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OPEN

ORIGINAL ARTICLE

Multiple region whole-exome sequencing reveals dramatically
evolving intratumor genomic heterogeneity in esophageal
squamous cell carcinoma
W Cao1,8, W Wu1,2,7,8, M Yan3, F Tian1, C Ma1, Q Zhang1, X Li1, P Han1, Z Liu4, J Gu5 and FG Biddle6

Cancer is a disease of genome instability and genomic alterations; now, genomic heterogeneity is rapidly emerging as a defining
feature of cancer, both within and between tumors. Motivation for our pilot study of tumor heterogeneity in esophageal squamous
cell carcinoma (ESCC) is that it is not well studied, but the highest incidences of esophageal cancers are found in China and ESCC is
the most common type. We profiled the mutations and changes in copy number that were identified by whole-exome sequencing
and array-based comparative genomic hybridization in multiple regions within an ESCC from two patients. The average mutational
heterogeneity rate was 90% in all regions of the individual tumors in each patient; most somatic point mutations were
nonsynonymous substitutions, small Indels occurred in untranslated regions of genes, and copy number alterations varied among
multiple regions of a tumor. Independent Sanger sequencing technology confirmed selected gene mutations with more than 88%
concordance. Phylogenetic analysis of the somatic mutation frequency demonstrated that multiple, genomically heterogeneous
divergent clones evolve and co-exist within a primary ESCC and metastatic subclones result from the dispersal and adaptation of an
initially non-metastatic parental clone. Therefore, a single-region sampling will not reflect the evolving architecture of a genomically
heterogeneous landscape of mutations in ESCC tumors and the divergent complexity of this genomic heterogeneity among
patients will complicate any promise of a simple genetic or epigenetic diagnostic signature in ESCC. We conclude that any potential
for informative biomarker discovery in ESCC and targeted personalized therapies will require a deeper understanding of the
functional biology of the ontogeny and phylogeny of the tumor heterogeneity.

Oncogenesis (2015) 4, e175; doi:10.1038/oncsis.2015.34; published online 30 November 2015

INTRODUCTION
Cancer is a disease of genome instability and a resulting
accumulation of genetic and epigenetic alteration. Global cancer
genome projects have contributed to the identification and
molecular classification of hundreds of cancer genes and the
genomic architecture. With a deepening of the sequencing of
the cancer genome, genomic heterogeneity is rapidly emerging
as a defining feature of cancer, not only between tumors,
but also within tumors. Accumulating evidence for intratumor
heterogeneity1–6 is showing that tumors evolve through a process
of branched evolution with genetically distinct subclones, which
lead to tumor recurrence, drug resistance and metastatic
potential.7,8

Esophageal squamous cell carcinoma (ESCC) is the most
common histological subtype of esophageal cancer in South-
Eastern and Central Asia, particularly in China.9 Large-scale
genome sequencing of ESCC has identified known frequently

mutated genes, such as TP53, and other previously unrecognized
mutated genes,10–12 but intratumor heterogeneity in ESCC has not
been well studied. Therefore, to establish the framework for a
comprehensive and systematic whole-genome analysis of ESCC,
we conducted a pilot study in ESCC patients, using multiple-
region, whole-exome sequencing and array-based comparative
genomic hybridization (aCGH), applied to 11 tumor regions from
two surgically resected ESCCs, including metastatic lymph nodes.
We show here that each tumor region has substantial genomic
heterogeneity with its own unique profile of mutations and copy
number alterations. Each tumor region was characterized for
non-silent mutations and a branching evolution of cancer
development was inferred. Functional analysis revealed common
as well as unique, actionable and druggable mutated genes in the
landscape of intratumor genomic heterogeneity in ESCC.
Therefore, we will suggest that targeting the gene regulatory
networks, which underlie the fitness landscape of ESCC, with a
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combinatorial approach rather than current canonical protocols
may be necessary for optimal tumor treatment and control.

RESULTS
Mutational profile in multiple regions of ESCC
To characterize the extent of intratumor genomic heterogeneity in
ESCC, we performed whole-exome sequencing on four separate
regions within a primary ESCC sample and a non-tumor region
from adjacent normal tissue from two patients (Pt), denoted as
PtA and PtB (Figures 1a and b, Supplementary Table S1). PtA was
diagnosed with ESCC without lymph node invasion, clinical stage
was T2N0M0; PtB was diagnosed with advanced ESCC with lymph
node metastasis, clinical stage was T3N2M0. Genomic aberrations
in these samples were assessed for somatic point mutations
(SPMs) and somatic small insertions or deletions (Indels).
Annotation of the SPMs were categorized as nonsynonymous or
missense mutations, synonymous or silent mutations, stop-gain or
nonsense mutations, and splice site mutations. The non-silent
mutations (nonsynonymous, stop-gain and splice site mutations)
comprise more than 50% of the defined mutations in each
tumor region (Supplementary Figures S1c and d). Indels occurred
in exons of genes resulting in frameshift or non-frameshift
mutations, as well as in the untranslated regions (5’ or 3’-UTRs)
and splice sites of genes. The majority of Indels were in UTRs
(Supplementary Figures S1e and f). The predominant type of
mutation in both patients is a C4T/G4A transition; the second
most frequent mutation is an A4G/T4C transition in PtA, and a
C4G/G4C transversion in PtB (Supplementary Figure S2). The
difference in the mutation spectra between the two patients may

be due to a change in or a reflection of different mutational
mechanisms during ESCC cancer development.12,13

We then asked what genes are affected by the identified
mutations across the tumor regions in each patient. Overall, only
23 of 193 genes with SPMs and 5 of 90 genes with Indels in PtA
(Figures 1c and e) were found in all four regions, accounting for
12% and 7% common mutated genes with SPMs and Indels,
respectively. Similarly, all tumor regions in PtB, including the
metastasis, shared only 11% of the 248 mutated genes with SPMs
and 12% of the 117 mutated genes with Indels (Figures 1d and f).
Therefore, one measure of the degree of intratumor heterogeneity
is the heterogeneity rate and it is defined as the number of
mutated genes that are detected in one or more, but not all
regions of a tumor. Both patients have similar average intratumor
heterogeneity rates of approximately 90% for mutated genes with
either SPMs or Indels.

Copy number alterations in multiple regions of ESCC
Copy number alterations in multiple regions of ESCC were
surveyed using aCGH, and the amplifications and deletions of
chromosomes were identified in each tumor region from PtA and
PtB (Figure 2 and Supplementary Figures S3a and b). In PtA, 430
chromosomal segments were amplified or deleted in at least one
region and among them, 71 (17%) genomic loci were amplified
and 8 (2%) genomic loci were deleted in all four regions of the
tumor (Figure 2a). The common amplified regions occurred in 2q,
3q, 8q, 10q, 11q, 14q and 18q, and the common deletions
occurred in 3p21, 7q11.23, 10q24, 12q24, 19p13 and 19q13. All
tumor regions did not share the majority of the chromosomal
aberrations, indicating substantial intratumor chromosomal
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Figure 1. Intratumor heterogeneity of somatic mutations in ESCC. (a, b) Four spatially separated samples were obtained from a surgically
resected ESCC as well as non-tumor tissue and associated metastatic lymph nodes were collected for multi-region exome sequencing and
aCGH assay. (c, d) The Venn diagrams show the number of genes in each tumor region with SPMs from PtA and PtB. (e, f) The number of genes
affected with insertions and deletions (Indels) in each region from PtA and PtB. The heterogeneity rate was computed with the total affected
genes divided by the number of affected genes not shared by all tumor regions.
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heterogeneity. In contrast, in PtB, only 262 chromosomal regions
were amplified or deleted, in at least one region of the tumor
(Figure 2b). There were 33 (13%) common amplified regions,
located in 3p12, 3p11-13, 3q21.3-3q26.31, 6q, 7q, 8q and Xq, and
two common deletions, which occurred at 4q35.2 and Yp11.31-
Yq12, were shared only in tumor regions T1B, T2B, T4B and M
(no deletion was detected in tumor region T3B). We note that the
known frequent somatic CNVs, involving 3q26 (PRKCI gene
amplification),14 9p21 (SOX2 gene amplification)15 and 11q13.3
(CCTN gene amplification),16 were detected in this study. When
taken together, heterogeneous amplifications and deletions were
observed in multiple regions of each ESCC with an average
heterogeneity rate of approximately 92%, which is very similar to
the heterogeneity rate observed for SPMs and Indels.

Characterization of non-silent somatic mutations in multiple
regions of ESCC
The nonsynonymous mutations, stop-gain mutations, splice site
mutations and other mutations, including small Indels (frameshift
and non-frameshift), generally change the protein function and
we grouped them collectively as non-silent mutations. We note
that the number of genes affected by mutations is relatively less
than the total number of mutations, owing to the fact that
multiple mutations may occur in the same gene. On the basis of
this classification, there were 158 and 203 non-silent mutated
genes (present in at least one tumor region) in PtA and PtB,
respectively (Supplementary Tables S2 and S3), but only 16 genes
were common to both patients (Figure 3a). We selected 51 gene
mutations, including SPM and Indels, for independent validation
by a Sanger sequencing approach, and 46 out 51 gene mutations
(88%) were confirmed (Supplementary Table S4).

To characterize intratumor heterogeneity of the non-silent
mutated genes, we used the ‘trunk’ to represent ubiquitous
mutations present in all regions of a tumor, the ‘branch’ to stand
for heterogeneous mutations present in some, but not all regions
of the tumor, and ‘private’ to correspond to mutations that
are present in only one region of a tumor. We mapped these
non-silent mutated genes across all spatially separated regions
shown in the heatmap in Figures 3b and c. In PtA, we classified
158 non-silent mutated genes into 17 trunk gene mutations, 54
branch gene mutations and 87 private mutations. In PtB, 27 of 203
mutant genes were in the trunk, 76 mutant genes were located in
the branch section and 100 genes were private mutations.
Detection of private mutations in all tumor regions suggests that
an ongoing, regional clonal evolution is occurring in PtA and PtB.
To determine whether these non-silent mutated genes are

associated with cancer, we searched for our identified mutant
genes in the COSMIC (Catalog Of Somatic Mutations In Cancer)
database and other cancer-related studies.10–12 There are 52
recognized cancer gene mutations across the tumor regions in PtA
and 55 recognized cancer gene mutations across the tumor
regions in PtB, and they are listed on the right side of the
respective heatmaps in Figures 3b and c. In the trunk of the
heatmap, 8 of the 17 mutated genes in PtA and 9 of the 27
mutated genes in PtB are known cancer-associated genes. PtB is a
more advanced case with adjacent lymph node metastasis and we
note that the TP53 (C85X, C85Y) mutation was detected in all
tumor regions of PtB (but not PtA) and the metastatic region (M)
of PtB has 18 cancer-associated gene mutations.
Tumor evolution in each patient was reconstructed from the

regional mutation frequencies using a phylogenetic algorithm.17

A branching rather than a linear tumor evolutionary pattern was
inferred for each patient and is illustrated in Figures 3d and e.
Subclonal populations, with variable evolutionary distances
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Figure 2. Intratumoral genomic copy number alterations of ESCC detected by aCGH. Genomic copy number alterations relative to non-tumor
tissues in PtA (a) and in PtB (b) were plotted with Circos plot. Green color represents copy number amplification (Amp); Red color represents
copy number deletion (Del), in each region of a given ESCC tissue. The total copy number alterations (Amp+Del): 403 in PtA, 262 in PtB. The
Venn diagrams show the overlap of Amp or Del between each tumor region from PtA and PtB.
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between them, co-exist within a tumor and share trunk mutations.
As well, the subclonal populations harbor their own private
mutations, while continuing to maintain a stable phenotype or
cancer property.

Characterization of mutations in UTRs from multiple regions of
ESCC
We assessed SPMs and Indels in UTRs (3’ and 5’) that may change
the regulatory elements of genes. UTRs contain binding sites for
microRNAs and mutations in those UTRs may perturb interactions

between microRNAs and their target genes and, as a
consequence, disrupt regulatory functions of the microRNAs.
PtA had a total of 232 detected mutations in UTRs and PtB
had a total of 366. We retrieved 1858 microRNA-binding sites that
were predicted with the miRase algorithm and used them as a
database to computationally assess the identified mutations
in UTRs (Supplementary Figure S4). Two genes, CTDSPL2
(Chr15:44818173-44818173, an ‘A’ insertion) in region T3A and
BCL7A (Chr12: 122498799-122498799, an ‘A’ insertion) in region
T4A, were predicted to have mutations in 3’-UTR disrupting

Table 1. Pathways in each tumor region of ESCC

GO terms P value Associated genes

PtA
T1A Intracellular estrogen receptor signaling pathway 3.00E-04 CRIPAK, POU4F2, RARA
T2A Secretory granule membrane 2.30E-03 ABCC4, PAM, PCSK4

DNA packaging complex 1.60E-03 H1FOO, HIST1H3D, PXDNL, SMC4
T3A Myosin complex 2.50E-03 MYH11, MYO18A, MYO18B

Negative regulation of translation 1.80E-03 EIF2AK4, RARA, TIA1
T4A O-linked glycosylation of mucins 9.80E-04

Termination of O-glycan biosynthesis 3.00E-04 MUC17, MUC5B, MUC6
O-glycan processing 2.20E-03
Sectetory granule membrane 1.60E-03 ABCC4, DBH, PAM

PtB
T1B Transport of mature transcript to cytoplasm 9.10E-03 NUP153, NXF1, SRRM1

Transport of mature mRNA derived from an intron-containing transcript 1.40E-02
Melanoma 8.40E-03 HGF, PIK3R2, TP53
ECM proteoglycans 1.20E-02 DSPP, MUSK, TNC

T2B Melanoma 3.10E-03 HGF, PIK3R2, TP53
T3B Ribosome biogeneisis in eukaryotes 4.00E-03 BMS1, HEATR1, NXF1, REXO1

ECM-receptor interaction 2.80E-03 COL11A1, GP1BA, THBS2, TNC
Melanoma 7.50E-03 HGF, PIK3R2, TP53

T4B NEP/NS2 interacts with the cellular export machinery 4.10E-04 NUP153, NUP210, XPO1
Rev-mediated nuclear export of HIV RNA 3.00E-04
Export of viral ribonucleoproteins from nucleus 3.40E-04
Interactions of Rev with host cellular proteins 2.00E-04

M Prolactin signaling pathway 6.30E-03 CSN2, ESR1, PIK3R2
Melanoma 1.20E-02 HGF, PIK3R2, TP53
Muscle contraction 6.70E-03 MYL9, NEB, TPM2

Abbreviations: ESCC, esophageal squamous cell carcinoma; PtA, patient A; PtB, patient B.
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Figure 4. Functional intratumor genomic heterogeneity in ESCC. Non-silent mutations in each tumor region (circle I) were subjected to KEGG
and Interactom database search using GlueGo algorithm. The networks of pathways and biological processes (summarized in Table 1) in
each tumor region are illustrated conceptually as nodes and edges (circle II). The actionable and druggable genes in each tumor region
were predicted with the Drug-Gene Interaction DATABASE (http://dgidb.genome.wustl.edu/) (circle III). Left panel: PtA, right panel:
PtB; M, Metastasis.

Complex divergent intratumor heterogeneity in ESCC
W Cao et al

5

Oncogenesis (2015), 1 – 8

http://dgidb.genome.wustl.edu/


microRNA-binding sites that are recognized by miR129/129-5p
and miR204/211, respectively. The UTR mutations in PtB were not
predicted to affect known microRNA-binding sites. Nevertheless,
the majority of identified UTR mutations in both PtA and PtB
appear to be of unknown significance.

Divergent complexity of functional intratumor genomic
heterogeneity
Evolving intratumor mutational heterogeneity in ESCC reveals a
complex divergence of misregulation of cancer-cell signaling
pathways and the intratumor mutational heterogeneity may
provide an informed guidance of combinatorial therapy. Most
mutated genes do express and produce abnormal proteins and
they may be components of different cancer pathways. Therefore,
we made two functional assessments of the multiple tumor
regions. First, we made functional predictions with GO terms in
the KEGG and REACTOM search algorithms applied to the profiles
of the non-silent mutations in the different tumor regions
(Supplementary Figure S4). Functional heterogeneity in the
different tumor regions suggested different regulatory signaling
and cellular metabolic pathways (Table 1). The inferred gene
regulatory networks of each tumor region from PtA and PtB,
including the metastasis, are illustrated only symbolically with
nodes and edges (circle II in Figures 4a and b). For example,
MUC17, MUC5B and MUC6 gene mutations in tumor region T4A of
PtA (Table 1) predict the perturbation of O-glycan biosynthesis
and processing, and the GO terms in T4A differ from GO terms in
other tumor regions. Similarly, mutations in the tumor regions
from PtB suggest heterogeneous signaling pathways and biolo-
gical processes, such as the HGF, PIK3R2 and TP53 mutations,
which are known to result in cancer pathway activation. Mutations
of genes CSN2, ESR1 and PIK3R2 may damage the prolactin-
signaling pathway (Table 1). These data indicate that the
divergent complexity of mutations, which is identified by
genotyping of the separate tumor regions, may inevitably change
the biological functionalities that are linked to intratumor
heterogeneity.
Second, we used the well-established Drug-Gene Interaction

Database (DGIDB) to predict actionable and druggable gene
mutations. Drugs in this database are used clinically or they are
currently in clinical trials. The results show that the patterns of
potentially druggable mutated genes are heterogeneous in the
different tumor regions. In PtA (circle III in Figure 4a), all tumor
regions shared four common actionable mutated genes (MTFHR,
MYH11, ABCC4 and GPRC6A); in PtB (circle III in Figure 4b), all
tumor regions, including the metastasis, shared five druggable
mutated genes (TP53, GPR37, HGF, CENPE and HTR3D). Perhaps
more importantly, the tumor regions from each patient show an
evolving divergent complexity of additional actionable and
druggable mutated genes.

DISCUSSION
Single biopsy sampling for molecular analysis of tumors from
patient cohorts is a standard analytical method and it is effective
for diagnosis of single gene disorders. However, single tumor
biopsy samples do not reveal the complexity of the genomic
landscape in tumors with intratumor heterogeneity.1–3,5,18

Therefore, multiple regional sampling of tumors to estimate
intratumor genomic heterogeneity has emerged as a non-
canonical protocol to characterize actionable targets, make
treatment decisions and manage chemo-resistance.7

In our pilot study, we assessed multiple regional samples of two
primary ESCC tumors and an associated metastasis with whole-
exome sequencing and aCGH. We found extensive divergent
mutational profiles of SPMs, Indels, copy number amplifications
and deletions in the spatially separated samples within each

tumor and metastasis with an average intratumor heterogeneity
rate 90% (Figures 1 and 2). Further characterization of non-silent
mutations in each tumor region showed only 17 (11%) out of 158
mutated genes in PtA (Figure 3b), and 27 (13%) of 203 in PtB
(Figure 3c) to be common in all tumor regions (‘trunk’ mutations).
The overall percentage of shared mutations between multiple
tumor regions of ESCC in this study is dramatically lower than in
other types of cancer such as clear cell renal cell carcinoma
(30 ~ 35%)1,2 and high-grade serous ovarian cancers (52%).4

In other words, the rate of intratumor genomic heterogeneity
is higher in ESCC (~90%) than in other types of tumor,
including esophageal adenocarcinoma (56%).6 Higher intratumor
heterogeneity index in esophageal adenocarcinoma is strongly
correlated with poor responses to neoadjuvant chemotherapy.6

We suggest that our observed high intratumor heterogeneity rate
in ESCC may contribute to its poor overall 5-year survival rates of
15–25%.19

To understand the biological significance of the non-silent
mutation-affected genes that we detected in ESCC, we compared
our mutations from PtA and PtB with the COSMIC database and
other ESCC genome sequencing studies. Approximately one-third
of our non-silent mutated genes are cancer-related. For example,
the mutated genes common in all tumor regions from PtA,
BCL6B,20 MYH11,21 SUFU22 act as tumor suppressor genes, and
mutations in BCL6B (Indel), MYH11(M816K) and SUFU(Y90S) could
inactivate the gene function and contribute to tumorigenesis.
Over expression of DCBLD223 may act as an oncogene interacting
with the EGFR and PI3K/Akt signaling pathways; gain of function
of DCBLD2 mutation (Indel) could participate with cellular
proliferative pathways to promote tumor progression. In contrast,
PtB is a more advanced case of ESCC with an adjacent lymph node
metastasis and, as might be expected, more mutated genes were
identified in PtB, but the intratumor genomic heterogeneity rate
was the same as in PtA. We note that TP53 is a frequently and
early mutated cancer gene,6 but it was detected as a trunk
mutation only in PtB. CENPE is another trunk mutation gene in PtB
and normally, it has a key role in the movement of chromosomes
toward the metaphase plate during mitosis; the observed CENPE
(Q1302E) gene mutation may disrupt its normal function and lead
to chromosomal instability, but again, it only was found in PtB.
UTRs of genes contain microRNA regulatory-binding sites and

mutations in these sequences could alter miRNA::mRNA interac-
tion and significantly alter gene expression. These mutations in
UTRs and the dysregulation of their functions are usually not
reported in current studies of intratumor heterogeneity. In our
computational search, we found multiple microRNA-binding sites
mutated in target genes CTDSPL2 in region T3A and BCL7A in
region T4A from PtA. These microRNAs are miR129-5p,24,25

miR20426 and miR211,27 which are putative tumor-suppressor
microRNAs. These types of mutation in gene regulatory elements
provide a hypothesis and a foundation for further experimental
investigations.
Phylogenetic analysis is clearly a useful approach to visualize

the complexity of intratumor heterogeneity as a tree structure in a
given tumor because it summarizes the ontogeny of genomic
similarity and divergence in all tumor regions. The present analysis
unequivocally indicates that clonal subpopulations co-exist in the
primary tumor and a metastatic subpopulation may be derived by
additional mutations from initially non-metastatic parental clones
in the primary tumor. This observation is supported by similar
studies of intratumor heterogeneity in pancreatic cancer18 and
clear cell renal cell cancer.1

An intratumor heterogeneous genomic architecture may
generate a microenvironment with divergent heterogeneous
cellular signaling pathways and biological processes, which
may harbor various actionable and druggable mutated genes.
Therefore, we assessed the non-silent genes in each tumor region
for potential regional specific functional pathways (Table 1) and
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explored the potential for regional targeted therapy with small
molecules (Figure 4). In PtA, no common pathways were
identified, but there are four common actionable mutated genes,
which are MHFR, MYH11, ABCC4 and GRPC6A. In PtB, a cancer
pathway (melanoma) was identified in all tumor regions except
T4B, and this pathway is composed of TP53, HGF and PIK3R2,
which have existing targeted drugs. However, each tumor region
also has its own uniqueness of cellular pathways and available
targeted mutated genes. Thus, the functional intratumor hetero-
geneity presents a challenge to precision medicine. To achieve
optimal tumor treatment and tumor control, it may be necessary
to target clonally dominant truncal somatic events or adopt
multiple targeted therapies in a combinatorial approach.28

In summary, our observations, along with other studies,
demonstrate that intratumor heterogeneity is a hallmark of ESCC,
as it is for most cancers. Therefore, multi-regional sampling is a
more informative approach for diagnosis, for potential biomarker
discovery and for making treatment decisions. In addition,
the evolving, divergent complexity of intratumor genomic and
functional heterogeneity points to a necessity for unconventional
strategies to understand the logic of the ESCC genomic system for
reprogramming of its gene-regulatory network.

MATERIALS AND METHODS
Specimens
Written informed consent was obtained from two male patients before
surgery and the Institutional Review Board for the use of human subjects at
Zhengzhou Central Hospital, affiliated to Zhengzhou University, approved
our study protocol. Multiregional specimens from primary tumors were
obtained from two patients with ESCC who underwent surgical treatment
and adjacent non-neoplastic tissues were obtained as references. One
metastatic specimen was also obtained from one of the patients. Basic
patient information is listed in Supplementary Table S1. Specimens were
frozen in liquid nitrogen immediately after surgical resection. Neither
patient had prior chemotherapy or radiotherapy, nor did they have any
other serious disease. All ESCC tissues were histopathologically diagnosed
by at least two independent senior pathologists.

Whole-exome sequencing
The genomic DNA from tumors of multiple regions, metastatic areas and
matched adjacent normal tissues from the two ESCC patients were sheared
by Bioruptor_NGS (Diagenode SA, Denville, NJ, USA) to produce fragment
sizes of 200~ 300 bp. Samples of 100 ng of purified DNA were carried out
through a process of end repair, phosphorylation and ligation to barcoded
sequencing adapters. Ligated DNA was size-selected for lengths between
200 and 350 bp and subjected to exonic hybrid capture using SeqCap EZ
Human Exome Library v3.0 (Roche Nimblegen, Madison, WI, USA). Each of
the captured libraries were multiplexed and sequenced on multiple
Illumina HiSeq 2000 (Illumina, San Diego, CA, USA) flow cells to average
target exome coverage of 50× in neoplastic DNA and 60 × in reference
tissue using 76- bp paired-end reads.

Processing of sequencing data and detection of variation
After removing reads containing sequencing adapters and low-quality
reads, high-quality reads were aligned to the NCBI reference genome
(hg19) using Burrows-Wheeler Aligner 0.7.2 with default parameters. The
SAMtools set of utilities was used to merge and remove duplicates. Local
realignment and recalibration of base quality score was carried out with
the GATK software package. SPMs (single nucleotide polymorphisms) and
INDELs were predicted with GATK and variation file (*.vcf) was filtered and
annotated with the ANNOVAR software tool. The sequence data have been
deposited at the European Genome-Phenome Archive (EGA, http://www.
ebi.ac.uk/ega/), which is hosted by the EMBL-EBI, under accession number
EGAS 00001000965.

aCGH processing and analysis of copy number
Each genomic DNA (0.5 μg) was fluorescently labeled with the NimbleGen
enzymatic labeling protocol which uses Cy3 and Cy5-labeled random
nanomers (TriLink Biotechnologies, San Diego, CA, USA), a heat
fragmentation step at 98 °C for 10min, and amplification with Klenow

fragment 5’-3’exo- (NEB, Ipswich, MA, USA). Five micrograms of each
Cy5-labeled sample were co-hybridized with 5 μg of gender matched
Cy3-labeled human male or female reference DNA (Promega, Madison, WI,
USA) on Agilent SurePrint G3 Human Catalog CGH 8×60K (Design ID
021924, Agilent, Santa Clara, CA, USA) following the hybridization and
washing conditions from the Agilent Oligonucleotide Array-based CGH for
Genomic DNA Analysis Protocol v6.2. Arrays were scanned with the Agilent
DNA Microarray Scanner at a 3-μm scan resolution, and quantified with
Feature Extraction 11.0.1.1. CGH-processed signal was then uploaded into
Partek Suite software (v6.6) where data were visualized and analyzed. The
amplifications and deletions were called with default parameters except
for changing of minimum genomic markers = 30 and signal/noise = 0.5 to
increase the stringency. The aCGH data have been deposited in National
Center for Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO) and are accessible through (GEO) Series accession number GSE60625
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60625).

Phylogenetic analysis
Phylogenetic analysis was conducted with published methods17 in
R (V 2.15.0) using the Ape and Phangorn packages. Briefly, genetic
distances were estimated among different regions under a generalized
Kimura model. The initial phylogenetic trees were created using a
neighbor-joining algorithm. Likelihood optimization was then used to
obtain the maximum likelihood tree for each region. Finally, a
non-parametric bootstrap on each maximum likelihood tree was
conducted to estimate the support for individual branches (n= 1000
iterations)

Functional analysis of non-silent mutations
The mutations (SPMs and Indels) in each tumor region obtained from
whole-exome sequencing were further analyzed with the R project for
statistical computing (version 3.1.2) and customized script (Supplementary
Figure S3). The Cytoscape (v3.1.1) with GlueGo plugin was used for
pathways analysis. The DGIDB (http://dgidb.genome.wustl.edu/) was used
to predict actionable and druggable mutated genes.
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