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ABSTRACT OF THE DISSERTATION

Direct numerical simulations, resolvent analysis, and flow control of laminar post-stall

wakes around finite tapered swept wings

by

Jean Hélder Marques Ribeiro
Doctor of Philosophy in Aerospace Engineering
University of California, Los Angeles, 2023

Professor Kunihiko Taira, Chair

External flows over wings is a traditional flow of interest in aerodynamics. Over the last
century, research efforts were dedicated to studying the wake patterns that form in the flows
around finite wings. Among others, we can pinpoint the wing tip vortex, the separation
region that develops under adverse pressure gradient, and the coherent vortical structures.
Thanks to these past efforts, we were able to significantly extend our knowledge in aero-
dynamics, which paved the way for an impressive evolution of aircraft designs in the last
century. Over the years, commercial flight became an ordinary asset in our society. More
recently, small and micro air vehicles have also reached the market, being operated by indi-
viduals who hold no necessary knowledge of the complexity of the Navier—Stokes equations.
The advanced knowledge currently held on flight physics has played a fundamental role
in the development of aircraft designs, however, there is still room for improvement. In
post-stall flow conditions, the aerodynamic performance of the wing decays considerably,
making it challenging to sustain flight at high incidence angles. To enable flight in such

flow conditions, it is important to develop physics-based flow control strategies capable of
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improving the overall aerodynamic performance of the wing and its flight stability. The
main implications are reduced fuel (and energy) consumption during flight, increased air-
craft range, improvements in safety and productivity of air travel, attenuation of the acoustic

signature, as well as enabled capability of aircraft to fly in challenging external environments.

Towards this goal, many studies have been performed to analyze and control flows over
airfoils in spanwise periodic configurations. These may also be called infinite-span wings.
These studies were fundamental to revealing important aspects of flow physics. However,
in reality, the flows around wings are three-dimensional (3-D). In addition, modern aircraft
wings are usually tapered and swept. The 3-D vortex dynamics of flows over wings has a
significant influence on aircraft design, by reducing the overall lift, generating induced drag,
and increasing flow unsteadiness. Thus, it is important to develop strategies to control the
vortex dynamics that encompass the knowledge of the 3-D characteristics of the flow over
finite, swept, and tapered wings. Especially for post-stall flow conditions, the wake dynamics
around tapered swept wings is largely unexplored. It is still a challenge to understand how
the wing geometry relates to the vortex formation for different aspect and taper ratios, as
well as angles of attack and sweep. To design control strategies to improve aerodynamic per-
formance for finite, swept, and tapered wings, we must go beyond the sole characterization

of flow structures. In fact, the identification of perturbation dynamics is called for to modify

the flow field.

Three-dimensional flow control is challenging due to the high-dimensional and nonlin-
ear nature of the flow dynamics of the wakes. Thus, it is necessary to find an appropriate
actuation setup for the problem that can alter the base flow behavior. This effort can be
guided by modal analysis methods. In our work, we have used resolvent analysis, a method
based on the singular value decomposition (SVD) of the resolvent, which is a linear operator

constructed using the Navier—Stokes equations linearized with respect to the base flow. For
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unsteady flows, the statistically converged time-averaged flow field is used as a base flow to
construct the resolvent operator. The strength of the resolvent operator through this ap-
proach is the capability to find optimal forcing modes which amplify outputs in the flow field
and give insights into the perturbed flow through the spatial response modes. The challenge
within resolvent analysis is the SVD computation for large-scale resolvent operators that are

generated for high-dimensional flow fields, such as three-dimensional and turbulent flows.

By taking advantage of low-rank approximation of the resolvent operator, recent devel-
opments using randomized numerical linear algebra have accelerated the computation of the
dominant resolvent modes. With reduced computational costs, these efforts have enabled the
use of resolvent analysis in turbulent flows over spanwise periodic airfoils and expanded its
applicability to triglobal problems and higher Reynolds number flows. With the randomized
algorithm, we can use resolvent analysis to uncover the dynamics of 3-D flows over finite,
swept, and tapered wings, supporting flow control efforts to improve their overall aerody-

namic performance.

The present study has shown how to develop a 3-D resolvent-based flow control over
finite wings. We initiate by studying flows over finite wings and the effects of wing sweep
and taper on the post-stall wake dynamics through direct numerical simulations (DNS).
We consider laminar flows at chord-based Reynolds numbers of 400 and 600 with weak
compressible effects at a freestream Mach number 0.1. The flows are studied around wings
at angles of attack between 14° and 30° with semi aspect ratios ranging from 1 to 4, sweep
angles up to 50°, and taper ratios from 0.27 to 1. Following a comprehensive characterization
of the wake dynamics through DNS results, we extend our knowledge of the dynamics of
flow perturbations by analyzing the triglobal resolvent modes. Through the identification
of the optimal harmonic perturbations that can be amplified in the flow field, we develop

3-D active flow control that is shown to significantly modify the wake structures around the
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wings. This comprehensive investigation provides novel and unique insights that reveal the
flow structures that can be amplified in the wake and modify their dynamics in post-stall

flow conditions.



The dissertation of Jean Hélder Marques Ribeiro is approved.
Jeffrey D. Eldredge
Ann R. Karagozian
Robert T. M’Closkey
Deanna M. Hunter

Kunihiko Taira, Committee Chair

University of California, Los Angeles

2023

vi



To my wife Emille and all the people we love

vil



TABLE OF CONTENTS

1 Introduction . . . . . . . . .. .. 1
1.1 A brief history of low-Reynolds-number flow separation . . . . . ... .. .. 1

1.2 Modal analysis in a nutshell . . . . ... .. ... .00 6
1.2.1 Data-based methods . . . . . . .. .. ... ... ... 6

1.2.2  Operator-based methods . . . . . . . . ... ... ... ... ... .. 8

1.3 Motivation and contributions . . . . .. ... L oo 10
1.4 Overview . . . . . . . . L 12

2 Resolvent analysis . . . . . . .. . ... 14
2.1 Full resolvent analysis . . . . . . . .. ... o 15
2.2 Randomized resolvent analysis . . . . . . . .. ... L 17
2.2.1 Oversampling and power iteration schemes . . . . . . . .. ... ... 22

222 Testmatrix £ . . . . ..o 23

2.3 Example: Randomized resolvent of turbulent post-stall flows . . . . . . . .. 24
23.1 Results. . . .. . 26

2.3.2  Higher-order modes . . . . . . . ... ... 34

2.3.3 Choice of the test matrix & . . . . .. ... .. ... 35

2.3.4  On the accuracy of linear systems solvers . . . . . . .. ... .. ... 37

3 Wake dynamics . . . . . . . ... 42
3.1 Motivation . . . . . .. 43
3.2 Problemsetup . . . . . . .. 46

viil



3.2.1 Direct numerical simulations . . . . . . . . . .. ... ... 49

3.3 Results overview . . . . . . .o 51
3.3.1 Flows over swept wings . . . . . . . . . . ..o 51
3.3.2 Tapered wing wakes . . . . . . . . .. .. ... 54

3.4 A portfolio of flow fields around tapered wings . . . . . . . . ... ... ... 56
3.4.1 Perspective view . . . . ... 56
3.4.2 Sideview . ... o7
343 Topview . . . ... o7

3.5 Characterization of tapered swept wings wakes . . . . . . .. ... ... ... 76
3.5.1 Wake classification . . . . . . .. ... 0L 76
3.5.2  Skin friction lines over the wing surface . . . . . . . .. ... ... .. 7
3.5.3 Tapered wings with straight LE and forward-swept TE . . . . . . .. 79
3.5.4 Tapered wings with backward-swept LE and straight TE . . . . . .. 83
3.5.5 Tapered wings with high LE sweep angles . . . . . ... ... . ... 87
3.5.6 Aerodynamic loads and force elements . . . . . ... ... ... ... 90
3.5.7 Spectral analysis of lift coefficient . . . . . .. ... ... .. ... .. 96

4 Wing sweep effects . . . . . . ... 100

4.1 Motivation . . . . . .. L 101

4.2 Problemsetup . . . . . ... 104
4.2.1 Direct numerical simulations of spanwise periodic flows . . . . . . . . 105
4.2.2 Biglobal resolvent analysis . . . . . ... .. ... 000 107

4.3 Effect of sweep on wake dynamics . . . . . . ..o L 108
4.3.1 Wake characterization . . . . . . .. ... ... ... 108

1X



4.3.2 Force element analysis . . . . . . ... ... L 114

4.3.3 Dominant eigenvalues of the linearized operators . . . . . . . .. . .. 117
4.3.4 Biglobal resolvent analysis of wing sweep effects . . . . . . . ... .. 119
4.3.5 Biglobal resolvent wavemakers . . . . . . . ... ... ... L. 125

5 Triglobal resolvent analysis . . . . . . . ... ... ... ... . ........ 129
5.1 Motivation . . . . . . .o 129
5.2 Tree-dimensional global (triglobal) resolvent analysis . . . . . ... ... .. 132
5.2.1 Choice of resolvent discounting parameter . . . . . .. .. ... ... 134
5.2.2  Convergence test for resolvent analysis . . . . . .. .. .. ... ... 136

5.3 Results . . . . . . 137
5.3.1 Forcing and response modes structures . . . . . .. .. ... 137
5.3.2  Wing sweep effects on resolvent modes . . . . . . ... .. ... ... 138
5.3.3 Wing taper effects on resolvent modes . . . . . .. .. ... ... .. 141
5.3.4 Forcing-to-response dynamics over high-aspect-ratio swept wings . . . 146
5.3.5  Forcing-to-response dynamics over tapered wings . . . . . . .. . .. 148
5.3.6  Perturbation dynamics around low-aspect-ratio wings . . . . . . . . . 150
5.3.7 Resolvent wavemakers . . . . . .. .. ... ... L. 154

5.4 A portfolio of resolvent modes around tapered wings . . . .. .. ... ... 159
6 Resolvent-based active flow control over finite wings . . . . . ... .. .. 166
6.1 Motivation . . . . . . . L 167
6.2 Methodology . . . . . . . . . 168
6.2.1 Direct numerical simulations . . . . . . ... ... ... 168



6.2.2 Triglobal resolvent analysis for flow control . . . . . . . ... ... .. 169

6.3 Direct numerical simulations of controlled flows . . . . . ... ... ... .. 172
6.3.1 Flow field response to external actuation . . . . . . . ... ... ... 172

6.3.2 A priori assessment of control effect through response modes . . . . . 174

6.3.3 Tip vortex attenuation . . . . . . . ... ... 178

6.3.4 Active flow control for improved aerodynamic performance . . . . . . 181

6.3.5  Active flow control over swept wings . . . . . ... ... ... ... 188

6.3.6 Active flow control over tapered wings . . . . ... ... ... 192

7 Conclusions . . . . . . . . 197
7.1 Summary of contributions . . . . . ... ... L L 197
7.1.1 Resolvent analysis. . . . . . .. .. .. ... ... 197

7.1.2  Wake dynamics around finite tapered and swept wings . . . . . . .. 198

7.1.3 Wing sweep effects on laminar separated flows . . . . . . . .. .. .. 200

7.1.4 Triglobal resolvent analysis . . . . . . .. .. ... .. ... ... ... 201

7.1.5 Flowcontrol . . . . . . . ... 203

7.2 Future work . . . . .o 204
References . . . . . . . . .. 205

x1



1.1

2.1

2.2

2.3

24

LIST OF FIGURES

History of aeronautical research for flows over wings. Selected figures extracted

from references. . . . . . .

Schematics of the (a) full resolvent and (b) randomized resolvent analyses. For
the full resolvent analysis, a direct SVD is applied. For the randomized resol-
vent analysis, the orthogonal basis @ is computed to project the operator into
the low-dimensional subspace, where the SVD is performed on the reduced ma-
trix B. Two options to recover the left singular vectors and singular values
are provided, using the original randomized approach [HMT11a] and the present

implementation. Orthogonal vectors are represented by long bars. . . . . . . ..

The instantaneous (left) and time/spanwise-averaged (right) flows over a NACA
0012 airfoil at Rey, = 23,000. The instantaneous flow visualization shows the
isosurface of Q-Criterion (QL? /v, = 50) colored by the instantaneous streamwise

velocity. . . . . L

The leading response (u;) and forcing (1) modes from the full and randomized
resolvent analyses, using Algorithm 1, for k,L. = 0 and 207w at representative
frequencies St. Modes are visualized with the streamwise velocity component

with contour levels of [-0.6,0.6]. . . . . ... ... ... oL

Comparison of the leading response modes (@) recovered from the randomized
resolvent analyses using U = Qﬁ (the original approach in [HMT11a]) and U =
AV~ (present, see equation (2.9)). The response modes from the full analysis
are also shown for reference. Results are shown for k,L. = 0 at representative
frequencies St. Modes are visualized with the streamwise velocity component

with contour levels of [-0.6,0.6]. . . . . . .. ... .. L

xii

20



2.5

2.6

2.7

2.8

2.9

2.10

(a,b) The leading amplification for the full and randomized resolvent analyses. (c-
d) Cosine similarities for the leading response (@™, @*%) and forcing (o™, 95°™)
modes. Improvements of accuracy in the present randomized analysis can be
observed by comparing the ¢*** and @:*™® recovered from equation (2.9) to those
from the original approach of [HMT11a] (note that forcing modes obtained from
both approaches are identical). Results for spanwise wavenumber of k.L. = 0

and 207 are shown in the left and right columns, respectively. . . . . . . .. .. 31

Error based on cosine similarity for the leading (a) forcing modes (1— (@™, 97*4))

@M 4r)) over the leading gap from the full

and (b) response modes (1 —
resolvent analysis. The symbols o and A represent results from k,L. = 0 and

207, respectively, colored by St. . . . . . . ... 33

Influence of test matrix size k on the accuracy of (a) leading singular value, (b)
forcing mode, and (c) response mode at k,L. = 207. All exhibit O(k) convergence. 34

rand

Recovery of the higher-order resolvent gains (0% ) and modes (02 and us) for
St =4 and k,L. = 0. The resolvent gains obtained from the present randomized
analysis (O, recovered by equation (2.9)) and those from the original approach of

[HMT11a] (A) are compared to those from the full resolvent analysis (0). . . . 35

Influence of test matrices on the relative error for (a) gain distribution and cosine
similarities for (b) forcing and (c) response modes, v, and 4, at k,L. = 20.
Results are shown for Gaussian random normal distribution test matrix €2 and
physics-informed random test matrices Q, = diag(®)Q with sizes £ = 10 and
k=20 . 36

Leading amplification and response modes for St = 1 and 8 = 0w computed with
full resolvent approach [YT19] and randomized resolvent analysis with noisy linear

system solutions with 4 different noise levels. . . . . .. . ... ... ... ... 38

xiil



2.11 Leading amplification and response modes for St = 1 and # = Or computed with
full resolvent approach [YT19] and randomized resolvent analysis with noisy linear

system solutions on specific steps of the randomized resolvent algorithm.

3.1 Problem setup for tapered wings. (a) Geometrical parameters shown in a wing
planform with sAR = b/c = 2, o = 18°, A = 0.27, and Apg = 18.4°. (b)
Computational domain and (¢, d) grids are shown with 2-D planes at z/c¢ = 1 and

y/c=—0.5, respectively. . . . . ...

3.2 Lift coefficient over time and instantaneous flow field structures visualized using
@@ = 1 colored by instantaneous velocity component u, at the lift peak for the
two sets of meshes used for grid verification for the wing with (sAR, o, Apg, A) =

(2,22°,40°,0.27). « oo

3.3 Instanteneous isosurfaces of () = 2 colored by u, for Re. = 400 flows. Unsteady
shedding near root (<), unsteady shedding near wing tip (| ), steady flow with

root structures (»), steady flow with streamwise vortices (¥). . . . . .. .. ..

3.4 Instantaneous flows with Re. = 600 around tapered wings with sAR = 2, 0.27 <
A<1,and 0° < Apg < 30° at a = 18° visualized using gray-colored isosurfaces
of @ =1. . . .
3.5 Perspective view. Isosurfaces of @) = 1, Re. = 600 flows over (sAR,a) = (1,14°)
3.6 Perspective view. Isosurfaces of @ = 1, Re. = 600 flows over (sAR,a) = (1, 18°)

3.7 Perspective view. Isosurfaces of () =1, Re, = 600 flows over (sAR, «) = (1,22°)

3.8 Perspective view. Isosurfaces of ) =1, Re, = 600 flows over (sAR, a) = (2, 14°)

Xiv

40



3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

Perspective view. Isosurfaces of @ =1, Re. = 600 flows over (sAR, ) = (2,18°)

Side view. Isosurfaces of @@ = 1, Re. = 600 flows over (sAR,«) = (1,14°) wings. 64
Side view. Isosurfaces of @@ = 1, Re. = 600 flows over (sAR,«) = (1,18°) wings. 65

Side view. Isosurfaces of @@ = 1, Re. = 600 flows over (sAR,a) = (1,22°) wings. 66

(

(

(

Side view. Isosurfaces of @@ = 1, Re. = 600 flows over (sAR, ) = (2,14°) wings. 67

Side view. Isosurfaces of @) = 1, Re. = 600 flows over (sAR,a) = (2,18°) wings. 68
(

Side view. Isosurfaces of ) = 1, Re. = 600 flows over (sAR,a) = (2,22°) wings. 69

Top view. Isosurfaces of @ =1, Re. = 600 flows over (sAR,«) = (1,14°) wings. 70

Top view. Isosurfaces of @ =1, Re. = 600 flows over (sAR, ) = (1,18°) wings. 71

Top view. Isosurfaces of @ =1, Re. = 600 flows over (sAR, «) 1,22°) wings. 72

Top view. Isosurfaces of @ = 1, Re. = 600 flows over (sAR, ) = (2,14°) wings. 73

Top view. Isosurfaces of @ = 1, Re. = 600 flows over (sAR, «) = (2, 18°) wings. 74

= (
= (
= (
= (
= (
=

Top view. Isosurfaces of @ =1, Re. = 600 flows over (sAR, ) = (2,22°) wings. 75

Classification map of laminar wakes over tapered wings with (a-c) sAR =1 and
(d-f) 2. Black dashed lines mark transition from steady to unsteady flows. (g-
k) Five distinct wake patterns are shown for sAR = 2 wings visualized with

time-averaged Q = 1 in gray and instantaneous @’ = 0.2 colored by u/. . . . . . 78

Skin friction lines on the suction surface of finite tapered wings with 0.27 < ¢ <1,

Arg=0%°and Apg =40°, and . =22°. . . . . ... 80

XV



3.25

3.26

3.27

3.28

(a) Isosurfaces of flow fields around tapered wings with sAR = 2, Apg = 0°,
A =027 and 1, a = 14° and 22°. Time-averaged Q = 1 isosurface is shown
in gray. Instantaneous @)’ = 0.2 isosurface is shown colored by u!. (b) Spanwise
distribution of ||u’||s for different A for Ajr = 0° wings. (¢) Spatial-temporal (top)
and PSD (bottom) of w, distribution over the spanwise direction from probes
located at (z,y)/c = (3,—0.5) for the A\ = 0.27 and 1 tapered wings at o = 22°

shown above. . . . . .

Isosurfaces of flow fields around tapered wings with sAR = 2, Arg = 0°, A =
0.27 and 0.7, o = 14° and 22°. Time-averaged Q = 1 isosurface is shown in
gray. Instantaneous @)’ = 0.2 isosurface is shown colored by u/. (b) Spanwise
distribution of ||u’[|e for different A for Apg = 0° wings. (¢) Spatial-temporal
(top) and PSD (bottom) of u, distribution over the spanwise direction from probes
located at (z,y)/c = (3,—0.5) for the A = 0.27 and 0.7 tapered wings at o = 22°

shown above. . . . . .

Streamwise circulation of tip vortex around (a) an untapered wing and tapered
wings with A = 0.27 with (b) straight LE and forward-swept TE and (c) backward-
swept LE and straight LE. Flow field visualized with grey-colored isosurfaces
of @, = —2 and 2-D slices with isolines of @, at specific x/c locations. The
magnitude of |I';| computed for the isocontour of (d) w, = —2 for tapered swept

wings with different planform configurations. . . . . . . . . . ... ...

Isosurfaces of flow fields around tapered swept wings with sAR = 2, A g = 40°,
A =0.27 and 0.7, @ = 18° and 22°. Time-averaged Q = 1 isosurface is shown
in gray. Instantaneous @' = 0.2 isosurface is shown colored by /. (b) Spanwise
distribution of ||u’||; for different A for AL g = 0° wings. (c) Spatial-temporal (top)
and PSD (bottom) of u, distribution over the spanwise direction from probes
located at (z,y)/c = (3,—0.5) for the A = 0.27 and 0.7 tapered wings at a = 22°

shown above. . . . . L.

xXvi



3.29

3.30

3.31

3.32

3.33

3.34

4.1

Effect of wing taper on flow unsteadiness over wingspan for sAR = 2 wings at

a = 14° with low (a) Apg = 10°, (b) unswept TE, and (¢) Apg =40°. . . . . ..

Time-averaged aerodynamic force coefficients: (a) Cp, (b) Cp, and (c) C1/Cp,
for wings with sAR = 2, 0.27 < X\ < 1, with various sweep angles at a = 18°.
Light-gray arrows show the trend of decreasing Cp and increasing Cr/Cp with

Nejhe o o o

Time-averaged lift and lift-to-drag coefficients, C, and C,/Cp, respectively, for
sAR = 2 tapered wings with 0.27 < A < 1 at 14° < a < 22°. Blue symbols
for wings with straight LE and forward-swept TE, red symbols for wings with

backward-swept LE and straight TE and yellow symbols for tapered wings with

Time-averaged lift coefficients C; distribution over the wingspan for wings with
sSAR = 2, a = 22°, and 0.27 < X < 1 for wings with Apg = 0°, Arg = 0°, and
A =40°% .

Lift elements around tapered wings with sAR = 2 at o = 22° with (a) (J, ALg) =
(1,0°), (b) (6, ALg) = (0.27,0°), and (c) (9, ALg) = (0.27,30°). Time-averaged
isosurfaces of Q) = 2 colored by lift elements (u x w) o V¢, € 0.5 with sectional
slicesat z/c=0.2, 1,and 1.6. . . . . . . .. ... . ...

Power spectrum density of lift coefficients, ', for wings with sAR = 2, 0.27 <
A<1.00,14° <a<22° and Apg=0°and 184°. . . . . . . .. ... ... ...

The problem setup. Instantaneous flow over a spanwise periodic NACA 0015
profile at @ = 30° and sweep angle A = 15° visualized with isosurfaces of @) cri-
terion colored by streamwise velocity wu,. 2D slice of airfoil in coordinate systems

(x,y,2) and (2',y, 2'), with 2’ and 2’ perpendicular and parallel to the wingspan,

respectively. DNS and resolvent grids are shown as gray lines in the background.

XVvil

91

95

97

105



4.2

4.3

4.4

4.5

4.6

4.7

Instantaneous flow field visualization with isosurfaces of () criterion colored by
the vorticity component w,. For a > 26°, the wake is 3D. As A increases, the
vortices become slanted with the sweep angle and wake three-dimensionality is

reduced for v > 26°. . . . . ..

Time-averaged flow field visualization with z—velocity component, @, € [0,0.5],
in grayscale, for 0° < A < 45° and a = 16° and 30°. Red solid contours mark
the laminar separation bubble, with 6 equally distributed isolines of x—velocity

component, i, € [0,0.5]. Crossflow component @, strengthens with « and A.

Time-averaged lift, C, drag, Cp, and coefficient ratio C,/Cp, for all a, A pair
of the present study compared to 2D incompressible results shown by [ZHA20b].
The bottom row shows the scaled time-averaged coefficients where the flow is

analyzed in (2/,y, z'), and the results collapse for each «, for all sweep angles.

Scaled lift power spectrum density for (a,c) @ = 16° and (b,d) o = 30° at sweep
angles A = 0°, 30°, and 45°. In (c,d) the Fage-Johansen Strouhal number is
analyzed in the (z/,y) plane and the dominant and harmonic frequencies for

swept wings collapse with the unswept wings. . . . . . . . .. . ... ... ...

Time-averaged pressure coefficients top C,, and bottom C),/ cos® A over the airfoil

surface at (a,c) @ = 16° and (b,d) 30°. . . . . .. ... ...

Characterization of force elements on swept wings. The symbols refer to: © force
elements only near the leading and trailing edges, [] additional equally-spaced
small lift elements, and A large force structures observed on the suction side. On
the right, we show isosurfaces of lift force elements, (w x u) - V¢ € [—0.3,0.3]
and isosurfaces of () values colored by streamwise velocity component u, with
range [0, 1] for the time step with the highest lift coefficient C} for a = 30° and
15° <A <A4B° L

xXviil

110

112



4.8

4.9

4.10

4.11

4.12

4.13

Dominant eigenvalues of Lg for (a) a = 16°, (b) 20°, (c¢) 26°, and (d) 30°, for
different sweep angles A, and spanwise wavenumbers k... St, and St, are the St/
numbers for growth rate and temporal frequency, respectively. Black solid lines

connect the eigenvalues for the same k... . . . . . . .. .. ... ... ...

Forcing (in red boxes) and response (in blue boxes) contours for the |u,|/||tuz] s €
[0.1,1] in blue-green-red scale at the largest oy with k,, = 0 at A = 0° and 45°.
Forcing modes extend in the wake and response modes become closer to the airfoil

in swept wings. Isosurfaces of dominant resolvent gain oy in the A—St'—k,, space

for o =16° to 30°. . . . . L

The leading resolvent gain contours at a = 20° and 30° for 0° < A < 45°. The
dash-dotted slopes represent spanwise convection speeds. Green line exhibits the

convection speed prediction with 0.25U,tanA. . . . . . . ... ... ... ...

The maximum leading resolvent gain maxz (o) for each o, A pair. On the right, we
plot maz(oq) in St'—k, space colored in blue scale with respect to the minimum

and maximum o; foreach . . . . . . . . .

~

Forcing (f, in red boxes) and response (¢, in blue boxes) modes isosurfaces with
y—velocity components 1, /||ty,||cc € £0.2 in red-blue color scale for a = 20° and
A = 45°. Wingspan length is 10 L.. Forcing and response modes are associated
with the largest resolvent gain for each k.. as shown in the o7 contours over St'—k./

plane. . . . . L
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4.14 Convective speed ¢ = dw/dk, for the optimal response and the optimal wave-
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isosurfaces of @, = 40.5 for leading forcing (f;) and response (g;) modes at
St = 0.14, 0.2, and 0.3. Results shown for (a, b, ¢) untapered wing and (d, e, f)
tapered wing with unswept TE and backward-swept LE at a = 22°. Light gray
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Effect of wing taper on resolvent modes for flows with Re. = 600. (a,c,e) Gain
curves (o;) on top and contours of €; and €4 on bottom to highlight the wingspan
(z/c) location of dominant forcing (red) and response (blue) modes. (b,d, f)
Isosurfaces of @, = £0.5 for dominant and subdominant forcing ( ) and response
(4) modes at their peak gain. Results shown for (a,b) untapered swept wing with
Arg = 40°, (¢, d) tapered swept wing Apg = 40° and A = 0.5, and (e, f) tapered
swept wing Apg = 40° and A = 0.27 at o = 22°. Light gray arrows in (a,c,e€)
point to mode switching observed in the resolvent gain spectra and how it appears

in the spatial modes shown below. . . . . . . . .. . ... o000

Wingspan locations of dominant forcing (red) and response (blue) with contours
of Q; and Q4 € [0.4,1.0] for 0.05 < St < 0.35 for Re. = 400 flows over sAR = 4
wings with a = 30° with 0° < A < 45°. Dot-dashed lines are polynomial fit
of maximum z/c of forcing and response at each St. Arrows show direction of

optimal forcing-to-response at St =0.15. . . . . . . . .. ...

Effect of wing taper on forcing and response modes over wingspan for the Re, =
600 flows over wings at a = 22° with unswept LE and forward-swept TE,
backward-swept LE and unswept TE, and tapered wings with Apg = 40°. Black
arrows show the direction from the maximum strength of forcing (red) to the

maximum strength of response (blue). . . . .. ... ...

xxi



5.10

5.11

5.12

5.13

5.14

5.15

5.16

Wingspan locations of dominant forcing (red) and response (blue) with contours
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Flow modification as a result of body force actuation using forcing modes at
each St for wing at a = 14°. (a) Momentum mixing M from response modes for
each frequency shows a prediction of the flow modification. (b) Separation bubble
(SB) and tip vortex (TV) as regions of interest for flow field modification. (c) Per-
centual change in flow field and aerodynamic characteristics obtained from con-
trolled flow fields. Instantaneous flows fields visualized with gray-colored isosur-
faces of () = 1 and time-averaged separation bubble shown with the blue-colored
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(a) Tip vortex streamwise circulation |I';| over z/c. (b) Streamwise vorticity
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CHAPTER 1

Introduction

We survey past studies on post-stall wakes and the effects of angle of attack, wing sweep,
and taper at low Reynolds numbers. A brief description is also given for modal analysis
methods with a detailed description of resolvent analysis and its application to guide flow

control design. The motivation and outline of this thesis are provided.

1.1 A brief history of low-Reynolds-number flow separation

The post-stall wake dynamics around lifting devices has a critical importance to aircraft
design [And10, And99, TC09]. Although the aeronautical engineering has traditionally fo-
cused on the study of turbulent and high-speed flows, over the last few decades, the study
of low-speed and laminar flows has become increasingly attractive, especially in post-stall
flow conditions. The first argument for the study of laminar separated flows is the char-
acterization of the dynamics of flow separation in the absence of turbulence, enabling us
to study the fundamental aspects of stalled flows. For turbulent flow regimes, even though
the aerodynamic characterization of forces over the wing has been extensively explored, it
remains a challenge to characterize post-stall flow structures in a global manner, as the
stalled region exhibits highly complex nonlinear vortical interactions and spatiotemporal
evolution [Van82]. For massively separated flows, however, although the Reynolds number,
which is used to characterize a flow as turbulent or laminar, is important, it is not the
most critical parameter. There are considerable similarities in the structure and organiza-

tion of the large vortices observed in both laminar and turbulent separated flows over wings



[Werb56, WR56, Del01, Dell3]. For this reason, insights obtained from water tunnel experi-
ments in laminar (low-Reynolds-number) flow conditions were shown to be useful to study
flow separation over commercial aircraft, helicopter rotor blades, and space launchers, which

occur at turbulent flow regimes (high-Reynolds-number flows).

Another argument to study laminar flows over wings at high incidence is based on the
recent engineering developments that have considerably expanded the range of possibilities
in aircraft design. The evolution of computer science, electrical, manufacturing, and mate-
rials engineering, among others, have promoted a growing interest in low-Reynolds-number
aerodynamics. Their main application is the development of micro aerial vehicles (MAV) and
unmanned aerial vehicles (UAV). Those aircraft are designed to operate at a Reynolds num-
ber O(10%), being remotely controlled, flying at high altitudes, and experiencing complex flow
interactions between wake vortices, transition, and flow separation [PM00, Mue0O1, PB06].
An improvement in the aircraft design to operate at low-speed flow conditions can signifi-
cantly impact many areas, such as environmental monitoring, rescue operations in complex

environments, extraplanetary exploration missions, and many other critical problems.

Due to the scale effect, however, the design of MAVs and UAVs requires a distinct
approach from that of high-speed aircraft [Lis83]. Even though the global flow structures
may share similarities in both regimes, it is more challenging to generate lift in laminar flow
conditions. Low-speed aeronautical design is often inspired by biological flight to operate in
unsteady wing motion at high angles of attack [VSP04, LMS07]. However, early works on
aeronautical engineering lack extensive results on low-Reynolds-number flows. Jacobs and
Sherman [JS37], Schmitz [Sch41], and Marchman [Mar87] have attempted to study flows
at Reynolds numbers at O(10%) to provide insights on the mechanisms of flight used by
birds and the design of model airplanes. Nonetheless, the sensitivity of wind tunnels and

instruments available at that time harnessed the accuracy of the force measurements.

Accurate results published on research works prior to the 1970s were comprised of ex-

tensive wind tunnel experiments and analysis [Mil36, And36, SA40, Bla56, GC47, HM64,



MTS68]. These works focused in studying aerodynamic characteristics of wings that operate
at high speeds, in post-stall angles of attack, exploring strategies to enhance lift-to-drag ra-
tio, as well as the operation in transonic and supersonic flow conditions, among many others.
Most of these works were released as technical reports from the National Advisory Commit-
tee for Aeronautics (NACA) and have provided many valuable insights that underpinned the

development and design of early commercial and military aircraft.

In the 1970s and early 1980s, it became clear that engineers and scientists would need
to study the organized flow motion that developed in the flow field in order to further
improve aircraft design [BR74, WB80a, WBS80, Can81]. To this end, it was necessary
to track the evolution and interaction of vortices in space and time, by reconstructing its
overall structure in a 3-D manner [TP79, PT80, TP82]. Inspired by the singular points on
differential equations [Poi82], theoretical approaches to 3-D flow separation were devised
[Legh6, Lig63] based on the topology of skin friction lines and the idea of critical points
that define flow separation. These approaches were further investigated in water tunnel
experiments that demonstrated, through oil flow visualizations at the body surface, the

formation of the separated flow region as predicted by theory [Wer56, WR56, Del01].

Initially, this was only possible using 2-D cut slices from water tunnel measurements
experiments in a lower Reynolds number than that of the previous wind tunnel experiments
[AL85, Wer71, HH85, HH86, Wer86]. By bringing the Reynolds numbers as low as O(10%)
and using novel methods for flow visualization it was possible to observe and study the 3-D
formation of large vortices over wings [Fre85, Fre86, FFB86b, FFB86a, FFB87]. These efforts
revealed that the key features of flow separation observed at higher Reynolds numbers were
still present at such low-Reynolds-number flows and that it was possible to study them in

the absence of the strong nonlinearities associated with turbulence.

This finding could, by itself, motivate the study of post-stall low-speed flows. This area
become increasingly attractive as concurrent developments in other areas of engineering

made it possible to design small- and micro-aerial vehicles [Mue01, PB06]. An example of



these devices is the mesicopter which is about the same size of a nickel. The design of such
small-sized aircraft is aimed at autonomous flight applications, as well as operation at high
angles of attack, high altitudes, and facing strong vortical interactions with the environment
turbulence. Their unique design is distinct from traditional aircraft, enabling them to operate

under such challenging flight conditions.

The technological boom in the 1990s expanded the range of possibilities for aerodynam-
ics applications and promoted a surge of research works now focused not only on turbulent
flows, but also on the laminar flow regime, as seen in figure 1.1. Aeronautics research
was now aimed to study both low- and high-Reynolds number flows. Alongside experi-
ments, numerical studies using computational fluid dynamics methods also became pop-
ular. Those took advantage of the improvements in computer engineering and numerical
methods, deeply expanding our comprehension of the development, formation, and evolu-
tion of vortical structures. For turbulent flows, these works have explored flow separation
[PMR90, LP96], noise generation and control [WMO00, JSS10, WAL12, RWT22, DW22|, dy-
namic stall, [RWY19, MWG22b, MWG22a, GV20, Vis12, VG19, HGV22], interaction with
gust vortices [BVG15, GV15], among many other effects [MTP20, HTS22, LRW22]. There is
further ongoing research dedicated to improving the current softwares and methods aiming

to accurately capture the features associated with separation [GSK22, GBM22, TAT22].

In the past 30 years, experimental apparatus have also evolved, allowing studies with an
in-depth characterization of wake dynamics [HWJ01, YSKO09], tip vortices [GA91, DRL96,
BLMO04, Dur05, Giul3], as well as wings during unsteady maneuvers, such as surging [MMG15],
rotation [L.LD09, JMS16], pitching [BS06, YR12], plunging and heaving [AB17], and flapping
[BDO1, DMNO06]. Computational simulations of low-Reynolds number flows allowed us to
understand how the aspect and taper ratios, angles of attack, and sweep can influence the
wake characteristics [BFP01, HBV03, TC09, HVT15, RCO18, CCT10, ZHA20b, ZHA20a,
7’122, ZBH23, RYZ22b].
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These works have provided an abundance of high-quality well-resolved high-quality data
in space and time which further called for proper post-processing methods to deepen our
understanding of the flow field dynamics. Moreover, to design strategies to improve the
aerodynamic performance of the wing, it became necessary to study the highly energetic
oscillations, instabilities, and perturbations dynamics in the wake. We will discuss these

methods in the next section, as we introduce modal analysis techniques [TBD17, THB20].

1.2 Modal analysis in a nutshell

One of the central questions in fluid dynamics is concerned with the evolution of perturba-
tions. Gaining a detailed understanding of the perturbation dynamics from flow fields is a
daunting task, due to the complex nonlinear dynamics that takes place over a range of spatial
and temporal scales. To modify the global flow characteristics with a proper control strategy,
it is necessary that the nonlinear interactions involving the actuation input (perturbation)
become sufficiently large to alter the base flow. For flow control, we need not track all possi-
ble ways in which the actuation input can modify the flow, but instead, we can focus on the
dominant directions in which the perturbation can be amplified in an efficient manner. This
notion has led to the modal analysis-based approaches [HLB12, Sch10, TBD17, THB20],

including the global stability analysis [Thell] and the resolvent analysis [TTR93a].

1.2.1 Data-based methods

John L. Lumley was the first to introduce a data-based method to study coherent struc-
tures in fluid dynamics [Lum67, Lum70] with the proper orthogonal decomposition (POD),
a second order statistics method to extract large energy-containing structures from turbu-
lence. POD has since been widely applied in fluid dynamics as it can form an orthogonal
basis for reduced-order modelling. Numerically, POD has been applied to study and model

incompressible [AHL88| and compressible flows [Row02], being further extended to the basis



to adjoint solutions into the Balanced POD method [Row05]. Experimental data has also
been studied using POD, applied to particle-image velocimetry data through the enstrophy
norm [GLH06]. POD is based on the SVD of the data matrix, which can be expensive for
large datasets of high-dimensional and turbulent flows. In general, a combination of block
decomposition within the snapshot method allows POD to be employed to spot tonal noise
related coherent structures in three-dimensional high-fidelity large-eddy simulations at high-
Reynolds number flows and realistic aeronautical configurations of the turbulent flow over a
landing gear [RW17, Rib17, RWS18]. In order to reduce uncoherent information in spatial
modes and improve mode coupling, some authors employed the spectral POD method by
Sieber, Paschereit, and Oberleithner [SPO16]. These efforts were further used to extend

POD modes into machine learning models for turbulence [LW19).

Although similarities exist, POD does not describe the evolution of coherent structures
extracted from data. To extract the dynamics, one must use the version of POD described by
Towne, Schmidt, and Colonius [TSC18, STR18]. This method is also called Spectral POD
and the modal decomposition is performed in a frequency domain correlation (instead of
time). Another data-based method to evaluate coherent structures dynamics is the Dynamic
Mode Decomposition (DMD) introduced by Peter J. Schmid [Sch10], which extracts modal
structures from a low-dimensional evolution matrix, which can be derived from the second-
order correlation matrix obtained from POD. The DMD modes can gather the less energetic
but more unstable flow structures. There is a relation between the DMD modes as finite
space representations of Koopman modes, used to investigate jets in crossflow [RMB09,
TRL14]. Many extensions for DMD have been proposed such as DMD with control [PBK16]
and multiresolution analysis [KFB16], among others. The overall cost of both data-based

methods is dominated by the computation of the snapshot correlation matrix.



1.2.2 Operator-based methods

In fluid dynamics, we can take advantage of an a priori knowledge of the Navier—Stokes equa-
tions to model the flow dynamics. The Naviwe-Stokes equations are intrinsically nonlinear.
We may, however, obtain important insights into the flow field via the linearized Navier—
Stokes equations with respect to a predetermined base flow. The selection of the base flow
is critical. For the linearized equations over a stable base flow solution, we may study the
global linear stability of the flow, as shown in the works of Theofilis [The03, Thell], which
has been applied to investigate flows over wings in many configurations [HGP17, CGS19,
NBJ19, PBD19, PDB21, BHH22, RJF22, NRL23|.

In the presence of sustained perturbations or forcing inputs, the linear system response
can be described by the transfer function from control theory. This linear analysis is greatly
simplified when the input to the system is sinusoidal to reveal the gain and phase response of
the system over a range of forcing frequencies. The transfer function that relates the system
input to the output is called the resolvent and its analysis has been extended to fluid flows
by Trefethen et al. [TTR93al. The resolvent analysis is based on the pseudospectral analysis
and has been used to study the transient energy growth [TTR93a] as well as the harmonic
response of the system [JB05|. These initial studies of resolvent analysis were performed
for stable laminar flows. In fact, linear stability and resolvent analyses are closely related

[TTR93a, SHO1].

An extension to resolvent analysis to study turbulent flows was proposed by Farrell and
loannou [F194] and McKeon and Sharma [MS10]. They considered the nonlinear advection
term to be the self-sustained input to the linearized Navier—Stokes equations within the
natural feedback loop of the fluid flow. This viewpoint has enabled the use of time-averaged
base flows to reveal the input-output dynamics of turbulent flows. Moreover, discounting or
finite-time horizon based extension of the resolvent analysis has enabled resolvent analysis to

study flows with unstable base states [Jov04a, YT19]. As resolvent analysis can determine



the most amplified forcing and response directions, it serves as a powerful analytical tool to

find effective active and passive flow control techniques [NFL17, YT19].

The resolvent analysis needs two key ingredients: (i) the base flow and (ii) the linearized
Navier—Stokes operator. It is known that the accuracy of the base flow and the spatial dis-
cretization of the linear operators is critical for extracting response characteristics correctly
[YT19]. The need for accurate discretization of the linearized Navier—Stokes operators calls
for sufficient grid resolution and a suitable computational domain size. As such, the dis-
crete resolvent operator becomes large with size m x m. Here, m is essentially the number
of variables times the size of the grid, which can easily be upward of O(10°) for turbulent
flows [KT17]. For resolvent analysis, the singular value decomposition (SVD) needs to be
performed on the large resolvent operator requiring a taxing operation count of O(m?). To
use resolvent analysis for high Reynolds number flows, we must find a computational relief

to perform SVD of the resolvent operator.

Although the resolvent analysis is performed on a very large matrix, only the leading
forcing and response modes are generally sought. Based on the amount of necessary matrix
data used to perform the analysis, the desired output is only a very small fraction of the
input data size. For this reason, it would be natural to consider that all elements of the
resolvent matrix are not necessary to determine the leading resolvent modes. Within the
resolvent framework, the core of the computations lies with the SVD. In order to handle a
large operator for SVD to find the leading modes, we can consider subsampling the matrix
of interest and perform the SVD on the low-order representation of this large matrix. Ran-
domized numerical linear algebra has recently emerged as an effective technique to reduce
a large matrix to its low-order representation [HMT11a, DM16, TYU17|, for applications
including big data compression and data transfer. The key idea is to pass a randomly gener-
ated low-rank test matrix through the large matrix to obtain the so-called sketch of the full
matrix. This sketch is low-rank but holds key information about the full matrix and can be

used to derive appropriate bases to represent the full matrix in a low-dimensional manner



[CW09, WLR08, HMT11a, TYU17]. Randomized techniques can be incorporated into SVD
to achieve tremendous computational and memory savings [WLR08, RST09, HMT11a].

In recent years, modal analyses are tackling flows over complex geometries and high-
Reynolds number flows with increasingly large degrees of freedom [TBD17, THB20, JNJ16,
STR18, DSN19, RW17, RWS18]. To further aid this endeavor, randomized SVD have been
incorporated into data-based modal analysis techniques, including the proper orthogonal
decomposition [RST09] and dynamic mode decomposition [EMK19]. For global operator-
based analyses of high-Reynolds-number flows [JNJ16, STR18, DSN19], the leading singular
values and modes can be determined with a significant reduction in computational costs
with the aid of randomized techniques. The randomized technique presented in Chapter
2, Section 2.2, has shown tremendous potential to expand the applicability of the resolvent

analysis to high-Reynolds number three-dimensional flows.

1.3 Motivation and contributions

Numerical simulations and experiments have extensively investigated flows over finite aspect
ratio wings in laminar [EBW96, TC09, LD09, EJ19, ZHA20b] and turbulent flows [GV17,
VG19]. When the analysis of finite wings incorporates the sweep angle to the wing design, the
flow physics over the airfoil becomes increasingly more complex. Unique coherent structures
can be formed over the wing and the additional spanwise flow advects LEVs over the span
[EBW96, LD09, BRT'12]. Under certain flow conditions, these coherent structures merge into
the tip vortex leading to complex nonlinear interactions between vortical structures. Previous
works have attempted to link wing geometry and flow parameters, such as angles of attack
and sweep, as well as aspect and taper ratios, and the Reynolds number to aerodynamic
forces and performance of the wing. However, many aspects on the dynamical behavior of

the vortical structures in post-stall wake remain unexplored.

This work presents numerical experiments to obtain well-resolved spatiotemporal solu-
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tions for the flow over finite swept and tapered wings. Once obtained, the well-resolved
flow field data is analyzed to investigate the dynamics of the vortical structures, the in-
teractions between vortices in the wake, and the growth of harmonic perturbations. With
well-resolved spatiotemporal data, it is possible to obtain an accurate time-averaged flow
solution. This solution is then used as a base flow to build the linear operator used within
resolvent analysis. The modal behavior analyzed using these methods opens ways for the
design of flow control strategies to enhance performance in aerodynamics and hydrodynamics
[ESS18, SBH19, YT19, LSY21]. However, resolvent analysis is computationally expensive,
particularly for high-dimensional flow fields. The onset of new methodologies, such as ran-
domized resolvent by Ribeiro, Yeh and Taira [RYT20], has considerably reduced the com-
putational costs for its application and allows us to pursue the analysis of three-dimensional

global (triglobal) base flows. The main contributions of this work are listed as follows:

e We have developed the randomized resolvent analysis to large-scale problems. We have
shown that the physics-based scaling of the random vectors considerably improves the

accuracy of the resolvent modes computation.

e We have provided an extensive analysis of the wake characteristics of laminar separated
flows over finite tapered and swept wings and revealed how wing taper and sweep

influence the wake characteristics and aerodynamic performance of the wing.

e We have investigated the isolated effects of wing sweep on laminar separated flows
and described how the strengthening of the swept-induced spanwise flow alters the

perturbation dynamics and stabilizes wake oscillations.

e We performed a triglobal resolvent analysis on finite wings and reveal the dynamics
of optimal perturbations and their relations to wing planform, angles of attack, and

sweep. We have also revealed how the overlap of optimal inputs and outputs of the flow
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field are associated with the self-sustained oscillations that appear over the separation

bubble.

e Following the findings from triglobal resolvent analysis, we have developed a resolvent-
based three-dimensional active flow control strategy that efficiently modifies the flow
field. We have shown that the optimal forcing modes can be used as localized harmonic
body forces. Moreover, this work describes the flow modifications that increase the
overall lift and lift-to-drag ratio by reducing the volume of the laminar separation
bubble. In addition, we have described the actuation modes that efficiently perturb

the formation of the tip vortex and other characteristic structures around the wing.

The major outcome of the present thesis for the scientific community is the study of the
dynamics of laminar separated flows over finite swept and tapered wings and the develop-
ments of the resolvent-based three-dimensional flow control over finite wings. Due to the vast
usage of swept and tapered wing configurations in aeronautics and industrial applications,
we believe that the outcome we provide herein is extremely valuable for future developments

in aerodynamics and aircraft design.

1.4 Overview

The present work is organized as follows. We first present the methodology for the application
of the randomized resolvent algorithm for the analysis of fluid flows in Chapter 2. In Chapter
3, present our comprehensive study of the fluid flows around finite wings, focusing on the
effects of wing and taper in post-stall flow conditions. To isolate the effect of wing sweep,
we conduct the analysis of flows over spanwise periodic swept wings, presented in Chapter 4,
where we observe how sweep and the spanwise flow that forms within the stall region affect
the wake structures and the evolution of flow perturbations. With a clear understanding

of the effects of wing sweep on the separated wake dynamics, we move towards the global
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study of flow perturbations using triglobal resolvent analysis in Chapter 5. Here, we will
discuss the influence of wing geometry on wake perturbations and show how the overlap of
forcing and response modes, named resolvent wavemaker, highlights the mechanisms that
sustain wake shedding. The insights from triglobal resolvent analysis are then used to develop
control strategies for finite wings, as shown in Chapter 6. We study how the control approach
changes at different angles of attack, sweep, and taper ratios. The conclusions for the present

work and a few suggestiong on future work are given in Chapter 7.
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CHAPTER 2

Resolvent analysis

In this Chapter, we introduce the methodology to be used in the analysis of finite swept
wings. In Section 1.2, we briefly introduced modal analysis methods, including the resolvent
analysis. Here, we expand on the resolvent analysis, first introduced by Trefethen et al.
[TTR93a] in the context of pseudospectra analysis for hydrodynamics. We define the model
for resolvent analysis in Section 2.1 and later we cover the algorithm and methodology for the
incorporation of randomized methods within the framework to obtain fast computation of
resolvent modes in large and sparse operators. The randomized SVD algorithm described by
Halko, Martinsson and Tropp [HMT11a] has been adopted in the one-dimensional resolvent
analysis of turbulent channel flow by Moarref et al. [MST13b]. However, the details on
the use and accuracy of the randomized techniques for large-scale resolvent analysis were
omitted and the methodology for multi-dimensional turbulent base flows was not clear.
The algorithm and examples were introduced by Ribeiro, Yeh and Taira [RYT20] and have
enable the extension of the methodology into spanwise periodic flows over airfoils at much
higher Reynolds numbers [YBT20] than it was possible with standard methods. Traditional
methods to improve accuracy of randomized methods are discussed in 2.2.1. A physics-based
technique to implement important sampling into the test matrix and take advantage of the
gradients of the base flow to obtain randomized resolvent modes with higher accuracy is

shown later in Section 2.3.3
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2.1 Full resolvent analysis

Let us consider the flow state ¢ € R™ as a sum of the time-invariant base state g and
the statistically stationary fluctuating component ¢’. With this Reynolds decomposed flow
variable and appropriate discretization, we can express the discrete Navier—Stokes equations
as

aq’

o= Lad + ' 2.)

where Lz € R™*™ is the linearized Navier-Stokes operator about the base state g and
f’ collects the nonlinear terms and the external forcing inputs. We gather the nonlinear
terms as external forcing in the turbulent mean flow following the perspective of McKeon
and Sharma [MS10], Farrel and Iouannou [F194], and Schmid [Sch07]. For the traditional
resolvent analysis, q is chosen to be the stable laminar equilibrium state such that f’ can
be considered as the forcing input to the system with the nonlinear term neglected [JBO05].
More recently, turbulent mean flows has been used for ¢ with f’ representing the nonlinear

terms as sustained forcing input within the natural feedback system [MS10].

We can consider the Fourier transform [¢'(z,t), f'(z,t)] = ffooo q,(z), fw (z)]e ™'dw and

express the relationship between ¢ and f’ in frequency space as
—iwq, = Lgd, + fo, (2.2)

where w is the frequency. Note that spatial Fourier transform can also be incorporated if di-
rectional homogeneity is present. For stable base flows, w can be chosen to be real. To extend
resolvent analysis to unstable base flows, we can consider the use of finite-time/discounted
analysis [Jov04a, YT19] by choosing a complex frequency w = w, + i3, where both w, and
B are real and [ discounts the modal growth rate of Lz. The input-output relationship

between f and ¢ can be found from (2.2) as

q, = Af,, (2.3)
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where

A= [—iwl — Ly ' e C™™ (2.4)

is referred to as the resolvent operator [TTR93a, JB05, MS10]. It serves as a transfer function
that amplifies (or attenuates) the harmonic forcing input fw and maps it to the response
q,,- The goal of resolvent analysis is to identify the dominant directions along which fw can
be most amplified through A to form the corresponding responses in q,. This question is
addressed by the SVD of

A=UXV", (2.5)

where V* denotes the Hermitian of V. Resolvent analysis interprets left and right sin-
gular vectors U = [tuy,Us,...,U,] € C™™ and V = [01,0q,...,0,,] € C™™ respec-
tively as response modes and forcing modes, with the magnitude-ranked singular values
¥ = diag(o1,09,...,0m) € R™™ being the amplification (gain) for the corresponding
forcing-response pair. For unstable base flows, it is important that a finite-time window
is chosen with 3 larger than the highest growth rate such that the resolvent analysis reveals

the input-output relationship on a shorter time scale than that of the base flow instability

[Jov04a, YT19].

Performing the SVD of A € C™*™ requires an theoretical operation count of O(m?). In
practice, some algorithms can reduce this operation count when only a few singular values
are to be recovered, while still being computationally taxing for large m [MZ06]. Such cases
are encountered in high-Reynolds number flows and bi/tri-global analysis settings. However,
we note that many applications of resolvent analysis call only for the dominant forcing and
response modes [01, 1] associated with the highest gain ;. This is appropriate when the
first gain oy is much larger than the rest of the gains o;~; and shows a quick roll off. Such
condition is related to non-normality of linear operator Lg, which is encountered for flows

with strong shear and separation [SHO1].

When the contributions from the higher-order modes are neglected, it is referred to

as the rank-1 assumption for which the flow response from forcing f is approximated as
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q ~ U0, <Q31,f>, provided that o; > o9 and f has reasonable magnitude along v;. For
seeking only the dominant modal insights from resolvent analysis, we discuss a remedy
for performing large-scale resolvent analysis [JNJ16, STR18| in a computationally tractable

manner below.

2.2 Randomized resolvent analysis

For a flow that have dominant structures, we consider a low-rank representation of the
resolvent operator A. That is, instead of directly performing SVD of A and obtaining the
leading-mode representation, we seek a low-rank representation of A and perform the SVD
of the low-rank version of A. We can consider finding an appropriate low-dimensional basis
to project the large resolvent operator on a suitable subspace to derive the low-rank resolvent

approximation.

The action of a full matrix on a vector should reveal some insights on which components
are modified in the dominant directions. In the case of flow that can be described with the
rank-1 approximation, there should be a low number of dominant directions. This very point
can be taken advantage of through what is known as sketching in numerical linear algebra.
Sketching refers to a procedure in which a tall and skinny test matrix Q € R™** (or C™*¥),
where k < m, is passed through A

Y = AQ. (2.6)

Here, matrix Y € C™** is called the sketch of the input matrix A [WLR08, HMT11a,
TYU17]. The test matrix € can be constructed using random values with Gaussian dis-
tribution [MRT11] and be weighted by any input matrix insight, as will be discussed in
section 2.3.3 for a physics-inspired random test matrix. As the sketch holds the dominant
influence of A, we can consider orthonormalizing Y using a QR decomposition to form the
orthonormal basis with @ € C™** upon which we can project the full matrix A to derive

its low-rank approximation. In this way, it is possible to approximate A for a rank £ < m
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as long as this approximation preserves the features of the leading modes.

Given this @, a low-rank approximation of A can be found as A ~ QQ*A [HMT11al.
We can view this as a low-rank decomposition of A ~ QB, where B = Q*A € C*™. It is

this reduced matrix B upon which we can perform the SVD

B=UxV* (2.7)
Hence, as a low-rank approximation, we now have

A~ QUTV* (2.8)

where we can consider U ~ QU. This process is the randomized SVD [HMT11a], where the
sketch Y was used to derive Q. This approximation almost always satisfies ||A — QQ*A| <
(1 + QMM) Ok+1, where p is the oversampling parameter, which is applied to build
an approximation of rank £ while projecting the matrix A to the low-dimensional subspace
with (k+ p) vectors. With this overall approach, the computational cost for SVD is reduced
to O(mk?) instead of O(m?) for the full SVD. In our implementation, we use v; from (2.8)

and retrieve the leading singular value and left singular vector through
A’IAJl = 'ltl,lO'l. (29)

The singular value and vector can be separated by noticing that ||@;]| = 1. For resolvent
analysis, the last equation provides more accurate leading singular value o; and left singular
vector @, compared to the original randomized SVD algorithm by Halko et al. [HMT11a)].
The same operation can be used to recover the higher-order modes, with better accuracy
than using the original algorithm [HMT11a]. For applications where high-order modes and
orthogonality are desired, we can solve for UX and compute its SVD. In the present random-
ized resolvent analysis, we emphasize that only the discrete linear operator Lg is needed for
sketching Y and to find the reduced matrix B. Unlike the original resolvent method, matrix

linear solvers are used to avoid calling for the inverse within the resolvent operator. The
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resulting algorithm constitutes the randomized resolvent analysis summarized in Algorithm

1.

To utilize the randomized SVD for resolvent analysis, we must be aware that the resolvent
operator A = [—iwl — L@]f1 contains an inverse operation in its definition, which need not
be numerically performed. We do not intend to perform an inverse operation within A in
the present work. In the full resolvent analysis, when the matrices become too large and
the inverse can not be performed (which is likely the case for 2D and 3D problems), one
can focus on modes corresponding to the smallest singular values of A~! to find those for
the largest singular values of A. Similar approaches have avoided the inverse computation,

including the work by Jeun, Nichols and Jovanovié¢ [JNJ16].

Both full resolvent and randomized resolvent analyses are shown schematically in figure
2.1. Notice that we are not interested in all singular values and vectors of [—iwI — Lg] ™", but
only in a few subset of the largest o; and their corresponding «; and v;. In the randomized
resolvent analysis, we can approximate a low-rank representation of it using [—iwI — Lg.
Figure 2.1 shows an adaptation of the procedure from Halko et al. [HMT11a] in order to
compute the largest singular values of the resolvent without performing its inverse. In the
randomized resolvent analysis, we solve a linear system with [—iwI — Lg], the columns of the
random matrix € form the right-hand side and the sketch columns of Y are the unknowns.
By doing so, we sketch [—iw — L(;,]_1 without finding the actual inverse matrix. The same
procedure is performed to project the matrix to the low-dimensional subspace. The matrices
are re-arranged in a way that the projection is performed using [—iwl — Lg|, but results
in the low-dimensional projection of [—iw — Lq]_l instead. Figure 2.1 also illustrates the
procedures for recovering the left singular vectors and the singular values from the original

algorithm [HMT11a] and from the present implementation.
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Figure 2.1: Schematics of the (a) full resolvent and (b) randomized resolvent analyses. For
the full resolvent analysis, a direct SVD is applied. For the randomized resolvent analysis, the
orthogonal basis @ is computed to project the operator into the low-dimensional subspace,
where the SVD is performed on the reduced matrix B. Two options to recover the left
singular vectors and singular values are provided, using the original randomized approach

[HMT11a] and the present implementation. %hogonal vectors are represented by long bars.



Algorithm 1: Randomized Resolvent Analysis

10

11

12

13

Require: Discrete linear operator Lg €

mem

Function randomized _resolvent (w,k):
Q < randn(m,k) // Random normal matrix generator. For scaling,

see Section 2.3.3

Y  [—iwl — Lg| \Q // Solve linear system for Y, O(m?%k)
(Q,~) < qr(Y,0) // Economy-sized QR decomposition, O(mk?)
B + Q*/ [—iwI — Lg| // Solve linear system for B, O(m?%k)
(~,~,V) <« svd(B, ‘econ’) // Reduced SVD decomposition, O(mk?)
U* + [—iwIl — Lg]\V // solve linear system to recover UX, O(m?k)
for j < 1 to k do
%, < norm(UP, .. 2) // Recover singular values X
Ui < U, /25 // Normalize U
end
(U,%,V) < svd(U®, ‘econ’) // (Optional) Recover U and X, O(mk?)
VvV // (Optional) Recover improved V, O(mk)

return (U, X)V)
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2.2.1 Oversampling and power iteration schemes

Randomized algorithms can incorporate two additional procedures to improve performance
and accuracy. Namely, they are oversampling [EVB19] and power or subspace iterations
[RST09, HMT11a, Gul5|. Oversampling sketches the input matrix using (k + p) vectors
(with p extra vectors) and increases the low-dimensional subspace to accurately recover a
smaller quantity of singular values k. For the randomized resolvent analysis, oversampling
has the same outcome, in practice, of selecting a larger k£ and the influence of k will be
discussed at the end of section 2.3.1. When £k becomes large, it should be noticed that the
memory consumption increases. Even for large sparse matrices, the sketch matrix and the
subsequently reduced matrices that are formed are generally dense, which adds a computa-

tional burden.

The second procedure is the power or subspace iterations. These methods are a powerful
tool when the singular values of the matrix decay slowly. For example, this type of spectral
behavior appeared in the input-output analysis performed by Jeun et al. [JNJ16] for jet flows.
The method consists of performing additional iterations after the sketch Y is evaluated. It
should however be realized that such procedure calls for additional linear solvers, which is
the most time consuming operation in Algorithm 1. For power iterations, one must compute
the adjoint AA*, where A* is the Hermitian of A, ¢ times and solve the linear system
k times. For subspace iterations, additional QR decompositions are necessary, and the
number of additional linear systems to be solved will be ¢ times k. In practice, small values
of ¢ improves the accuracy of the results substantially. More information on the general
applicability of the subspace and power iterations are discussed by Halko et al. [HMT11a]
and Erichson et al. [EVB19]. In section 2.3.3, we present another option for improving
accuracy of the overall technique in a computationally inexpensive manner by constructing

a physics-informed random test matrix €2.
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2.2.2 Test matrix 2

The standard choice for the test matrix €2 is the random matrix generated with a normal
distributions. Such matrix is known to present excellent performance and accuracy [TYU17].
For some cases, especially for very large matrices or when the singular values present slow
decay, larger values of £ may be necessary to better approximate the matrix in the low-
dimensional subspace. When large values of £ are used, orthonormalization of the columns
of the test matrix can be considered to improve numerical stability [DDH07, HMT11a]. The
test matrix can also be generated using a Rademacher distribution [CW09]. It is also possible
to build an ultrasparse matrix with Rademacher distribution in the non-sparse entries which

allows for the control of cost, stability and reliability in the operations [TYU17, CW09].

When randomized SVD is applied, there is no a priori knowledge of the structure of
the matrix. However, in the present application, we know how the resolvent operator is
constructed. This theoretical insight can be used to build a random test matrix that out-
performs the standard normal distribution matrix. We later propose a physics-informed test
matrix 2 that can focus our sketching operation for regions of physical importance. In our
application, the dominant directions are related to regions with the presence of high shear.
The results from this approach will be discussed in Chapter 2, Section 2.3.3. In this way,
we have presented the method to be applied to analyze the physics of swept airfoil config-
urations. In the next section, we will clearly state the motivation and goals of the present

project.

We demonstrate the use of randomized resolvent analysis on turbulent flow over a NACA
0012 airfoil. In this example, the randomized resolvent analysis will be applied a resolvent
operator of size m x m, where m ~ 7 x 10%, to reveal the dominant gain and modal structures
with a thin sketching matrix having as little as £k = 10 columns. The convergence of the gain
and resolvent modes will also be reported with respect to the size of the sketching matrix.

Influence of the ratio between the first and the second singular values of the resolvent operator
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Figure 2.2: The instantaneous (left) and time/spanwise-averaged (right) flows over a NACA
0012 airfoil at Rey, = 23,000. The instantaneous flow visualization shows the isosurface of

Q-Criterion (QL?/v2, = 50) colored by the instantaneous streamwise velocity.

will also be examined.

2.3 Example: Randomized resolvent of turbulent post-stall flows

We consider the spanwise-periodic turbulent flow over a NACA 0012 airfoil at an angle of
attack of 9°, a chord-based Reynolds number of Rey, = vy L./Voo = 23,000 and a free stream
Mach number of My, = v /a0 = 0.3. Here, v, is the free-stream velocity, L. is the chord
length, a. is the free-stream sonic speed, and v, is the kinematic viscosity. The time- and
spanwise-averaged turbulent flow is considered as the base flow for the full and randomized
resolvent analyses. For this 2D base flow, we adopt the bi-global setting that decomposes ¢’

into spanwise Fourier modes with the wavenumber k..

To obtain the base flow, large-eddy simulation (LES) is performed using a finite-volume
compressible flow solver CharLES [KHN11, BHN17a], which is second-order accurate in
space and third-order accurate in time. Vremen’s sub-grid scale model [Vre04] is utilized
in the LES. The LES is performed on a C-shaped mesh with the domain extent of /L. €

[—19,26], y/L. € [—20,20] and z/L. € [—0.1,0.1] in the streamwise, transverse and spanwise
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direction, respectively, with the airfoil leading edge at z/L. = y/L. = 0. Dirichlet boundary
condition is specified at the far-field boundary as (p, vz, vy, vz, T) = (Poo, Vo, 0,0, T ), where
p is the density, v,, v, and v, are respectively the streamwise, transverse and spanwise
velocity, and T' is the temperature. Over the airfoil, the no-slip adiabatic boundary condition
is prescribed. Along the outlet boundary, a sponge layer [Fre97] is applied with a running-
averaged state being the target state. The simulation has been validated with respect to
the time-averaged pressure, lift and drag over the airfoil. The turbulent separated flow
over the airfoil is visualized in figure 2.2. The visualization of the instantaneous flow shows
the laminar separation from the leading edge. We have found that the shear layer physics
dominates the pseudospectral behavior of the linearized Navier—Stokes operator, as shear is
the main source of nonnormality in the operator. Further details regarding the computational
setup, flow physics, and resolvent analysis based flow control of this setup are reported in

Yeh and Taira [YT19].

The full and randomized resolvent analyses are performed on a separate mesh from that
used in the LES. This mesh has a 2D rectangular domain with the extent of /L. € [—15, 16]
and y/L. € [—12,12], comprising approximately 0.15 million cells. Compared to the LES
mesh, the mesh for resolvent analysis is coarser over the airfoil and in the wake, but is much
finer in the upstream of the airfoil in order to resolve the forcing mode structures. The time-
and spanwise-averaged flow @ obtained from LES is interpolated onto this mesh. At the
far-field boundary and over the airfoil, Dirichlet conditions are set for density and velocities
and Neumann condition is prescribed for pressure in q¢’. At the outlet boundary, Neumann
condition is set for all flow variables. With these boundary conditions for ¢’ and the base
flow g, we construct the linearized Navier-Stokes operator Lg(k,) for a chosen k.. The size

of Lg and the resolvent operator is approximately 0.75 million x 0.75 million.

For this large operator, we summarize in Table 2.1 the computational costs of performing
resolvent analysis using the Krylov-based Arnoldi-iteration method with a range of param-

eter setups (i.e., number of singular values (ne,), Krylov subspace dimension (dim(S)), and

25



tolerance) and compare them with those for the present randomized algorithm. The former
was conducted by simply calling the svds command in MATLAB. It requires almost 80 giga-
bytes of memory and takes approximately 30 to 70 minutes (single-core) for each SVD. The
high-memory demand necessitates the use of high performance computing resource to con-
duct the full resolvent analysis. In contrast, the randomized resolvent approach (Algorithm
1) achieves significant reductions in computational time and memory consumption. The
present method only requires a third of the memory usage of the Arnoldi-iteration and cuts
down the computational time by an order of magnitude. We also note that, in Algorithm 1,
the linear systems solvers are the operations with higher computational cost. Since all the
three linear systems solvers are conducted for the same operator, the LU decomposition of
[—iwI — Lg] is performed in the beginning of the algorithm and is passed through the three

solvers. This decomposition becomes the main source of the memory consumption.

2.3.1 Results

We perform the full and randomized resolvent analyses for spanwise wavenumbers of k, L. = 0
and 207. Since the base flow is found to be unstable [YT19], the finite-time approach is
adopted with vy, /BL. = 3 to ensure that the resolvent analysis is performed on a shorter
time scale than that associated with the leading growth rate of the instability. Initially, for
the randomized analysis, we consider k = 10 for the width of the test matrix €2 with random
Gaussian distribution. Later in Section 2.3.3, we show that this value of k can be further

reduced without compromising accuracy.

The leading response and forcing modes obtained from both full and randomized analyses
are compared in figure 2.3 for representative frequencies St and spanwise wavelength k, L..
Although k/m = 1.3 x 107, we observe excellent agreement between the modes from the
full resolvent analysis and the randomized algorithm. We observe that randomized forcing
and response modes are very similar to full resolvent ones. Only at St =1 and k,L. = 207

we observe the appearance of spatially distributed errors in the background, which we refer
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Figure 2.3: The leading response (@) and forcing (9;) modes from the full and randomized
resolvent analyses, using Algorithm 1, for k,L. = 0 and 207 at representative frequencies

St. Modes are visualized with the streamwise velocity component with contour levels of

[—0.6,0.6].
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Iteratively restarted Arnoldi method (M ATLAB svds)

Ney dim(S) tolerance  time (sec)  memory
10 30 1E-14 4185 78.6 GB
) 15 1E-14 2764 78.6 GB
2 6 1E-14 1486 78.6 GB
10 30 1E-05 2245 78.6 GB
10 15 1E-14 4194 78.6 GB

Randomized resolvent (present)

Nev k time (sec)  memory
2 2 354 28.2 GB
5) ) 462 28.4 GB
10 10 615 28.8 GB

Table 2.1: Comparison of the computational time and memory consumption for the implic-
itly restarted Arnoldi iteration (svds in MATLAB) with the present randomized approach
for different parameter setups with the number of singular values (n,), Krylov subspace

dimension (dim(S)), and tolerance.

to as background noise.

The forcing modes are recovered directly from the SVD of the low-dimensional subspace
projection. As they are used to recover the response modes using the linear operator, the
accuracy of the forcing modes affect the results of the response ones. In the particular case
of St =1 and k,L. = 207, when forcing mode is affected by noise, the randomized approach
returns some structures emanating from the trailing edge in the response mode '&iand, which
was not present from the full resolvent analysis. This behavior is related to leakage from
high-order modes, as o1 and o, are close in the energy spectrum. This remarkable level

of agreement over all frequencies and spanwise wavenumbers ensures that the randomized

28



approach presented in Algorithm 1 can help extract insights into the spatial structures to

identify regions of sensitivity and guide flow control efforts.

These results were obtained using the present implementation that extends the original
randomized SVD algorithm. In figure 2.4, using the original randomized algorithm [HMT11a]
within the resolvent analysis to recover the left singular vectors and singular values, the
response modes contain background noise. Here, we use Algorithm 1 up to line 5, then SVD
is performed as B = UXV* and U is recovered a posteriori using the original procedure for
the randomized SVD with the resolvent analysis [HMT11a, MST13b], by U = QU. [YT19]
showed that the present problem setup presents a peak in the singular values near St = 6
for both spanwise wavenumbers, influenced by the eigenmodes associated with the shear-
layer structure over the separation bubble. These eigenmodes are highly nonnormal and
induce high-energy amplification through pseudoresonance [TTR93a]. For the frequencies in
a narrow region near St = 6, both implementations present similar results. Far from this
band, the response modes obtained by the original procedure [HMT11a] are contaminated
by random background noise or leakage from higher-order modes, as shown in figure 2.4 for
St = 0.5 and 15 and k,L. = 0. In these critical cases, the original randomized approach
may not provide meaningful insights into flow physics. The present implementation shown
in Algorithm 1 improves solving for the response modes. Algorithm 1 does not enhance
the forcing modes, as they are already accurate. When utilizing this technique to generate
reduced-order models, one may perform steps 11 and 12 in Algorithm 1 to orthogonalize the
left singular vectors. Considering the results obtained by our implementation, the modes are
found very accurately for almost all frequencies and wavenumbers. To provide a concrete

assessment, we quantitatively assess the accuracy of the randomized resolvent analysis.

The agreement between the full and randomized analyses with respect to the gain (leading
singular value) and modes over a range of frequencies is presented in figure 2.5. When
Algorithm 1 is applied to recover left singular vectors and singular values, the randomized

analysis accurately captures the trend of gain distribution over 1 < St < 15 in figure 2.5(a,b)

29



Full resolvent analysis U = QU (Halko et al.) U=AVX ! (present)

- full - rand - rand
St Response mode ;" Response mode u;™" Response mode u;™"

Figure 2.4: Comparison of the leading response modes (%) recovered from the randomized
resolvent analyses using U = fo (the original approach in [HMT11a]) and U = AVX™!
(present, see equation (2.9)). The response modes from the full analysis are also shown
for reference. Results are shown for k,L. = 0 at representative frequencies St. Modes are

visualized with the streamwise velocity component with contour levels of [—0.6,0.6].
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Improvements of accuracy in the present randomized analysis can be observed by comparing
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the ofd and recovered from equation (2.9) to those from the original approach of
[HMT11a] (note that forcing modes obtained from both approaches are identical). Results
for spanwise wavenumber of k.L. = 0 and 207 are shown in the left and right columns,

respectively.
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for both wavenumbers. At the low and high-frequency ends, the gain shows deviations. The
resemblance of the modal structure is quantified in figure 2.5(c,d) with the cosine similarities,
i.e., the inner products, (@™, @*™) and @™ 97}, As singular vectors are normalized, the
cosine similarity of 1 suggests that perfect match is attained between the modes from full
and randomized resolvent analyses. Since these modes are complex, the cosine similarity
removes dependence on the phase difference. For almost the entire range of frequencies the
cosine similarities are near unity, which means the agreement between full and randomized
modes is excellent. When this value is reduced, the modes may be affected by noise, as
seen for 97 at St = 1 and k.L. = 0 in figure 2.4. For the original approach, using the
randomized SVD algorithm [HMT11a], the modes have good agreement for a narrow band
of frequencies only. By comparing the results from figures 2.3 and 2.4 to the values in figure
2.5(c,d), we observe that the noise affects the modes when cosine similarity is below 0.5. For
frequencies and wavenumbers with cosine similarity up to 0.8 or higher, there is no noise
and the results for full and randomized resolvent agree well. For this reason, it is desirable
to search for solutions that provide a reliable agreement up to this scale to a broad range
of frequencies and both wavenumbers. With the high-gain frequency range well captured,

randomized resolvent analysis has demonstrated its capability of predicting the dominant

pathway for energy amplification over the spectral space with reduced computational cost.

As stated in Section 2.2, the use of low-rank approximation in the randomized approach is
built upon the assumption of the low-rank nature of the resolvent operator. The randomized
resolvent analysis shows its strength when the singular values exhibit fast decay, as evident
from figure 2.6. The accuracy of the modal structured captured by randomized analysis
is examined with respect to the ratio of the leading and second singular values, (o;/09)™M!
from the full resolvent analysis. The error in the modal structures exhibits a decreasing
trend as this ratio increases. When this ratio is close to unity, the randomized technique

may not accurately separate the first and second modes. In fact, the aforementioned trailing

edge structure that appeared in the randomized response mode for k,L. = 20w and St = 1
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Figure 2.6: Error based on cosine similarity for the leading (a) forcing modes (1— (™", §72"4))

and (b) response modes (1— (@™, @5*)) over the leading gap from the full resolvent analysis.

The symbols o and A represent results from k,L. = 0 and 207, respectively, colored by St.

is caused by the leakage of the structures from the second response mode (see figure 2.3).
When the ratio (o7 /02)™! is above 30, the error decreases to < 107° for forcing modes and

< 1078 for response modes.

Next, we study the influence of the width of the test matrix k on the error in the leading
singular values and modes, as presented in figure 2.7. When the value of k is varied from
2 to 500, the error from the use of randomized analysis decreases. For three representative
frequencies, we observe the same rate of convergence ~ O(k) for both the gain and cosine
similarity. As stated in section 2.2, increasing k has the same practical effect of oversampling,
in the present application. For this flow, we observe that & = 10 is sufficient to achieve
sufficient accuracy with < 1% error, which is remarkably low when compared to the high

dimensionality of the resolvent operator.

The computational cost of the randomized resolvent technique can be further reduced.

For instance, the biconjugate gradient stabilized (BiCGStab) or the generalized minimum
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Figure 2.7: Influence of test matrix size k on the accuracy of (a) leading singular value, (b)

forcing mode, and (c) response mode at k, L. = 207. All exhibit O(k) convergence.

residual (GMRES) methods can be utilized to solve linear systems with appropriate precon-

ditioners (e.g., incomplete LU and Jacobian).

2.3.2 Higher-order modes

Let us discuss the performance of the randomized technique with respect to the high-order
modes. For some cases, the second largest singular value may also be spaced apart from
the higher-order singular values and be determined accurately. In figure 2.8, we show for
k.L.= 0and St = 4 a case where both the leading and second singular values are spread from
the rest of the singular values. In this case, the randomized algorithms accurately capture
the second modes. The flow structures at the trailing edge are perceived in the response
modes. The forcing modes appear over the pressure side near the trailing edge. For the
results obtained from Algorithm 1, the modes are the same for randomized resolvent and for
the full resolvent. However, for the resolvent analysis using the randomized SVD algorithm
[HMT11a] within the resolvent analysis, the secondary singular values are poorly captured

and the modes are polluted by background noise and leakage from other modes (not shown
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Figure 2.8: Recovery of the higher-order resolvent gains (07234 ) and modes (9, and ,) for
St =4 and k,L. = 0. The resolvent gains obtained from the present randomized analysis
(©, recovered by equation (2.9)) and those from the original approach of [HMT11a] (A) are

compared to those from the full resolvent analysis (O).

here). For this reason, when applying randomized resolvent, the present implementation
shown in Algorithm 1 must be considered as they can approximate the detached high-order

modes accurately.

2.3.3 Choice of the test matrix 2

For the randomized resolvent analysis with a test matrix size of k£ = 10, Gaussian, orthonor-
mal, Rademacher and ultrasparse Rademacher test matrices provide similar results and no
observable difference in computational savings. By using the implementation shown in Al-
gorithm 1, all test matrices present similar accuracy as shown in figures 2.5 and 2.6. For
very low and very high St numbers in the range of frequencies analyzed in this work, where
the singular values decay slowly, one can increase the size k or apply subspace or power
iterations. However, it is possible to obtain more accurate results by constructing a random

test matrix 2 that incorporates physical insights from the base flow.

While the random test matrix is effective in yielding accurate results, we can consider

constructing a test matrix that can generate the entries in a smart manner by incorporating

35



(a) (b) (c)

10° 10° 10°
=1 P —~
E 5 ]
S g
5 0? g 107 g.10°
- < 3
= —_ " —_
S —_— —
° S S
| kS <
—g 10-6 ‘ 10-() | 10-[()
@
'y — — k=10, Gaussian Q2
k =10, phys.-based
10° 10° 10715 —=—plsbased
0 5 10 15 0 5 10 15 0 5 10 15
St =wlL./2m000 St =wL./2mv0 St =wlL./2m000

Figure 2.9: Influence of test matrices on the relative error for (a) gain distribution and cosine
similarities for (b) forcing and (c) response modes, ¥; and u;, at k,L. = 207. Results are
shown for Gaussian random normal distribution test matrix €2 and physics-informed random

test matrices 2, = diag(®)Q with sizes k = 10 and k = 2.

the knowledge of the base flow. We know that regions of strong shear are important in
amplifying forcing inputs. Moreover, regions with minimal velocity gradients are not that
important. For these reasons, the velocity gradient at each grid point can be used to scale
the test matrix. Here, we propose a physics-informed test matrix, €2, scaled by the 2-norm
of the velocity gradient, ||V v||s, where v is the velocity vector. We construct a scaling factor
®; = || V||, at each grid point j. The scaling vector ® has to be stacked according to the
number of variables to reach the size m of the linear operator. The physics-informed test
matrix then becomes

Q, = diag(®)<2. (2.10)

The results based on the physics-informed test matrix are shown in figure 2.9. While the
results obtained from the use of a normal distribution test matrix have shown excellent accu-
racy, the use of physics-informed test matrix further improves the accuracy by a few orders
of magnitude for the considered frequencies and spanwise wavenumbers. More importantly,

we achieve results with comparable or higher level of accuracy using a extremely low width
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of the test matrix of k = 2. This results in a considerable reduction in computation time
(see Table 2.1). Using k = 10, linear systems are solved at least 30 times. Now, using k = 2,
only 6 linear solvers are needed to obtain the same accuracy, which is achieved only with
a physics-informed scaling of the test matrix. By combining randomized numerical linear
algebra and some physical insights, we are now empowered to perform the input-output
analysis for ever more complex 2D and 3D turbulent base flows on a standard computer, or

on a high-performance computing cluster to expand the envelope of resolvent analysis.

2.3.4 On the accuracy of linear systems solvers

For the randomized resolvent algorithm, direct and adjoint linear systems are solved in
steps 2, 4, and 6 of Algorithm 1. For the present analysis, and all analyses used in the
current thesis, linear systems are solved directly via LU decomposition. In some cases, it
may be possible to avoid the need of a linear system solver, through the construction of an
optimal basis [BGM22]. It remains a challenge, however, to obtain such a basis for complex

geometries in 2-D or 3-D base flows.

For high-dimensional resolvent operators, the direct solution may not always be com-
putationally feasible. In such cases, a reasonable approximation through iterative methods
may be enough to yield insights into the perturbation dynamics. Such methods, as time-
stepping, may increase the time costs, while significantly reducing the memory requirements
[BBS08, MAB10, GBR16]. Recently, it was shown that even the computational time re-
quired by time-steppers can be reduced by incorporating streaming discrete Fourier trans-
forms [MRT21, FTM21]. The use of iterative solvers has shown promising results to compute
resolvent modes around a commercial aircraft model [HTS22, HT'S23]. It is based on the us-
age of iterative solvers in lieu of the direct solvers that the analysis presented in this section

is relevant.

In the present section, we add a Gaussian noise to the solutions of the linear systems

obtained in steps 2, 4, and 6. These are, according to the Algorithm 1, the solutions obtained
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Figure 2.10: Leading amplification and response modes for St = 1 and § = Om computed
with full resolvent approach [YT19] and randomized resolvent analysis with noisy linear

system solutions with 4 different noise levels.
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for sketch Y, for the projection to the low-order basis B, and the recovery of response
modes UY, respectively. The Gaussian noise is added as a €Quoise € C™**, where norm
|Quoise|]|2 = 1, and € is the noise level mentioned in figure 2.10 and 2.11. The objective is
to mimic an inaccurate solution obtained by systems solvers, direct or iterative in case a

convergence bound is set to a high value.

In figure 2.10, we add €2, With the mentioned noise level to the 3 system solutions,
Y, B, and UX, in an equal manner. Up to ¢ = 1073, the full resolvent results match the
results obtained with inaccurate systems solutions, which suggests that we could relax the
convergence limits of iterative solvers and still obtain the same resolvent modes as the ones
achieved by direct solvers. For ¢ = 1072 the amplification gain diverges, while the response
modes remain similar to the full resolvent ones. For ¢ = 10~! we cannot recover the spatial

modes with any physical meaning.

The following question to be addressed is whether we need accurate solutions for all
Y, B, and UX computations, or if we could relax one of these solutions. This question is
addressed in figure 2.11. In the first row, we keep only one of the Y, B, and UX steps with
high noise ¢ = 10!, while the others are solved with good accuracy, or lower levels of noise

e =107,

By keeping only Y with poor accuracy, the resolvent modes are still computed accurately.
This result lies on the notion that a noisy or inaccurate solution to Y is only a solution to a
different random matrix. In this way, the accuracy of the resolvent modes still lies within the
accuracy bounds of the randomized SVD [HMT11b]. Having only an accurate Y results in
poorly captured resolvent modes, which supports the idea that an accurate sketching is not
the most crucial step to obtain accurate resolvent modes through the randomized resolvent
analysis algorithm. The accuracy of the solutions to B and UX remains important. We
observe in second and third columnds of figure 2.11, that whenever one of this solutions is
inaccurate, at least one of the resolvent modes is not captured accurately and the resolvent

gains diverge. This study serves as a cautionary note to the usage of iterative solvers to
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2.11: Leading amplification and response modes for St = 1 and § = Or computed
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system solutions on specific steps of the randomized resolvent algorithm.
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compute resolvent modes and can be extended to any method, even though we have applied
it to the randomized resolvent algorithm. In the context of randomized SVD applie to
resolvent mode computations, the present results give insights on the convergence bounds

that could be applied to each step of the randomized resolvent algorithm.
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CHAPTER 3

Wake dynamics

Tapered and swept wings are widely used on aircraft, while the influence of their geome-
try parameters on their post-stall wake characteristics remains largely unexplored for low-
Reynolds-number post-stall flows. To address this issue, we conduct an extensive study using
direct numerical simulations to characterize the wing taper and sweep effects on laminar sep-
arated wakes. We analyze flows behind NACA 0015 cross-sectional profile wings at post-stall
angles of attack o = 14°-22° with taper ratios A = 0.27-1, leading edge sweep angles 0°-50°,
and semi aspect ratios SAR = 1, 2, and 4 at mean-chord-based Reynolds number of 400
and 600 and a freestream Mach number of 0.1. For untapered wings, we observe that the
flow around unswept wings develops vortex shedding near the wing root with a quasi-steady
tip vortex. For swept wings, vortex shedding is seen near the wing tip for low sweep an-
gles, while the wakes are steady for wings with high sweep angles. For tapered wings, we
report on the combined effects of leading and trailing edge sweep angles on the wakes. Wing
taper reduces the tip chord length, weakening the tip vortex, and attenuates the inboard
downwash over the wing. This results in unsteadiness to develop over a large portion of
the wingspan at high angles of attack. Tapered wings with backward-swept leading edges
develop unsteadiness near the wing tip, while wings with forward-swept trailing edges con-
centrate wake oscillations at the wing root. For highly swept untapered wings, the wake is
steady, while tapered wings with high leading edge sweep angles exhibit wake shedding near
the tip. Wake oscillations are larger towards the root for lower taper ratios. Moreover, the
effects of taper on the aerodynamic forces over tapered wings are studied, revealing that the

combined effect of taper and sweep can improve the aerodynamic performance of the wing.
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The current findings shed light on the fundamental effects of wing taper and sweep on the

post-stall wake dynamics.

3.1 Motivation

Understanding flow separation over finite swept wings is essential to the study of aircraft
and biological flight [And10, VSP04, LMS07]. The aspect ratio, angle of attack, taper, and
sweep play important roles in influencing stall and wake characteristics [ZHA20a, ZHA20b].
Although a number of studies have deepened our knowledge of laminar separated wakes
around finite swept and unswept wings, coherent flow structures associated with the three-
dimensional (3-D) flow separation have not been characterized their combined effects with

taper in a comprehensive manner.

In aircraft design, tapered wings are used to achieve an approximation to the elliptic aero-
dynamic loading over the wingspan. Tapered wings are more feasible and less geometrically
complex compared to elliptic wings [Pra20, McC95], from the point of view of manufacturing.
The usage of tapered wings in aeronautics has called for initial studies to explore the wing
taper effect, especially for high-Reynolds number flows [Mil36, And36, Irv37, SA40, Fal50].
For the laminar flow regime, the effect of wing taper on the wake dynamics is critical as the
local Reynolds number flow at the wing tip is drastically reduced near the tip. For flows at
a chord-based Reynolds number Re. = O(10%) wing, taper affects the aerodynamic loading
with an increase in the pressure drag [Tral3, TBW15]. For Re. = O(10%), the aerodynamic
characteristics are affected significantly by the viscous effects, and the influence of wing taper

on the wakes remains elusive, especially for massively separated flows.

The wake dynamics of wings at post-stall flow conditions has attracted the attention of
aeronautical researchers for many decades. The early efforts to understand post-stall flows
over wings were performed over two-dimensional (2-D) wings [AV59, Gas67, TP82]. Valu-

able insights were obtained from 2-D analysis characterizing the behavior of the separated
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laminar boundary layer [Hor68] and describing the relation between vortex shedding struc-
tures, adverse pressure gradient, and shear layer characteristics [PMR90]. Self-excitation
mechanisms of laminar separation bubbles, in the absence of incoming disturbances exciting
the shear layer instability were also studied [THDO0O], providing evidence for the appearance
of the vortical patterns predicted by flow topological arguments [HP84, PH84|. Subsequent
analyses of spanwise homogeneous three-dimensional (3-D) low-Reynolds number separated
flow over 2-D wings [HGP17] corroborated the existence of 2-D traveling shear-layer and 3-
D stationary spanwise-periodic linear instabilities and analyzed their modal and non-modal
linear growth. The analysis of 2-D flows around canonical wings continues providing funda-
mental insights on the effect of angle of attack and Reynolds number on the wake shedding

structures [LP96, HWJ01, YSK09, RCO18|.

For separated flows, the increase in Reynolds number and the angle of attack can yield a
3-D flow field even around 2-D (or quasi-2-D) wings [BT80, WB80a, Sch01, HBV03, PM19].
In such cases, spanwise fluctuations emerge, producing 3-D vortical structures in the wake.
Floquet analysis of the time-periodic wake flow ensuing linear growth of Kelvin-Helmholtz
instability on the wing associated these 3-D vortical structures with secondary linear insta-

bility of the spanwise-homogeneous wake [HGP17].

For finite wings, the three-dimensionality of the vortical wake structures results from the
tip effects. Around the wing tip, a strong streamwise vortex is formed, yielding 3-D wake
formation with strong and complex nonlinear interactions [WB80a, FFB87, TC09, ZHA20b,
NA23]. Tip vortices induce downwash inboard over the wing, which reduces the effective
angle of attack near the tip, even suppressing stall formation [DCM20, TY21] and the wake
shedding for low-aspect-ratio wings [TC09, ZHA20b]. Moreover, the tip vortex has been
extensively studied to reveal its influence on the wake dynamics, aerodynamic forces, and
pitch moments [FK79, GA91, DRL96, PM00, BLM04, TM04, BS06, YR12, ASS15, HTP17,
TY21, TY22]. By understanding the tip vortex formation, evolution, and instability mecha-

nisms, it is possible to develop control techniques to improve the aerodynamic performance
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around finite wings [GW18, ESS18, NBJ19].

Separated wakes are also affected by wing sweep, which stabilizes flow oscillations and
reduces wake three-dimensionality [ZHA20b, RYZ22b, RYT23]. The flow over swept wings
induces a spanwise flow component within the stalled region, significantly impacting wake
characteristics [HM64]. The stabilizing effect around laminar separated flows is related to
the emergence of the sweep-induced spanwise flow in the stalled region [WTT14, RYZ22b].
For laminar flow regimes, a number of experimental and numerical efforts were carried out

to examine the effects of backward and forward wing sweep in many different configurations

[BLO1, YHO7, ZHA20a, ZT22, BHH22, RYT23|.

Thus far, most studies have not considered wing taper effects on low-Reynolds number
flows at high angles of attack. Only recently, a combined experimental, numerical, and the-
oretical effort has been initiated towards the understanding of the laminar flow over tapered
wings in post-stall flow conditions [RTN23, NGA23, BTR23]. Effects of taper have been
analyzed for planforms with tubercles to analyze swimming of whales [WNC18], for flows
over tapered cylinders [PV93, THT98, VAJ02], and for separated wakes over tapered plates
[INAPO08]. For wing planforms with continuously variable chord length over the wingspan,
the delta wings have also received substantial attention [Roc93, GGV05, TC09]. For lami-
nar post-stall flows, wing taper was studied using trapezoidal plates [HVT15]. Nonetheless,
there still is a lack of fundamental studies to understand the role of taper ratio, and how it
interplays with leading edge (LE) and trailing edge (TE) sweep angle effects for massively

separated laminar flows.

For laminar separated flows, the tip and sweep effects o the wake dynamics have been
explored through experiments and numerical simulations [HGP17, ZHA20b, ZHA20a, HA21,
HON22, ZT22|. The effect of wing taper remains elusive and its effects combined with sweep
on post-stall flows remains unexplored for low-Reynolds number flows. The present chapter
reveals the effects of taper and sweep in the laminar wake dynamics and the influence of LE

and TE sweep angles on the vortical interactions through a comprehensive campaign of direct
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numerical simulations of 3-D flows over finite NACA 0015 wings with different taper ratios
and sweep angles. We characterize the stalled wakes of wings with backward-swept LE and
forward-swept TE, identifying the combined effects of taper and sweep angle. This chapter
is organized as follows. In section 3.2, we present our wing planform geometry definitions
and the setup for direct numerical simulations. In section 3.3, we offer a detailed analysis

and classification of the wake structures, highlighting the effects of taper and sweep.

3.2 Problem setup

We consider laminar flows over tapered and swept wings with a NACA 0015 cross-sectional
profile. The spatial coordinates of streamwise, transverse, and spanwise directions are de-
noted by (z,y, z), respectively. The origin is placed at the LE of the wing root, as shown in
figure 3.1. The NACA 0015 profile is defined on the (z,y) plane, which is extruded from the
wing root in the spanwise direction to form the 3-D wing. Wing taper is defined by the taper
ratio A = Ctip/Croot, Where cip and o0t are tip and root chord lengths, respectively, as shown
in figure 3.1(a). For all wings considered herein, the chord length decreases linearly from
root to tip. The non-dimensional mean chord length ¢ at the spanwise location of z = b/2 is

taken to be the characteristic length used to non-dimensionalize all spatial variables.

The semi-aspect ratio of the wings is set as sAR = b/c = 1 and 2, where b is the half-
span length, as shown in figure 3.1(d). We consider half-span wing models with symmetry
imposed at the root. The angles of attack, 14° < a < 30°, are defined between the airfoil
chord line and the streamwise direction. The present wing geometries have sharp trailing
edge and straight-cut wing tip. The mean-chord-based Reynolds number is set to Re. = 400
and 600 and freestream Mach number M., = 0.1 for the present study. For the flows shown
in section 3.3.1, the mean-chord-based Reynolds number is set to Re. = 400. Simulations
of Re. = 400 flows were performed over untapered wings only. For these cases, we have

considered higher aspect ratio wings with sAR = 4 and higher angles of attack up to 30° as
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Figure 3.1: Problem setup for tapered wings. (a) Geometrical parameters shown in a wing
planform with sAR = b/c = 2, a = 18°, A = 0.27, and Apg = 18.4°. (b) Computational

domain and (¢, d) grids are shown with 2-D planes at z/c = 1 and y/c = —0.5, respectively.
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well.

Further analysis considering lower aspect ratios and tapered wings was performed for
flows with Re. = 600. Throughout the text, we will explicitly mention the Reynolds number
of the simulations to avoid any confusion throughout the discussion. However, the difference
between Re. = 400 and 600 flows is so mild that the overall structures are similar for both
flow conditions. In fact, [ZHA20b] has already validated DNS simulations performed at
Re. = 400 with experiments performed at Re. = 600, which enforces the notion that these
flows are indeed similar to each other. We must also note that wing taper changes the local
Reynolds number Rey,, defined as a function of the spanwise location [TBW15]. For the
present study, the difference between ¢y, and ¢yo01 accounts for a maximum variation of 60%
on Rey, along the span, from min(Rer,) = 250 and max(Rer,) = 950 at the lowest taper

ratio.

The wings considered in the present work have varied taper ratios and wing sweep. For
tapered swept wings, the 3-D computational setup is sheared in the chordwise direction
and Apg is defined between the z-direction and the LE. Tapered wings have different Apg
and Arg respectively, as shown in figure 3.1(a). In this chapter, we explore the combined
effects of the LE and TE sweep angles on the wake dynamics, defining LE sweep angles
between 0 < Apg < 50° and TE sweep angles between —30° < Arg < 50°. Herein, negative
sweep angles indicate a forward sweep, as shown in figure 3.1(a), while positive sweep angles
represent a backward sweep. Through the aforementioned Apg and Arg, taper ratios are

analyzed between 0.27 < \ < 1.

Traditionally in aeronautics, tapered swept wings have wing sweep angle observed with
respect to the quarter-chord line [And10, And36, Fal50] denoted by A/, as shown in figure
3.1(a). [And99] considered the half-chord sweep angle A/, such that aerodynamic load
distribution becomes independent of the taper ratio. Straight tapered wings, those with
Acss = 0° were studied by [TBW15]. On the other hand, [Irv37] considered the effect of the

LE and TE sweep angles. For the present laminar separated flows, due to the crucial role
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played by the LE vortex in defining the wake characteristics [VSP04, EJ19], we focus on Apg
and Arg as the main independent parameters for our analysis and describe their influence
on the wake dynamics. We note, however, that it is also possible to translate the findings
reported herein with respect to the traditional quarter-chord and half-chord sweep angles,

Ac/q and Acjo, respectively.

3.2.1 Direct numerical simulations

We conduct direct numerical simulations with a compressible flow solver CharLES [KHN11,
BHN17b], which uses a second-order accurate finite-volume method in space with a third-
order accurate total-variation diminishing Runge-Kutta scheme for time integration. The
computational domain is discretized with a C-type grid with mesh refinement near the wing
and in the wake. With the origin at the airfoil LE on the symmetry plane (z/¢, y/c, z/c) =
(0,0,0), the computational domain extends over approximately (z/c,y/c, z/c) € [—20,25] x
[—20, 20] x [0, 20], which yields a maximum blockage ratio of 0.8% for the wing with A\ = 0.27,

sAR = 2, and o = 22°. The computational setup is shown in figure 3.1(b-d).

We have prescribed a Dirichlet boundary condition of (p, w, Uy, t., p) = (Poo, Uss, 0,0, peo)
at the inlet and farfield boundaries, where p is density, p is pressure, u,, u,, and u, are
velocity components in x, y, and z directions respectively. Symmetry boundary condition is
prescribed along the root plane, z/c¢ = 0. The subscript co denotes the freestream values.
A no-slip adiabatic boundary condition is set on the airfoil surface. For vortical structures
to convect out of the domain, a sponge layer is applied over x/L. € [15,25] with the target
state being the running time-averaged state over 5 convective time units [Fre97]. Simulations
start from uniform flow and are performed with a constant acoustic Courant-Friedrichs-Lewy
(CFL) number of 1 until transients are washed out of the computational domain. The time to
flush out the transients varies depending on the wing planform and angle of attack, generally
ranging from 50 to 300 convective time units. After the transients are washed out of the

domain, we run the simulations with a constant time step defined such that CFL is smaller
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A=0° A =15° A = 30° A =45°

Cr Cho Cr Chb Cr, Cho Cr Cho
Present study 0.53  0.35 0.50 0.34 045 0.31 0.40 0.29

[ZHA20a] 0.53 0.35 0.51  0.33 0.44  0.30 0.40 0.29

Table 3.1: Time-averaged lift and drag coefficients (C}, and Cp) compared to [ZHA20a] for
laminar separated flow over NACA 0015 wings with sAR = 4, a = 20°, and A = 0°, 15°,
30°, and 45°.

than one. Flow statistics are collected for 100 to 300 convective time units, depending on
the flow field characteristics and spectral content to ensure convergence. Close agreement for
instantaneous and time-averaged velocity components was achieved with those from Zhang
et al. [ZHA20a]. We have further validated our computations for time-averaged drag and

lift coefficients,

F. F

- T d R — 1
05p0be M O = G g (3:1)

Cp
respectively, where F, is the drag and F), is the lift over the wing, as reported in table 3.1.
These definitions abstain from considering changes in the reference area associated with the
sweep and the angle of incidence and follow the definition of C';, and Cp from previous works

[ZHA20a|. Lift and drag coefficients are defined herein for validation purposes only.

We verify the convergence of grid resolution for the numerical results using a wing with
(sAR, a, ALg, \) = (2,22°,40°,0.27). Herein, we report the aerodynamic forces through their
lift coefficients defined as Cp, = F,/(0.5pU2 bc), where F, is the y component of the viscous
and pressure forces integrated over the wing surface. This planform combines a high leading-
edge sweep angle and the lowest taper ratio considered in the present study. Two meshes
are used for verification: a medium and a refined mesh. The medium mesh refinement is the
one used throughout the present work. This mesh has 80 grid points on both pressure and
suction sides of the wing and 48 grid points along the wingspan, with a total of approximately

3.1 x 10° control volumes. The refined mesh has 120 grid points on pressure and suction

20



0.095

G 0.105}

m medium
refined

refined

0.100 i i i i
10 12 14 16 18 20

Figure 3.2: Lift coefficient over time and instantaneous flow field structures visualized using
() = 1 colored by instantaneous velocity component u, at the lift peak for the two sets of

meshes used for grid verification for the wing with (sAR, a, ALg, \) = (2,22°,40°,0.27).

sides, with 64 grid points along the wingspan, resulting in approximately 4.3 x 10° control
volumes in total. For the refined mesh we have increased the temporal resolution by setting
the CFL to 0.5. The quality of our medium mesh is assessed through the forces exerted over

the wing and the instantaneous vortical elements as shown in figure 3.2.

3.3 Results overview

3.3.1 Flows over swept wings

A variety of wake patterns can be observed for different a, A, and sAR, as summarized
in figure 3.3. For the present numerical results, the chord-based Reynolds number was set
to Re. = 400. In the bottom plot, the flow over the wing with (sAR,«, A) = (2,30°,0°)
exhibits a quasi-steady streamwise oriented tip vortex. This structure is characteristic of
flows over unswept wings and also appears around wings with different o and sAR. For such
wings, unsteady spanwise vortices develop at the root plane. Between the root and the wing

tip, there is an intermediate zone with braid-like vortices.

Wing sweep affects the wake structures. At low sweep angles, a spanwise flow devel-
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Figure 3.3: Instanteneous isosurfaces of () = 2 colored by u, for Re. = 400 flows. Unsteady
shedding near root (<), unsteady shedding near wing tip (I '), steady flow with root structures

(»), steady flow with streamwise vortices (V).
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ops over the wing and advects unsteady vortices towards the wing tip. For instance, for
(sAR,a,\) = (4,20°,15°), spanwise vortices still appear. These structures are similar to
the ones observed over unswept wings, although they form closer to the wing tip, and break
into helical structures in the wake. For the flow around this wing, streamwise-oriented tip

vortices are absent.

For higher A, wing sweep can stabilize wake oscillations. For (sAR,a, A) = (4, 30°,30°)
near-wake unsteadiness is reduced and unsteady vortices appear further downstream in the
wake. We notice that these structures are absent when the angle of attack is lowered to
20°. Similarly, increasing the sweep angle to A = 45° suppresses unsteady vortices on both
angles of attack and the wake becomes steady. On such highly swept wings, ram-horn-shaped

streamwise-oriented vortices develop from the root plane and extend into the wake.

For each (a, A) pair, the wake exhibits similar characteristics for wings with sAR = 4 and
2. Reducing the semi-aspect ratio to SAR = 1 has a strong influence on the wake dynamics,
as shown in figure 3.3. For such wings, tip effects can suppress the formation of leading edge
vortices at lower angles of attack. For instance, at a = 20°, wake unsteadiness is reduced

and swept wings exhibit steady flows with root structures.

Unsteady vortices are observed in flows over sAR = 1 wings at o = 30° for all considered
sweep angles. The unsteadiness appears near the root for lower A. Further downstream,
unsteady vortices appear over the entire wingspan. For higher A, vortices are generated near
the wing tip and helical structures are observed in the wake. These observations agree with
the characterizations by [ZHA20a|. To deepen our insights into swept-wing wake dynamics,
we will call for the triglobal resolvent analysis of the present flow fields, which will be
discussed in chapter 5. The triglobal resolvent analysis of these flows is a novel result and
a contribution of the present work. The DNS results presented in this section are not,
as incompressible flow simulations already covered the flow physics around these wings in
previous studies [ZHA20b, ZHA20a, ZHA20a]. For this reason, we refrain from an extensive

discussion of the present results and move on to the discussion of tapered wings wakes, which
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consists of novel results that contribute to the present manuscript.

3.3.2 Tapered wing wakes

From now on, in the present chapter, we consider the effect of wing taper and sweep for
Re, = 600 flows around wings. Post-stall wakes around tapered wings exhibit a rich diversity
of flow structures depending on the taper ratio, but they are also globally affected by aspect
ratio, angles of attack and sweep, and, as shown in figure 3.4, through the combined effects
of LE and TE sweep angles. Taper effects on laminar separated flows are entwined with
the effects of LE and TE sweep angles. By studying straight taper, that is, wings with A/,
and A/, approximately zero, we can separate the effects of taper from the sweep and other

geometrical parameters.

For instance, let us explore the flows over wings with (A, AL g) = (1,0°) and compare
them to the wake structures around (A, Apg) = (0.27,10°) wings; these flows have A./q = 0°
and 1.8°, respectively. There is a strong reduction of the tip vortex length for tapered wings
caused by the reduction in the tip chord length, but the downstream root shedding is similar,
forming hairpin-like vortices in the wake. The near-wakes are different for these two flows.
For the tapered wing, the root shedding presents spatial fluctuations over the spanwise vortex
on the suction side. Such oscillations are absent in the vortical structure that forms over the

untapered wing.

We can further explore the separate taper effects on the wake dynamics by considering
wings with A./, =~ 0°, as shown for the similar flow patterns that develop at the root region
for (A, ALg) = (1,0°) and (0.27,18.4°) wings. Here, with a lower taper ratio, tip vortices are
considerably weakened when compared to the untapered wing tip vortices. Over the tapered
wing, vortex rolls are slanted and aligned with Apg, showing that the LE sweep angle is

important to the near-wake shedding behavior.

For tapered wings, the backward-swept LE effect can be observed by fixing the Arg = 0°
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ALE = 10°

ALg = 18.4°

ALE = 30°

Figure 3.4: Instantaneous flows with Re. = 600 around tapered wings with sAR = 2,

027 < A <1, and 0° < Apg < 30°, at a = 18° visualized using gray-colored isosurfaces of

Q=1
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while the LE is swept backward with Apg = 18.4° and 30° for A = 0.5 and 0.27, respectively.
Such taper causes the wake shedding structures to move towards the wing tip region. An
opposite effect is shown in the top row of figure 3.4, for flows over forward-swept TE wings.
These planforms have fixed Apg = 0°, while Ayg = —18.4° and —30° for A = 0.5 and
0.27, respectively. For these cases, we observe that taper reduces the tip vortex length and
affects the topology of the root-shedding structures. Let us further study the taper effect for
highly swept wings, shown at the bottom row of figure 3.4, with a fixed Apg = 30°, while
Arg = 11.6° and 0° for A = 0.5 and 0.27, respectively. Here, taper increases the amplitude
of wake oscillations. We further detail the discussions on the effects of LE and TE sweep in

sections 3.5.3, 3.5.4, and 3.5.5.

A variety of wake structures that appear around tapered wings, as seen in figure 3.4,
calls for a proper characterization of the wake dynamics that associates its behavior with
the wing planform geometry. The above discussions suggest that taper affects the location
where unsteadiness emerges and the characteristics of the vortical structures. In the following

section, we map the wake characteristics of tapered wings.

3.4 A portfolio of flow fields around tapered wings

3.4.1 Perspective view

In this section, we provide flow field visualizations of the wake structures around all tapered
wings considered in the present study in a perspective view. Flows around sAR = 1 wings
at a = 14°, 18°, and 22° are shown in figures 3.5, 3.6, and 3.7, respectively. Similarly,
flows around sAR = 2 wings a = 14°, 18°, and 22° are shown in figures 3.8, 3.9, and 3.10,
respectively. All flows are visualized using isosurfaces of () = 1, colored by the streamwise

velocity u,.
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3.4.2 Side view

In this section, we provide flow field visualizations of the wake structures around all tapered
wings considered in the present study in a side view. Flows around sAR = 1 wings at
a = 14°, 18°, and 22° are shown in figures 3.11, 3.12, and 3.13, respectively. Similarly, flows
around sAR = 2 wings a = 14°, 18°, and 22° are shown in figures 3.14, 3.15, and 3.16,
respectively. All flows are visualized using isosurfaces of () = 1, colored by the streamwise

velocity u,.

3.4.3 Top view

In this section, we provide flow field visualizations of the wake structures around all tapered
wings considered in the present study in a top view. Flows around sAR = 1 wings at
a = 14°, 18°, and 22° are shown in figures 3.17, 3.18, and 3.19, respectively. Similarly, flows
around sAR = 2 wings a = 14°, 18°, and 22° are shown in figures 3.20, 3.21, and 3.22,
respectively. All flows are visualized using isosurfaces of () = 1, colored by the streamwise

velocity u,.
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Figure 3.9: Perspective view. Isosurfaces of Q) = 1, Re. = 600 flows over (sAR, ) = (2,18°) wings.
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(1,22°) wings.

Figure 3.19: Top view. Isosurfaces of @) = 1, Re. = 600 flows over (sAR, «)
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3.5 Characterization of tapered swept wings wakes

3.5.1 Wake classification

We now classify the wake patterns associated with tapered wing planforms. Our criterion is
based on the examination of the flow characteristics downstream the airfoil on a 2-D plane
at x/c = 4, where we identify the spatial location of maximum time-averaged @ and the
maximum fluctuating component of @ = Q — @, where Q is the second invariant of the
velocity gradient tensor used to identify the vortical structures [JH95]. Maximum @ and Q'
located between 0 < z/(c sAR) < 0.5 are labeled root dominant, while points with maximum
Q or Q' between 0.5 < z/(c sAR) < 1 are named tip-dominant. We consider the flow as
steady when the maximum fluctuating value of @ is smaller than 0.1 at /¢ = 4. Using
the root and tip locations of @ and Q’, we classify their wakes into 3 unsteady and 2 steady
regimes, as shown in figure 3.23, where the steady-unsteady threshold (black dotted line) is
computed via biharmonic spline interpolation and shown at the contour lever of ' = 0.1.
Instantaneous flow fields for all tapered wings shown in figure 3.23 are provided in the section

3.4 using isosurfaces of () = 1 colored by streamwise velocity u,.

The first flow regime (A) is composed of tapered wings wakes that have both maximum
Q@ and @' dominant over the root region. Such wakes appear for tapered wings with low
Apg. For such wings, the tip vortex is short in length and a Arg < 0° effect concentrates
shedding at the wing root. The second flow regime of unsteady wakes (<) occurs when both
maximum @ and Q' are found over the tip region. Such wakes are observed around tapered
wings over a broad range of A values, being strongly associated with high-Apg. The flow

over those wings often exhibits hairpin-type vortices in the wake.

The third flow regime of unsteady wakes (<1) around tapered wings presents maximum
Q at the wing tip with maximum ()’ at the root. This wake characteristic is often seen for
tapered wings with high A and wings with low Apg, as those allow for the formation of a

strong tip vortex, near the maximum @ location, and wake shedding near the root. Weak
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unsteady flow oscillations can appear over the tip vortex, as shown in figure 3.23, but the

most energetic vortices are generally observed over the root region.

There are two distinct flow regimes of steady wakes identified herein, as shown in figure
3.23. The first one (V) is comprised of wakes with a steady streamwise vortex that develops
into the wake. Such flows are mainly exhibited around highly swept sAR = 2 wings with
A > 0.5. The second steady wakes regime (M) is comprised of flows with no significant wake
structures, with maximum @ < 0.1 in the wake and are commonly observed for sAR = 1

wings and for sAR = 2 wings with high A g and low A.

For sAR = 2 wings, the transition from steady to unsteady wakes is dependent of A for
each Apg. Generally, wakes with lower taper ratios sustain unsteadiness for higher LE sweep
angles than untapered wings. Let us now perform a detailed examination on the taper affects
the wake unsteadiness and the separate influence of Arry and Atg on the wake dynamics in

the following section.

3.5.2 Skin friction lines over the wing surface

The skin friction pattern shows the structure of the laminar separation bubble in the sep-
arated flow. The skin friction lines over the wing result from the near-wake vorticity field,
with patterns associated with unsteady and steady coherent structures. For instance, swirl
patterns near the wing tip are associated with the three-dimensionality from the tip vor-
tex, observed in experiments and computations [WB80a, ZHA20b]. Moreover, some regions
which we here call as sources appear on the skin friction field where near-wake vortices ex-
ert stronger loads over the wing and develop wake shedding, these regions are marked with
blue circles in figure 3.24, where we see the effect of wing taper over the wing surface for

representative cases.

Flow separation is 2-D near the symmetry plane for untapered wings, as shown in the

top-left of figure 3.24, with upstream flow over a large portion of the suction side, between
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Figure 3.23: Classification map of laminar wakes over tapered wings with (a-c) sAR = 1
and (d-f) 2. Black dashed lines mark transition from steady to unsteady flows. (g-k) Five
distinct wake patterns are shown for sAR = 2 wings visualized with time-averaged Q = 1 in

gray and instantaneous @’ = 0.2 colored by .
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LE and TE. Closer to the wing tip the flow is attached, with a strong spanwise flow, and a
swirl region where the tip vortex is found. With wing taper, as LE is swept backward, LE
vortex is strengthened. This breaks the 2-D pattern near the root, with a strong spanwise
component in that region. The skin friction source moves towards the quarter-span with
the decrease in ¢, as shown by blue circles in figure 3.24. Near the wing tip, the wing taper
suppresses the swirl formation for 6 < 0.50, as ¢ reduces, exhibiting dominance of the

spanwise flow component near the wing tip.

Highly swept wings with Apg = 40° exhibit a distinct pattern with wing taper moving
the source from the tip towards the quarter-span, as shown in the bottom row of figure 3.24.
For untapered wings with high sweep angles, the LE attached flow has a strong spanwise flow
towards the tip at the separation line. The reversed flow is directed in the spanwise direction
towards the wing root. This is associated with the ram-horn vortices that form around highly
swept wings developing from the root LE and propagating as streamwise structures in the

wake, as observed by [ZHA20a] and [BHH22].

For highly swept and tapered wings, the skin friction field at the LE is altered by the
proximity of the TE effects. Flow is observed to arise from the skin friction source near the
quarter-span. The root-directed spanwise component is weakened near the tip for 6 = 0.50,
with the appearance of spanwise flow from quarter-span towards the tip for 6 = 0.27. This
flow appears as the skin friction source moves from the wing tip towards the quarter-span
at the TE, exhibiting a swirl pattern near the wing root. This behavior suggests that wake

shedding occurs centered at the quarter-span region.

3.5.3 Tapered wings with straight LE and forward-swept TE

Let us take a closer look at the effect of wing taper for straight LE wings with forward-
swept TE, as it allows us to isolate the Arg effect on the wake dynamics. For tapered
wings with A = 0.27,0.5,0.7, and 1, the planforms we study in this section have Atg =

—30°, —18.4°, —10°, and 0°, respectively. The negative Arg indicates a forward sweep. The
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() A=1,App = 0° A= 0.27, App = —30° (®)

Figure 3.25: (a) Isosurfaces of flow fields around tapered wings with sAR = 2, Aig = 0°,
A = 027 and 1, o = 14° and 22°. Time-averaged () = 1 isosurface is shown in gray.
Instantaneous @' = 0.2 isosurface is shown colored by /. (b) Spanwise distribution of ||u’||,
for different A for App = 0° wings. (c¢) Spatial-temporal (top) and PSD (bottom) of u,
distribution over the spanwise direction from probes located at (z,y)/c = (3, —0.5) for the

A =0.27 and 1 tapered wings at a = 22° shown above.
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LE is fixed with Apg = 0°. For such wings, taper causes the wake shedding to concentrate

near the root region, as shown in figure 3.25(a).

Tapered wings have a smaller tip chord length. This weakens the tip vortices and de-
creases its length in the streamwise direction, which alleviates the inboard downwash over
the wing. Such tip vortex attenuation and the aforementioned concentration of shedding
over the root region are almost independent of the angle of attack, with only minor differ-
ences observed between the flows over tapered wings at @ = 14° and 22°. The influence of
the incidence angle appears on the formation of secondary vortices near the wing tip. For
untapered wings at high incidence angle, the appearance of a secondary tip vortex emerging
from the LE is known [DM17, ZHA20b]. For the tapered wings shown herein, at o = 22°,
there is also a secondary steady vortex that emerges from the TE near the wing tip region.
This structure is slanted towards the root region, suggesting that perturbations arising from

the TE can be advected through this vortex towards the downstream wing root region.

To gain further insights on the wake unsteadiness characteristics, we study the unsteady
flow behavior over the wingspan using probe measurements of velocity fluctuations over
xz/c € [3,4], y/c € [-1.5,0.5]. The =/c location is arbitrary and does not affect significantly
the results. The y/c range encompasses the region where vortical structures appear. Over
this region, we probe the norm of the root-mean-square (RMS) of the velocity, ||u’||2. Such
measurement is used as a metric to represent a spanwise distribution of flow unsteadiness,

as shown in figure 3.25(b).

By examining at the spanwise ||u’||2 distribution in figure 3.25(b) for untapered wings
(blue), we notice that the flow unsteadiness peaks at z/c =~ 0.5 and decays towards the wing
tip, for both angles of attack. For tapered wings, the spanwise ||u’||s curves are independent
of the taper ratio for A < 0.7. For such wings, taper yields an attenuation of the ||u’[|s peak.
The peak of |[u’[|; also moves towards z/c = 0, showing a concentration of unsteadiness

towards the wing root of these tapered wings.

We further characterize the effect of taper by analyzing the spatial-temporal distribution
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of u, from probes located at (z,y)/c = (3, —0.5) over the spanwise direction, as it reveals
how wing taper affects the shedding behavior. Herein, temporal frequency is characterized
through the Strouhal number defined as St = f(csina/Uy,), where f is the frequency. For
comparison, the wake spectra for the flow over an untapered wing is shown on the left of
figure 3.25(c). For this wing, there is a narrow peak of oscillations at St ~ 0.14. The wake
spectra is clean with a vortex shedding pattern comprised of spanwise-dominated vorticity
near the root, forming hairpin vortices and a steady streamwise vortex at the wing tip. For
tapered wing, the spectra is broadband as a result of the mixing of streamwise and spanwise
vortices near the wing root. Even though the wake exhibits more mixing, the spanwise
structures remain dominant, being related to the PSD peak at St ~ 0.13. We note that
the PSD peak occurs at a lower St than the one observed for the untapered wing, as the
flow oscillations that populate the downstream wake arise from the root region of the wing,

where the chord length is enlarged.

3.5.4 Tapered wings with backward-swept LE and straight TE

Next, let us analyze the taper effects of wings with a fixed straight TE and backward-swept
TE, to understand and separate the effects of the A g on the global wake. For such wings
with A = 0.27,0.5,0.7, and 1, the planforms have Ay = 30°,18.4°,10°, and 0°, respectively.
The positive Apg indicates backward sweep. The TE is fixed with Atg = 0°. For such wings,
taper yields an opposite effect on the wake characteristics, when compared those discussed
in section 3.5.3. Herein, taper causes the wake unsteadiness to move towards the wing tip,

as shown in figure 3.26(a).

Concurrently, the tip vortex weakens for tapered wings with the shortened c;,, which
alleviates of the inboard downwash near the tip, similar to what was observed for the wings
in section 3.5.3. This increases the effective angle of attack near the tip and allows for the
flow to detach from the wing surface and form wake shedding structures near z/c =~ 1, as

shown in figure 3.26(a). We quantify the effect of wing taper on flow unsteadiness through
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() A= 07, A = 10° A =027, AL = 30° (®)

a = 14°

Figure 3.26: Isosurfaces of flow fields around tapered wings with sAR = 2, Arg = 0°,
A = 027 and 0.7, @ = 14° and 22°. Time-averaged Q = 1 isosurface is shown in gray.
Instantaneous @' = 0.2 isosurface is shown colored by /. (b) Spanwise distribution of ||u’||5
for different A for App = 0° wings. (c) Spatial-temporal (top) and PSD (bottom) of u,
distribution over the spanwise direction from probes located at (z,y)/c = (3, —0.5) for the

A = 0.27 and 0.7 tapered wings at @ = 22° shown above.
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the wingspan distribution of ||u’||2, as shown in figure 3.26(b). For both angles of attack,
taper affects the wake shedding distribution over the wingspan. For A = 0.27 (purple), at
a = 22° the peak of ||u’||y appears near the quarter-span at z/c ~ 1.25, with a gradual

transition towards z/c ~ 0.5 from A = 0.27 to 1.

As seen in figure 3.26(b), tapered wings with forward-swept LE and straight TE exhibit
unsteadiness over a larger spanwise length than untapered wings. For instance, let us observe
the spanwise ||u’[|s distribution for wings at o = 22°. For the untapered wing (blue),
u’ > 0.02 over 0 < z/¢ < 1, which is the region where significant unsteady wake structures
appear. Now, for the tapered wing with A = 0.27, u’ > 0.02 over 0 < z/c¢ < 1.6, hence large

unsteady structures can be observed over a larger spanwise portion of the wake.

The spatial-temporal distribution of w, over the spanwise direction also shows that the
wake of backward-swept LE and straight LE tapered wings exhibits 3-D vortical structures
that result in a broadband wake spectrum, as shown in figure 3.26(c). The wake, however,
is mainly dominated by large quasi-2-D spanwise aligned vortex rolls observed for all taper
ratios. For A = (.27, as unsteadiness appears over a larger portion of the wingspan, the
stronger shedding structures are hairpin-like vortices that appear between 0.5 < z/c < 1.5,

as shown on the right of figure 3.26(c).

Wing taper affects the tip vortex, which becomes consistently smaller than the tip vortex
around untapered wings, as shown in figure 3.27(a). Tip vortices have high importance in
terms of the aerodynamic characteristics of the wing [FK79, GA91, DRL96, BLM04, TC09,
ZHA20b, DCM20, TY21, TY22] and, in the case of tapered wings, due to the small ¢, tip
vortices are attenuated, as a result of the reduced pressure differences between upper and
lower side of the wing near the tip. Beyond that, even for wings with the same A, the tip
vortex behavior can be shifted in z-direction depending on how the wing is tapered, whether

it has a backward-swept LE or a forward-swept TE, as shown in figure 3.27(b,c).

We can observe how wing taper affects the strength of the tip vortex by analyzing the

w, near the tip, as shown in figure 3.27(a-c). The isosurfaces of @, and the contour lines at
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Figure 3.27: Streamwise circulation of tip vortex around (a) an untapered wing and tapered
wings with A = 0.27 with (b) straight LE and forward-swept TE and (c¢) backward-swept
LE and straight LE. Flow field visualized with grey-colored isosurfaces of w, = —2 and 2-D
slices with isolines of @, at specific z/c locations. The magnitude of |I',| computed for the

isocontour of (d) w, = —2 for tapered swept wings with different planform configurations.
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representative x/c locations show the decay of vorticity magnitude for tapered wings with
A = 0.5. However, the effect of taper is not the same for both wings, even though they
share the same taper ratio. This difference can be quantified as we compute the streamwise
circulation I' = [, = u-dl. Here, C is the isocontour of @, = —2, as shown in figure 3.27(d).

The choice of @, level is carefully chosen to isolate the tip vortex.

The tip vortex diffuses downstream of the wing, which makes the |I',| profiles to decay
slowly [ESS18, ZHA20b]. In general, for tapered wings the reduction in ¢, is the main cause
of the tip vortex weakening, thus the |I';| circulation decays with A\ at any distance from the
wing tip. The circulation |I';| further reveals how different types of wing taper can affect
the of the tip vortex, as shown in figure 3.27(d). For A = 0.5, |I';| is higher the straight TE
tapered wing at any distance from the wing. For A = 0.27, however, the taper ratio is so
low that the effects of LE and TE sweep are minor on the tip vortex and |I';| distribution is

similar for both wings.

3.5.5 Tapered wings with high LE sweep angles

Let us also examine how taper affects wings with high LE sweep. For the swept wings
discussed herein, with Apg > 30°, wake oscillations are strongly attenuated. For laminar
flows over untapered wings with high sweep angles at moderate angles of attack, the wake
becomes steady, while at high angles of attack, unsteadiness may develop in the wing tip
region [ZHA20a, RYT23]. For highly swept and tapered wings, the flow exhibits wake

shedding for small A, as shown in figure 3.28(a).

Here, we analyze wings with a fixed Apg = 40°, while the TE is swept with Atg =
10°,21.6°,30°, and 40° for A = 0.27,0.5,0.7, and 1, respectively. The onset of shedding
for highly swept and tapered wings results from the distinct effects of Apg and Arg. For
the present tapered swept wings, the vortical structures emerging from the TE promote
unsteadiness in the wake near the wing tip. For lower taper ratios, wings have a low Arg,

which causes wake oscillation to appear and become large toward the root. Such effects show
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(a) A= 0.7, Apg = 30° A= 0.27, A = 10° (b)
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Figure 3.28: Isosurfaces of flow fields around tapered swept wings with sAR = 2, Apg = 40°,
A = 027 and 0.7, @ = 18° and 22°. Time-averaged Q = 1 isosurface is shown in gray.
Instantaneous @' = 0.2 isosurface is shown colored by /. (b) Spanwise distribution of ||u’||5
for different A for App = 0° wings. (c¢) Spatial-temporal (top) and PSD (bottom) of wu,
distribution over the spanwise direction from probes located at (z,y)/c = (3, —0.5) for the

A =0.27 and 0.7 tapered wings at @ = 22° shown above.
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that while the high Apg has the effect of stabilizing wake oscillations for untapered wings,

the combination of wing taper and sweep can promote wake unsteadiness.

For instance, at a = 18° the wake is steady for A = 0.7 with long steady streamwise
vortices developing from both LE and TE. At A = 0.5, unsteadiness appears with vortex
rolls at the wing tip, with wake shedding appearing for A = 0.27. We quantify the wing
taper effect in figure 3.28(b). For instance, for the wings with A > 0.7 at a = 18°, the flow is
steady and ||u’[|s is negligible in the wake. At o = 22°, ||u'||2 is small for untapered wings,
increasing considerably in magnitude and spanwise length as the taper ratio decreases. For
highly swept tapered wings, the flow fluctuations appear at the tip, further appearing over

the midspan for the lower taper ratios.

The unsteady vortices exhibited in the wakes of tapered wings with high LE sweep angles
behave as vortex shedding structures, as shown by the probed u,, in the wake in figure 3.28(c).
For A = 0.7, the vortices appear as a consistent oscillation near the wing tip. For A = 0.27,
the wake is dominated by spanwise-aligned roll structures that occupy a large portion of the
wingspan. As these structures develop from the wingspan region near the wing tip, which
has a reduced chord length, their frequency St ~ 0.15 is slightly higher than the shedding

frequency of untapered wings.

We also present the effect of wing taper on the wake unsteadiness for other wing geome-
tries, as shown in figure 3.29. The results show how wings with low Apg, as shown in figure
3.29(a) can concentrate flow oscillations near the root plane, while the opposite happens for
tapered wings with backward-swept LE and unswept TE, shown in figure 3.29(b). Over such
wings, unsteady vortical structures are advected towards the wing tip region. For wings with
a high Apg, as shown in figure 3.29(c), the wing taper increases the magnitude of flow un-
steadiness near the wing tip and vortex shedding emerges near the wing tip. The magnitude
of wake oscillations increases in magnitude towards the midspan for lower A. In the next

section, we explore how these different wake patterns affect the stall region over the wing.
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Figure 3.29: Effect of wing taper on flow unsteadiness over wingspan for sAR = 2 wings at

a = 14° with low (a) Apg = 10°, (b) unswept TE, and (¢) Apg = 40°.
3.5.6 Aerodynamic loads and force elements

The difference in tapered wing planforms results in a variety of wake patterns that further
affect the aerodynamic forces over the wing and their distribution over the wingspan. Herein,
we report the aerodynamic forces through their lift and drag coefficients defined as

F, F,

CL=1—— d Cp=+—7—
r TpU2 be o P 1pU2bc

(3.2)

where I, and F), are the  and y components, respectively, of the viscous and pressure forces
integrated over the wing surface. For the aerodynamic forces presented in figure 3.30, the
r-axis is chosen to be the A/, as this is the aerodynamic center of the wing, traditionally
used in aeronautics and aircraft design to represent wing sweep for tapered wings [And10].
From figure 3.31 it is challenging to identify a trend for the effect of wing taper and sweep,
although some observations can be made. The wings with high C}. are the untapered and
unswept wings and the tapered wings with high A./4. The wings with lower C'1, appear as

the tapered wings with low A/, and the highly swept and untapered wings.

For the tapered wings with 0° < A,/ < 40° conclusions with respect to the overall lift
can be misleading. We note, however, a trend on C to decrease with the increase in A, /4, A8

shown in figure 3.31(b). Wings with low A./4 exhibit a higher overall Cp than swept wings.
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Figure 3.30: Time-averaged aerodynamic force coefficients: (a) Cp,, (b) Cp, and (¢) Cp,/Ch,
for wings with sAR = 2, 0.27 < A < 1, with various sweep angles at a = 18°. Light-gray

arrows show the trend of decreasing Cp and increasing C,/Cp with A, /4

In addition, wings with high A,/ exhibit a similar low Cp for all \. This affects the m
results shown in figure 3.31(¢). The aerodynamic performance of the wing increases with
Ac/s. The wings with higher m are the tapered wings with the lowest A and high A, /4.
This enforces the idea that a combination of taper and sweep is beneficial to the aerodynamic

performance of the wing in post-stall low conditions.

To further understand the effect of taper and sweep on the aerodynamic forces, we present
the time-averaged C, and m for the the representative wings discussed in sections 3.5.3,
3.5.4, and 3.5.5, as shown in figure 3.31. The blue symbols present the aecrodynamic loads for
tapered wings with straight LE and forward-swept TE. The red symbols show the results for
tapered wings with backward-swept LE and straight TE, while the yellow symbols represent

tapered wings with Apg = 40°.

The effect of wing taper in the aerodynamic loads is strongly dependent on how the
wing is tapered. Whether it has a LE or a TE sweep is paramount to its overall lift and
aerodynamic performance. Let us start from the untapered and unswept wings, marked by

blue downward-pointing triangles at A = 1. At each angle of attack, for lower taper ratios,
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Figure 3.31: Time-averaged lift and lift-to-drag coefficients, C}, and C1/Cp, respectively,

for sAR = 2 tapered wings with 0.27 < A < 1 at 14° < o < 22°. Blue symbols for wings

with straight LE and forward-swept TE, red symbols for wings with backward-swept LE and

straight TE and yellow symbols for tapered wings with Apg = 40°.
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Cp and O}, /Cp are higher for tapered wings with backward-swept LE and straight TE than

that of tapered wings with straight LE and forward-swept TE.

These results suggest that the backward-swept LE enhances the aerodynamic efficiency
of the wing in post-stall laminar flow conditions. Untapered swept wings, however, present
a lower Cp for all angles of attack. It is the combination of a high LE sweep with wing
taper that causes C, to increase, as seen by the yellow symbols in figure 3.31. In general,
the aerodynamic performance m of tapered wings with high LE sweep and lower taper
ratios is also higher than that of other wing planforms. This shows that the combination of

wing taper and sweep can be beneficial for laminar separated flows.

Moreover, we analyze the effect of wing taper on the sectional lift coefficients C}, as shown
in figure 3.32. The larger contribution to the overall lift comes from the wing root up to
the quarter-span at b/2 for all wings shown herein. For tapered wings with straight LE and
forward-swept TE, shown in figure 3.32(a), the contribution to lift from the root for A = 0.5
and 0.7 increases. For A = 0.27, the lift decreases considerably over the entire wingspan.
For tapered wings with backward-swept LE and straight TE, shown in figure 3.32(b), the
lift contribution from tip decreases considerably, while the lift from the root increases for

tapered wings.

For highly swept wings, with Apg > 40°, the largest contribution of lift comes from the
wing root, decreasing over the wingspan towards the tip. For taper ratios A = 0.7 and 0.5,
lift increases mainly near the root when compared to the untapered wing load distribution.
For wings with A = 0.27, the effect of wing taper is to increase the overall contribution of
lift over the entire wingspan. For this wing, the increase in lift near the wing root peaks at
z/c =~ 0.2. The overall increase in lift is also observed at the tip, supported by the emergence

of unsteady shedding near the wing tip.

To further understand how wing taper affects the lift distribution over the wingspan,
we use the force element analysis of [Cha92] to identify flow structures exerting aerody-

namic loads over the wing. Many other approaches have derived force elements in flows
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Figure 3.32: Time-averaged lift coefficients C; distribution over the wingspan for wings with

SAR =2, a =22° and 0.27 < X < 1 for wings with Apg = 0°, Arg = 0°, and Apg = 40°.

through variational approach [QN83, PSN00], reciprocal theorem [Magl1], vortex force maps
[LW18, LZG20], and force partition [MM21a, MM21b]. Force elements have provided in-
depth insights on the near-wake structures and their role in the lift and drag support over

impulsively started finite plates [LHC12] and wings [ZHA20b, ZT22, ZSB22].

To perform this analysis, we define an auxiliary potential with boundary condition of
—n - V¢; = n - e; along the surface of the wing, where ¢ is the auxiliary potential, n is
the unit wall normal vector, and e; is normal vectors in the ith—direction. With the inner
product of the Navier-Stokes equations with V¢ and performing an integral over the fluid

domain, we can express the force exerted in the i-th direction as

1
F,;:/wxu-ngidV—l——/wxn-(ngﬁH—ei)dS, (3.3)
1% Re /g

where the first integral represents the volume force elements and the second integral term
is comprised of the surface force elements. We illustrate the lift elements by the Hadamard
product of the V¢; and the Lamb vector (wxu). For low-Reynolds number flows, the volume
elements dominate the contribution to the total force exerted over the wing. Furthermore,

due to the nature of the potential velocity, the lift elements are mainly found near the wing.

To demonstrate how wing taper affects the volumetric contribution to lift, we present
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Figure 3.33: Lift elements around tapered wings with sAR = 2 at a = 22° with (a)
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the lift elements on isosurfaces of @ = 2 around wings with SAR = 2 and o = 22° with
three distinct planforms in figure 3.33. The with-colored contours away from the wing show
that the main contribution the volume lift elements comes from the near-wake structures.
Furthermore, sliced visualizations for the lift element contours are shown at z/c = 0.2, 1.0,
and 1.6 to highlight the lift contribution over the wingspan. We observe that the pressure

side contribution to lift is negative, while the suction side is positive for all wings shown.

For the untapered wing, seen in figure 3.33(a), positive lift elements appear distant from
the wing, while approaching the wing surface and becoming thicker as we approach the wing
tip region. This explains the small increase in C; over the z/c seen for the untapered wing
in figure 3.32. For the wings with Ay = 0° and Atg < 30° for 6 = 0.27, shown in figure
3.33(b), the lift elements appear thinner over the suction side and far from the wing, showing
that the near-wake contribution to lift is smaller with such planform when compared to the
untapered wing, as was previously observed in figures 3.31 and 3.32. For the wing with
backward-swept LE, the lift element contours appear thicker over the suction side near the
wing root, in agreement with the increase in C observed in figure 3.32 for this planform.
The lift elements become thinner and move away from the wing near the wing tip, showing
that the main contribution to the overall lift comes from the near-wake structures at the

root.

3.5.7 Spectral analysis of lift coefficient

The lift spectrum is affected by wing taper and sweep as these parameters define where
unsteadiness appears over the wing. As the emergence of vortical structures is shifted over
the wingspan for different wing planforms, the vortex shedding frequency changes as well as
the lift coefficient spectra. Let us focus on the spectral content of aerodynamic loads over
sAR = 2 wings, as shown in figure 3.34, with the lift coefficients power spectrum density
(PSD) C;. for wings at 14° < o < 22° and Apg = 0° and 18.4°. The dominant lift oscillations

are associated with the vortex shedding frequency, which we characterized by the Strouhal
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Figure 3.34: Power spectrum density of lift coefficients, Cy, for wings with sAR = 2,

0.27 < A <1.00, 14° < a < 22° and Apg = 0° and 18.4°.
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number defined as
w csin o

= — 4
St or U. (3.4)

where w is the temporal frequency. For laminar flows around low-aspect-ratio finite wings,
liftt PSD is characterized by a single narrow peak at a dominant frequency [ZHA20b]. At
high incidence, oscillations at other frequencies may appear with amplitudes that are an

order of magnitude lower.

The frequency peak shifts towards lower St for A < 0.50. This effect is stronger at the
lower angles of attack. This occurs as the vortex shedding develops near the wing root, where
it is slowed by the larger chord length in that region for tapered wings. For instance, for
wings with Apg = 0°, TE is swept forward with A, concentrating wake shedding at the root,
where .0t has the larger chord length. As a result, there is a gradual transition towards
lower frequency (1, with the decrease in A, as shown in figure 3.34 (a, b, ¢). Furthermore, for
wings with Apg = 18.4° in figure 3.34(d, e, f), there is a peak lift frequency decrease with A,
as the shedding moves from the tip towards the quarter-span and the root. The magnitude
of lift oscillations also increases considerably for A < 0.50 (yellow and purple curves), when
the TE is unswept. The present analysis shows that the dominant spectral behavior of the
wing is affected by the wing taper and sweep, suggesting that the frequency of dominant
perturbations might also be affected by the wing planform geometry parameters. In the next
section, we provide discussions on the effect of wing taper and sweep on optimal harmonic

perturbations through the lens of resolvent analysis.

The present discussion paves the way for the next chapters of this manuscript. We have
shown the diverse wake features observed on flows around finite wings, considering the effects
of wing taper and sweep. Now, we will deepen our understanding of these effects using vortex
dynamics and resolvent analysis. Our first effort, shown in the following chapter, is to isolate
the effects of the wing sweep by studying spanwise periodic swept wings. These wings have
no effect of wing tip and will allow us to understand how the sole effect of sweep affects

the wake characteristics of post-stall flows. For this effort, we will combine direct numerical
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simulations and biglobal resolvent analysis.
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CHAPTER 4

Wing sweep effects

We reveal the sole effects of sweep on the wake dynamics around NACA 0015 wings at high
angles of attack using direct numerical simulations and resolvent analysis. The influence
of sweep on the wake dynamics is considered for sweep angles from 0° to 45° and angles of
attack from 16° to 30° for a spanwise periodic wing at a chord-based Reynolds number of 400
and a Mach number of 0.1. Wing sweep affects the wake dynamics, especially in terms of sta-
bility and spanwise fluctuations with implications for the development of three-dimensional
wakes. We observe that wing sweep attenuates spanwise fluctuations. Even as the sweep
angle influences the wake, force, and pressure coefficients can be collapsed for low angles of
attack when examined in wall-normal and wingspan-normal independent flow components.
Some small deviations at high sweep and incidence angles are attributed to vortical wake
structures that impose secondary aerodynamic loads, revealed through the force element
analysis. Furthermore, we conduct global resolvent analysis to uncover oblique modes with
high disturbance amplification. The resolvent analysis also reveals the presence of wavemak-
ers in the shear-dominated region associated with the emergence of three-dimensional wakes
at high angles of attack. For flows at high sweep angles, the optimal convection speed of
the response modes is shown to be faster than the optimal wavemakers speed suggesting a
mechanism for the attenuation of perturbations. The present findings serve as a fundamental

stepping stone to understanding separated flows at higher Reynolds numbers.
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4.1 Motivation

Understanding the dynamics of airfoil wakes is critically important for the design of aircraft.
Moreover, many nature-inspired engineering applications can benefit from the study of the
complex fluid dynamics observed, for instance, in the flight of common swifts (Apus Apus),
where wings are swept [VSP04]. The dynamics of wakes have been studied extensively to
reveal the mechanisms that trigger flow separation and three-dimensionality over unswept
wings [And10, TC09, ZHA20b]. The wake dynamics of swept wings, however, have not
received much attention to understanding the effect of sweep on the vortical structures that

emerge at high angles of attack.

Fundamental studies on flow separation have been performed on two-dimensional (2D)
unswept wings. The flow structures emerging in post-stall wakes have been a subject of
research for decades [Gas67, TP82]. In the early work of [Hor68], the behavior of a canonical
laminar boundary layer separation was investigated through theoretical and experimental
approaches. On the numerical side, 2D simulations of flow separation were performed by
[PMR90], establishing a relation among vortex shedding, adverse pressure gradient, and

inviscid shear layer mechanisms.

The characteristics of vortex shedding are related to the geometrical parameters of the
wing and physical parameters of the flow, including the angle of attack and the Reynolds
number [HWJ01, YSKO09]. The Reynolds number is important for discussing the transition on
vortex shedding patterns in 2D laminar flows [WR88, RCO18]. For the analysis of flow fields
at the Reynolds number where such transitions occur, experiments and computations have
shown that three-dimensionality emerges as stall cells develop on the suction side [WB80a)].
Numerically, three-dimensionality at high angles of attack can be captured by extending the

wingspan in spanwise periodic simulations [BFP01, HBV03].

Around swept wings at high incidence, vortical structures are affected by the combination

of the streamwise and spanwise flows, where the latter yields a crossflow instability over the
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airfoil [SK16]. The spanwise flow alters the stall characteristics and vortical interactions
in the airfoil wake [HM64]. Laminar flows over swept wings have been examined through
experiments [YHO07] and numerical simulations [MS14, MPH21, ZHA20a, ZT22]. Turbulent
flows over swept wings have also been studied through large eddy simulations [VG19, GV20].
Such efforts, however, have considered finite swept wings, hence the effects of sweep angle

are not independently analyzed from the wing tip effects.

To distinguish the influence of sweep from tip effects, one may consider analyzing a
spanwise periodic swept wing, as in the works of [PBD19], [CGS19], and [PDL20, PDB21],
which revealed stall cells advection during transonic buffet over swept wings. Although the
wake dynamics is influenced by the sweep angle, the flows of swept and unswept wings still
preserve similarities in the chordwise and wall normal flow components through the boundary
layer independence principle [Whi91l, WTK11]. This principle has prompted many studies
in turbulent flow regimes [WTT14, CRS19], although the independence principle for laminar

separated flows remains to be examined.

Analyzing the flow variables on the plane normal to the leading edge, we are able to
identify the collapse of laminar flow characteristics for flows over swept wings at lower angles
of attack, suggesting independence of streamwise and spanwise flow components. When
interaction between them is present, it is not expected that the independence principle
holds. In this study, we call on the force element theory [Cha92] to reveal the flow structures
that exert additional forces on the wing responsible for the departure from the independence
principle.

The presence of spanwise instabilities in the wakes behind swept wings suggests the
existence of self-sustained mechanisms that affect the wake dynamics. For instance, these
mechanisms may be responsible for initiating three-dimensionality at the higher incidence
and reducing spanwise oscillations around swept wings. This flow complexity motivates the
use of modal analysis [TBD17, THB20] to provide a comprehensive understanding of the

wake dynamics and evolution of disturbances in swept wings.
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Among all modal analysis methods, the resolvent analysis reveals the evolution of per-
turbations excited by optimal harmonic inputs to the flow [TTR93b, F194, JB05]. Resolvent
analysis can be performed with respect to steady (equilibrium) and time-averaged states.
The latter case assumes that the flow is statistically stationary. In such a case, resolvent
analysis can be used to study laminar and turbulent flows, extending the applicability of
resolvent analysis to time-averaged base flows [MS10]. [Jov04b] extended the methodology
to unstable systems and [SB14] discussed the evolution of perturbations over a finite-time
horizon and the modal sensitivity to small changes in the resolvent operator. These ef-

forts enabled the use of resolvent analysis for studying various types of complex fluid flows

[GBR16, STR18, YT19, YBT20, KYT20, LSY21].

For laminar separated flows, resolvent analysis reveals how flow perturbations arise, grow,
and self-sustain in the flow field. For instance, disturbances generated from the vortices at
the flow separation over the wing can grow and develop into wake unsteadiness downstream.
This behavior can be captured by the optimal forcing and response structures, and their
spatial overlap, characterized by wavemakers. Such regions of the flow field act as a source
to the global stability of the flow and are optimal locations for the introduction of self-

sustained perturbations in the flow field [GL07, GCL10, FSS17].

Wavemaker analysis can aid in uncovering mechanisms that sustain flow unsteadiness
in particular flow regions. In the present chapter, we further reveal that optimal response
structures have a lower phase speed than the optimal wavemakers, which explains the at-
tenuation of unsteadiness and three-dimensionality for flows over swept wings. Furthermore,
resolvent analysis predicts the onset of oblique shedding on flows over swept wings, as ob-
served in flows over high-apect-ratio bodies [MS14, MPH21, ZHA20a]. As oblique vortices
are observed in laminar flows over finite-length bodies and unseen over spanwise periodic
bodies, there is an open question on whether sweep angle or the body tip promotes oblique
shedding. In the present chapter, we address this question using revolvent analysis. The

emergence of highly amplified oblique resolvent modes shows that oblique shedding can be
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triggered and sustained over swept wings with an appropriate input.

This chapter aims to study the influence of the sweep angle on the wake dynamics of
laminar flows over swept wings by combining direct numerical simulations and resolvent
analysis. We present the problem setup and the numerical methods in section 4.2. Next, we
characterize the flow over swept wings in section 4.3. We also examine the applicability of the
concepts associated with the boundary layer independence principle for flows with massive
separation and employ the force element theory to identify sources of vortically induced lift
and drag in sections 4.3.1 and 4.3.2. Moreover, we discuss the effects of spanwise flow on the
evolution of perturbations via resolvent analysis in section 4.3.4. The role of wavemakers in

swept wings is also studied in sections 4.3.5. Lastly, we summarize our findings 7.1.3.

4.2 Problem setup

We study laminar separated flows over swept wings with a NACA 0015 airfoil cross-section
for sweep angles 0° < A < 45° and angles of attack 16° < o < 30°. For all cases, we set the
chord-based Reynolds number to Re, = Uy L./v = 400 and the free-stream Mach number
to My = Uy /as = 0.1. Here, Uy is the free-stream velocity, L. is the chord length, v is
the kinematic viscosity and a., is the free-stream speed of sound. We illustrate the present

setup in figure 4.1 with an instantaneous flow field visualized for @ = 30° and A = 15°.

For the present chapter, we consider a NACA 0015 profile with constant chord length
in the (z,y) plane for all angles of attack and sweep, with spanwise periodicity in the z’-

direction. As shown in figure 4.1, the effective chord length is defined as
L, = L. (cos® acos® A + sin® a) <L, (4.1)
and the effective angle of attack is defined as
Qoq = tan™! (tana/ cos A) > « (4.2)
Effective L and a.q are dependent on the sweep angle A and relate to the airfoil geometry
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Figure 4.1: The problem setup. Instantaneous flow over a spanwise periodic NACA 0015
profile at @ = 30° and sweep angle A = 15° visualized with isosurfaces of () criterion colored
by streamwise velocity u,. 2D slice of airfoil in coordinate systems (z,y, z) and (2/,y, 2’),
with 2’ and 2’ perpendicular and parallel to the wingspan, respectively. DNS and resolvent

grids are shown as gray lines in the background.

on the (z/,y) plane.

4.2.1 Direct numerical simulations of spanwise periodic flows

To study the flows over swept NACA 0015 airfoils, we perform direct numerical simula-
tions (DNS) with CharLES, a finite-volume-based compressible flow solver with second- and
third-order accuracies in space and time, respectively [KHN11, BHN17b]. We position the
leading edge of the airfoil at (2'/L., y/L.) = (0,0). The C-shaped computational mesh
extends over (2'/L.,y/L., 2’ /L.) € [—20,25] x [—20,20] x [0,4]. We build the grids with
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Cr Cho Cr Cho Cr Cho Cr Cho
Present 0.690 0.405 0.649 0.391 0.536 0.350 0.384 0.296
[ZHA20a] 0.702 0.405 0.657 0.392 0.547 0.353 0.393 0.301

Table 4.1: Time-averaged lift and drag coefficients (C, and Cp) compared to [ZHA20a] for
laminar separated flow over NACA 0015 airfoils with o« = 20°, A = 0°, 15°, 30°, and 45°.

(min Az, min Ay, min Az)/L. = (0.005, 0.005,0.0625), with mesh refinement near the airfoil
and wake. This yields a mesh with 100,000 to 200,000 cells on the root plane, extruded in
the spanwise direction with equally spaced cell elements. We have verified our computational
setup and validated the results with [ZHA20a]. Our simulations obtained close agreement for
the instantaneous and time-averaged velocity components, skin friction lines, and pressure

coefficients over the wing surface.

We prescribe Dirichlet boundary conditions at the inlet and farfield boundaries as
(107 Uz’ Uy, uZ’vp) = (Poo; Uoo COoSs A7 07 UOO sin AJ poo) ) (4?))

where p is density, p is pressure, u,/, u,, and u, are velocity components in (z’,y,2') di-
rections, respectively, p., is the freestream density and p., is the freestream pressure. On
the airfoil surface, we prescribe the adiabatic no-slip boundary condition. For the out-
flow, a sponge layer [Fre97] is applied over z'/L. € [15,25] with the target state being the
running-averaged flow over 5 acoustic time units. For time integration, a fixed acoustic
Courant-Friedrichs-Lewy (CFL) number of 1 is utilized. We start the simulations with a
uniform flow. The initial transients are flushed out of the computational domain for 80
convective time units, after which statistics are recorded over at least 100 convective time

units.

The current results are carefully validated by examining the lift, drag, and pressure
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coefficients, respectively defined as

Cp=+—2—, =——— and C,=———, 4.4
PoLpuiL TP LpUR L, TaU% 4

where F, and F), are the  and y force components, respectively. The forces for a = 20° are
in close agreement with those reported by [ZHA20a], as shown in table 4.1. The flow fields

were also compared and exhibited agreement validating the current setup.

4.2.2 Biglobal resolvent analysis

To analyze the perturbation dynamics over swept wings we use resolvent analysis, as pre-
sented in section 2.1. Here we consider the flows to be spanwise periodic. The spanwise
periodicity and statistical stationarity allow for ' and f’ to be represented with temporal

and spanwise Fourier modes
[q/(x/a Y, 2/7 t)a f/(xla Y, Z/7 t)] = / / |:(ikz/,w<x/7 y)7 sz/,w(xla y) ei(kZlZliwt)dkz’dw ) (45>

where k., is the spanwise wavenumber, and q, . and sz,#, are the biglobal modes for

spanwise wavenumber k., and temporal frequency w.

We can also incorporate temporal damping into forcing and response modes as [q_, sz,,w]e_ﬁt
through a discounted resolvent operator, where § is a time-discounting parameter [Jov04b,
SB14]. Moreover, the pseudospectral analysis is dependent on the norm [TE05]. In this work,
we use the Chu norm [Chu65] which is incorporated into the resolvent through a similarity
transform Hg — W%HQW_%, where W is the weight matrix that accounts for numerical

quadrature and energy weights.

The weighted resolvent is dependent on the temporal frequency w, spanwise wavenumber
k., and the base flow @ = q(«, A). These parameters define a large parameter space to char-
acterize the effect of sweep angle on the wake dynamics. To facilitate this characterization,
we employ an adjoint-based parametric sensitivity method for w and k., [SB14, FS17]. This
approach is helpful when the parameter space is large as well as to capture the sensitivity of

the resolvent norm to specific geometrical and flow parameters [SS19].
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To perform the resolvent analysis, we construct a discrete linear operator Lg [STC17].
This operator is discretized over a 2D unstructured grid, as shown in figure 4.1, with a
reduced-size spatial domain x/L. € [—10,15] and y/L. € [—10, 10] to alleviate the computa-
tional costs of performing resolvent analysis without affecting the accuracy of the resolvent
modes. The structured DNS base flow solution is transferred to the unstructured grid via
cubic interpolation. We enforce homogeneous Dirichlet boundary conditions for the fluctu-
ating variables p/ and «' and homogeneous Neumann boundary conditions for 7" along the
farfield and airfoil boundaries as well as to all variables at the computational outlet. In

addition, we apply sponges far from airfoil in conjunction with the boundary conditions.

In the present chapter, we construct Lg with m ranging between 150,000 and 200, 000.
The resolvent modes were computed using the randomized resolvent algorithm [RYT20],
sketching the operator with 10 random test vectors weighted by the gradients of the baseflow
(IVoll, IVug ||, [Vl |V, [[Vpl]). The resolvent norm converges to at least 7 significant
digits. For the spectral analysis of Lg, eigenmodes were computed using the Krylov—Schur
method [Ste02] with 128 vectors for the Krylov subspace and tolerance residual of 107!°. The
direct and adjoint linear systems were solved using the MUMPS package. The codes used
to compute the resolvent modes and eigenvalues are part of the ‘Linear Analysis Package’

made available by [SRT22].

4.3 Effect of sweep on wake dynamics

4.3.1 Wake characterization

The wake structures are affected by sweep and incidence angles, as shown by the isosurfaces
of @ colored by the vorticity w, in figure 4.2. For angles of attack a < 20°, the flow is
2D and the wake vortices are aligned with the sweep angle. For a > 26°, the vortical
structures exhibit spanwise oscillations with a transition from 2D to 3D vortex shedding.

At o = 26°, a sinusoidal pattern of oscillations appears in the spanwise direction and, at
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Figure 4.2: Instantaneous flow field visualization with isosurfaces of () criterion colored by

the vorticity component w,. For a > 26°, the wake is 3D. As A increases, the vortices become

slanted with the sweep angle and wake three-dimensionality is reduced for a > 26°.
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A=0° A=15° A =30° A =45°

Figure 4.3: Time-averaged flow field visualization with z—velocity component, @, € [0,0.5],
in grayscale, for 0° < A < 45° and a = 16° and 30°. Red solid contours mark the laminar
separation bubble, with 6 equally distributed isolines of z—velocity component, @, € [0, 0.5].

Crossflow component u, strengthens with a and A.

a = 30°, streamwise vortical structures emerge.

Highly swept wings induce spanwise flows and attenuate wake three-dimensionality as
evident from the flow visualizations. When the sweep angle is A < 15° the wake is similar
to the flow over unswept wings for all angles of attack. The wake is significantly altered
for sweep angles A > 30°, especially at high angles of attack, when spanwise oscillations
are advected by the spanwise flow. For instance, at A = 45° and a = 26°, the spanwise
oscillations are almost suppressed. The attenuation of spanwise fluctuations also occurs for

a = 30°, as we observe a similar effect for A > 30°.

Even though sweep attenuates three-dimensionality, the sustained unsteadiness of the
wake suggests the existence of self-supported mechanisms that yield distinct vortex shed-
ding patterns in swept wings at high incidence angles. We gain further insights into the
separated flows by analyzing the time-averaged flow field contours of streamwise and span-
wise velocities, as seen in figure 4.3. In general, as we increase the sweep angle, the u, = 0

contour line approaches the wing surface. For o = 30°, we also notice a circular @, profile
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appearing in the wake region where the spanwise flow is stronger.

The aerodynamic loads exerted on the wing are also affected by the sweep angle [ZHA20a,
ZT22]. However, it is possible to observe similarities among force characteristics with differ-
ent sweep angles through the independence principle. This leads to the application of proper
scaling factors to collapse aerodynamic properties for a variety of swept wings where adverse

pressure gradients and spanwise fluctuations are negligible [WTK11].

For the present flows, however, the adverse pressure gradients cannot be neglected due
to the massive separation. In figure 4.4, we show that C; and Cp differ for the same « if
we analyze the flow variables in (x,y, z). The coefficients collapse if we consider scaling the
same force coefficients in (2/,y, 2’). Here, the vector-valued variables in (x,y, z) aligned with

x are scaled with cos A and the effective chord length

L, = L. (cos® acos® A + sin® a) 12 < L. (4.6)

c

is used to form the scaled C} and C, coefficients as

F, F,.cos A
cp = y Cp = . 4.7
L lp(Uscos A2 L P Ip(UscosA)2 L (4.7)

where F, cos A = F,/ is the 2’ component of the pressure and viscous forces integrated over
the airfoil surface per unit depth. As shown in figure 4.4(d-f), these scaled coefficients
collapse over the angles of attack. Deviations are noticed only for sweep angles A > 30° at

high angles of attack o > 26°.

The shown scaling can also be applied to the Fage-Johansen Strouhal number in the
(«',y) plane as
w L sin aeq

= ¢ 4.
5 21 Uy cos A (48)

As presented in figure 4.5, the power spectrum density profiles of C for swept wings exhibit
peaks at their characteristic Strouhal number of the vortex shedding and its harmonics.
When the adapted Fage-Johansen Strouhal number St’ is considered, the spectral peaks

collapse at the same frequencies as observed for the unswept wings. For a = 16°, the flow
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Figure 4.4: Time-averaged lift, C, drag, Cp, and coefficient ratio C,/Cp, for all o, A pair of
the present study compared to 2D incompressible results shown by [ZHA20b]. The bottom
row shows the scaled time-averaged coefficients where the flow is analyzed in (2, y, '), and

the results collapse for each «, for all sweep angles.
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Figure 4.5: Scaled lift power spectrum density for (a,c) « = 16° and (b,d) o = 30° at sweep

angles A = 0°, 30°, and 45°. In (c,d) the Fage—Johansen Strouhal number is analyzed in the

(«',y) plane and the dominant and harmonic frequencies for swept wings collapse with the

unswept wings.
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is characterized by a single 2D vortex shedding and the C'} spectra is smooth with distinct
peak values. For a = 30°, the spectra exhibits secondary peaks for A < 30° and is smooth

for A = 45°, when three-dimensionality is attenuated.

We can also similarly normalize the pressure coefficients C,, by considering the Uy, cos A
in place of Uy in equation 4.4. Indeed, large differences in C,, distribution over the wing are
shown in figure 4.6(a,b), however, if we consider the scaled-C),, we reveal that the pressure
distributions collapse for moderate angles of attack, even though these flows exhibit massive
separation, as shown in figure 4.6(c,d). Although we can bring pressure coefficients closer
using C,/ cos? A, we notice some deviations for higher angles of sweep and attack, as observed
for A = 45° and o = 30°. This motivates us to further understand how massively separated
streamwise flow and the strong spanwise flow may impose additional loads over the wing.
These deviations indeed suggest that even when the three-dimensionality is attenuated, the
wake over laminar swept wings can exert additional aerodynamic forces over the wing for

A > 30° and o > 26°.

4.3.2 Force element analysis

To further understand the sources of deviations in the independence principle, we use the
force element theory of [Cha92] to relate the near-body vortical structures to aerodynamic
forces (see description of force element theory in section 3.5.6). Through this method, we
identify lift and drag force elements in the near-wake region of the current low-Reynolds
number flows and analyze the distribution of force elements near the surface as the wing is
swept. This analysis captures the emerging wake structures over swept wings at high angles

of attack that exert nonlinear post-stall forces onto the wing.

We observe that the emergence of these force elements is associated with a departure
from the collapsed force and pressure coefficients. The sweep-angle dependent scaling in
equations 4.7 and 4.8 assumes independence of streamwise and spanwise flow components.

The interaction between them can cause a departure from the collapsed force and pressure
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Figure 4.6: Time-averaged pressure coefficients top C), and bottom C),/ cos® A over the airfoil

surface at (a,c) a = 16° and (b,d) 30°.
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Figure 4.7: Characterization of force elements on swept wings. The symbols refer to:

force elements only near the leading and trailing edges, [] additional equally-spaced small
lift elements, and A large force structures observed on the suction side. On the right, we
show isosurfaces of lift force elements, (w x u)-V¢, € [—0.3,0.3] and isosurfaces of ) values
colored by streamwise velocity component @, with range [0, 1] for the time step with the

highest lift coefficient C for a = 30° and 15° < A < 45°,

coefficients. By using the force element analysis, we uncover near-wake structures that are

responsible for the extra forces at high angles of sweep and attack.

Sweep has a strong influence in limiting the validity of the independence principle at high
angles of incidence and it favors the emergence of additional force elements near the wing
surface. To show this, let us reveal the vortical structures that generate lift (w x u) - V¢, at
the instance when the maximum lift is achieved, as shown in figure 4.7. Drag elements have
similar behavior as the lift and are not shown for brevity. For a < 20°, the force elements
are located near the airfoils leading and trailing edges, in the shear-dominated region of the

flow, along the edge of the laminar separation bubble.
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Additional lift elements appear for higher angles of sweep and attack, as shown in figure
4.7. These lift elements are observed over the final quarter chord of the airfoil on the suction
side, and as the sweep angle increases, they also increase in size. The force elements can
be contrasted with the vortical structures in @) criterion visualization in figure 4.7. As such
coherent structures are present inside the laminar separation bubble, with size and shape
similar to the force elements they can be identified as the lift elements related to the larger

deviations in figure 4.6(c,d).

We observe that sweep affects the coherent structures, time-averaged flow fields, and
aerodynamic loads and, although some similarities are perceived, sweep has a strong in-
fluence on the wake flow downstream at the higher angles of attack. This suggests that
flow perturbations originating near the airfoil in the laminar flows over swept wings can be
related to the features observed in the nonlinear simulations. To further understand how
sweep alters the vortex dynamics we conduct global resolvent analysis to identify the sources

of self-sustained mechanisms near the wing that affect the wake behavior.

4.3.3 Dominant eigenvalues of the linearized operators

The eigenspectrum of the linearized Navier-Stokes operator Lg is comprised of eigenvalues
—iw = —iw, + wj, with growth rate w; and temporal frequency w,. The dominant eigenmode
reveals the spatial structures that can emerge in the flow. We track the dominant eigenvalue
in the complex plane as we increase the spanwise wavenumber k. for each (a,A) pair to
examine if some of these parameters may cause the linear operator to become unstable, as

shown in figure 4.8.

There is a distinct behavior for a < 20° and a > 26°. For the lower angles of attack,
swept wings have a greater growth rate for each k., while for the higher angles of attack,
we observe the opposite trend. For a < 20°, swept wings wakes are close to the stability
threshold as we increase k... On the other hand, for o > 26° unstable modes move into

the stable region as we increase k., for all swept wings. As the linearized operators are
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Figure 4.8: Dominant eigenvalues of Lg for (a) o = 16°, (b) 20°, (c) 26°, and (d) 30°, for
different sweep angles A, and spanwise wavenumbers k,,. St/ and St are the St’ numbers for
growth rate and temporal frequency, respectively. Black solid lines connect the eigenvalues

for the same k...
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unstable for a = 30° and k., &~ 0, small perturbations can be amplified and sustained by the

wavemakers generating the 3D wake flow observed in the numerical simulations.

Even when the modes are unstable, they are close to the stable region in the complex
plane. We keep the same finite time window for resolvent analysis for all angles of sweep
and attack. We find the highest growth rate among all cases to set the discounted resolvent
operator with a finite time shorter than the associated time scale of the largest w;, which
is observed for the unswept wing at o = 30°. For this reason, we use a fixed time window
of t;Us sina/L.cos A = 50 for the discounted resolvent analysis of all angles of attack and

sweep.

4.3.4 Biglobal resolvent analysis of wing sweep effects

To identify the existence of regions susceptible to the growth of perturbations in the flows over
swept wings, we study the effect of sweep using resolvent analysis. Details on the stability
of the linear operators and the usage of time-discounting are provided in the section 4.3.3.
We characterize the present flows through the dominant singular value oy of the resolvent
operator and its corresponding singular vectors g_, ., and sz“w. The influence of sweep on
the vortex dynamics in the wake is analyzed through the forcing and response modes in
figure 4.9. The shown modal structures highlight the regions of the flow field which are more

sensitive and responsive to the growth of perturbations.

Forcing modes are more localized than response modes, which are supported in the shear-
dominated region of the flow, where perturbations can be highly amplified. On the other
hand, the response modes are seen in the wake. For swept wings, the response modes are
deformed spatially towards the airfoil surface and, for a = 30°, we notice the emergence
of a characteristic responsive region near the airfoil leading edge. Such response structures
appear over swept wings only at high angles of attack, as seen in figure 4.9 (top). We observe
the contours of the magnitude of modal streamwise velocity component |u,| to reveal the

regions of the flow that have more responsive to introduced perturbations. We visualize
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Figure 4.9: Forcing (in red boxes) and response (in blue boxes) contours for the
|uz]/||tz]lo € [0.1,1] in blue-green-red scale at the largest oy with k,, = 0 at A = 0°
and 45°. Forcing modes extend in the wake and response modes become closer to the airfoil
in swept wings. Isosurfaces of dominant resolvent gain oy in the A—St'~k_, space for @ = 16°

to 30°.
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Figure 4.10: The leading resolvent gain contours at a = 20° and 30° for 0° < A < 45°. The

dash-dotted slopes represent spanwise convection speeds. Green line exhibits the convection

speed prediction with 0.25U, tan A.

similar contours for the forcing counterpart and see that the modes extend slightly into the
wake, over the laminar separation bubble. This behavior reveals that the flow over swept

wings can amplify optimal disturbances closer to the airfoil suction side, which can be used

to alter the formation of the laminar separation bubble.

Furthermore, the present resolvent analysis predicts the formation of an oblique vortex
shedding, as observed in [MPH21] and [ZHA20a], even though the present study is performed
on spanwise periodic wings. Previous works have shown that oblique coherent structures
become spatially periodic for large aspect ratio wings, making spanwise periodic analysis
valid to study such three-dimensional structures. Through resolvent analysis, we can explain

how oblique coherent structures are advected by the flow stream using the spatiotemporal

frequencies of the optimal response modes.

The frequency at maximum o; for each spanwise wavenumber is a function of the sweep

angle and is characterized by the convection speed of the optimal oblique modes. We compute

this phase speed as ¢ = dw/dk,s, the slope of the optimal response frequencies for each
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spanwise wavenumber. This value is a function of A and k,, [PBD19, PDB21, HT21]. For
flow regimes studied in the present chapter, f ~ 0.25U, tan A gives a reasonable prediction
for the frequency of the maximum o; for each spanwise wavenumber and sweep angle for all
angles of incidence, as shown in figure 4.10. This function can be used to predict the optimal
forcing and response modes for laminar separated flows over swept wings. Additionally, the
mode shapes of the optimal forcing and response are similar for low k... The present results
reveal the optimal actuation location and response as well as the spatiotemporal behavior

of the flow perturbations over laminar separated flows on swept wings.

In general, oblique modes are the most amplified optimal disturbances for all swept wings.
The effect of sweep on o7, however, depends on the angle of attack, as shown in figure 4.9
and summarized in table 4.11. For o < 20°, swept wings have higher amplification than
unswept wings. This is a distinct behavior when compared to o > 26°, in which swept wings
have a lower resolvent norm than unswept wings. This behavior suggests that it is more

challenging to perturb highly swept wings at high angles of attack.

The spatial and temporal frequency of the maximum resolvent gain max(o;) in the St'—
k.. space depends on the sweep angle, as shown in table 4.11. For unswept wings, the largest
resolvent gain o, is found for the 2D setting of k., = 0 associated with the temporal frequency
of the characteristic vortex shedding. However, both k., and St’ of the optimal disturbances
max(oq) increase with the sweep angle. Thus, the 3D oblique modal structures are not only
predicted by the present resolvent analysis but also found to be the most amplified flow

mechanism in swept wings, as shown in figure 4.12.

Although all flows analyzed in this chapter are spanwise periodic, and oblique shedding
is absent in the DNS, the large oy in k,, > 0 modes suggest that the spanwise flow over
swept wings supports the formation and shedding of 3D oblique vortices in infinite wings.
To analyze the spatial behavior of oblique modes, let us focus on the resolvent analysis at
the angle of attack o = 20° and sweep angle A = 45° as seen in figure 4.12. As noticed

at k, = 0, the 2D forcing and response modes are aligned with the wingspan, however, the
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Figure 4.11: The maximum leading resolvent gain max(o;) for each a;, A pair. On the right,

we plot max(oq) in St'—k, space colored in blue scale with respect to the minimum and

maximum o for each .
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Figure 4.12: Forcing (f, in red boxes) and response (¢, in blue boxes) modes isosurfaces with
y—velocity components /|4yl € £0.2 in red-blue color scale for a = 20° and A = 45°.
Wingspan length is 10 L.. Forcing and response modes are associated with the largest

resolvent gain for each k., as shown in the o7 contours over St'-k.. plane.
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maximum resolvent gain oy in the St'~k,, for this flow is found at k., = 0.37 and St = 0.19,
where modes are oblique with respect to the wingspan. For this reason, the flow over swept
wings has a higher propensity to develop oblique shedding when compared to the flow over
unswept wings and such characteristic is revealed through resolvent analysis to be associated

with the sweep angle.

The flow mechanisms that are responsible for oblique shedding and the attenuation of
the spanwise oscillations for swept wings were described as the growth of response modes
towards the airfoil surface and the extension of forcing modes into the wake and over the
laminar separation bubble. This phenomenon also creates an overlapping region of the flow
where both forcing and response modes are supported. This overlap of forcing and response
structures is more prominent at the higher sweep angles, although it is also present in unswept
wings. The overlap of forcing and response modes and their associated resolvent gain can
both be relevant to characterize how the flow over swept wings at high incidence gives rise

to perturbations on the flow as we discuss such phenomena through the lens of wavemakers.

4.3.5 Biglobal resolvent wavemakers

Wavemakers have been described as regions of the flow field characterized by both high
sensitivity and responsiveness to perturbation growth [GL07, GCL10, FSS17]. Such regions
are optimal for the introduction of self-sustained instabilities, acting as the source of global
instabilities of the system, and motivating the analysis of structural sensitivity of the modal

forcing and response structures.

In global stability analysis, wavemakers are generally derived with direct and adjoint
modes. Here, we quantify the strength of the wavemakers with the inner product of the
forcing and response modes <(jkz,,w, sz“w} and visualize the corresponding wavemaker modes
with their Hadamard product. Wavemaker modes exhibit a higher magnitude downstream
of the airfoil, as shown in figure 4.13, in the region where 3D flow develops for a = 30°.

Thus, the emergence of strong wavemakers near the leading edge and over the separation
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Figure 4.13: Contours of £ = (oy/max(01))(g, fi), the inner product between forcing and
response modes, scaled by the ratio of o7 and the maximum o, for each o. Green line shows
the convection speed ¢ = dw/dk,/ for the optimal wavemakers. Spatial modes shown by the
Hadamard product of ¢; and fi, in magnitude, normalized by their maximum value, and

colored in purple scale.

bubble highlights the presence of self-sustained oscillations in the flow field. As the sweep
angle tends to empower forcing and response modes overlap, wavemakers tend to be spatially

wider in swept wings.

We evaluate the strength of wavemakers in the A—St'~k,, space with the inner product
of pseudomodes (G, w, sz,,w> and their associated resolvent gain ;. In this way, we avoid
accounting for the wavemakers where o is too small to amplify perturbations. Hence, to un-
derstand which combination of temporal frequencies, spanwise wavenumber, and sweep angle
is most likely to generate wavemakers, we consider the coefficient £ = (o/maz(0y)){g;, fz>,

where maz (o) is evaluated for each angle of attack over the St'—k,.—A space, with contours
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shown in figure 4.13 for av = 20° and 30°.

The resolvent modes with higher values of £ are observed for swept wings at higher
angles of attack. The wavemaker modes appear where vortex shedding develops in the wake.
Hence a higher & suggests perturbations are introduced with higher gain to be amplified in
this region for flows over wings at high incidence. Furthermore, those disturbances feed the
flow with self-generated disturbances that maintain the three-dimensionality of the wake,
as observed for instance at o = 30°. In unswept wings, the St'~k., frequencies with strong

wavemaker modes is found for 2D wavemakers.

For swept wings, the modes with the highest ¢ coefficient for each angle of attack are
located at A = 45° and nonzero k.., hence being associated with oblique modes. This
finding is in agreement with the previous observations on the overlap of forcing and response
modes, in figure 4.9. Hence, even if the amplification gain o; is reduced for swept wings at
a = 30°, the overlap of forcing and response modes is stronger, which introduces wavemakers
over swept wings that are stronger than wavemakers for unswept wings, which explains the

three-dimensionality observed in these flow fields.

This finding, however, is in contrast with the DNS results that show an attenuation of
spanwise oscillations with the sweep angle. To understand why such alleviation occurs, we
must observe that optimal responses and optimal wavemakers also have an associated wave
speed, characterized by their spatial and temporal frequencies, that is associated with the

transport of disturbances over the periodic direction.

We note that an optimal wavemaker speed being faster than the optimal response wave
speed leads to an attenuation on three-dimensionality. Wavemakers yield self-sustained
instabilities in swept wings with an associated wavemaker phase speed ¢,, = dw/dk,,, which
we characterize by the slope of the slash-dotted green lines in figure 4.13. As observed in table
4.14, when ¢,, is large for high sweep angles and the optimal response c is small, the reduction
of spanwise oscillations is seen in the flowfield. In such cases, a misalignment appears between

optimal responses and wavemakers which can not support spanwise oscillations. For this
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a = 26° a =30°

A=0° 15° 30° 45° 0° 15° 30° 45°
Opt. response -0.021 0.022 0.089 0.253 -0.042 0.039 0.150 0.406
Opt. wavemaker 0.117 0.185 0.316  0.595 -0.008 0.073 0.204 0.537

Figure 4.14: Convective speed ¢ = dw/dk,. for the optimal response and the optimal wave-

makers for the 3D flows at a = 26° and 30° and sweep angles 0° < A < 45°.

reason, wavemakers cannot sustain three-dimensional disturbances over swept wings.

Finally, even for o = 20°, in which the flow field is 2D, resolvent analysis reveals the
presence of wavemakers. Those are associated with the sustained unsteady 2D vortex shed-
ding. To sustain three-dimensionality, wavemakers must introduce sufficiently strong three-
dimensional structures to the flow with high amplification gain. For swept wings at high
incidence, even though optimal wavemakers have a high gain, they are advected faster than

the optimal responses, which reduces the flow three-dimensionality.
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CHAPTER 5

Triglobal resolvent analysis

Through triglobal resolvent analysis, we reveal the effects of the wing tip, taper, and sweep
angle on laminar separated wakes over swept wings. For the present study, we consider
wings with semi-aspect ratios from 1 to 4, sweep angles from 0° to 45°, and angles of attack
of 20° and 30° at a chord-based Reynolds number of 400 and 600, and a Mach number of
0.1. Triglobal resolvent analysis is employed to gain further insights into the mechanisms
of flow unsteadiness and to identify the optimal spatial input-output mode pairs and the
associated gains over a range of frequencies. The three-dimensional forcing and response
modes reveal that harmonic fluctuations are directed toward the root for unswept wings
and toward the wing tip for swept wings. The overlapping region of the forcing-response
mode pairs uncovers triglobal resolvent wavemakers associated with self-sustained unsteady
wakes of swept wings. The effect of wing taper is also shown through the forcing-to-response
dynamics and resolvent wavemakers support. Furthermore, we show that for low aspect ratio
wings optimal perturbations develop globally over the entire wingspan. The present study
uncovers physical insights on the effects of tip and sweep on the growth of optimal harmonic

perturbations and the wake dynamics of separated flows over swept wings.

5.1 Motivation

Understanding flow separation over finite swept wings is essential to the study of aircraft and
biological flight [And10, VSP04, LMS07]. The aspect ratio, angle of attack, and sweep play
important roles in influencing stall and wake characteristics [ZHA20a, ZHA20b]. Although
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a number of studies have deepened our knowledge of laminar separated wakes around swept
wings, coherent flow structures associated with the three-dimensional (3-D) flow separation
have not been characterized in a comprehensive manner. Such findings would be crucial to
explain the role played by the perturbations in characterizing the wakes and support efforts

to control flow separation around finite wings.

Previous studies have shown the effect of sweep on post-stall wake characteristics with a
focus on the role of spanwise flow over wings [HM64]. The spanwise flow induced by sweep
delays the emergence of stall [YH07, YH09] and stabilizes wake oscillations, as shown for
high-Reynolds number flows over transonic buffets in biglobal [CGS19, PBD19, PDB21] and
triglobal linear stability analysis [Tim20, HT21]. Similar observations have been made for

flows around aircraft models in experiments [MTP20] and computations [HTS22].

At a low Reynolds number, direct numerical simulations (DNS) from [ZHA20a] showed
that sweep angle can significantly alter the wake patterns. For wings with low sweep an-
gles, vortex shedding develops near the wing tip, while unsteadiness is suppressed for flows
over highly swept wings. Similar attenuation of flow unsteadiness was further studied for
forward-swept wings [ZT22] revealing that wing sweep has a strong effect on stabilizing wake
oscillations in laminar flows. Furthermore, linear instabilities around swept wings were ex-
amined for a variety of swept and unswept wings, showing that the sweep angle suppresses

the emergence of wake modes [BHH22, RYZ22a|.

The aspect ratio of the wing also affects the wake dynamics on separated flows due to the
wing tip vortex in steady [DRL96, TM04, TC09] and unsteady wing motion [BS06, YR12].
For low-aspect-ratio wings, the tip vortex may suppress the leading-edge vortex formation,
reducing the wake unsteadiness [TC09]. Tip vortices can also produce adverse effects on the

wing, with induced drag and a reduced lift.

To alter the wake dynamics with a proper actuation input, we need to identify the
optimal forcing structures that can be amplified in the flow field [EST18, ESS18|. For this

task, we may use modal analysis techniques [TBD17, THB20] to study the dynamics of
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flow instabilities. Resolvent analysis is an attractive tool for the present study because it
identifies the optimal input perturbations in the flow field, their energy amplification, and the
characteristics of their unsteady response [TTR93b, JB05]. Furthermore, with the diverse
steady and unsteady wakes observed around swept wings, resolvent analysis can provide a
comprehensive study of the input-output dynamics around wings with different aspect ratios,

angles of attack, and sweep.

Resolvent analysis has been used to study a broad range of fluid flows [MST13a, TP18,
STR18, SS19, YBT20, RWT22]. This approach was initially formulated for steady base
flows, to identify modal structures that can be amplified in stable flow regimes [TTR93b].
This perspective on fluid dynamics was later extended to unstable systems by [JB05] and
to unsteady and turbulent flows by [MS10]. In these formulations, a time-averaged flow is
used as a base state and nonlinear terms act as sustained forcing in the flow field. In both
steady and unsteady flows, resolvent analysis identifies harmonic forcings that produce an

amplified response in the flow.

In this study, we identify the optimal spatial input-output modes around the wing through
a 3-D global (triglobal) resolvent analysis, that assumes no spatial homogeneity. Moreover,
we gain insights into the self-sustained fluctuations that support unsteadiness on laminar
separated flows using resolvent wavemakers, which are similar to the eigenvalue-based wave-
makers [GL0O7, GCL10]. The resolvent wavemakers, also named structural sensitivity, are
obtained from the overlap of forcing and response mode pairs [QS17, SYS22]. These findings
provide a comprehensive analysis of the energy amplification mechanisms in flows around
swept wings through an input-output process, identifying the optimal locations where per-
turbations can be introduced to alter the wake behavior. Therefore, these findings are crucial
for the development of efficient flow control strategies [YT19, LSY21] that aim to improve

the aerodynamic performance of swept wings experiencing massive flow separation.

The present chapter on triglobal resolvent analysis is organized as follows. In section 5.2,

we describe the problem setup for the current work. In section 5.3, we discuss our main

131



findings from triglobal resolvent analysis. We identify the emergence of wake unsteadiness
caused by the overlap of optimal forcing and response modes in the near wake. Perturbations
are directed toward the region where vortex shedding takes place. The locations of the
optimal forcing and response modes over the wingspan also suggest that wakes of highly
swept wings are more resilient to external perturbations. Furthermore, we find that low-
aspect-ratio wings limit the growth of perturbations to global modes extending over the

entire wingspan. Finally, our conclusions are presented in section 7.1.4.

5.2 Tree-dimensional global (triglobal) resolvent analysis

We consider laminar flows over wings with NACA 0015 cross-sectional profile, as shown in
figure 5.1. We perform a three-dimensional resolvent analysis over such wings and explore
the effects of wing sweep, taper, aspect ratio, and angle of attack. The resolvent methodology
is described in section 2.1. For a detailed discussion of the flow fields analyzed herein, we

refer to the chapter 3.

The Hg,, operators were discretized over 3-D structured grids with the leading edge at
the root positioned at (z/c, y/c, z/c) = (0,0,0), extending over (x/c,y/c, z/c) € [—10,15] x
[—10,10] x [0, 10] with near wake grids shown at the bottom left of figure 5.1.The grids used
for resolvent are smaller than the grids used for DNS. To obtain the base flow within the mesh
for resolvent analysis, we perform a linear interpolation from the flow field defined in the
DNS mesh to the resolvent mesh. We prescribe homogeneous Neumann boundary conditions
for 7" and homogeneous Dirichlet boundary conditions for the fluctuating variables p’ and
u’ along the farfield, airfoil surface, and outlet. Sponges are applied far from the airfoil and

in conjunction with the boundary conditions [Fre97].

For the large linear operators in the present work, efficient numerical tools are needed
for SVD [HMT11b]. We use the randomized resolvent analysis algorithm from [RYT20],

sketching Hg,, with 10 random test vectors. Each entry of the test vectors is associated
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Figure 5.1: Setup for finite swept wing simulation at Re. = 400. In the gray boxes, the
instantaneous Re, = 400 flow field for a = 20°, A = 15°, and sSAR = b/c = 4, with Q = 2
isosurfaces colored by instantaneous u,. Mesh colored by time-averaged #,. In the blue box,

isosurfaces of the primary response mode with mesh in light gray.
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with a particular grid point and the five state variables. We compute the norm of the base
flow gradients, i.e., ||Vpll, [[Vuz|, [Vuyll, [[Vu.||, || VT||, and scale the test vectors at their

specific entry associated with each spatial location and state variable [RYT20, HSR22].

The computation of resolvent modes for large linear operators can be challenging for the
resolvent analysis of high-Reynolds number flows that require a large grid. The bottleneck is
related to the time and memory requirements of the linear systems solvers within the SVD.
Building an optimal basis to avoid linear system solvers is possible [BGM22|, although a
generalization for complex geometries is still challenging. It is possible, however, to obtain
accurate resolvent modes with time-stepping instead of direct solvers. Those methods tend
to penalize the time costs, although a considerable reduction in memory requirements can be
achieved [BBS08, MAB10, GBR16]. The computational time required by time-steppers can
also be reduced by incorporating streaming discrete Fourier transforms [MRT21, FTM21].
The use of iterative solvers has shown promising results to compute resolvent modes around

a commercial aircraft model [HT'S22].

In the present work, the direct and adjoint linear systems were directly solved using the
MUMPS (multifrontal massively parallel sparse direct solver) package [ADD96]. Moreover,
we incorporate the adjoint-based sensitivity analysis to interpolate the resolvent norm over
frequencies w [SB14, FS17]. This approach is used to calculate the gradient of o with
respect to w, allowing an accurate interpolation among frequencies [SS19]. The codes used

to compute the resolvent modes are part of the ‘linear analysis package’ made available by

[SRT22).

5.2.1 Choice of resolvent discounting parameter

Prior to performing the resolvent analysis, we examine the stability characteristics of Lg
and the need of a discounting parameter. For this task we analyze the eigenspectrum of the
linear operator with respect to the time-average base flow. Since this base flow is not the

equilibrium point, the eigenvalues of Lg do not necessarily present stability characteristics.
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Figure 5.2: Eigenvalues of Lg for sAR = 4 wings with a = 20° and 30°, and 0 < A < 45°.
Here St. and St; represent the growth rate and temporal frequency, respectively. Green—

dashed line shows St, = 0. Cyan-dashed line shows where discounting parameter is set.

However, eigenvalue properties are needed to enable the examination of the amplification
mechanisms of perturbation over the appropriate time scale. The eigenvalues of Lg are
computed using the Krylov—Schur method [Ste02] with 128 vectors for the Krylov subspace
and a tolerance residual of 1071°. This analysis reveals eigenvalues —iw = —iw, +w;, where w;
is the growth rate and w, is the temporal frequency. The Strouhal number scaling (equation
4.8) is used throughout this study to report w; and w, as St; and St,, respectively, as
shown in figure 5.2. The discounting parameter is defined in a similar manner as Stg =
(B/2m)(csina/Us cos A). In this manner, Stg is directly associated with a physical time
window ¢tz = (27 /), which is chosen to be shorter than the time scale associated with the
largest St,.. As shown in figure 5.2 for flows over sAR = 4 wings with a = 20° and 30°, and
0 < A <45°, modes which appear with positive St, (above green-dashed line) are so-called

unstable.

Through the global stability analysis of all L operators examined in the present study, we

observe that eigenvalues of the unstable modes with higher growth rate lie near the stability
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Figure 5.3: Decay of resolvent norm with w, indicating that the current discounting param-

eter accounts for a stable time-period for the growth of perturbations.

margin. The discounting parameter Stz must be chosen such that Stz > max(St,) for all
linear operators considered. For Stz = 0.01, the resolvent discounting is able to encompass
all the unstable modes in the present study, as shown in figure 5.2 with a cyan-dashed line.

This discounting corresponds to a physical time window of ¢5(Us cos A/csin a) = 100.

For the tapered wings of the present study, we have checked whether the time window
tp is sufficient by analyzing the parametric sensitivity of the resolvent gains with respect to
w;, as shown in figure 5.3. For Stz > max(St,), as we increase (3, the gain oy should decay
[JB05, YT19], yielding negative doy/0w;. In this way, the negative values of do;/0w; in
figure 5.3 indicate that the § parameter was sufficiently large such that Stz > max(St,) for
the present linear operators. Through the discounted resolvent analysis, valuable insights
have been provided in past studies for the dynamics and control of flows over airfoils [YT19,

YBT20, RWT22, RYZ22b].

5.2.2 Convergence test for resolvent analysis

We document the randomized resolvent analysis computations in table 5.1, for a selected
case of (SAR,a, A) = (2,30°,15°). The convergence of randomized SVD algorithm depends
on the number of test vectors k used for sketching [HMT11b, RYT20]. As our discussions
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k=5

k=10

k=20

o1 3058.119140625 3058.1840820312 3058.0112304688
lop 395.9677734375 397.50375366211 397.54058837891
03 283.04278564453 285.14834594727 285.30682373047
o4 172.99363708496 178.36595153809 179.13203430176
o5 131.17066955566 155.90252685547 156.57176208496

Table 5.1: Convergence of the randomized resolvent analysis using k£ = 5, 10, and 20 test vec-

tors shown for the five leading singular values with (sAR, a, A) = (2,30°,15°) at St = 0.14.

focus on the modal characteristics of the dominant and sub-dominant resolvent modes, we
have analyzed their convergence using k£ = 5, 10, and 20. The use of k = 10 test vectors was
shown to be sufficient to guarantee converged leading modes with error smaller than 1% for

the leading 5 resolvent gains.

5.3 Results

5.3.1 Forcing and response modes structures

Let us first examine the dominant gains, forcing, and response modes for the Re. = 400
flow over a (sAR,«,A) = (4,20°,0°) wing, as shown in figure 5.4. In the present section,
we consider flows with chord-based Reynolds number fixed at Re. = 400 and their wake
dynamics was discussed in section 3.3.1. The dominant resolvent modes are observed at
St = 0.14, where St = (w/2m)(csina/Uy cos A) is the Fage—Johanssen Strouhal number
with a 1/cos A scaling that incorporates the sweep angle, as discussed in section 4.3 This
frequency matches the peak frequency for the lift coefficient shown in figure 5.4 (bottom

left). The dominant frequency for o; and Cr agrees for all unsteady flows presented herein.

The spatial structures of forcing-response mode pairs are shown in figure 5.4 (right) for
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representative frequencies. For St = 0.14, primary modes exhibit modal structures near the
root plane. The forcing mode appears near and upstream of the wing, while the response
mode develops downstream in the wake. The modal structures for the primary forcing
and response modes are aligned with the wingspan, with the response mode similar to the
unsteady vortices revealed from DNS. At this frequency, the secondary modes are comprised

of spanwise-aligned vortices near the root plane, similar to the primary modes.

As we increase the frequency, the resolvent gains decay in magnitude and o; decays faster
than 5. Their magnitudes become approximately the same at St = 0.16. At this frequency,
the spatial characteristics of the primary and secondary forcing-response mode pairs exhibit
distinct behavior. The primary forcing and response modes are aligned with the wingspan
and near the root plane, similar to those at lower St. The secondary modes, however, exhibit
modal structures near the wing tip, in contrast to the secondary modes at lower frequencies

which reside near the wing root.

For St = 0.18, the primary forcing-response mode pair appears near the wing tip, while
the secondary mode pair develops at the root plane. Such behavior persists as we increase the
frequency to St = 0.20. For St > 0.18, primary modes are tip-dominated while secondary
modes are root-dominated around this wing. This means that root and wing tip modes

switch their order of amplification at St ~ 0.18, i.e., mode switching.

5.3.2 Wing sweep effects on resolvent modes

Here we consider flows with chord-based Reynolds number fixed at Re, = 400 and their
wake dynamics was discussed in section 3.3.1. The mode switching phenomenon discussed
in the previous section is also observed for swept wings with A = 15°. For such wings, root-
supported structures appear as the primary forcing-response pairs at St = 0.14, as shown
in figure 5.5 (left). A distinct mode switching is observed over this wing, as the forcing-
response pairs gradually transition toward the root at z/c ~ 0 with the increase in St. This

type of concentrated resolvent mode at the wing root also appears for the unswept wings at
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Figure 5.4: Resolvent gains and forcing-response mode pairs for the Re. = 400 flow over a
(sAR,a, A) = (4,20°,0°) wing. For each mode, forcing (f) is the top-half while response (§)
it the bottom-half with isosurfaces of velocity @, € [—0.2,0.2], with freestream directed to

the right. On bottom left, power spectrum density of lift coefficient Cr.
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Figure 5.5: Resolvent gain distribution for the top three mode pairs and forcing-response
mode pairs for selected frequencies for (sAR, ) = (4,20°) and A = 15°, 30°, and 45°. The
chord-based Reynolds number for these base flows is Re, = 400. Primary forcing ( f) and

response (§) modes shown with isosurfaces of velocity @, € [—0.2,0.2].
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St = 0.20 as a secondary mode, as shown in figure 5.4 (bottom, right).

For A = 30°, mode switching also occurs toward the root with the increase in St, in an
opposite trend to the unswept wings. The dominant response modes at lower frequencies
appear at the wing tip, as shown in figure 5.5 (middle). There is a gradual transition to
root-supported modes as the frequency increases. At a higher sweep angle, A = 45° no
mode switching occurs. The region of the dominance of the forcing and response modes is

slightly invariant for the frequencies shown herein.

In contrast with the lower sweep angle wings, for A = 45°, forcing and response modes
are dominant at distinct wingspan locations, as shown in figure 5.5 (right). Response modes
are tip-dominated while forcing structures appear upstream near the root plane, extending
over the wingspan aligned with the sweep angle. For all (sAR,«a) = (4,20°) wings, the
highest amplification is found for A = 30°, at St ~ 0.12. At A = 45°, the dominant gain is
an order of magnitude lower. This finding suggests that it is challenging to perturb flows
over A = 45° wings. These wings are steady because self-sustained flow disturbances cannot

introduce sufficient energy into the wake to generate vortex shedding.

5.3.3 Wing taper effects on resolvent modes

The triglobal resolvent modes further reveal the spatial sensitivity, the response structures,
and the harmonic behavior over the wake behind tapered wings. The present flows con-
sider the wake dynamics around wings presented in section 3.3.2, with a mean-chord-based
Reynolds number of Re. = 600. To this end, we will study perturbations through the over-
lap between the forcing and response modes in the spanwise direction. We integrate the
magnitude of velocity components of f and q over z-normal planes as

%)= [ HadSy) and )= [ JakdS@), G
S(zy) S(@.y)

where ||f' |2 and ||ql|2 are the 2-norm of [fuz, f.,, fuz] and [Qu,, Qu,, du.], respectively, at each

grid point of the computational domain. By performing the integral over S(x,y), we obtain
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Q; and Q4 computed for each spanwise slice and for each frequency. Here, we plot their
contours normalized by the maximum £2; and §24 at each St, to emphasize the spatial support

of forcing and response over the wingspan.

So far, all base flows considered for the present triglobal resolvent study have a chord-
based Reynolds number set to Re. = 400, which were briefly discussed in section 3.3.1. From
now on, we will also introduce the triglobal resolvent modes computed for the base flows
over tapered wings at Re. = 600. In figure 5.6, we present the forcing and response modes
over two wings with unswept TE and A = 1 (untapered) and 0.27 at Re. = 600. The gain
(0;) curves, shown in figures 5.6(a, d), exhibit the distribution over St for each wing. The
curves are similar and they have a large resolvent gain peak at approximately the same St

number.

In figures 5.6(c, f) we show three forcing (top,right half span) and response (bottom, left
half span) mode pairs at St = 0.14, 0.20, and 0.30. Generally, we observe that forcing and
response modes are aligned in the streamwise direction while forcing modes appear upstream
and response modes dominate the downstream wake region. Now, let us look at the resolvent
gain distribution over St, shown in figure 5.6(a, d). For both wings, the resolvent gain peaks
at a similar St. We note that the response structures at the peak frequency exhibit a mode
shape similar to the shedding structures that were observed in the DNS; at a slightly different

a = 18°, as shown in figure 3.4.

Although both wings have a peak resolvent gain frequency at approximately the same
Strouhal number, the oy spectra change as frequency increases which also has implications
on the spatial modal structures. For instance, we observe a secondary peak in the o, spectra
that appear only for the tapered wing at St ~ 0.2, as shown in figure 5.6(d). This secondary
peak coincides with the same frequency where the 3 and (14 contours, shown in figure
5.6(e), exhibit a mode switching from z/¢ ~ 1 dominant modes at low St to root-dominant

modes at St ~ 0.2.

As the frequency increases to St = 0.3, there is another mode switching which now
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Figure 5.6: Effect of wing taper on resolvent modes, for Re. = 600 flows over tapered wings.
(a,d) Gain curves (0;), (b, e) contours of Q; (red) and Q4 (blue) to highlight the wingspan
(z/c) location of dominant forcing and response modes, (c, f) and isosurfaces of u, = £0.5
for leading forcing (f1) and response (¢;) modes at St = 0.14, 0.2, and 0.3. Results shown
for (a, b, c) untapered wing and (d, e, f) tapered wing with unswept TE and backward-swept

LE at a = 22°. Light gray arrows indicate rri(zge switching in (d) and how it appears in (e).



occurs from the root-dominant modes at St =~ 0.2 toward the wing tip dominant modes
at St =~ 0.3. This sequence of mode switching over a short frequency range was observed
previously for sAR = 4 untapered and unswept wings but not for sAR = 2 wings. Such low-
aspect-ratio wings exhibit a smooth transition between root and tip regions as the frequency
increases [RYT23]. This finding suggests similarities in the input-output dynamics observed
around low-aspect-ratio tapered wings and high-aspect-ratio untapered and unswept wings.
For the present sAR = 2 untapered wing, as shown in figure 5.6(a,b), mode switching
is absent. There is a gradual transition from root-dominated modes to tip modes as the

Strouhal number increases.

We also show the effect of sweep on the optimal perturbations for highly swept wings,
that is, wings with high LE sweep angle Arg = 40°. DNS has shown that wing taper
promotes unsteadiness in the wake. This yields a significant impact on the resolvent modes,
as shown in figure 5.7. Here, we analyze 3 highly swept wing planforms with A = 40° and
taper ratios (a,b) A =1, (¢,d) A = 0.5, and (e, f) A = 0.27 through their triglobal resolvent
modes. The peak resolvent frequency shifts toward a slightly higher St for lower A and the
dominant o; decays. To understand this behavior, we need to resort to the wake dynamics
characteristics observed in the DNS, as shown in figure 3.4. At a = 22°, there are small
oscillations that appear downstream in the wake, far from the wing. These flow oscillations
may not be characterized as wake shedding structures, they possess a low-frequency content,
being highlighted in the resolvent analysis by the backbone-shaped modes captured in the

primary and secondary resolvent modes in figure 5.7(b).

At the oy peak frequency, we further study the ratio between ¢, and o5, as these modes
are characterized by a high amplification and a low-rank behavior of the resolvent operator.
For lower A, the o /09 ratio increases at the peak gain, which coincides with the appearance
of shedding structures emerging from the separation bubble, as observed in figure 3.4. It is
noteworthy that, for lower A, the dominant response modes are shifted closer to the wing

and exhibit a shedding structure shape, similar to the wake structures characterized in the
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Figure 5.7: Effect of wing taper on resolvent modes for flows with Re. = 600. (a,c,e)
Gain curves (o;) on top and contours of Q; and Q4 on bottom to highlight the wingspan
(z/c) location of dominant forcing (red) and response (blue) modes. (b,d, f) Isosurfaces of
@i, = 0.5 for dominant and subdominant forcing (f) and response (¢) modes at their peak
gain. Results shown for (a,b) untapered swept wing with Ap g = 40°, (¢, d) tapered swept
wing Apg = 40° and A = 0.5, and (e, f) tapered swept wing Apg = 40° and A = 0.27 at
a = 22°. Light gray arrows in (a,c,e) point to mode switching observed in the resolvent

gain spectra and how it appears in the spatial modes shown below.
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DNS, while the response modes for the wings with A = 0.5 and 1 emerge far from the wing
tip and exhibit the backbone-shaped modal structure which is characteristic of tip-dominant

modes [RYT23].

The secondary modes exhibit similar behavior as the dominant modes, being developed
at the same wingspan region as the primary modes. The mode shapes associated with o9
modes, however, can be very different. For instance, the secondary forcing mode for the
untapered wing at the peak gain, shown at the bottom of figure 5.7(b) spans over the entire
wing surface, while the leading forcing is localized near the wing tip. The presence of forcing
mode spread over the wingspan appears also for the lower taper ratios at their peak frequency,

as shown in figures 5.7(d, f).

The Q; and €4 contours for the highly swept wings shows similarities for all taper ratios.
There is a single characteristic mode switching for all wings at St > 0.2. We note, however,
that the dominance of forcing-response mode pairs for the A = 0.27 wing appears at z/c ~ 1,
for St < 0.2, while for higher taper ratios, the tip region near z/c ~ 2 is characterized by

the dominance of forcing-response modes at lower frequencies.

5.3.4 Forcing-to-response dynamics over high-aspect-ratio swept wings

Here we initially consider flows with chord-based Reynolds number fixed at Re. = 400 and
their wake dynamics discussed in section 3.3.1 for sAR = 4 wings. Using the contours plots
of ; and 4 at each St, we identify the locations of the maximum strength of forcing and
response modes as shown by the dot-dashed lines in figure 5.8. Black arrows indicate the
direction from the maximum forcing to the maximum response at St = 0.15. This analysis
depicts the preferential direction in which optimal forcing is transferred to optimal response

over the wingspan at each frequency.

For unswept wings, shown in figure 5.8 (left), the optimal forcing structures appear

closer to the wing tip than the response modes, which are slightly shifted toward the root,
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Figure 5.8: Wingspan locations of dominant forcing (red) and response (blue) with contours
of Q; and Q4 € [0.4,1.0] for 0.05 < St < 0.35 for Re. = 400 flows over sAR = 4 wings with
a = 30° with 0° < A < 45°. Dot-dashed lines are polynomial fit of maximum z/c of forcing

and response at each St. Arrows show direction of optimal forcing-to-response at St = 0.15.

suggesting that fluctuations are directed toward the root. Indeed, as seen in the DNS,
unsteadiness is concentrated toward the root, as evident from figure 3.3, also in agreement
with the results reported by [ZHA20b|. In addition, the flow around the wing tip for unswept
wings is characterized by an almost steady tip vortex, suggesting that it is hard to amplify

flow instabilities near the tip.

For swept wings, fluctuations are directed toward the wing tip. For A = 15°, both forcing
and response modes appear near the wing root. At the vortex shedding frequency for this
wing, St ~ 0.15, we observe forcing and response modes to be dominant at z/c ~ 1, with the
forcing mode supported closer to the wing root than the response mode. This concurs with
the flow field we observe in the DNS, as vortices are formed near the wing root and evolve
toward the wing tip where spanwise vortices appear and propagate in the wake. For the

A = 30° wing, the dominant forcing-response mode pair emerges near the wing tip at low St,
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as seen in figure 5.8. For this wing, low-frequency vortical structures emerge downstream in

the wake aligned at the tip, as shown in figure 3.3.

For the A = 45° wing, the distance between the maximum forcing and response modes
significantly increases. For this sweep angle, the region of forcing is centered at z/c ~ 1,
while the response is supported mostly at z/c ~ 3. As the peak oy is smaller for this wing
compared to lower sweep angle planforms, we can argue that a significant amount of energy
is required for an external forcing to perturb the wakes of highly swept wings. For all wings
with sAR = 4, this distance between the dominant forcing-response mode pairs is strongly
associated with the sweep angle, while having a minor dependency on the angle of attack

and presenting a gradual decrease with the frequency.

The direction from forcing-to-response revealed by the optimal triglobal resolvent modes
suggests a spanwise advection of flow structures associated with the sweep angle. As shown
previously, we can relate the forcing-to-response characteristics to the vortical fluctuations
observed in the DNS. We can further relate these findings to the modal convective speed from
biglobal stability analysis over swept wings [CGS19, PBD19, PDB21]. Triglobal resolvent
modes also reveal the advection of perturbations over the wingspan related to the sweep
angle, the attenuation of flow unsteadiness, and the resilience to grow perturbations at high
sweep angles. Even for unswept wings, the triglobal analysis uncovers a preferential root-

direction for the advection of instabilities.

5.3.5 Forcing-to-response dynamics over tapered wings

We further examine the €2; and €y contours over a broad range of wing planforms and
show the mode-switching phenomena as well as the mode transition between root and tip
dominant modes for the Re. = 600 flows observed around tapered swept wings, as shown in
figure 5.9. The present flows consider the wake dynamics around wings presented in sections
3.3.2 to 3.5.5, with a mean-chord-based Reynolds number of Re. = 600. Here, the locations

of the maximum strength of forcing and response modes are shown by the dot-dashed lines.
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ALE = 40°

ATg =0°

ALg =0°

Figure 5.9: Effect of wing taper on forcing and response modes over wingspan for the
Re. = 600 flows over wings at o = 22° with unswept LE and forward-swept TE, back-
ward-swept LE and unswept TE, and tapered wings with Ay = 40°. Black arrows show the

direction from the maximum strength of forcing (red) to the maximum strength of response

(blue).
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Black arrows indicate the direction from the maximum forcing to the maximum response at

St = 0.15.

For highly swept wings, shown in the top row of figure 5.9, wing taper influences the
forcing modes, which tend to appear closer to the quarter span at St = 0.15 for tapered
wings, in contrast with the untapered and swept wings that have both forcing and response
localized in the wing tip region. For the case of wings with unswept TE and backward-swept
LE, wing taper causes forcing and response to overlap at the quarter-span for A = 0.27 wings,
where the shedding is observed over this wing. This shows that external forcing over this
wing promotes the amplification of flow perturbations aligned in the streamwise direction at
the quarter-span of the wing for St = 0.15, with small spanwise dislocation. For higher taper
ratios, there is a preferential direction of perturbations to be amplified toward the wing root,

where shedding structures emerge.

For the case of unswept LE wings with forward-swept TE, shown in the bottom row of
figure 5.9, forcing and response modes collapse near the root at small St numbers. There are
no strong forcing or response modes localized at the tip region, for the frequencies shown,
the maximum wingspan location of forcing modes is observed at z/c &~ 1.5. This shows that
the wing tip is challenging to amplify disturbances over the wing tip for this planform, as

also suggested by the observations of the flow field from DNS.

5.3.6 Perturbation dynamics around low-aspect-ratio wings

High sweep angle and low aspect ratio restrict the emergence of fluctuations in flows over
finite wings. As shown in figure 5.8, tip- and root-dominated modes may extend over 1 or
2 chord-lengths over the wingspan. For this reason, for flows over wings with sAR < 2, the
dominance of the global modes may not be associated with root or tip regions, as they extend
over the entire wingspan. To analyze the effect of aspect ratio on the resolvent modes, we
analyze the flows over finite swept wings without taper at Re. = 400, as we have obtained

base flows for semi-aspect-ratios ranging from 1 to 4 at this particular chord-based Reynolds
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Figure 5.10: Wingspan locations of dominant forcing (red) and response (blue) with contours
of ©; and Q4 € [0.4,1.0] for 0.05 < St < 0.35 for wings at o = 30°, sAR = 2 and 1, and
A = 15° and 30°. The chord-based Reynolds number is set to Re. = 400.

number.

For flows over sAR = 2 wings, we observe a gradual transition between root-dominated
and tip-dominated forcing and response modes, as shown in figure 5.10. For A = 15°, the
optimal forcing-response mode pair appears near the root for lower frequencies and at the
wing tip for higher frequencies, characterizing a root-to-tip mode switching. For A = 30°,
the trend is opposite, with wing tip modes at lower frequencies and root modes at higher
frequencies, characterizing a tip-to-root mode switching. These features are similar to the

mode switching observed for these sweep angles with sAR = 4, as shown in figure 5.8.

For wings with a low aspect ratio, the growth of root-dominated and tip-dominated
perturbations is constrained and mode switching does not occur for sAR = 1, as shown
in figure 5.11. Distinguishing between root-dominated and tip-dominated modes may be
challenging for flows over sAR = 1 wings as forcing and response mode pairs appear globally,

extending over the entire wingspan, independently of the sweep angle. Therefore, flows
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around wings with sAR = 1 tend to exhibit similar wake characteristics over different sweep
angles. Indeed, the wake patterns for flows over sAR = 1 wings at a particular angle of
attack and sweep exhibit different characteristics from the flows over higher aspect ratio

wings, i.e., sSAR = 2 and 4.

For high-aspect-ratio wings, for instance, the flow around (sAR,a,A) = (4,30°,15°)
wings, we observe in the DNS that the wake shedding structures appear over the entire
wingspan. The resolvent modes depict these structures in three different low mechanisms.
As shown in figure 5.11 (right) for sAR = 4, there are two types of root-dominated modes,
which were also previously identified for this wing at o = 20°, shown in figure 5.5 (left). The
first one is characterized by root-dominated structures and appears at St = 0.15, while the
second type, with a high o, develops at St = 0.25 with compact root-concentrated modes.
The third type is comprised of tip-dominated modes that become primary as the frequency
increases to St = 0.28. These modes were primary at a = 20° at St ~ 0.40, as shown in

figure 5.5, although for o = 30° they present a higher amplification gain.

For sAR = 2, root-dominated modes are primary for St < 0.20. Root-concentrated
modes are absent and tip-dominated modes are the primary perturbations for St > 0.20,
as shown in figure 5.11 (middle), characterizing a root-to-tip mode switching. The overall
mode switching for sAR = 2 is the same, with root-to-tip transition. For sAR = 1, shown
in figure 5.11 (left), mode switching is absent. Both primary and secondary modes develop
over the entire wingspan for all frequencies, as shown for the primary modes at St = 0.14.
Although mode switching is absent we can still reveal two distinct root- and tip-dominated
mechanisms on a single mode over low-aspect-ratio wings. For instance, at St = 0.24, modes
emerge from the leading edge at the root and from the trailing edge near the tip. Combined,

these two flow instabilities yield a global mode that appears over the entire wingspan.
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Figure 5.11: Resolvent gain distribution and forcing-response mode pairs over frequency
for (a, A) = (30°,15°) and 1 < sAR < 4. Forcing (f) and response (§) modes shown with
isosurfaces of velocity @, € [—0.2,0.2]. Mode switching is absent for sAR = 1 due to merging

of root and wingtip perturbations on the wake.
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5.3.7 Resolvent wavemakers

To characterize the self-sustained unsteadiness in the flows over swept wings, we study the
forcing and response modes spatial overlap that supports the continuous formation of vortical
structures. Since the forcing modes show regions receptive to external perturbations and the
response modes reveal the structures being excited due to the forcing, the region over which
forcing and response modes overlap can be interpreted as a mechanism for self-sustained
oscillations to present in the flow. This idea is similar to the wavemaker concept deduced

from direct and adjoint eigenmodes presented in [GLOT].

Through the wavemaker analysis, previous studies identified critical points responsible
for sustaining wake shedding on laminar wakes around cylinders [SS90, Hil92] and regions
associated with their primary and secondary instability modes [GL0O7, GCL10]. Moreover,
wavemakers revealed the physical mechanisms responsible for tonal noise generation in high-
Reynolds number flows over airfoils [FSS17] and self-sustained flow instabilities in transonic

buffet regimes [PBD19].

In the aforementioned studies, wavemakers were derived from direct and adjoint global
stability eigenmodes. Our formulation derives wavemakers from global resolvent modes
and is closely related to the structural sensitivity devised by [QS17] and to the resolvent
wavemaker obtained by [SYS22]. The present resolvent wavemaker is not identical to the
eigenvalue-based wavemaker. With the time-averaged base flow, the forcing terms model
nonlinear effects as a internal feedback mechanism within the flow field. Hence, the spatial
overlap between forcing and response provides useful insights on the support of self-sustained
oscillations in the wake. Herein, the resolvent wavemaker modes are directly obtained from

resolvent modes, as the Hadamard product of forcing and response
w="foq, (5.2)

where w is the resolvent wavemaker mode. The resolvent modes presented herein are defined

~

with the five state variables, f = [fp, fuz, fuy, f.., fT] and q = [dp, Qu,  Qu, Qu., 4r). For the
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resolvent wavemaker, we consider only the velocity components, W = [W,,, W, , W,_]|, as for
weakly compressible low-Reynolds number flows, the inclusion of p and T terms does not

alter the findings. We define our resolvent wavemaker gain & as

£=0o /S]vi/(x)\dS, (5.3)

which is in close agreement with ¢ = o2|(f,q)|, derived by [SYS22] and obtained when
S is defined over the entire computational domain. The resolvent wavemaker gain £ can
also be computed for each spanwise slice and each frequency. To this end, we consider
S = S(z,y), as z-normal planes at different spanwise locations, to build the &-contours
shown in figure 5.12. Through this analysis, we highlight the resolvent wavemaker spatial

support over the wingspan.

Let us focus our resolvent wavemaker analysis on the flow over the unswept wing with
(sAR, o, A) = (4,20°,0°), as shown in figure 5.12 (top, left). At St = 0.14, triglobal resolvent
wavemakers with high ¢ appear between 2 < z/c < 3 in the near wake. The resolvent
wavemakers at this region support the formation of unsteady root vortices that propagate
downstream in the wake. This resolvent wavemaker region is also characterized by the
formation of braid-like structures that connect to the root shedding as vortex loops [ZHA20a)].
Resolvent wavemakers for (sAR,«, A) = (4,20°,15°) also show similar shedding behavior,

as seen in figure 5.12 (top, right).

Resolvent wavemakers are also revealed for steady flows. The overlap of forcing and re-
sponse for flows over wings with (sAR, a, A) = (4,20°,30°), as shown in figure 5.12 (bottom,
left), develops over the wing and extends into the wake aligned with the wing tip. These
resolvent wavemakers extend over the entire wingspan, being stronger and larger than the
ones exhibited around wings with lower sweep angles. The £ peak appears at the wing tip at
St = 0.12, indicating that the tip region is more susceptible to develop unsteadiness around

this wing.

For A = 45°, shown in figure 5.12 (bottom, right), we reveal that resolvent wavemakers
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Figure 5.12: Wingspan location of primary resolvent wavemakers with isocontours of ¢ for
0.05 < St < 0.25 for the Re. = 400 flow over (sAR, ) = (4,20°) wings with 0° < A < 45°.
Resolvent wavemaker modes are shown with isosurfaces of @,/||4,||- = £0.1 and instanta-

neous () = 1 are gray-colored isosurfaces.
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emerge from the leading edge near the root plane toward the wing tip and downstream at
the wake, overlapping the region where steady ram-horn-shaped vortices appear in the DNS.
These resolvent wavemakers exhibit a region of the flow field with high receptiveness to
amplify forcing structures and disturb the steady ram-horn vortex. Because the dominant
resolvent wavemaker around the A = 45° wing have a low &, in spite of occupying a large
region of the wake, the energy they introduce to the flow field is insufficient to disturb the

wake.

The resolvent wavemakers further exhibit the root- and tip-dominated modal charac-
teristics and the mode switching phenomenon in figure 5.12, in agreement with the forcing-
response modal behavior shown in figures 5.4 and 5.5. For instance, the resolvent wavemaker
modes at the peak £ values for the unswept wing appear near z/c &~ 2, with a gradual transi-
tion from root-supported to tip-dominated modes as St increases. Moreover, for the A = 15°
wing, there is a transition in the dominant region of resolvent wavemaker support from
z/c = 1.5 at lower frequencies to z/c ~ 0 at higher frequencies, as shown in figure 5.12
(top, right). Lastly, for the A = 30° wing, there is a tip-to-root transition with the increase
in St while the peak resolvent wavemakers for A = 45° are invariant over the frequencies,

appearing near z/c ~ 2.

For tapered wings, we consider lower aspect ratios of sAR = 2 and the mean-chord-based
Reynolds number is set to Re. = 600. For these flows, the discussion of the wavemaker
characteristics also helps us to interpret the mechanisms that sustain wake unsteadiness in
the stalled region, as shown figure 5.13. We observe that for all wings shown, the wavemakers
appear over the regions where the shedding is formed within the stalled region. The peak
¢ coincides with the shedding frequency of each wing observed in the DNS results. The
wavemaker ¢ contours show that self-sustained oscillations are shifted from the wing root
toward the z/c = 1 region for backward-swept LE and unswept TE wings. This result shows
that the wavemakers are being shifted toward the tip by the higher LE sweep that further

moves the peak of unsteadiness to the tip region.
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Figure 5.13: Resolvent wavemakers for the Re. = 600 flows around tapered wings. (a,c,e)
Contours of ¢ to highlight the wingspan (z/c) wavemaker dominance. (b, d, f) Isosurfaces of
W, = £0.5 for dominant wavemaker (@) modes at St = 0.14. Results are shown for (a,b)
untapered unswept wing at o = 14°; (¢, d) tapered swept wing Apg = 18.4° and A = 0.5,
and (e, f) tapered swept wing A = 30° and A = 0.27. Instantaneous ) = 1 isosurface is

also shown in light gray.
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For wings with unswept LE and forward-swept TE, the opposite happens. As the shed-
ding structures concentrate near the root region, the wavemakers are also collapsed into
a thin region near the root. The wavemakers exhibit a triangular shape pointing to the
wing with a slight enlargement in the spanwise direction downstream in the wake. This
result suggests that the flow around unswept LE and forward-swept TE wings concentrates
self-sustained perturbations to a narrow space, which results in the root-concentrated shed-
ding observed in the DNS, as discussed in section 3.3. The conclusions for this chapter are

presented in section 7.1.4.

5.4 A portfolio of resolvent modes around tapered wings

In the next chapter we will present the resolvent-based flow control around tapered wings.
For this reason, in the last part of the present section, we provide a portfolio of all the optimal
resolvent mode pairs considered in the control analysis from a perspective view. Resolvent
modes around wings at a = 14° are shown in figures 5.14, 5.15, and 5.16, respectively.
Similarly, resolvent modes around wings at a = 22° are shown in figures 5.17, 5.18, and 5.19,
respectively. The mode pairs are visualized using isosurfaces of with isosurfaces of fuy =+1

for the forcing modes and q,, = £0.5 for the response modes.
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Figure 5.14: Optimal forcing (top, right halfspan) and response (bottom, right halfspan)
modes visualized with isosurfaces of fuy = +1 and q,y = +0.5 for Re, = 600 flows around

wings of sAR = 2 at o = 14° and frequencies 0 < St < 0.12.
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Figure 5.15: Optimal forcing (top, right halfspan) and response (bottom, right halfspan)

modes visualized with isosurfaces of fuy = +1 and q,y = +0.5 for Re, = 600 flows around

wings of sAR = 2 at o = 14° and frequencies 0.14 < St < 0.26.
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Figure 5.16: Optimal forcing (top, right halfspan) and response (bottom, right halfspan)
modes visualized with isosurfaces of fuy = +1 and q,y = +0.5 for Re, = 600 flows around

wings of sAR =2 at o = 14° and frequencies 0.26 < St < 0.40.
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Figure 5.17: Optimal forcing (top, right halfspan) and response (bottom, right halfspan)
modes visualized with isosurfaces of fuy = +1 and q,y = +0.5 for Re, = 600 flows around

wings of sAR = 2 at a = 22° and frequencies 0 < St < 0.12.
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Figure 5.18: Optimal forcing (top, right halfspan) and response (bottom, right halfspan)
modes visualized with isosurfaces of fuy = +1 and q,y = +0.5 for Re, = 600 flows around

wings of sAR = 2 at a = 22° and frequencies 0.14 < St < 0.26.
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Figure 5.19: Optimal forcing (top, right halfspan) and response (bottom, right halfspan)
modes visualized with isosurfaces of fuy = +1 and q,y = +0.5 for Re, = 600 flows around

wings of sAR = 2 at a = 22° and frequencies 0.26 < St < 0.40.
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CHAPTER 6

Resolvent-based active flow control over finite wings

We use triglobal resolvent analysis to develop three-dimensional active flow control over finite
wings in post-stall laminar flow conditions. For the present study, we consider wings with
semi-aspect ratios from 2 at angles of attack of 14° and 22°, taper ratios 0.27 and 1, and
leading-edge sweep angles of 0° and 30°, at a mean-chord-based Reynolds number of 600.
The triglobal resolvent analysis provides a pair of forcing and response spatial modes with
their amplification gain at each frequency. The forcing modes show the regions with high
sensitivity where perturbations can potentially be amplified in the flow field with spatio-
temporal behavior related to the response modes. Here, the response modes provide insights
on the spatial regions that can be modified by the optimal forcing modes, which are used
as body forces within the direct numerical simulations. As the spatial location of forcing
modes is frequency-dependent, the actuation frequency is used as a selection parameter
for the control objective. For instance, we note that for untapered and unswept wings,
suboptimal modes at high frequencies perturb and attenuate the wing tip vortex, while the
optimal frequency is used to increase flow oscillations within the separation bubble, which
significantly improves the overall aerodynamic performance of the wing. For tapered swept
wings, it is shown that a local actuation near the root perturbs the upstream formation of
the stall region, increasing both lift and lift-to-drag ratio. This study reveals the sensitivity
of the flow field to coherent structures that have the potential to modify massively separated

wakes and improve their aerodynamic performance.
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Figure 6.1: Schematics of the present work. Through a combination of DNS and resolvent
analysis, we develop and evaluate the effect of resolvent-based actuation to the development

of flow control strategies that improve the aerodynamic performance of the wing.

6.1 Motivation

Altering the dynamics of flows has tremendous importance in aerospace engineering and
can significantly impact the economy and safety of future aircraft [Gad00]. Control design,
however, may prove to be an outstanding challenge due to the nonlinear, high-dimensional,
and complex nature of the flow fields behind finite wings in post-stall angles of attack [And10,
TC09, ZHA20b|. In such flow conditions, control inspired by the intuition and experience of
control engineers may often lead to an ineffective flow modification and undesirable outcomes,
as the evolution of flow perturbations is not trivial. To properly study the perturbation
dynamics, we use triglobal resolvent analysis, which provides insights that support the design
flow control strategies that modify the wake characteristics according to a predefined goal.
The present work reveals the sensitivity of massively separated flows over wings to resolvent-

based external forcing structures.

In this chapter, we develop a flow control strategy to modify the wake using body force
actuation, as shown in figure 6.1. The body force is harmonic and modeled using the optimal
forcing modes at each frequency, obtained by triglobal resolvent analysis. The main control
objective is to increase lift and improve the aerodynamic performance of the wing. Further-

more, we explain how to use the actuation frequency as a selection parameter to perturb
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different areas of the wake and distinct wingspan locations. For instance, to attenuate the
tip vortex, it is shown that a high-frequency actuation is more effective. The setup used
in the present chapter is the same one used to study tapered wings in section 3.2. The
present chapter is organized as follows. In section 6.2, we present the numerical approach
used for the present work, the direct numerical simulations and triglobal resolvent analysis.
In section 6.3, we describe our active flow control approach, inspired by resolvent modes,
and show its application to tapered swept wings and the difference of the control actuation

at two different angles of attack.

6.2 Methodology

6.2.1 Direct numerical simulations
6.2.1.1 Formulation

We study the three-dimensional flow over finite wings by numerically solving the incompress-

ible Navier—Stokes equations

1
aa—?qtu-vu = —Vp+ReCV2u+e, (6.1)

V-u = 0, (6.2)

where u = (uy, uy, u,) is the velocity vector in Cartesian coordinates, p is the pressure, e is
external forcing. The external forcing is modeled as a body-force harmonic actuation using
the spatiotemporal characteristics of the triglobal forcing modes obtained from resolvent
analysis (described in detail in section 6.2.2). The set of equations 6.2 is solved using Cliff, the
incompressible flow solver from the CharLES package, developed by Cascade Technologies,
Inc. This solver uses collocated node-based second-order finite volume to compute mass and

momentum equations and a fractional step scheme for time integration [HI04, HMIO06].

With the origin of the Cartesian system placed at the leading edge of the wing root
(x,y,2)/c = (0,0,0), the computational domain extends over (z,y,z)/c € [—20,25] X
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[—20,20] x [0,20]. The meshes used in the present work are the same used in chapter
3. A symmetry boundary condition is imposed at the root. At the inlet, we prescribe a
freestream velocity vector u = (Us,0,0). At the outlet, we specify convective boundary
conditions. A slip boundary condition is applied on all other farfield boundaries. Moreover,

we enforce a no-slip wall boundary condition at the wing surface.

We perform DNS for baseline (e = 0 in equation 6.2) and controlled flows (e modeled
with harmonic forcing modes). For both cases, simulations are initiated from uniform flow
with no external forcing, being performed with a constant acoustic Courant-Friedrichs-Lewy
(CFL) number of 1 until transients are washed out of the computational domain, which takes
approximately 90 convective time units. After the transients are washed out the domain,
flows are simulated, with and without external forcing, with a constant time step defined
such that CFL is smaller than one. Statistics are collected for approximately 100 convective
time units to ensure convergence. We recall that for the numerical results presented in
chapter 3, we have used the compressible solver with a freestream Mach number set to
My = Ux/as = 0.1, where a, is the freestream speed of sound. The differences between
incompressible and weakly compressible flow fields are negligible, one may refer to chapter

3 for insights into the baseline flows.

6.2.2 Triglobal resolvent analysis for flow control

For this chapter we use the resolvent modes shown in section 5.4. These modes were obtained
from a weakly compressible base flow. For this reason, the modes are defined with the five
state variables, f = (fp, ful_, fuy, fuz, f'T) and q = (4, Qu, AQu, Au., dr), under the Chu norm
[Chu65]. The compressibility effects are negligible at the present low-Mach number flow,
allowing for the velocity components of the forcing modes, namely (ful, fuy, fuZ), to be used

as body forces within the incompressible DNS.

For the present resolvent analysis formulation (see section 2.1), forcing modes represent

the optimal structures that can modify the flow field, while the response modes describe the
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evolution of the flow perturbations in the flow field. In a linear analysis perspective, such
evolution is the result of the input actuation given by the forcing modes at each frequency.
This idea leads naturally to flow control, as we have insights on the perturbations that can
be amplified by the flow field as the forcing modes and how they behave in the wake as the
response modes. Nonetheless, to understand whether these modes can significantly change
the wake structures in practice we introduce the forcing modes within the flow field as a

harmonic external actuation mechanism.

For the controlled flows, forcing modes obtained from resolvent analysis are modeled as
the external forcing f in equation 6.2. The spatial distribution of the forcing modes and

their frequency w is used within the definition of the body-force e expressed as

f(@,t) = A(Re(f () sin(wt + ¢) + Im(F () cos(wt + ¢)) , (6.3)

where f(a) is the spatial forcing mode, with real Re(-) and imaginary Im(-) parts, A is
the amplitude, and ¢ is the phase. The velocity components of the forcing mode }' =
(f uar }'uy, f..), with unit magnitude, that is || f||» = 1, are added to the momentum equations

6.2 as body force.

The objective of control is to achieve notable flow modifications to improve the overall
aerodynamic performance of the wing using a small forcing input. The amplitude A is O(1),
similar to previous modal-based body-force actuation works [ESS18]. To quantify the control
input, we perform simulations with active control in a quiescent flow field and estimate the

momentum coefficient C), as

o () ) AV

C ;
: spUZbe

(6.4)

!/

/
where u, u,

and v/, are the velocity components, and S, and V. are the surface and

volume of the active 3-D forcing. The maximum C), used in the present study is 0.05.

One can use the global forcing modes for actuation, as the forcing and response modes are

defined over the entire computational domain. In this way, by actuating the flow field with
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Figure 6.2: Actuation location for representative frequencies and forcing modes shown by the

yellow contours, defined using equation 6.5 and the threshold K;(x,w) > 0.5 max(K;(w)).

a specific forcing mode, we are introducing an input over the entire flow field. Although this
idea seems interesting, it is not practical to be replicated in different experiments. The spatial
distribution of the forcing modes, however, is also not even over the computational domain.
The subset of the forcing modes with high magnitude is usually located in a small region
near the wing. The forcing modes are almost sparse in the 3-D domain. For this reason, the
resolvent modes can give insights for a localized actuation in a subset of the spatial domain
Viet, instead of using the whole global domain forcing. The volume of actuation is defined
using an auxiliary spatially defined variable K;(x), which is a velocity-based metric of the

forcing modes, defined as

, (6.5)

which is the absolute value of the sum of the forcing velocity components inner products
at each grid location. Using this variable, the V. is defined for the spatial region that has
K;(x) above the 50th percentile, that is, where K;(x,w) > 0.5 max(K;(w)). The effect of
the control input defined at this subset instead of the entire domain yields minor differences
in the modified flow. In figure 6.2 we show a yellow isosurface that marks the region where
K;(x,w) > 0.5max(K;(w)) for specific forcing modes. Red and blue isosurfaces show the

global modes defined over the flow field with £y, /||f|lsc = %0.1.

Furthermore, we can also get insights from the response modes to know how the flow

field will respond to the forcing input at each given frequency. The spatial characteristics
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of the response modes indicate how the active flow control using a specific forcing mode
modifies the wake. In this context, the frequency w of the response modes is a selection
parameter of the locations where the active control operates, as the spatial characteristics of
the response modes are distinct as a function of their temporal behavior. It is interesting,
for the present study, to extract information from the response modes on how much mixing
they can generate, for this reason, we use the modal streamwise, transverse, and spanwise

Reynolds stresses respectively defined as

~ ~

R, (x,w) = Re(@,qu.), Ry(x.0) =Re(@.du,), R.(x,w) = Re(d},du,) , (6.6)

where Re(+) is the real part of the complex-valued variable. To quantify the momentum
mixing and vortex merging that we expect to obtain for a specific control input, we compute

a momentum mixing-merging metric using the Reynolds stresses of the response mode as

M(w) = /V (03 (Ralx,w) + Ry(x,0) + Ry (z,0)] AV (6.7)

where V), is a predefined volume, where we intend to analyze the capability of the forcing
modes to promote perturbations and modify the flow. The key idea is that the highest the
value of M, the stronger the effect of the actuation is within the volume Vj;. In the next
section, we will study how the metric M can give us insights on the flow field modification
for an untapered and unswept wing. We will deeply discuss the evolution of the perturbed
flow within the DNS for one case and present control strategies to increase the aerodynamic

performance of tapered and swept wings.

6.3 Direct numerical simulations of controlled flows

6.3.1 Flow field response to external actuation

To study how the present flow fields respond to the resolvent-based actuation, we per-

form DNS with body forces modeled from the localized forcing modes for an untapered and
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unswept wing at a = 14°. In figure 6.3 we observe the flow field over the half span wing,
at the time step of the maximum lift, visualized with isosurfaces of () = 1 colored by the
streamwise velocity component u, and a 2-D slice of spanwise vorticity component w, con-
tours at the wing root. In figure 6.3(a) we have the baseline flow, as we have observed in
the top left corner of figures 3.8, 3.14, and 3.20, with a long steady streamwise vortex core
at the wing tip and shedding developing over the separation bubble near the wing root with
spanwise vortex rolls. We note that unsteady vortices only appear in the wake, downstream

of the wing, as the separation bubble is large over the suction side.

On the right, it is presented the temporal and spectral characteristics of probed u,
over the wingspan at (z,y)/c = (3,—0.5). The location of the probes is arbitrary and
does not affect the discussions in a significant manner. Over a period of 50 < t < 70 we
observe on the oscillatory behavior of the spanwise rolls near the root with a characteristic
frequency captured near the frequency of St =~ 0.14. The unsteady vortices are spread over

approximately a quarter-span.

For the actuation using the peak gain resolvent modes, at St = 0.14, there are consider-
able modifications in the near wake, as seen in figure 6.3(b). As presented in the 3-D flow
field, vortical structures emerge over the suction side of the wing, increasing the unsteadiness
levels and promoting a highly 3-D wake ‘downstream. The perturbed flow field alters the
steady structure at the free end as a wobble motion is observed on the tip vortex far from
the wing. The probed u, velocity is apparently similar to the baseline case, but a closer in-
spection on the spectral content reveals that the dominant shedding frequency has shifted to
St = 0.14, suggesting that the actuation frequency has synchronized to the vortex shedding.
By analyzing the spectral signature of u,, we notice that the unsteady flow region is larger

in the spanwise direction with wake oscillations appearing near the tip.

Now let us look at the effect of resolvent-based actuation at a higher frequency of St =
0.26, as seen in figure 6.3(c). The optimal response modes at St = 0.26 develop aligned at

the wing tip, suggesting that their forcing pair can be used to perturb the tip vortex. As the
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actuation is localized, this perturbation has a minor influence on the wake structures near
the wing root. They are, in fact, similar to the wake structures of the baseline case. The
flow field near the wing tip, however, is significantly altered. Instead of the quasi-steady
streamwise tip vortex that appears for the baseline, the perturbed flow develops a helical
structure near the tip which is visibly shorter than the baseline tip vortex. As the tip vortex
is attenuated, the effective angle of attack near the tip also increases, allowing for vortex

shedding to occur at this region.

These features are further studied through the probed u, temporal and spectral content.
We observe in the temporal probed data that oscillatory patterns are now present over the
entire wingspan. The root shedding oscillations appear near St ~ (.14, similar to the baseline
case, while between 1 < z/c < 2, there is a lower frequency signature at a subharmonic of
the actuation frequency at St = 0.13. This pattern is associated with the helical motion
and resembles the vortex dislocation studied as a natural phenomenon around larger aspect

ratio cylinders and wings.

6.3.2 A priori assessment of control effect through response modes

The flow field is sensitive to the actuation through triglobal forcing modes, as seen in the
aforementioned results. Using the input-output perspective provided by resolvent analysis,
we can use the modal characteristics to achieve a specific goal. In figure 6.4(a) we compute
the M metric from equation 6.7 for each response mode in two different spatial regions,
shown in 6.4(b). We note that the value of M computed over different volumes may not be
compared, as the volumes are different. We evaluate the frequency St where peaks of M

appear for each region of the flow field separately.

For the blue curve, M is computed over the separation bubble, defined in the region of
u; < 0. For this region of integration, M exhibits a small peak at St = 0.06. The flow field
and separation bubble for the actuated flow field at this frequency is shown in figure 6.4(d).

This actuation is able to reduce the separation bubble size and perturbs the propagation
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Figure 6.3: Effect of resolvent-based body-force actuation on the flow field for (a) baseline, (b)
actuation with St = 0.14, and (¢) St = 0.26, for wing at a = 14°. On the left, instantaneous
flow fields visualized with isosurfaces of () = 1 colored by streamwise velocity u,. Middle
and right shows temporal and spectral behavior of u, probed at z/c = 3 and y/c = —0.5

over the wingspan.
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of the spanwise vortex rolls in the wake. The highest M peak occurs near St ~ 0.14,
which is near the vortex shedding frequency of the baseline case and the frequency of the
maximum o;. This indicates that to achieve the objective of increasing vortex merging and
perturbing the separation bubble, the actuation at St ~ 0.14 is the most effective. Indeed,
the actuated flow field at this frequency presents an even smaller separation bubble than the
lower-frequency actuation. The wake pattern is also distinct, as shown in figure 6.4(e), when
compared to the baseline and the actuated flow field at St = 0.06. Although the spanwise
vortex rolls are formed, there is an increased vortex merging downstream of the wing, which

is dominated by a highly 3-D vorticity field.

For the red curve, M is evaluated over the tip vortex, within the w, < —0.5 isosurface
for z/c > 1.65. The red curve in figure 6.4(a) exhibits its higher values between 0.26 <
St < 0.32. This suggests that the optimal forcing modes at these frequencies is able to
promote perturbations near the region highlighted in red in figure 6.4(b). The objective of
this actuation is to perturb and attenuate the tip vortex. This goal is achieved, as shown in
figure 6.4(f), the flow field near the free end exhibits a helical pattern consistently different
to the baseline case. Furthermore, the flow modification near the tip has a minor impact
on the inboard wake and separation bubble, which shows that the control effect is local and

restricted to the tip region.

Whether the objective is to increase the aerodynamic performance of the wing or to
perturb and attenuate the tip vortex, the aforementioned results show that both goals are
achievable through resolvent-based control, as shown in figure 6.4(c¢). More important, by
comparing the response modes assessment in figure 6.4(a) and the assessment of the flow
modification in figure 6.4(c), we see that the metric M over St provides a good estimate
of the effect of the resolvent-based forcing actuation on the flow field modification. From
the aforementioned results, we note that the reduction in the separation bubble volume is
directly associated with the increase in lift and lift-to-drag ratio. The maximum separation

bubble volume reduction and the maximum increase in lift and lift-to-drag ratio are obtained
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Figure 6.4: Flow modification as a result of body force actuation using forcing modes at
each St for wing at o = 14°. (a) Momentum mixing M from response modes for each
frequency shows a prediction of the flow modification. (b) Separation bubble (SB) and tip
vortex (TV) as regions of interest for flow field modification. (¢) Percentual change in flow
field and aerodynamic characteristics obtained from controlled flow fields. Instantaneous
flows fields visualized with gray-colored isosurfaces of () = 1 and time-averaged separation
bubble shown with the blue-colored isosurfaces of u, = 0 for controlled flows with actuation

from (d) St = 0.06, (e) St = 0.14, and (f) St = 0.28 optimal forcing modes.
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for the actuation at St = 0.14. This might be expected, but it is not trivial for massively
separated flows. In another analysis, the maximum reduction in the tip vortex length is
obtained at St = 0.26, near the region of maximum M computed over the tip region. Due
to its distinct importance to the wake dynamics, the effort of tip vortex attenuation will be

discussed separately in the following section.

6.3.3 Tip vortex attenuation

The idea of controlling and effectively reducing a tip vortex length has many practical impli-
cations to air travel safety and productivity [Spad8| and has attracted the attention of many
researchers. In similar flow conditions, using stability analysis modes as body forces, a 21%
reduction was achieved in previous works [EST18, ESS18|. For this approach, the tip vortex
was perturbed in the wake, which caused it to merge with the inboard vortices. As a result,

the decay rate of the streamwise circulation was increased, reducing the tip vortex length.

For the actuated flow fields in the present work, there is a small decrease in the tip vortex
length for actuation with the optimal forcing modes at frequencies St < 0.14. This small
reduction coincides with a small peak in M computed at the tip vortex region in figure 6.4(a).
From St = 0.16 to 0.20, the tip vortex length increases. As we increase the frequency of
actuation and the forcing-response mode pairs gradually transition toward the wing tip, the
tip vortex is drastically reduced, achieving a maximum attenuation for the optimal forcing

mode at St = 0.26 of approximately 42% reduction in tip vortex length.

The M peak at the tip vortex region for the frequency St = 0.06 coincides with a small
8%reduction in the tip vortex length for the actuated flow. We note in the flow in figure 6.4(d)
that the actuation substantially changes the separation bubble and the wake flow patterns,
generating energetic streamwise vortices in the wake. To study how this tip vortex reduction
occurs, we compute the streamwise circulation I' = f o = u-dl, where C is the isocontour
of W, = —1, as shown in figure 6.5(a). In this analysis, we see that the difference between

the flow actuated at St = 0.06 and the baseline flow is mainly associated with a higher
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Figure 6.5: Tip vortex attenuation for optimal forcing modes actuation at specific frequencies
for wing at a = 14°. Throughout the figure, color black is used for baseline case, color blue is
used for St = 0.06 actuation, color red is used for St = 0.26, and color yellow for St = 0.32.
(a) Tip vortex streamwise circulation |I';| over x/c. (b,c,d) Side view of the time-averaged
flow structures using isosurfaces of @ = 1. (e) Streamwise vorticity countours shown in 2-D

slices (y-z plane) at z/c = 3,4, and 5.
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circulation decay rate d|I';|/dx. This indicates that the tip vortex attenuation obtained here
results from an increased merging of inboard flow structures with the tip vortex downstream

of the wing, similar to the mode of tip vortex attenuation obtained by [ESS18].

It is possible, however, to obtain a higher tip vortex attenuation by introducing per-
turbations near the wing. The higher values of M for tip vortex attenuation are found at
0.26 < St < 0.32, as seen in figure 6.4(a). The maximum tip vortex reduction is obtained
by the actuated flow at St = 0.26. Here we note a difference between the St = 0.06 and the
0.26 < St < 0.32 actuated flows. At the higher frequencies, there is a strong reduction of
IT";| near the wing, which indicates that the high-frequency actuation perturbs the tip vortex
close to the wing, in the region where the flow structure is formed. By introducing the per-
turbations at this location we can modify the tip vortex and achieve the higher attenuation
than that obtained by actuating at the wake of the wing [ESS18]. By analyzing the vorticity
contours in 2-D slices aligned in the streamwise direction, shown in figure 6.5(e, f,g), we
note that the high-frequency actuation considerably modifies the vortex core, especially in
the lower part of the 2-D planes, between —0.5 < y/¢ < —0.25, when compared to the base-
line and low-frequency actuation cases. This behavior results from the tip vortex actuation

being localized in the pressure side of the wing.

Local actuation at the wing tip pressure side near the TE is effective to attenuate the tip
vortex at higher angles of attack, as shown in figure 6.6, for a wing at a = 22°. At higher
incidence, the tip vortex increases in length in the streamwise direction for the baseline flows,
as seen in figure 6.8(a, ¢). The tip vortex circulation decay for this case, due to interactions
with the inboard flow field, may not be linear as the one obtained at lower incidence angles.
As shown in figure 6.8(b), through the time-averaged vorticity contours at a 2-D slice at
x/c = 3, the tip vortex is significantly altered by the actuation at high frequencies. An
actuation with the optimal forcing modes at St = 0.14, where the o; peak is found at the
same frequency of the baseline vortex shedding, is able to reduce the size of the separation

bubble, as shown in figure 6.8(d). Furthermore, this actuation perturbs the tip vortex region,
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yielding a wobbling motion downstream in the wake, but only has a minor effect on its length.
By actuating the flow field with the optimal forcing mode from a higher frequency St = 0.40,
we generate the same helical vortex pattern observed previously at a lower angle of attack
and significantly reduce the circulation at any streamwise distance from the wing, as seen in
figures 6.8(a, e).

The present results show that it is possible to achieve a large reduction in the tip vortex
length with a localized high-frequency actuation near the pressure side of the wing tip. As the
flow modification is designed to be local, the inboard global structures are mostly unaffected
by the tip vortex reduction. For the objective of changing the inboard wake patterns and
obtaining a higher lift and lift-to-drag ratio, we may look at actuation near the natural vortex
shedding frequency of the wing, as shown in figure 6.4(a, c). For the following discussions,
we will study the controlled flows with this objective and investigate why this flow actuation

is able to obtain higher aerodynamic performance.

6.3.4 Active flow control for improved aerodynamic performance

To achieve the objective of increasing the lift and lift-to-drag ratio, we aim to suppress
the laminar separation bubble that forms on the suction side of the wing. This region is
characterized by a quasi-steady reverse flow bubble where %, < 0. The modes that possess
the capability of perturbing this region are found at the peaks of the blue curve of M shown
in figure 6.4(a). The high-frequency modes are more effective to modify the wake near
the tip region, with minor effects over the inboard wake. Even so, for the high-frequency
actuated flows, the attenuation of the tip vortex reduces the inboard downwash caused by
this structure in the baseline flow field. As a result, these flows exhibit an evenly distributed
lift increase over the wingspan, as seen in figures 6.7(a, b), where we present the local change
in lift over the wingspan ACj(z) and the absolute C; values for baseline and some actuated

flows at specific frequencies.

We observe that the higher changes in C; appear for the actuated flows with actuation
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Figure 6.6: Tip vortex attenuation for optimal forcing modes actuation at specific frequencies
for wing at o = 22°. Throughout the figure, color black is used for baseline case, color blue
is used for St = 0.14 actuation, color red is used for St = 0.40. (a) Tip vortex streamwise
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forcing modes.
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frequencies between 0.1 < St < 0.2. The harmonic actuation at these frequencies can
significantly reduce the separation bubble volume and increase the overall lift and lift-to-
drag ratio, as seen in figure 6.4(c,d,e). The spanwise region of increased lift contribution
gradually transitions from the root toward the tip region, as we increase the frequencies.
This is related to the spanwise location of the forcing modes actuation, which also gradually
transitions toward the tip region. For instance, while the lift contribution increases over the
entire wingspan for the actuated flow with St = 0.14, the larger increase appears between
0 < z/e < 1.5. For the actuated flow with St = 0.18, which is near the root. The largest
increase in lift contribution comes from the wingspan region defined between 0.7 < z/¢ < 1.7,

which is closer to the tip.

At a higher incidence angle of @ = 22°, shown in figure 6.8, the findings are similar.
By actuating the flow field with the proper optimal forcing mode to perturb the separation
bubble, we significantly increase the near-root support for the overall lift, causing it to
be higher than the lift support from the tip region. We note that having a higher lift
near the wing root is generally known to be beneficial for flight stability. An actuation at
higher frequencies, with the optimal forcing mode at St = 0.40, attenuates the tip vortex
and reduces the inboard downwash, causing an overall increase in the lift over the entire
wingspan.

The effect of actuation is further observed in the surface flows through the skin friction
lines shown over the wing surface in figures 6.7(c) and 6.8(b). By focusing on the flows at
a = 14°, at St = 0.26, the optimal one for tip vortex attenuation, the skin friction field over
the surface of the wing is similar to the baseline case. This is expected as the inboard flow
is only slightly altered for the flow with actuation at St = 0.26 near the tip. Also, as the
forcing mode is located on the pressure side, the surface flow on the suction side near the

tip must also remain similar to the baseline flow.

The main modifications on the surface flow appear near the inboard quarter-span, near

the root, at lower frequencies, and near the outboard quarter-span, closer to the tip, at
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Figure 6.8: Spanwise distribution of lift for optimal forcing modes actuation at specific
frequencies for wings at a = 22°. (a) Absolute values of C; for specific actuation frequencies.
(b) Time-averaged surface flow over the wing shown by skin friction lines revealing how

different actuation modifies the surface flow patterns.

higher frequencies. Although these mild changes are exhibited in the actuated surface flows,
the length scales and the surface area of the reversed flow exhibits overall similarities with
the baseline case. Similar observations can be drawn for the surface flows at o = 22°, shown
in figure 6.8(b) This suggests that the structures responsible for the lift increase must be
spotted in the near wake and not at the wing surface. To study how the actuation modifies
the near wake structures directly responsible for the generation of lift, we resort to the force
element analysis (see section 3.5.6)). It has been noted that lift elements closer to the surface,

exhibit a higher contribution to the total force exerted on the wing [ZT22].

The 3-D distribution of lift elements over the near-wake is shown in figure 6.9 for the (a)
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Figure 6.9: Lift elements over the wing at a = 14° for (a) baseline, (b) controlled flow with
St = 0.14 and (c¢) 0.18 optimal forcing modes. The leftmost figures show 3-D time-averaged
lift elements, 2-D slices at middle and right positions at z/c = 0.5, 0.8, and 1.2, respectively.A

black solid line marks the contour of w, = 0.
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baseline case and (b) St = 0.14, and (¢) St = 0.18 actuated flows. A black line is drawn at
the isocontour level of u, = 0 to represent the separation bubble on the 2-D slices of the
(x,y) plane at 3 wingspan locations. Drag elements are similar to lift ones and omitted for
brevity. Although the actuation frequency is similar, their effects on the lift distribution are
distinct. The lift elements show that the major lift contribution (positive, red) comes from
flow structures immediately over the separation bubble. For the baseline flow field, these
elements appear far from the wing over a large portion of the wingspan. For the actuated
flows, at the frequencies shown of St = 0.14 and 0.18, the flow modification reduces the
separation bubble volume, which causes lift elements to emerge closer to the wing surface,

which subsequently increases the lift.

For the actuated flow at St = 0.14, the separation bubble shrinks considerably at z/c =
0.5 and 0.8 and the lift elements become larger and closer to the wing when compared to
the baseline case. At z/c = 1.2, the separation bubble increases slightly, compared to the
inboard 2-D planes, shifting the lift elements upwards in the transverse y-direction. For
this reason, we observe in figure 6.7(a, b) that the highest lift increase over the wingspan is
observed near the inboard quarter-span of the wing. Even so, at z/c = 1.2, the lift elements
appear closer to the wing than those of the baseline flow, which causes the lift over the
outboard quarter-span of the wing, near the tip, to still be larger than the baseline lift at

the same spanwise location.

The inboard quarter-span of the wing, for the actuated flow at St = 0.18 remains similar
to the baseline case with a large separated flow region which maintains the lift elements
far from the wing. The stall region is reduced for z/¢ = 0.8 and 1.2, which causes the
lift elements to appear closer to the wing, significantly increasing the lift contribution from
this region. The present results show that the increase in lift is directly associated with the
reduction of the laminar separation bubble because it causes lift elements to emerge closer to
the wing surface. For this reason, to increase the contribution to the overall lift for laminar

flows with massive separation, one may pursue actuation strategies that reduce or suppress
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the separation bubble.

For laminar flows, at high angles of attack, where a massive separation is formed, the
idea of suppressing the separation bubble completely over the suction side may be unrealistic
for the present resolvent-based flow actuation. The current results, show, however, that even
if the stall bubble is not completely suppressed, the sole reduction of its volume is directly
associated with an increase in lift and lift-to-drag ratio. These results give us important
insights on how to achieve a better acrodynamic performance for the present wings through
an active flow control strategy. It further provides the fundamental knowledge and tools to
achieve the desirable wake modifications that can efficiently alter the flow field characteristics
and improve the aerodynamic performance of laminar separated flows over tapered and swept

wings in the following sections.

6.3.5 Active flow control over swept wings

For laminar post-stall flows over untapered swept wings, the separation bubble is shifted
toward the wing tip region and a streamwise tip vortex core is absent. For a wing at a = 14°,
wake unsteadiness is suppressed and the flow becomes steady. At a higher incidence a@ = 22°,
flow unsteadiness appears near the wing tip. Our previous results, specifically for the tip
vortex actuation, show that perturbing the upstream portion of a flow structure is more
efficient to promote oscillation within it. For the flows over swept wings, the upstream
portion of the separation bubble appears near the wing root. This yields the hypothesis that
perturbing the upstream region of the separation bubble might be a proper choice to improve
the aerodynamic performance of the wing. Over this wing, the forcing-response mode pairs
gradually transition over the wingspan, as we increase the frequencies, from tip-dominated

modes at lower St, to root-dominated modes at high St.

The effect of control at the optimal modes to introduce perturbations at the separation
bubble and root region is studied in figure 6.10. Here, we make an a priori assessment of the

control effects by evaluating M from equation 6.7 over the separation bubble (blue, peak at
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Figure 6.10: Assessment of flow control to improve the aerodynamic performance of swept
wings at a« = 14°. (a) M metric over frequencies computed over the separation bubble (blue,
peak at St = 0.10) and root region defined for z/c < 0.5 and |w.| > 0.5 (yellow, peak
at St = 0.18). (b) Lift over wingspan for baseline and actuated flows at peak M values.
(¢, e) Forcing-response mode pairs at St = 0.10 and 0.18, respectively. (d, f) Actuated flows
visualized with gray isosurfaces of () = 1 and blue isosurfaces of u, = 0 for St = 0.10
and 0.18 forcing modes actuation, respectively. Improvements in the overall lift, AC}, and

lift-to-drag ratio, ACL/Cp, are shown
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St = 0.10), and the root region (yellow, peak at St = 0.18), as shown in figure 6.10. The
respective forcing-response mode pairs are shown in figures 6.10(c) for St = 0.10 and (e)
for St = 0.18. By actuating the flow field with both of these optimal forcing modes, we
obtain a time-averaged lift increase over the wingspan, shown in figure 6.10(b) and the flow
fields become unsteady, as shown in (d, f), respectively. Both types of actuation increase the
overall time-averaged lift and lift-to-drag ratio. Particularly, the actuated flow at St = 0.10,
which aims to increase vortex merging at the separation bubble region, yields an unsteady
flow field near the wing tip, while the actuated flow at St = 0.18, which introduces local
flow perturbations near the root, yields a global unsteady flow over the entire wingspan.
By perturbing the upstream formation of the separation bubble, the root-aimed control at
St = 0.18 yields a higher reduction of the stalled region and a higher increase in the lift
and lift-to-drag ratio, which shows that a local root actuation is efficient to improve the

aerodynamic performance of swept wings.

At a higher angle of attack, a = 22° the baseline flow field is unsteady with vortical
structures developing near the free end, as shown in the 4th left-to-right figure in the top
row of figures 3.10, 3.16, and 3.22. The wake near the root is steady. The laminar separation
bubble develops over a large portion of the swept wingspan, but it is mainly concentrated
near the tip region, where the unsteady vortices emerge. To suppress the stall region, we
look for the optimal resolvent modes that have the capability to promote oscillations over
the separation bubble. Those are the forcing-response pair whose metric M computed for
the response modes over the separation bubble peaks at St = 0.14, shown in figure 6.11(b).
By actuating the flow with the optimal forcing modes at St = 0.14, we reduce considerably
the size of the separation bubble and increase both lift and lift-to-drag ratio. The actuated
flow field, shown in figure 6.11(c) exhibits higher levels of unsteadiness near the tip region,

while the larger portion of the reminiscent stalled region appears near the wing root.

Although the stalled region in the baseline flow occupies a large portion of the wingspan,

the upstream portion of it lies near the wing root. This leads us to study the effects of a
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Figure 6.11: Assessment of flow control to improve the aerodynamic performance of swept
wings at « = 22°. (a) Lift (solid lines) and drag (dotted lines) coefficients over wingspan
for baseline and actuated flows at peak M values computed over separation bubble (blue)
and wing root (yellow). Forcing-response mode pairs at (b) St = 0.10 and (d) St = 0.18 and
respective actuated flows (c, e) visualized with gray isosurfaces of () = 1 and blue isosurfaces

of w; = 0. Improvements in the overall lift, AC}, and lift-to-drag ratio, ACy /Cp, are shown.
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localized root perturbation on the wake dynamics. To that end, we must look at modes
at higher frequencies than the one used for the actuation at the separation bubble, as the
forcing-response mode pairs gradually transition from the tip toward the root region as we
increase the frequencies. Similarly to what was observed at @ = 14°, the actuation using
the optimal forcing modes that perturb the root region is also effective. The forcing modes
associated with it appear at St = 0.24 and are shown in figure 6.11(d). The actuation at
the root region introduces unsteadiness over the entire wingspan and significantly reduces

the separated flow region near the root, as seen in figure 6.11.

It is noteworthy that the increase in lift is the same as the actuated flow at St = 0.14,
although the lift-to-drag ratio is higher for the actuated flow at St = 0.24. The spanwise lift
and drag distribution, shown in figure 6.11(a), shows that lift (solid lines), increases more
near root and tip depending on the location of the actuation over the wingspan, being always
higher than the baseline lift. The spanwise drag also increases with respect to the baseline,
but there is a significant increase in the tip contribution to the overall drag for the actuated
flow at St = 0.14, which is tip-actuated. The major contribution to the enhancement in the
aerodynamic performance for the actuated flow at St = 0.24 arises from the root region,
where the actuation is localized at this frequency, substantially increasing its overall lift. In
the next section, we extend the application of the current flow control methodology to the

improvement of the aerodynamic performance of tapered wings.

6.3.6 Active flow control over tapered wings

A root local actuation with an optimal forcing mode from a higher frequency than one of the
peak oy is shown to also obtain the highest enhancement in both lift and lift-to-drag ratio
when compared to other modal actuation, as shown in figure 6.12. The peak o for this wing
occurs at St = 0.14, where we also observe the peak M when evaluated at the separation
bubble. Once more we remind that this mode has the aim to suppress the stall formation

over the suction side, as seen in figure 6.12(c). The actuation using the St = 0.14 shows a
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Figure 6.12: Assessment of flow control to improve the aerodynamic performance of tapered

swept wings at o = 22°. (a) Lift over wingspan for baseline and actuated flows at peak M

values, St = 0.14 for separation bubble, St = 0.20 for wing root, St = 0.28 for wing tip.

(¢, e) Forcing-response mode pairs at St = 0.14 and 0.20, respectively. (b, d, f) Baseline and

actuated flows with St = 0.14 and 0.20 visualized with gray isosurfaces of () = 1 and blue

isosurfaces of 7, = 0. Improvements in the overall lift, AC7, and lift-to-drag ratio, ACL,/Cp,

are shown.
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considerable increase in the lift and lift-to-drag ratio by reducing the size of the separation
bubble that appears to envelop a near wake volume in the actuated flow over the wing, when
compared to the baseline, as seen in figure 6.12(d). Furthermore, the forcing mode actuation
at St = 0.14 breaks the formation of the spanwise vortex rolls over the wing that appears

on the baseline flow. As a result, unsteady wake structures emerge closer to the wing.

At a higher frequency of St = 0.28 we can perturb the tip region, which was shown to
be not effective as it only increases the tip contribution to the overall lift with minor effects
on the global aerodynamic performance. The optimal actuation for the improvement of the
aerodynamic performance and lift is the one using the optimal forcing mode at St = 0.20,
shown in figure 6.12(e). For this actuated flow, we note that the separation bubble has its
volume reduced and it is shifted toward the outboard portion of the half span, near the
tip, seen in figure 6.12(f). This actuation introduces unsteady structures near the root and
significantly increases the root contribution to the overall lift, as shown in figure 6.12(a),
which is known to be beneficial to flight stability. For this reason, similar to the untapered
swept wings shown in section 6.3.5, the root actuation at St = 0.20 is the one that yields in

the most improved aerodynamic characteristics over the wing.

Lastly, we study the effects of the resolvent-based flow actuation over tapered unswept
wings, that is, the one with unswept LE. For these tapered wings, the TE is swept forward
and the unsteadiness concentrates at the wing root, as seen in the baseline flow field 6.13(b).
As the tip vortex decays and the main structures appear near the root, the most relevant
modal actuation is associated with root-dominant forcing modes. A root-based actuation at
the peak o7, using the resolvent modes shown in figure 6.13(c), causes a considerable increase
in lift and lift-t-drag ratio with a significant reduction in the size of the separation bubble,
especially in the streamwise direction, as seen in figure 6.13(d). This behavior was studied

in previous wings and it is known to increase the root contribution to lift.

Optimal forcing modes ar higher frequencies, namely at St = 0.26, as shown in figure

6.13(e) appear over the quarter-span. A St = 0.26 actuation increases the unsteadiness levels
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Figure 6.13: Assessment of flow control to improve the aerodynamic performance of tapered
wings with unswept leading edges at @ = 22°. (a) Lift over wingspan for baseline and
actuated flows at peak M values, St = 0.12 for separation bubble, St = 0.26 near wing tip.
(¢, e) Forcing-response mode pairs at St = 0.12 and 0.26, respectively. (b, d, f) Baseline and
actuated flows with St = 0.14 and 0.20 visualized with gray isosurfaces of () = 1 and blue
isosurfaces of T, = 0. Improvements in the overall lift, AC, and lift-to-drag ratio, Am,

are shown.
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over the entire wingspan, as shown in figure 6.12(f). This causes an even increase of the lift
contribution over the wingspan, as seen in figure 6.12(a). The modifications observed in the
actuated flows over the unswept tapered wings yield steady and unsteady structures that
were smaller in size in the baseline case, such as the tip vortex. Insights on how to control
and attenuate this structures may be obtained from previous discussions in sections 6.3.3,
6.3.4, and 6.3.5. For instance, the modal actuation that is used to attenuate the tip vortex in
section 6.3.3, may be used to suppress the tip vortex that appears downstream the actuated
wakes seen in figures 6.13(d, f). Moreover, one could perform resolvent analysis on the
controlled flows to obtain new modes that can be used to further improve the aerodynamic

performance of the already actuated flows over tapered unswept wings.
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CHAPTER 7

Conclusions

7.1 Summary of contributions

We have presented a comprehensive analysis of fluid flows using direct numerical simulations
and triglobal resolvent analysis, characterizing the effects of aspect and taper ratio, as well
as angles of attack and sweep in the wake dynamics and perturbations around finite wings.
In order to perform resolvent analysis over high-dimensional flow fields, we have developed
an algorithm that adapts the randomized SVD approach, through randomized numerical
linear algebra, to speed up and reduce the computational burden of the resolvent modes
computation. With the randomized resolvent analysis, we were able to study the perturba-
tion dynamics in a 3-D global sense. Using the insights from DNS and resolvent we have
elaborated a 3-D active flow control strategy to improve the aerodynamic performance of the
wing and change their wake characteristics. In the following sections, we discuss the main

contributions and conclusions of each part of the present work.

7.1.1 Resolvent analysis

Resolvent analysis has proven to be a powerful technique to reveal the input-output char-
acteristics of fluid flows. However, the computational cost and memory allocation of the
resolvent analysis can be taxing for high-Reynolds number flows, making it prohibitive to
be applied to complex turbulent base flows. The major computational cost of the analysis is

associated with the SVD of the resolvent operator. To remove this bottleneck, the random-
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ized approach has been adopted to reduce the computational cost of SVD by considering
the low-rank approximation of the resolvent operator. This was achieved by constructing
the low-rank basis based on the insights gained from the sketch of the resolvent, which is

obtained from a linear system solver.

For flows with fast singular value decays, e.g., flows with strong shear and separation,
the randomized resolvent analysis reveals its power to accurately capture the response and
forcing modes as well as the gain. Moreover, we consider the use of the velocity gradient
to scale the random test matrix. Such scaling enhanced the accuracy of the randomized
resolvent analysis. The necessary computation time was significantly reduced as the number
of linear systems to be solved is considerably smaller. To demonstrate the capability of the
randomized resolvent analysis, we analyzed the turbulent separated flow over a NACA 0012
airfoil. Excellent agreement of the leading forcing and response modes and the gains were
shown between the full and randomized resolvent methods. By incorporating the knowledge
of the base flow in terms of its velocity gradient into the randomized test matrix, additional
speed up and accuracy enhancement were achieved. With the computational cost and mem-
ory allocation being relieved with the randomized approach, the application of the resolvent

analysis can be significantly extended to higher-Reynolds number 2D and 3D base flows.

7.1.2 Wake dynamics around finite tapered and swept wings

We have examined the influence of taper and sweep on the dynamics of wake structures
for finite NACA 0015 wings with straight-cut tip at a Reynolds number of 600 and a Mach
number 0.1. For this study, we have performed an extensive campaign of direct numerical
simulations of flows over half-span wings with symmetry boundary condition imposed at the
wing root. The present numerical study spans over a wide parameter space with angles of
attack between 14° < o < 22°, aspect ratios sAR = 1 and 2, leading edge sweep angles
0° < Arg < 50°, and taper ratios between 0.27 < A < 1. This parameter space was chosen

to characterize the effects of the leading edge sweep and the trailing edge sweep for tapered
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wings.

Through direct numerical simulations, we observe that the flow over unswept and unta-
pered wings forms a strong tip vortex, which interacts with the spanwise vortex detaching
from the wing surface at the root region. This flow yields a three-dimensional and unsteady
wake for all angles of attack considered herein. Untapered and swept wings are observed
to advect the shedding region towards the wing tip for lower angles of sweep, as a result of
the sweep-induced spanwise flow within the stall region. At higher sweep angles, the wake

oscillations are attenuated yielding a steady wake around wings at lower angles of attack.

Wing taper has a strong influence on the wake dynamics. For such wings, LE and
TE are not parallel and have a distinct influence on the flow structures within the stall
region. For wings with fixed Ay = 0° and Arg < 0° for A < 1, we studied the influence
of the forward-swept TE. For such wings, taper concentrates shedding structures towards
the wing root and yields a broadband spectral content in the wake, promoting mixing at
the root region. Beyond the unsteady wake shedding, the tip vortex is heavily affected by
wing taper, reducing its length considerably for tapered wings, as the chord length decreases
towards the tip. Such attenuation of the tip vortex is observed to be stronger for wings with
fixed Arg = 0° and Apg > 0° for A < 1. This is shown to be influenced by the shedding

dislocation from the wing root towards the tip for tapered wings.

It was further shown that backward-swept LE wings also stretch the wake structures in the
spanwise direction and promote shedding over a larger portion of the wingspan. Moreover,
for wings with high LE sweep, over which the flow tends to be steady for A = 1, we have
revealed that taper causes wake unsteadiness to appear. Those are developed initially near
the wing tip for moderate taper ratios. For low-A, wings with high LE sweep angles are
able to sustain the formation of wake shedding structures that occupy a large portion of
the wingspan. Through the detailed analysis of the wake structures, we also provide a map
that classifies the wake behavior of tapered wings for the parameter space studied herein, as

a function of the LE and TE sweep angles, semi-aspect-ratios, angles of attack, and taper
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ratios. The map provides a unique description of the overall flow physics of the wakes around
tapered wings and the steady-unsteady flow behavior. The present study reveals the effect
of taper, isolating effects of leading and trailing edge sweep and evaluates its impact on the

formation and nonlinear evolution of the wake structures.

Lastly, we show how the wing taper affects the aerodynamic forces over the wing. We
show that wings with the same taper ratio may present distinct overall lift and aerodynamic
performance. It is the combination of a high LE sweep with a low taper ratio that consider-
ably improves lift and lift-to-drag ratio for laminar post-stall flows over tapered wings. The
insights gained on the effect of wing taper in the absence of turbulence serve as a stepping
stone for future efforts that aim to study, interpret and control higher Reynolds number

post-stall flows over tapered swept wings.

7.1.3 Wing sweep effects on laminar separated flows

We reported on the wake dynamics under the influence of sweep for laminar flows over two-
dimensional wings through the use of direct numerical simulations and resolvent analysis.
The study focused on the onset of 3-D wake structures at a high incidence and the reduction
of spanwise oscillations at high sweep. DNS revealed the influence of sweep in terms of
attenuating spanwise fluctuations over the wing and giving rise to three-dimensional wakes
in agreement with the literature on finite wings. Although the wake dynamics exhibit larger
differences between swept and unswept wings, a sweep-angle-based scaling can be used to
collapse aerodynamic characteristics when we consider streamwise and spanwise flows to be

independent.

As some differences in pressure, lift, and drag for the lower angle of attack settings are
perceived at the higher angles of sweep and attack, we resort to the force element theory and
identify the vortical structures with spanwise periodicity formed closer to the wing within
the laminar separation bubble. Such elements are observed to increase in size and shape

with an increase in angles of sweep and attack, a behavior associated with the deviations
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of scaled force and pressure coefficients for massively separated flows. This finding revealed
force elements that impose additional forces over the wing and showed that spanwise and
streamwise flow components cannot be independently analyzed for massively separated flows

over swept wings.

Through resolvent analysis, we showed how the sweep angle induces a convection speed
to the optimal resolvent modes and provide a linear model to predict the optimal forcing
and response spatiotemporal frequencies for laminar flows over swept wings. The forcing
and response spatial mode pairs are also affected by the sweep as well as wavemakers that
sustain and promote unsteadiness in the wake. We revealed that a misalignment between
the optimal response convection speed and the wavemaker speed leads to the reduction in
spanwise oscillations for a higher sweep angle. Additionally, we observed that resolvent
modes with large amplification gain on swept wings represent the oblique vortex shedding,
as observed for laminar flows over high aspect ratio wings in the literature. The present
results reveal the fundamental influence of the sweep angle on the airfoil wake dynamics and
support future studies on the control of wake oscillations on swept wings at higher angles of

attack.

7.1.4 'Triglobal resolvent analysis

We presented the triglobal resolvent analysis of laminar separated flows over swept wings and
characterized the effects of wing tip and sweep angle on the wake dynamics. We revealed the
forcing and response structures that can be amplified from harmonic oscillations or external
actuation over finite wings. In the present triglobal analysis, we have identified the wingspan
locations where forcing structures can be amplified near the wing and the regions where the
unsteady response develops. We have further characterized the region of the dominance of
modal structures over the wingspan, with forcing-response mode pairs appearing near the

wing root or tip as a function of their characteristic frequency.

Through resolvent resolvent wavemakers, we studied the steady to unsteady flow charac-
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teristics over swept wings. We showed the regions where self-sustained instabilities appear
over swept wings and related those to the vortex shedding structures observed in the DNS.
We also revealed the most sensitive regions for perturbation growth in steady wakes over
highly swept wings. The forcing-response mode pairs further revealed the mechanisms of
spanwise advection of flow structures, which is further related to the spanwise convective
speed found for two- and three-dimensional stability and resolvent analysis over swept wings

and also associated with the nonlinear flow characteristics observed in DNS.

For tapered wings, we revealed the locations of optimal perturbations over the wingspan.
We have seen that tapered wings can promote multiple mode switching as the frequency
increases, which suggests that wing taper can affect the types of vortical structures that are
amplified in the wake. For highly swept wings, we have observed that the response modes
appear closer to the wing surface with a characteristic shedding pattern for low taper ratios.
This is indicative of the mechanisms that sustain wake shedding, while untapered wings
exhibit wakes with attenuated flow oscillations. Through the resolvent wavemaker analysis,
we relate the regions where unsteadiness is dominant to the regions with strong support from
the forcing-response overlap. We characterize how the forcing and response are affected by
the taper ratio X\. These results suggest that wakes around tapered wings in post-stall flow

conditions are a result of conflicting effects of LE and TE sweep angles as well.

At last, we showed for low-aspect-ratio wings that localized perturbations with root- or
tip-dominant characteristics are limited as modes evolve globally over the entire wingspan.
In fact, we have shown that root- and tip-dominant structures can appear over the wing in
a single mode for low-aspect-ratio wings. This behavior explains the characteristics of the
laminar flows around these wings, as observed in DNS, to be different from the flows over
sAR = 2 and 4 wings. These findings provide fundamental insights into future studies on
flow separation over swept wings at higher Reynolds numbers, in which a wider spectrum of

fluctuations are present.
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7.1.5 Flow control

We have performed direct numerical simulations with external actuation using the optimal
forcing modes from triglobal resolvent analysis. We have employed control strategies to
improve the aerodynamic performance of laminar post-stall flows over finite tapered and
swept wings. For the baseline flows, we notice that untapered and unswept wings develop
root shedding with spanwise vortex rolls at the root, while swept wings exhibit steady wakes
at the lower incidence and unsteady wakes localized at the wing tip at higher angles of attack.
Tapered wings exhibit distinct behavior depending on the LE sweep angle. For unswept LE
wings with taper, the tip vortex is attenuated and the shedding structures concentrate at
the root region. For tapered swept wings, the shedding region is shifted towards the wing
tip.

All the baseline flows develop a large stalled flow region on the suction side and the aim
of the present study is to show how optimal perturbations can modify the separated wake
and increase the aerodynamic performance of the wing and its overall lift. To achieve the
goal to modify the wake, we study the response modes and their modal Reynolds stresses
to see which spatial regions are prone to grow perturbations from a given forcing mode.
This analysis allows us to predict the regions of flow modification and select the proper
forcing modes and actuation frequencies to achieve the control objective. For instance, for
an untapered and unswept wing, we have shown that forcing modes located near the root
region with frequency content near the baseline vortex shedding frequency can significantly
reduce the separation volume, which causes unsteady structures to develop closer to the wing,
significantly increasing the overall lift. At higher frequencies, the optimal perturbations
appear closer to the wing tip, developing from the trailing edge at the pressure side. These
disturbances cause a tremendous reduction in the tip vortex strength, yielding an unsteady
helical vortex formation that suppresses the formation of the streamwise vortex core seen in

the baseline flow and reduces its circulation at any distance from the wing.
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With the knowledge of the forcing-response mode pairs and the baseline flow physics, we
have applied the resolvent-based flow modification to swept and tapered wings. For swept
tapered and untapered wings, we have seen that the forcing modes that efficiently promote
perturbations near the root are more effective to modify the near wake and increase the lift
and lift-to-drag ratio. Furthermore, they tend to increase the local lift contribution from the
wing root to be always higher than the tip contribution to lift, which is good for flight stabil-
ity. For tapered unswept wings, we have seen that the main modes of actuation are located
near the root and that is possible to increase the overall lift and aerodynamic performance by
increasing the near wake unsteadiness and reducing the separation bubble size. The present
results show that laminar separated flows are receptive to external perturbations and that
optimal spatiotemporal inputs can significantly alter the wake dynamics and improve the

aerodynamic performance of the wing.

7.2 Future work

We have examined the 3-D flow perturbations over wings at high angles of attack and to
provide pathways to the resolvent-based active flow control over such wings. There are many
research avenues that can be extended from the present work. For instance, we have aimed
to understand whether a mechanism of transport of vorticity exists within the stalled region
that would be responsible for the advection of flow unsteadiness towards root or tip over
distinct wing geometries. Further investigation may be needed to address this question and
fully understand the flow mechanisms that yield the diverse wake patterns over tapered swept
wings. This work has shown the structures that can be used to perturb the wake according
to a desired and predetermined control objective, once the resolvent modes are known. This
approach still needs to be studied experimentally to confirm the practical application of the
present flow structures to modify flow fields. It also remains a challenge to extend the present

methodology to higher Reynolds number flows.
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