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ABSTRACT 
In this paper, we demonstrate a first-of-its-kind adaptive 

intervention in a MOOC utilizing real-time clickstream data and a 

novel machine learned model of behavior. We detail how we 

augmented the edX platform with the capabilities necessary to 

support this type of intervention which required both tracking 

learners’ behaviors in real-time and dynamically adapting content 

based on each learner’s individual clickstream history. Our chosen 

pilot intervention was in the category of adaptive pathways and 

courseware and took the form of a navigational suggestion 

appearing at the bottom of every non-forum content page in the 

course. We designed our pilot intervention to help students more 

efficiently navigate their way through a MOOC by predicting the 

next page they were likely to spend significant time on and 

allowing them to jump directly to that page. While interventions 

which attempt to optimize for learner achievement are candidates 

for this adaptive framework, behavior prediction has the benefit of 

not requiring causal assumptions to be made in its suggestions. 

We present a novel extension of a behavioral model that takes into 

account students’ time spent on pages and forecasts the same. 

Several approaches to representing time using Recurrent Neural 

Networks are evaluated and compared to baselines without time, 

including a basic n-gram model. Finally, we discuss design 

considerations and handling of edge cases for real-time 

deployment, including considerations for training a machine 

learned model on a previous offering of a course for use in a 

subsequent offering where courseware may have changed. This 

work opens the door to broad experimentation with adaptivity and 

serves as a first example of delivering a data-driven personalized 

learning experience in a MOOC.  

Author Keywords 
Adaptivity; Personalization; Real-time intervention; MOOC; 

RNN; Behavioral modeling; Navigational efficiency; edX 

INTRODUCTION 
The path towards a more democratized learner success model for 

MOOCs has been hampered by a lack of capabilities to provide a 

personalized experienced to the varied demographics MOOCs aim 

to serve.  Primary obstacles to this end have been insufficient 

support of real-time learner data across platforms and a lack of 

maturity of recommendation models that accommodate the 

learning context and breadth and complexity of subject matter 

material in MOOCs. In this paper, we address both shortfalls with 

a framework for augmenting a MOOC platform with real-time 

logging and dynamic content presentation capabilities as well as a 

novel course-general recommendation model geared towards 

increasing learner navigational efficiency. We piloted this 

intervention in a portion of a live course as a proof-of-concept of 

the framework. The necessary augmentation of platform 

functionality was all made without changes to the open-edX 

codebase, our target platform, and instead only requires access to 

modify course content via an instructor role account.  

The organization of the paper begins with related work, followed 

by technical details on augmentation of the platform’s 

functionality, a description of the recommendation model and its 

back-tested prediction results, and finally an articulation of the 

design decisions that went into deploying the recommendation 

framework in a live course. 

RELATED WORK 
In searching for answers to the problem of dismal completion 

rates in MOOCs, previous research has shown that MOOC 

learners often feel lost or isolated in their learning experience [9]. 

So far, the attempts to address this problem have largely come in 

the form of self-regulated learning (SRL) support interventions. 

For example, [10] tested the effectiveness of recommending self-

regulating learning strategies to MOOC learners in the pre-course 

survey, but did not observe any significant changes in behavior as 

a result. As an example of a MOOC experiment integrated in the 

course content, [5] ran experiments in two MOOCs evaluating the 

effectiveness of providing learners with retrieval cues (to facilitate 

the active retrieval of information from memory) and study 

planning support (planning and reflecting on one’s learning 

activities each week)—both foundational techniques in self-

regulation. However, in both studies the authors report null 

results, with no evidence that providing this support to learners 

was beneficial. Another approach to instructional interventions in 

MOOCs is found in [17] where the authors manipulated the 

course discussion forum. In one condition, the course instructor 

was active in the discussion forum and provided support to the 

learners in answering their questions; in the other, the instructor 

was absent and the learners were on their own to discuss amongst 

themselves. Just as in the previous two studies, this yielded no 

significant change in behavior between the conditions.  

To address the challenge of implementing a real-time, adaptive 

intervention in a MOOC, we act on the need to find a way to 

effectively support learners in improving their navigational 

efficiency with the course materials. We here present a new form 

of support for MOOC learners in our next step recommendation 

system, as prior work has shown a strong relationship between the 

success of a MOOC learner (measured by course completion) and 

the characteristics of their learning path through the course [4, 6, 

18]. While novel to the MOOC context specifically, such 
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recommender systems have been applied to educational settings in 

the past, namely in intelligent tutoring systems (ITS). Both [1] and 

[10] provide an overview of the various approaches used to

recommend and adapt course content and resources to learners in

the context of ITS.

To highlight some example use cases of learning path adaptivity 

in prior research, we begin with an early example of real-time 

“task-loop adaptivity” (defined in [1] as the guiding of learners 

from task to task) offered in [2]. The authors here present a 

tutoring system which models a student’s learning path in terms of 

correct and incorrect actions, and would adaptively intervene to 

guide students back to the correct path of action with immediate 

feedback. 

The authors in [13, 12] provide real-time adaptive hints to coding 

assignments in the context of computer programming MOOCs. 

Both approaches are “step-loop” [1] in that they provide adaptive 

hints regarding the learners’ problem solving process. However, 

they take different approaches in doing so; [13] models the ideal 

process of solving the problem in a “Problem Solving Policy,” as 

defined by an expert, and guides learners towards this behavior. 

[12], on the other hand, leverages the scale of MOOCs and 

proposes algorithms which use the surrounding context of a code 

snippet to identify the problem and recommend a solution to the 

learner. The authors in [8] present a personalized navigation 

support system in the context of a JavaScript programming 

course. By monitoring the learner’s performance on previous 

problems, the system presented learners with a next-step 

suggestion to try problems of the appropriate, or “optimal,” 

difficulty level. By addressing the issue of learners navigating 

themselves to tasks that are too easy or too difficult, this system 

increased learner achievement and engagement. 

[15], [3], and [16] describe the design and deployment of an 

adaptive hint generator in an ITS on the topic of logic. This 

system uses past learner activity data as input for a Markov 

decision process which, when prompted by the learner requesting 

a hint, provides personalized support based on the current 

progress through the problem. This step-loop adaptivity was 

empirically tested in [16] where, compared to a tutor system 

without adaptive hints, learners receiving the adaptive hint system 

earned higher grades, tried more problems, and persisted deeper 

into the course. While the next-step recommender system we 

present here does not provide hints about how to solve a given 

quiz or assessment problem, the suggestions we provide can be 

thought of as hints on how to most efficiently navigate the course. 

The next-step recommendation system proposed here is course 

content-general and concerned solely with modeling learner 

behavior from the navigational patterns of peers from previous 

offerings of the course. This is in contrast to studies described 

above which are based on modeling a learner’s mastery of the 

course topic/domain or helping them through a given task. It also 

differs in that the system does not acknowledge any “correct” or 

“incorrect” learning path as described in [2]. The system could be 

trained to bias towards the behaviors of certificate earners but this 

would miss out on serving those who do not intend to complete 

but nevertheless wish to make use of portions of the courseware. 

While the objective of the recommender is not explicitly focused 

on improving cognitive aspects, as was attempted to be modelled 

in [28], it will facilitate this in so far as past behavior has been a 

means to these ends, for example by recommending resources for 

review before a quiz. These considerations are key when it comes 

to the eventual evaluation of recommendation quality. A review of 

the work in the area of recommender systems suggests that every 

context in which a system operates has its own special aspects 

against which both the system and its success metrics must be 

evaluated [7] Although outside of the scope of this paper, future 

evaluation of this intervention might include: increasing 

navigational efficiency (clicks per performance), affective 

experience (feeling supported), as well as common outcomes such 

as grade and completion rate. 

Thinking back to the challenge of addressing MOOC learners 

feeling lost in the course, we propose next-step recommendations 

as a service that could reach learners most in need of engagement. 

Pointing to recent findings from HCI research, [14] found that 

people are stimulated and respond positively to recommendations 

when they are bored. The potentially-overwhelming selection of 

possible next steps in a MOOC compounded with the complexity 

of course content can, understandably, leave a learner frustrated. 

A friendly next-step recommendation can be the support they 

need to move forward and persist. 

PLATFORM AUGMENTATION 
Several technical hurdles had to be overcome in order to add base 

functionality that would enable at-scale deployment of a real-time 

recommendation system within the edX platform. All solutions 

can be achieved without modification to open-edx and only 

require standard instructional design team / instructor access to 

edit course material.  

Figure 1. Annotated breakdown of edX interface components. 

Label (A) shows what is henceforth referred to as "Chapters," 

(B) refers to "Sequentials," (C) refers to navigation/goto

buttons, (D) refers to "Verticals," and (E) is the page URL. 

Enabling real-time logging 
Our real-time recommendation requires knowledge of the 

student’s most recent navigational events, some of which may 

have occurred only seconds earlier. The edX platform provides a 

daily event log delivery to its X consortium members but does not 

have a real-time data API. In order to enable access to real-time 

learner event logs, we set up a JavaScript logger within the xml of 

every page in the course which communicated to the 

recommendation server which events to store in the logging 

database. This process is illustrated in Figure 2. 

The client side logging, which we describe as the sensor code, 

was written in JavaScript. The sensor code was responsible for 

gathering four items of information from the client at every page: 

(1) the learner’s userID (2) the page’s chapter (3) the page’s

sequential (4) the page’s vertical.

The learner’s anonymous ID can be queried simply enough from 

Segment’s analytics library used by edX: 

   userid = analytics.user().anonymousId(); 
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The anonymosId call has the shortcoming that it will change if the 

user switches devices or browsers. A non-anonymized userID call 

is also available, which will remain stationary throughout. 

Next is the retrieval of chapter and sequential ID, both of which 

can be parsed from the browser URL: 

   var url = window.location.href; 

   var split = url.split("/"); 

    chap = split[6]; 

    seq = split[7]; 

The vertical ID, also known as the position ID within a sequential, 

is non-trivial to retrieve. While verticals can be accessed by 

adding the vertical number to the sequential URL, this is rarely 

how verticals are accessed in the course. They are most 

commonly accessed via the “next” and “previous” arrow buttons 

which are graphical navigational elements on either side of the 

sequential accordion view. When these “seq” events are triggered, 

the desired page’s content dynamically replaces the current page. 

This dynamic loading keeps the browser URL the same (cf Figure 

1) which means that the vertical position must be queried from a

different source. We find this vertical position information in the

edX document object model (DOM1).

    var block = $('#sequence-list .nav-item.active').data('id'); 

    vert = block.split("@").pop(); 

Arbitrarily clicking on a vertical in the accordion triggers a 

“seq_goto” event which is much the same as the next and 

previous events in how they load the page. 

With all of these elements now stored, the full description of the 

page a learner is on can be described: 

    origin = chap+"/"+seq+"/"+vert; 

The userID and origin are sent to a local server for logging via a 

cross domain aJax POST method.  

Row 

ID 

Anon 

Stu. ID 
Origin Rec Followed Previous 

ID 

Timestamp Time 

Category 

100 C103 5 6 0 99 1477142712 2 

101 C103 35 45 1 100 1477142732 1 

102 C548 89 101 0 82 1477142736 2 

Table 1. Example of entries in local mongo database 

Table 1 shows the columns stored in the logging database and a 

few example entries. At the time of the event, only the following 

columns are populated: row id (transaction id), stu_id, origin, 

timestamp, and previous ID (the previous transaction id of the 

user). The remainder of the columns are populated on the 

subsequent event. Full client side javascript can be found here2. 

1All DOM related function calls used in this work are 

undocumented by edX and subject to change. After conducting 

this pilot study of the framework, we contacted edX in regards 

to the supportability of our approach, including providing 

persistent anon IDs. This support is currently under review. 

2 https://github.com/CAHLR/adaptive_mooc_LAS/ 

Enabling real-time recommendation 
An html <div> container is inserted at the bottom of every page 

which contains a template of the recommendation text. The 

container is marked as hidden using “display: none” until a 

recommendation is received successfully, upon which time the 

template is populated with the actual page being recommended 

and its title. By hiding the template until a recommendation is 

received, we are able to fail gracefully and shield learners from 

any error that may occur along the recommendation pipeline; in 

the case of an unsuccessful recommendation request, the page 

would appear to the user the same way as it would as if no 

intervention was added.

Figure 2. Diagram visualizing the entire process of delivering 

a recommendation to the learner. The circled numbers 

correspond to the numbered steps below. 

The recommendation URL and title is populated by (i) sending an 

aJax POST to the recommendation server, which in turn (ii) looks 

up the learner’s event history from the logging server and then 

(iii) passes that information to a web service which interfaces with

the machine learned model. The model returns a recommendation

which is passed back through to the web service. This is then sent

to the recommendation server and then to the requesting client. At

this point, the “Rec” column of Table 1 is filled in representing

the internal index of the recommended URL, and “Followed” is

set to 0. If the learner clicks on the recommended URL, a request

is sent to the recommendation server, the “Followed” is set to 1,

and the learner is redirected to the recommended URL. Upon

loading a subsequent page, either by following the

recommendation or clicking on a different navigational

component, the sensor code will look up the previous event of the

learner and update the time category of the past event. This is

necessary since it is unknown how long the learner will spend on

the page when it is first logged.

1. The learner requests a page in the course

2. The platform sends the page to the client. In the case of a

“seq” event, the page is loaded in dynamically.

3. Client sensor code sends a logging event to the server

4. The server writes the event to a Mongo database

5. If a previous event exists for this student, the time category

of that event is calculated and updated.

6. Client sends a request to the server for recommendation
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7. The database is queried for all of the learner’s past events

and respective time categories.

8. The server relays this information to a Flask web service that

parses the information and passes it along to the machine

learned model written in python.

9. The machine learned model predicts forward until it finds a

page that the user is predicted to spend more than 10 seconds

on.

10. The recommended page is returned to the server.

11. The server sends this page to the client which parses a valid

“200” response into a proper hyperlink and populates the

<div> to display the recommendation.

12. The server will update the logging database for this learner

with the recommendation simultaneously

13. If user clicks on the recommendation, the server is contacted

and the database is updated to indicate that user followed the

recommendation.

The term "learner" is used when an event is triggered due to a 

deliberate action on the part of a human, such as clicking on a 

link. The term “client” is used when actions are initiated, invisible 

to the learner (e.g. sending a logging request), by code processed 

by their web browser.  

Choice of Technology 
In order to create this live intervention, we used a range of 

different technologies. NodeJS and Express were used to create 

the server API; Python Flask served as a light-weight web service; 

Python Keras was used to create the machine learned model; and 

Mongo was used for persistent database storage.  

Server - NodeJS with Express 
We decided to create our server using Node primarily because it is 

fast and performs well under stress. It handles operations 

asynchronously and facilitates a large number of simultaneous 

connections very well. It integrates nicely with MongoDB and can 

easily create routes with the Express framework.  

Our API has several local lookup tables including a mapping of 

url to index (used for the machine learned model), index to url, url 

to edX path, and edX path to display name.  

When the server receives a post request from the client it creates a 

new event with a unique user_id, origin, and timestamp. It will 

then check if the student has had a previous entry. If yes, the 

server will update the previous the timeSeq column of the 

previous entry and update the Recents database with this current 

entry. If no previous entry exists, it will skip the update in the 

Events database and go straight to updating the Recents database 

for this student. It will create an entry in the Recents database if 

this is the student’s very first event.  

After successful logging and updating, the client will ask for a 

recommendation for this particular student. The server will then 

take the student’s unique user_id and query the Events database 

for the sequence of events and timeSeqs connected with this 

student. The output will then be sent to the Python web service for 

a recommendation.  

When the web service responds, the response is checked. A 

lookup is then done to go from index to url as well as Edx path to 

name and then sent back to the client. The final JSON response 

will have the url, Sequential display name, and Vertical display 

name of the recommendation. 

Web Service - Python & Flask 
We decided to create web service using Python and Flask because 

our machine learning model was written using Python. It made it 

easiest to get the input into the correct format and parse the output 

into a simple response. Flask also allowed us to create multiple 

processes for parallelizability.   

The web service is called after the server requests for a 

recommendation for a particular student. It takes in a list of the 

student’s events and associated time categories, and then queries 

the machine learned model. It will receive either a -1 or an index 

from the machine learned model. If the response is a -1, then there 

is no valid recommendation (i.e., no recommendations meet the 

minimum time anticipated for the learner to spend on the page).  

Machine Learned Model - Python Keras 
Keras is a neural network machine learning framework providing 

functions for fast model prototyping. It has the option of utilizing 

Theano or tensorflow for the backend computations, both of 

which can utilize GPUs for accelerated training. 

Database - MongoDB 
We decided to use Mongo as our database of persistent storage 

because it is scalable and quickly handles simultaneous queries. It 

also has fast in-place updates and has documents stored in JSON, 

which makes it efficient to work with our client and server code.  

Choice of Course 
This framework is generally applicable to different backend 

recommendation algorithms with different objectives. For our 

purposes of navigational behavior recommendation, there were 

several criteria that we anticipated as important in selecting a 

reasonable pilot course. 

Given our objective of increasing the navigational efficacy of 

learners, courses with more numerous pages to navigate are better 

candidates for demonstrating the utility of navigational 

recommendation. In order to learn non-trivial navigational 

patterns from past course events, we also wanted a course with a 

high amount of variation in navigational pathways exhibited by its 

learners. To measure this variation, we chose to treat student paths 

through a particular course as a Markov chain and then computed 

the entropy of the transition probability matrix for each course 

[26]. There were 13 courses evaluated offered by our deployment 

University partner, DelftX. Table 2 shows the entropy calculated 

for a variety of courses where entropy was 20 or greater.  A higher 

amount of entropy indicates larger amounts of non-linear 

navigation. Since the Intro to Aeronautical Engineering course 

had both a high entropy and candidate assets to recommend, we 

selected that course for deployment.  

Course Entropy Assets Normalized 

Entropy+Assets 

Intro to Aeronautical 

Engineering (2014) 
343 1175 1.782 

Intro to Water & 

Climate (2013) 
149 1503 1.434 

Intro to Drinking 

Water treatment 

(2015) 

86 745 0.806 

Economics of 

Cybersecurity (2015) 
78 323 0.746 

Table 2. Course suitability evaluation based on navigational 

entropy and asset quantity 
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MODELING 

Modeling Navigation Behavior 
The literature on cognition and learning has several theories for 

describing how knowledge acquisition develops over time. Far 

fewer theories exist for behavior, however, as it is an amalgam of 

many cognitive and affective factors. As such, the lack of existing 

theory to adequately predict navigational behavior to a high 

degree of accuracy means that there is also a lack of knowledge of 

which manually engineered features may capture student 

behavior. As such, we use a model that makes no assumption 

about behavior and instead learns these features from the raw time 

series data itself. 

To model student navigation behavior, we chose to use the 

Recurrent Neural Network (RNN) architecture. RNNs are able to 

model time sensitive dependencies between events in arbitrarily 

long sequences without the need for manual feature engineering. 

To provide an example, an RNN can be given a sequence of 

URLs a learner has already visited. The RNN maintains a hidden, 

continuous state that represents the past behavior exhibited by the 

learner. The RNN model can then output a probability distribution 

over the next URL the student is likely to visit. Thus, we can then 

take the output of the RNN as a potential recommendation to 

serve to the learner. The output can be augmented to also be able 

to predict the amount of time that a learner will spend on the 

resource. With this augmentation, we can then choose to only 

provide recommendations where there is expected to be a 

significant amount of time spent on the URL. This helps expedite 

the learner’s navigation through the course by skipping less useful 

content. 

To use an RNN model, the logs of student actions must be parsed 

so that each student can be represented by a single list which 

contains each unique course URL the student has visited. 

Additionally, the timestamp associated with each course URL 

visit is also tracked. These timestamps are used to create a proxy 

for the amount of time spent on a resource. We investigate 

whether adding time spent as an input to the RNN model 

improves its predictive accuracy, and investigate two model 

modifications to incorporate time spent as an input. 

Understanding edX logging of navigational events 
Parsing a data log of student actions is not trivial. In this work, the 

ultimate goal of parsing through the data log is to obtain the 

sequence of course URLs that each student has visited, as well as 

the timestamp associated with each visit. The data log contains 

other student events, such as pausing videos and answering quiz 

questions. For this work, such rows were dropped. Thus, only 

navigation events were kept, where navigation is defined as 

visiting a specific course URL. These navigation events were then 

parsed to resolve to a specific course URL. Each URL contains a 

chapter hash, a sequential hash (which refers to sections within a 

chapter), and a vertical hash (which refers to a specific course 

page within a section). For example, a URL represented by 

‘abc123/zzz444/2’ would have a chapter hash of ‘abc123’, a 

sequential hash of ‘zzz444’, and a vertical value of ‘2’. Thus, each 

navigation event in the edX data log can be resolved to a specific 

URL. However, each event in the raw log unfortunately does not 

directly map to a URL without an extra step of processing. 

Navigation events can be found in rows where either: 

1. The row is a seq event. Seq events include seq_next,

seq_prev, or seq_goto. Next and prev refer to moving

directly forward or backwards one vertical. Goto is a

jump to any vertical within a single sequential.

OR 

2. The row contains a direct course page URL. In the

URL, the vertical may be given directly, or the vertical

may be missing.

Both types of navigation events mentioned above have data 

processing quirks. Seq_next and seq_prev events contain the 

sequential hash and the vertical that is navigated to. Using the 

sequential hash, the chapter hash can be inferred, since there is 

only one sequential hash per section in the course, and each 

section only belongs to one chapter. The vertical displayed by the 

row, however, may need to be additionally processed when 

seq_prev is invoked on the first vertical in a section or seq_next is 

invoked on the last vertical in a section. For example, the row in 

the data log may contain a seq_next to vertical 7 in a particular 

section. However, that section might only contain 6 verticals. This 

event should actually point to vertical 1 of the next section. Thus, 

the processing code must be able to handle when navigating to the 

previous and next sections when the current vertical is at the 

beginning or the end of the section. Once the corresponding 

sequential, chapter, and vertical hashes are resolved, a URL can 

be constructed to represent the URL that the student is now at in 

this row. 

For the second type of navigation event, where the row contains a 

direct course URL, when the vertical is included in the row, the 

URL can be directly taken from the row itself. When the vertical 

is not included in the row, which means that the row contains a 

chapter hash and a sequential hash, but no vertical value, then the 

vertical must be inferred from the student’s past actions. The 

server stores the most recent vertical a student was at for each 

section in the course. Thus, the processing code must keep track 

of the most recent vertical accessed for each section in the course, 

and when a row contains a direct course URL without a vertical, 

the vertical must be inferred from the previously stored most 

recent vertical for that section. 

One other important note is that the rows of the original data file 

may not actually be in sorted, ascending order by time. In our 

processing, we found that while some rows seemed to be in 

ascending order, some rows were actually sorted in descending 

order.  

Thus, each student is associated with a list of URLs they visited, 

processed from the original data log. There are a fixed number of 

possible course page URLs, which can be represented by the 

possible combinations of chapter, sequential, and vertical hashes. 

If there are 200 unique URLs in a course, then the indices from 1 

to 200 can each correspond to one of the URLs. Once this 

mapping between index and URL is established, each student’s set 

of actions can be represented as a list of indices. 

Recommendation model design 
This sub-section provides context to how the RNN and LSTM 

architectures function. RNNs maintain an ongoing latent hidden 

state that persists between each input to the model. This latent 

state can provide a representation of what has already been seen in 

the input sequence. Long Short-Term Memory (LSTM) is a 

modification of the RNN architecture, where the hidden latent 

state is replaced with a more powerful memory component. We 

chose to use LSTMs due to their stronger performance in 

modeling longer range dependencies [19, 20].  

RNNs maintain a latent, continuous state, represented by ht in the 

equations below. This latent state persists in the model between 

inputs, such that the prediction at xt+1 is influenced by the latent 

state ht. The RNN model is parameterized by the input weight 
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matrix Wx, recurrent weight matrix Wh, initial state h0, and output 

matrix Wy. bh and by are biases for the latent and output units. 

ht = tanh(Wxxt + Whht-1 + bh) 

yt = σ(Wyht + by) 

LSTMs, a popular variant of the RNN, augment the latent, 

continuous state with additional gating logic that helps the model 

learn longer range dependencies. The gating logic learns when to 

retain and when to forget information in the latent state. Each 

hidden state ht is instead replaced by an LSTM cell unit with the 

additional gating parameters. The update equations for an LSTM 

are: 

ft = σ(Wfxxt + Wfhht-1 + bf) 

it = σ(Wixxt + Wihht-1 + bi) 

    C’t = tanh(WCxxt + WChht-1 + bC) 

Ct = ft × Ct-1 + it × C’t 

ot = σ(Woxxt + Wohht-1 + bo)  

ht = ot × tanh(Ct)  

fi, it, and ot represent the gating mechanisms used by the LSTM to 

determine when to forget, input, and output data from the cell 

state, Ct. C’t represents an intermediary candidate cell state that is 

gated to update the next cell state. 

LSTM Model Description and Training 
LSTM models have several hyperparameters, which refer to 

values that affect how the model performs on a given set of data. 

Evaluating which hyperparameters work best for a given model 

and dataset can be done in one of several ways, and is usually 

resolved with some empirical experimentation. For this analysis, 

we varied the following hyperparameters: number of LSTM layers 

and number of hidden nodes per LSTM layer. Each model was 

trained using either 1, 2, or 3 LSTM layers, as well as 64, 128, 

and 256 nodes per LSTM layer. Thus, each LSTM model is 

trained with 9 different hyperparameter sets. 

To create a behavior prediction LSTM model, the model needs to 

be trained to predict the next URL given a prior sequence of 

URLs visited. This is our baseline LSTM model, where the inputs 

and outputs are simply indices corresponding to unique URL 

accesses. The model is trained in batches of 64 student sequences 

at a time using back propagation through time [21]. Categorical 

cross entropy is used to calculate loss and RMSprop is used as the 

optimizer. Drop out layers were added between LSTM layers as a 

method to curb overfitting [22]. An embedding layer with 160 

dimensions is added to convert input indices to a continuous multi 

dimensional space, a technique commonly used in language 

modeling [23]. LSTM models were created using Keras [24], a 

Python library built on top of Theano [25].    

Figure 3 details an example pipeline where the first two timesteps 

of a student sequence of URL accesses is shown. The two URLs 

in the student’s sequence are converted to an index representation 

of that URL, which is then fed to the LSTM model. The index is 

implicitly converted to a one-hot vector representation by the 

embedding layer used by the Keras LSTM model. The output of 

the model uses the softmax function to normalize the outputs to 

sum to 1, so that the values within the output vector could be 

thought of as probabilities of that index being the predicted next 

URL. If there are 300 unique course URLs, for example, then the 

output vector would be of length 300, where each value of the 

vector corresponds to the probability that the next URL in the 

sequence will be that index value. Thus, to find the most likely 

next URL, one needs to find the index of the vector that has the 

maximum probability, and then consult the one to one mapping 

between indices and URLs to find which URL that index 

corresponds to. Note that in the example figure, index 32 of the 

softmax output in timestep 1 has the highest probability. Thus, 

according to the model, the most likely next URL would be the 

URL corresponding to index 32. In the example, this prediction 

turns out to be correct, as it is shown that the actual input in the 

next timestep is associated with that URL. 

Incorporating time into the model 
The previous subsection described a baseline LSTM model, where 

only the sequence of URL visits was modeled. We hypothesize 

that prediction accuracy of the next URL can go up if the model 

were to incorporate the amount of time spent on each resource. 

Unfortunately, there is no way to know exactly how much time 

the student is truly paying attention to a particular URL. We can 

approximate time spent, however, by calculating the time 

difference between each URL visit. Thus, we approximate the 

time spent on a URL by taking the time difference before 

accessing the next URL.  

Figure 3. Depiction of baseline LSTM architecture 

The baseline LSTM model [20] can be augmented to be able to 

incorporate time spent in addition to the standard input and output 

of the current and next URL index.  

We propose two methods for incorporating time spent into the 

input of the model. These two methods are referred to as 

bucketed-time-input and normalized-time-input. These two 

methods of input are explained next. 

Bucketed-time-input refers to an augmented input, where an 

additional one-hot vector is concatenated with the original 

baseline input. Figure 4 depicts this additional time input 

processing step in a graphical format. This additional one-hot 
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vector indicates the amount of time spent on the resource relative 

to four pre-determined buckets: between 0-10 seconds, 11-60 

seconds, 61-1799 seconds, and finally 1800 and beyond seconds. 

These buckets were chosen qualitatively, rather than with a data 

driven approach, to be able to prescribe real world interpretation 

to the time buckets.  

Normalized-time-input refers to an augmented input where an 

additional two-dimensional vector is concatenated with the 

original baseline input. Figure 4 depicts how the normalized-time-

input is incorporated into the architecture. The first dimension of 

this vector takes a value between 0 and 1, which is calculated by 

dividing the time spent on the resource by 1800, or if the time 

spent is greater than 1800, then the value is taken to simply be 1. 

Thus, a time spent of 900 seconds would be converted to 0.5. This 

is considered normalizing the time by 1800 seconds. The second 

dimension of the vector is simply 1 if the time spent is over 1800 

seconds, and 0 otherwise. 

Figure 4. Depiction of two methods of adding dwell time to the 

model; Normalized continuous (0-1) and time bucketed (1-4) 

It is also possible to incorporate time into the output of the model. 

The non-time version is referred to as non-concatenated-output, 

while the time incorporated version is referred to as concatenated-

output. 

Non-concatenated-output refers to the standard output, where the 

object of prediction is simply an index, where each index has a 

one-to-one mapping with a course URL. Concatenated-output 

refers to an output space where the number of indices possible is 

multiplied by four, so that one could think of a time bucket being 

concatenated with each index. Each possible course URL now has 

four associated indices with it, where each index represents a 

course URL and the amount of time spent on that URL, where 

time spent is bucketed in the same fashion as the bucketed-time-

input. We can compute the overall likelihood for a particular URL 

by adding the probabilities among all four indices associated with 

a particular URL. Since each output is also associated with a time, 

one can look at only indices associated with a particular time 

bucket. Thus, the output can now be queried to find the most 

likely URL to visit among each possible time category. 

With these methods of input and output defined, we propose the 

following models:  

Attributes: 

(a) Input time treated as continuous

(b) Input time treated as categorical

(c) Input time concatenation with vertical after embedding

(d) Time category concatenated with vertical in the output

1. Baseline LSTM model: Inputs and outputs are indices, where

each index has a one to one mapping to a unique course URL.

2. Bucketed-time-input, non-concatenated-output (b,c)

3. Bucketed-time-input, concatenated-output (b,c,d)

4. Normalized-time-input, non-concatenated-output (a,c)

5. Normalized-time-input, concatenated-output (a,c,d)

Deployment Course Dataset and Prediction Results 
The pilot course, DelftX Intro to Aeronautical Engineering 2015, 

contained log data from 27024 unique learner ids. However, for 

the purposes of behavior recommendation, we chose to filter the 

data to only include learners who attempted at least one problem 

check, resulting in data logs from 9,172 learners. From the data 

logs, we again filter the data to only include data regarding course 

page navigations, thus excluding events related to lecture video 

pausing, problem viewing, and so on. We chose to also filter out 

contiguous repeats of URL accesses. This means that if there are 

multiple visits to the same URL in a row, we removed duplicates 

such that there only remained one access to that URL for a student 

sequence representation. For the time spent associated with sole 

URL used in place of the duplicate contiguous URLs, we took the 

maximum time spent among the duplicated URL accesses. Time 

spent is calculated, in general, by taking the timestamp of a URL 

access and calculating the future difference to the timestamp of 

the next URL access in the sequence. There were 336127 

navigation events in the 0-10 second bucket, 248918 in the 11-60 

second bucket, 338144 events in the 61-1799 bucket, and 123287 

events in the 1800 seconds and beyond bucket.  

There was a total of 286 possible course URLs, which means 

there were 286 possible unique verticals to model, spread over 38 

sequentials. The median number of verticals in a sequential was 6, 

with a maximum of 19. The course was self-paced, which means 

that assignment due dates were not fixed, and all of the course 

content was released at the beginning of the course. Log data was 

filtered to only include data from roughly the time period that the 

course officially ran, from May 31, 2015 to June 3, 2016.  

Hill-climbing Validation Early Stopping 
The 5 LSTM models described in the previous section were each 

trained under the 9 different hyperparameter settings described in 

section 3.1.4. The data was split into two sets, a training set and a 

held-out test set. The training set comprised sequences from a 

randomly selected 70% of the users, while the test set contained 

the remaining 30%. Within the training set, 10% of the sequences 

were held out as a hill-climbing validation set. During training of 

a particular model, if the loss calculated on the hill-climbing set 

did not obtain a best result for 3 consecutive epochs, then training 

was halted for that model and the best result was recorded. This 

was our early stopping criterion.  

Baselines 
An n-gram model is included as another sequential model for 

comparison. N-gram models capture the structure of sequences 

through the statistics of n-sized sub-sequences. The model 

predicts each sequence state xi using the estimated conditional 

probability that xi follows the previous n-1 states in the training 

set. We trained n-grams with values of n between 2 and 10, while 
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also instituting a “back-off” policy when there are too few 

subsequences. For each n-gram, we instituted back-off policies of 

between 0 and 10 occurrences, so that a particular sub-sequence 

of size n must occur at least the number of times as the back-off 

policy, or else that sub-sequence is not used. The back-off policy 

prevents the n-gram model from using very sparse data, requiring 

a minimum number of occurrences for that sub-sequence to be 

used. If there are too few occurrences of a particular n-sized sub-

sequence, the model “backs off” and uses the values for the (n-1)-

gram model, and so on. The best performing n-gram model on the 

validation set had an n-value of 7 and a back-off value of 8. A 2-

gram model is also included, representing a model predicting the 

most common URL following a particular URL. We call this 

model the “Next most common” model. The  last baseline is 

dubbed the “Next syllabus URL” model, which predicts the next 

URL in the course structure; this is equivalent to the page learners 

are taken to when they click on the "Next" button in the native 

edX interface. 

Back-tested Prediction Results 
Validation accuracy and test set accuracy is shown in Table 2. For 

each model, the hyperparameter set that reached the highest 

validation accuracy was used. Thus, for each LSTM model listed 

in the table, only the highest achieving hyperparameter set results 

are shown, where training stopped according to the early stopping 

rules described previously. Accuracy refers to average accuracy 

per student sequence; thus a next URL prediction accuracy is 

established per student sequence, and then the averages from all 

students are averaged together. For baseline outputs, the models 

produce an index which has a one to one mapping with a URL. 

Thus, if the most likely index produced by the model matches the 

actual next URL in the sequence, that is counted as a correct 

prediction within a student sequence. For concatenated outputs, 

the models produce an index which has a four to one mapping 

with a URL, meaning there are four possible indices that all 

correspond to the same URL, just with a different time spent 

predicted. For the purpose of accuracy, as long as the URL 

mapping of the index is correct, then the prediction is counted as 

correct. Thus, accuracy for concatenated outputs drops the time 

component from the output in calculating correctness.  

Model Input / Output Validation Acc. Test Set Acc. 

Bucket /Non-Concat. 63.5 64.0 

Norm / Concat. 62.6 63.5 

Bucket / Concat. 63.0 63.3 

Norm / Non-Concat. 62.9 63.3 

Baseline LSTM 62.0 62.5 

Best n-gram (7) 61.6 61.7 

Next most common 55.1 55.6 

Next syllabus URL 51.5 52.0 

Table 2. Prediction accuracy results 

REAL-TIME DEPLOYMENT 

Recommendation Interface 
This section describes our rationale for how to best integrate the 

recommendations into the learner’s course experience. We 

primarily consider two key aspects of the interface: (i) the visual 

appearance of the recommendations and (ii) the linguistic framing 

of the accompanying text. 

Visual Appearance 
As the interface is housed within the edX platform and course 

materials, it is important that the appearance of the 

recommendations is seamless. This ensures both a sense of trust 

from the user---in that it looks like it’s a natural part of the edX 

course---and assuages the risk that the recommendations act as 

distractions to the learners. Given the simplicity of the edX user 

interface design, this was not hard to achieve. And to make 

following the recommendations more intuitive, we also add a 

“Go” button that learners can use as an alternative to clicking on 

the plain text link. These appear at the bottom of every page in the 

course---made directly available to the learner at all times. 

Linguistic Framing 
Just as we did not want the visual appearance of the 

recommendation to be too overwhelming in the existing course 

interface, we likewise aimed to present the accompanying text in a 

way that clearly communicates the benefit of this resource while 

not sounding overly authoritative. While definitely an avenue for 

future experimentation (what is the most effective way to frame 

such recommendation text to learners?), we eventually decided on 

“Suggestion for you… Consider visiting: [Recommended next-

step].” This text accomplishes the task of communicating to the 

learner that this recommendation is indeed personalized and 

unique to him or her (without explaining how) and also making it 

clear that following this recommendation is optional. Figure 5 

shows the final design of the recommendation interface.   

Figure 5. Final design of the recommendation interface 

We are able to show the text of sequential and vertical being 

suggested through a lookup table we created from the course xml.  

Model Usage Considerations 

Training a model based on a previous offering of the course 
Since the navigation behavior model proposed in this paper is 

behavior and data driven, a requirement to deploy such a model in 

a live course is that behavior from the course must already exist. 

To perform our live case study, we selected a MOOC that had 

multiple offerings over time so that we could use behavior from a 

completed iteration of the course to train our behavior models. 

Since the model is trained on a specific structure of course URLs, 

the current iteration of the course should not deviate too much, 

preferably at all, from the iteration that the model was trained on. 

To deploy our behavior model in the 2016 offering of the 

Aeronautics Engineering course, we trained on the behavior data 

from the 2015 offering of the course. 
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Taking into Account Changes in The Courseware 
In our case study, the majority of the course structure was held 

exactly the same. However, the first chapter to the course was re-

ordered. Our behavior model implicitly incorporates the ordering 

of the course in its predictions, so that any re-ordering of course 

content would adversely affect its prediction. Therefore, we chose 

to drop all events related to the first chapter of the course from 

both the training and the live recommendation data sets. This was 

deemed acceptable since the first chapter for this course was an 

introduction to the course staff and logistics. 

Additionally, one unique URL was added to the current version of 

the course. Thus, the trained model has no knowledge or ability to 

recommend that URL. However, the actual recommendation code 

can be altered so that when it is detected that a student is near the 

new URL, the recommendation code can choose to temporarily 

suspend usage of the behavior model and either suggest going to 

the new URL directly or simply not suggesting a URL 

temporarily.  

Any deviation in course structure from the training environment 

needs consideration in handling. Special recommendation logic 

must be put in place when the live version of the course differs in 

ways that the original model cannot account for. 

Description of the Recommendation Engine 
The machine learned model is the contact point between the 

underlying LSTM behavioral model and the code that serves a 

clickable link on the learner’s browser. The LSTM model has 

been trained to produce an output that contains a probability 

distribution over all possible course pages. Our time-concatenated 

output LSTM models additionally contain time information in 

each of the output indices. With this time-concatenated 

probability distribution, it is reasonable to simply take the most 

likely page and serve that as the model’s recommendation. With 

the time-augmented output, however, the recommendation engine 

can instead be configured to recommend a URL that the learner is 

likely to spend a significant amount of time on, for example 

between 10 seconds and 30 minutes. The hypothesis behind this 

logic is that if the model only expects the learner to spend fewer 

than 10 seconds on a resource, then it may be the case that the 

learner is trying to skip over it on her way to the eventual resource 

of interest. The recommender gives the learner the skip directly to 

that eventual resource of interest. It could be reasonable to 

recommend pages where the learner is expected to spend more 

than 30 minutes on; However, we chose not to include these as 

part of our recommendation engine configuration, since it could 

be possible that such a lengthy time spent on a page could really 

be indicative of a time-out event, where the learner has actually 

just left the page, potentially after consulting an ineffective page.  

Another method for producing a recommendation could instead be 

to repeatedly query the behavioral model until the most likely 

page corresponds to a desirable time bucket, where each repeated 

query has a “hypothetical action” appended as the most recent 

event. For example, if a student is currently at a quiz page (Figure 

6), then the behavioral model would be queried using that 

student’s past behavior as well as the current quiz page. The time 

spent on the current quiz page is not known yet since the learner 

has not navigated away from that page at the time of the query. 

Thus, time spent on the current page must be approximated in 

some way; we use the modal time bucket as a place holder (11-60 

seconds) and the real time spent is filled in after the next 

navigation event. The model then produces a probability 

distribution over time-concatenated indices, as usual. If the most 

probable page is in a desirable time bucket range, then the engine 

recommends that URL. However, if the most probable page is not 

in a desirable time bucket range, then instead of recommending 

this page, the engine temporarily appends it to the student’s 

“hypothetical” path until a desirable time bucket recommendation 

is reached. Thus, through repeated querying of the model, 

eventually a page in the desirable time bucket range would be 

reached, and the engine would use this as the recommendation. 

The reasoning behind such a model would be, for example, to skip 

through many URL accesses that are under ten seconds 

(undesirably short time spent) and instead recommend a URL that 

the student would likely have eventually dwelled on. We refer to 

this as a forward-stepping process, where we create hypothetical 

forward steps to the model. The page used in the case shown in 

Figure 6 is Video 1, a recommendation which is inserted into the 

page after the query completes and which the student followed in 

this example. After the learner in the example visits Video 1, she 

is suggested to return to the quiz but instead navigates to Text 3.

Figure 6. An example of the framework delivering three 

recommendations at three consecutive page visits for a learner 

We chose to use the time-bucketed-input with time-concatenated 

output model discussed previously. For the live recommendation 

pilot, we chose to retrain the LSTM model on the entire set of the 

previous course offering’s data, as opposed to the original training 

only using 70% of the data. We only used the validation set’s best 

hyperparameters. 

Our next step recommendation can be seen as predicting what 

page a learner wants or will eventually want, and directly linking 

them to that page in advance. When to consider if what learners 

want is different from what they need to achieve their goals or the 

goals of the course is a matter for consideration by future work as 

well as the appropriate role of a platform, courseware, and 

personalization in facilitating these goals. 

CONTRIBUTIONS 
In this paper, we made three contributions to adaptive 

personalization in a MOOC. The first was to solve the issue of 

real-time learner event logging required for data-driven 

intervention with a client side JavaScript solution that records 

learner navigational events. The second was to introduce a novel 

behavioral model which predicted the next page a learner was 

likely to spend significant time on which outperformed existing 

prediction baselines. Lastly, we combined the first two 

contributions to provide the first proof-of-concept realization of a 

real-time data-driven recommendation framework in a live 

MOOC along with the edge cases and design considerations that 

needed to be handled in order to deploy.  
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