 degrees from the 
shading of the central dot. If the target was placed on a shaded left dot, the flankers were placed 
on shaded right dots. If the target was placed on a shaded up dot, the flankers were placed on 
shaded down dots, and so on. This rotation was held constant across all conditions to equate 
target-flanker orientation similarity across all four shading directions. In all four stimulus 
conditions, the difference between target and flanker was a reversal of the shading gradient 
direction. The two possible target orientations were chosen as +/-45° so that target orientation 
differed from the shading gradient direction by the same amount for all shading conditions; the 
difference between target orientation and the orientation of the flanker shading direction is 
always 45°. Therefore, the stimulus information available in any condition was identical and the 
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only effects of the trial-to-trial manipulations were the changes to implied lighting direction and 
to the stimulus spacing. 
 
Task and procedure 
 
Subjects were seated 57 cm from the display and were instructed to maintain fixation on a 
centrally presented dot throughout the experiment. On each trial, the target Gabor was randomly 
presented in one of two possible orientations (-/+ 45°) and superimposed on one of four possible 
shaded dots, surrounded by 8 checkerboards superimposed on oppositely shaded dots. On each 
trial, the stimulus array was presented for 125 ms followed by a 750 ms interstimulus interval 
after each response. The observers' task was to report whether the target was oriented to the left 
or right of vertical in a 2AFC task by pressing either the left arrow to indicate -45° or the right 
arrow to indicate +45°. Each subject participated in 1260 trials over two blocks. Subjects 
performed the task in either the left or right visual field on each block and the order was 
counterbalanced across subjects. Therefore, subjects participated in a total of 40 trials for each 
condition/target-flanker spacing combination over the two blocks. 
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Figure 3.1: Stimuli for Experiment 1 and Experiment 2. The four possible stimulus 
configurations for Experiment 1 and 2 are shown here. A target Gabor at orientation -45 or 45 is 
superimposed on a shaded dot and surrounded by flanking checkerboards composed of two 
superimposed Gabors superimposed on dots with shading direction 180 rotated from the 
direction of the target dot. Target-flanker spacing was manipulated during experiments. A and B 
refer to Gabors with shading in the up and down direction.  These conditions can be interpreted 
as "lit-from-above," conditions under which the target dot appears to pop-out from flankers due 
to shape-from-shading. C and D refer to the Gabors with shading in the left and right direction. 
These conditions can be interpreted as "lit-from-the-side," conditions under which target-flanker 
apparent similarity increases. Importantly, physical similarity between the stimuli is identical. 
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Stimuli were shown in the left/right visual field in Experiment 1 and in the lower visual field in 
Experiment 2. 

Experiment 1 Intro 
 
The purpose of this experiment was to directly manipulate the perceived lighting direction within 
a crowded array to examine its influence on crowding. If shading is computed before the strength 
of crowding has been fully determined, we expect to see changes in crowding strength due to 
perceived lighting direction. When the target and flankers are shaded in the up/down directions, 
the scene is consistent with a lighting-from-above interpretation, and pop-out occurs for the 
target due to perceived 3D shape. This effect is dramatically reduced in the left/right shaded dots. 
Therefore, if lighting interpretation precedes crowding, then crowding strength should be 
reduced for a target with opposite shading direction from the flankers in the up/down shading 
conditions compared to the crowding strength in the left/right shading conditions.  
 
Experiment 1 Observers 
 
Five adults participated in the experiment (4 male and 1 female). The observers ages ranged from 
19 to 28. One observer was an author of the paper. The other 4 participants were naïve to the 
purpose of the study.  
 
Experiment 1 Data Analysis 
 
Subject accuracy as a function of spacing between the target and flankers was modeled as a 
logistic function using maximum likelihood parameter estimation with Psignifit 3.0 toolbox. The 
psychometric function took the form: 
 
   𝑦 = 0.5 + (1 − 0.5 − 𝑏) ∗ 1/(1 + 𝑒

𝑥−𝑐
𝑑 ) 

 
where 𝑦 represents the probability of a correct response given a target-flanker separation of 𝑥, 𝑏 
is the lapse rate, restricted to the interval 0.00 to 0.05, 𝑐 is the threshold of the function, and 𝑑 is 
a slope parameter for the function.  
 
Hypothesis testing was performed using a parametric bootstrap procedure as described in Efron 
& Tibshirani (1986) and Wichmann & Hill (2001). After fitting the above function to the data 
from each of the four experimental conditions (lighting directions) for each subject and verifying 
goodness of fit, 2000 new samples of sets of 1260 trials (the same number performed by 
observers) were generated from each fitted function. We then calculated a 95% confidence 
interval for the separation corresponding to 80% correct performance from the fits in this sample 
distribution. We considered two conditions within a single observer to be significantly different 
if the bootstrap samples from one condition yielded a target-flanker spacing threshold 
corresponding to 80% correct performance that was greater than the same value calculated from 
a bootstrap sample of the other condition on 95% or more of the bootstrap samples. This 
generates an empirical p-value for a one-way test from the bootstrap distribution.  
 
Experiment 1 Results 
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The data from the first experiment are shown here in Figure 3.2. Performance in each of the four 
lighting directions is shown for each of the four subjects. Horizontal lines represent 95% 
confidence intervals for the 80% correct performance threshold for each condition. 
 
Among the four shading conditions, only two shading conditions (shaded up and shaded down) 
are consistent with a lighting-from-above interpretation. The other two conditions (shaded left 
and shaded right) are consistent with a lighting-from-the-side interpretation. For each observer, 
there are six possible pair-wise comparisons across the four lighting directions: two comparing 
lighting-from-above to lighting-from-above or lighting-from-the-side to lighting-from-the-side, 
and four which compare a lighting-from-above condition to a lighting-from-the-side condition. 
We first present the four comparisons between lighting-from-above and lighting-from-the-side, 
as this is the main experimental manipulation of interest. 
 
In order to determine whether a viable lighting-from-above interpretation of a crowded array 
reduced the strength of crowding as hypothesized, we looked at all of the comparisons of 
lighting-from-above conditions to lighting-from-the-side conditions. A significant result is 
indicated when crowding strength is reduced for the up/down shading conditions relative to the 
left/right shading conditions, resulting in increased subject performance. Across the five 
observers, there are 20 total comparisons of lighting-from-above to lighting-from-the-side 
conditions, 14 of which have 80% correct performance thresholds that differ significantly at the 
95% confidence level (higher performance in scenes consistent with lighting-from-above relative 
to lighting-from-the-side). Another 3 were significant at the 90% confidence level. Two 
observers had psychometric functions in one condition that did not reach ceiling performance 
and added a substantial amount of noise.  
 
We also looked at whether there was any significant difference between the two lighting-from-
above conditions or between the two lighting-from-the-side conditions for each subject. Two 
subjects showed a significant difference between the lighting-from-the-side conditions, with 
higher performance in the shaded right condition than the shaded left condition. All other 
subjects showed no significant difference between these conditions. Two observers showed no 
significant difference between lighting-from-above conditions, but the three remaining observers 
did. However, observers were inconsistent in which condition performance was higher with one 
subject showing increased performance in the shaded up condition compared to shaded down 
and the two other subjects showing the opposite. The differences between these conditions were 
smaller than the differences in the lighting-from-above to lighting-from-the-side comparisons. 
 
Since there was no reason to suspect any systematic differences within the lighting-from-above 
conditions or the lighting-from-the-side conditions, we also performed the same analysis 
averaging across like conditions. Unsurprisingly, averaging across the lighting-from-above 
conditions and the lighting-from-side conditions showed a significant difference for all four 
individual subjects with no bootstrap difference samples crossing 0 (p < .0005). These results are 
shown in Figure 3.2.  
 



26 
 

 
Figure 3.2: Results for Experiment 1. A) Target identification performance as a function of 
target-flanker spacing is shown for the four experimental conditions for one representative 
subject (S1). Error bars represent bootstrapped 95% confidence intervals of the 80% correct 
performance threshold. Other subjects showed similar patterns. We find increased performance 
under lighting-from-above conditions (up and down) than lighting-from-the-side (left and right). 
No systematic relationship was found between the two lighting-from-above and lighting from 
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below conditions, or between lighting from left and lighting from right conditions. B) Results for 
the other 4 subjects averaged within the lighting-from-above conditions (up and down collapsed) 
and lighting-from-the-side conditions (left and right collapsed) are shown. Subjects reliably 
showed increased performance in the lighting-from-above conditions compared to the lighting-
from-the-side conditions. This indicates that lighting interpretation is able to modulate a 3D 
representation and influence the strength of crowding even for a low level orientation 
discrimination task. 

Experiment 2 Intro 
 
In Experiment 1, the two pairs of shading directions being compared also differed in whether 
their orientation was radial or tangential with respect to the fixation point. For the lighting-from-
above condition, the gradient of shading is tangential to the horizontal meridian, and for the other 
lighting conditions, the gradient of shading lies along the horizontal meridian. Because flankers 
that are placed radially from a target are known to have stronger crowding effects on the target 
than tangentially placed flankers with the same spacing and characteristics (Toet & Levi, 1992), 
it is possible that this anisotropy resulted in the increase in performance in the lighting-from-
above conditions we observed in Experiment 1. In order to eliminate this confound, the 
experiment was repeated with the entire stimulus array presented in the lower visual field. 
 
Experiment 2 Observers 
 
Five observers participated in this experiment (3 male, 2 female). One was an author of the 
study. The age range of subjects was 19 to 28. 
 
Experiment 2 Method 
 
Experiment 2 was identical to Experiment 1 in task and procedure with only two manipulations 
made to the stimulus. First, the entire stimulus array was moved to the lower visual field instead 
of the left or right visual field. Because pilot results revealed increased difficulty with the task in 
the lower visual field, possibly due to task familiarity in the left and right visual fields, the 
eccentricity of the target stimulus was reduced to 8°. The size of the stimuli, range of spacings 
within the array, contrast, and timing were otherwise unchanged. Subjects participated in 1260 
trials for a total of 40 trials per lighting condition / target-flanker separation combination. 
The statistical analyses performed for Experiment 2 were exactly the same as those explained in 
the results of Experiment 1. We generated a bootstrap distribution for the target-flanker spacing 
threshold that corresponded to 80% performance in the task for each condition for each subject. 
To compare two conditions, we calculate the difference of the bootstrap distributions for the two 
conditions and construct a confidence interval. Confidence intervals that do not include 0 
indicate a significant difference between the means of the distributions.  
 
Experiment 2 Results 
 
Results from Experiment 2 are shown in Figure 3.3.  Overall, the results of Experiment 2 are 
qualitatively similar to those of Experiment 1, replicating the main findings and indicating that 
the findings of Experiment 1 cannot be explained by an interaction between lighting direction 
and the direction of the target from fixation. We note that this interaction would predict a 
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reversal of the main results of Experiment 1 if it were the explanation for our results. Again, 
across lighting conditions there are 4 comparisons per subject for a total of 20 comparisons,14 of 
which are significant at 95% confidence level. 18 out of 20 comparisons were significant at the 
90% confidence level. There was no trend for comparisons within lighting-from-above or within 
lighting-from-the-side across subjects. Averaging the lighting-from-above and lighting-from-the-
side conditions within subject and comparing yielded individual subject empirical p-values: p < 
.0005 (3 subjects), p < .005 (1 subject), p < .01 (1 subject). In all, Experiment 2 reproduces the 
main results of Experiment 1 in a different part of the visual field.  
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Figure 3.3: Results for Experiment 2. A) Target identification performance as a function of 
target-flanker spacing is shown for the four experimental conditions for one representative 
subject (S1). Error bars represent bootstrapped 95% confidence intervals of the 80% correct 
performance threshold. Other subjects showed similar patterns. We find increased performance 
under lighting-from-above conditions (up and down) than lighting-from-the-side (left and right). 
No systematic relationship was found between the two lighting from above and lighting from 
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below conditions, or between lighting from left and lighting from right conditions. B) Results for 
the other 4 subjects averaged within the lighting-from-above conditions (up and down collapsed) 
and lighting-from-the-side conditions (left and right collapsed) are shown. Subjects reliably 
showed increased performance in the lighting-from-above conditions compared to the lighting-
from-the-side conditions. Since the stimuli were presented in the lower visual field, we rule out 
that the results of Experiment 1 are due to an interaction between the lighting directions or target 
directions and the direction of the target from fixation. 

 
Experiment 3 Intro 
 
Experiments 1 and 2 showed a shading-dependent modulation of crowding, suggesting that 
shading may be computed before crowding happens. However, in the previous experiments, all 
of the flanking dots had the same shading, which could have facilitated a flanker-flanker 
grouping effect and allowed for improved segregation of the target. Shaded dots which are 
interpretable as lit from above tend to group more readily than shaded dots which appear to be lit 
from the side (Kleffner & Ramachandran, 1992) and grouping of flankers is known to influence 
the strength of crowding (Herzog et al., 2015; Manassi et al., 2012). Therefore, it seems plausible 
that this grouping is what caused the modulation of crowding that we have observed. To 
investigate this possibility, we used a single flanker dot, where no flanker-flanker grouping is 
possible (Chakravarthi & Pelli, 2011). In addition to addressing a possible grouping explanation 
for the previously observed increase in performance, the single flanker experiment allowed us to 
test for an identifying feature of crowding; a flanker placed radially from the target with respect 
to fixation tends to crowd more when it is located at a greater eccentricity than the target (outer 
condition) than when it is placed the same distance from the target toward the fovea (Bex et al., 
2003; Bouma, 1973; Petrov & Meleshkevich, 2011).  
 
Experiment 3 Observers 
 
Five subjects participated in Experiment 3, including 2 females and 3 male subjects, one of 
whom was an author of the study. Subjects ages ranged from 19 to 28. 
 
Experiment 3 Method 
 
In Experiment 3, only a single flanker, identical to the 8 flankers used in the previous 
experiments, was presented. To compensate for this decrease in difficulty, the eccentricity of the 
target was increased to 12° in the right visual field. The target and flanker were presented on the 
horizontal meridian and in each block of trials the flanker remained either more foveal than the 
target (inner condition) or more eccentric (outer condition). The spacing varied from from 1.5° to 
4.2° in steps of .3° according to an adaptive procedure. A 3-up-1-down staircase procedure was 
used to adjust target-flanker separation in order to determine the 79% correct threshold in each 
block of trials . In each block, subjects were shown only inner flankers or outer flankers in four 
interleaved staircases (one for each lighting condition) for a total of 256 trials per block, 64 trials 
per condition. Each subjected participated in four blocks. Estimates for each condition were 
obtained by averaging the stimulus values of the last 20 trials for each condition, yielding two 
estimates per condition (lighting direction x inner/outer flanker direction) per subject, and these 
estimates were then combined across subjects for a group analysis. 
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Experiment 3 Results 
 
The results from Experiment 3 are shown in Figure 3.4. For each of the 8 conditions, we 
obtained 2 target-flanker spacing threshold estimates from each subject using a staircase 
procedure. These 2 estimates were combined across the 5 subjects to yield 10 estimates per 
condition. The means and standard errors are shown in the bar plot. Planned comparisons were 
conducted using a standard ANOVA procedure to assess the significance of the effect of lighting 
direction and also the effect of the inner vs. outer flanker. Subjects had significantly lower 
threshold spacings and thus performed better when viewing stimuli consistent with a lighting 
from above interpretation (target lit from either below or above) vs. stimuli in which the target 
and flankers were lit from the side, consistent with the results of Experiments 1 and 2 (t=4.436, p 
< 0.001). Furthermore, subjects also demonstrated significantly reduced target-flanker spacing 
thresholds for displays in which the flanker was placed closer to fixation relative to the target 
rather than farther from fixation (t=2.606, p = 0.011). This indicates that the flanker impaired 
target identification more when the flanker was more eccentric than the target, a hallmark of the 
visual crowding effect. Finally, the replication of the effect of lighting direction from 
Experiments 1 and 2 is evidence that the reduction of crowding in scenes consistent with 
lighting-from-above interpretation is not due to increased flanker-flanker grouping in those 
conditions. 
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Figure 3.4: Stimuli and experimental results for Experiment 3. The array of 8 flankers was 
replaced by a single flanker. A) In half of the blocks of trials, subjects saw an "outer" flanker, a 
flanker more eccentric than the target. B) In the other half of trials, subjects saw an "inner" 
flanker, a flanker less eccentric than the target. Target-flanker spacing was manipulated in a 3-
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down-1-up staircase procedure. C) Group results for Experiment 3. Four 80% accuracy threshold 
estimates were obtained from each subject for each condition by averaging the last 20 trials for 
that condition for a total of 10 estimates per condition. Outer flankers crowded significantly 
more than inner flankers, consistent with a performance impairment due to crowding. Subjects 
performed significantly better in the "lit-from-above" conditions than the "lit-from-the-side" 
conditions, despite the presence of only a single flanker, eliminating a flanker-flanker grouping 
explanation for the results of Experiments 1 and 2. 

Discussion 
 
Altering only the direction of interpreted lighting within a scene affects the strength of crowding 
for an otherwise unchanged array. In Experiment 1, we showed that observers are significantly 
better at discriminating the orientation of a target when the stimulus array allows for a lighting-
from-above interpretation conducive to the perception of shape-from-shading. Importantly, in all 
conditions tested, target flanker similarity is equated and all other aspects of the stimulus that are 
known to contribute to crowding strength are controlled. This finding indicates that the 
computation of lighting and shading information functionally precedes crowding, even for a low 
level visual feature such as orientation. It also demonstrates that crowding occurs between 3D 
object representations that are extracted from the 2D retinal image. Oriented shading that would 
otherwise have no effect on crowding strength, when placed in a context consistent with a 
lighting-from-above interpretation, gives rise to a perception of depth and 3D shape and this 
inferred distinction between the 3D representations of the target and flankers is what causes a 
release from crowding. 
 
Stimulus design considerations contributed to the use of a large orientation difference (90°) in 
our experiments. While there is some evidence that these large orientation differences are 
distinguishable at their detection threshold, we do not believe that our results are due to a 
reduction in detection as opposed to discriminability. A reduction in detection can be explained 
by contrast masking, rather than crowding (which affects identification), but in our experiments 
we see impairments at large spacings (3° or more) and exhibiting an inner / outer asymmetry 
consistent with crowding but not masking. It has been previously argued that a distinction can 
still be made between detection and identification at the single feature level using a visual search 
paradigm (Sagi & Julesz, 1984), and our results are consistent with an impairment of single 
feature discrimination. 
 
There are several possible explanations and mechanisms for this observed release from 
crowding. Experiment 2 was designed to rule out one 2D image based possibility stemming from 
a difference in low level stimulus property across the conditions of interest in Experiment 1. In 
Experiment 1, we observe stronger crowding for horizontal shading gradients as opposed to 
vertical ones. These gradient directions are confounded with their orientation with respect to 
fixation; since the stimuli are presented to the right of fixation, the direction of the shading 
gradient in the lighting-from-above condition is orthogonal to the direction of the target from 
fixation, while in the lighting-from-side condition the direction of the shading gradient is the 
same as the direction of the target from fixation. Since there are known radial / tangential 
asymmetries in crowding, Experiment 2 reverses the confound by placing the stimuli in the 
lower visual field rather than the right visual field. The similarity of results between Experiments 
1 and 2 and consistent release from crowding in the stimulus arrays that imply lighting-from-
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above suggest that the relation of the direction of the gradient to fixation does not affect our 
results. 
 
Many of the effects associated with shape-from-shading induced by lighting-from-above are 
known to also affect strength of crowding. One possible explanation for our results is that the 
change in lighting direction affects grouping within the presented array. For example, dots which 
differ in shading from the other dots in a display also tend to group more readily when vertical 
shading gradients are used (Livne & Sagi, 2007, 2010). Configural grouping effects within arrays 
of flankers have also been shown to reduce crowding (Manassi et al., 2012). Therefore, it seems 
possible that the mechanism by which lighting interpretation affects strength of crowding is by 
altering the strength of grouping between the target and flankers, or between the flankers 
themselves. However, because the lighting direction effect is still observed in Experiment 3 
where we used only one flanker, it seems unlikely that grouping of flankers can explain our 
findings. 
 
While our data seem to rule out a flanker-flanker grouping explanation for the reduction of 
crowding in arrays consistent with a lighting-from-above assumption, our primary purpose here 
is to focus on the importance and role of lighting interpretation on crowding, not to promote a 
particular intermediary mechanism to explain reduced crowding strength in arrays lit from 
above. The important point here is that crowding strength within well controlled stimulus arrays 
which vary only in their potential lighting interpretations is differentiable with respect to 
interpreted lighting direction. Some other potential intermediary mechanisms are discussed 
below. 
 
One way in which lighting-from-above consistent arrays might crowd differently from lighting-
from-the-side arrays is that dots which differ in shading from the other dots in a display tend to 
pop-out more when the shading gradients are vertical, resulting in flatter reaction time increases 
with increased number of distractors than for horizontal gradients in a standard visual search 
paradigm (Rensink & Cavanagh, 2004). This type of preattentive pop-out has also been shown to 
reduce crowding in some stimulus arrays (Yeshurun & Rashal, 2010). Therefore, it is possible 
that this preattentive enhancement at the target location results in the decrease in crowding 
strength we observe. 
 
Another potential reason is that dots with different vertical shading gradients like those in our 
lighting-from-above condition create a stronger and less ambiguous perception of depth than 
horizontal gradients ((Ramachandran, 1988). Kooi et al., (1994) have previously shown that 
depth differences between target and flankers implied by binocular disparity can modulate the 
strength of crowding in both magnitude and extent. It is conceivable then that perceived depth 
due to shape-from-shading (a monocular depth cue) causes the increase in performance that we 
have observed. 
 
There is also some neurophysiological evidence that may provide some insight into our observed 
effect. In an fMRI study, neural activity in lower visual areas was shown to be greater for dots 
with horizontal shading gradients than vertical gradients (Georgieva, Todd, Peeters, & Orban, 
2008). This activity may reflect some increased demand in processing these stimuli which could 
be inhibiting processing of the target in our crowded arrays. 
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While many attempts have been made to narrow the neural locus of crowding using studies of 
behavioral responses, doing so is often difficult or impossible in part due to the issue of 
inseparability of feedforward processing and feedback from higher visual areas. Our data cannot 
speak to whether the influence of lighting on crowding is a feedforward or feedback process, nor 
does it constrain the physical locus of where this information loss due to crowding is occurring. 
However, and perhaps more importantly, our data indicate that crowding is functionally preceded 
by lighting interpretation and any complete model of crowding must account for the effects of 
across object scene level characteristics that play a role in determining to what extent crowding 
will occur. Although some new recent models can easily accommodate for crowding on multiple 
levels (Chaney, Fischer, & Whitney, 2014) and grouping effects on crowding (Francis, Manassi 
& Herzog, 2017) they all need to be modified to include the lighting interpretation in a scene. 
Given our results, it seems likely that the visual system is doing some interpretation of lighting 
information within a scene before crowding occurs. This leads to the possibility that the visual 
system may be able to differentially process shading and shadows in a manner that avoids 
crowding between meaningful pieces of information that are important for segregating and 
identifying objects, such as object contours, and potentially less useful information for 
identification, such as shading, which depend on context and lighting of a particular scene.  
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Chapter 4: Serial dependence occurs in biological motion across different dimensions 
 

 
Introduction 

When recognizing objects,  we continuously deal with noisy and rapidly changing input. The 
visual system itself is one source of this noise and rapid change; our eyes move and blink with 
high frequency, our head and body are constantly in motion, and there is internal noise at the 
neuronal level. At the same time, the outer world around us is extremely noisy because of 
changes in lighting, noise, occlusions and so on. It is then surprising that, despite all these 
factors, we still perceive a stable representation of the world around us. How does the visual 
system achieve this stabilization? 

A mechanism has been recently proposed that could explain the impressive stability of our visual 
experience: the object-selective continuity field. Continuity fields promote perceptual stability by 
inducing serial dependence between similar objects. Because of this perceptual bias, objects and 
features appear more like similar objects and features that were seen in the recent past (Fischer & 
Whitney, 2014; Liberman et al., 2014; St John-Saaltink, Kok). Continuity fields shape our 
perception within a spatiotemporal window. For example, orientation perception is biased toward 
previous orientations over a large spatial (20° of visual field) and temporal range (10-15 
seconds). Interestingly, this bias only occurs for similar orientations, whereas very different 
orientations remain unbiased. Serial dependence has been shown to influence perception over a 
wide range of features and objects like orientation (Fischer & Whitney, 2014; Fritsche et al., 
2017), faces (Liberman et al., 2014; Taubert, Alais, & Burr, 2016), attractiveness (Kondo, 
Takahashi, & Watanabe, 2012; Taubert, Van der Burg, & Alais, 2016; Xia, Leib, & Whitney, 
2016), numerosity (Corbett, Fischer, & Whitney, 2011), ensemble coding of orientation 
(Manassi, Liberman, Chaney, & Whitney, 2016) and mapping of numbers onto space (Cicchini, 
Anobile, & Burr, 2014). 

So far, serial dependence has been shown to occur only between static 2D images at different 
levels of visual processing, from orientation. However, in everyday life we are continuously 
surrounded by an extremely dynamic environment, where not only our eyes, head and body 
move, but also the environment around us is continuously in motion. When people are walking 
in the street, we ourselves are in motion, and other objects in the scene such as cars are moving, 
we nonetheless still perceive a stable world. 

We theorize that, in order to promote perceptual stability, serial dependence should occur also 
with dynamic stimuli at different levels of representation. One well studied high level dynamic 
object representation is evidenced by the perception of biological motion. The visual system 
infers three-dimensional object movement of a particular form from a cluster of moving dots. We 
get a vivid impression of a walking human figure from dots which track the motion of a few key 
points (joints) on a walker. Hence, in this study we used biological motion stimuli as a proxy to 
investigate whether serial dependence can occur also in the dynamic, 3D environment we deal 
with in everyday life.  

For our purpose, biological motion stimuli are a perfect tool for several reasons. First, they 
necessarily require integration of information over time into a dynamic structural representation 
(Lange & Lappe, 2006; Neri, Morrone, & Burr, 1998). Hence, they involve by definition high 
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level feature integration. Second, this class of stimuli conveys a great deal of information using 
low level features like dot motion. For example, from biological motion we can infer different 
stimulus dimensions like walking directions, gender, age, identity and even emotions (Atkinson, 
Dittrich, Gemmell, & Young, 2004; Cutting & Kozlowski, 1977; Dittrich, Troscianko, Lea, & 
Morgan, 1996; Pollick, Kay, Heim, & Stringer, 2005; Troje, Westhoff, & Lavrov, 2005). Third, 
in biological motion stimuli our visual system is able to infer a 3D interpretation from a simple 
sequence of 2D images (Johansson, 1973). 

To preview our findings, we found that serial dependence occurs also with biological motion 
stimuli in (at least) two different dimensions: walking direction and emotion. Our results further 
strengthen the notion that serial dependence occurs at multiple levels along the visual hierarchy. 
Taken together, our results show that serial dependence can stabilize our percept even within 
dynamic, 3D representations. In addition, we also highlight some analysis considerations 
regarding investigating serial effects when the stimulus space is not circular. 

General Method 

Apparatus 

All experimental procedures were approved by and conducted in accordance with the guidelines 
and regulations of the UC Berkeley Institutional Review Board. Participants were affiliates of 
UC Berkeley and provided informed consent in accordance with the IRB guidelines of the 
University of California at Berkeley. Stimuli were generated on a Windows computer running 
PsychoPy2 and presented on a gamma-corrected 61cm liquid crystal display monitor in a dark 
room. The refresh rate of the display was 60 Hz and the resolution was 1600 x 900 pixels. 
Stimuli were viewed from a distance of 57 cm. Subjects used a keyboard for all responses (left-
right arrow keys to adjust the walker, and space bar to confirm bar their response and initiate the 
next trial). 
 
Observers 

Five subjects participated in the experiment (2 male, 3 female, age range 19-31). All participants 
had normal or corrected-to-normal vision, and all except one were naïve to the purpose of the 
experiment. 
 
Stimuli 

A .05° white fixation dot (150cd/m2) remained at the center of the screen for the duration of the 
experiment. The stimulus consisted of a single point-light walker presented to the right of 
fixation, at 6° of eccentricity. Point-light walkers were composed of configurations of twelve 
white dots (each dot: 0.11° × 0.11°, 150 cd/m2) presented against a black background 
(0.36 cd/m2). The dots were placed at different locations such that the overall configuration 
would be perceived as a human body. We created these walkers from a freely available set 
(Vanrie & Verfaillie, 2004). To create the impression of a walking human body, we generated 
“videos” from sets of sixty static frames in which the local position of each dot changed from 
frame-to-frame in a manner consistent with a natural human gait. Each gait cycle (i.e., one step 
by each foot) lasted 1 second. The application to generate the videos was written in C# and 
interfaced with OpenGL via the Open Toolkit Library. We generated 180 videos, each with a 
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distinct heading, by rotating the 3D positions of the dots in each frame by a distinct angle around 
the vertical axis (i.e., the direction of walking). The headings ranged from leftward (−90°) to 
rightward (90°) in 1° increments (see point-light stimuli in Figure 4.1). We limited the range to 
forward headings (toward the observer) because backward headings can appear ambiguous 
(perceived as forward or backward) (Cavanagh, Labianca, & Thornton, 2001). A dot 
configuration with a completely leftward (−90°) or completely rightward (90°) heading 
subtended (1.9° × 2.91°) of visual angle at the full extension of the gait cycle (i.e., with ankles 
maximally extended) and (0.56° × 3.06°) at the minimum extension of the gait cycle (i.e., with 
ankles crossing the midline of the body). A dot configuration with a completely forward heading 
(0°) subtended (1.03° × 3.06°) of visual angle. Orthogonal projection was used to create the 
images of the point-light walkers. On a given trial, a walker was presented for a total of 1000 ms 
at 60Hz, for one complete gait cycle. The walker started on a random frame in this gait cycle on 
each trial. A white noise mask was presented for 500ms following the 1000 ms presentation of 
the walker in the same location on the screen. After the noise mask, a blank screen was shown 
for 750ms and then a response walker appeared at the same location as the target walker. The 
response walker was continuously animated and started with a random heading direction. After 
the subject indicated their response, the trial was followed by a 750ms inter-trial interval. 
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Figure 4.1: The stimuli and presentation sequence used in Experiment 1. A) On each trial, 
subjects saw a single animated point-light walker facing one of 180 possible directions.   The 
target walker is presented at 6° of eccentricity in either the left or the visual field and subtends an 
area of approximately 3°x2°. B) The target walker is presented at 60Hz for 1 second, performing 
one full gait cycle (one step with each foot), beginning on a random frame in the 60 frame gait 
sequence each trial. The presentation of the walker is followed by a visual mask of white noise 
for 500ms and then an animated response walker appears at the same location as the target. After 
a response is entered, there is an ISI of 500ms. 
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Task and Procedure: 

 Subjects were instructed to maintain central fixation on the fixation dot throughout the 
entire experiment. After a brief presentation of a point-light walker in the periphery, followed by 
a mask, subjects were instructed to match the heading direction of the response walker to that of 
the target walker. The response walker remained in continuous motion while subjects used the 
left and right arrow keys to adjust its direction of heading. When the subject felt that they had 
matched the direction of heading as accurately as possible, they pressed the spacebar key to enter 
their response. When the response was entered, a noise mask appeared for 500ms, followed by 
an itertrial interval of 500ms before the next trial. Each subject participated in 3 blocks of 100 
trials. 

Experiment 1: Serial Dependence In Walking Direction 

 The purpose of this experiment was to investigate whether serial dependence occurs also 
for the perceived heading direction of biological walkers. If there is serial dependence for 
walkers, a walker will be perceived as walking in a direction that is biased toward the heading of 
the previous walker. Previous results showing serial dependence for visual motion stimuli have 
not included stimuli which require integration of dynamic information like the movement of the 
dots that create an impression of biological motion. This experiment investigates whether this 
perceptual bias also occurs for these higher level representations. 

Data Analysis: 

Error outlier removal 

First, we rejected outlier responses on a per subject basis. This was done by eliminating any trial 
that has an error greater than 3 standard deviations of the subject's errors in absolute magnitude. 
This results in a rejection rate of under 5% for all subjects. We then accounted for any systematic 
left-right biases in the subject's response by subtraction the mean of the response error for each 
subject. For all subjects, this mean was less than 2 morph units and had no substantial effect on 
our curve fitting. 

Edge effect correction 

Examining subjects' responses as a function of the stimulus level reveals an obvious pattern of 
edge effect influence. In the center portion of the stimulus range, subjects' responses tend to 
follow the one-to-one line, indicating accurate performance on the task on average. However, 
near the edges of the range of stimulus values, it is clear to see that the average response 
becomes compressed toward the center of the stimulus range. These edge effects are biases 
caused by the minimum and maximum possible response value that result in the mean of 
responses deviating from the presented stimulus values. In order to remove this artifact, we 
removed trials which had a stimulus value near the edge of the stimulus range from the analysis.. 
In our analysis of the walking direction data, we removed the outer 30° of walkers on both ends 
of the spectrum. Current trials with a walking direction of 0-30° and 150-180° were discarded. 
We chose 30° because it is equal to 2 standard deviations of response error and therefore most 
likely includes all of the trials that would likely have their error distributions influenced by the 
stimulus edge.  
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Derivative of Gaussian fit 

 After removing this subset of trials, we then proceed to our analysis as established in 
Fischer & Whitney, (2014). Response errors are computed by subtracting the direction of 
heading for the target walker from the final direction of heading of the response walker. The 
relative direction of the previous trial to the current trial is computed by subtracting the current 
trial target direction from the previous trial target direction. We plot subjects' response errors 
[actual response - current stimulus value] as a function of the relative direction between trials 
[previous stimulus value - current stimulus value]. Since serial dependence is an attraction of the 
current percept to the perception of the previous percent, we would expect to see subjects' errors 
biased more leftward when the previous stimulus was walking in a direction to the left of the 
current stimulus, and vice versa for the right. Furthermore, since serial dependence has been 
shown to be tuned for similarity in the stimulus dimension being judged, we expect to see that 
this bias will have a local maximum at some stimulus value near the current stimulus value and 
then fall off toward unbiased for dissimilar trials. We fit a parametric model to the data, 
assuming that the data can be modeled by the derivative of a Gaussian function of the form:  

𝒚 = 𝒂 ∗ 𝒃 ∗ √𝟐 ∗ 𝒆−(𝒃𝒙)𝟐+.𝟓 

In this formulation, y represents response error on a given trial [response direction - target 
direction] and x represents the relative direction between trials [previous target direction - 
current target direction]. The parameter a represents the maximum value of the function and the 
parameter b controls its width. We refer to a as the half-amplitude of serial dependence, since the 
function has range -a to a. The function is symmetric about x=0 and has an x-intercept at x=0, 
which represents a trial where the previous and current stimulus have the same value. A positive 
amplitude a indicates that there is a leftward bias when the previous stimulus was to the left, and 
vice versa for the right, and is evidence of a serial dependence effect. A negative aftereffect 
would produce an opposite result, a negative amplitude. An amplitude of 0 indicates no bias due 
to the previous stimulus in either direction. The curve is fit using the Nelder-Mead simplex 
algorithm for nonlinear optimization to minimize the sum of squared error. 

Bootstrap analysis 

 To obtain an estimate of the magnitude of the serial dependence effect and measure its 
variability, we fit this function to each subjects' data and generate a measure of confidence using 
a bootstrap confidence interval. For each subject, we resample the data with replacement 10,000 
times and refit the derivative of a Gaussian function. From the distribution of 10,000 amplitudes 
generated by this procedure, we create an empirical confidence interval for the bootstrap 
amplitudes by calculating the .025 and .975 percentiles of the data.  

Compensating for central tendency bias 

Another possible confounding explanation for a finding of positive serial dependence on a linear 
stimulus space is regression to the mean or a central tendency bias in responses.  A more extreme 
stimulus is more likely to have been preceded by a stimulus closer to the mean of the distribution 
of possible stimuli. Therefore a central tendency in responses can bias serial dependence to be 
positive because both the response and the previous stimulus will be in the direction of the mean. 
In order to control for this possibility, we conduct an analysis keeping only the current trials for 
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which the previous trial was more extreme than the current trial. One main drawback to this 
control analysis is that it requires discarding 76% of the data. Therefore, we conduct the analysis 
at the group level, combining all of the accepted trials from each subject into one super subject 
and following the same fitting procedure as before. The response errors are plotted as a function 
of the difference between the previous trial stimulus value and the current trial stimulus value 
and fitted with a derivative of a Gaussian. We construct a bootstrap confidence interval for the 
amplitude of serial dependence by resampling with replacement the accepted trials collapsed 
across subjects.  

Goodness-of-fit test 

In order to ensure that our model was accurately capturing the influence of the previous trial, we 
also conducted a goodness-of-fit test for each subject. To test whether the influence of the 
previous trial is an important driving factor in our goodness-of-fit, we tied the stimulus value 
presented on each trial with the response given by the subject, but permuted the order of the 
trials. This ensures that if subjects have any particular biases in responding to any particular level 
of the stimulus that were not controlled by removing the outer ranges of stimulus values, those 
biases will remain present in the data. However, any systematic effects of the previous trial 
should be removed. We then fit the data with our normal fitting procedure, and compare the 
SSEs of the permuted null fits to the SSEs of the fits on the actual subjects' data.  

Results: 

We measure serial dependence as the half-amplitude of our derivative of a Gaussian fit. A 
significant result favoring the serial dependence hypothesis is indicated when 95% of half-
amplitudes from the bootstrap resampled data lie above a=0. The results from one representative 
subject is shown in Figure 4.2A. The data shows a bias toward positive errors on the positive x-
axis near x=0 and small negative errors on the negative x-axis near x=0, indicating the serial 
dependence effect. The dotted line shows the average of the twenty nearest neighbors. Figure 
4.2B shows the results for the all of the subjects. 4 out of 5 subjects individually show significant 
serial dependence with 95% bootstrap confidence intervals lying in an entirely positive range. 
The group mean amplitude is shown in red with an average value of 4.02 and a 95% confidence 
interval of 1.89 to 6.07. This provides strong evidence for serial dependence in the judgment of 
heading for perceived biological motion, after adjusting for edge effects caused by the linear 
stimulus space. 
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Figure 4.2: Results of Experiment 1. A) Individual results from a representative subject are 
shown in A. Response errors are plotted as a function of the previous stimulus value minus the 
current stimulus value and fit with a derivative of a Gaussian. The amplitude of this fit is used as 
a measure of serial dependence. The fitted line is shown in blue and a running average is shown 
as a black dotted line. B) The resulting amplitudes for all subjects, as well as the group mean. 
Asterisks represent significance at the 95% confidence level generated from 10,000 iterations of 
bootstrap resampling. Four out of five subjects show significant serial dependence. The group 
mean amplitude of serial dependence is also significant. The error bar represents 95% bootstrap 
confidence interval. C) The raw responses as a function of stimulus valu. The black line denotes 
a running average of K-nearest neighbors with K=20. We can see some edge effects caused by 
our linear response space. We removed trials with stimulus values beyond the red cutoff levels. 
D) The results of removing trials to account for possible regression to the mean. Only trials with 
more extreme values than the previous trial are kept. The data is collapsed across subjects and fit 
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at the group level. We find significant serial dependence using the same bootstrap resampling 
test as in B. 

The results of the regression to the mean analysis are shown in Figure 4.3. This analysis pits the 
serial dependence effect against any possible influence of edge effects and regression to the 
mean. Despite this very conservative approach, we find that the amplitude of the fit to this group 
data, 4.1394, is significantly greater than zero (P<0.0454). This indicates that the evidence for 
serial dependence is robust to edge effects, regression-to-the-mean effects, and differences in 
tuning and amplitude of the serial dependence effect across subjects. Using only trials with 
stimulus values which are more extreme than the stimulus value on the previous trial, there 
remains strong evidence for serial dependence. 

We next compare the sum of square errors of our model fit to the true data with the sum of 
squares from randomly permuted trial orders. We find that the fit in the goodness-of-fit is 
significantly better for the individual subjects' responses when the true order of the stimuli and 
responses is used, as opposed to the randomly permuted trial orders, with the exception of the 
one subject with a non-significant negative amplitude of serial dependence (p < 0.0144, p < 
0.6486, p < 0.0455, p < 0.0215, p < 0.0001). This shows that model is actually accounting for 
differences in response errors that are due to the stimulus order, and in particular, due to the 
previous trial. Random permutations which disrupt the information present in the true [previous 
stimulus - current stimulus] values on the x-axis but maintain the exact relationship between the 
current stimulus value and response error are no longer predicted well by the model. 

 

Figure 4.3: Results of the goodness-of-fit analysis for Experiment 1. The histogram shows the 
unexplained variance after fitting the derivative of a Gaussian to the data from a single subject 
with a shuffled trial sequence with 10,000 repetitions. All subjects except one subject with a non-
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significant negative amplitude of serial dependence are fit significantly better when the correct 
trial order is used to code the data, showing direct evidence for the serial dependence effect. 

Experiment 2 - Serial Dependence in Walker Emotion 

In Experiment 1 we showed that serial dependence can occur between biological motion stimuli, 
specifically heading direction of point light walkers. In Experiment 2, we extended our results 
from Experiment 1 to a new dimension of biological motion stimuli: emotion.  

Observers: 

Five subjects participated in the experiment (2 male, 3 female, age range 19-31). One was an 
author of the study. The other participants were unaware of the purpose of the study. All had 
normal or corrected to normal acuity.  

Stimuli: 

 The stimulus in Experiment 2 is nearly identical to that of Experiment 1 except that 
instead of varying the direction of heading of the target walker, we presented a single walker that 
varied along the dimension of emotion from sad to happy. We used 100 morphs of point-light 
walkers, ranging from saddest (0) to happiest (100). Again, each walker consisted of 60 image 
frames shown for 1 second at 60Hz, starting at a randomized frame. This way each walker was 
shown for one complete gait cycle. The walker was followed by a white noise mask at the same 
visual field location for 500ms. After 750ms, a response walker appeared at the same location 
with a randomly assigned emotion from sad to happy. The walkers were shown at an eccentricity 
of 6° of visual angle, and the walkers subtended approximately 3°in height and 2°in width (see 
Experiment 1 Stimulus for details).  

 

Figure 4.4: The stimuli for Experiment 2. As in Experiment 1, stimuli consisted of a single 
animated walker (approximately 3° tall and 2° width) presented at 6° visual angle in the right 
hemifield. Each walker took one of 100 possible values representing a continuum from sad to 
happy. The target walker is presented at 60Hz for 1 second, performing one full gait cycle (one 
step with each foot), beginning on a random frame in the 60 frame gait sequence each trial. 

Task and Procedure: 

 The task and procedure for Experiment 2 were similar to Experiment 1 except that 
subjects were asked to match the emotion of the target walker. Subjects were instructed to 
maintain central fixation on a fixation dot for the duration of the experiment. After the target 
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walker, mask, delay, and appearance of the response walker, subjects were asked to use the left 
and right arrow keys to adjust the perceived emotion of the response walker to match that of the 
target. When subjects were satisfied that the emotion they had just seen had been matched, they 
pressed the spacebar to enter their response and move on to the next trial. 

Results 

 We conducted the same analyses for Experiment 2 as in Experiment 1. First, we looked at 
subjects' responses as a function of stimulus value and noted a similar pattern to Experiment 1. 
There is clear compression of responses near the most extreme stimulus values and the data in 
the middle of the stimulus range is well modeled by the one-to-one line. We note that the 
magnitude of errors tends to be larger in this experiment relative to the size of the stimulus space 
(stimulus space here is size 100, in the previous experiment it is 180, and yet the standard 
deviations of the response errors are 15.6 and 14.13 respectively).  

 

Figure 4.5: Raw responses for the group of subjects as a function of the emotion of the presented 
target walker. The black dotted line represents the running average of responses. The black solid 
line is the one-to-one, or correct response, line. Significant deviation from this line occurs at 
about 2 standard deviations of response error away from the edges. We rejected trials with 
stimuli outside the red cutoff values. 

 Our primary analysis of the data excludes the outer 30 values of the data, as in 
Experiment 1, to eliminate the possible influence of edge effects on our fits. After rejecting these 
trials, we conduct the same analysis as in Experiment 1, fitting a derivative of a Gaussian to the 
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response errors as a function of the difference between the previous and current stimulus. We 
generate bootstrap confidence intervals for each subject by resampling the data points with 
replacement. The results for one representative subject are shown in Figure 4.6A. The positive 
value of the fit for positive x-values near x=0 and negative value for negative x values near x=0 
indicate the serial dependence effect. The dotted line represents the k-Nearest Neighbor mean 
with k=20, and the model fit follows the running average. The results for all of the individual 
subjects can be seen in Figure 4.6B. Three of the five subjects individually showed significant 
positive serial dependence (p <.0001, p<.0913, p<.0012,p<.8173, p<.0093), with one subject 
showing a negative amplitude. We also test for significance at the group level by averaging the 
bootstrap amplitude estimates across subjects on each iteration. The mean amplitude is 2.395 
units with a bootstrap 95% confidence interval of [0.9473 ,4.4152] and a p-value of .0013. These 
results overall indicate the presence of serial dependence for emotional walkers after controlling 
for edge effects, despite somewhat noisier performance on the emotional walker task. 

 

Figure 4.6: Results of derivative of a Gaussian fit for Experiment 2. A) Results for a 
representative subject. As in Experiment 1, we plot response error as a function of the difference 
in stimulus value from previous trial to current trial, this time using emotion of the walker. We 
fit a derivative of a Gaussian model to the data (blue line) and measure the amplitude as a 
measure of serial dependence. B) Estimated amplitudes for each individual subject and the 
average for the group. We test for significance using a 95% bootstrap confidence interval. 

In a separate analysis, as in Experiment 1, we also control for regression-to-the-mean or central 
tendency bias in the data by including only trials for which the previous trial was more extreme 
than the current trial value. We combined the data across subjects into one super subject and 
used the derivative of Gaussian fitting procedure to measure the amplitude of serial dependence. 
Unlike Experiment 1, we did not get a reliable measure of the amplitude of serial dependence for 
the emotional walkers with this aggressively conservative analysis. The best fit of the derivative 
of Gaussian is essentially a positive sloped line that is not tuned near 0. There are a few possible 



48 
 

reasons for this difference. First, subjects’ responses are significantly noisier for emotional 
walkers than for direction of heading with standard deviations of 15.6 and 14.13 on stimulus 
spaces that consist of 100 and 180 morphs respectively. This means that on average errors are 
twice as large as in Experiment 1. Second, the width of the derivative of Gaussian fits is 
substantially wider relative to the full size of the stimulus space in Experiment 2. This means that 
most trials remaining after the conservative rejection procedure lay on the interval -20 to 20 
morph units, where we expect to see serial dependence. Since a positively sloped line well 
characterizes the middle portion of the derivative of Gaussian with positive amplitude, it is 
sensible to see a linear best fit. Furthermore, this linear trend cannot be explained by artifacts like 
edge effects or regression to the mean due to our rejection procedure. 

 

Figure 4.7: Two control analyses for Experiment 2. A) Central tendency correction. We removed 
all trials except where the current trial is more extreme than the previous trial. This controlled for 
central tendency in subjects' responses. The data was collapsed across subjects. Because of the 
narrow range of stimuli, we saw a positive trend rather than tuned serial dependence. B) The 
results of the goodness-of-fit test at the group level. On each permutation, we shuffled the order 
of the trials while keeping the stimulus value / response value pairs intact. We measured the 
unexplained variance and find that the model explained the true data significantly better than the 
reshuffled data (p < .0166). 

As in the analysis for Experiment 1, we also conducted a goodness-of-fit test for our model on 
the emotional walker data. We compared the unexplained variance in the responses when the 
model is fit to the true data to the unexplained variance in the responses when the model is fit to 
data with a shuffled presentation order, keeping the pairs of stimulus values and response errors 
intact. Because of the increased level of noise in the emotional walker responses compared to the 
direction of heading task, 60% of trials were eliminated by the edge effect control (as opposed to 
33% in Experiment 1). Therefore, the goodness-of-fit test was calculated for the group average 
rather than for individual subjects. We compared the average unexplained variance across 
subjects for the model fit to the true data to average unexplained variance across subjects for the 
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model fit to the shuffled data. We found that on average the model performs significantly better 
for the true data than the shuffled data (p < .0166). 

Our finding of serial dependence for the emotion of perceived biological motion further 
strengthens the results of Experiment 1 and it shows that serial dependence occurs across more 
than one dimension of a stimulus, even for complex dynamic representations such as biological 
motion. It also shows that serial dependence is robust across stimulus dimensions that may have 
different autocorrelation structure in the natural world; the timescales over which direction of 
motion and perceived emotion of walkers change may be quite different but serial dependence 
occurs for both dimensions.  
General Discussion 

The visual world is very noisy, with motion, clutter, changes in lighting, head movements, eye 
movements, and internal system noise, yet we perceive the world to be stable and 
comprehensible. One of the ways this is achieved by the visual system is serial dependence: what 
we see is biased toward what we have seen in the recent past. We have demonstrated that this 
serial dependence affects the perception of biological motion in two different stimulus domains: 
walking direction and emotion. Our results show that the brain uses serial dependence to achieve 
this appearance of stability, even when the world is actually in motion. We have also offered 
some important analysis considerations for investigating serial dependence in these types of 
stimulus domains. 

Evidence of serial dependence has been shown in many types of visual stimuli, from orientation 
(Fischer & Whitney, 2014; Fritsche et al., 2017), to size, to face identity, emotion, (Liberman et 
al., 2014; Taubert, Alais, & Burr, 2016), and attractiveness (Kondo, Takahashi, & Watanabe, 
2012; Taubert, Van der Burg, & Alais, 2016; Xia, Leib, & Whitney, 2016), with our perception 
of the stimulus systematically biased toward the recent past. It has been hypothesized that this 
serial dependence effect is the result of a specialized spatio-temporal operator, the continuity 
field, which integrates the current stimulus with congruent recently seen stimuli to promote 
stability of perception. Static scenes are perfectly autocorrelated, so it is beneficial to maintain 
stability of perception both to represent the actual characteristics of the world and to save 
computation.  

However, dynamic scenes also contain structure that is highly autocorrelated, and our results 
show that there is serial dependence for relatively stable aspects of dynamic scenes such as 
direction of heading or emotion of a walker. Humans can quickly, accurately, and robustly 
perceive biological motion from a set of impoverished cues, such as a point-light walker or even 
a degraded point-light walker (Johansson, 1973). We can also infer a wide variety of information 
from point-light walkers, including identity (Troje, Westhoff, & Lavrov, 2005), direction of 
heading, gender (Pollick, Kay, Heim, & Stringer, 2005), and emotion (Atkinson, Dittrich, 
Gemmell, & Young, 2004; Dittrich, Troscianko, Lea, & Morgan, 1996). Motion integration is 
important for the recognition of biological motion and it has been shown that perception of 
biological motion is more accurate under moving rather than static conditions. However, motion 
information alone is not always sufficient and other studies have demonstrated the important role 
of form information in biological motion with inversion effects (Sumi, 1984) and classification 
images (Lu & Liu, 2006). Overall, biological motion perception likely involves some integration 
of both local motion information and configural form. This complex type of representation 
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requires integration over both space and time to accurately compute and extract meaningful 
attributes, such as emotion or walking direction. 

This is the first time that serial dependence has been demonstrated for a dynamic high level 
representation which requires both structural inference and integration over time. Other work has 
recently shown that serial dependence can occur for the perception of motion (Alais, Leung, & 
Van der Burg, 2017), but our results show that serial dependence not only occurs for visual 
motion itself, but for representations which require visual motion in a particular structural 
arrangement. 

Our results are also important because they addressed a few potential analysis issues when 
measuring serial dependence. Some of the earliest work on serial dependence utilized circular 
stimulus spaces to measure serial dependence, such as orientation and even emotion or identity 
of a face. This avoids potential confounds due to edge artifacts. However, in many domains of 
interest, such as size or facial attractiveness, such a circular stimulus space does not exist and 
special precautions must be taken to avoid contamination by edge effects. In our case, the 
walking direction of point light walkers was ambiguous when 360° of walking directions are 
utilized, and so we were limited to using only the frontal 180°. Because of this, edge effects were 
introduced which can cause the appearance of serial dependence despite no real perceptual 
dependence on the previous trial. If subjects' responses had a central tendency in the stimulus 
space, this could also produce what looks like serial dependence, when in fact it is an artifact.  

We developed several novel analysis methods (see Analysis section for details) to control for 
these effects and remove possible biases. First, we mitigated edge effects by rejecting trials 
where the stimulus value was within 2 standard deviations of subjects' response errors of the 
minimum or maximum possible value. Second, we controlled for central tendency biases by 
performing a separate analysis looking at only trials where the current stimulus was more 
extreme than the previous. This is a conservative analysis that includes trials where a central 
tendency bias would weaken serial dependence. We also developed a goodness-of-fit measure 
for our model that directly tests serial dependence by examining the effect of trial order.  

Taken together, our results show that there is serial dependence for the perception of apparent 
biological motion, providing a mechanism for the perception of stable characteristics in dynamic 
representations. We also argue that some care must be taken when investigating serial effects in 
linear stimulus spaces and developed some new analysis techniques. 
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Chapter 5: Conclusion 
 
 

Object recognition is one of the central tasks for the human visual system. We have argued that a 
complete account of object recognition should be seen not simply as a sequential process 
operating on a single object, but rather as a process that allows for the interaction of multiple 
objects through spatial and temporal context at many different levels of the visual system. 
Specifically, we have shown that both visual crowding and serial dependence are interactions 
between a target object and its context that influence the veridicality of object perception. We 
have also seen that any complete account of object recognition must allow for top-down 
influence in the processing of low level features, allowing lighting interpretation to influence 
interaction amongst oriented Gabors, and for the perception and extraction of high level features 
from impoverished point-light displays. 
 
Visual crowding cannot be explained by information loss at each successive level of information 
processing, as it posited by many current models of crowding. This is at odds with our ability to 
recognize complex objects in the periphery, and with many findings in the crowding literature 
including the configural effects of grouping on crowding, and as we have developed here, the 
influence of lighting interpretation within a scene on crowding. Instead, crowding is better 
explained by the Hierarchical Sparse Selection Model presented here which argues that crowding 
is actually a product of insufficient sampling read-out from a population code that represents 
with high fidelity the information present at each level of processing.  
 
In both our crowding and serial dependence findings, we extend the space of representations that 
can be selectively involved in contextual interactions to 3D representations that are derived from 
the 2D stimulus based on prior assumptions about the structure of the world. The 3D 
representation that causes a selective release from crowding in Chapter 3 is due to a basic 
assumption of a single light source coming from above. In Chapter 4, we see that serial 
dependence influences the perception of a stimulus that requires configural priors and integration 
over time. 
 
Taken together, our results point to an influence of context in visual object recognition in both 
space and time that operates at many different levels of visual processing. 
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