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Abstract

Semiparametric Prediction, Variable Importance, and Effect Estimation in Critical Care

Anna Decker

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Profesor Alan Hubbard, Chair

Trauma injury is one of the leading causes of death in the United States, accounting
for over 120,000 deaths in 2010 according to the CDC. Understanding the underlying
mechanisms and improving the treatment of trauma is of great clinical and public health
interest. The systematic collection and study of critical care data originated in combat
conflicts and wars and more recently to civilian centers. Improving patient outcomes,
the quality of care received, and identifying high-risk patients are unmet needs in this
field.

Clinicians rely on their intuition, training, and heuristic scoring systems to identify pa-
tients who are likely to die or experience other outcomes such as the need for a massive
transfusion, which resuscitates the patient via the infusion of blood products such as
plasma, platelets, and red blood cells. We assessed the ability of measured covariates to
predict various clinical outcomes, demonstrate the utility of machine-learning prediction
algorithms, and examined the predictive performance of a commonly-used score to pre-
dict massive transfusion. This highlights the need for a principled approach to predicting
outcomes that does not rely only on ad hoc procedures.

In addition to the prediction of clinical outcomes, we defined a measure of variable im-
portance for ranking predictors based on their relationship with the outcome of interest.
This parameter was motivated by causal inference and requires a systematic approach to
the question of interest that helps translate it into a parameter with a clinically meaning-
ful interpretation rather and maintains transparency about the assumptions required to
deem the parameter a causal effect. We apply this procedure to gene expression data from
critically injured patients to illuminate how the coagulation and inflammation pathways
react to trauma injury.

Finally, we compare the quality of care received at different trauma center types around
the United States using another parameter motivated by causal inference. This allowed
us to simulate what would have happened to a patient if they had been treated at a
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different trauma center and obtain an objective comparison that identified sites where
severely injured patients would benefit most from being treated.

This research highlights the utility of causal inference for framing problems, motivating
clinically meaningful statistical parameters, and interpreting the results. We also advocate
for the use of semiparametric prediction algorithms to allow for greater flexibility in
modeling assumptions and demonstrate their performance in practice.
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Chapter 1

Introduction

1.1 Introduction

Trauma injury is one of the leading causes of death in the United States, accounting for
over 120,000 deaths in 2010 according to the CDC. Understanding the underlying mecha-
nisms and improving the treatment of trauma is of great clinical and public health interest.
Questions of interest in this area include the prediction of clinical outcomes using available
data, determining which variables are the most informative over time with respect to these
clinical outcomes, comparing the quality of care at different trauma centers, and assessing
the efficacy of patient resuscitation via the infusion of blood products. Current prac-
tice in this field can benefit greatly from the use of causal inferece to motivate clinically
meaningful and interpretable statistical parameters, even if the assumptions required for
a causal interpretation are not met. Further, the use of mis-specified parametric models is
common in the critical care literature. We advocate the use of a machine-learning predic-
tion algorithm that has desireable theoretical optimality properties and, in practice, frees
the user from having to choose a single prediction model. We demonstrated the utility
of causal inference and machine learning in addressing key questions in critical care and
provided clinically meaningful results to help inform clinicians’ decisions.

1.1.1 History of trauma care and data

Trauma care in the United States was historically and understandably linked to wars.
While surgical care remained relatively primitive, the idea of moving field hospitals as close
to the battle lines to reduce the time from injury to surgical care was implemented as early
as the War of 1812 [1]. During the American Civil War, both the Union and Confederate
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CHAPTER 1. INTRODUCTION

sides made great advances in the implementation of systematic care of injured people and
publishing of the medical and surgical history of the war [1]. The importance of a sanitary
environment in the treatment of open wounds was emphasized and conditions improved
for the Union army [1]. In 1895 the invention of the xray greatly advanced the diagnosis
of traumatic wounds [2]. By World War I, blood transfusions were being used extensively
and with great success and a commission was appointed to study shock and resuscitation
in United States military members [1, 3]. Before World War II, the United States began
laying the foundations of modern trauma systems with the formation of committees and
programs to enforce standardization of care across hospitals [1, 3]. In the Korean and
Vietnam conflicts, soldiers benefited from shorter periods between injury and the initiation
of treatment as well as improved surgical techniques. The lessons learned from military
conflicts have been applied to the care of civilians. In 1966, two trauma centers were
established in San Francisco and Chicago with the aim of taking a systematic approach
to trauma care [1]. Trauma centers proliferated around the United States so extensively
that new ranking systems, model care systems, and quality improvement programs had
to be implemented. Currently, there are 407 trauma centers accredited by the American
College of Surgeons with ranks from I (highest, n= 112) to III (lowest, n = 58). Level
I trauma centers are capable of providing total care for every aspect of injury– from
prevention through rehabilitation whereas lower level centers are focused on the inititation
of definitive care and stablization of patients for transfer to other hospitals. There is
some evidence that patients treated at Level I centers have better survival than those at
lower ranked hosptials [4] The collection and maintenance of patient data has improved,
especially with the use of electronic medical records. However, there is still considerable
variability between trauma centers with respect to clinical practice and record-keeping.
Multi-center studies are commonly implemented in the study of critical care in order to
study clinically relevant questions where large number of patients are required and to
make the results more generalizeable. However, objectively comparing the quality of care
at each center has not been a priority in the trauma community.

The treatment of trauma injury has improved with the invention of new technologies,
but the proliferation of data available on patients is simultaneously a boon and hinder-
ance. Clinicians have access to data on patients as soon as they arrive in the emergency
department and the patients are monitored constantly throughout their treatment with
occasional lab measurements, xrays, surgeries, and blood transfusions. These measure-
ments may or may not be used in the decision to allocate treatment or to predict whether
a patient will die in the next few hours. The effective communication and condensation
of these vast amounts of data in the chaotic environment of the emergency department,
operating room and intensive care unit is vital to the improvement of treatment. Indeed,
modern care is confounded by is a continuous stream of multivariate data consisting of
demographic information, injury data, medical staff documentation, laboratory testing
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CHAPTER 1. INTRODUCTION

and continuous multivariate physiologic monitors. The dramatic increase in available in-
formation has led to a data-rich care environment that can be cognitively burdensome
to the practitioner. Despite the improvements in, and increasing reliance on monitoring
technology, these multivariate data are still recorded and no current method exists to
integrate, computationally refine and make sense of these data. Even in hospitals where
the paper chart has been replaced by a computerized medical record, these systems are
not adequate for the tracking and analysis of complex multivariate relationships. This
antiquated data collection and presentation limits the clinicians’ ability to understand the
complex relationship between variables and precludes longitudinal analysis of trends and
developing patient pathophysiology, resulting in univariate treatment of complex multi-
variate post injury physiology. Clinicians base treatment decisions on their intuition and
experience developed throughout their training their career. Despite the proliferation of
data, medicine remains an process based on clinician gestalt and experience rather than
a science based on mathematical modeling, protocols, and predictions. Thus, there is an
unmet need in critical care to sift through the vast amounts of available data, determine
what information is important at a given time, and use this information in the most
efficient possible way.

1.1.2 Current statistical practice

Current statistical practice in the trauma literature relies heavily on the use of possi-
bly mis-specified parametric regression models, where the parameter of interest is the
coefficient in the regression equation. There is little biological evidence that the func-
tional relationships between predictors and outcomes would be linear, but the bias in the
literature requires parameters with a familiar, although not clinically meaningful inter-
pretation.

There is also heavy emphasis on establishing cutpoints for variables or simple combinations
of variables with the aim of categorizing patients into low- and high-risk groups. For
example, the Abbreviated Injury Scale (AIS) classifies every injury in each of nine body
regions (head, face, neck, extremity, etc.) according to its severity on a six-point ordinal
scale (minor to maximal). The top three AIS scores are then squared and summed to
produce the Injury Severity Score (ISS), which is itself commonly categorized into mild
(< 15), moderate (15-25) and severe (> 25) [5, 6]. This score is used extensively to
identify individuals at high risk for mortality, complications and hospitalization time
after trauma.

Another scoring system is called the Assessment of Blood Consumption (ABC) score,
which is designed to predict the need for massive transfusion and standardize the initia-
tion of massive transfusion protocols across hospitals [7]. This score was based on clinician
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CHAPTER 1. INTRODUCTION

interviews regarding their clinical criteria for activation of massive transfusion, and con-
sisted of four dichotomous components: whether the injury is of a penetrating (as opposed
to blunt) nature, whether the patient’s systolic blood pressure was 90 mmHg or higher in
the emergency department, whether their heart rate was 120 beats per minute or greater,
and whether they had a positive Focused assessment with sonography for trauma (FAST)
scan, which consists of a bedside ultrasound to screen for blood around the heart [7]. This
score improved upon previously used scoring systems (TASH and McLaughlin scores) but
not significantly and was not data-driven, but clinician decision driven, suggesting there
may be patients who could have benefited from a massive transfusion that were not iden-
tified using this method [7].

In the trauma literature, little work has been done to on the ability to predict outcomes
with measured patient data using any algorithm other than regression and the comparisons
are rarely “fair”, for example, the performances of the scores were assessed using data
that were used to build the score. Additionally, clinicians have been relying on empirical
evidence and case studies to guide their decisions rather than systematic studies of trauma
care with robust statistical methods. We advocate for the use of causal inference to
motivate clinically meaningful parameters of interest.

1.1.3 Causal inference roadmap

Many of the questions of interest in critical care are causal in nature, that is, clinicians
are interested how the outcomes of interest would change if, for example, the amount
of blood products a patient received had been different rather just than the association
between these outcomes of interest and blood product usage. In practice, these so-called
counterfactual outcomes are not observable and the “natural experiment” that generated
our observed data data does not correspond to the ideal experiment we are interested
in [8, 9]. Parameters in the causal inference paradigm summarize how parameters of the
underlying distribution of the data would change if the experimental conditions changed,
making inference about such parameters difficult since we do not fully observe this dis-
tribution [8]. In contrast, statistical parameters are based on the joint distribution of
past data, which can be extended to future events only if we assume the experimental
conditions did not change, which is unlikely to be true. Under some assumptions, we can
link the causal and statistical paradigms to make causal inferences from observed data.
The causal inference roadmap for this is as follows:

1. Specify the question of interest, that is, the target population and what we want to
learn about it. For example, the effect of the infusion of plasma on the probability
of future mortality in a population of trauma patients.
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2. Specify a structural causal model, which encodes the background knowledge about
the system under study. This may be a system of equations or a directed acyclic
graph (DAG) [8]. In the blood product example, this would include factors that
influence the decision to start treatment, confounders of the effect of blood prod-
ucts on future mortality, and other major determinants of mortality in trauma
patients. This formal representation of the background knowledge helps maintain
transparency about the relationships between observed and unobserved variables.
Here, if the relationship between two variables is known, for example, if treatment
is randomized, this information can be included in the causal model.

3. Specify the interventions of interest, which represent hypothetical changes on the
causal model that correspond to the ideal experiment. For example, the interven-
tions of interest in the blood product example would be to deterministically have
everyone receive plasma or not. These interventions generate so-called counterfac-
tual, or potential outcomes, which correspond to the outcome an individual would
have had, if, possible contrary-to-fact, they had had a certain treatment [10].

4. Specify the causal parameter of interest, which is a function of the counterfactual
outcome distributions. The mean change in the probability of mortality under
interventions forcing every patient to have plasma infused as opposed to no patient
having plasma infused corresponds to the average treatment effect (ATE).

5. The causal parameter of interest may or may not be identifiable as a parameter of the
observed data distribution. In this step, we assess whether background knowledge
about confounding and mediation of effects is sufficient or whether we need to make
some assumptions such as a randomization or positivity assumption in order to use
the observed data to draw causal conclusions.

6. If the causal parameter is identifiable as a parameter of the observed data distribu-
tion, we commit to that statistical parameter. It is still possible to proceed with
estimation of a statistical parameter that is only causal under some assumptions
as long as those assumptions are made clear and explicitly represent this limitation
and use it to inform the interpretation of the parameter after estimation.

7. Estimation of the parameter of the observed data distribution should respect the
limits of the available background knowledge by using non- or semi-parametric es-
timators. There are various estimation approaches we can use, such as regression,
inverse weighting, or more robust approaches, but the estimation step should not in-
troduce new, unneeded model assumptions at this stage. We introduce and examine
the finite predictive performances of a machine-learning algorithm, SuperLearner,
below, to avoid unnecessary assumptions.

8. Interpretation of the results after estimation requires assessing the statistical signif-
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icance as well as selecting among a hierarchy of interpretations ranging from purely
associational to approximating a hypothetical experiment. If we believe all the as-
sumptions required for a causal interpretation are met, then the parameter estimate
is what we would have seen in a perfectly executed randomized control trial. If we do
not believe them, the parameter may still be interpreted as a statistical parameter.

This roadmap allows for the definition of causal questions, rigorious expression of causal
assumptions, and forces us to evaluate whether our data and assumptions are sufficient to
answer the question of interest. Structural causal models are a useful tool for concatenat-
ing background knowledge and communicating with subject-matter experts. Additionally,
this roadmap enforces tranparency about what is and is not observed in the data as well
as assisting clinicians in determining what their ideal experiment would involve. It allows
us to derive clinically meaningful parameters with a straightforward interpretation that
clinicians can utilize in practice.

1.2 Data sources

The systematic collection of data from emergency departments requires substantial coor-
dination and organization [11,12]. Even with the rising utility and efficiency of electronic
medical records, data collection and maintenance remains a challenge due to the high-
dimensional nature of available patient measurements. This section details the sources of
clinical and gene expression data used for analysis.

1.2.1 The PRospective Observational Multi-center
Massive Transfusion sTudy (PROMMTT)

The PRospective, Observational Multi-center Massive Transfusion sTudy (PROMMTT)
was a prospective, multi-center, observational cohort study that enrolled 1,245 individuals
at ten level-one trauma centers from around the United States [13]. This study was
motivated by the fact that uncontrollable hemorrhage after injury is the leading cause
of potentially preventable death (as opposed to traumatic brain injury or multiple organ
failure), which occurs quickly and is associated with the massive transfusion of blood
products [14,15]. Historically, whole blood was used in the resuscitation of trauma patients
until the 1970’s, when the separation of blood into component parts (crystalloid, red blood
cells (RBC), plasma, and plaetlets) became commonplace and the infusion of different
ratios of blood products gained usage [16, 17]. Motivated by the treatment of United
States military combat casualties with substantial bleeding in Afghanistan and Iraq, a new
resuscitation strategy called damage control resuscitation started being used in civilian
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hospitals that showed that infusing a 1:1:1 ratio of plasma:platelet:RBC and minimizing
crystalloid could avert or reverse coagulopathy, acidosis, and hypothermia [18]. Given
conflicting findings regarding the association of different ratios of blood products, the
PROMMTT researchers aimed to guide uniform transfusion practices for trauma patients
with substantial bleeding after injury across variable level I trauma centers.

Patients had to survive at least 30 minutes after injury to be enrolled in the study upon ar-
rival to the emergency department. Demographic, health status, treatment, and outcome
measurements were taken on these individuals. The primary exposure of interest was the
resuscitation of patients via the use of blood products (plasma, platelets, and red blood
cells), so cumulative units of each of these products were collected at 30 minute intervals
during the first six hours of treatment. The primary outcome of interest was in-hospital
mortality, but other clinical outcomes included the initiation of massive transfusion, multi-
ple organ failure, substantial bleeding, and complications. Underlying patient populations
and transfusion practices differed among the hospitals, which confounded the effect of the
transfusion of blood products on clinical outcomes. PROMMTT was the largest study to
collect real-time prospective data on trauma patients, enrolling on average, 5 patients a
week [11]

The main PROMMTT analysis found that higher ratios of blood products conferred a sur-
vival benefit at 6 hours, when hemmorhagic death predominated, but were not associated
with later mortality. Other papers that analyzed these data examine questions related to
pre-hospital interventions, early resuscitation strategies, coagulopathy, and improvements
on the existing scoring systems such as FAST. However, there has been relatively little
focus on predicting outcomes in an efficient, unbiased way nor studies of variability across
hospitals.

A map of the sites involved in PROMMTT, which includes the distribution of injury
severity scores (ISS) at each site, is shown in Figure 1.1 and the centers are identified in
Table 1.1. All centers had both severe and moderately injured patients but some, such as
Brook Army Medical Center (BAMC), had substantially more severely injured individuals
than moderate. The covariates and outcomes of interest are summarized in Tables 1.2
and 1.3. The covariates of interest are commonly measured in every emergency depart-
ment and were identified as main predictors of the outcomes. Injury severity, described
earlier, is commonly used to categorize injury types [5, 6]. Increased body mass index
(BMI), measured in kg/m2, has been associated with outcomes such as respiratory fail-
ure, kidney failure, multiple organ failure, and excessive clotting [19]. The CDC reported
that men were more 3.4 times more likely to die from traumatic brain injury, 6 times
more likely to be injured using a firearm [20]. Additionally, there has been evidence of
different brain chemistries between men and women but no consensus on whether men
or women fare worse and injury [20]. Patient age, measured in years in PROMMTT, is
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also an important factor that clinicians take into account during treatment [21]. Studies
of race/ethnicity disparities in recovery after injury suggest that different race/ethnicity
groups experience different propensities for clinical outcomes, likely due to a combination
of genetic factors and the quality of care that is accessible [22, 23]. Penetrating trauma
is usually more severe and unpredictable than blunt trauma and most papers adjust for
or stratify by these groups [24]. The use of anticoagulants such as Warfarin affects the
clotting time of patients and can have a detrimental effect on patient survival given the
pro-hemorrhagic properties of the drugs [25]. Systolic blood pressure and heart rate are
classical measurements of patient health, are measured almost continuously on patients,
and are integral to the calculation of the ABC score, described above, which predicts
massive transfusion [7]. The Glasgow Coma Scale was developed in 1974 to determine the
conscious state of a person and ranges from 3 (indicating deep unconsciousness) to 15 [26].
It combines categories of eye, verbal, and motor response to identify high-risk patients af-
ter injury [26]. The International Normalized Ratio (INR) and Prothrombin Time (PTT),
which are a measurement of blood clotting time have been used to identify patients who
may require a massive transfusion and experience early mortality [27, 28]. Low platelet
counts have been associated with hemorrhage and injury severity [29]. Determining a
patient’s hemoglobin can help estimate blood loss [30]. The acidity of circulating blood,
as measured by base deficit is commonly used as a predictor of transfusion requirements
and risk of complications [31, 32]. Finally, the Focused Assessment with Sonography for
Trauma (FAST) ultrasound to detect blood around the heart is a method for assessing
cardiac, abdominal, and throacic injuries [33]. The outcomes of interest included mortal-
ity at 2 hours, 6 hours, 24 hours, and overall, massive transfusion (as reported by each
center and calculated from the available infusion data), a substantial bleeding indicator,
multiple organ failure (failure of two or more vital organ systems), and the units of plasma,
platelets, and red blood cells infused by 24 hours (which are simultaneously a summary
of the treatment of interest) [34].

Hospital name (abbreviation) City, State
University of Texas, Houston (UHT) Houston, Texas
Brooke Army Medical Center (BAMC) Houston, Texas
Froedtert Memorial Hospital (FH) Milwaukee, Wisconsin
Oregon Health and Science University Hospital (OHSUH) Portland, Oregon
University Hosptal Cincinnati (UHC) Cincinnati, Ohio
San Francisco General Hosptial (SFGH) San Francisco, California
Univeristy of Pittburgh Medical Center (UPMC) Pittsburgh, Pennsylvania
University of Texas Southwestern (UTSW) Dallas, Texas
Harborview Hospital (HH) Seattle, Washington
University of Texas Health Center at San Antonio (UTHSCSA) San Antonio

Table 1.1: Trauma centers that enrolled PROMMTT patients
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BAM
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OHSUH

SFGH UHC UPM
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UHT
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HH

ISS Severe Moderate

Figure 1.1: Map of PROMMTT hospitals with barplots showing the varied distributions
of the injury severity of patients at each site
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Min 1st Qu Median Mean 3rd Qu Max Missing Boxplot Hist
ISS 0 16 25 26.2 34 75 0 ● ●●●●●●●●● ●● ●●●●●● ●●● ●●● ●●●●●●●●●

BMI 11.6 23.6 26.7 27.9 30.7 73.6 271 ●●● ● ●● ● ●● ●● ●●● ●● ●●●● ● ● ●●● ●● ●● ●● ●● ●● ● ●● ●●●●

Male 0 0 1 0.7 1 1 0
Age (years) 16 24 38 40.7 54 97 1

Hispanic 1 2 2 1.8 2 2 70 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Penetrating injury 0 0 0 0.4 1 1 0
Anticoagulants 0 0 0 0.2 0 1 283 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Systolic BP 0 86 106 107.8 128 260 30 ●● ●● ●● ● ●● ●● ●● ●● ●

Heart rate 0 86 105 106 124 199 25 ● ●● ●● ●●● ● ●●

Glasgow coma score 3 3 14 9.8 15 15 104
INR 0.8 1.1 1.2 1.5 1.4 18 162 ●● ●● ●● ● ●●●●●●● ●●●● ● ●● ● ●● ●●● ●● ●●● ●●● ● ●●● ●●● ●●● ●●●●●● ●● ● ●● ● ●● ●●●● ●● ● ●●●●●● ●●● ●●●●●● ●● ●●●

PTT 16 24.1 27.6 32 33 200 197 ● ● ●●●● ●●●●●● ● ●●●●● ●● ● ●● ●●● ● ●●● ●● ●●● ●● ●●● ● ●● ●●●● ●●●●●●●● ●● ● ● ●●●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●

Platelet count 1 180 226.5 231.5 277 938 68 ●● ● ● ●●● ●●● ● ●● ●● ●●●● ●● ●●● ●●●

Hemoglobin 3 10.1 11.7 11.6 13.3 18.4 45 ●●●●● ●● ●●

Base deficit −28.6 −10.1 −6.3 −7.1 −3 8 278 ●● ●●● ● ●●● ●● ●●●● ●● ●●● ● ●●●●

White race 0 0 1 0.7 1 1 0
Black race 0 0 0 0.2 0 1 0 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Asian/Pacific Islander race 0 0 0 0 0 1 0 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Unknown race 0 0 0 0 0 1 0 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

FAST result 0 0 0 0.2 0 1 0 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Table 1.2: Summary statistics for covariates of interest in PROMMTT

Min 1st Qu Median Mean 3rd Qu Max Missing Boxplot Hist
Massive transfusion (data) 0 0 0 0.2 0 1 0 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Massive transfusion (reported) 0 0 0 0.2 0 1 0 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Substantial bleeding 0 0 0 0.3 1 1 0
Overall mortality 0 0 0 0.2 0 1 0 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

24-hour mortality 0 0 0 0.1 0 1 0 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

2-hour mortality 0 0 0 0 0 1 0 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

6-hour mortality 0 0 0 0.1 0 1 0 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Complications 0 0 0 0.1 0 1 0 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Multiple organ failure 0 0 0 0 0 1 0 ●●●●●●●●●●●●●●●●●

Units of plasma by 24 hours 0 0 4 6.2 8 77 0 ●● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●●● ●●● ●● ●● ● ●● ● ●● ●● ● ●● ●●● ●● ●●● ●● ●●● ●●● ●●●● ●●●● ●● ●● ● ●●●● ●● ●●●● ●● ●●● ●●●

Units of platelets by 24 hours 0 0 0 0.7 1 11 0 ● ●●● ●● ●●●●● ● ●● ●●●● ●●●● ● ●● ● ● ●●●● ●● ●● ● ●●●● ● ● ●●●● ●● ●●● ●●● ●●●● ●● ● ●●●●● ●●● ●●● ●●● ●● ●●●●●●●● ●●●●● ●● ●● ●● ●

Units of RBC by 24 hours 0 2 5 8.2 9 108 0 ●●● ●● ● ● ●● ●● ●●●●● ●●● ●●● ●●● ● ●● ●●●● ● ●● ●● ●● ●● ●● ●●● ●● ●●● ●● ●● ●●● ● ●●●● ●●● ●●● ●● ●● ●● ●● ●●●● ●●● ●● ●● ●● ●●● ●●●● ●●●● ●●●● ● ●●●● ●●● ● ●●●●●

Table 1.3: Summary statistics for clinical outcomes of interest in PROMMTT

1.2.2 The Inflammation and Host Response to Injury Cohort

In addition to utilizing clinical data to improve trauma injury treatment, understanding
the critical features of response and recovery at a genomic level can help guide physicians
in making treatment decisions and identify high-risk patients. One common reaction to
traumatic injury is inflammation. This is a common process in the human body that
guards against infection and can help heal injury, but can set off a cascade of potentially
deadly events [35]. Excessive inflammation can lead to sepsis, which increases the chances
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CHAPTER 1. INTRODUCTION

of mortality and is also related to the coagulation of blood [35]. Thus, understanding
the mechanisms and pathways by which these processes act could help guide clinicians’
decision making.

The study Inflammation and Host Response to Injury is a large-scale collaborative research
program devoted to the systems level understanding of the key regulatory elements and
their relative roles and importance that drive patients’ response to serious injury and its
accompanying severe systemic inflammation [12]. A subset of these data (n = 167), had
gene expression measured in peripheral blood leukocytes at various time points during
their treatment using an Affymetrix U133 microarray chip [36, 37]. The data are pub-
licly available on the Gene Expression Omnibus (Accession GSE2328). Brownstein et al.
(2006) established that certain genes are differentially expressed in the mixed leukocytes
of mice that were exposed to traumatic injuries and that the patterns of the up and down
regulation of these genes were different among three different animal models of inflamma-
tion and injury [38]. Previous studies using this data include [39], who aimed to create
a score based on the entire probe set to predict negative outcomes in trauma patients.
However, this composite score did not identify specific genes that were important nor does
it respect the longitudinal nature of the collected data. [37] studied sources of variance
in this dataset and found substantial changes in gene expression in response to trauma
injury, suggesting that genomic information may be useful in treatment of trauma. In-
deed, in a comparison of critically injured patients and healthy individuals, the stresses
in circulating leukocyte transcriptomes after severe trauma and burn injury resulted in
changes in over 80% of the cellular functions and pathways [40].

Motivated by the clinical interest in the inflammation and coagulation pathways, clinicians
identified a subset of 24 genes of interest, summarized in Table 1.5 for which they were
interested in obtaining measures of time-specific variable importance to see which genes
were most important within and across time with respect to mortality and multiple organ
failure. However, it has previously been shown that patients with different injury types
and severity have substantially different gene expression profiles [40]. Thus, we adjusted
for injury severity score (ISS), base deficit (BD), a measure of blood acidity that indicates
overall patient health), and International Normalized Ratio (INR), which is a measure of
clotting time. These covariates were dichotomized at clinically meaningful cutoffs: ISS >
15, BD < -6, and INR > 1.3, the distributions of which are summarized in Table 1.4.

Min 1st Qu Median Mean 3rd Qu Max Missing Boxplot Hist
ISS < 15 0 1 1 0.9 1 1 0 ●●●●●●●●●●●●●●●●●●

BD < -6 0 0 1 0.7 1 1 0
INR > 1.3 0 0 1 0.6 1 1 0

Death/MOF 0 0 0 0.4 1 1 0

Table 1.4: Summary statistics for covariates and outcome in the gene expression data
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Symbol Name Description
THBS1 Thrombospondin 1 mediates cell-to-cell interactions
F8 Coagulation factor VIII procoagulant component
ANGPT1 Angiopoetin 1 important for angiogensis and vascular

development
TFPI Tissue factor pathway inhibitor coagulation inhibitor
MMP2 Matrix metalloproteinase 2 encodes enzyme involved in breakdown

of extracellular matrix
PROS1 Protein S (alpha) involved in inhibition of blood coagula-

tion
THBD Thrombomodulin involved in inhibition of blood coagula-

tion
SERPINE1 Plasminogen activator inhibitor 1 involved in inhibition of blood coagula-

tion
F7 Coagulation factor VII coagulation factor VII (serum pro-

thrombin conversion accelerator)
ANGPT2 Angiopoetin 2 important for angiogensis and vascular

development
CPB2 Caroboxypeptidase B2 involved in collagen biosynthesis
F2 Coagulation factor II coagulation factor II (thrombin)
F2R Coagulation factor II receptor coagulation factor II (thrombin) recep-

tor
F2RL3 Coagulation factor II Receptor-like 3 coagulation factor II (thrombin)

receptor-like 3
F3 Coagulation factor III coagulation factor III (thromboplastin,

tissue factor)
MMP9 Matrix metalloproteinase 9 encodes enzyme involved in breakdown

of extracellular matrix
NOS2 Nitric oxide synthase 2 involved in inflammation response to

trauma
NOS3 Nitric oxide synthase 3 involved in inflammation response to

trauma
PF4 Platelet factor 4 involved in platelet aggregation
PLAT Tissue plasminogen activator plasminogen activator, which is associ-

ated with excessive bleeding
PROC Activated protein C protein C (inactivator of coagulation

factors Va and VIIIa)
PROCR Activated protein C receptor protein C receptor, endothelial
S1PR1 Sphingosine-1-phosphate receptor 1 involved in the regulation of lympho-

cytes trafficking
SERPINC1 Serpin Peptidase Inhibitor, Clade C inhibits thrombin production, reducing

clotting

Table 1.5: Gene names and descriptions for genes involved in the coagulation and inflam-
mation pathway
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1.3 Outline

The subsequent chapters are organized as follows. In Chapter Two, we introduce and
motivate the use of data-adaptive machine-learning (SuperLearning) for the prediction
of clinical outcomes and as the basis of estimators for estimating parameters motivated
by causal inference. In Chapter Three, we examine time-specific variable importance
measures applied to the genomic data. In Chapter Four, we compare the quality of
care at different PROMMTT hospitals. Throughout, we highlight the utility of causal
inference in motivating clinically relevant parameters of interest and the importance of
careful estimation of these parameters.
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Chapter 2

Semiparametric prediction of clinical
outcomes using SuperLearner

2.1 Introduction to the prediction problem

Throughout our exploration of the factors driving patient response to trauma and improv-
ing patient care, we utilized a machine-learning prediction algorithm called SuperLearner.
The prediction of an outcome Yi using covariates Wi is a common problem in data analysis
and many choices exist for the algorithm to use. Generally, an algorithm is an estimator
that maps a data set of n observations Xi = (Wi, Yi), i = 1, ..., n into a prediction function
that can be used to map W into a predicted value for Y . Algorithms may differ in the
number of covariates or basis functions used, the loss function being minimized, and may
depend on tuning parameters of their own so the choice of prediction algorithm is a chal-
lenge. Often, the prediction of quantitative outcomes has been called regression while the
prediction of qualitative outcomes has been called classification, both of which we explored
in the prediction of clinical outcomes using the PROMMTT data. Our goal was to build
the best possible predictor of the clinical outcome summarized in Table 1.3. While there
is great clinical interest in predicting eventual outcomes of trauma patients, these predic-
tions are often limited to heuristic scoring systems and simple regressions in the interest
of maintaining interpretability. We advocate for the use of a machine-learning prediction
algorithm called SuperLearner, which has desirable theoretical optimality properties as
well as good performance in the prediction of outcomes in PROMMTT.

Formally, the parameter of interest in the context of loss-based estimation is denoted by
ψ0. This function is the minimizer of the risk (the expected loss), denoted by
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CHAPTER 2. SEMIPARAMETRIC PREDICTION

ψ0 = argminψ′∈Ψ

∫
L(x, ψ

′
)dP0(x) (2.1)

where L(x, ψ
′
) represents any generic loss function, e.g. squared error (L2) loss: (Y −

ψ(X)2, and P represents the true data-generating distribution. However, we do not know
the true value of ψ, requiring estimation of the risk. We could use a simple subtitution
estimator of ψ0 based on the empirical distribution of the data, Pn, which would yield

ψn = argminψ′∈Ψ

∫
L(x, ψ

′
)dPn(x) (2.2)

Here, our parameter of interest was the conditional expected value of Y given W . We
could consider competing prediction algorithms that model this conditional distribution
and select the one that minimizes the empirical risk if we knew the true underlying
distribution of the data over which the expectation is taken. However, this can lead
to overfitting, where prediction algorithms have overly optimistic estimates of predictive
performance because the same data were used to assess performance as were used to build
the model [41,42]. To avoid overfitting, we use cross-validation, a procedure that involves
splitting the data into folds and creating learning and validation sets with the aim of
evaluating a prediction algorithm’s performance in data that were not used to build it. In
10-fold cross-validation, the data are partitioned into 10 subsets. A candidate algorithm
is fit, or trained, on 9/10 of the data and the predictive performance is measured, or
validated, on the remaining 1/10 of the data. This process is repeated 10 times, with
each of the folds taking a turn being the validation set. Cross validation is used to
avoid overfitting and overestimating the predictive ability of a given algorithm. The
asymptotic and finite sample optimality properties of cross-validation samples has been
established previously [43–46]. The cross validated risk assesss the performance of a
candidate algorithm across the validation sets, allowing for a “fair” comparison of different
algorithms. This suggests an procedure for the selection of a prediction algorithm based
on its cross validated risk.

Many candidate prediction algorithms exist ranging from simple, such as a main-terms
regression, to more complex, such as neural nets. In the critical care literature, since the
focus is on interpretability of the prediction algorithm, main-terms or stepwise regressions
are often used and are rarely cross-validated. The true functional form of the relationship
between clinical outcomes and covariates of interest is typically unknown a priori. It
may be that a main-terms regression will describe the true underlying data-generating
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distribution, but we want to avoid relying on unnecessary model assumptions, especially
if we plan to use these prediction functions as the basis for causal effect estimation. Thus,
it is prudent to consider many options for candidate predictors.

An extension of the cross-validation selector allows for the combination of all the candidate
algorithms into an ensemble predictor, which avoids having to choose a single candidate
prediction algorithm. Some examples of ensemble methods include bootstrap aggrega-
tion of trees (bagging), random forests, and boosting [41]. The aim of ensemble learning
is to build a prediction model by combining the strengths of several base models [41].
Generally, ensemble learning consists of first developing a population of base learners in
training data and then combinining them into a composite predictor. Bagging makes use
of the bootstrap as a way to asses the accuracy of a prediction and averages predictions
in the training set over a collection of bootstrap samples, resulting in a reduction of the
variance around the prediction [41]. Any model can be “bagged” and the results can be
averaged in various ways, for example, a “committe method” takes a simple average of
the predictions for each model in a classification problem [41]. Random forests improved
on bagging by reducing the correlation between sampled trees and averaging the predic-
tions [41, 47]. Boosting is another ensemble method that combines “weak” prediction
algorithms (those whose error rate is only slightly better than guessing randomly) across
modified versions of the data and concatenates the sequence in a weighted combination
where more accurate algorithms are given higher weights [41]. These procedures all aim to
avoid model misspecification by combining a set of candidate prediction algorithms into a
composite algorithm. Given the extensive choices of candidate prediction algorithms and
the added layer of choice of ensemble methods for the combination of these candidates,
choosing a procedure is a challenge and it is unknown a priori which procedure is correct.
Thus, we advocate for the use of SuperLearning, which is based on the machine-learning
principle of stacking, where all candidate learners, including any ensemble methods, can
be considered as candidate prediction algorithms and included in the resulting ensemble
predictor. The SuperLearner algorithm proceeds as follows, where L represents the li-
brary of candidate prediction algorithms and K(n) represents the number of candidate
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prediction algorithms:

Algorithm 1: SuperLearner algorithm

for i ∈ 1 . . . K(n) do
Fit each algorithm in L on the entire data set W = W1, ...,Wn to obtain
Ψ̂k(W ), k = 1, ..., K(n);

end
Split the data set W into V equal sized folds for v ∈ 1 . . . V do

Let the v-th fold be the validation sample V (v) and the remaining folds be the
training sample T (v) ;
Fit each algorithm in L on the training sample T (v) ;
Save predictions for each algorithm on the corresponding validation data
Ψ̂k,T (v)(WVv) ;

end
Stack the predictions from each algorithm to create a n by K(n) matrix of predictions
where the predictions are taken across the validation sets, denoted by
Z = Ψ̂k,T (v)(WV (v)) where v = 1, .., V and k = 1, ..., K(n) ;
Consider a family of weighted combinations of the candidate estimators indexed by a
weight vector α ;

m(z|α) =
Kn∑
k=1

αkΨ̂k,T (v)(WV (v)) where αk ≥ 0 ∀ k and
∑K(n)

k=1 αk = 1 (2.3)

Determine the α that minimizes the cross-validated risk of the candidate estimator∑K(n)
k=1 Ψ̂k over all possible combinations of α using non-negative leasr squares ;

α̂ = argminα

n∑
i=1

(Yi −m(zi|α))2 (2.4)

Combine α̂ with Ψ̂k(W ) to create the final SuperLearner fit

Ψ̂SL(W ) =
K∑
k=1

α̂kΨ̂k(W ) (2.5)

SuperLearner itself can also be cross-validated in order to obtain an honest risk estimate,
which allows for the comparison of SuperLearner to the library of candidate prediction
algorithms. One could use this procedure to select the single best prediction algorithm

17



CHAPTER 2. SEMIPARAMETRIC PREDICTION

(the so-called discrete SuperLearner) by selecting the one with the smallest cross-validated
risk. Indeed, it is possible for a single algorithm to get all the weight in the convex
combination of algorithms because it performs consistently better than all its competitors
[48]. However, SuperLeaner is guaranteed to perform as well or better than the best
algorithm in the supplied library [49]. Thus, we advocate using the convex combination
since it allows for more flexibility over possible functional forms under the mind constraint
that the number of candidate prediction algorithms, K(n), less than is polynomial in
size [9, 49].

2.2 Application to PROMMTT data

We were interested in predicting clinical outcomes of interest in traumatically injured
PROMMTT patients using observed covariate data that are commonly collected in the
emergency department. The early identification of high-risk patients remains a challenge
in critical care. We utilized SuperLearner with a large library of candidate prediction
algorithms to predict the clinical outcomes of interest. We present results for all the clin-
ical outcomes and then delve into the underlying algorithms for the prediction of massive
transfusion and provide a comparison of SuperLearner to a prediction score commonly
used in practice to identify patients who will require a massive transfusion.

Since some of covariates had missing values, we included indicators of missingness for
predictors with missing values to create a new set of basis functions. This allowed for
us to predict future observations with missing values for some covariates [50]. We com-
pared the cross-validated performance (as measured by the area under the receiver oper-
ating characteristic curve, relative mean squared-error, and R2) of SuperLearner, main-
terms regression, and stepwise regression with variable selection via AIC, which are two
commonly-used models in the trauma literature and also examined the ranking of each al-
gorithm in the cross-validation folds. The cross-validation procedure allowed us to obtain
”fair” comparisons of the algorithms by assessing their performance on data that were
not used to construct each prediction algorithm. For non-binary outcomes, to ensure that
our predictions remained in the observed range for the outcomes of interest, we trans-
formed the continuous outcomes (the blood product infusion variables) to be between 0
and 1, predicted them using the family = "binomial" argument in the SuperLearner,
and then backtransformed the predictions to return them to their original measurement
scales.
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2.2.1 SuperLearner implementation

The SuperLearner library included a variety of algorithms ranging from simple and inter-
pretable to more complex, including some ensemble learners. We restricted the candidates
to algorithms that can take in an outcome bounded between 0 and 1 but did not require
it to be binary so that the same library of candidate prediction algorithms could be ap-
plied to the binary and scaled continuous outcomes. Note that the descriptions of the
algorithms below would occur in the training sample for each learner supplied to Super-
Learner.

Logistic regression

Logistic regression models the log-odds of an outcome as a linear combination of the
predictors

log
Pr(Y = 1|W = w)

Pr(Y = 0|W = w)
= β0 + β1T (w) (2.6)

which is usually fit by maximum likelihood using the conditional likelihood of Y given W .
Starting with β = 0, the parameters are estimated with iterative least squares. The main-
terms logistic regression included only the predictors and their indicators of missingness
without any additional exponentiated or interaction terms. We also included a model
with every possible two-way interaction between the predictors and two modifications of
the main-terms regression where the full model was reduced or an intercept-only model
was constructed using Akaike’s Information Criterion (AIC), which is calculated as

AIC = 2k − 2ln(L) (2.7)

where k is the number of parameters in the statistical model and L is the maximized
value of likelihood model. In backwards selection via AIC, a full main-terms regression
model has terms removed based on those whose removal results in a decrease in the AIC.
This procedure stops when the removal of a variable does not result in a decrease of the
AIC. The forward selection procedure starts with an intercept-only model that adds terms
based on how they affect the AIC.

Bayesian logistic regression

The Bayesian implementation of logistic regression involves placing independent weakly
informative prior distributions on the coefficients [51]. One advantage of this approach
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is that it will always give an answer, even in the case of complete separation in logistic
regression, that is, when the outcomes values are perfectly determined by a predictor
[51].

Multivariate adaptive regression splines

Multivariate adaptive regression splines (MARS) is an adaptive machine learning algo-
rithm based on linear splines and their tensor products. They use so-called “reflected
pairs” of piecewise linear basis functions for each predictor Wj that are based on the val-
ues of the observed data. These functions are then used in a forward stepwise regression
procedure. At each step, functions of the pairs of piecewise linear functions are added
based on how their addition affects the training error [41]. This results in a model that
may overfit the data, so terms whose removal leads to the smallest increase in residual
squared error are taken out and a penalty is added for model complexity [41, 52]. Using
these piecewise linear functions ”allows a parsimonious prediction using locally non-zero
components” [41]. In our implementation, we restricted the model to pairwise tensor
products of basis functions and imposed a penalty of 3 for model complexity. This model
was included as a candidate prediction algorithm because it allowed for more flexibility
than simple regressions but still aimed to find the most parsimonious model.

Classification and regression trees

This procedure builds a decision tree by partitioning the data based on the top predictors
and recursively splitting the data using all the predictors [41, 53]. The resulting tree can
then be “pruned” by considering each pair of leaves (nodes) with a common parent and
whether their removal would decrease the prediction error [53]. Class predictions are
based on a majority vote across the different trees and the average is used for prediction
of continuous outcomes [53]. Since this algorithm searches for binary cutoffs for the
predictors, which is commonly implemented in critical care, it was included as a candidate
algorithm in SuperLearner.

Random forest

Random forests are an ensemble prediction method based on averaging a forest of bagged
decision trees [41, 54]. This resampling procedure draws repeated bootstrap sample from
the data, and within each sample selects a random number of predictors, and builds a
classification or regression tree based on the best predictor among the selected predic-
tors [53]. Different splits and nodes are selected in each bootstrap sample based on the
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variability in the resampled data as well as the number of predictors available to split on
in each bootstrap sample resulting in a forest of decision trees. The tuning parameters
for random forest include the number of trees, the number of predictors chosen at ran-
dom in each bootstrap sample (m), and the minimum node size. We chose to grow 1000
trees, sample 10 of the predictors for each bootstrap tree, and split until the node size
was 5. Random forest is a relatively nonparametric machine learning took, so it provides
flexibility in fitting the regression function.

Neural nets

Neural networks were originally developed as models for the human brain [41, 55]. They
use linear combinations of the predictors to model the outcome rather than the predictors
themselves. These linear combinations, which can be denoted Zm, are hidden units (not
directly observable) but serve as a bridge between the observed covariates W and the out-
come Y 2.1. At its most basic, a neural network simplifies to a regression of the outcome
on linear combinations of the predictors, but additional hidden layers and transformation
functions allow for increased model flexibility, which is why it was included as a candidate
in SuperLearner.

 W1  W2 . . . . . . .  Wp 
 

Wp-1 

 Z1  Z2 . . . . . . .  ZM 

Y1 Yk . . . . . . . 

Figure 2.1: A schematic of a neural network where the W ’s represent the predictors, linear
combinations of which make up the hidden Z’s, which are in turn used to model Y
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Leekasso

This algorithm fits a simple regression model for each of the predictors of the form

E[Y |W ] = β0 + βkXk for k = 1, ..., K (2.8)

where K is the total number of predictors. The top ten variables with the smallest p-
values from testing the the βk coefficients, then fit a linear model with only those ten
variables. While this approach is ad hoc and there is little theoretical justification as
to why the top ten predictors would yield better results than the top 9 or 11, it is one
practical approach to dealing with the curse of dimensionality [56,57].

2.2.2 Performance assessment

We assessed the performance of SuperLearner and its candidate algorithms using the cross-
validated area under the receiver operating characteristic (AUROC) curve for the binary
outcomes. The receiver operating characteristic curve is a plot of the true positive rate
versus the false positive rate at various threshold settings for each classifier, resulting in
a curve for which the area below is a one-number summary of the predictive performance
of a classifier [58]. A classifier that chooses at random will have an AUROC of 0.5
and the goal is to have an AUROC of 1 (perfect prediction of both classes) (see Figure
2.2). Our performance measure here was the cross validated AUROC, which we describe
below.

Recall that the main idea of cross-validation is to divide the available data into a training
set and a validation set. The observations in the training set are used to build the
prediction algorithms and the validation set is used to assess the risk of these algorithms.
To distinguish the these sets, we index the distributions of the training and validation
sets with a split vector Bn = Bn(i) : i = 1, .., n

Bn(i) =

{
0if ith observations Xi is in the training set

1if ith observations Xi is in the validation set
(2.9)

Then P 0
n,Bn

and P 1
n,Bn

denote the empirical distributions of the training and validation
sets. Then, as in Dudoit and van der Lasan (2003), the general definition of the cross
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validated risk estimator is

θ̂pn,n ≡ EBnΘ(Ψ̂(P 0
n,Bn

), P 1
n,Bn

)

= EBn

∫
L(x, Ψ̂(P 0

n,Bn
))dP 1

n,Bn
)(x)

= EBn

1

n1

∑
i:Bn(i)=1

L(Xi, P
0
n,Bn

)

(2.10)

where n1 = sumiBn(i) and Ψ̂(P 0
n,Bn

) denotes the estimator of ψ0 based on the training set.
Dudoit and van der Laan (2003) proved the asymptotic linearity of the cross validated
risk estimator.

Ledell, van der Laan, and Petersen (2012) showed that the AUC can be used as a loss
function and also established the asymptotic linearity of the cross-validated AUC as an
estimator. The AUC can be defined as

AUC(P0, ψ) =

∫ 1

0

P0(ψ(W ) > c|Y = 1)P0(ψ(W ) = c|Y = 0)dc (2.11)

The target, the true cross-validated AUC, is the mean of the AUC across the validation
folds

EBnAUC(P0, ψBn) =
1

V

V∑
v=1

AUC(P0, ψ
v
Bn

) (2.12)

where Bv
n is the split vector for fold v in the cross-validation procedure.

As shown in Ledell, van der Laan, and Petersen (2012) the cross validated AUROC
is an asymptotically linear estimator of the true cross validated AUROC. This allows
for the computation of confidence intervals for the point estimate of the AUROC and
demonstrated that the cross validated AUC is indeed an asymptotically linear estimator
of the true AUC [59]. The influence curve for the AUROC is given by
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ICAUROC(P0, ψ)(O) =
I(Y = 1)

P0(Y = 1)
P0(ψ(W ) < x|Y = 0)|x=ψ(W )

+
I(Y = 0)

P0(Y = 0)
P0(ψ(W ) > x|Y = 1)|x=ψ(W )

−
{
I(Y = 0)

P0(Y = 0)
+

I(Y = 1)

P0(Y = 1)

}
AUROC(P0, ψ)

(2.13)

For performance assessment of the prediction of continuous outcomes, we calculated the
cross validated relative mean squared-error (relative to main-terms regression)

relMSE(k) =
MSE(k)

MSE(lm)
, k = 1, ..., K (2.14)

and percent correctly classified where the bins were created based on the range of each
outcome.
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Figure 2.2: Receiver operating characteristic curves for ideal (red), better (green), and
random (blue) classifiers
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2.3 Results

The cross-validated ROC curves for SuperLearner, stepwise selection via AIC, and main-
terms regression are shown in Figure 2.3. For the rarer outcomes, MOF and complications,
the predictions were not much better than a random classifier but the other outcomes were
predicted well by all three algorithms. Overall, using SuperLearner did not result in a
substantial improvement in the predictive ability for any outcome, a result that can be
confirmed in Figure 2.4. This figure shows the cross-validated AUROC values for Super-
Learner and all its candidate algorithms as well as 95% confidence intervals computed
using the influence curve. With the exception of multiple organ failure, SuperLearner
(shown on the far left in every facet of the plot) performs significantly better than a ran-
dom classifier. For every outcome, neural nets and regression with two-way interactions
perform the worst, suggesting that the underlying functional form relationship was not
captured by either of these algorithms.
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Figure 2.3: Comparison of the cross-validated receiver operating characteristic curves
for SuperLearner, stepwise regression with variable selection using AIC, and main-terms
regression.
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Figure 2.4: Cross-validated AUROC values and 95% confidence intervals for each of the
outcomes and predictors
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The continuous outcomes had performance measured by their cross validated relative
mean squared-error and percent correctly classified, which are summarized in Table 2.1
and 2.2. Overall, SuperLearner had the lowest relative MSE for all three of the out-
comes, performing marginally better than main-terms regression and stepwise regression
with selection via AIC. SuperLearner did not perform appreciably better than any of its
candidate learners in correctly classifying the blood products, although it was able to
identify some of the more extreme categories unlike many of its competitors. The precent
of plasma and platelets that were correctly classified were both substantially better than
for red blood cells, where none of the algorithms did particularly well. This highlights the
fact that SuperLearner is only as good as the supplied library.

24-hour Plasma 24-hour Platelet 24-hour RBC
SuperLearner 0.91 0.98 0.98

Discrete SuperLearner 0.96 1.01 1.00
Main-terms 1.00 1.00 1.00
Bayes-GLM 0.99 0.99 1.00

MARS 1.20 1.22 1.24
Random-Forest 1.36 1.17 2.43

Neural-nets 1.64 1.32 1.99
Interaction-GLM 15.46 11.12 4.51

Leekasso 0.96 0.97 1.04
Recursive-partitioning 1.32 1.16 1.38

Forward-stepwise 1.02 1.03 1.09
Backwards-stepwise 1.07 1.03 1.17

Table 2.1: Relative mean squared-error for the prediction of continuous outcomes

29



CHAPTER 2. SEMIPARAMETRIC PREDICTION

[0,20] (20,40] (40,60] (60,100]
SuperLearner 0.99 0.04 0.00 0.00

Main.terms 0.98 0.07 0.05 0.00
Bayes.GLM 0.98 0.05 0.05 0.00

MARS 0.97 0.14 0.15 0.00
Random.Forest 1.00 0.00 0.00 0.00

Neural.nets 1.00 0.00 0.00 0.00
Interaction.GLM 0.79 0.00 0.00 0.50

Leekasso 0.97 0.02 0.00 0.00
Recursive.partitioning 1.00 0.00 0.00 0.00

Forward.stepwise 1.00 0.00 0.00 0.00
Backwards.stepwise 1.00 0.00 0.00 0.00

(a) Plasma

[0,3] (3,6] (6,9] (9,11]
SuperLearner 1.00 0.03 0.00 0.00

Main.terms 0.99 0.03 0.00 0.00
Bayes.GLM 0.99 0.03 0.00 0.00

MARS 0.98 0.08 0.00 0.00
Random.Forest 1.00 0.00 0.00 0.00

Neural.nets 1.00 0.00 0.00 0.00
Interaction.GLM 0.84 0.00 0.00 0.00

Leekasso 0.97 0.00 0.00 0.00
Recursive.partitioning 1.00 0.00 0.00 0.00

Forward.stepwise 0.99 0.03 0.00 0.00
Backwards.stepwise 1.00 0.00 0.00 0.00

(b) Platelets

[0,2] (2,5] (5,9] (9,108]
SuperLearner 0.19 0.55 0.54 0.01

Main.terms 0.27 0.51 0.48 0.02
Bayes.GLM 0.26 0.52 0.50 0.01

MARS 0.28 0.45 0.59 0.01
Random.Forest 0.28 0.14 0.28 0.02

Neural.nets 0.00 0.00 0.00 1.00
Interaction.GLM 0.31 0.41 0.29 0.17

Leekasso 0.18 0.63 0.45 0.07
Recursive.partitioning 0.06 0.50 0.40 0.01

Forward.stepwise 0.13 0.49 0.59 0.00
Backwards.stepwise 0.06 0.47 0.64 0.00

(c) Red blood cells

Table 2.2: Percent correctly classified for blood product outcomes
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Regardless of the prediction algorithm used, the clinical outcomes in PROMMTT were
predicted relatively well. None of the SuperLearner confidence intervals for the cross-
validated area under the ROC curve crossed 0.5, suggesting that the at least the covariate
information was related to the clinical outcomes. Since clinicians make treatment deci-
sions based on these covariates, the strong predictive accuracy of the prediction models
motivated additional analyses that identified the variables driving these predictions and
assessed treatment efficacy while adjusting for these covariates. While simpler learners
such as stepwise and main-terms regressions also performed well, we did not know a pri-
ori how those particular algorithms would perform and had no principled approach to
comparing them that would generate “fair” comparisons. Additionally, SuperLearner had
a comparable performance to each of these algorithms, there is little risk to using Super-
Learner with a large library of candidate learners. Thus, we continue to advocate for the
use of the cross validated SuperLearner with a rich library of algorithms to avoid having
to choose a single algorithm.

Machine learning algorithms are often viewed as black boxes that that are not inter-
pretable. One advantage of using SuperLearner is that the coefficients of each algorithm
in the convex combination are a measure of that algorithm’s predictive performance and
the components of each algorithm can be unpacked and examined further. For exam-
ple, consider the reported massive transfusion outcome. Clinicians are very interested in
identifying patients who would benefit from the infusion of blood products using patient
data collected immediately after arrival in the emergency department and are very inter-
ested in the variables that might be driving the need for massive transfusion. When we
examined the coefficients of each algorithm across the 20 cross validation folds, we found
that MARS and Random Forest were selected the most often and given higher weights,
suggesting that the relationship may be more complex than the simple regression is cap-
turing. However, we did see good AUROC values for algorithms that were not heavily
weighted in the SuperLearner, which suggests that if we built SuperLearner with the aim
of maximizing the AUROC rather than minimizing the cross-validated risk, we would
likely end up with different weights in the SuperLearner.
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Main-
terms

Bayes
GLM

MARS Random
Forest

Neural
nets

Itxn.
GLM

Leekasso Recursive
parti-
tioning

Forward
stepwise

Backwards
stepwise

0.00 0.00 0.27 0.31 0.03 0.00 0.04 0.01 0.34 0.00
0.27 0.00 0.07 0.43 0.00 0.00 0.09 0.00 0.00 0.14
0.00 0.04 0.27 0.30 0.03 0.04 0.13 0.00 0.15 0.05
0.00 0.01 0.29 0.31 0.00 0.04 0.00 0.00 0.35 0.00
0.29 0.00 0.20 0.38 0.00 0.00 0.07 0.00 0.00 0.07
0.31 0.00 0.10 0.41 0.00 0.00 0.17 0.00 0.00 0.00
0.00 0.19 0.27 0.33 0.00 0.02 0.20 0.00 0.00 0.00
0.00 0.17 0.33 0.30 0.00 0.00 0.12 0.00 0.08 0.00
0.00 0.21 0.07 0.52 0.00 0.03 0.09 0.04 0.05 0.00
0.00 0.26 0.00 0.50 0.00 0.01 0.03 0.04 0.17 0.00
0.28 0.00 0.18 0.21 0.00 0.00 0.12 0.03 0.00 0.18
0.00 0.15 0.31 0.24 0.00 0.00 0.26 0.03 0.00 0.00
0.00 0.15 0.20 0.30 0.09 0.00 0.00 0.02 0.16 0.08
0.00 0.00 0.21 0.31 0.17 0.00 0.00 0.01 0.23 0.06
0.29 0.00 0.30 0.22 0.00 0.00 0.08 0.00 0.02 0.09
0.15 0.00 0.06 0.44 0.00 0.00 0.20 0.00 0.15 0.00
0.00 0.26 0.11 0.46 0.08 0.00 0.08 0.00 0.00 0.00
0.00 0.00 0.24 0.27 0.10 0.02 0.18 0.00 0.19 0.00
0.00 0.32 0.12 0.46 0.00 0.00 0.03 0.01 0.06 0.00
0.00 0.02 0.19 0.37 0.00 0.01 0.14 0.00 0.00 0.26

Table 2.3: Coefficients for each candidate prediction algorithm in SuperLearner across the
20 cross-validation folds

The cross-validated SuperLearner chooses the single best algorithm in each of the 20 folds
(the so-called discrete SuperLearner), and in this case selected Bayesian regression once,
random forest 17 times, and forward stepwise regression twice, suggesting that a single
model may not be able to fully describe these data, although random forest gets close. We
further explored the models with non-zero weights in SuperLearner in at least 10 of the
20 cross-validation folds that also had built-in variable selection methods: Random forest,
forward stepwise regression, leekasso, and MARS. In the folds where they were given non-
zero SuperLearner weights, we examined either the variables identified as important or the
importance scores generated by the algorithm, which are described below and documented
in subsequent tables and plots.
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• Random forest. The importance scores for each predictor are generated by cal-
culating the mean decrease in accuracy (the proportion of true calls) over all the
outcome classes that would occur if this variable were removed from each of the
bootstrap samples. The variables can be ranked by these importance scores in each
fold where random forest had a non-zero weight in SuperLearner (random forest had
a non-zero weight in all 20 folds) and, to summarize, we took a weighted average of
the importance scores across all the folds where the weights are the weights from the
convex combination in SuperLearner to give a sense of the relative importance for
all the variables. Plotting the ordered average importances showed a clear dropoff
after BMI, identifying ten most important predictors of massive transfusion (see
Figure 2.5).
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Figure 2.5: Plot of average importance scores across 20 cross valdidation folds for all
predictors of massive transfusion
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• Forward stepwise regression. This procedure starts with an empty model and
adds predictors based on how they change Akaike’s Information Criterion (AIC).
Different predictors were added in each fold (forward stepwise regression had a
non-zero SuperLearner weight in 12 of the 20 folds) and we ranked them based
on how often they appeared, which are summarized in Figure 2.6. The top ten
predictors were chosen in every fold, suggesting that they do indeed have a consistent
association with the probability of massive transfusion.
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Figure 2.6: Plot of the number of folds each covariate was included as predictor by forward
stepwise selection procedure
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• Leekasso. This prediction algorithm performs simple regression to rank the pre-
dictors individually by p-values and then includes the top ten in a multivariable
regression model. We examined the ten predictors selected across the folds where
leekasso had a non-zero weight in SuperLearner, of which there were 17, and plotted
the number of folds that each covariate was included in the final multivariable re-
gression, the results of which are summarized in 2.7. Nine variables were included in
all 17 of the folds where leekasso had a positive weight in SuperLearner, suggesting
that these have a strong association with massive transfusion.
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Figure 2.7: Plot of the number of folds each covariate was included as predictor by leekasso
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• MARS. Multivariate adaptive regression splines also utilize a stepwise procedure to
build a regression model, but rather than using the raw predictors themselves, inputs
stepwise constant functions of the predictors allowing for piecewise modeling of the
outcome. Again, we counted the number of folds that each predictor appeared (out
of the 19 folds where MARS had a non-zero weight in SuperLearner) and plotted
the results to identify top predictors (see Figure 2.8. There is not a clear cutoff for
identifying top predictors based on the number of folds each covariate appears as a
predictor in a MARS model. However, seven of the predictors appeared in all 19 of
the folds where MARS was used in SuperLearner.
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Figure 2.8: Plot of the number of folds each covariate was included as predictor by MARS

Table 2.4 summarizes the results of the exploration of predictors of massive transfusion for
commonly-selected candidate classifiers in the cross validated SuperLearner that had built-
in variable selection or importance measurements. For each classifier, the top predictors
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were identified by plots of the ranked importance measures or how often the predictors
were selected across the cross validation folds. Variables were identified as top predictors
in these plots as long as they were selected before substantial drop off in the number of
times they were selected (Figure 2.5 has a clear dropoff while the others are less dramatic).
Several predictors are identified by every method: systolic blood pressure, prothrombin
time (PTT), hemoglobin, base deficit, injury severity score (ISS) and platelet count. The
variables with the ”Measured” prefix are indicators of whether the variable following
was measured, and several of them are identified by some of the classifiers as important
predictors, suggesting that there may be some importance of missingness in the prediction
of massive transfusion.

Predictor Random forest Forward stepwise Leekasso MARS
Systolic BP 3 3 3 3

Injury severity score (ISS) 3 3 3 3

Hemoglobin 3 3 3 3

Base deficit 3 3 3 3

International normalized ratio (INR) 3

Prothrombin time (PTT) 3 3 3 3

Platlet count 3 3 3 3

Heart rate 3 3 3

Age 3 3

BMI 3 3

Male 3

Glasgow coma score (GCS) 3 3

Measured anticoagulant use 3 3 3

Measured hemoglobin 3

Measured base deficit 3

Measured GCS 3

Measured systolic BP 3

Table 2.4: Top predictors identified by a subset of candidate learners in SuperLearner

2.3.1 Predicting the need for massive transfusion

The Assessment of Blood Consumption (ABC) score is designed to predict the need for
massive transfusion and standardize the initiation of massive transfusion protocols across
hospitals [7]. This score was based on clinician interviews regarding their clinical crite-
ria for activation of massive transfusion, and consists of four dichotomous components:
whether the injury is of a penetrating (as opposed to blunt) nature, whether the patient’s
systolic blood pressure was 90 mmHg or higher in the emergency department, whether
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their heart rate was 120 bmp or greater, and whether they had a positive Focused Assess-
ment with Sonography for Trauma (FAST) scan. Based on these dichotomous variables,
the ABC score ranges from 0 to 4 and a score of 2 is used clinically to identify patients
who will require a massive transfusion.

As a follow-up to the identification of top predictors using candidate algorithms in Super-
Learner, we were interested in comparing the prediction of massive transfusion using only
the ABC score to predictions obtained using the variables involved in the calculation of
the ABC score in a SuperLearner, and also using all predictors, in order to see whether
the ABC score is a useful scoring system. We built a SuperLearner with the four variables
that make up the ABC score using the same prediction library as above and compared
the area under the ROC curve for the the three prediction methods.

The ABC score dichotomized at two did not perform much better than a random classifier,
with an AUROC of 0.532. The restricted SuperLearner built using only the predictors that
go into the ABC score performed better with an AUROC of 0.64 but the full SuperLearner
was the best at classifying massive transfusion patients with an AUROC of 0.718. This
ordering of the predictive performances suggests that these variables may indeed be strong
predictors of the need for future massive transfusion but the relationship is not as simple
as seeing whether two of the four criteria are met, and that including other variables
increases the ability to predict massive transfusion. While the confidence interval for
the full SuperLearner did contain the point estimate of the AUROC for the restricted
SuperLearner, the difference may be clinically meaningful since major hemorrhage is still
a major cause of preventable death in trauma patients.
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Figure 2.9: Receiver operating characteristic curves for the prediction of massive transfu-
sion using the ABC score, a SuperLearner built using the ABC score variables, and the
full SuperLearner
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Lower Bound AUROC Upper Bound
ABC Score 0.532

Restricted SuperLearner 0.595 0.640 0.685
Full SuperLearner 0.677 0.718 0.758

Table 2.5: Comparison of the area under the receiver operating characteristic curve for
predicting massive transfusion using the ABC score, a SuperLearner that uses the ABC
score variables, and the full SuperLearner

2.4 Discussion

We have presented a principled approach to the prediction of clinical outcomes in critical
care that has several desirable properties. SuperLearner allows the user to specify a library
of candidate prediction algorithms that can range from very simple to more complex,
ensemble learners. Including a variety of prediction algorithm strengthens SuperLearner
because it allows for increased flexibility over possible functional forms to protect against
model misspecification, and is simultaneously protected against overfitting by utilizing
cross validation to obtain honest measures of predictive performance of the candidates and
SuperLearner itself. Additionally, the individual candidate algorithms in SuperLearner
can be unpacked and analyzed in greater detail, as we did with the massive transfusion
outcome, allowing for increased interpretability and transparency, which machine-learning
algorithms often obscure.

For the binary outcomes, we were also able to obtain inference for the AUROC perfor-
mance measures using the influence curve, as derived in [59]. While we did not see a
distinct advantage of using SuperLearner as opposed to main-terms regression or stepwise
regression, we did not know how these prediction algorithms would perform a priori. In
fact, this procedure allowed us to consider many competing candidate prediction algo-
rithms, compare them in a systematic way, and combine them using a procedure designed
to maximize the generalizability of the resulting prediction model, thereby making the
most efficient use of data we had.

Upon delving into the algorithms given weight in SuperLearner based on their cross val-
idated risk, we were able to identify particular predictors that had a strong association
with the need for a massive transfusion. Interestingly, some variables identified as top
predictors were in fact indicators of whether a particular variable was measured, suggest-
ing an association between missing measurements and the massive transfusion. In such a
chaotic environment where treatment decisions are made rapidly, there may not be time
to take certain measurements and clinicians might rely on their previous experiences to
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identify high-risk patients rather than take the extra time to collect data. Given these
variables and the prediction algorithms selected by SuperLearner, this motivated us to
examine the predictive ability of the ABC score, a diagnostic score commonly used to
predict the need for massive transfusion and prized for its simplicity. We compared this
score to a SuperLearner built using the four variables used in the ABC score and also a
SuperLearner built using all the predictors and found that the ABC score barely outper-
formed a random classifier with an AUROC of 0.532. The two other methods performed
substantially better, suggesting that the ABC score may be an oversimplification of the
information contained in the four variables that go into its calculation and that further
predictive ability is ignored when the ABC score is used.

We have demonstrated the utility of data-adaptive machine learning prediction of clinical
outcomes in critical care and highlighted the importance of a principle approach to the
prediction problem. While we did examine some ad hoc variable importance measures,
we present a more targeted approach in the next chapter.
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Chapter 3

Variable importance over time using
irregularly measured genomic data

3.1 Introduction

In addition to utilizing clinical data to improve the treatment of trauma injury, un-
derstanding the patient response to injury at the gene expression level can help guide
physicians in making treatment decisions and identify high-risk patients. As described in
Chapter 1, common reactions to injury include inflammation and coagulopathy, which are
partially regulated at the gene level. Thus, exploring the importance of gene expression
after injury can help illuminate the underlying mechanisms of patient reaction to trauma
as well as pathways by which these processes act to guide clinicians’ decision making.
Massive amounts of such data can be generated for each individual, resulting in a com-
plex, high-dimensional data structure that can be further extended to include repeated
measurements at irregular points in time during follow up. The aim of this paper was to
present a principled approach to derive variable importance measures (VIM), motivated
by causal inference with the aim of producing clinically interpretable statistical parame-
ters and robust statistical inference to better understand the genomic response to injury
and how the gene profiles vary over time. We present results for the entire Inflamma-
tion and Host Response to Injury cohort (which was described in Chapter 1) as well as
more detailed results for a subset of genes involved in the coagulation and inflammation
pathways (described in 1.5).

Obtaining a measure of variable importance or a ranking of predictors is not a new problem
in statistics nor in the trauma literature. Some commonly-used methods of obtaining
measures of variable importance first build a prediction model and the compute of variable
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importance quantities based on how the predictions change when variables are used in
the model. Some approaches include random forests and neural networks [47, 60–62].
Random forests use Gini and permutation variable importance measures that are based
on the mean decrease in classification accuracy using resampling techniques or permuting
the predictors [41,47]. In neural networks, the weights that connect the predictors, hidden
linear combinations of these variables, and the outcome of interest can be used as measures
of variable importance [63]. The importance measures generated by these methods do
not have a clear definition as a statistical or clinical quantity of interest nor do they
have an interpretation based on the “natural experiment” that generated the observed
data, i.e. how the patient’s outcome would have changed if they had had a different
gene expression pattern. There is also no guarantee that an algorithm that will predict
clinical outcomes well will do a good job estimating a VIM since they aim to achieve the
optimal bias-variance tradeoff for the entire outcome model rather than for the particular
parameter of interest (the VIM). In the trauma literature, VIMs are usually the coefficients
associated with each predictor in a main-terms regression, which is not feasible for high-
dimensional data where the number of predictors is much larger than the number of
individuals for which predictors were measured. Additionally, little work has been done
in the trauma literature on variable importance for genomic response to injury beyond
differential expression analyses. Thus, a principled approach to obtain variable importance
measures for many predictors is an unmet need in critical care that could have useful
on the identification of high risk patients and have and widespread implications for the
improvement of the treatment of trauma injury.

The data used for this analysis were a subset of the Inflammation and Host Response to
Injury cohort (n = 167), who had gene expression measured in peripheral blood leukocytes
at various time points during their treatment [36,37]. This data set was described in detail
in Chapter 1, specifying our outcome of interest as an indicator of whether the patient
died or experienced multiple organ failure. Additionally, we wanted to adjust for a set of
baseline covariates of interest: injury severity score (dichotomized at 15), base deficit (a
measure of the acidity of the blood) dichotomized at -6, and INR (international normalized
ratio, a measure of blood coagulation time) dichotomized at 1.3. Previous research using
these data found that gene expression in trauma patients is substantially different from
uninjured patients and established that the inflammation and coagulation pathways are
significantly enriched in these individuals [37, 39, 40]. The Affymetrix U133 microarray
chip measures the gene expression for over 45,000 probes, several of which were taken for
each patient at irregular times after injury, resulting in a high-dimensional longitudinal
data structure. Clinicians were interested in obtaining time-specific variable importance
measures to better understand how patient response to injury changes within and across
time. The dimensionality of the available data highlighted the need for a principled
approach to deriving variable importance measures. The parameter estimate for these
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data can be interpreted as the relative risk under two interventions that deterministically
set gene expression to high versus low. This parameter, motivated by causal inference,
allowed us to examine time-specific variable importance measures in a a high-dimensional
longitudinal data set. In addition to the entire probe set, we examined more closely
a subset of genes involved in the coagulation and inflammation pathway (described in
Table 1.5), which were of particular interest to clinicians since these pathways are often
enriched in trauma patients. We found variability in the magnitude and direction for the
association of some of these genes with death and multiple organ failure within and across
time, but also found that these are not the only “important” genes associated with death
and multiple organ failure, suggesting that the underlying mechanisms by which trauma
patients react to injury are complex and require further research to fully understand.

3.2 Methods

3.2.1 Data

Our goal was to use irregularly spaced gene expression measurements to predict the prob-
ability of death or multiple organ failure at serial cross-sectional time points: 12, 24,
48, 72, and 96 hours, using data from the Inflammation and Host Response to Injury
cohort (described in detail in Chapter 1). We used the closest observed gene expression
measurements for each individual at each time point for which we wanted predictions,
shown in Algorithm 2. For example, suppose an individual had expression measurements
at 11 hours and 20 hours. Since the measurements taken at hour 11 are closest to hour
12 and also occurred before hour 12, they are carried forward. We did not extrapolate
outside the minimum or maximum time measurements for a patient, but did use observed
gene expression measurements from up to 120 hours (24 hours past the largest time over
which we want to interpolate). This approach maintained the time-ordering of the ob-
servations, allowed us to examine the entire cohort of patients who were still alive by a
given time point, and respected the fact that gene expression is highly variable across
individuals.
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Algorithm 2: Algorithm to smooth over the irregularly measured time points

for i ∈ 1 . . . n do
if any observed times for individual i are greater than 120 hours then

Remove these observed values;
end
Calculate the absolute values of the distances between all possible combinations of
observed time points and knots (time points where we want to obtain predictions);
while possible combinations of observed time points and knots exist do

Determine the knot and observed time pair with the smallest absolute distance;
Assign that knot the expression measures from its paired observed time point;
Remove the knot and observed time point from the set of possible pairs;
Recalculate the absolute values of the distances between all remaining possible
combinations of observed time points and knots;

end
if the number of observed times is smaller than the number of knots then

Assign missing value to the knots for which there is no closest observed time and
expression

end

end

For the variable importance analysis, we dichotomized the interpolated expression mea-
sures around log2(100), defining“high” expression as above this level and “low” expression
at or below this level, based on the distribution of the overall expression values, which is
shown in Figure 3.1.
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Figure 3.1: Histogram of gene expression with the log2(100) cutoff shown in red
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3.2.2 Parameter of interest and identifiability assumptions

Following the causal inference roadmap laid out in Chapter 1, we first defined our question
of interest, specified the structural causal model that defined our background knowledge
about the relationships between variables at each time point, and defined our parameter
of interest, which can be translated into a statistical parameter (under some assump-
tions), which we call a variable importance measure (VIM). Let Y (t) represent the binary
outcome of interest (death or multiple organ failure) at time t, A(t) = A1(t), ..., AJ(t)
represent the vector of expression measurements for each probe of interest dichotomized
as high or low at time t, and W represent a set of baseline covariates for which we need to
adjust. Then at a given time point t, we represent the observed data for a given individual
as O(t) = (W,A(t), Y (t)) : t = 12, 24, 48, 72, 96 hours.

Identifying informative variables in the context of a large number of candidate predictors
was a challenge because of the high dimensionality of these data. Strategies for variable
selection using gene expression data usually use a univariate measurement of how an
individual gene is related to the outcome such as a t-test or rank test or a weighted
combination of expression measurements (e.g. principal components analysis) to reduce
the dimensionality of the data [64, 65]. The univariate approaches do not adjust for
confounding variables and while the weighted combination approaches take into account
the dependence between the genes, the results are difficult to interpret and assessing gene-
level effects becomes challenging. Another approach is to build prediction algorithms
and rank variables based on how their inclusion in these models affects the predictions.
However, whether or not a gene is chosen by a prediction algorithm is not necessarily the
best measure of its importance in relation to the outcome of interest.

We wanted to define a meaningful parameter in a semiparametric model to rank genes
based on their relationship to the outcome (death or MOF). Causal inference provides
such parameters by first requiring the specification of a structural causal model (SCM)
that represents the relationships between variables of interest, then defining causal pa-
rameters based on interventions on this SCM and, through some assumptions, allows for
the specification of statistical estimands. Our parameter of interest was ratio of the prob-
ability of death or MOF if each patient had had high gene expression over the probability
of the outcome if each patient had had low gene expression, that is, a ratio of so-called
counterfactual outcomes (shown below).

3.2.3 Structural Causal Model

To formally define the VIM, consider the following structural causal model (SCM), which
specifies the relationship between each of the variables of interest at each time point t and
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for each gene j.

W (t) = fW (t)(UW (t))

Aj(t) = fAj(t)(W (t), UAj(t))

Y (t) = fY (W (t), Aj(t), UY (t))

(3.1)

where the Us represent unmeasured variables that affect each of W (t), Aj(t), and Y (t) and
are assumed to have their own distribution, denoted PU [8]. This system of equations is
non-parametric because we have made no statements about the functional form of any of
the equations. Rather, they are generic functions of the random errors and each variable’s
parents. Then the parameter of interest could be defined in terms of counterfactuals
generated by interventions on this system of equations, settingAj(t) = a where a is either 1
or 0, corresponding to high or background expression, respectively. These counterfactuals
are denoted Ya(t) where a is the intervened expression value and the parameter of interest
is some function of these counterfactuals. Our parameter of interest was the causal relative
risk, which can be denoted by

Ψ(PU,X) =
E[Y1]

E[Y0]
(3.2)

where PU,X denotes the distribution of the full data, including the unmeasured variables.
Since the analysis is repeated for each time t and gene j, we drop the indices from the
notation in what follows.

If we wanted to estimate the causal relative risk, we would need the assumption of no
unmeasured confounding (also known as the randomization assumption (RA)) [8]. That
is, that there are no unmeasured common causes of the gene expression and the outcome,
and that the same is true for unmeasured common causes of either gene expression and the
covariates, or for the covariates and the outcome. Additionally, we need the consistency
assumption, which assumes that YA = Y , that is, for each individual, their observed
outcome corresponds to their counterfactual outcome under the observed intervention.
Finally, we would need the assumption of positivity, that is, that there is some variability
in the observed exposure in every strata of the covariates [8, 66]. If these assumptions
were met, we could write

E[Ya|W ]
RA
= E[Ya|A = a,W ]

con.
= E[YA|A = a,W ]

pos.
= E[Y |A = a,W ] (3.3)
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This shows how we can estimate, from the observed data under some assumptions

Ψ(P0) =
E[Y1]

E[Y0]
(3.4)

=
E0[E0(Y |A = 1,W )]

E0[E0(Y |A = 0,W )]
(3.5)

=
E0[QO(1,W )]

EO[QO(0,W )]
(3.6)

where Q0 denotes the mean of the conditional probabilities of the outcome given the co-
variates and gene expression. Estimates of this relative risk can be sensitive to extreme
values of the numerator and denominator and requires some variability in the gene expres-
sion in order to be defined. In this case, we did not feel comfortable making the necessar
assumptions to give our statistical estimatands a causal interpretation. We instead re-
ported a purely statistical parameter, which is still clinically meaningful and interpretable
but does not have a causal interpretation.

3.2.4 Substitution estimator

A simple substitution estimator of this statistical estimand would require estimating the
conditional probability of the outcome given the covariates and gene expression for each
gene at each time point, denoted by Qn. Then, one could obtain predictions under
each intervention by deterministically setting the gene expression to high and low and
predicting the outcomes using the fit Qn. Using the empirical distribution for W , a
simple substitution estimator would be given by

Ψ(Pn) =
1
n

∑n
i=1Qn(1,W )

1
n

∑n
i=1Qn(0,W )

(3.7)

Inference for this estimator would require use of the nonparametric bootstrap, for ev-
ery probe at every time point, which was computational infeasible. Additionally, since
a simple-substitution estimator based on SuperLearner is not an asymptotically linear
estimator, this inference would not be reliable [9, 67]. As described below, a follow-up
step can be used to reduce the bias of the estimator and offers a non-computationally
intensive estimate of the variance.
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3.2.5 Estimation of Q

In order to estimate the conditional probability of the outcome given a gene’s expression
and the covariates, we used a machine-learning algorithm called SuperLearner, which is
described in detail in Chapter 2. Since we do not know a priori the statistical model that
will best describe the true underlying distribution of the data, SuperLearner offers an
attractive approach to modeling Q0 in a big model that has some theoretical justification
[9, 49].

The dimensionality of W in this analysis was relatively low (only 3) and each variable
was dichotomized. Thus, we specified a sieve of algorithms supplied to SuperLearner that
ranged from the smallest possible model (only Aj(t)) all the way to a saturated model,
using stepwise regression, making the library supplied to SuperLearner trivial.

3.2.6 Targeted maximum-likelihood estimation (TMLE)

While SuperLearner does the best possible job estimating the entire conditional mean
of the outcome given the gene expression and covariates, it is not targeted towards esti-
mating a particular feature of this distribution. Targeted maximum-likelihood estimation
(TMLE) is a bias-reduction procedure that focuses in on the particular parameter of in-
terest and does result in an asymptotically linear estimator. It requires estimation of the
conditional probability of the gene expression (high versus low) given the covariates (the
so-called treatment mechanism), denoted by gO(A|W ). The advantages of the resulting
estimator are that it is double-robust (i.e. the estimator is consistent if either the out-
come regression or treatment mechanism estimator is consistent), locally efficient in a
semiparametric model, and achieves the efficiency bound if both Q and g are estimated
consistently [9,68]. Additionally, its variance can be calculated with little computational
cost using the influence curve.

One could estimate gO(A|W ) using SuperLearner. However, since the estimates from
TMLE can become unstable when g0(A|W ) is fit aggressively we relied on the double-
robust property of the TMLE and fit the initial estimators of Q̄0(A,W ) using Super-
Learner and g0(A|W ) using logistic regression. Note: an alternative to this approach
would be to utilize collaborative targeted maximum-likelihood estimation (CTMLE),
which adaptively chooses the adjustment set to achieve the optimal bias reduction [69].
The treatment mechanism can then used to augment the initial estimate of Q̄0(A,W ), as
described below. We targeted the numerator and denominator of the VIM separately and
then used the delta method to calculate the influence curve to obtain inference.

For each probe, j, at each time point t, we used the following steps to obtain the TMLE
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for the treatment-specific means (the numerator and denominator of the VIM) separately
and then used the δ method to derive the influence curve for the relative risk:

1. Generate an initial estimate, denoted Q̄0
n(A,W ) of Q̄0(A,W ) using SuperLearner

and an estimate gn(A|W ) of g0(A|W ) using logistic regression. The superscript on
the estimate indicates that it is an initial estimate.

2. Calculate the so-called clever covariate

H∗n(A,W ) =
I(A = a)

gn(A|W )
(3.8)

and the corresponding clever covariates under the interventions on gene expression,
denoted H∗n(1,W ) and H∗n(0,W ). Note that in this step, extreme values of gn(A|W )
can result in extreme values of the clever covariate, which results in instability of
the final estimate.

3. Augment the initial estimator by regressing the outcome Y on the clever covariate,
using the logit of the initial fit Q̄0

n(A,W ) as offset. Calculate εn, the coefficient
attached to the clever covariate given by

logit(Q1
n(a,W )) = logit(Q0

n(a,W )) + εn(H∗n(a,W )) (3.9)

4. The VIM is calculated using the updated estimates of Q

Ψ̂(Pn) =
1
n

∑n
i=1Q

1
n(1,W )

1
n
Q1
n(0,W )

(3.10)

5. We targeted the numerator and denominator of the relative risk separately and then
used the δ method to calculate the influence curve for this ratio of treatment specific
means. The estimate of the variance of this estimator is given by the variance of
the influence curve. For the relative risk, the influence curve is given by

ICn =

(
1

µa=0

(
I(A = 1)

gn(1|W )

)
(Y − Q̄0

n(1,W )) + Q̄0
n(1,W )

)
−
(
µa=1

µ2
a=0

(
I(A = 0)

gn(0|W )
(Y − Q̄0

n(0,W )

)
+ Q̄0

n(0,W )

) (3.11)

where µa=1 = E[E(Y |A = 1,W )] and µa=0 = E[E(Y |A = 0,W )]
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6. The standard error of ˆΨ(Pn) is given by

σn =

√
S2(ICn)

n
(3.12)

where S2(ICn) is the sample variance of the estimated influence curve values for
each subject.

3.2.7 Implementation details

We first visualized the empirical distributions of gene expression values to determine
whether there was sufficient variability in each gene to estimate our VIM, which is sensi-
tive to extreme values in the numerator and denominator and used hierarchical clustering
to examine potential multivariate groupings of individuals by their coagulation and in-
flammation gene expression patterns. Hierarchical clustering uses a dissimilarity matrix,
in our case, based on the Euclidean distance between each subject, and joins the individ-
uals iteratively until there is a single cluster. The results are displayed as a dendogram,
can be added to a heatmap of the entire data set to visualize the multivariate clustering.
Thus, the heatmaps of the gene expression values before dichotomizing were a useful tool
for both visualization of a subset of the data and exploration of the predictive ability of
these expression values.

As a comparison to the VIM estimated using SuperLearner, we also performed unadjusted
tests of association of the probability of death or MOF given gene expression levels and
used Fisher’s exact test to obtain the p-value for that association. We accounted for mul-
tiple testing in both the adjusted and unadjusted analyses using the Benjamini-Hochberg
adjustment and comparing these adjusted p-values to 0.05.

Finally, as an alternative to identifying important genes based on adjusted p-values, we
used time-specific clustering of the individual components of the influence curve for the
each VIM to identify important coagulation and inflammation genes as the medoids of
these clusters. The VIMs were calculated adjusting only for baseline covariate measure-
ments and not for other probes, but many of these genes belong to networks that may
affect the outcome in a certain way. Hierarchical Ordered Partitioning and Collapsing
Hybrid (HOPACH), can identify groups of the top probes and genes that have similar
relationship to the outcome and choose the probe and associated gene that best repre-
sents that group. Rather than clustering the raw gene expression values, however, we
used HOPACH to cluster the individual contributions to the influence curve for the VIM
(the relative risk) for each gene. Since the influence curve measures the impact that
each observation has on the estimator, the individual components of the influence curve
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themselves can be used in the identification of important coagulation and inflammation
genes [68, 70].

HOPACH combines agglomerative (built from the bottom up like the hierarchical cluster-
ing algorithm described above) and divisive (built from the top down) clustering meth-
ods [71]. It uses the median split silhouette (a measure of cluster homogeneity) to collapse
levels of a decision tree to unite smaller clusters and determine the optimal number of
clusters [71]

We used HOPACH to cluster genes based on their individual contributions to the influ-
ence curve in order to group genes that had similar relationships with the outcome. At
each time point, we clustered the values of the influence curve for the TMLE of the rel-
ative risk, shown in Equation 3.11, for each individual and probe in the coagulation and
inflammation genes to determine the subset of genes that were representative of different
impacts each gene had on the VIM. The clusters produced by HOPACH were centered at
optimally-selected medoids and gave a reduced subset of the most important coagulation
and inflammation genes for identifying patients at risk of death or multiple organ failure.
Since the VIMs were calculated at the probe level, some of the clusters were centered at
the same gene.

3.3 Results

We visualized the smoothed gene expression values using heatmaps at each each time
point with the aim of determining whether there was sufficient variability in each gene
to estimate the VIM and also to explore the possibility of well-defined clusters based on
the gene expression profiles. The heatmap for the coagulation and inflammation genes
(described in 1.5) at hour 12 is shown in Figure 3.2. The gradient of colors in the plot
was chosen based on the overall quantiles of the expression values at each time point,
with warmer colors indicating larger expression values. The colors in the left-hand bar
indicate whether individuals experienced multiple organ failure or death, with dark blue
corresponding to a negative outcome. The dendograms showing the results of the hierar-
chical clustering demonstrate that there is little clustering in relation to the outcome, but
the genes themselves can be partitioned into several relatively distinct clusters based on
their expression measures. Such plots can be constructed for each time point, but we did
not see any striking clustering of the individuals using their gene expression values at any
of the time points, suggesting that gene expression profiles alone cannot identify patients
who experience death or multiple organ failure. These plots also demonstrated that, for
some genes, the expression level is constant across individuals. Thus, when calculating
the variable importance measures at each time point, we examined only probes that or
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had some variability in expression, more specifically, the proportion of individuals with
high gene expression had to be between 10% and 90%.
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Figure 3.2: Heatmap of gene expression for coagulation genes at hour 12
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The number of probes of each type (part of the coagulation set, the pathway set, or part
of the entire probe set) that had any variability at each time point are shown in Table 3.1
with their corresponding gene class. Recall that probe had to be expressed in no fewer
than 10% and no greater than 90% of the individuals at a given time point in order to
be included in the analysis. The number that met the inclusion criteria varied over time,
with the least amount of variability at hour 48. This narrowed down the number of probes
for which we obtained measures of variable importance.

Time Coagulation Pathway Other Total
12 14 101 10171 10286
24 13 106 9726 9845
48 10 94 8838 8942
72 15 110 10285 10410
96 13 106 10104 10223

Table 3.1: Number of probes of each type that showed varability at each time point

We used two approaches to visualize the VIM results for all probes at each timepoint,
one which allowed for the identification of probes with large magnitudes and small p-
values and another which allowed us to compare the distributions of p-values for each
probe type. These visualizations of all the results were carried out with the aim rapidly
identifying specific stand-out probes and their associated genes. Comparing these plots
for the adjusted and unadjusted analyses also helped us examine how adjusting for INR,
base deficit, and injury severity affected the distributions of the p-values. Volcano plots, as
shown in Figure 3.3, displayed the magnitude of the VIMs versus their−log10 transformed
raw p-values and allow for the identification of probes with large magnitude VIMs and
small p-values, which will appear in the upper corners of the plot. In both the adjusted
and unadjusted analyses, a few probes stood out at each time point with small p-values
but did not have extremely large magnitudes of the VIM. Boxplots of the distributions
of −log10 transformed raw p-values shown in Figure 3.4 partitioned the distribution the
p-values by the probe types. Based on these plots, it is not obvious that the proportion
of statistical significant associations is higher among the coagulation genes than those
in the larger pathway group or in the other genes. An exception could be at 72 hours,
where the distribution of p-values appears to be smaller, which can also be seen in the
volcano plots. Overall, from our visualizations of the results for the entire probe set, there
was not a significant enrichment of the coagulation and inflammation pathways in these
data. In fact as shown in Table 3.2, none of the coagulation or pathway genes survived
the Benjamini Hochberg adjustment for multiple testing, but some of the other genes did
most of them at hour 48, suggesting other pathways through which the patient reacts to
injury. In the unadjusted comparisons, none of the genes had a significant association
with death or multiple organ failure.
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Figure 3.3: Volcano plots of the log2 transformed VIM and -log10 transformed p-values
over time for the adjusted and unadjusted comparisons
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Figure 3.4: Boxplots of the unadjusted and adjusted log10 transformed p-values for each
gene type across time
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Time Coagulation Pathway Other
12 0 0 0
24 0 0 5
48 0 0 103
72 0 0 0
96 0 0 7

Table 3.2: Number of genes of each type that were significant at each time point

Although they were not identified as being significantly associated with death or multiple
organ failure in the context of the entire probe set, we examined in more detail the specific
VIM results for the subset of coagulation and inflammation genes because they had been
previously identified by clinicians as some of the key drivers of immune response to trauma.
Since each gene had several probes that mapped to it, we plotted the means of the VIMs
for each of them for each time point in Figure 3.5, including the unadjusted relative risks
for comparison. Some of the genes did not meet the inclusion criteria of being sufficiently
variable at a given time point so they are missing points at some time points. While none
of the coagulation genes had p-values that survived the adjustment for multiple testing,
the magnitude of the VIMs may have be clinically meaningful. For example, at hour 48,
PROS1 was had a VIM value (relative risk) of approximately 2 in both the unadjusted
and adjusted analyses, suggesting that having PROS1 highly expressed is associated with
a 2 times higher risk of mortality and multiple organ failure. For most of the genes, the
adjusted and unadjusted comparisons were comparable with the exception of THBD at
Hour 24, where the two are on different sides of a the null relative risk of 1, that is, once
we adjusted for the covariates, having THBD highly expressed is associated with a higher
risk of death or multiple organ failure rather than being protective. This gene encodes a
thrombin binder, which reduces the amount of thrombin (the presence of which indicates
clotting in the blood). Two of our covariates (INR and base deficit) were related to blood
quality and ability to clot, and adjusting for them reversed the direction of the importance
measure of THBD, demonstrating the impact of adjusting for these covariates.
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Figure 3.5: Adjusted and unadjusted variable importance magnitudes and significance
levels for coagulation genes
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The results from the clustering method of identifying the top genes at each time point
are summarized in Table 3.3. The table indicates when and how often each gene was
selected as a medoid in the clustering procedure described in the Methods section. While
this procedure does not rely on the statistical significance of each variable importance
measure, it is based on the impact each observation has on the TMLE of the relative risk
and is a more multivariate approach to identifying the top genes at each time point that
takes into account the other genes involved in the coagulation and inflammation pathway.
However, it is less interpretable than ranking the genes by statistical significance. The
number of clusters chosen at each time point ranged from 7 to 13, with some genes being
selected as medoids more than once due to the mapping of multiple probes to each gene.
Thrombospondin 1 THBS1, a gene involved in blood clotting, was identified as medoids
at every time point, meaning that that it was important at every time point after injury.
One of the main methods for the resuscitation of trauma patients is the infusion of blood
products, especially if patients have lost a substantial amount of blood. Uncontrollable
hemorrhage is one major cause of preventable mortality in trauma, and even the infusion
of new blood products will not be successful if the blood cannot clot or clots too much,
which supports the hypothesis that coagulation is important throughout follow up after
injury.

Gene
Hour 12 Hour 24 Hour 48 Hour 72 Hour 96

9 clusters 7 clusters 8 clusters 7 clusters 6 clusters
THBS1 3(3) 3 3(3) 3(2) 3(2)

SERPINE1 3 3 3

F7 3 3 3

F2 3 3

ANGPT1 3 3 3

F8 3 3

THBD 3 3 3 3

MMP2 3 3(2) 3(2) 3 3

PROS1 3 3

Table 3.3: Time-specific clustering results and genes identifed as medoid centers. The
numbers in parentheses indicate the number of times the gene was chosen as a medoid.

3.4 Discussion

We have presented an approach for assessing the importance of individual genes’ expres-
sion levels over irregularly measured time points for critically injured patients, which
produced statistical parameters with clinically relevant interpretations. The use of a
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structural causal model enforced transparency regarding the relationships between vari-
ables of interest, and the variable importance measure derived based on interventions on
this SCM has a causal interpretation under some assumptions. While we do not believe
that the identifiability assumptions were met for these data, the VIMs are still interest-
ing statistical parameters. This process highlighted the utility of a well-defined target
parameter for variable importance analysis in high-dimensional data as well as the use of
an approach motivated by a particular research question to derive a clinically meaningful
parameter of interest. The results suggested that the drivers of these patients’ responses
to trauma were not limited to genes involved the coagulation and inflammation pathways,
suggesting areas for future research to better aid clinicians in the identification of high-risk
patients.

None of the unadjusted comparisons identified a significant association between gene
expression and the likelihood of experiencing death or multiple organ failure. However,
after adjusting for base deficit, INR, and ISS, and estimating the effect using TMLE and
data-adaptive SuperLearning, we did identify a subset of genes that were significant at
each time point, suggesting that a naive comparison that does not take into account the
injury severity, clotting ability, and general health of the patient upon admission to the
emergency department can be misleading. In the adjusted comparisons, no single gene was
significant at every time point and the top genes changed over time. In the context of the
entire probe set, none of the coagulation nor pathway genes were significantly associated
with death and multiple organ failure, highlighting the complexity of the underlying
mechanisms of patient response to trauma. It is possible that these genes are activated
much earlier after injury and was not captured in our time scale, which started 12 hours
after injury. Additionally, our analysis was limited to genes that had some variability
in expression, genes with constant expression levels across individuals are not included
here. For example, Protein C (PROC ), a key gene in blood clotting, was not highly
expressed at any of time points, possibly because patients were bleeding so severely that
they there had been a depletion of the protein produced by the activation of this gene [72].
Indeed, the patients for whom we have expression measures were more likely to have a
base deficit below -6, an INR of greater than 1.3, and more severe injuries, all of which
have been implicated in injury-induced coagulopathy. Thus, a lack of variability in gene
expression does not mean that gene is not important, but we could not obtain importance
measures for such genes since there would be no support in the data for an intervention
setting expression to be the missing expression level. However, a expansion of this analysis
comparing these individuals with a healthy patient group could explore the importance
of these consistent genes.

When examining the set of coagulation genes identified by clinicians a priori, we saw
variability in the magnitude and direction of the importance measures within and across
time, although these variations were not statistically significant. However, the variability
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suggests that differences are occurring at the gene expression level in severely injured
patients and that different pathways may be activated at different times. It also suggests
that expanding the search for genomic markers of coagulopathy, multiple organ failure,
and mortality might identify useful predictors to identify high-risk patients. The alter-
native method of identifying important coagulation genes does not depend on statistical
significance but rather the influence each observation has on the estimator of the VIM.
This procedure identified different numbers of optimal clusters at each time point as well
as varied medoids of each cluster. However, Thrombospondin 1 (THBS1 ) stood out since
it was chosen at every time point suggesting that it had a strong association with mor-
tality and multiple organ failure. While this procedure did identify optimal clusters of
genes based on individuals influence curve values for the relative risk, it does not have as
clear of an interpretation as the significance of the VIM itself. However, it did identify
two coagulation genes as being consistently important over time, which could be used as
part of a genomic signature to identify high-risk patients, but would require prospective
validation. Additionally, using HOPACH to cluster the influence curves for the entire
probe set at each time point would be computationally infeasible, so some dimension
reduction technique was necessary to use this method to identify important genes. We
used genes identified by clinicians, but could have used some other criteria to identify
candidate genes for the clustering algorithm, e.g. the genes with significant VIMs.

This analysis was limited to serial cross-sectional analyses of variable importance with a
relatively small adjustment set of baseline covariates. This allowed for separate models for
the relationship between the outcome given the gene expression and covariates to obtain
time-specific rankings of genes. An expansion to longitudinal measures of variable impor-
tance would require the specification of a different structural causal model and parameter
of interest and is another area for future research in the mechanistic understanding of
trauma [73]. The use of CTMLE to adaptively choose the adjustment set W and per-
haps include other genes as candidate covariates is another reasonable expansion of this
analysis, which would result in a more realistic ranking of the genes [69].

While our variable importance measures do not have a causal interpretation due to un-
measured confounding, they were still a substantial improvement over the standard coef-
ficients in a regression equation because they have a clinically meaningful interpretation,
improved estimation, and robust inference. We were able to define these importance
measures in the context of a complex, high-dimensional, longitudinal data structure and
explore in more detail the relative importance of genes involved in the coagulation and
inflammation pathways. The variability of these importance measures within and across
time demonstrate the complexity of patient response to injury, highlighting the need for
further research focused on the underlying mechanisms of injury. Furthermore, this anal-
ysis was limited to importance measures for gene expression only. A useful expansion
would be to examine similar importance measures for gene or protein expression in com-
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petition with clinical variables, which have so far been the focus on the trauma literature
since they are easier to access during treatment, and would allow us to examine how clin-
ical covariates are associated with the patient response to injury. While gene expression
is not a modifiable patient characteristic, obtaining variable importance measures does
assist with the mechanistic understanding of patients’ response to trauma. Our results
did not identify any single pathway or subset of genes that identify patients at high risk
for mortality or multiple organ failure, highlighting the complexity of this response. We
acknowledge that this analysis only scratches the surface of understanding the underlying
human response to injury but we have demonstrated the utility of a principled approach
to the analysis of complex, high-dimensional data.
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Chapter 4

Quality of care comparison

4.1 Introduction

A large source of differences in trauma patient outcomes is hypothesized to reflect institutional-
level variation in care. Comparing the quality of care at different hospitals trauma is a
challenging question, since each center has unique doctors, resources, and patient types.
For example, it would not be fair to compare two centers with different distributions of
baseline injury severity since more severely injured patients experience a higher propen-
sity for mortality. A vast literature exists suggesting that patients experience different
outcomes based on the type, quality, and treatment practices practiced at different hospi-
tals, for example, comparisons of large versus small, urban versus rural, and the use of a
massive transfusion protocol [74–77]. Evaluation of the quality of care is usually based on
comparisons of observed versus expected mortality and injury, which are relatively simple
scoring systems that do not take into account the variability in underlying patient pop-
ulation served by each hospital or treatment practices. A qualitative ranking of trauma
centers in the United States is carried out by the American College of Surgeons that
ranks hospitals on a scale from level I to V (I being the highest, V being the lowest) [78].
In addition to the variation in care received, the effects of differences between hosptials
is heavily confounded due to treatment by indication (that is, patients that are worse
off tend to receive more treatment) as well as the heterogeneous nature of the patient
cohorts. This analysis focused on finding an objective comparison that accounted for the
underlying patient population and did not include treatment as a distinguishing factor
among hospitals.

Using a statistical parameter motivated by the causal inference literature, we imple-
mented four different estimators to compare quality of care at ten level one trauma
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centers from around the United States. Our approach utilized two major advances in
statistical methodology: (1) data adaptive machine learning tools for modeling clinical
outcomes and the distribution of patient across different trauma centers, given a poten-
tially large numbers of patient predictors, and (2) using the resulting models to estimate
causal parameters, that provide relevant to summaries of how patient outcomes differ
due to site. Specifically, we were interested in comparing large and small-volume sites
involved in the study. Large-volume sites were identified based on the number of pa-
tients served and staff size. The statistical parameter we estimated allowed us to compare
the large-volume patients outcomes at the center type at which they were observed with
their so-called counterfactual outcome at a small-volume center [10]. This enabled us to
identify outcomes where there was a benefit to being treated at a large-volume center as
well as individuals who would be most affected by being treated at a different type of
hospital.

4.2 Methods

4.2.1 Structural causal model and parameter of interest

We followed the causal inference roadmap laid out in Chapter 1 to motivate this analysis
and estimate a parameter with a clinically meaningful clinical interpretation. Our question
of interest was whether large-volume patients would have experienced different outcomes
if they had instead been treated at a small-volume hospital. Consider the following
structural causal model (SCM), which encodes the hypothesized relationship between the
variables of interest, whereW represents baseline covariates such as gender, race/ethnicity,
or injury severity, A represents the site type (large- or small-volume), and Y represents
the outcome of interest (various). The U ’s represent unmeasured variables, which have
their own distribution, denoted PU .

W = fW (UW )

A = fA(W,UA)

Y = fY (A,W,UY )

(4.1)

Our observed data can be denoted O = (W,A, Y ), and we are assuming that O1, ..., On are
independent and identically distributed with distribution PO. In this SCM, the baseline
covariates confound the effect of site type on the outcome of interest, that is, we assume
that the baseline covariates are not affected by site type. This is a reasonable assumption

66



CHAPTER 4. QUALITY OF CARE COMPARISON

given that severely injured patients are transported to the closest trauma center. Inter-
vening on this system of equations to change the site type resulted in a modified SCM
that generated a change in distribution of Y , the so-called counterfactual distribution.
The resulting counterfactual we denoted Ya where a is the value to which the site type
was set in the SCM. The counterfactuals generated by interventions on this system are
also known as potential outcomes [10]. Comparing some feature of the counterfactual
distribution, such as the mean, under different interventions can illuminate the effect of
site type on the outcome of interest.

The target causal parameter that addresses the effect of site type on a given outcome is
the so-called effect of treatment among the treated (ETT), which is denoted by

E[Y1|A = 1]− E[Y0|A = 1] (4.2)

that is, for the treated group, the average of their outcomes, minus their counterfactual
outcome. In this case, the “treated” status refers to large-volume sites as opposed to small-
volume sites. Under the randomization and positivity assumptions, the corresponding
statistical estimand is given by

ψ(P0) = E0[E0(Y |A = 1,W )E0(Y |A = 0,W )|A = 1] (4.3)

The randomization assumption states that Ya ⊥⊥ A|W . This allowed us to link the
counterfactual and observed data by writing

EO[Y |A = a,W = w = EFX
[Ya|A = a,W ]

= EFX
[Ya|W ] if Ya ⊥⊥ A|W

(4.4)

where FX represents the distribution of the full data, which is given by X = (Y1, Y0, A,W )
that is, all the potential outcomes, the site identifiers, and covariates. The positivity
assumption requires that there be sufficient natural experimentation (variability) of each
site type in each strata of the covariates, so that there will be support for each intervention.
Under these assumptions, we can identify the ETT as a parameter of the observed data
distribution.

Estimation of the statistical estimand required estimation of the conditional mean of the
outcome among patients in large- and small-volume sites. Note that the covariates for
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which we adjust are not on the causal pathway, i.e. they are not affected by site, nor
are we adjusting for any treatment variables such surgeries or infusion of blood products,
which may be site-specific.

4.2.2 Estimation

The statistical parameter of interest can be estimated in several different ways. Before we
expand on the details of each estimator, recall that we can represent our observed data as
O = (W,A, Y ) and we assumed a common distribution, P0 for O1, ..., On. The likelihood
of the observed data can then be factorized as follows

P0(O) = P0(W,A, Y )

= P0(Y |A,W )P0(A|W )P0(W )

= Q̄0(A,W )g(A|W )Q0(W )

(4.5)

where the likelihood factorizes into an outcome regression of Y on A and W , the treatment
mechanism, and the marginal distribution of W . We denote the outcome regression with
Q0(A,W ) and the treatment mechanism with g(A|W ).

Prediction-based estimator

The first estimator, called the prediction-based estimator, involved building a prediction
model that utilized data from only the small-volume sites (A = 0 group), then predicting
outcomes for the the large-volume sites (A = 1 group) using that model. The motivation
for this estimator was to model the relationship between the covariates and each of the
outcomes and then examine how well this model predicted the outcomes for the large-
volume patients using their covariate information. Subtracting the mean of the predictions
based on the small-volume model from the mean of the observed outcome for the large-
volume patients gave a subsitutition estimator of the ETT. Unfortunately, no formal
inference exists for this estimator since it is not asymptotically linear.

Simple substitution estimator

For the simple substitution estimator we estimated the conditional mean of the outcome
among both site types, then intervened and deterministically set the site variable to be
the large volume indicator for all subjects (A = 1), obtained the predicted outcome under
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this intervention, then did the same under an intervention that set the site to be low
volume for all subjects (A = 0). Then, we examined the differences in means among only
the large-volume patients, which yielded another substitution estimator of the ETT based
on the G-computation formula [79]. This estimator is also not asymptotically linear, so
we could not obtain inference.

Targeted maximum-likelihood estimator

The targeted maximum-likelihood estimator (TMLE) used the distributions of Y under
each intervention from the simple substitution estimator described above as inputs into
a bias-reduction step used to achieve the optimal bias-variance tradeoff for the ETT [9].
This follow-up step involved fluctuating the initial estimators using a clever covariate that
involves the propensity score for each site type [9]. This estimator is also a substitution
estimator that will respect the natural bounds of the outcome, double-robust (consistent
if either the treatment mechanism or outcome regression is correct), and asymptotically
linear. Thus, inference for TMLE can carried out using the influence curve, which is given
by

D∗(PO) =

(
I(A = 1)

P (A = 1)
− I(A = 0)g(1|W )

P (A = 1)g(0|W )

)
[Y − Q̄(A,W )]

+
I(A = 1)

P (A = 1)
[Q̄(1,W )− Q̄(0,W )− ψ(PO)]

(4.6)

Propensity score matching

The propensity score matching estimator required estimation of the probability of each
site type given the covariates (the so-called treatment mechanism), the inverse of which
is then used to generate counterfactual outcomes for large-volume patients by matching
each of them with a small-volume patient based on their propensity score and calculating
the ETT in this new matched data set [80, 81].

SuperLearner

All of the estimators described above required building a prediction model either on the
entire observed dataset or a subset of the data. The prediction, simple substitution,
and TMLE required estimation of the outcome regression and the TMLE and propensity
score matching also required estimation of the treatment mechanism. To avoid model
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misspecification and do the best possible job of estimating each part of the likelihood,
we used SuperLearner [9, 49]. This allowed us to use a library of prediction algorithms
as well as cross-validation to protect against overfitting. The algorithms supplied to
SuperLearner included main-terms regression, Bayesian regression, multivariate adaptive
regression splines(degree = 2, penalty = 3), and generalized additive models. The first
three were described in detail in Chapter 2. Generalized additive models were developed
in 1990 by Hastie and Tibshirani and introduced a smoothing parameter into the form of
a generalized linear model and models the outcome as a function of smoothed forms of
the predictors [82].

In collaboration with clinicians, we identified several outcomes of interest, shown in Table
1.3 as well as potential confounders to adjust for, shown in Table 1.2. Some of the
covariates did have missing values, so we used an indicator of whether the variable was
measured to identify those individuals as a covariate in the prediction algorithm. The
three large-volume sites treated 541 individuals while 681 were treated at the seven low-
volume sites.

4.3 Results

The results for all of the estimators is shown in Table 4.1 with the unadjusted difference
included for comparison. The parameter estimated the expected change in the outcome
for individuals who were treated at high-volume sites had they been treated at low-volume
sites. A negative value means that the predicted outcome would be higher than expected
had patients from high-volume sites been treated at low-volume sites. For high-volume
site patients, the probability of overall and 24-hour mortality would have been 7% and 5%
higher, respectively, had they been treated at a low-volume site, as estimated by TMLE.
In contrast, the probability of reported and data-based massive transfusion would have
been 9% and 6% lower, respectively, for the same individuals. Additionally, the number
of plasma and platelet units infused by 24 hours would have been lower at the low-volume
centers. According to the estimates from TMLE, the remaining outcomes would not
be significantly altered by a change in site. These included earlier mortality at 2 and
6 hours, substantial bleeding, multiple organ failure, complications, and the number of
RBC units infused by 24 hours. The propensity score matching procedure also identified
reported massive transfusion, overall mortality, and 24-hour mortality as outcomes that
would be significantly altered by a site change in the same directions as the TMLE,
but additionally found an 8% increase in the probability of mortality in large-volume
patients if they had instead been treated at a small-volume center. While the unadjusted
comparisons are not exactly analogous to the ETT (since the difference is calculated across
all patients as opposed to only the large-volume patients), it does reflect the results of
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a nave analysis that does not take into account the underlying differences in patients at
each site. This estimator identified plasma units infused by 24 hours and complications
as differing significantly between the two sites, highlighting the importance of adjusting
for confounders.

Overall, the direction of estimated effects from each of the four estimators was the same
and the magnitudes were comparable. The significance of the results did not always agree,
for example, unadjusted probabilities of complications differed significantly between the
two groups but not in the TMLE or matching estimators of the ETT. The significant
results by estimator are summarized in Table 4. Large-volume patients had a higher
probability of being massively transfused and received more plasma and platelets and
had lower probabilities of later mortality than they would have had if they were treated
at a low-volume site.
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Figure 4.1: Plots of the point estimates and confidence intervals for the propensity score
matching estimator, TMLE, and unadjusted comparisons
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Less at large-volume sites More at large-volume sites

TMLE
Overall mortality Massive transfusion (reported and from data)
24-hour mortality Plasma units by 24 hours

Platelet units by 24 hours

Matching
Overall mortality Massive transfusion (reported only)
24-hour mortality Plasma units by 24 hours

Unadjusted
Complications Massive transfusion (reported only)

Plasma units by 24 hours

Table 4.2: Significant results by estimator

4.3.1 Effect of patient differences on 24-hour mortality

In order to identify patients who were driving the differences in the ETT, we a calcu-
lated the residuals (the difference between the observed and predicted outcome) for each
outcome where the prediction was obtained under the counterfactual intervention and
plotted a loess curve of these residuals against the predicted probability of overall mortal-
ity, also obtained under the counterfactual intervention (Figure 4.2). The individuals with
the largest residuals had counterfactual predictions that were further from their observed
outcome. The most striking deviation in residuals by site type was 24-hour mortality,
where the individuals with moderate predicted probabilities of mortality are responsible
for the greatest deviance in the residuals, suggesting that these individuals would be most
affected by the change in site type. Individuals at both ends of the spectrum (both having
either relatively low or very high probabilities of death) appear to have little association
with clinic size. The histogram of the predicted probabilities of overall mortality (the
x-axis in the residual plots) shown in Figure 4.3 demonstrated that there are people from
each site represented across the entire range of predicted probabilities, so the deviations
in residuals we saw in the residual plots are driven by only a few individuals.
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Figure 4.2: Residual plots for all outcomes
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Figure 4.3: Histogram of individuals across the range of the predicted probabilities of
mortality
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Next, in order to characterize the individuals whose 24-hour mortality would have been
most affected by a site type change, we compared patients on either side of the point
at which the loess curves started to diverge from 0, an area highlighted in blue in 4.4.
This identified 146 individuals with negative residuals, (survived beyond 24 hours) and
52 individuals with positive residuals (died before 24 hours) who would be most affected
by a site change. The pairwise comparisons shown in Table 4.3 highlight the differences
between these patients and those who would be less affected by a site change. Patients who
were more affected by the site change had lower penetrating injury rates but higher injury
severity scores and heart rates. They also had significantly longer partial thromboplastin
times than those with small residuals. Additionally, their Glasgow coma scores, base
deficit, and INR were all lower than the patients who were more affected by a site change.
They were more likely to experience bleeding events and to be massively transfused and
also had a higher probability of mortality at every time point, as shown in Table 4.4.
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Figure 4.4: Residuals for 24-hour mortality versus predicted probabilities of overall mor-
tality with area for subset analysis marked in light blue
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Variable Mean in small
residuals (SD)

Mean in large resid-
uals (SD)

Missing Pvalue

Age 37.33 (17.24) 41.44 (19.58) 1 <0.001
Base deficit -5.72 (4.77) -8.68 (6.03) 94 <0.001
Black race 0.19 (0.39) 0.24 (0.43) 0 <0.001
BMI 27.15 (5.98) 28.03 (7.3) 177 <0.001
GCS 11.76 (4.91) 7 (5.11) 41 <0.001
Heart rate 106.32 (25.47) 106.15 (33.06) 9 <0.001
Hemoglobin 12.08 (2.15) 12.08 (2.38) 29 <0.001
Hispanic 0.24 (0.43) 0.17 (0.37) 33 <0.001
INR 1.3 (0.55) 1.98 (2.45) 55 <0.001
ISS 21.8 (12.62) 34.56 (14.32) 0 <0.001
Male 0.75 (0.43) 0.76 (0.43) 0 <0.001
Penetrating 0.45 (0.5) 0.32 (0.47) 0 <0.001
Platelets 256.17 (73.4) 220.41 (92.32) 35 <0.001
PTT 27.79 (6.8) 40.53 (25.4) 75 <0.001
Systolic BP 105.88 (29.52) 103.77 (37.36) 15 <0.001
White race 0.6 (0.49) 0.54 (0.5) 0 <0.001
Asian/Pacific Islander race 0.04 (0.19) 0.05 (0.21) 0 0.003
Anticoagulants 0.1 (0.3) 0.08 (0.27) 109 0.005
Unknown race 0.02 (0.15) 0.03 (0.17) 0 0.020

Table 4.3: Covariate comparisons in subset analysis
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Variable Mean in small
residuals (SD)

Mean in large resid-
uals (SD)

Pvalue

2-hour mortality 0 (0.05) 0.08 (0.27) <0.001
6-hour mortality 0.02 (0.13) 0.19 (0.39) <0.001
Massive transfusion (data) 0.2 (0.4) 0.38 (0.49) <0.001
Massive transfusion (reported) 0.2 (0.4) 0.39 (0.49) <0.001
Overall mortality 0.06 (0.25) 0.46 (0.5) <0.001
Plasma units at 24h 6.03 (7.32) 11.41 (12.44) <0.001
Platelet units at 24h 0.47 (1.09) 1.06 (1.75) <0.001
RBC units at 24h 6.57 (7.24) 12.31 (13.89) <0.001
Substantial bleeding 0.25 (0.43) 0.49 (0.5) <0.001
Complications 0.03 (0.17) 0.05 (0.22) 0.004
Multiple organ failure 0 (0.05) 0.03 (0.16) 0.001

Table 4.4: Outcome comparisons in subset analysis

4.3.2 Propensity score matcing follow-up

In addition to the subset analysis, we explored the matched data set generated by the
propensity score procedure to determine whether the procedure achieved balance in the
covariates. The heatmap in Figure 4.5 is a visualization of the entire matched data
set where the values have been scaled to be between 0 and 1. We performed hierarchical
clustering of the individuals based on their covariate values, summarized in the dendogram
on the left side of the heatmap. The color bar between the dendogram an the heatmap
indicates the site size where each individual was treated (purple corresponds small-volume
sites and blue to large-volume sites). If the individuals in the matched data set were able
to be clustered based on their covariates, that is, if the covariates were not balanced
between the two site sizes, we would see larger blocks of color in the color bar. While
there were some small clusters where patients belonged to the same site size, overall there
was not much clustering of the individuals by their covariates, suggesting that we were
able to achieve balance in the covariates via propensity score matching.
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Figure 4.5: Heatmap of matched data set checking for balance in the covariates

4.3.3 Center differences effect on outcomes

Additionally, we wanted to explore which sites in particular were driving the differences
in outcomes we were seeing among the large-volume patients. To do so, we built a
SuperLearner predictor on every site and then predicted outcomes for all individuals
using that model and subtracted the observed outcomes from those predictions. If the
mean of this difference was positive, that suggested that the observed outcome was higher
than expected based on the model for a particular site. If the difference was negative,
that suggested that the observed outcome was lower than expected based on the model
for a particular site. A heatmap of the results is shown in Figure 7, where each row is
the site used to build the SuperLearner and each column corresponds to an outcome (the
three blood product columns were scaled to be between 0 and 1). The bar on the left side
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of the plot shows indicates the small-volume sites in purple and the large-volume sites in
orange. Using the small-volume site J, overall there is a much larger predicted probability
of mortality overall, at 6 hours, and 24 hours than was observed, suggesting that this
site is partially responsible for the magnitude of the ETT for 24-hour mortality (ETT =
-0.05). While sites G, F, and A also have higher predicted probabilities of mortality, the
difference is most striking for site J. The large-volume site models all predicted higher
probabilities of massive transfusion while most of the small-volume site models predicted
lower probabilities of massive transfusion with the exception of sites C and J, suggesting
that sites H, D, G, F, and A were driving the magnitude of the ETT for the massive
transfusion outcomes.
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Figure 4.6: Site-specific results
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4.4 Discussion

We have provided a general method for the objective comparison of the quality of care at
different clinical sites using a parameter motivated by the causal inference literature and
making use of machine-learning techniques for semiparametric estimation. Our analysis
showed that there were significant differences in outcomes based on the size of the site
at which a patient was treated. Our analysis suggests a mortality benefit for those who
were treated at large-volume centers. Further analysis suggests that this difference arose
primarily in patients in the middle of the injury severity scale in whom treatment has the
greatest propensity to alter outcome. For the moderately injured group of patients, had
they been treated at low-volume sites, (as opposed to large-volume sites) they would have
had higher probabilities of mortality and incumbent lower probabilities of being massively
transfused. In our subset analysis, the large-volume patients who would have been most
affected by being treated at a small-volume site were indeed clotting less, bleeding more,
and generally worse off than their comparison group. Uncontrolled bleeding remains the
single largest contributor to preventable 24-hour mortality, making the rapid identification
and treatment of hemorrhage after trauma critically important[15]. It is plausible that
the centers with higher volumes more judiciously identified those who were in need of
early initiation of massive transfusion, which has been shown in prior studies to improve
mortality in patients with potentially survivable injuries [16-18]. In contrast, for those
with nearly fatal or universally fatal injury were expected to die no matter the treatment
they received.

The patients who were less affected by the site switch generally had higher Glasgow coma
scores, that is, they were more conscious, had the shortest protothrombin time, highest
platelets, and best base deficit. They also had lower probabilities of negative outcomes
and generally required less transfusion of blood products. This data supports the findings
that those who are mildly injured are far less likely to be bleeding and therefore, will
do well no matter what center they go to. Additionally large-volume sites appear to be
more effective at handling patients who are bleeding substantially. By estimating the
ETT and adjusting for differences in patients across sites as aggressively as possible, we
were able to examine the potential outcomes for patients at large-volume trauma cen-
ters, had they been treated at low-volume centers. This process highlighted the utility
of the combination of machine learning and causal inference modeling in clinical research
and allowed for a comparison that would have been infeasible in practice. The estima-
tion of this comparison could be carried out using several methods. We utilized machine
learning approaches in both propensity score matching estimates, as well as those based
on the outcome regression models in order to avoid relying on unnecessary modeling as-
sumptions. Overall, the direction of estimated effects from each of the four estimators
was the same and the magnitudes were comparable, suggesting that each approach was
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capturing some underlying differences between the centers. The unadjusted comparisons
demonstrated how a naive approach to comparing the centers that does not adjust for
patient characteristics could miss some important outcomes that did in fact differ across
the sites. The prediction-based estimator that applied the prediction model built on the
small sites to the large sites offered an intuitive approach to comparing the centers but
did not provide any means of obtaining statistical inference. Propensity score matching
is anther intuitive approach that can be used to generate counterfactual outcomes for
individuals by matching them to patients from other sites and we showed that, in fact,
balance was achieved in the covariates with a multivariate analysis of the matched data
set. These more commonly used approaches provided similar results to the TMLE, which
is an estimator designed to achieve the optimal bias-variance tradeoff and that has other
desirable statistical properties [12,19]. Thus, we believe that it offers an important alter-
native method for estimation and advocate for its use in the future. In addition, we were
able to perform follow-up comparisons that reinforced the TMLE findings with empirical
evidence.

Our results suggested that even among the top-rated trauma centers involved in PROMMTT,
there is variability in the quality of care with respect to a variety of clinical outcomes.
Such comparisons have the potential to be a useful tool for identifying areas of improve-
ment for individual centers and standardizing care across centers. We acknowledge that
these estimators are more complex than other approaches, but they allow for the estima-
tion of clinically meaningful parameters of interest that have causal interpretations under
some assumptions. This analysis purposely did not utilize treatment information to avoid
bias as a result of sicker patients receiving more treatment (treatment by indication).
Thus, we cannot address questions of treatment efficacy. Additionally, it is possible that
we did not include all confounders of the effect of site size on the outcomes of interest.
However, this approach allows for adjustment by a large covariate set, so expansion of
the confounders is possible. Another possible expansion of this work would be to include
other centers in the comparison and use this method to validate current trauma center
rankings. This is by no means the only approach to compare the quality of trauma care
at different hospitals. Indeed, additional comparisons could examine more closely what
factors in particular are responsible for the differences in site effectiveness. Given the
proliferation of interest in comparative effectiveness, familiarity with these methods will
allow for a better understanding of factors influencing trauma patient care and provide
directions towards other areas for improvement.
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Conclusions

We have explored three large questions related to the analysis of critical care data. First,
we examined the semiparametric prediction of clinical outcomes of interest using covariates
measured in the emergency department. Not only can we predict these outcomes well, but
we also showed the potential for improving upon current scoring systems used to identify
high-risk patients. Second, we used causal inference to motivate a variable importance
measure with a clinically meaningful interpretation and applied it to gene expression
data in order to examine how important genes varied within and across time in trauma
patients. Finally, we derived an objective measure to compare the quality of care at
different hospitals which suggests that even at the top tier of current trauma center
rankings, there is room for improvement.

These analyses highlight the importance of a principled approach when answering ques-
tions of interest in order to maintain transparency regarding required assumptions, derive
statistical parameters that address the question of interest, and make the most efficient
use of the observed data. Our approach to the prediction problem utilized SuperLearn-
ing to allow for model flexibility, generalizability, and honest comparisons of predictive
performance. We showed that causal inference can motivate parameters that may not
have a causal interpretation but are still interesting measures of variable importance in
the analysis of the gene expression data. We also made clear the assumptions required
to give a causal interpretation to the comparison of quality of care at different hospitals
and motivated a clinically meaningful parameter. These approaches improve upon cur-
rent practice in the analysis of critical care data and opened up many areas for further
research. The improvement of individualized patient care as well as the standardization of
care quality across hospitals can benefit from a clearer understanding of the mechanisms
underlying response to injury as well as the efficacy of treatment.
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