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Abstract 

 

Modeling Environmental Exposure and Disease at the Scale of Microbes, Hospital Patients, and 
Geographic Regions 

by 

Benjamin Kweskin Greenfield 

Doctor of Philosophy in Environmental Health Sciences 

University of California, Berkeley 

Professor Thomas E. McKone, Chair 

 

This thesis presents the application of three mathematical models to problems linking 
environmental exposures to human health. The models differ in spatial and temporal analysis 
scale. The premise underlying this work is that reliable models follow from careful matching of 
model scale to the specific research question.  

Chapter 1 models bacterial competition at a cellular scale, to study the factors that may result in 
environmental antimicrobial resistance. A simple analytical solution for the antibiotic minimum 
selection concentration (MSC) is developed. The MSC is the lowest environmental antibiotic 
concentration at which a resistant bacterial strain will outcompete a sensitive strain. The 
solution is formulated as the ratio between the MSC and the minimum inhibitory concentration 
(MIC), which is a widely available laboratory measurement of the antibiotic concentration at 
which the growth of a sensitive strain is inhibited. Model equations were fitted to published 
experimental growth rate competition results. The model fit varied among nine compound-taxa 
combinations examined, but predicted the experimentally observed MSC/MIC ratio well (R2 ≥ 
0.95). Sensitivity analysis indicated that the MSC was sensitive to the shape of the antibiotic 
versus growth dose–response for the sensitive strain and to the fitness difference between 
strains. Model findings suggest a benefit of future experimental studies characterizing bacterial 
competition at low antibiotic concentrations. Employing the model in combination with 
empirical antibiotic growth curve data, it may be possible to predict environmental antibiotic 
concentrations at which resistant strains will be selected for. This could be incorporated into 
risk assessment models, to identify high risk environments for dissemination of antibiotic 
resistance. 

Chapter 2 describes a quantitative model of the relative importance of direct skin-to-skin 
contact versus indirect transfer via environmental textiles and surfaces for hospital pathogens. 
The model describes the rate of environmental transfer of pathogenic microbes between 
patients in a hospital setting. However, the model does not consider the likelihood of infection. 
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The model was applied to transmission of pathogens between patients residing in separate 
hospital rooms, via a health-care worker. Simulations were performed to examine the separate 
contribution of skin, textiles, and nonporous surfaces to the total pathogen number transmitted. 
The role of elimination (organism death) was considered by comparing literature elimination 
rates for six pathogens: Acinetobacter baumannii, Staphylococcus aureus, Streptococcus 
pneumoniae, Bordetella pertussis, sudden acute respiratory syndrome coronavirus (SARS-
CoV), and influenza A. Based on model results, all pathogens except influenza A exhibit a high 
rate of transmission in the model scenario, suggesting that transmission via health-care workers 
is a valid concern. With the exception of influenza A, there was overlap in literature 
elimination rates among the pathogens, resulting in similarly high predicted transmission. For 
all pathogens except SARS-CoV the relative importance for pathogen transmission was 
nonporous surfaces > textiles > skin, indicating the importance of environmental surfaces as a 
potential pathway for disease transmission. For SARS-CoV, the order was nonporous surfaces 
> skin > textiles, due to literature indicating low survival on textiles and porous surfaces. These 
results, combined with limited data on elimination, suggest a need to perform disease-specific 
studies on how elimination systematically differs between skin and surfaces. This model 
application at the scale of individual humans indicates that environmental surfaces are likely 
important for pathogen transmission in health care settings. 

Chapter 3 describes multivariate and geostatistical modeling employed to perform a combined 
assessment of multiple stressors at a regional scale. The study evaluated a metric of 
environmental health hazard developed by the California Environmental Protection Agency. 
The metric, CalEnviroScreen, combines 19 indicators of environmental impact and 
socioeconomic stress, and is intended to be used to help allocate funding for greenhouse gas 
amelioration projects within the state of California. Principal component analysis was 
performed to obtain the predominant multivariate associations in the 19 indicators. The 
CalEnviroScreen metric was strongly associated with the first principal components, indicating 
that CalEnviroScreen effectively captures the prevailing gradients in hazard present in the 
underlying data. However, CalEnviroScreen was poorly associated with agricultural pesticide 
application, suggesting that hazard from agricultural chemical exposure may not be captured. 
The first principal components obtained from the environmental pollution measures and the 
socioeconomic stressor measures were both associated with the rate of hospital visits for 
several disease diagnoses with an environmental etiology. This suggests that the indicators 
employed for CalEnviroScreen are associated with the burden of disease. The association was 
stronger for socioeconomic stressors than for environmental pollutants. The results of this 
ecological health study suggest a hypothesis that, compared to environmental pollutant 
exposure, socioeconomic status more greatly impacts overall burden of disease.  
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Introduction 

Now it would be very remarkable if any system existing in the real world could be 
exactly represented by any simple model. However, cunningly chosen parsimonious 
models often do provide remarkably useful approximations. 

-G. E. P. Box [1] 

Modeling for me isn’t about being beautiful but creating something interesting for 
people to look at and think about. 

-K. Bax 

This thesis examines the utility of simple mathematical models for current and emerging 
problems in environmental health science. This Introduction section begins with a brief 
overview of modeling and model application in exposure science, and then articulates the 
problem of integrating across disparate exposures. The remainder of the Introduction provides a 
conceptual overview of how models are employed in the three main chapters to address 
selection for antibiotic resistance, transmission of microbes, and integration of multiple 
exposures. 

A. The needs of exposure science and the role of models 

The recent landmark National Research Council report, Exposure Science in the 21st Century: A 
Vision and a Strategy [2] defines exposure science as data collection and analysis regarding 
“the nature of contact between receptors (such as people or ecosystems) and physical, 
chemical, or biologic stressors.” Within the field of exposure science, the report articulates a 
need for research activities for assessing and mitigating unforeseen emerging environmental 
health threats. In particular, tools must be developed to predict and anticipate human exposures 
to these threats [2,3]. This requires ongoing effort and resource allocation towards methods 
development, including improved interpretation of spatiotemporal exposure data (e.g., via 
sensors) [2,4], development and application of both external and internal markers of exposure 
[2,5], and computational integration of the increasing amounts of exposure information via 
exposure modeling [6]. 

Modeling is an important methodology in exposure science, having traditionally played a 
complementary role with data collection. Models are defined as simplifications of reality 
“constructed to gain insights into select attributes of a particular physical, biological, economic, 
or social system [7,8].” At their core, models are depictions of the dominant processes and 
relationships governing a system. 

Although there are many kinds of models, a useful distinction is conceptual versus 
computational models. Conceptual models are qualitative system descriptions that may include 
graphics, hypotheses, narrative information, and flow charts. Though not always explicitly 
stated or acknowledged, almost all scientific activity includes conceptual models. For example, 
the null hypothesis that there is no association between two variables is a highly simplified 
conceptual model. In exposure science, the exposome, the totality of all exposures encountered 



2 
 

by a human from conception onward, has been a useful conceptual model [9,10]. The 
exposome has helped to frame the range of stressors encountered, the need to measure 
indicators of these stressors, and the complimentary role of both external environmental 
measurements (the external exposome) and internal tissue measurements including biomarker 
responses (the internal exposome) [5]. Another useful conceptual model in exposure science is 
the exposure science ontology (ExO), which identifies the central components of exposure 
science as stressor, receptor, exposure event, and outcome [11]. Using human inhalation 
exposure to a chemical carcinogen as an example, the receptor (human) encounters the stressor 
(contaminant) in the exposure event (inhalation) resulting in an adverse outcome (cancer). In 
general, the ExO serves as a conceptual basis for integrating and comparing across exposure 
studies. In this thesis, the ExO serves as the underlying integration framework across the 
different studies and scales modeled (Figure 1). 

 

 

Figure  1.  Conceptual model  of  the  three  thesis  chapters.  Each  chapter  develops  and  evaluates  a 
computational model of  a  specific exposure problem. Although  the models  focus on  scales  ranging 
from microbial to ecological, each model fits within the exposure science ontology [11] in depicting an 
exposure event linking a stressor to a receptor, resulting in an adverse outcome. 
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Computational models describe a system mathematically, typically employing computers to 
make quantitative predictions [7,8]. Computational models may be further separated into 
mechanistic models, which describe underlying environmental relationships and processes via 
equations, versus statistical models, which fit empirical data to mathematical functions without 
construing an underlying mechanism [8,12]. Computational models have been developed and 
used extensively in exposure sciences to characterize environmental exposures to humans, 
including exposure to chemical contaminants [13–17] and infectious diseases [18,19]. 
Computational models are also useful for developing integrative assessments that compare 
outcomes across different systems or pathways within a single system. For example, modeling 
frameworks have been developed to integrate and interpret the increasing volume of available 
human tissue biomonitoring exposure data, enabling prioritization based on exposure dose and 
health hazard [6,20]. One such framework, the ExpoCast model, combines pharmacokinetic-
pharmacodynamic models with statistical methods to screen and compare large numbers of 
compounds based on their tissue concentrations [6]. 

All models, by definition, are simplifications, attempting to extract the salient components of a 
system or process [7,8]. Regarding computational models, Naomi Oreskes and others 
[12,21,22] further caution that environmental models can never be verified because they always 
contain numerous uncertainties, never perfectly describe all processes in the “real world”, and 
may correspond to environmental observations due to coincidence alone. As a result, rather 
than “truth generating machines” [7], models in exposure science should be viewed as tools 
suitable for specific purposes. Models can be employed to help scientists to integrate existing 
knowledge, interpret linkages between processes, evaluate and forecast possible effects of 
perturbations, identify and prioritize information gaps, and communicate concepts [7,21]. 
Models can be especially valuable to evaluate and rank hypothesized system-level effects, and 
ultimately contrast the anticipated impacts of specific interventions [2]. 

Because models are always simplified and limited depictions of reality, model evaluation is an 
ongoing need [7,17,21,22]. Model evaluation entails multiple activities: comparing model 
predictions to observed data (corroboration), determining how the model responds to changes 
in different input values (sensitivity analysis), and systematically examining how uncertainty 
regarding the model parameters or underlying structure affects model output reliability 
(uncertainty analysis) [8,17]. These model evaluation methods are the subject of considerable 
study and attention [23–25], all aimed at determining whether a model is suitable for its 
intended purpose. This thesis demonstrates the application and critical evaluation of three 
models for emerging problems in exposure assessment. Three processes are modeled: 1. the 
environmental development of antibiotic resistance; 2. transmission of hospital infections; and 
3. integrating multiple health hazards (Figure 1). 

B. The challenge of combining exposures 

Over its approximately 100 year history, exposure science has exhibited a broadening focus 
towards integration, which sets the stage for the present work. In the early 20th century, 
exposure scientists were focused on occupational health, and studied individual stressors or a 
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small subset of stressors in a given work environment [10]. Similarly, classical epidemiological 
methods emphasized bivariate relationships between individual stressors and outcomes [26]. 
Driven by regulation and need, the field expanded to consider air pollutants in the 1950s to 
1970s [10]. By the 1980s, the establishment of multimedia fate and transport models, combined 
with increasing recognition of widespread contamination of the ambient environment, shifted 
attention to the fate and transport of multiple chemical contaminants, and resulting combined 
human exposure to those compounds [10,17]. Since the 1990s, epidemiologists, exposure 
scientists, and risk analysts have increasingly acknowledged the importance of examining 
mixture effects, and the web of multiple causal factors, in determining health outcomes [9,26–
32]. The current widespread availability of information integration via technological advances 
including cloud computing, high frequency measurements, and nontargeted chemical and 
biological analyses has built momentum behind the paradigm that integration of multiple 
exposures is now effectively a requirement in exposure science [2,10,26]. 

This need for cumulative exposure and risk assessment, including and integrating complex and 
multiple exposures, is now widely acknowledged, as are the limitations in previous methods 
and policies to address cumulative risk [32–34]. Relevant conceptual frameworks for health 
impact of multiple stressors include how environmental exposures intersect with 
socioeconomic and demographic conditions [28], how individual vulnerability modifies health 
response to environmental stressors and exposures [29], and how to integrate across the wide 
multitude of exposures encountered [31]. Consequently, Ted Schettler has articulated the 
ethical need in medicine to broaden health impacts and benefits assessment beyond frank 
disease treatment to prevention, community health, and even the ecological health of the 
biosphere [30]. The proponents of the exposome, the totality of all human external and internal 
exposures over a lifetime, have argued for a research emphasis on internal measurements of 
blood and other tissues, in order to simultaneously and efficiently examine the combined effect 
of all exposures [9,10,26]. Similarly, the idea of environment-wide association studies, which 
evaluate data across hundreds of different exposure biomarkers or measurements, to identify 
those most associated with a health outcome, has recently gained favor [31]. 

With the advent of geographic information systems (GIS), multiple exposures have also been 
integrated geospatially. Researchers examine and integrate geographic data on exposure 
hazards in order to identify at-risk populations and regions that warrant greater attention for 
management [34–38]. In epidemiology, there has been a notable increase in spatial questions 
and methods after 2000, particularly focusing on health disparities and access to resources [39]. 
Among statistical modeling techniques, multivariable spatial regression has been important for 
evaluating hypotheses regarding health predictors in the context of spatial dependence [39]. 

Despite the widespread trend of increased consideration of combined exposures, there is 
certainly no consensus regarding methodologies for how to synthesize the diverse drivers of 
health outcomes, especially on how to evaluate them quantitatively. Given the widespread 
availability of data on environmental concentrations, biomarkers, and health outcomes, how to 
integrate and interpret these information sources warrants attention in environmental health 
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research. To confront these current frontiers of exposure and risk, this thesis applies and 
evaluates statistical and mechanistic models that address exposures of emerging concern. 

C. Exposure model development and evaluation at multiple scales 

The central theme of this thesis is the use of parsimonious computational models to gain 
insights on the causes and mitigation of environmental exposures. Each chapter develops and 
evaluates a mechanistic or statistical model that is scaled to an exposure process of 
contemporary concern in environmental health (Figure 1). The model performance evaluations 
include a combination of illustrative simulations and comparisons with existing conceptual 
models and data. Guiding this work is the prevailing viewpoint [7,8,12,17] that: 1. a model is a 
simplification of reality that serves as a tool to extract and illustrate the key components of a 
process; 2. evaluation of model behavior provides insight on drivers underlying that process; 
and 3. the limitations of a model inform potential future research directions. Understanding 
model limitations requires particular attention on the relationship between models and data. 
This work therefore also examines how data uncertainty or variability constrains a model’s 
ability to forecast, and considers what is learned when there is a mismatch between a 
computational model consistent with current theory and environmental measurements. The 
underlying principle is that a model’s utility is not contingent on how well the model depicts 
empirical observations, but rather on what knowledge is gained in the evaluation and 
comparison itself [7,21,22]. 

The models themselves address environmental health questions occurring at three different 
scales (Figure 1): 

1. Microbesa: When does antibiotic pollution lead to antibiotic resistance? 
2. Human individuals: What hospital-acquired infections are transmitted primarily by 

environmental surfaces? 
3. Geographic regionsb: What is the relationship between environmental and 

socioeconomic hazards and chronic disease burden? 

D. Three models in three chapters 

Chapter 1 of the thesis develops and evaluates a model that provides insight on a key 
uncertainty in the onset of environmental antibiotic resistance. Anthropogenic antibiotic 
resistance exhibits high impacts for human disease burden nationally and globally [40]. There 
is a great need for models to aid in hazard and risk assessment of antibiotic resistance 
development, in order to determine when and where increased resistance will occur [41,42]. 
Chapter 1 develops a mathematical model for the minimum selective concentration (MSC), the 
antibiotic concentration at which antibiotic resistant bacteria would outcompete susceptible 
bacteria [43,44]. In terms of the exposure ontology framework outlined above [11], the stressor 
here is the chemical antibiotic, the receptors are sensitive and resistant strains of bacteria in 

                                                            
a I.e., the scale of unicellular organisms 
b Ecological scales, in the epidemiological sense of comparing geographically separated groups of people, in this 
case residing in different census tracts or zip code areas  
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competition, the exposure event is bacterial contact with the antibiotic, and the outcome is the 
competitive dominance of the resistant strain over the sensitive strain (Figure 1). Effectively, 
Chapter 1 develops a mathematical model for the antibiotic dose–response relationship for 
resistance development. This model, combined with empirical antibiotic growth curve and 
susceptibility data, will aid in understanding environmental antibiotic concentrations at which 
resistant strains will be preferentially selected. 

Much of the impact antibiotic resistant infections occurs in health care settings, with both 
exposure mechanism and disease burden varying among different microbes [40]. Chapter 2 
employs a conceptual model to classify pathogens based on their environmental persistence and 
transmission. This conceptual model is mathematically formulated as a mechanistic model 
describing the transmission of microbes implicated in hospital-acquired infections. The model 
is a highly simplified but parsimonious set of mass-balance equations based on previously 
developed models for individual pathogens [19,45]. The model is parameterized with selected 
literature data on microbe environmental persistence, and is evaluated in a simplified scenario 
describing the contact and transmission between a health-care worker and two patients who 
reside in separate hospital rooms. 

Part of the significance of this chapter lies in connecting the traditionally separate disciplines of 
exposure assessment and infectious disease modeling [46] to establish a quantitative framework 
for how different pathogens may respond to interventions. In particular, the ability to classify 
pathogens in terms of the likely merit of surface decontamination versus barrier controls is 
considered. Applying the exposure ontology to Chapter 2, the stressor is the pathogenic 
microbe, the receptor is the uncolonized patient, the exposure event is contact with the health-
care worker and contaminated surface environments, and the outcome is the number of 
microbes that colonize the skin and mucous membranes of the previously uncolonized patient 
(Figure 1). 

Chapter 3 evaluates the use of publicly available geospatial data to describe the relative impact 
of different components of the Eco-Exposome, which is the summation of external exposures 
that can influence human health [2]. The topic is of great importance for environmental justice 
because the most vulnerable human populations encounter high exposure to multiple stressors, 
requiring priority setting for interventions. In the context of the exposure ontology, this study 
focuses on the integration of multiple stressors, and their relative importance for the outcome of 
differences in burden of disease among different human populations (Figure 1). Chapter 3 does 
not mechanistically describe any exposure events, but rather employs statistical models to 
examine the relative importance of exposure to environmental versus socioeconomic stressors. 
This statistical modeling evaluates CalEnviroScreen, a simple mathematical model developed 
by California EPA to rank hazards. Statistical associations are examined and the results used to 
generate future hypotheses. 
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Chapter 1. Modeling the emergence of antibiotic resistance in the environment: an 
analytical solution for the minimum selection concentration3 
 
Abstract 

Environmental antibiotic risk management requires an understanding of how subinhibitory 
antibiotic concentrations contribute to the spread of resistance. We develop a simple model of 
competition between sensitive and resistant bacterial strains to predict the minimum selection 
concentration (MSC), the lowest level of antibiotic at which resistant bacteria are selected. We 
present an analytical solution for the MSC based on the routinely measured minimum 
inhibitory concentration (MIC) and the selection coefficient (sc) that expresses fitness 
differences between strains. We calibrated the model by optimizing the shape of the bacterial 
growth dose–response curve to antibiotic or metal exposure (the Hill coefficient, κ) to fit 
previously published experimental growth rate difference data. The model fit varied among 
nine compound-taxa combinations examined, but predicted the experimentally observed 
MSC/MIC ratio well (R2 ≥ 0.95). The shape of the antibiotic response curve varied among 
compounds (0.7 ≤ κ ≤ 10.5), with the steepest curve for the aminoglycosides streptomycin and 
kanamycin. The model was sensitive to this antibiotic response curve shape and to the sc, 
indicating the importance of fitness differences between strains for determining the MSC. The 
MSC can be more than one order of magnitude lower than the MIC, typically by a factor scκ. 
This study provides an initial quantitative depiction and a framework for a research agenda to 
examine the growing evidence of selection for resistant bacteria communities at low 
environmental antibiotic concentrations. 

Introduction 

Effective management of antibiotic risks in the environment requires an understanding of the 
factors responsible for the emergence, transmission, and maintenance of antibiotic resistance 
[42]. The hypothesized connection between antibiotic use in food animals and human health is 
supported by field studies, reports of farmers exposed to antibiotic-resistant bacteria from food-
animals, ecological and temporal associations, and food-borne outbreaks [47,48]. However, 
insights are also needed into the extent to which antibiotics in the water environment contribute 
to the spread of resistance, and to the long-term prevalence of resistant infections in humans 
[49,50]. It is particularly important to address the question of when resistant bacteria 
predominate as a result of environmental antibiotic pollution [42,49–52]. 

The mutant selection window (MSW) paradigm states that resistant mutants may develop 
between the lowest boundary concentration of selection for resistance, and the upper boundary 
concentration of growth inhibition of the most resistant potential mutant (the mutant prevention 
concentration, MPC) [53,54]. The paradigm further indicates that the lower boundary 
concentration of the MSW is the minimum concentration that inhibits colony formation (MIC, 
ng ml−1), and the MIC has been useful to evaluate hazard of selection for resistance in natural 
aquatic environments [52]. Considerable research in vitro and in vivo has demonstrated that 

                                                            
3 This study is a collaboration with Olivier Jolliet, Scott Reed, Carl F. Marrs, Chuanwu Xi, Ian Raxter (University 
of Michigan-Ann Arbor), Shanna Shaked (University of California – Los Angeles), Patrick Nelson (Lawrence 
Technological University), and Thomas E. McKone (University of California – Berkeley). 
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resistant mutants develop between the MIC and the MPC [54–56], but many laboratory and 
theoretical studies indicate that resistant mutants can also be preferentially selected above the 
minimum selective concentration (MSC, ng ml−1), defined as the lowest concentration at which 
a resistant strain outcompetes and displaces sensitive isolates [42,44,57–63]. Because the MSC 
can be lower than the MIC, and to minimize the hazard of resistance occurring in the natural 
environment (e.g., aquatic systems), further characterization and understanding of the MIC 
versus MSC relationship would be beneficial [64]. 

Recent laboratory experiments [44,57,58,61] have elegantly demonstrated MSCs ranging from 
1/4 to below 1/200 of the MIC for antibiotics of several classes (e.g., macrolide, 
aminoglycoside, fluoroquinolone, and antifolate) and for two metals in Escherichia coli (E. 
coli) or Salmonella enterica serovar Typhimurium LT2 (S. Typhimurium). This finding may 
help explain the high levels of resistance found in the environment, particularly at subinhibitory 
antibiotic concentrations [44,49,50]. These studies further indicate that the fitness cost of the 
resistance-conferring mutations is more important than differences in MIC between strains for 
discerning how much below the MIC the resistant bacteria will predominate [57]. There is, 
however, a need to mathematically describe the competition between strains in order to better 
understand and generalize strain- and antibiotic-specific results to a wider range of situations. 

Mechanistic mathematical models, including experimentally validated pharmacodynamic/ 
pharmacokinetic models, describe antibiotic effects better than simple MIC measurements [65–
67]. For example, the shape of the antibiotic dose–response curve is very important to the 
microbiological efficacy of antibiotic treatment regimens at high (treatment) levels [65]. The 
implications of this understanding of dose–response curve shape for low (subinhibitory) 
antibiotic levels and for calculation of the MSC, while relevant for selection of resistance, have 
not been considered in as much depth. To complement the recent empirical research 
[42,44,57,58], there remains a need for a quantitative model describing the MSC, i.e., the 
minimum environmental antibiotic concentration that allows resistant bacterial strain to 
dominate. Such a model can generate testable predictions, identify the factors that determine 
water or soil antibiotic concentrations that select for resistance, and be incorporated into risk 
assessments of antibiotic resistance development [42]. 

An analytical solution for the MSC has two potential uses. First, model sensitivity analysis and 
examination of parameter structure may provide insight on the relationship between commonly 
considered bacterial growth and antibiotic dose–response parameters and the MSC itself. 
Second, current methodology to accurately measure the MSC requires direct measurement of 
competition between bacterial strains and specialized methods such as fluorescent cell tagging 
and flow cytometry [57,61]. An analytical solution provides a potential alternative to these 
labor-intensive methods, instead estimating the MSC based on bacterial growth rate and 
antibiotic dose–response parameters that are routinely obtained within microbiology 
laboratories. To that end this paper answers three questions: 1. How do we quantitatively define 
the minimum selective concentration (MSC) via a simple mathematical model in combination 
with readily available measurements? 2. How well does such a mathematical model of MSC fit 
to published empirical data? 3. What model parameters, representing biological characteristics, 
are most important to describe the MSC? 
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The model we propose in this paper describes the MSC based on the competition between a 
wild-type and a resistant strain of bacteria, and the key factors that favor the growth of resistant 
strains at subinhibitory antibiotic concentrations. The model focuses on conspecific gram 
negative bacteria (GNB), and is calibrated to the recent experimental results of Gullberg et al. 
[57,61] for E. coli and S. Typhimurium. The model illustrates the shape of the antibiotic dose–
response curve as a measurable and influential driver on the ratio of the MSC and MIC, and 
presents a hypothesized dose–response relationship for use in risk assessment of resistance 
development in environmental settings. Finally, we discuss the implications of the MSC results 
for increased risk of antibiotic resistance selection at antibiotic concentrations observed in 
antibiotic-contaminated waste streams and natural waters. 

Theory 

We develop a simple analytical expression of the ratio between the MSC and the MIC for a 
sensitive strain (i.e., MSC/MIC), which mathematically describes the factors that determine 
risks of subclinical antibiotic concentrations [44,57]. The model is based on the competition 
between two bacterial strains: a wild type sensitive strain, and mutant strain that is more 
resistant. 

Model derivation for net growth rate 

At a given antibiotic concentration a [ng ml−1], the net growth rate (N(a), [h−1]) for each strain 
is given by 

Nsሺaሻ	ൌ	Nint,s െ Dab,sሺaሻ	ൌ	Rint െ Dint െ Dab,sሺaሻ  (1) 

Nrሺaሻ	ൌ	Nint,r െ Dab,rሺaሻ	ൌ	Rint ൅ ߪ െ Dint െ Dab,rሺaሻ  (2) 

where subscript s = sensitive bacteria, subscript r = resistant bacteria, Nint,s = (Rint − Dint) = 
intrinsic net growth rate in the absence of antibiotic [h−1], Rint = intrinsic growth rate [h−1], Dint 
= loss due to mortality (or, in continuous cultures, dilution) [h−1], Dab(a) = loss in net growth 
[h−1] due to a given antibiotic concentration, a, and σ = selection coefficient [h−1]. 

The selection coefficient (σ) represents the fitness cost of resistance-conferring genes as the 
absolute difference in net growth rate between bacteria strains (e.g., sensitive vs. resistant) in 
the absence of antibiotics (i.e., Nint,r = Nint,s + σ). Resistance-conferring mutations exhibit 
variable fitness costs in comparison to sensitive strains, ranging from no detectable difference 
to half the wild-type growth rate in competition assays [68–70], with compensatory mutations 
often reducing or reversing the fitness cost of resistance mechanisms [69,71,72]. Accurate 
measurement of selection (σ) is difficult, requiring competition experiments employing labeled 
strains and flow cytometry [57,61]. For the purposes of this model, we run simulations on the 
assumption that resistance-conferring mutations engender a fitness cost, resulting in lower 
growth rates relative to less resistant strains, i.e., σ < 0 in Eq. 2. 

The loss in net growth due to antibiotics can be described by a generalized Hill Equation 
[65,73–75]: 
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Dabሺaሻ	ൌ	kmax
aκ

aκ൅ሺEC50ሻκ
 (3) 

in which kmax [h−1] is the maximum death rate due to antibiotic, EC50 [ng ml−1] is the antibiotic 
concentration that achieves half of this maximum rate, and will thus increase with increased 
resistance, and κ is the Hill coefficient, which gives an indication of how steeply Dab increases 
near the MIC [74]. For  = 1 in the range of antibiotic concentrations below the MIC, the death 
rate increases roughly linearly. For a given strain, antibiotics with a high  value (> 1) will 
have lower efficacy at sub-therapeutic levels, but higher efficacy at therapeutic levels above the 
MIC. The opposite relation is true for antibiotics with low  values [65] as illustrated in Figure 
2A. 

 

Figure 2. Growth rate versus antibiotic concentration. (A) Single strain (MICr = 40) with different kappa 
(κ) values. (B, C) Sensitive and resistant strains (MICs = 10, MICr = 30, κ = 2). (C) enlarged view around 
the MSC (●), the concentration where growth curves cross (∆N = 0). Other parameter values: sc = 0.05, 
Nint,s = 2, Nmin = −5. 



11 
 

To determine kmax from growth and death rates, we note that kmax should correspond to the 
difference between the maximum possible net growth rate (not limited by resource availability 
or antibiotics; i.e., Nint), and the minimum possible growth rate, after accounting for the growth 
limiting activity of antibiotic (Nmin): 

kmax	ൌ	Nint െ Nmin	ൌ	Rint െ Dint െ Nmin (4) 

Generally, Nmin < 0, indicating population decline at maximum antibiotic exposure level. The 
EC50 can be directly related to the MIC value [ng ml−1]; as a result, the following formulation 
of Dab applies for our formalism (full derivation in Appendix 1): 

Dab,sሺaሻ	ൌ	ሺNint,s െ Nminሻ
aκ

aκ൅
ሺషNminሻ
Nint,s

ሺMICsሻκ
  (5) 

Dab,rሺaሻ	ൌ	ሺNint,r െ Nminሻ
aκ

aκ൅
ሺషNminሻ
Nint,r

ሺMICrሻκ
  (6) 

Equations 5 and 6 assume identical κ and Nmin for sensitive versus resistant strains, which may 
not be accurate. Later in the text, we revisit the impact of this assumption for estimation of the 
MSC. 

Difference in net growth rate and derivation of MSC as function of MIC 

Competition between different bacterial strains is expressed by the difference in net growth 
rates. According to the conceptual model described by Andersson and Hughes [44] and 
Gullberg et al. [57], Ns > Nr at low antibiotic concentrations, but the greater sensitivity causes 
more antibiotic-dependent growth inhibition for the sensitive strain. As a result, at high 
antibiotic concentrations, Nr > Ns, and the MSC is the point of intersection of the two growth 
curves (Ns = Nr) for which the difference in net growth rate is zero (Figure 2B-C). 

Analytically, this difference in net growth rates between the resistant and the sensitive strain 
(N(a) [h−1]) is determined by subtracting Eq. 1 from Eq. 2, giving: 

∆Nሺaሻ	ൌ	Nrሺaሻ െ 	Nsሺaሻ	ൌ	Nint,r െ 	Nint,s	൅ ቀDab,sሺaሻ െ Dab,rሺaሻቁൌ	σ	൅	Dab,sሺaሻ െ Dab,rሺaሻ  (7) 

Thus, the MSC is the antibiotic concentration (i.e., a = MSC) at which the two net growth rates 
are equal and the difference (Eq. 7) is zero: 

∆NሺMSCሻ	ൌ	Nint,r െ 	Dab,rሺMSCሻ െ Nint,s	൅	Dab,sሺMSCሻ	ൌ	σ	൅	Dab,sሺMSCሻ െ Dab,rሺMSCሻ	ൌ	0 (8) 

This is the concentration at which the additional loss in net growth due to antibiotic in the 
sensitive strain compared to the resistant compensates for the effect of fitness cost. 

To derive the ratio of MSC/MIC we employ a dimensionless selection coefficient (sc 
[unitless]), obtained by reversing the sign of the reported experimental selection coefficient (σ) 
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[57,61], and then dividing by the net growth rate of the sensitive strain (derivation in Appendix 
1): 

sc ൌ െ σ

Nint,s
ൌ

Nint,sିNint,r
Nint,s

ൌ1 െ
Nint,r
Nint,s

 (9) 

Based on the above equations, and further assuming that  and Nmin are the same for sensitive 
and resistant strains, the analytical solution for MSC/MICs is obtained (derivation in Appendix 
1): 

MSC MICs⁄ ൌ

ۉ

ۈ
ۇ sc

1൅	
Nint,r
െNmin

	െ	
ሺ1െscሻ൬1൅

Nint,s
െNmin

൰

ቀ
MICr
MICs

ቁ
κ

ی

ۋ
ۊ

1
κ

  (10) 

In the case of a large difference in resistant versus sensitive MIC, the right-hand term in the 
denominator approaches zero, and the equation simplifies to: 

MSC MICs⁄ ൌ൭
sc

1ି
Nint,r
Nmin

	
൱

1
κ

  (11) 

This simplification does not apply to small increases in MIC, such as the ∆marR and ∆acrR 
mutants which double the MIC for ciprofloxacin [57]. Eq. 11 becomes appropriate once MICr > 
5 x MICs, at which point results from Eqs. 10 and 11 become approximately equal (Appendix 1 
Figure A1). 

To summarize, Eq. 10 presents a quantitative hypothesis regarding the relationship between the 
antibiotic dose–response and the resulting MSC. The form of the equation aids in determining 
which aspects of the growth rate are most important for competition at low antibiotic doses. 
Eqs. 10 and 11 also provide a potential alternative to direct measurement of MSC. κ, Nint,s, and 
Nmin could be measured in the laboratory [e.g., 65,76] and other parameters obtained from 
literature. Eq. 4 would be fit to experimental measures of the sensitive strain’s antibiotic versus 
growth dose–response to obtain κ and kmax, and Nmin would then be based on the strain intrinsic 
growth rate (Nint) minus kmax (Eq. 5). 

As mentioned above, Eq. 10 rests on the assumption of identical  and Nmin for sensitive versus 
resistant strains. An analytical solution analogous to Eq. 10 could not be obtained assuming 
separate  and Nmin (i.e., s, r, Nmin,s, Nmin,r). In the Results section below and Appendix 1, we 
employ a Monte Carlo Simulation sensitivity analysis to evaluate this assumption of identical  
and Nmin. 

Model evaluation against experimental results 

The analytical solution was evaluated by comparison to the experimental results of Gullberg et 
al. [57,61]. This evaluation was performed to determine whether the model fit to actual 
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competition data was reasonable, and to identify representative parameter sets for Nmin and , 
parameters that are very system-specific, given the published values of MICs, MICr, σ and Nint,s 

[57,61], parameters which have been characterized for a wide range of strains, conditions, and 
resistance mechanisms [e.g., 52,68,69,71,77–79]. Model fitting was achieved by fitting N 
values calculated from Eq. 7 (based on Eqs. 1, 2, and 4 - 6) to the N values observed in 
Gullberg et al. [57,61]. The function NonLinearModel.fit in MATLAB (Statistics Toolbox, 
R2013a, MathWorks, Natick, MA, USA) was used to estimate Nmin and κ. Fitting was 
performed separately for seven individual antibiotic-bacteria combinations across the published 
range of experimental concentrations, as well as for arsenite- and copper-exposed E. coli 
[57,61]. These metals were included based on co-resistance and cross-resistance with 
antibiotics, as well as similar mechanisms of genetic transmission among bacteria 
[49,50,80,81]. For each compound, resistance was compared between a sensitive (wild-type) 
strain and one to four resistant strains in S. Typhimurium or E. coli. From the published 
experiments [57,61], only the chromosomal mechanism of trimethoprim resistance was 
excluded because it exhibited an average selection coefficient σ > 0, indicating no selective 
disadvantage of resistance [57]. 

To evaluate Eq. 7 and the underlying model assumptions, model-predicted vs. observed N 
were compared. To evaluate robustness to individual observations, cross-validation (CV) was 
also employed. For CV, the optimization was performed with each single data point removed in 
series, and the average and range of Nmin and  results were examined, as well as the calculated 
vs. observed N for the out-of-sample observations. The PRESS statistic (predictive residual 
sum of squares) was calculated, and PRESS/SSY and PRESS/SSE examined to indicate model 
prediction error and robustness to individual observations, respectively [82]. All analyses were 
performed on both the experimental average results for each strain and antibiotic concentration 
examined, reported by Gullberg et al, as well as the raw data for each experimental observation 
[Supplemental Information in 57,61], in order to consider the impact of experimental variation 
on results. 

Results 

The model depicts the change in growth rate versus antibiotic concentration (Eq. 7), the 
crossover point between growth rate of sensitive and resistant strains (i.e., the MSC, Eq. 8; 
Figure 2), and an analytical solution for the MSC/MIC ratio (Eqs. 10, 11). The MSC can be 
observed as the antibiotic concentration at which Ns (Eq. 1) and Nr (Eq. 2) cross, indicating 
identical growth of sensitive and resistant strains (Figure 2B-C, Eq. 8). The MSC/MIC ratio 
[57] is of interest because it indicates how much lower the MSC is relative to the MIC; this 
enables estimation of the environmental antibiotic concentration at which resistance selection 
could occur among competing bacteria populations [42,60]. The MSC can be estimated 
employing this ratio, in combination with routinely available MIC data [e.g., 52,77, and the 
EUCAST database: http://www.srga.org/eucastwt/wt_eucast.htm]. 

We first evaluate the model by examining a key assumption and then comparing predicted 
growth rates and MSC/MIC ratios to published data. We then examine model behavior and 
implications for MSC/MIC ratio prediction. Finally, we perform a sensitivity analysis to 
identify the most important parameters for predicting this ratio. 
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Model evaluation 

Effect of varying  and Nmin for sensitive versus resistant strains: The analytical solution for 
Eq. 10 requires identical κ and Nmin for sensitive versus resistant strains. We evaluated the 
impact of this assumption on model predictions by determining which strain-specific parameter 
values (i.e., s, r, Nmin,s, or Nmin,r) were most important for predicting MSC. To achieve this, 
we performed a Monte Carlo Simulation sensitivity analysis, detailed in the text and Appendix 
1 Table A1. In two simulations, the predicted value of MSC was obtained in Eq. 10, assuming 
separate s, r, Nmin,s, and Nmin,r in Eqs. 5 and 6. To be robust to MIC ratio variations, the first 
simulation had MICr = 1.5 x MICs whereas the second had MICr = 10 x MICs. In both 
simulations, MSC was highly sensitive to s, (Spearman rank correlation coefficient,  > 0.8) 
but was insensitive to Nmin, s or Nmin, r (|Spearman | ≤ 0.11). This much stronger influence of  
than Nmin is expected based on the fact that  is an exponential term (Eqs. 10, 11). MSC was 
also more sensitive to s than r, and |Spearman | between s and MSC was more than twice 
|| between r and MSC. When MICr = 10 x MICs, almost all variation in MSC was explained 
by s ( = 0.97), with  = −0.09 for r. These results indicate that MSC will strongly depend on 
s, the shape of the antibiotic dose–response for the sensitive strain. As a result, for indirect 
estimation of MSC using Eq. 10, s should be well characterized experimentally. 

Model performance for difference in net growth rates: Figures 3 and 4 displays the difference 
in net growth rates for sensitive versus resistant strains (∆N) for previously published 
experimental data in comparison to the model (Eq. 7). Figure 3 illustrates how ∆N increases 
with increasing antibiotic concentration for the ciprofloxacin experiments in Gullberg et al. 
[57], with variability due to examination of four bacterial strains. Figure 4 directly compares 
the experimentally observed versus model predicted ∆N for all antibiotics and metals 
examined. The model predicted results overlapped with the range of experimental observations 
for most conditions. Much of the variability was attributable to experimental variation at 
specific antibiotic concentrations, as evident in the horizontal spread of the colored points. 
However, the model underpredicted experimental results for the aminoglycosides, KAN and 
STR (open circles in Figure 4) at ∆N < 0.05. Consequently, linear regression indicated 
∆Nmodeled = 0.93(∆Nobserved) − 0.002, a slight underprediction. Examining results for individual 
compounds, model performance (R2, Q2, and PRESS/SSY) was generally similar for either one 
parameter (κ) or two parameter (κ, Nmin) fitted, and for either the raw or averaged experimental 
data (Appendix 1 Table A2). For CIP, ERY, KAN, and STR, the model fit was insensitive to 
Nmin, exhibiting a wide range of possible values, and a limited impact on model fit. Therefore, 
Nmin was fixed at a representative literature value of Nmin = −2 [65,76,83], and  was fitted to 
experimental observations. The fitted model was generally consistent with raw observations (R2 

> 0.8) and the model exhibited high predictive value in cross validation (Q2 > 0.8) for TET, 
TMP, ERY, and As in E. coli, and for TET in Salmonella (Table 1, Appendix 1 Figure A2). 
Model fit was moderate for CIP (R2 = 0.78, Figure 3), Cu (R2 = 0.73), and STR (R2 = 0.67). For 
KAN, the model fit was poor, worse than a simple average of the data, i.e., slope = 0 (R2 < 0), 
indicating that it was not possible to fit the model to the KAN data (Appendix 1 Figure A3). 
Model fit to KAN was also poor for alternative statistical models, including Weibull, logit, 
logistic, and probit formulations. 
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Table 1. Results of model (Eq. 7) optimization to published [57,61] empirical growth rate differences 

(∆N) between sensitive and resistant strains, based on strain‐specific σ, MICs, and MICr.  was  fitted 
and  raw  experimental  ∆N  data  was  employed.  Other  model  parameters:  Nint,s  =  1.8,  Nmin  =  −2 
[65,76,83]. MSC/MICs calculated using Eq. 10 with selection coefficients published for resistant strains 
[57,61].  

Compound  Organism  Strains n κ R2 Q2 a PRESS/SSY  PRESS/SSE  MSC/MICs

Tetracycline (TET)  E. coli  3  60 1.6 0.89 0.89 0.09 1.03  0.014
0.063 

Trimethoprim (TMP)  E. coli  2  118 2.5 0.88 0.87 0.07 1.03  0.18

Erythromycin (ERY)  E. coli  3  64 3.5 0.94 0.93 0.07 1.06  0.074
0.27 

Kanamycin (KAN)  E. coli  2  72 10.5 −0.47 −0.48 0.43 1.01  0.66

Arsenite (As)  E. coli  2  20 0.7 0.84 0.81 0.30 1.14  0.0064

Copper sulfate (Cu)  E. coli  2  8 1.9 0.73 0.43 0.80 2.13  0.035

Ciprofloxacin (CIP)  E. coli  5  144 2.0 0.78 0.77 0.31 1.03  0.024
0.088 

Streptomycin (STR)  Salmonella  2  87 5.0 0.67 0.66 0.25 1.02  0.38

Tetracycline (TET)  Salmonella  2  154 1.2 0.93 0.93 0.04 1.02  0.0077

a. Q2 = cross validated R2 = 1 (PRESS/TSS) 

As shown in Table 1, the fitted  ranged widely across the nine compounds examined (0.7 to 
10.5). CV results generally produced a very narrow range, with  varying by < 0.1 within 
individual compounds, except KAN and Cu (Appendix 1 Table A2). Similarly, CV 
PRESS/SSY results were < 0.4 for all compounds except KAN and Cu; values < 0.4 are 
considered to indicate reasonably low model prediction error [82]. The PRESS/SSE were 
below 1.15 for all compounds except Cu; these values of PRESS/SSE close to 1 indicate 
limited dependence of model prediction accuracy on individual observations. 

Because it included four resistance genotypes, ciprofloxacin was examined more closely. 
Overall, fit and predictive ability were generally reasonable (R2 = 0.81, Q2 = 0.78, PRESS/SSY 
= 0.29, Appendix 1 Table A2) except for downward bias in the two highest ∆N results (Figure 
3). These were both gyrA1 [S83L] versus sensitive wild-type above 2 ng/ml ciprofloxacin [65]. 
The gyrA1 [S83L] comparison had a substantially different curve shape, and removing this 
strain from the data greatly improved the model fit (R2 = 0.97, Q2 = 0.97, PRESS/SSY = 0.04). 
However the change in predicted  was trivial (from 2.0 to 2.1, with Nmin fixed at −2). 

Minimum Selection Concentration: MSC/MICs was estimated (Eq. 10) based on model fitted , 
and empirical values for sc, MICr, and MICs. For these estimates, Nint,s was set at 1.8 h−1 and 
Nmin was either fitted or set at −2 h−1. Model predictions corresponded well to the observed 
MSC/MICs [57,61] for all experiments, with either fixed or fitted Nmin (Figure 5), suggesting 
that the model is appropriate to estimate the MSC/MICs ratio, which ranged widely from < 0.01 
to 0.66 (Table 1, Appendix 1 Table A3). 
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Figure 3. Comparison between experimentally observed  [57] and model predicted difference  in net 

growth  rate  between  sensitive  and  resistant  bacterial  strains  (N,  from  Eq.  7)  as  a  function  of 
ciprofloxacin concentration in E. coli. 

Sensitivity analysis 

For a sensitivity analysis, behavior of Eq. 10 was examined across reasonable parameter ranges 
to examine sensitivity of MSC/MICs to fitness differences (sc), antibiotic resistance differences 
(MICr/MICs), maximum growth rate inhibition (Nmin), and intrinsic growth rate (Nint,s), 
respectively. Eqs. 10 and 11 indicate that MSC/MICs is primarily a function of sc and , but is 
also modified by corrective terms that include Nmin, Nint,s, Nint,r, MICs, and MICr. Figure 6 
demonstrates the influences of sc and  on MSC/MICs. Specifically, increasing sc lowers the 
resistant strain growth rate (Figure 6A-B), whereas increasing  increases the curvature of the 
sensitive strain growth rate (Figure 6B-D), both resulting in increased MSC/MICs. As a result, 
modeled κ is strongly associated with model predicted MSC/MICs. For example, the Pearson 
correlation coefficient was very high (r = 0.94) for the κ versus MSC/MICs results from Table 
1. 
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Figure  4.  Model  predicted  versus  N  observed  for  all  experiments  [57,61].  Abbreviations:  As  = 
arsenite. Cu = copper. AG = aminoglycoside antibiotic. Ec = E. coli. St = S. Typhimurium. 
 
Figure 7 provides plots of the MSC/MICs ratio as the solution for Eq. 10 across different 
parameter values. Figure 7A confirms the dominant and interdependent influences of sc and  
on MSC/MICs with the largest influences at or below  values of 1. At  = 1, MSC/MICs ≈ sc 
(Figure 7A, blue dashed line). The influences of sc and  can be combined according to Eqs. 10 
and 11, which indicate that the MSC/MICs ratio is proportional to sc1/. Figures 7B-D illustrate 
clearly that MSC/MICs is proportional to sc1/ and that the slope of this relationship is modified 
by MICr, Nint,s, and Nmin. An increase in MICr will decrease MSC/MICs, but this relationship is 
only sensitive when MICr approaches MICs (Figure 7B, MICr/MICs close to 1). The generally 
low sensitivity of MSC/MICs to the MIC values themselves corroborates the empirical finding 
of Gullberg et al. [57]. Increasing Nint,s also decreases MSC/MICs but this only exhibits a minor 
influence in the plausible parameter range (Figure 7C). Finally, increasing Nmin also decreases 
MSC/MICs, but this is only sensitive when Nmin approaches zero (Figure 7D). Nmin indirectly 
affects MSC/MICs by influencing the MIC versus EC50 relationship (Appendix 1, Eqs. A7 and 
A8). 
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Figure  5.  Comparison  of  observed  [57,61]  versus  model  predicted  (Eq.  10)  MSC/MICs.  Symbols 

represent experimentally evaluated resistant strains (N = 14). Solid line () is 1:1 ratio. 

Figure 7A also illustrates the expected range of the MSC/MICs ratio across combinations of sc 
and  (the most influential parameters). Over sc ranges from 0.001 to 0.1 and  ranges from 0.5 
to 5 [57,68,69,71], MSC/MICs ranged widely from 10−6 to 0.5. With sc = 0.01, as  decreased 
from 2 to 0.5, the MSC/MICs ratio decreased from typically a factor of 0.1 down to less than a 
factor of 10−4, indicating that MSC values are very sensitive around  = 1. Especially for low 
sc, slight decreases in  may correspond to steep declines in the MSC value (Figure 7A). 
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Figure 6. Growth rate versus antibiotic concentration for sensitive (Ns) and resistant (Nr) bacteria for different values of sc (0.01, 0.1) and  (1, 
2, 3). Other parameters (all scenarios): MICs = 10, MICr = 40, Nint,s = 2, Nmin = −5. 
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Figure 7. Sensitivity analysis of MSC/MICs ratio (Eq. 10) to model parameters: (A) as a function of the selection coefficients (sc) for different  
(log scale); and as a function of sc1/ for different values of (B) MICs/ MICr, (C) Nint,s, and (D) Nmin. Other parameters, except as noted: MICs = 25, 
MICr = 250, Nint,s = 2, Nmin = −5. Note: panel A is log scale and panels B‐D are linear scale. 



 

21 
 

Discussion 

This study model is a simple quantitative approach to describe the factors that will drive the 
MSC. As a relevant environmental threshold concentration for selection of resistant bacteria, 
the MSC helps us understand the significant issue of environmental resistance spread 
[42,48,49]. The model enables indirect estimation of the MSC using measurements of bacterial 
growth parameters that are readily obtained in the laboratory and literature (κ, Nmin, and Nint), 
as an alternative and possible complement to direct measurement [57,58,61]. More importantly, 
the model mathematically illustrates the dependence of the MSC [44,60] on other more easily 
measured parameters and further identifies the shape of the antibiotic dose–response curve of 
the sensitive strain (i.e., ) and the fitness cost of resistance (sc) as the main parameters 
determining the MSC/MIC ratio. These traits, combined with literature MIC ranges [e.g., 
52,77, and the EUCAST database: http://www.srga.org/eucastwt/wt_eucast.htm], can be used 
to estimate environmental antibiotic concentrations at which resistance could spread. 

The model consistently estimated the MSC/MIC ratio across the nine compound and taxa 
combinations examined, with overall R2 above 0.95 (Figure 5). This finding suggests that one 
could estimate the MSC given: 1. the MIC; 2. intrinsic bacterial growth rate (i.e., Nint); 3. 
fitness cost (either σ or sc measurements); and 4. the shape of a dose–response curve for 
antibiotic concentration versus bacterial growth (i.e., ). The first three values are readily 
available for a range of strains, resistance mechanisms, and conditions [52,57,65,68,69,76–79]. 
The antibiotic dose–response curve varies across treatment conditions but is routinely obtained, 
allowing experimental calculation of  [65,67,75,76]. 
 
To illustrate use of the model, Figure 8 displays the MSC/MIC ratio from Eq. 10 across a range 
of selection coefficients, based on laboratory growth parameters from Regoes et al. [65] and 
Ankomah et al. [76]. Results vary dramatically across experiments, even for the same species-
antibiotic combination (Figure 8), largely due to variations in . This suggests a strong impact 
of specific strains and growth conditions for selection, resulting in multiple orders of magnitude 
differences among systems, and a need to understand how the antibiotic resistance dose–
response varies across antibiotic-contaminated environments [42], including water treatment 
systems, agricultural waste pens, and natural waters and sediments [52,84–87]. 

The model inconsistently predicted ∆N among compounds. ∆N was predicted least well for 
KAN and STR, both aminoglycosides. In these cases, the inability to fit ∆N well was due to the 
similarity of the study-observed MSC versus the sensitive strain MIC (i.e., high MSC/MICs 
ratio). This amounted to a sudden and dramatic shift from the low experimentally determined 
∆N values (|∆N| < 0.04) around the MSC versus ∆N > 1 at the MIC. This steep dose–response 
from high to zero growth of the sensitive strain is evident in high  values for both STR ( = 5) 
and KAN ( = 10.5). The Hill equation and other common statistical curves could not account 
for the similar MSC and MIC. The high  fitted is also inconsistent with the concentration-
dependent (i.e., low ) bactericidal activity of aminoglycoside antibiotics described elsewhere 
[75,88]. Instead, the similar net growth rates of susceptible versus resistant strains close to the 
MICs may result from adaptive resistance of the susceptible strain. Adaptive resistance for 
aminoglycosides has been widely observed in Pseudomonas aeruginosa [89,90], including at 
sub-MIC exposures [91], as well as in E. coli [83,92,93]. This temporary development of 
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phenotypic tolerance occurs due to elevated production of efflux pumps counteracting growth 
inhibition and killing at sublethal concentrations [91]. In cases of adaptive resistance, the MSC 
may not be much lower than the MIC. In such cases, the MIC may be a reasonable proxy for 
the MSC, as is often observed clinically [54]. 

 
 

Figure 8. MSC/MIC as a function of the selection coefficient sc, calculated for parameters obtained in 
laboratory empirical studies [65,76]. Parameter data in Appendix 1 Table A4. 

Experimental data are currently limited to a few species, strains, and antibiotics, possibly 
limiting the generalizability of the model performance evaluation. Thus, future experimental 
work is warranted to evaluate the ability to estimate MSC via Eqs. 10 and 11 across a range of 
subclinical conditions, species, strains, and antibiotics. This would include a comparison of 
MSC directly measured in competition experiments versus MSC derived from Eq. 10 based on 
measurement of the antibiotic dose–response of individual strains in isolation (Eqs. 4 and 5). 

The shape of the antibiotic dose–response at subinhibitory concentrations 

By emphasizing subinhibitory antibiotic concentrations, this study extends prior findings 
regarding how the behavior of the Hill equation, and  in particular, influences the dynamics of 
bacterial net growth [65,75]. The model predicts that an antibiotic with a lower  for a given set 
of conditions (e.g., bacterial strain, media) exerts a greater selective pressure in the 
subinhibitory region of concentrations found in the environment, resulting in lower MSC/MIC 
ratios. With  ≈ 1, there is an approximately linear decrease in growth from the intrinsic rate 
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with no antibiotic to zero growth when the antibiotic concentration is equal to the MIC. As a 
result, the intersection between the curves for the wild-type versus resistant strain can occur at a 
low antibiotic concentration, and the MSC is approximately equal to the MIC of the wild-type 
multiplied by the selection coefficient. This leads to a low MSC for low selection coefficients. 

For higher  conditions, the MSC is closer to the MIC. Thus, high , in addition to increasing 
efficacy above the MIC [65], also reduces the hazard of selection for resistance at 
concentrations below the MIC. Simulated and empirical dose–response measurements in the 
subinhibitory region are especially needed to evaluate the extent to which that ‘pre-selection’ of 
resistant strains may occur at MSC levels below the MIC of the sensitive strain, in both clinical 
and environmental settings. 

Implications for resistance development hazard 

Environmental-hazard and -risk assessments would also benefit from determining how ambient 
environmental concentrations in different media compare to the MSC [42]. Based on a species 
sensitivity distribution compared to EUCAST-published MIC results, Tello et al. found that 
selective pressure for resistant bacterial communities would be high in swine feces lagoon 
sediment but low in surface water, ground water, raw sewage, and sewage treatment plant 
effluent [52]. As an example of the implications of the MSC threshold (versus the MIC), we 
reinterpret the model of Tello et al. [52] to estimate hazard of selection for resistant bacteria. 
We employ a model correction factor, assuming a 100-fold lower species sensitivity 
distribution, to convert the study reported MIC50 [Figure 4 in Ref. 52] to an MSC50 by adjusting 
the reported log-logistic model location (α) parameter by −2. The 100-fold reduction follows 
our model results and the empirical data of Gullberg et al. [57,61], both of which indicate 
MSC/MIC ratios may exhibit values below 0.01. Comparing the adjusted model to the field 
data reported for ciprofloxacin [Table 2 in Ref. 52], the MSC50 model predicted a greater than 
25% potentially affected fraction of bacterial taxa in at least one sample for all media reported 
(surface water, river sediment, raw sewage, and treatment plant effluent). For erythromycin and 
tetracycline, the MSC50 model predicted 65% and 88% potentially affected fraction in river 
sediment (vs. 2% and 1.6% for the MIC50) [52]. Tello et al. used data from systems impacted 
by human and agricultural development [84,85], and our 100-fold MSC:MIC correction is more 
conservative than a 10-fold reduction employed in PNECs recently developed by Bengtsson-
Palme and Larsson [64], thus indicating worst-case conditions. Nevertheless, these results 
indicate that hazard may exist for selection of resistant strains given antibiotic exposure in a 
wide variety of human-impacted aquatic settings. 

Model scope, limitations, and future directions 

The parsimonious analytical solution we developed addresses vertical gene transfer of 
antibiotic resistance in a well-mixed environment as a function of fitness cost, competition, and 
antibiotic concentration. There are many aspects of resistance dissemination that fall outside 
the scope of this simple exercise, including horizontal gene transfer [44,50,66], interactions 
among multiple strains, spatial arrangement of individual colonies, and heterogeneity in 
antibiotic exposure due to biofilms and other mechanisms [94,95]. Additionally, the model 
operates on and describes the long-term competition dynamics between bacterial strains, rather 
than stochastic and dynamic changes in net growth and competition over time. Thus, the 
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derivation assumes that the parameters governing growth (e.g., Rint, Dint, Dab) will reach 
relatively stable values prior to the time that two strains are in direct competition. This 
simplified model does not incorporate inoculum effect, biphasic killing, delay functions, drug 
concentration changes, or other variations in parameter values that may occur in experimental 
settings. More sophisticated pharmacokinetic-pharmacodynamic models have been developed, 
incorporating these processes [96,97], but these more complex models do not lend themselves 
to an analytical solution similar to what we have provided. Further, investigation of varying 
initial ratios of resistant versus susceptible bacteria indicate no effect on selection coefficient, 
suggesting a limited importance of initial conditions, such as inoculum effect [57,61]. 
Nevertheless, theoretical and experimental investigation of how short-term growth and killing 
and other dynamic processes would impact the MSC/MIC ratio is warranted in future studies, 
as is comparison of alternative models. 

The primary benefit of the present model is in illustrating the MSC paradigm and the key 
drivers of selection in simplified systems. As such, this paper adds to the growing scientific 
understanding on how to interpret laboratory data on the MIC and other parameters for 
predicting the emergence of resistance at subinhibitory environmental concentrations. It 
highlights the value of characterizing the antibiotic dose–response (i.e., the Hill Coefficient κ), 
particularly at antibiotic concentrations below the MIC. Ultimately, this quantification of 
resistance selection must be integrated into a risk assessment framework that also considers 
environmental antibiotic contamination, human exposure to and colonization by resistant 
bacteria, and the association between colonization and infection [42]. The ultimate objective is 
a further refined picture of the global hazard posed by antimicrobial agents. 
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Chapter 2. Transfer rate model for environmental surface contribution to hospital-
associated infection transmission4 

Abstract 

We apply a quantitative environmental transfer rate model to evaluate which pathways 
contribute most to pathogen transmission. The model focuses on hospital-associated infections 
(HAI), the pathway of health-care worker (HCW) contact, and the relative importance of direct 
skin-to-skin contact versus indirect transfer via textiles and environmental surfaces. The model 
is formulated as a set of mass-balance equations describing the contact and transmission 
between the health-care worker (HCW) and an infected and an uninfected patient, residing in 
separate hospital rooms. The model was parameterized for a generic HAI that is transmitted by 
dermal contact and respiratory emissions. Elimination rate data was varied according to 
available literature values for six HAI: Staphylococcus aureus, Streptococcus pyogenes, 
Acinetobacter baumannii, Bordetella pertussis, severe acute respiratory syndrome coronavirus 
(SARS-CoV), and influenza A virus. Steady state results indicate that environmental surfaces 
are largely responsible for transmission. All pathogens except influenza exhibited high 
transmission to the susceptible patient skin. Excluding influenza, the range of best estimates of 
transmission among pathogens was similar to the variability observed within a single pathogen 
(Acinetobacter baumannii), suggesting that high parameter variability and uncertainty will 
impede quantitative classification of pathogens beyond existing heuristic frameworks. Our 
study results support the prevailing conceptual model of the importance of the non-human 
environment for HAI risk. 

Introduction 

To fully account for the transmission of pathogenic microbes in health care settings such as 
hospitals, the indoor environment must be considered. In military, community, and health-care 
settings, environmental pathways maintain infection risk even when infected individuals are 
isolated [98–100]. Environmental transmission pathways are diverse, including soil, water, air, 
textiles, indoor surfaces, or any mechanisms other than direct human-human contact. These 
indirect pathways have received limited attention in models of infectious disease transmission, 
but such models can provide insights into disease behavior and the relative merits of possible 
interventions [19,46,101–103]. Li et al. [46], Breban et al. [101], and Breban [102] modify 
traditional epidemic transmission models to incorporate environmental transmission of 
infectious diseases, allowing the allocation of different environmental components as reservoirs 
of pathogens. Based on model implications for the reproductive number5, Li et al. [46] further 
classify pathogens as frequency-dependent vs. population density-dependent. Nicas and Sun 
[19] developed a compartmental model describing the mechanistic processes of transmission of 
a respiratory viral pathogen, such as influenza A. Nicas and Jones [18] incorporated that model 
into a transmission risk framework, enabling assessment of the relative importance of different 
pathways including direct contact, droplet spray, and aerosol inhalation. Mechanistic 
compartmental models could also be employed to evaluate the relative importance of 
environmental contact versus direct transmission among human individuals. Quantitative 
                                                            
4 This study is a collaboration with Mark Nicas and Thomas E. McKone (University of California – Berkeley). 
5 Expected number of secondary cases from a single infectious case 
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estimation of the relative importance of environmental pathways can also help to evaluate the 
relative benefits of different interventions [18,19,45]. 

Infectious diseases differ widely regarding the relative importance of direct human-human 
pathways versus indirect environment-mediated pathways. Assessments of these differences to 
date have been largely qualitative rather than quantitative. Heuristically, pathogens that are 
exclusively foodborne, waterborne, airborne, or vector-borne (e.g., malaria) represent one end 
of a spectrum, whereas pathogens transmitted via direct human-to-human contact (e.g., HIV) 
are at the opposite end of this spectrum. However, many pathogens have more subtle 
differences, which can be effectively described in model-based analyses. Potentially important 
causes of differences among infectious diseases would include rates of transfer to and from 
environmental media (i.e., pick up and shedding), direct transfer rates between individuals, 
elimination rates, and infectious inoculum from different sources. Among these factors, 
elimination (inactivation) rates are especially variable among different media and pathogens 
[104–107], and therefore likely to be important for transmission among different pathways. 

Surface-mediated transmission has been extensively studied and is an environmental pathway 
of great concern [106,108–110]. Factors reported to facilitate environmental surface-mediated 
transmission include long-term survival on surfaces, frequent contamination, ability to colonize 
and transfer from and to patient and health-care worker skin and hands, resistance to 
disinfection, and small inoculating dose [109]. Nosocomial (hospital-associated) infections 
reported to have these attributes, and thus an environmental transmission pathway, include 
methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, vancomycin-
resistant Enterococcus spp., Clostridium difficile, norovirus, hepatitis B virus, Acinetobacter 
spp., Candida spp. and many others [109]. 

We apply a simple mechanistic model of pathogen environmental behavior and transfer to 
describe differences among pathogens in the importance of environmental transmission 
between individuals. The model is applied in a standardized hospital scenario [18,19,111], 
depicting pathogen transmission between two patients residing in separate hospital rooms [45]. 
We perform simulations including or excluding different pathways (textiles and nonporous 
surfaces) to evaluate the relative contribution of environmental surfaces to total number of 
colonies transmitted. This is intended as a first step towards a quantitative modeling framework 
for evaluating how environmental transmission varies among pathogens. 

Methods 

The model 

The study model combines and modifies components of the environmental transmission models 
of Plipat et al. [45] and Nicas and Sun [19], applying them in a steady-state formulation. The 
resulting model describes the transmission of pathogenic bacteria or virus particles between 
two patients residing in separate hospital rooms, as mediated by a health-care worker (HCW) 
caring for both patients [45]. We model patients in separate rooms in order to focus on the role 
of environmental (e.g., surface-mediated) transmission and the contribution of textiles and 
nonporous surfaces (i.e., the non-human environment) to this transmission. As such, airborne 
and droplet spray transmission that would occur among patients in the same room [18,19] are 
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not emphasized. This simplified scenario was selected to facilitate comparison among 
hypothetical scenarios and model parameters for: 1. total particle transmission and 2. 
contribution of human skin versus environmental surface (textiles and nonporous surfaces) to 
transmission between individuals. This model forms a conceptual basis to describe specific 
pathogens in terms of potential for transmission among patient rooms, and should ultimately 
enable assessment of the relative merits of different methods for controlling pathogen 
transmission (e.g., surface and textile sterilization, barrier controls, or hand washing) among 
rooms in a hospital setting. 

In the model scenario, patient 1 is assumed to be infected and also colonized in the mucous 
membranes (e.g., nares and mouth), and the HCW and patient 2 are assumed to be uninfected 
and uncolonized. The model calculates the rate and number (i.e., count) of pathogen colony-
forming units (cfu) transmitted to the HCW and patient 2 by different pathways, enabling 
assessment of the relative contribution of skin transmission versus transmission via porous 
surfaces (i.e., textiles) and nonporous surfaces. In the initial simulation, there is no assumed 
loss of pathogen due to hand washing; this model formulation represents a “worst case 
scenario” for transmission rates [45]. However, each 8 hours, the model assumes that HCW 
skin is cleaned to zero bacteria concentration as a result of shift turnover [45]. 

The model describes contributions for each pathogen transmission pathway via a separate rate 
transfer equation, λ [h−1] [19]. The mucous membranes of patient 1 are treated as the source (G) 
[cfu h−1]. The model does not include the shedding source of Plipat et al. [45], instead focusing 
on the mucus membrane sources of dermal contact and coughing [18,19], which are relevant 
for a range of infectious diseases. The model is also simplified from Plipat et al. in that binary 
time-dependent contact vs. non-contact of HCW with patients are replaced by simple reduced 
contact rates (e.g., HCW spending 20 min/h in a patient’s room is modeled as a 1/3 multiplier 
to contact rate). Unlike Nicas and Sun [19], the model does not include direct airborne 
transmission to the respiratory tract by droplet spray or inspiration of particles immediately 
released via coughing. These pathways are excluded under the assumption that this direct 
airborne transmission will be exceedingly small, given that patients reside in separate rooms, in 
contrast to Nicas and Sun’s [19] scenario of patients residing in the same room. 

The model is formulated as a set of coupled mass-balance equations with 11 state variables 
(compartments) describing disease-organism number in each compartment, and first order rate 
transfers between compartments: 
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where N = count of disease organisms (i.e., particles), subscripts 1….i and 1….j denote the 
different source and recipient compartments (i = j = 11), λi,j = rate parameter [h−1] for pathogen 
transfer between compartment i and compartment j, and λiL = total loss rate [h−1] from 
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compartment i to all other compartments (i.e., ߣiL ൌ ∑ i,nߣ
n=j
n=ଵ ), and Gi = input to compartment i 

from external sources. These equations in simplified matrix form are: 

N`(t) = Λ × N + G  (2) 

In this formulation, the mucous membranes of patient 1 are treated as the pathogen source, such 
that G = rate of production of new pathogenic microbes in the mucus membranes. Here, 
production could occur in the respiratory and digestive tract, as well as within the mouth and 
nares. Pathogenic microbes are released to textiles (G2), nonporous surfaces (G3), and 
surrounding air (G4) by coughing. Pathogenic microbes are released to infected patient skin 
(G1) by coughing, as well as hand contact with the mucous membranes. The model 
compartments (compartment number) are (as shown in Figure 9): skin of patient 1, HCW, and 
patient 2 (compartments 1, 6, 9); textiles of patient 1, HCW, and patient 2 (compartments 2, 7, 
10); nonporous surfaces of patients 1 and 2 (compartments 3, 11); mucous membranes of HCW 
and patient 2 (compartments 5, 8); and air in the room of patient 1 (compartment 4). All 
compartments except the mucus membranes exhibit compartment-specific loss via elimination 
(organism death), which is treated as a loss from the system, λi,12 (i.e., transformation is an 
“absorbing state”) [19]. Loss from room air (λ4,12) also includes exhaust from the room [19]. 

The steady state abundance of pathogenic organisms for each compartment (N1…i, SS; NSS) is 
adequate for our purpose of comparing across pathogens and pathways. By definition, dN/dt = 
0 at steady state, such that the following solution is readily obtained: 

N`(t)SS = 0  (3) 

0 = Λ × NSS + G (4) 

− G = Λ × NSS (5) 

Λ−1 × (− G) = Λ−1 × Λ × NSS  (6) 

NSS = Λ−1 × (− G)  (7) 

Thus, the steady state abundance is the cross product of the inverse of the transfer rate matrix 
and the negative of the source matrix. 

The model includes five airborne transfer pathways: 1. release from the infected patient’s nose 
into air via coughing; 2. transfer from air to the skin or textiles (e.g., clothing) of the patient and 
a health-care worker; 3. transfer from air to the nonporous surfaces surrounding the patient; 4. 
transfer from air to the mucous membranes of the HCW; and 5. loss from air by exhaust or 
environmental transformation (i.e., organism death) [18,19,111]. Modeled skin-contact 
mediated transfer pathways are based on those of Plipat et al. [45], who use ordinary 
differential equations to depict the transfer rate of bacterial cfu between 10 hospital-setting 
compartments. The authors developed and parameterized this model based on colonization with 
MRSA, which is a model nosocomial bacterial pathogen with an environmental surface-
mediated transmission pathway. Appendix 2 presents all model equations and constants. 
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The model was coded in R Version 3.1.2 [112]. The matrix formulation allows for ready 
observation and comparison of rate constants (λ values) [19], as well as straightforward 
removal of pathways. Model code will be provided to users on request. For this exercise, the 
surface environment is defined to include both textile (porous) and non-textile (nonporous) 
surfaces (Figure 9, beige filled boxes). 

 

Figure 9. Conceptual depiction of  the pathogen environmental  transmission model. Boxes  represent 
compartments, and arrows represent rate processes [h−1]. Black arrows (→) are inputs (G), blue arrows 
(→)  are  transmission  between  compartments  (λi,j),  and  pink  arrows  (→)  are  elimination  (λiL).  Box 
borders  indicate  the personal  environments of  the  infected patient 1  (black  □), health‐care worker 
(violet  □), and  susceptible patient 2  (green  □). Finally, pink  filled boxes  (■)  indicate  the non‐human 
environment, comprising textiles and surfaces. 

Parameter development focusing on elimination rates 

Model parameters were obtained from published literature (Appendix 2). Parameters were 
largely obtained from Plipat et al. [45] and Nicas and Sun [19]. However, a literature review 
was performed to obtain parameter estimates for elimination rates (i.e., death of pathogenic 
microbes), including differences in elimination rate between skin, surfaces, and textiles 
(Appendix 2). Elimination was emphasized based on the expected sensitivity of model results 
to this parameter. Values were compiled for six pathogens known to cause hospital-associated 
infections: Staphylococcus aureus, Streptococcus pyogenes, Acinetobacter baumannii, 
Bordetella pertussis, severe acute respiratory syndrome-coronavirus (SARS-CoV), and 
influenza A virus. 

Many studies provide experimental bacteria survival and elimination results in figure format 
only, without a tabular summary or elimination rate calculation. To estimate elimination rates 
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from these studies, study raw data were manually extracted using the open source ImageJ 
software platform [113], with the Figure Calibration plug-in. We estimated elimination rates 
[h−1] from published results via one of two methods. When decay curves were approximately 
first-order, based on multiple measurements of concentration, we fit study data points to an 
exponential decay function, and estimated elimination rate as the negative exponential term 
[111]. Often, the experimental elimination rate was greater during the first portion of the 
experiment; in these cases, we used only initial data points to fit the exponential function to 
data, resulting in a higher elimination rate estimate (example in Figure 10). In cases where 
graphical results indicated zero-order loss (linear decrease) with time, or when tabular data 
were only reported as the time to reach zero abundance (e.g., B. pertussis, Appendix 2 Table 
A10), we estimated elimination rate as 1/t, where t = reported total time to reach zero 
abundance. 

 

Figure 10. Example elimination rate calculation (A. baumannii). In this example, an exponential decay 
function was fitted (──) to results of the first five points, which were manually extracted from Figure 1 
(Type 2 panel) of Wendt et al. [114]. Based on the fitted model, the estimated loss rate was 0.012 h−1. 

Most elimination studies focus on nonporous surfaces. When quantitative elimination estimates 
on skin or textiles were unavailable, extrapolations were made based on ratios between first-
order elimination in that medium versus nonporous surface rates, extracted from the best 
available relevant study (Appendix 2). For SARS-CoV on textiles this ratio was based on the 
semiquantitative estimate of Lai et al. [115]. For S. pyogenes and A. baumannii elimination on 
skin, ratios were extracted from studies of the congeneric S. pneumoniae [116] and A. 
calcoaceticus var anitratus [117], respectively. Finally, to examine parameter variation within 
the literature for a given infection, we developed low, average, and high literature estimates for 
elimination of Acinetobacter baumannii on nonporous surfaces. 
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Model simulations 

We first used the model to calculate steady-state results (Eq. 7), employing the different 
elimination rates obtained from the six pathogens, in addition to the range of plausible 
elimination rates in the literature for Acinetobacter baumannii (Table 2). In order to illustrate 
the contributing role of the non-human environment (textiles, surfaces and fomites) to human 
exposure, additional simulations were performed with some environmental compartments 
removed. In the first, transfer to and from nonporous surfaces was removed (boxes 3 and 11 in 
Figure 9). In the second, transfer to and from all environmental compartments, including 
surfaces and textiles, was removed (boxes 2, 3, 7, 10, and 11), such that only the skin, mucus 
membranes, and air were considered (boxes 1, 4, 5, 8, and 9, Figure 9). 

Table 2. Elimination rate estimates [h−1] for pathogens on different media. 

Pathogen  Skin  Textiles  Surfaces Air  Source a

Acinetobacter baumannii (low)  0.0084 0.00038 0.00038  0.00038  [114,117–120]

Acinetobacter baumannii (average) 0.072  0.0031  0.0031  0.0031  [114,117–120]

Acinetobacter baumannii (high)  0.59  0.026  0.026  0.026  [114,117–120]

Staphylococcus aureus  0.21  0.038  0.012  0.012  [45] 

Streptococcus pyogenes  0.20  0.051  0.051  0.051  [116,121,122] 

Influenza A  72  0.96  0.50  0.44  [18,111,123] 

Bordetella pertussis  0.34  0.021  0.047  0.051  [105] 

SARS‐CoV  0.032  0.38  0.032  0.032  [115,124,125] 

a. See Appendix 2 for details. 

Results and Discussion 

Elimination rates 

Literature elimination rates varied by 7 orders of magnitude between 3.8x10−4 h−1 for the low 
estimated elimination in Acinetobacter baumannii to 72 h−1 (i.e., 1.2 min−1) for influenza A on 
skin. Most rates were 0.003 to 0.5 h−1 (Table 2). We obtained 10 separate elimination rates for 
A. baumannii on nonporous surfaces from literature sources [114,117–120] (Appendix 2 Table 
A7), allowing an examination of the statistical properties and variability of these data. 
Histogram plots and normal scores plots indicate that these rates are approximately lognormally 
distributed (Figure 11). Low, average, and high loss rates were estimated based on appropriate 
summary statistics for lognormal data. The average elimination rate was taken as the geometric 
mean: 3.1x10−3 h−1. The low and high estimates were taken as 10mean(log10(values)) ± 2 SD(log10(values)), 
and were 3.8x10−4 and 2.6x10−2 h−1, respectively. Based on elimination rates extracted from 
Musa et al. [117], who compared elimination rates in Acinetobacter calcoaceticus var anitratus 
on Formica surfaces and on fingertips, we estimated that elimination on skin was 23 times 
faster than that on surfaces (Appendix 2). The range of elimination rates for A. baumannii was 
lower than those for influenza A, but generally overlapped with the rates observed for other 
pathogens (Table 2). 
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Figure  11.  Normal  scores  plots  and  histograms  illustrating  elimination  rates  for  Acinetobacter 
baumannii  on  nonporous  surfaces  (N  =  10), with  both  untransformed  (top)  and  log10  transformed 
(bottom) data. 

Model simulations 

Calculated rates were generally greatest for transfer between skin and surfaces, as well as 
between HCW skin and textiles (Table 3). Rates were relatively low between air and other 
compartments, indicating a high contribution of dermal pathways relative to airborne pathways 
in the model scenario we developed. In comparing total loss rates for each compartment (Table 
3, diagonal clear cells), we observe that loss was greatest from room air, patient surfaces, and 
health-care worker skin. The high loss in room air resulted from room exhaust rates assumed at 
6 turnovers per hour (6 h−1) [19]. For surfaces and skin, the high loss resulted from the large 
assumed exchange between these compartments and other reservoirs, especially for health-care 
worker skin, which is a primary transfer pathway in the model (Figure 9). In terms of inputs 
from the infected patient mucous membranes (G) onto other compartments (Figure 9), 
estimated rates were greatest for transfer (i.e., input) onto skin and textiles (237,600 cfu h−1 
each), intermediate for transfers onto nonporous surfaces (52,800 cfu h−1), and minimal (and 
effectively irrelevant) for transfers to air (0.5 cfu h−1). This reflects the assumed important 
pathways for nasal transmission of MRSA [45] and that a large portion of respiratory secretions 
released via coughing ultimately end up depositing on surfaces [19]. 
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Table 3. Matrix of transfer and  loss rates (λ) [h−1] for all compartments, assuming model default parameters (Appendix 2 Tables A5‐A6), and 

elimination rates for Staphylococcus aureus (Table 2). MM = mucous membrane. Unshaded diagonal cells are total  loss rates (λiL). Remaining 

cells are transfer rates (λi,j) and are shaded green to red according to magnitude. 

      Recipient 

      Infected patient    Health‐care worker  Susceptible patient 

      1. Skin  2. 

Textiles 

3. 

Surfaces 

4. Air  5. MM  6. Skin  7. 

Textiles 

8. MM  9. Skin  10. 

Textiles 

11. 

Surfaces 

So
u
rc
e
 

In
fe
ct
ed

  1. Skin  −0.58  0.013  0.48  0.010  0  0.07  0  0  0  0  0 

2. Textiles  0.06  −0.056  0  0.047  0  0.02  0  0  0  0  0 

3. Surfaces  0.24  0  −0.65  0.047  0  0.08  0  0  0  0  0 

  4. Air  0  0  0  −6.1  0  0  0  0  0  0  0 

H
C
W
 

5. MM  0  0  0  0.014  −0.075  0.00015  0  0  0  0  0 

6. Skin  0.07  0.0044  0.16  0.0011  0.075  −0.73  0.18  0  0.07  0.0044  0.16 

7. Textiles  0  0  0  0.0011  0  0.18  −0.22  0  0  0  0 

Su
sc
ep

ti
b
le
  8. MM  0  0  0  0  0  0  0  −0.075  0.00015  0  0 

9. Skin  0  0  0  0  0  0.07  0  0.075  −0.58  0.013  0.48 

10. Textiles  0  0  0  0  0  0.02  0  0  0.060  −0.056  0 

11. Surfaces  0  0  0  0  0  0.08  0  0  0.24  0  −0.65 
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All modeled pathogens also exhibited a dramatic 1 to 2 order of magnitude decline in steady 
state bacterial count on the susceptible patient, after the removal of nonporous surface 
transmission pathways, and further decline upon removal of textiles (porous surfaces; Figure 
12). This dramatic change illustrates the essential role that indirect pathogen transfer via the 
non-human environment can play in infection transmission [46,102]; both textiles and surfaces 
serve as large reservoir areas effectively collecting and storing disease organisms. 

Figure 12. Steady state count of pathogens (cfu) on patient 2 skin for different modeled scenarios. AB 
= Acinetobacter baumannii, SA = Staphylococcus aureus, SP = Streptococcus pyogenes, IA = influenza A 
virus, BP = Bordetella pertussis, and SARS = severe acute respiratory syndrome coronavirus. 

In our exercise, differences between pathogens resulted from differences in elimination rates 
only (Table 2), with all other parameters being fixed. All pathogens except influenza A 
exhibited a high organism count on the susceptible patient 2 (Figure 12). The low count for 
influenza A stems from its extremely high elimination rate, especially on skin surfaces and 
textiles (Table 2). The strong relationship between elimination on skin and modeled organism 
count on patient 2 illustrates this, with influenza A clearly separated from the other pathogens 
(Figure 13). This supports the prevailing conceptual model that airborne transmission, droplet 
spray, and other direct transmission pathways are the primary transmission risks for influenza 
A [104]. Similar to influenza A, literature reviews by Kramer and colleagues [106,107] indicate 
maximum persistence of less than 72 h on surfaces for Parainfluenza virus, Respiratory 
Syncytial virus, Cytomegalovirus, and bacteria including Chlamydia pneumoniae, Helicobacter 
pylori, Neisseria gonorrhoeae, Neisseria meningitidis, and Proteus vulgaris. Based on the 
pathways and scenario we depicted in this model, these pathogens would all be expected to 
exhibit a similarly low hazard of HCW-mediated transmission via the pathways we included. 
This suggests that in even the conservative simulation we performed (high HCW time in patient 
room, no hand washing), the transmission of these particular pathogens among patients in 

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

AB (Low) AB AB (High) SA SP IA BP SARS

C
ou

nt
 (

cf
u)

Pathogen

All pathways

Skin and textiles

Skin only



 

35 
 

separate hospital rooms due to dermal contact, textiles, and fomites of the HCW is likely to be 
exceptionally low. 

Other than influenza A, the remaining pathogens we modeled exhibited high counts on the 
susceptible patient skin as a result of the modeled pathways. With the exceptions noted above, 
the majority of pathogens examined in the literature exhibit persistence on surfaces similar to, 
or greater than, those we evaluated [106,107]. This supports the conceptual model in which 
surfaces serve as reservoirs for a wide variety of nosocomial infections and surface 
contamination is justified as a serious concern in health care settings [106,109]. 

For most pathogens we considered, including textiles (as opposed to skin alone) contributed 
moderately to the total exposure (Figure 12, Figure 14). An exception was SARS-CoV, for 
which textiles played a trivial role (Figure 14). This is because the single available study 
comparing SARS-CoV elimination between different surfaces indicates a substantially lower 
persistence on textiles (cloth lab coat) than nonporous surfaces (disposable plastic gown) [115]. 
Data on elimination rates on textiles were limited for other pathogens, but for B. pertussis, 
persistence on textiles was comparable to that on glass, skin, or plastic (Appendix 2 Table 
A10). 

 

Figure 13. Steady state number of pathogens on patient 2 skin for the “all pathways” scenario versus 
elimination rate on skin. 

Other than influenza A, model outcomes generally overlapped between the different estimates 
for A. baumannii and the remaining pathogens (Figure 12, Figure 13). This follows from the 
comparable range of elimination rates for the data variability in A. baumannii versus the 
average values for the other pathogens. The substantial variability among different strains and 
experimental conditions for A. baumannii is not surprising, but suggests that measurement 
uncertainty and strain-differences within a species will introduce substantial variability in the 
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expected role of environmental surfaces for pathogen transmission. Although similar model 
results for MRSA exhibited relatively low sensitivity to elimination rates compared to other 
parameters [45], the uncertainty and variability in elimination will likely impede ability to 
quantitatively forecast intervention outcomes without more detailed model calibration. Factors 
such as biofilm formation [118,122], initial composition of medium (e.g., presence of body 
fluids) [126], influence of environmental conditions (e.g., temperature, humidity) [106,125], 
size of initial inoculum [115,127], and differences among strain types [114,126], can all 
contribute to the variability in elimination rate within a species. As a result, differences among 
similar species and preliminary assessments regarding environmental persistence should be 
viewed with caution [119,126]. 

Figure 14. Contribution of different pathways to steady state pathogen count on patent 2. Skin 
contribution was based on the scenario where textile and nonporous surfaces were excluded. Textile 
contribution was the added contribution when textiles were added but nonporous surfaces were 
excluded. 

Limitations and future directions 

The current model parameterization for multiple pathogens was limited to the environmental 
elimination rate, with all other parameters standardized to represent a hospital-associated 
infection released by respiratory pathways and contact with mucous membranes. The value of 
elimination rates was selected for detailed examination because of its importance for ability of 
the pathogen to be stored on and transferred via surfaces [106,107,109]. However, the transfer 
efficiency, initial counts, and shedding rates also vary among pathogens, contributing to 
differences in exposure even for our simplified scenario. Further review and modeling are 
warranted to examine how the variation in these parameters will affect infection transmission. 
Another area for exploration is the relative sensitivity of the surface transmission pathways to 
different parameter formulations and combinations. Sensitivity analyses by Plipat et al. [45, 
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Supplemental Information] indicated a high influence of surface transfer parameters for MRSA 
exposure. Literature variation among pathogens in different parameters could be combined into 
Monte Carlo simulated model runs to establish which processes are likely to drive the 
differences among infections in environmental contribution. 

This model describes the transfer rate of pathogens in a standardized scenario. In line with the 
objectives of our study, the transmission pathways in the current model are simplified and 
incomplete. In particular, release via shedding, vomit, and fecal matter are not included. 
Additionally, more sophisticated formulations of airborne transmission are available, including 
release of the pathogen via coughing and sneezing, as well as both near-field and far-field 
airborne transmission [18,19,111,128]. Further, the model is currently restricted to evaluating 
the quantity of pathogen (cfu) transferred to an uninfected individual. The model does not 
provide a basis to evaluate the likelihood of infection, because pathogen-specific and pathway-
specific infectious dose are not considered. In fact, different pathogens exhibit different dose–
response functions for probability of infection, and it is also likely that the dose–response will 
differ between transfer mechanisms (e.g., airborne versus dermal transfer). However, these 
considerations would require additional model complexity, and more parameters, thus 
introducing additional potential for model uncertainty. 

A possible avenue to reduce uncertainty would be to combine this transfer rate modeling 
approach with epidemiological modeling of infectious disease transmission. Results from a 
transfer rate model essentially represent the contact rate (c) in epidemiological models of 
infectious disease transmission. There is an absence of work combining the environmental 
mechanisms of pathogen transmission with epidemiological infection models. If our model 
were combined with additional pathogen-specific information, it may be possible to ground-
truth results by comparing them with basic reproductive number (R0) values available in the 
literature. In a simplified epidemiological infectious disease transmission model, such as that 
illustrated for gonorrhea by Vynnycky and White [129], the contact rate may be used in 
combination with other parameters to generate a basic reproductive number (R0). In particular, 
R0 = cβD, where, c = effective rate of colonies transmitted from an infected individual to a 
susceptible individual (t−1), β = probability of infection (or colonization) per colony exposed, 
and D = duration of infectiousness (t). Mechanistically, for transmission among individuals, β 
represents a dose–response function for conversion to infection [128] as a function of colony 
density on the individual (e.g., skin or nares). Experimental data on β are limited, although data 
are known to be available for Staphylococcus aureus and group A streptococcus (R. Jones, 
unpublished data). If R0 is obtained and compared to literature values, this would be a novel 
corroboration of mechanistic infectious disease exposure assessment models with infectious 
disease transmission information. 
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Chapter 3. Integrative statewide assessment of combined environmental and 
socioeconomic stressors versus chronic disease: California case study 6 

Abstract 

The health-risk assessment paradigm is shifting from single stressor evaluation towards 
cumulative assessments of how multiple stressors affect health outcomes in combination. 
Recent efforts to develop broad-scale public health hazard datasets provide an opportunity to 
develop and evaluate multiple exposure hazards in combination. We performed a multivariate 
study of the spatial relationship between 12 indicators of environmental hazard, 5 indicators of 
socioeconomic hardship, 2 health outcomes, and a general burden of disease measure. The 
exposure indicators were obtained from CalEnviroScreen, a publicly available exposure hazard 
dataset developed by the State of California EPA. These were compared at the zip code scale to 
population rates of 14 disease categories selected from the International Classification of 
Diseases ninth edition (ICD-9) among all hospitalized persons (an estimator of disease burden). 
We performed principal component analysis to reduce the exposure hazard data. Two principal 
component (PC) axes explained 43% of variance in environmental hazard, with the first axis 
indicating industrial activity and air pollution, and the second associated with ground-level 
ozone, drinking water contamination and PM2.5. Mass of pesticides used in agriculture was 
poorly or negatively correlated with all other environmental indicators, and with the 
CalEnviroScreen metric, suggesting a limited ability of the metric to capture agricultural 
exposures. Poverty, unemployment, linguistic isolation, and low educational attainment aligned 
with one PC (56% of variance), representing overall socioeconomic hardship. In simultaneous 
autoregressive models, all of these PC axes were significantly associated with the disease 
burden estimator. However, the majority of model variation was explained by the 
socioeconomic PC. The results of this ecological health study suggest a hypothesis that, 
compared to environmental pollutant exposure, socioeconomic status more greatly impacts 
overall burden of disease. 

Introduction 

In order to protect vulnerable individuals and communities, environmental health science has 
shifted in emphasis from single stressor evaluation towards integrated assessment of multiple 
stressors [2,9,29,33,37]. This stems from the knowledge that a wide range of factors, including 
demography, socioeconomic status, psychosocial stressors, and environmental exposures, all 
influence health outcomes [28,29,32,38,130,131]. But how to integrate across cumulative and 
disparate exposures presents a substantial methodological challenge [2,28,32,34]. Accordingly, 
environmental justice advocates and health geographers are developing a variety of maps, 
indices, and tools that integrate environmental health hazards from multiple stressors at the 
ecological scale [37,38,132–136]. These tools incorporate a range of indicators including 
pollutant concentration or load estimates, contaminated sites or other hazards, built 
environment measures (e.g., urbanization, industry, or road and traffic density), and population 
characteristics, such as educational attainment and socioeconomic status. The multiple-
indicator assessments combine this information into screening tools to identify geographic 
                                                            
6 This study is a collaboration with Jayant Rajan and Thomas E. McKone (University of California – Berkeley). 
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regions where vulnerable populations encounter environmental exposures, resulting in health 
hazard [38,132]. To increase transparency and potential societal benefits, many integrated 
hazard assessment programs also engage the community at large in tool development and 
assessment, through community-based participatory research, solicitation of public 
commentary, and the provision and use of publicly accessible data [137–139]. Some of these 
integration tools and methods also consider the potential interaction between environmental 
contributors to risk and the preexisting vulnerability of exposed populations to environmental 
stressors [29,36,37]. 

To complement the development of new methods, there is an ongoing need to quantitatively 
examine existing metrics and tools. Critical and impartial assessment will ensure that integrated 
assessment metrics are well characterized, technically defensible, and appropriate for intended 
uses. Further, by analyzing metrics and their underlying data, we can examine the geographic 
and statistical patterns of public health hazards [35]. For example, the correlation among and 
between environmental exposures, socioeconomic vulnerability, and health outcomes all 
warrant investigation. In particular, an understanding of which health stressors (e.g., 
environmental, social, economic) are most associated with adverse health outcomes can aid in 
resource allocation and health policy direction across regions and populations [32]. For 
example, the relative health impact of environmental factors (e.g., pollution) versus population 
attributes (e.g., socioeconomic status, stress) warrants examination. Multivariate methods (e.g., 
ordination, principal component analysis) and spatial statistics [140–142] are especially useful 
methods for these questions given the multivariate and spatial nature of these data and metrics. 

An important case study for spatial health hazard evaluation is the California Communities 
Environmental Health Screening Tool (abbreviated as CalEnviroScreen). CalEnviroScreen is a 
quantitative hazard metric developed by the State of California Environmental Protection 
Agency (CalEPA) in an open and public process [35,134]. CalEnviroScreen determines a 
numeric score based on 19 indicators: 12 measures of environmental exposure, 5 of 
socioeconomic vulnerability, and 2 of health outcomes [36]. In addition to describing the 
spatial patterns of hazard, CalEnviroScreen is also intended to help guide state resource 
allocation. In particular, California Assembly Bill 32 and Senate Bill 535 have established a 
cap and trade program for greenhouse gas emissions, and require that 10% of the anticipated 1 
billion dollars of annual state revenue from this program be allocated to communities identified 
by CalEPA as having health vulnerabilities. CalEnviroScreen was developed as a metric for 
identifying these communities [132]. The methodology for developing CalEnviroScreen has 
been detailed elsewhere, and it has further been shown by the scientific development team to 
indicate strong racial disparities in environmental and socioeconomic vulnerability [35,36]. The 
method and some of the underlying assumptions have also been subject to scrutiny as part of a 
public review process [138]. However, given the ongoing challenges in environmental health 
hazard assessment [28,37], and the novelty and policy implications of CalEnviroScreen, an 
independent scientific assessment is also warranted. 

We examine here the data underlying CalEnviroScreen and their statistical association with 
disease burden. Our analysis focuses on the 17 environmental and socioeconomic variables that 
describe environmental exposures and population vulnerability. We compare these data to an 
indicator of disease burden at the zip code scale using publicly available hospital discharge 
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data. We address three questions about the CalEnviroScreen source data: 1. What are the 
correlation structures and statistical associations? 2. How well is the CalEnviroScreen metric of 
hazard supported by the statistical associations in the underlying data? 3. Which multivariate 
hazard indicators statistically predict disease burden? For this last question, we work to 
generate hypotheses regarding the ability of CalEnviroScreen to address health outcomes and 
the relative importance of environmental versus socioeconomic factors in determining disease 
burden. 

Data and Methods 

Environmental and socioeconomic data 

The environmental hazard (12 variables) and socioeconomic vulnerability (5 variables) data 
were downloaded along with the CalEnviroScreen scores, as an MS Excel spreadsheet file 
CESUpdateOct2014.xlsx. These data, obtained from the CalEnviroScreen website 
(http://oehha.ca.gov/ej/ces2.html) on April 6, 2015, have been pre-cleaned and carefully 
prepared by CalEPA, as described elsewhere [35,36]. The study covers 8036 census tracts 
centered within 1355 California zip code areas (http://oehha.ca.gov/ej/ces2.html). The 12 
environmental hazard variables include ozone levels, concentrations of particulate matter 2.5 
μm in diameter or below (hereafter, PM2.5), diesel particulate matter concentrations (diesel 
PM), traffic density, drinking water contamination, active pesticide mass used in agriculture 
(pesticides), airborne toxic chemical releases, water body impairments, sites hazardous to 
groundwater, sites targeted for cleanup, hazardous waste sites, and solid waste sites. The 5 
socioeconomic vulnerability variables include percent of population either under 10 or over 65 
(vulnerable age), low educational attainment, linguistic isolation, poverty, and unemployment. 
All study variables were obtained based on data collected between 2008 and 2013, except 
traffic density, which was based on 2004 data. Appendix 3 Table A11 summarizes all variables, 
providing abbreviations, years represented, original units, and data transformations for this 
study. Cushing et al. [35] and Faust et al. [36] provide more extensive detail. 

Disease burden measure 

CalEnviroScreen also includes two specific health outcome variables: asthma and low birth-
weight, which are intended to indicate a combination of vulnerability to, and effects of, 
environmental exposures [36]. We include these two variables when analyzing the multivariate 
structure of the CalEnviroScreen data. However, we developed a separate disease burden 
measure as our outcome variable. Our intent was to use a publicly available data source that 
was not developed by the CalEnviroScreen team and that would broadly indicate burden of 
diseases having environmental etiology. 

We measured disease burden using discharge diagnostic codes (which used the ICD-9-CM 
schema). We obtained these data for all hospitalizations for a given calendar year using 
publicly available, de-identified, statewide hospital discharge data from the California Office of 
Statewide Health Planning and Development, spanning the years 2008-2011. Using these data, 
we classified hospitalizations by pre-determined ICD-9 diagnostic categories. We determined 
the sum total number of hospitalizations for 14 disease diagnostic categories representing 
serious or chronic ailments known to have potential environmental etiology. The 14 categories 
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were pneumonia, chronic obstructive pulmonary disease (COPD), asthma, myocardial 
infarction (MI), cerebrovascular accident (CVA), diarrhea, pancreatic cancer, lung cancer, 
breast cancer, lymphoma, leukemia, depression, schizophrenia, and low birth weight. 

In a preliminary analysis, we found that the occurrence of these diseases in hospitalized persons 
was positively correlated and also correlated with the total number of diagnoses (Appendix 3 
Table A12, Figure A4). Further, because the same patient hospitalization could have multiple 
diagnoses spanning multiple categories, rates for different disease categories are not mutually 
exclusive. To address these issues, we assembled these data into a single count of total 
hospitalizations resulting from the 14 diagnostic categories. Thus, a hospitalization event that 
included more than one diagnostic category was recorded as a single event. Avoiding the 
separate statistical examination of multiple disease outcomes also reduces the rate of Type I 
errors. 

To calculate rates per person, we summed the count of total hospitalizations at the zip code 
tabulation area (ZCTA) level, and divided by total population. For the denominator, we used 
ZCTA population estimates from the 2010 United States Census. We observed high variability 
in rates for populations below 100 individuals within a ZCTA (see Appendix 3 Figure A5). 
Therefore, we excluded ZCTAs having populations < 100 individuals from the final analysis to 
minimize the influence of statistical outliers. 

To summarize, the study’s “disease burden indicator” is the total rate of hospitalizations 
associated with at least one of the 14 diagnostic categories selected. Because the same person 
could in theory be admitted multiple times for the same diagnosis, the rates reported here are 
only approximations of population disease prevalence. They may be viewed as representing the 
impact of certain diseases (particularly chronic diseases), since apart from death, 
hospitalization is generally the most extreme result of any disease process. 

Expecting chronic disease burden to be higher among the elderly, we obtained the percent of 
the population over 65 years old for each ZCTA from the 2010 US Census. This parameter 
(Over65) was used in addition to the variables derived from CalEnviroScreen as a predictor in 
statistical models used to explain the disease burden indicator. 

Data preparation and spatial alignment 

Initial graphical analyses revealed a single extreme outlier value for traffic density. This value 
far exceeded the range of remaining data on both a linear scale (43,600 vs. 0 to 12,200) and 
cube root transformed scale (2.92 versus 0 to 1.91; N = 8036 values). Examination of the 
source data documentation [138] indicated that this extreme value resulted from manual data 
adjustment to estimate increased traffic density from a 150 m stretch of the Mexico-US port of 
entry road at San Ysidro West (San Diego, CA). The value of this outlier traffic density 
variable was unremarkable in relation to other variables, and was removed to avoid model bias 
due to an influential point. 

Hospitalization-related diagnoses were tabulated at the zip code level, census population is at 
the ZCTA level, and CalEnviroScreen data are available at the census-tract scale. To align 
these data sets, the following data preprocessing steps were performed using ArcMap v10 
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(ESRI, Redlands, CA): 1. averaging the CalEnviroScreen data at the zip code scale to achieve a 
consistent analysis scale; 2. linking the CalEnviroScreen and ICD-9 data together; 3. combining 
with a shapefile of zip code polygons; and 4. standardizing the health outcome data to total 
population per zip code tabulation area (ZCTA). Appendix 3 further details this spatial 
alignment methodology. 

Statistical methods 

Statistical analysis was performed in R (version 3.2.0) [112]. Principal component analysis 
(PCA) was performed on the correlation matrix using commands prcomp and PCA (R package 
factoMineR). Census tracts with missing values were removed from the analysis. To examine 
multivariate patterns of the entire hazard data set, PCA was performed on all 19 
CalEnviroScreen variables in combination. Two separate PCAs were also performed on the 12 
environmental and the 5 socioeconomic variables to reduce these data to a smaller number of 
variables representing these two classes of hazards. 

Hazard variables were compared to the disease burden indicator using linear models and 
simultaneously autoregressive models (SAR), the latter employing the R package spdep. SAR 
is a form of spatial autoregressive model that is appropriate for describing and testing for linear 
relationships in the presence of spatial autocorrelation [142,143]. Appropriate treatment of 
spatial autocorrelation was assessed based on Moran plots illustrating no association with 
spatially lagged means, global Moran’s I that was not significant, and for SAR models, a spatial 
dependence parameter (λ) that was significant via likelihood ratio test [143–145]. Models were 
selected based on minimizing Akaike Information Criterion (AIC), employing the rule of 
thumb that given ∆AIC ≥ 2, the model with the smallest AIC is most likely [146]. Parameter 
inclusion was based on ∆AIC and reported p values (α = 0.05). Nagelkerke pseudo-R2 was 
calculated as a measure of model goodness of fit for SAR models. Analogous to traditional R2 
in meaning (though not directly comparable), the Nagelkerke pseudo-R2 estimates from 0 to 1 
the improvement in proportion of variation explained by the fitted model, versus a null 
(intercept-only) model [147]. In order to compare the contribution of each parameter to final 
variation explained by the model, the psuedo-R2 was compared between the full model and the 
model with that parameter removed. 

Prior to statistical analysis, all variables were transformed to approximate a normal distribution 
and multivariate linearity required for linear model analysis [141,148]. Transformations 
included natural log (5 variables), cube root (7 variables), square root (4 variables), and ArcSin 
square root transformation (drinking water). Only PM2.5 did not require transformation 
(Appendix 3 Table A11). The combined disease burden indicator (DBI) exhibited skewness 
and long tails (leptokurtic) and standard transformations failed to achieve normally distributed 
model residuals. Normal residuals were achieved employing a modulus transformation: 
signሺ√DBIሻ ∗ lnሺห√DBIห ൅ 	1ሻ [149]. The predictor variables for the linear models and SAR 
were then centered and scaled by subtracting the mean and dividing by SD. This converted the 
transformed variables (Appendix 3 Table A11) to the same unit normal distributions, such that 
a comparison of model coefficients would approximately indicate relative contribution of each 
variable to disease burden [150]. 
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Results 

We first describe the multivariate structure of the CalEnviroScreen source data, in order to 
understand which exposures are associated with each other. We employ principal component 
analysis to visualize these associations and the prevailing patterns of overall exposure 
encountered in California. We then present the correlation between the main principal 
components and the CalEnviroScreen metric, in order to gain an understanding of what this 
metric indicates. Finally, we examine how well the principal components predict disease 
burden. We employ the principal components rather than the individual parameters to focus on 
overall patterns of exposure and vulnerability and to reduce risk of Type I error. The relative 
importance of environmental versus socioeconomic parameters in the model illustrates which 
factors most influence disease burden. 

Multivariate data structure 

Pearson’s pairwise correlation coefficients (r) indicate multiple associations for the underlying 
CalEnviroScreen data (Table 4). Positive pairwise associations are observed among variables 
related to particulate air pollution and traffic, with diesel PM moderately correlated with PM2.5 
(r = 0.47) and traffic density (r = 0.46), and toxic release correlated with these three variables 
(Table 4). Socioeconomic indicators of vulnerability are also positively associated: low 
educational attainment, linguistic isolation, poverty and unemployment exhibit r values ranging 
from 0.51 to 0.82, with the exception of linguistic isolation versus unemployment (r = 0.26) 
(Table 4; Appendix 3 Figure A6). The strongest correlation between socioeconomic and 
environmental variables is between linguistic isolation and diesel PM (r = 0.46). The strongest 
negative association among all variables is water body impairments versus ozone (r = −0.33). 
Low birth weight is weakly correlated with most variables. Asthma is more positively 
correlated with the socioeconomic variables education (r = 0.47), poverty (0.51), and 
unemployment (0.43), than with any environmental variables. 

Principal component analysis and comparison to CalEnviroScreen 

Principal component analyses (PCA) were performed on the entire CalEnviroScreen data set 
(19 variables) and on the environmental (12 variables) and socioeconomic (5 variables) data 
separately. For the entire data set, the first three principal components explain 46% of data 
variability in combination. Examination of the direction of the variables on the first principal 
component (Figure 15A, horizontal axis) indicates that all variables are to some extent 
associated with each other except for weak negative associations with pesticides, impaired 
water bodies, and vulnerable age. The variables with the greatest variance along this axis, based 
on vector length and direction, are the socioeconomic indicators linguistic isolation, low 
educational attainment, and poverty. PM2.5 and the two health indicators (low birth weight and 
asthma) are also associated with these socioeconomic indicators. Indicators of urban and 
industrial pollution and associated hazardous sites score positively with both PC1All and 
PC2All (Figure 15). These include hazardous waste sites, cleanup sites, toxic releases, traffic, 
groundwater threat sites, and diesel PM, as well as a weak association with solid waste sites. 
These variables are negatively correlated with pesticides, which would be expected in rural 
areas, and with vulnerable age. Examining a biplot of PC2All and PC3All, we see a negative 
association between the polluted sites (solid waste, groundwater hazards, clean up, impaired 
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water bodies, cleanup sites) and measures of drinking water contamination and ozone. 
Additionally, motor vehicle and industrial source-associated air pollution (PM2.5, toxic release, 
traffic, and diesel PM) is negatively associated with pesticides. 

For the environmental PCA (Figure 15C), the first two principal components explain 42.5% of 
data variability in combination. Along the axis of the first principal component, explaining 23% 
of variance, there is an association among most environmental hazards that would occur in 
urban or industrially polluted settings: PM2.5, toxic releases, diesel PM, traffic, hazardous waste 
sites, cleanup sites, and groundwater threats. These are negatively associated with pesticide use. 
Based on these associations, this principal component (hereafter referred to as PC1Env) 
represents general exposure to urban and industrial pollution. Along the second principal 
component (hereafter, PC2Env), explaining 19.5% of variance, ozone, drinking water 
contamination, and PM2.5 are negatively associated with impaired water bodies and 
groundwater threats (Figure 15C). This indicates that elevated hazards due to ozone and 
drinking water contamination will tend to occur in different areas from impaired water bodies 
or groundwater threats. 

For the socioeconomic PCA (Figure 15D), the first two principal components explain 77% of 
data variance. The first principal component (hereafter PC1Soc) explains 56% of variance and 
is positively associated with unemployment, poverty, linguistic isolation, and low educational 
attainment. Thus, this principal component broadly indicates socioeconomic vulnerability. The 
second principal component (PC2Soc) explains 21% of variance, and is only strongly 
associated with vulnerable age (Figure 15D). Since this is the only variable associated with 
PC2Soc, vulnerable age is used below directly as a possible predictor variable for the indicator 
of disease burden. 

The CalEnviroScreen metric is a derived metric calculated as the weighted sum of 
environmental variables multiplied by the sum of the socioeconomic variables, vulnerable age, 
asthma, and low birth weight [35,36]. We propose that any valid vulnerability metric should 
also represent the prevailing gradients in environmental and socioeconomic vulnerability within 
the population studied. That is, CalEnviroScreen (or any suitable metric) must identify areas 
exhibiting high hazard from a combination of environmental or socioeconomic exposures. To 
evaluate the validity of CalEnviroScreen based on this criterion, we calculated the Pearson 
product-moment correlation coefficient of the CalEnviroScreen score versus the main principal 
components from each PCA analysis, for all available census tracts (n = 7504). In the all 
variables PCA, CalEnviroScreen is strongly associated with PC1All (r = 0.91; Figure 16) and 
not associated with PC2All (r = 0.14). When separate PCAs are performed on the 
environmental and social data, CalEnviroScreen is strongly associated with PC1Soc (r = 0.81), 
moderately associated with PC1Env (r = 0.58), weakly associated with PC2Env (r = 0.25), and 
not associated with PC2Soc (r = 0.10). These results indicate that changes in the predominant 
gradients underlying the data (PC1All, PC1Soc, PC1Env) are generally captured by the 
CalEnviroScreen score. Thus, this single metric effectively captures the prevailing gradients in 
the underlying variability in environmental and socioeconomic exposures. 
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Table 4. Correlation matrix of underlying data from CalEnviroScreen. Data were transformed and analyzed using pairwise Pearson correlation 
coefficients (r). Sample size ranged from 7641 to 8035 census tracts. Cell colors correspond to direction and strength of association, with red 
indicating negative association and blue indicating positive association. 
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PM2.5  0.39 

Diesel PM  −0.08  0.47 

Traffic density  −0.11  0.17  0.46 

Drinking water  0.54  0.38  −0.11  −0.11 

Pesticides  −0.01  −0.12  −0.31  −0.20  0.22 

Toxic release  0.02  0.61  0.52  0.32  0.03  −0.22 

Cleanup Sites  −0.11  0.12  0.24  0.13  −0.02  0.00  0.16 

Groundwater sites  −0.29  −0.02  0.20  0.13  −0.10  0.08  0.05  0.46 

Hazardous waste 
sites  −0.13  0.15  0.36  0.23  −0.03  −0.06  0.24  0.50  0.35 

Water body 
impairments  −0.33  −0.25  −0.06  0.03  −0.18  0.12  −0.13  0.12  0.20  0.09 

Solid waste sites  −0.02  0.00  −0.13  −0.03  0.17  0.19  −0.04  0.26  0.28  0.22  0.16 

Age  0.06  −0.10  −0.18  −0.08  0.06  0.09  −0.12  −0.08  −0.03  −0.13  −0.01  0.02 

Education  0.17  0.28  0.27  0.03  0.24  0.04  0.16  0.20  0.16  0.16  −0.12  0.13  −0.04 

Linguistic isolation  −0.01  0.31  0.46  0.20  0.09  −0.11  0.30  0.22  0.19  0.23  −0.09  0.02  −0.12  0.71 

Poverty  0.16  0.20  0.26  0.00  0.19  −0.01  0.05  0.20  0.18  0.16  −0.10  0.10  −0.09  0.82  0.60 

Unemployment  0.25  0.09  0.04  −0.06  0.18  0.03  −0.01  0.07  0.04  0.03  −0.07  0.07  0.02  0.51  0.26  0.58 

Asthma  0.09  0.05  0.18  −0.04  −0.05  −0.06  0.04  0.13  0.13  0.10  −0.05  0.04  0.03  0.47  0.22  0.51  0.43 

Low birth weight  0.07  0.15  0.16  0.05  0.05  −0.11  0.12  0.05  −0.01  0.08  −0.09  0.00  −0.01  0.24  0.16  0.24  0.20  0.28 
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Figure 15. Results of principal component analysis of CalEnviroScreen environmental hazard and socioeconomic vulnerability variables across 
7505 populated  census  tracts  in California. Variability  explained by  individual principal  components  is  in parentheses. A. All  variables  PC1 
versus PC2. B. All variables PC2 versus PC3. C. Environmental variables only. D. Socioeconomic variables only. 
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Looking at the variables associated with PC2Env and PC2Soc, which were not well correlated 
with CalEnviroScreen, it is unsurprising to find that across census tracts, the CalEnviroScreen 
score exhibits very weak correlations with pesticide use (r = 0.04), impaired water bodies (r = 
0.00), groundwater threats (r = 0.16), and vulnerable ages (r = 0.02). In particular, pesticide use 
is negatively associated with many other combined variables, such that CalEnviroScreen 
ranking will be generally insensitive to this measure. 

 
Figure 16. Association between  first principal component  for all variables  (PC1) and CalEnviroScreen 
2.0 score [36]. Each point represents a populated California census tract. 

Comparison to the disease burden indicator 

The results from the all data PCA (PC1All, PC2All, and PC3All) and from the separated 
environmental and socioeconomic PCA (PC1Env, PC2Env, PC1Soc, and vulnerable age) were 
evaluated as possible predictors for the disease burden indicator that we developed (hereafter, 
“disease burden”). The predictor variables were not correlated with each other ( | r | ≤ 0.22), 
with the exception of a weak negative correlation between vulnerable age and PC1Env (r = 
−0.37). Percent population > 65 years old (hereafter, Over65) was also included as a potential 
predictor. Over65 was moderately correlated with PC1All (r = 0.49) and PC1Soc (r = −0.42), 
weakly correlated with PC1Env (r = −0.29), and uncorrelated with the other parameters. 
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Initial modeling using linear regression to predict disease burden indicated clear evidence of 
spatial autocorrelation of residuals for all models. Global Moran’s I was highly significant (p < 
0.0001) and Moran’s plots exhibited clear upwards trends, indicating that model residuals were 
predicted by residuals in adjacent areas, even after accounting for predictor variables. Thus, 
simultaneous autoregressive models (SAR) were used to predict disease burden. In all SAR 
models, λ (lambda) was significantly greater than zero, Global Moran’s I on residuals was not 
significant, and Moran’s plots became flat, all indicating that spatial autocorrelation was 
accounted for in the model structure. 

For the SAR model on the all data PCA results, the following model form was obtained 
(coefficient estimate ± SE): 

Disease Burden = (0.55±0.03)PC1All + (0.15±0.03)PC2All + (0.68±0.02)Over65 

For each parameter (PC1All, PC2All, and Over65), ∆AIC > 2 and p < 0.0001. The intercept 
was not significant (p = 0.98). PC3All was not significant (p = 0.26) and did not substantially 
improve the explanatory ability of the model (∆AIC = 0.8). For the final model, the Nagelkerke 
pseudo-R2 (hereafter, R2) is 0.59, which is effectively unchanged when attempting to include 
PC3All. Comparing Pseudo-R2 after removing individual parameters illustrates the added 
contribution of each parameter to explaining the variability in disease burden. Decrease is 
greater after removing Over65 (new R2 = 0.28) than PC1All (new R2 = 0.49). Decrease is 
trivial when removing PC2All (0.58). The association with PC1All generally describes the 
association of disease burden with the correlated variability in all of the CalEnviroScreen 
hazard indicators except for pesticides and impaired water bodies. The very weak positive 
association with PC2 suggests that disease burden is more associated with indicators of urban 
exposures (e.g., traffic, diesel PM) and contaminated sites (e.g., hazardous waste sites, 
groundwater threats), than with exposure to ozone contamination or drinking water 
contamination. 

For the separate environmental and socioeconomic PCA results (N = 1223), all model terms 
contribute to describing disease burden (coefficient estimate ± SE): 

Disease Burden = (0.21±0.03)PC1Env + (0.11±0.04)PC2Env + (0.44±0.03)PC1Soc + 
(0.69±0.02)Over65 

∆AIC > 2 and individual parameter p-values were < 0.001 for all included model terms, and the 
intercept was not significant (p = 0.98). Addition of VulnerableAge did not improve this model 
fit, which is unsurprising given the correlation between Over65 and VulnerableAge (Pearson’s 
r = 0.67, N = 1223). The model coefficient is largest for Over65, which is unsurprising and 
simply indicates that age must be accounted for in this ecological analysis. The coefficient is 
greater for PC1Soc (indicating poverty, lack of education, linguistic isolation and 
unemployment) than for either environmental coefficient. Similarly, the Nagelkerke pseudo-R2 
indicates more variability explained by PC1Soc and especially Over65. Compared to the full 
model (R2 = 0.60), the pseudo-R2 declined to a much lower value when dropping Over65 (R2 = 
0.27), and moderately declined when removing PC1Soc (R2 = 0.52), but remained essentially 
unchanged when dropping PC1Env (R2 = 0.59) or PC2Env (R2 = 0.60) from the model. These 
results indicate that whereas environmental hazard and socioeconomic vulnerability both 
contribute, socioeconomic vulnerability is considerably more important than environmental 
hazard for explaining disease burden. 
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Graphical analysis indicates weak positive associations of disease burden with PC1Soc and a 
stronger association with Over65 (Figure 17, top panels). The environmental principal 
components (PC1Env, PC2Env) exhibit very weak curvilinear relationships with disease 
burden (Figure 17, bottom panels). For PC2Env, a few locations exhibited relatively low 
exposure and disease burden. Although these results indicate a statistical effect of both 
environmental and socioeconomic stressors for disease burden, the magnitude of any 
environmental effect is extremely small. 

 
Figure 17. Association between significant predictors and disease burden. All parameters have been 
scaled and transformed as described in text. 

Discussion 

Our study results support the use of CalEnviroScreen as an ecological scale indicator of 
environmental health hazard. First, the CalEnviroScreen metric was strongly associated with 
the first principal components in all analyses, indicating that it represents the primary 
underlying gradients within the data set. Second, the principal components from the 
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CalEnviroScreen data were significantly associated with our metric of disease burden, which is 
a general indicator of health care burden. Models that contained these variables, and also 
accounted for spatial autocorrelation and proportion of population that was over 65, explained 
approximately 60% of the variation in the underlying data. Given all of the uncertainty and 
assumptions with the study data and scale, this suggests that the CalEnviroScreen data 
accurately represents a combination of multiple exposure hazards that combine to influence 
burden of disease. Our analysis, therefore, suggests that CalEnviroScreen is an appropriate tool 
for its intended purpose: to identify vulnerable communities for resource allocation in 
environmental health restoration [132]. 

The first few principal components explained limited variability in the underlying data set, and 
many of the parameters, especially environmental exposure measures, were weakly correlated. 
These observations indicate that for 19 hazard parameters captured in CalEnviroScreen, there 
will be many exposure combinations that are not fully described by shared multivariate 
gradients. Further examination of the statistical properties and demographic vulnerability of 
sites exhibiting unique exposure combinations is warranted. Additionally, some policy 
interventions may best be geographically targeted using additional information beyond the 
CalEnviroScreen metric itself. For example, pesticides were uncorrelated or negatively 
associated with most environmental hazard indicators, and poorly correlated to 
CalEnviroScreen. Most of the hazards measured were associated with urbanization and 
industrial activities, whereas the pesticide measure largely derived from agricultural application 
[36]. Given the weight of evidence linking pesticide exposure to a variety of developmental and 
health effects [151–153], it may be appropriate to examine the pesticide variable or other 
measures of agricultural exposure hazard alongside the CalEnviroScreen score. The negative 
association of ozone air pollution with groundwater sites and water body impairments is not 
readily explained but again suggests that residents of different regions encounter different 
exposure hazards. 

When multivariate methods were employed to separate out chemical pollutant exposure hazard 
versus socioeconomic variation within California, there was a stronger association of disease 
burden with socioeconomic status than with environmental pollution exposure. This supports 
the paradigm that underlying population vulnerability, resulting from socioeconomic 
conditions, must be considered in health risk assessment [28,29,133]. This finding is implicitly 
acknowledged in that epidemiological investigations routinely attempt to correct for effect 
measure modifiers. Further study using more robust methods, including multilevel models and 
longitudinal analysis, may be warranted to more explicitly evaluate whether the stronger 
influence of socioeconomic status (compared to pollutant hazards) on disease burden is specific 
to the current case study or reflects a generalizable pattern. 

The multivariate and exploratory approach of our study reflects objectives quite different from 
a traditional epidemiological comparison of two variables while accounting for confounding 
factors. We identified prevailing gradients of exposure and vulnerability, and observed how 
these patterns were associated with disease burden. We observed relatively strong associations 
among all of the socioeconomic indicators (education, income, unemployment, linguistic 
isolation), each of which may exhibit a separate impact on vulnerability [see also 134]. This 
could explain the stronger association between socioeconomic indicators and disease burden, in 
contrast to environmental hazards, which were less correlated, such that the gradients in 
multivariate exposures were weaker. In other words, our data suggest a hypothesis that 
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population disease burden will be more strongly impacted when multiple stressors occur in 
combination. As such, examination of the multivariate association among stressors should 
provide added and complementary information to bivariate analyses of exposure versus 
outcome. The generalizability of our finding that socioeconomic factors better explain disease 
burden than environmental hazards merits investigation, as it would have implications for 
intervention priorities, as well as for conceptualization of the primary structuring factors that 
influence disease. 

Like all ecological-scale studies of publicly available spatial exposure and health data, this 
study has limitations. This study does not establish causality and we cannot extrapolate 
inferences to the individual level [154]. For their similar study of the San Joaquin Valley 
region, Huang and London [135] thoroughly discuss limitations of studies using publicly-
available spatial exposure data. Preexisting data are employed, with some variation in the time 
range covered [36]. Data required geographic alignment, including assembly of different 
parameters provided at multiple and varying spatial scales. In particular, CalEnviroScreen data 
were available at the census-tract level, the disease burden indicator at the USPS zip code level, 
and spatial polygon arrangement at zip code tabulation area-level. Inaccuracies are inevitably 
introduced when aligning these different spatial scales [155]. In line with the protection of 
individual rights to anonymity in publicly accessible outcome data, individual-level 
demographic information was masked, and residential addresses were limited to USPS zip 
code. 

These factors likely in part explain the limited strength of associations observed in this study. 
However, studies at similar spatial scales and resolutions have established relationships of 
environmental hazards and disease risk with race and socioeconomic status, with implications 
for resource allocation and policy [35,136,156]. Given that, a novel aspect of our study is that 
we explicitly evaluate and describe the multiple patterns of association that occur across a 
range of health hazards at the ecological scale. We observed that socioeconomic indicators 
were associated with each other and contributed to explaining disease burden, and that an 
environmental gradient of urban and industrial pollution also contributed to explaining disease 
burden. In contrast, ground-level ozone and drinking water threats were negatively associated 
with impaired water bodies and groundwater threats, and offered little predictive value for 
disease burden. Some of these findings corroborate findings from an analysis for 
CalEnviroScreen development using 30 zip codes in California [134]. Prior studies have also 
shown geographic indicators of socioeconomic status to be associated with hospitalization rates 
[38]. The existence of separate gradients of environmental and socioeconomic disparity, and 
the varying ability to predict disease burden highlight the need for continued emphasis on 
integrated approaches in vulnerability assessment. 
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Conclusions 

The work in this thesis intersects along the common approach of building novel exposure 
models to address current and emerging threats to human health. I conclude my dissertation by 
comparing findings across the three chapters to examine the common attributes across the three 
modeling activities. After providing a summary of the main findings, I discuss potential future 
research directions for each chapter topic. 

The models in this study share a set of qualitative attributes that are characteristic of all models. 
These attributes include the conceptual model, scale of analysis, type of computational model 
(statistical versus mechanistic), underlying mathematical framework, and the inclusion and 
exclusion of relevant processes (Table 1). In each study, the underlying conceptual model is 
geared towards answering a highly specific question. For example, the conceptual model 
underlying Chapter 1 depicts selection for resistance as a result of the chemical-dependent 
change in net growth difference between two competing bacterial strains. This answers the 
question of how the modeled processes (e.g., antibiotic dose–response, differences in intrinsic 
growth rate) affect concentration-dependent difference in growth rates. As another example of 
the conceptual model targeted to the question, Chapter 2 depicts a simplified scenario of 
microbe transmission to address the importance of differences in elimination rate for predicting 
transmission. Table 1 also illustrates how each model includes a wide range of processes but 
excludes an even wider range (Table 1). Whether this invalidates the model amounts to whether 
appropriate choices were made in what to include versus exclude. 

Table 1. Summary and comparison of the models developed in this thesis. 

Attribute  Chapter 1  Chapter 2  Chapter 3 

Question and 
conceptual 
model 

How do antibiotic or metal 
concentrations and strain 
attributes affect the net growth 
difference between two 
competing bacterial strains? 

How does microbial pathogen 
elimination rate on skin, textiles, and 
nonporous surfaces affect pathogen 
transmission among patients 
residing in separate hospital rooms? 

How well do the multivariate 
patterns in environmental hazards 
and socioeconomic stressors predict 
burden of disease? 

Scale  Microbes  Individual humans  Human populations in geographic 
regions (ecological study) 

Model type  Mechanistic  Mechanistic  Statistical 

Mathematical 
framework 

Analytical equations  Linear algebra matrix  Principal component analysis; 
spatial autoregression 

Processes 
included 

Competition of bacteria; 
antibiotic resistance; chemical 
versus growth dose–response; 
minimum selective concentration 
(MSC) 

Release of microbes from mucous 
membranes onto air and skin; 
dermal contact; environmental 
elimination 

Exposure hazard due to air 
pollution, water pollution, and 
contaminated sites; population 
vulnerability due to age, education, 
linguistic isolation, and poverty 

Processes 
excluded 
(partial listing) 

Horizontal gene transfer by 
plasmids, which can be antibiotic 
concentration independent; 
community dynamics with more 
than two strains or species; 
spatial heterogeneity, including 
biofilms; short‐term growth 
dynamics 

Infection, including the infectious 
dose–response, vulnerability of host, 
and effect of vehicle of transmission 
and exposure route; pathways other 
than dermal transport (e.g., droplet 
spray, vomit, fecal‐oral) 

Variation between individuals, such 
as stress and psychological well‐
being or change in residence 
(ecological study); residential built 
environment; diet and food 
environment; chronic diseases that 
don't require hospital visits 
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Each model was combined with external data and subjected to a sensitivity analysis (Table 2). 
The sensitivity analyses method varied among studies, and in the case of Chapter 3, the term 
“sensitivity analysis” simply refers to calculating statistical influence of the different exposures 
on disease burden. A combination of model limitations and uncertainties was identified, 
potentially warranting further investigation. For example, in Chapter 3, the CalEnviroScreen 
calculation of hazard was identified to be highly insensitive to agricultural pesticide use, which 
is arguably the only agricultural exposure hazard considered (Table 2). This raises a potential 
concern regarding insufficient consideration of the exposed agricultural worker population in 
California [151–153]. Finally, each model evaluation supported some existing or novel 
hypotheses (Table 2). 

Table 2. Summary of the model evaluation activities and findings in this thesis. 

Evaluation 
activity or 
finding 

Chapter 1  Chapter 2  Chapter 3 

Data used  Intrinsic growth rate, difference in 
strain growth rates, selection 
coefficient representing fitness 
cost for resistant strains, 
minimum inhibitory 
concentrations (MIC) of sensitive 
and resistant strains 

Contact rate, contact area, 
transfer efficiency, coughing 
and breathing rates; disease 
specific elimination rates 

12 environmental exposure 
measures, 5 socioeconomic status 
measures, average age, geospatial 
location of census tracts and zip 
code tabulation areas, and 
hospitalization frequency for 14 
diseases 

Forecast 
simulations 
performed 

Predicted the MSC/MIC ratio for 
published laboratory growth data 

Compared number of 
organisms transmitted 
including versus excluding 
surfaces for six microbial 
pathogens 

None: forecasting not appropriate 
for this statistical analysis of 
ecological data 

Sensitivity 
analysis method 

Vary parameter individually, 
holding other parameters 
constant. Monte Carlo Simulation 
of selected parameters. 

Compare how variability 
within a species versus across 
species influenced 
transmission 

Compare effect size of 
standardized predictor variables 
on disease burden 

Sensitivity 
analysis findings 

MSC/MIC ratio most sensitive to 
selection coefficient and shape of 
the sensitive strain’s chemical 
versus growth rate dose–response 
function 

Range of predicted 
transmission for one species 
(Acinetobacter baumannii) 
overlapped with four other 
species 

Socioeconomic stressors more 
important than environmental 
hazards for disease burden 

Model 
limitations 
identified  

A curve fit to growth rate 
differences performed poorly for 
two aminoglycoside antibiotics 

The model evaluation did not 
identify any model limitations 

CalEnviroScreen model was 
insensitive to agricultural pesticide 
use 

Uncertainties 
identified for 
further 
investigation 

Shape of antibiotic versus growth 
dose–response curve at 
subinhibitory concentrations  

Elimination rate differences 
between nonporous surfaces, 
textiles, and skin could 
influence intervention 
strategies 

None identified 

Hypotheses 
generated or 
supported 

For many human‐impacted 
settings, there is a hazard of 
selection for resistant strains. For 
aminoglycosides, adaptive 
resistance may bring MSC close to 
MIC. 

Environmental surfaces will be 
important for transfer of 
many pathogenic microbe 
species. Transfer via health‐
care workers between patient 
rooms is a hazard warranting 
intervention. 

Socioeconomic stressors may be a 
greater driver of disease burden 
than environmental exposures. 
Multivariate gradients of 
combined stressors may explain 
burden of disease differently from 
bivariate comparisons. 
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Reviewing the studies individually, I observed that the model of the minimum selective 
concentration (Chapter 1) provided a simplified depiction of the conditions under which 
antibiotic resistance will develop. Model performance was variable in its ability to fit growth 
rate difference data, suggesting that additional formulations could be considered. Refinement 
and testing of this mathematical model could contribute to the goal of forecasting high-risk 
conditions for dissemination of antibiotic resistance, and ultimately setting priorities among 
natural, veterinary, and medical sources of resistance. In the future, collaborations among 
modelers, environmental chemists, and microbiologists may be fruitful to address several 
questions: 1. How robust is the model to different combinations of species, antibiotic, and 
environmental condition? 2. How readily, and at what concentrations, does bacterial resistance 
spread across multiple species within a bacterial community? and 3. How well do mathematical 
predictions such as this model correspond to ecosystem observations on antibiotic 
concentrations versus resistance? There is also a need to broaden the processes considered in 
mechanistic models of antibiotic resistance development. In particular, horizontal gene transfer 
(HGT) is an important process, and the rate and importance of HGT versus competition should 
be considered. 

The model of pathogenic microbe transmission in indoor settings (Chapter 2) supports the 
paradigm that among most hospital-acquired infections, there is the potential for environmental 
transmission of live pathogens among patients residing in separate hospital rooms. In five of six 
taxa (Streptococcus pyogenes, Bordetella pertussis, Acinetobacter baumannii, MRSA, and 
SARS), the model predicted a high rate of transmission among patients in separate rooms due 
to a health-care worker in contact with surfaces. Further, the combined uncertainty and 
variability in published elimination rates for Acinetobacter baumannii was sufficient to cause 
the predicted colony count to overlap with four of the five remaining pathogens. Only influenza 
A exhibited low transfer via surfaces and dermal pathways, due to its consistently low 
environmental persistence. These results support continued vigilance in surface 
decontamination protocols, as well as barrier controls and hand washing. A collaboration 
among exposure scientists, epidemiologists and clinicians could be fruitful to test model 
predictions regarding intervention effectiveness. Nevertheless, the model-data linkage warrants 
expansion, including available pathogen-specific data on rates of transfer among skin and 
surfaces, airborne persistence (e.g., settling rates), and especially dose–response for infection 
(e.g., infectious inoculum). Predictions of the model should also be compared to existing 
literature by examining long-term health care system data sets and results of controlled 
interventions. Another area warranting development is expansion of the pathogen classification 
framework to include pathogens with differing transmission pathways (e.g., fecal-oral) and 
ultimately to other pathogen types and scenarios, such as foodborne and waterborne 
transmission. 

Chapter 3 makes use of statistical models to compare the CalEnviroScreen hazard assessment 
dataset to public records of hospital diagnosis frequency. Overall disease burden was more 
strongly associated with socioeconomic indicators of hardship than with indicators of 
environmental pollutant exposure. The multivariate and geostatistical modeling approaches in 
Chapter 3 are useful to integrate different kinds of exposures within the Eco-Exposome [2,3]. 
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This approach, employing publicly available data, demonstrates the opportunities for geospatial 
hazard assessment in the context of environmental justice. In the future, this approach merits 
applications in different regions and may be useful for comparing the spatial distribution of 
existing versus forecasted exposure hazards. An example would be vulnerability assessment of 
areas with existing and planned oil and gas development, which is an established concern in 
California [157] and globally. Finally, given the limitations of the ecological approach in 
Chapter 3, an obvious extension is to integrate multilevel exposure data, combining diverse 
exposures at both ecological and individual scales. 
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Appendix 1. 

Appendix to Chapter 1. Modeling the emergence of antibiotic resistance in the environment: 
An analytical solution for the minimum selection concentration 

 

Selection coefficient 

Relative fitness between strains is a key determining factor governing bacterial competition 
[158]. Relative fitness is often conceptualized as a fitness cost [49,68,159], indicating the 
intrinsic fitness difference between bacteria strains (e.g., sensitive vs. resistant), as a result of a 
specific antibiotic resistance mechanism. This fitness cost is operationally defined in the 
laboratory as the selection coefficient. In the literature, selection coefficient is typically 
abbreviated as s [44,57,60,69,78,159]. However, to differentiate the terminology from 
susceptible strains (s), we use σ and sc to refer to selection coefficient as a rate [h−1] or 
dimensionless term respectively. The selection coefficient is a measurement of the impact of a 
particular heritable trait on intrinsic growth rate, and consequent rate of selection for or against 
that trait in competition experiments. In evaluating resistance mechanisms, selection can favor 
sensitive strains (sensitive more fit than resistant), resistant strains (resistant more fit than 
sensitive), or exhibit no difference between strains. We focus on the common case where 
selection favors sensitive strains. 

Definitions and units must be considered when analyzing relative fitness [60], such as how we 
define and use the selection coefficient. In particular, the intrinsic net growth rate in the 
absence of antibiotic (Nint) of sensitive (s) and resistant (r) bacteria may be represented as: 

Nint,s = Rint − Dint (A1) 

Nint,r = Nint,s (1 − sc) = (Rint − Dint) (1 − sc) (A2) 

where Rint is intrinsic growth rate, Dint is loss due to mortality or, in continuous cultures, 
dilution. Here, sc is a unitless term describing the growth rate difference due to the resistance 
mechanism. 

However, selection experiments calculate relative fitness based on differences in the ratio of 
measured biomass over time (Bt) between strains[57,158]: 

σ = [ln(Br,t/Bs,t) − ln(Br,t=0/Bs,t=0)]/t  (A3) 

Here, the subscript t = 0 indicates biomass measured at the beginning of the experiment. 
Although σ is also referred to as the selection coefficient, the following calculations 
demonstrate that σ is in units of t−1 (e.g., h−1): 

Br,t ൌ 	Br,tൌ0 ൈ ൫eNint,rt൯; Bs,t ൌ 	Bs,tൌ0 ൈ ሺeNint,stሻ (A4) 

σ ൌ
lnቆ

Br,tൌ0	ൈ	e
Nint,rt

ሺBs,tൌ0	ൈ	e
Nint,st

ቇ‐ ln൬
Br,tൌ0
Bs,tൌ0

൰

t
ൌ 	

lnቆ	e
Nint,rt

	eNint,st
ቇ

t
ൌ

lnቀ	eNint,rtቁିlnቀ	eNint,stቁ
t

ൌ 	Nint,r‐Nint,s (A5) 

We see that σ is therefore equal to the difference in net growth rate between the two strains and 
has units of [h−1] as mentioned above. This is the experimental selection coefficient (σ) 
determined by Gullberg et al. and elsewhere [57,61,69,78]. 
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Below, our MSC/MIC ratio calculations employ a dimensionless selection coefficient, sc. This 
is obtained by dividing the inverse of the selection coefficient (−σ) by the net growth rate of the 

sensitive strain (Eq. 9 in the text): sc ൌ െ σ

Nint,s
ൌ

Nint,sିNint,r
Nint,s

ൌ1 െ
Nint,r
Nint,s

 .  

Converting MIC to EC50 

To convert the MIC value of a strain to its corresponding EC50 value, we substitute a = MIC 

into the equation for death due to antibiotic (Eq. 3) to obtain DabሺMICሻ	ൌ	kmax
MICκ

MICκ൅ሺEC50ሻκ
. We 

will demonstrate this for the sensitive strain. We first recognize that: 

Dab,sሺMICሻ	ൌ	kmax,s
ሺெூ஼ೞሻκ

ሺெூ஼ೞሻκ൅ሺEC50,sሻκ
ൌ 	ሺRint െ Dint െ Nminሻ

ሺெூ஼ೞሻκ

ሺெூ஼ೞሻκ൅ሺEC50,sሻκ
ൌ Rint െ Dint (A6) 

based on kmax = Rint − Dint − Nmin (Eq. 4), and the observation of zero net growth rate at the 
MIC: i.e., Dab,s(MICs) = Nint = Rint − Dint. Algebraically solving for the EC50,s term, we find that: 

EC50,s	ൌ	MICs ቀ
ିNmin

RintିDint	
ቁ
1
κ (A7) 

Thus, for a given set of conditions (κ, Rint, Dint, Nmin,), EC50,s is simply a constant multiple of 
the sensitive strain MIC. For the resistant strain, the EC50,r is obtained by the same solution, 
substituting MICr and replacing Rint by (Rint + σ) per Eq. 2, such that: 

EC50,r	ൌ	MICr ቀ
ିNmin

Rint	ା	஢	ି	Dint	
ቁ
1
κ  (A8) 

These relationships can be employed to convert the Hill equation formulation of 

Dabሺaሻൌkmax
aκ

aκ൅ሺEC50ሻκ
 (Eq. 3) to an MIC based formulation, by substituting the MIC equation 

for EC50. Recalling the net growth rates without antibiotic (i.e., Nint,s = Rint − Dint): 

Dab,sሺaሻ	ൌ	ሺNint,s െ Nminሻ
aκ

aκ൅
ሺషNminሻ
Nint,s

ሺMICsሻκ
 and Dab,rሺaሻ	ൌ	ሺNint,r െ Nminሻ

aκ

aκ൅
ሺషNminሻ
Nint,r

ሺMICrሻκ
 . 

These are Eqs. 5 and 6, respectively in the text. 

Derivation of MSC/MICs ratio 

To obtain MSC as a function of MICs, we begin by noting that at the MSC, the difference in net 
growth rate is equal to zero as defined in Eq. 8: 

∆Nሺa	ൌ	MSCሻ	ൌ	Nint,r െ 	Nint,s	൅	Dab,sሺa	ൌ	MSCሻ െ Dab,rሺa	ൌ	MSCሻ	ൌ	0  

Thus: 

∆NሺMSCሻൌ	Nint,r െ 	Nint,s	൅ሺNint,s െ Nminሻ
ሺMSCሻκ

ሺMSCሻκ൅
ሺషNminሻ
Nint,s

ሺMICsሻκ
െ ሺNint,r െ Nminሻ

ሺMSCሻκ

ሺMSCሻκ൅
ሺషNminሻ
Nint,r

ሺMICrሻκ
ൌ 0 (A9) 

To obtain the ratio MSC/MICs, we divide numerator and denominator by MICs
: 

∆NሺMSCሻൌ	Nint,r െ 	Nint,s	൅ሺNint,s െ Nminሻ
ሺMSC MICs⁄ ሻκ

ሺMSC MICs⁄ ሻκ൅
൫షNmin൯
Nint,s

െ ሺNint,r െ Nminሻ
ሺMSC MICs⁄ ሻκ

ሺMSC MICs⁄ ሻκ൅
൫షNmin൯
Nint,s

ሺMICr MICs⁄ ሻκ
 (A10) 

ൌ 0 
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From Eq. A10, the algebraic solution was obtained for (MSC/MICs) employing the Equations 
and Systems Solver (“solve” function) in MATLAB (Symbolic Math Toolbox, R2013a, 
MathWorks, Natick, MA, USA). The general solution satisfying this equation is: 

ሺMSC MICs⁄ ሻκൌ
NminሺMICr MICs⁄ ሻκ൫Nint,rିNint,s൯

ሺMICr MICs⁄ ሻκNint,s൫Nint,rିNmin൯൅Nint,r൫NminିNint,s൯
 (A11) 

ሺMSC MICs⁄ ሻκൌ
൫ିNint,r	൅	Nint,s൯

Nint,s൬1൅
Nint,r
షNmin

൰൅
Nint,r൫NminషNint,s൯
ሺMICr MICs⁄ ሻκሺషNminሻ

ൌ
൫Nint,s‐Nint,r൯ Nint,sൗ

൬1൅
Nint,r
‐Nmin

൰‐
Nint,r൫Nint,s‐Nmin൯

Nint,sሺMICr MICs⁄ ሻκሺ‐Nminሻ

 (A12) 

In order to make the selection coefficient explicit, Eq. A11 can be transformed employing the 
dimensionless selection coefficient (sc) by introducing Eq. 9; i.e., Nint,s − Nint,r = (sc Nint,s), and 
Nint,r = Nint,s (1 − sc), obtaining: 

ሺMSC MICs⁄ ሻκൌ
ିNminNint,sሺMICr MICs⁄ ሻκsc

ሺMICr MICs⁄ ሻκNint,s൫Nint,rିNmin൯൅Nint,sሺଵିscሻ൫NminିNint,s൯
 (A13) 

Dividing the numerator and denominator by െN୫୧୬N୧୬୲,ୱሺMIC୰ MICୱ⁄ ሻச obtains: 
ሺMSC MICs⁄ ሻκൌ sc

൫Nint,r‐Nmin൯

‐Nmin
൅
ሺ1‐scሻ൫Nmin‐Nint,s൯

‐NminሺMICr MICs⁄ ሻκ

 (A14) 

and elevating both sides of the equation to power −1 and rearranging: 

MSC MICs⁄ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

sc

1 െ	
Nint,r

Nmin
 െ  

(1 െ sc) ൬1 െ
Nint,s

Nmin
൰

ቀMICr
MICs

ቁ
κ

ی

ۋ
ۋ
ۋ
ۋ
ۊ

1
κ

 

 (A15) 

Finally, this is depicted with Nmin as a negative term since the minimal growth rate is often 
negative, giving us Eqn. 10 in the text: 

MSC MICs⁄ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

sc

1 ൅	
Nint,r

െNmin
 െ  

(1 െ sc) ൬1 ൅
Nint,s

െNmin
൰

ቀMICr
MICs

ቁ
κ

ی

ۋ
ۋ
ۋ
ۋ
ۊ

1
κ

 

  

To represent this in terms of the experimentally derived selection parameters (σ) in Gullberg et 
al. [57,61], we simply note that sc = −σ / Nint,s (Eq. 9): 
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 (A16) 

Effect of assuming same  and Nmin for sensitive versus resistant strains 

To arrive at an analytical solution for MSC/MICs (Eq. 10), it was necessary to assume identical 
Nmin and κ for sensitive versus resistant strains. A simple Monte Carlo Simulation-based 
sensitivity analysis was employed to evaluate the importance of sensitive versus resistant strain 
Nmin and κ, and consequently which growth parameter in which strain is most important, for 
predicting MSC. In the simulation, the MSC was directly calculated by solving for ∆N = 0 in 
Eq. 8, while relaxing the assumptions of identical Nmin and κ in Eqs. 5 and 6. Separate 
parameters were established for sensitive (Nmin,s, κs) versus resistant strains (Nmin,r, κr), resulting 
in the following formulations of antibiotic dependent growth reduction to be substituted into 
Eq. 8: 

Dab,sሺaሻ	ൌ	ሺNint,s െ Nmin,sሻ
ሺaሻκs

ሺaሻκs൅
ሺ‐Nmin,sሻ

Nint,s
ሺMICsሻκs

  (A17) 

Dab,rሺaሻ	ൌ	ሺNint,r െ Nmin,rሻ
ሺaሻκr

ሺaሻκr൅
ሺ‐Nmin,rሻ

Nint,r
ሺMICrሻκr

  (A18) 

Two scenarios were simulated, each including 20,000 parameter sets. In both scenarios, MICs 
was set at 20. In order to examine the influence of varying growth rate parameters in the 
presence of either small or large increases in resistance, MICr was set at 30 and 200 in the first 
and second scenarios, respectively. Nmin,s, Nmin,r, κs, and κr were separately selected from 
uniform distributions with fixed ranges, listed in Table A1. Intrinsic growth rates were fixed at 
Nint,s = 2, and Nint,r = 1.8. Sensitivity was estimated by comparing spearman rank correlation 
coefficients () among the four parameters. 

In both scenarios, the predicted MSC was most sensitive to κs, and was not sensitive to either 
Nmin value (Table A1). In Scenario 1 (MICs close to MICr), the MSC was moderately sensitive 
to κr, but in Scenario 2, where MICr was 10 times MICs, the MSC was only sensitive to κs. 
These results indicate that κs is the most important parameter to estimate empirically in order to 
predict MSC, and that κr only contributes to understanding MSC when MICr is quite close to 
MICs. As a result, the assumptions that κ = κs = κr and Nmin = Nmin,s = Nmin,r will not impede 
prediction of MSC, provided that effort is made to determine κs, empirically. 
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Table A1. Monte  Carlo  Simulation  evaluate  sensitivity  of MSC  to  differing  values  of  κ  and Nmin  for 
susceptible (s) versus resistant (r) strains. 

Parameter  Range  Spearman  
  (min, max)  Scenario 1 

MICs = 20, MICr = 30 
Scenario 2 
MICs = 20, MICr = 200 

κs  0.5, 10  +0.83  +0.97 
κr  0.5, 10  −0.39  −0.09 
Nmin,s  −10, −1  −0.09  −0.11 
Nmin,r  −10, −1  +0.03  +0.003 
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Table A2. Complete results from all model fitting. Fitted: which parameters were varied to allow fitting to observed data. Averaged: whether 
data were averaged by antibiotic and strain. n: sample size. Initial κ: starting κ value in nonlinear estimation. CV κ range: range of κ results in 
leave one out cross validation. Q2 = cross validated R2 = 1 − (PRESS/TSS). 

Scenario:        Results:  

Compound  Taxa  Fitted   Averaged Strains n Initial κ κ CV κ

range 

Nmin Q2 R2 PRESS/

SSY 

PRESS/

SSE 

Source

As  E. coli  κ  No 2 20 1 0.7 0.7 −2  0.81 0.84 0.30 1.14 [61]

As  E. coli  κ  Yes 2 5 1 0.7 0.7 − 0.8 −2  0.80 0.92 0.29 2.44 [61]

As  E. coli  κ, Nmin  No 2 20 1 1.2 1.1 − 1.2 −0.2 0.88 0.91 0.12 1.30 [61]

As  E. coli  κ, Nmin  Yes 2 5 1 1.2 1.1 − 1.2 −0.2 0.99 1.00 0.01 24.1 [61]

CIP  E. coli  κ  No 5 144 2 2.0 2.0 −2  0.77 0.78 0.31 1.03 [57]

CIP  E. coli  κ  Yes 5 24 2 2.0 1.9 − 2.0 −2  0.78 0.81 0.29 1.20 [57]

CIP b  E. coli  κ  Yes 4 18 b 2 2.1 2.1 −2  0.97 0.97 0.04 1.23 [57]

CIP  E. coli  κ, Nmin  No 5 144 2 1.6 1.6 − 1.7 −5.2e+8 a 0.78 0.79 0.32 1.03 [57]

CIP  E. coli  κ, Nmin  Yes 5 24 2 1.6 1.6 − 1.9 −3.8e+9 a 0.77 0.83 0.32 1.30 [57]

CIP b  E. coli  κ, Nmin  Yes 4 18 b 2 2.4 2.3 − 2.4 −0.8 0.98 0.98 0.02 1.40 [57]

Cu  E. coli  κ  No 2 8 2 1.9 1.8 − 2.1 −2  0.43 0.73 0.80 2.13 [61]

Cu  E. coli  κ  Yes 2 4 2 1.9 1.8 − 3.1 −2  c 0.88 c c [61]

Cu  E. coli  κ, Nmin  No 2 8 2 5.7 3.5 − 6.3 −0.0003 0.40 0.82 0.68 3.36 [61]

Cu  E. coli  κ, Nmin  Yes 2 4 2 5.7 2.9 − 5.7 −0.0003 c 0.98 c c [61]

ERY  E. coli  κ  No 3 64 2 3.5 3.4 − 3.5 −2  0.93 0.94 0.07 1.06 [61]

ERY  E. coli  κ  Yes 3 11 2 3.4 3.3 − 3.5 −2  0.92 0.95 0.09 1.64 [61]

ERY  E. coli  κ, Nmin  No 3 64 2 2.6 2.6 −4.0e+8 a 0.70 0.73 0.18 1.11 [61]

ERY  E. coli  κ, Nmin  Yes 3 11 2 2.7 2.6 −3.4e+8 a 0.75 0.87 0.17 1.88 [61]

KAN  E. coli  κ  No 2 72 2 10.5 10.4 − 10.6 −2  −0.48 −0.47 0.43 1.01 [61]
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KAN  E. coli  κ  Yes 2 5 2 10.5 7.1 − 10.8 −2  −19.5 −0.76 3.67 11.6 [61]

KAN  E. coli  κ, Nmin  No 2 72 2 6.0 6.0 − 6.1 −1.2e+11 a −7.31 −6.76 0.86 1.07 [61]

KAN  E. coli  κ, Nmin  Yes 2 5 2 6.0 5.7 − 6.7 −1.5e+11 a −16.2 −11.4 1.06 1.39 [61]

STR  Salmonella  κ  No 2 87 2 5.0 5.0 −2  0.66 0.67 0.25 1.02 [57]

STR  Salmonella  κ  Yes 2 5 2 5.0 4.1 − 5.2 −2  −1.05 0.70 1.47 6.87 [57]

STR  Salmonella  κ, Nmin  No 2 87 2 3.4 3.4 −8.1e+11 a −0.22 −0.16 0.30 1.05 [57]

STR  Salmonella  κ, Nmin  Yes 2 5 2 3.4 2.9 −1.0e+12 a −2.35 −0.26 0.77 2.66 [57]

TET  E. coli  κ  No 3 60 2 1.6 1.6 −2  0.89 0.89 0.09 1.03 [61]

TET  E. coli  κ  Yes 3 10 2 1.6 1.6 −2  0.94 0.95 0.05 1.19 [61]

TET  E. coli  κ, Nmin  No 3 60 2 2.1 2.1 − 2.2 −0.4 0.90 0.91 0.07 1.08 [61]

TET  E. coli  κ, Nmin  Yes 3 10 2 2.0 1.8 − 2.2 −0.5 0.93 0.96 0.05 1.70 [61]

TET  Salmonella  κ  No 2 154 1 1.2 1.2 −2  0.93 0.93 0.04 1.02 [57]

TET  Salmonella  κ  Yes 2 5 1 1.2 1.2 −2  0.97 0.99 0.01 2.14 [57]

TET  Salmonella  κ, Nmin  No 2 154 1 1.2 1.2 −1.8 0.93 0.93 0.04 1.04 [57]

TET  Salmonella  κ, Nmin  Yes 2 5 1 1.2 1.0 − 1.5 −2.1 0.91 0.99 0.04 7.70 [57]

TMP  E. coli  κ  No 2 118 2 2.5 2.5 −2  0.87 0.88 0.07 1.03 [61]

TMP  E. coli  κ  Yes 2 5 2 2.5 2.5 −2  0.99 0.99 0.01 1.19 [61]

TMP  E. coli  κ, Nmin  No 2 118 2 2.2 2.1 − 2.2 −10.9 0.87 0.88 0.07 1.06 [61]

TMP  E. coli  κ, Nmin  Yes 2 5 2 2.2 2.0 − 2.5 −10.3 0.96 0.99 0.02 4.17 [61]

a. Model fitting insensitive to Nmin. b. Simulation with gyrA1(S83L) removed. c. Insufficient n for cross validation statistics (n = 4). 
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Table A3. Comparison of MSC/MICs ratios experimentally observed  [57,61] versus predicted by  fitted model  (Eq. 10)  for different resistance 
mechanisms and compounds. Fitted: which parameters (κ, Nmin) were varied to allow fitting to observed data. Data are plotted in Figure 4. 

Compound  Taxa  Resistance gene  MSC 

observed

(ng ml−1) 

MICs 

(ng ml−1)

Ref.  MSC/MICs 

observed 

MSC/MICs 

fitted κ 

MSC/MICs 

fitted κ, Nmin 

Arsenite  E. coli  pUUH239.2  90 a  12,500 a  [61]  0.0072  0.0064  0.0077 

Trimethoprim  E. coli  pUUH239.2  33  190  [61]  0.174  0.180  0.178 

Tetracycline  E. coli  pUUH239.2  45  750  [61]  0.060  0.063  0.070 

Tetracycline  E. coli  tetRA  30  750  [61]  0.040  0.014  0.021 

Erythromycin  E. coli  pUUH239.2  3000  12,000  [61]  0.250  0.266  0.229 

Erythromycin  E. coli  mph  < 200  12,000  [61]  < 0.017  0.074  0.044 

Kanamycin  E. coli  pUUH239.2  470  750  [61]  0.627  0.656  0.532 

Cu(II) sulfate  E. coli  pUUH239.2  90  1,300  [61]  0.069  0.035  0.079 

Ciprofloxacin  E. coli  GyrA1(S83L)  b  23  [57]  0.0043  0.024  0.017 

Ciprofloxacin  E. coli  GyrA2(D87N)  b  23  [57]  0.10  0.088  0.080 

Ciprofloxacin  E. coli  ∆marR  b  23  [57]  0.10  0.097  0.094 

Ciprofloxacin  E. coli  ∆acrR  b  23  [57]  0.10  0.091  0.087 

Streptomycin  Salmonella  rpsL105(K42R)   b  4,000  [57]  0.25  0.383  0.290 

Tetracycline  Salmonella  cobA367::Tn10dtet b  1,500  [57]  0.01  0.0077  0.0077 

a. Units are μM. b. Not reported in study. 
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Table A4. Laboratory growth parameters employed to illustrate ranges in MSC/MICs ratios. For all simulations, MICr was set at 10*MICs. 

 

Compound  κ  MICs [μg ml−1] Nint [h−1] Nmin [h−1]  Reference 

Ciprofloxacin #1 1.42 0.7  1.59  −15.7  Ankomah et al. [76]

Ampicillin #1  4.53 3.47  1.57  −1.16  Ankomah et al. [76]

Tetracycline #1  1.46 0.92  1.30  −8.32  Ankomah et al. [76]

Tobramycin  2.67 1.2  1.08  −16.6  Ankomah et al. [76]

Ciprofloxacin #2 1.1  0.03  0.88  −6.5  Regoes et al. [65] 

Ampicillin #2  0.75 8  0.75  −4.0  Regoes et al. [65] 

Rifampin  2.5  8  0.70  −4.3  Regoes et al. [65] 

Streptomycin  1.9  32  0.89  −8.8  Regoes et al. [65] 

Tetracycline #2  0.61 1  0.81  −8.1  Regoes et al. [65] 
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Figure A1. Calculated MSC/MIC ratio as a function of MICr/MICs for different κ and sc values. Dotted 
lines are  from the  full  form of the analytical solution  (Eq. 10) and solid horizontal  lines are  from the 
simplified  solution,  which  does  not  include MICr  or MICs  (Eq.  11). MSC/MIC  is most  sensitive  to 
MICr/MICs when MICr < 2 x MICs and the solutions converge for high MICr. Other parameter values: Nmin 

= −5; Nint,s = 2; MICs = 25. Note log scale y‐axis. 
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Figure  A2.  Model  fit  to  average  tetracycline  results,  employing  Salmonella  enterica  serovar 
Typhimurium [data from 57], varying κ only (Nmin = −2). 

 

 

Figure A3. Model fit to average kanamycin results  in E. coli [data from 61], varying κ only (Nmin = −2). 
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Appendix 2. 

Appendix to Chapter 2. Transfer rate model for environmental surface contribution to hospital-
associated infection transmission. 

Model description and equations 

Table A5. Constants for dermal contact and for elimination. 

Constant  Value 
[units] 

Definition  Data 
Source 

Contact 
areas  

[cm2]     

Af  1  Area of finger coming in contact with mucous 
membrane 

[45] 

An  4  Mucous membrane area  [45] 

Apt  2000  Exposed hand and skin of patient  [45] 

Ahcw  2000  Exposed hand and skin of HCW  [45] 

Ap  9000  Porous surface area surrounding patient (bedding)  [18] 

Anp  1000  Nonporous surface area surrounding patient 
(bedding) 

[18] 

Ac  150  Hand contact area  [45] 

Ap.hcw  2000  Textiles or surfaces of HCW  [45] 

Transfer 
efficiency 

[unitless]     

ρ.nos  0.2  From fingertip to mucous membrane  [45] 

ρ.por  0.1  From porous surface to skin  [45,103] 

ρ.sur  0.4  From nonporous surface to skin  [45,103] 

ρ.sk  0.35  From hand to skin  [45] 

Contact 
(touching) rate  

[h−1]     

τ.nos  1.5  Touching nose  [45] a 

τ.sk.por  8  Patient touching porous surfaces (textiles)  [45] 

τ.sk.sur  8  Patient touching nonporous surfaces  [45] 

τ.sur.pt  8  Patient touching textiles and surfaces  [45] 

τ.sk.hcw  24  Health‐care worker touching patient skin  [45] 

τ.por.hcw  24  Health‐care worker touching porous surfaces (textiles)  [45] 

τ.sur.hcw  24  Health‐care worker touching nonporous surfaces  [45] 

Elimination 
rate 

[h−1]     

μ.sk  Table 2  Skin  Table 2 

μ.por  Table 2  Porous surfaces  Table 2 

μ.sur  Table 2  Nonporous surfaces  Table 2 

μ.air  Table 2  All surfaces  Table 2 

exhaust.air  6  Loss from room air due to air exchange  [19] 
 

a. Nicas and Jones [18] report 5 h−1 
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Table A6. Constants for respiratory transmission and other constants. 

Constant  Value  Units  Definition  Data 
Source 

visit.rate  0.111    Portion of time HCW spends in patient 
room 

[45] a 

CoughFluidVol  0.044  [ml]  Cough fluid volume  [18,19] 

CoughRate  12  [h−1]  Cough rate  [18,19] 

PathConc  1,000,000  [cfu ml−1]  Pathogen concentration in fluid  [18] 

PathSurfConc  250  [cfu cm−1]  Pathogen concentration per area on 
mucous membranes 

[45] 

CoughEmitAir  0.000001    Proportion of cough emitted that is 
respirable particles (remains in air) 

[18,19] 

CoughEmitSurf  0.10    Proportion of cough emitted that lands on 
nonporous surface 

[19] 
 

CoughEmitText  0.45    Proportion of cough emitted that lands on 
porous surfaces (textiles) 

[19] b 

CoughEmitSkin  0.45    Proportion of cough emitted that lands on 
patient skin 

Estimate 

PT1.text.PropSA   0.050    Proportion of room area on which airborne 
pathogen can settle that is patient‐
associated textile (e.g., bedding, clothing) 

[19] 
 

PT1.surf.PropSA   0.050    Proportion of room area on which airborne 
pathogen can settle that is patient 
nonporous surfaces (e.g., railing, table) 

[19] 
 

PT1.skin.PropSA  0.011    Proportion of room area on which airborne 
pathogen can settle that is patient 
nonporous surfaces (e.g., railing, table) 

Estimate c 

AirSettle  0.93  [h−1]  Respirable particle settling rate from room 
air  

[19] d, e 

BreathingRate  1.2  [m3 h−1]  Breathing rate  [19] 

RoomVolume  80  [m3]  Room volume  [19] 

PartDepositFrac  0.9    Fraction of particles in air deposited into 
respiratory tract 

[19] e 

a. Assuming 20 min h−1 for an 8 h shift per day 
b. Subtracting the proportion emitted in air to achieve mass balance 
c. Estimated as PT1.surf.PropSA*(Apt/Ap) 
d. Assumes a representative respirable particle size of 5 μm [19] 
e. Assumes a particle density of 1 g cm−3 [19] 
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Compartments 
The model has 13 states (compartments) in which the infectious agent may be located. States 
are numbered as follows: 
G. Mucous membranes of infected patient 1 
1. Skin of infected patient 1 
2. Porous surfaces (textiles) of infected patient 1 
3. Nonporous surfaces (non-textiles) of infected patient 1 
4. Infected patient 1 room air 
5. Mucous membranes of health-care worker 
6. Skin of health-care worker 
7. Porous surfaces (textiles) of health-care worker 
8. Mucous membranes of uninfected patient 2 
9. Skin of uninfected patient 2 
10. Porous surfaces (textiles) of uninfected patient 2 
11. Nonporous surfaces of uninfected patient 2 
12. Elimination (i.e., die off) – a permanent loss from system 
 
Rate Parameters 
Input rates (G, [cfu h−1]) from infected patients mucous membranes to hands, air, surfaces, or 
textiles via coughing and skin contact (touching) 
CoughEmitRate = CoughFluidVol * CoughRate *PathConc 
ContactEmitSkin = An*(Af/An)*ρ.nos*τ.nos*PathSurfConc = Af*ρ.nos*τ.nos*PathSurfConc 
G1 = ContactEmitSkin + CoughEmitSkin*CoughEmitRate 
G2 = CoughEmitText*CoughEmitRate 
G3 = CoughEmitSurf*CoughEmitRate 
G4 = CoughEmitAir*CoughEmitRate 
 
Transfer rates (λ, [h−1]) 
Transfer from infected patient 1's skin (1), porous surfaces (2), and nonporous surfaces (3) 
among each other and to HCW skin (6): 
λ1,2 = (Ac/Apt)*ρ.por*τ.sk.por 
λ1,3 = (Ac/Apt)*ρ.sur*τ.sk.sur 
λ1,6 = (Ac/Apt)*ρ.sk*τ.sk.hcw*visit.rate 
λ2,1 = (Ac/Ap)*ρ.por*τ.sk.por 
λ2,6 = (Ac/Ap)*ρ.por*τ.por.hcw*visit.rate 
λ3,1 = (Ac/Anp)*ρ.sur*τ.sk.sur 
λ3,6 = (Ac/Anp)*ρ.sur*τ.sur.hcw*visit.rate 
 
Transfer from air in patient 1 room to other compartments [19] including respiratory tract (5) 
and skin (6) and textiles (7) of HCW 
HCW.text.PropSA = PT1.text.PropSA * Ap.hcw/Ap 
HCW.skin.PropSA = PT1.skin.PropSA 
λ4,1 = PT1.skin.PropSA*AirSettle 
λ4,2 = PT1.text.PropSA*AirSettle 
λ4,3 = PT1.surf.PropSA*AirSettle 
λ4,5 = BreathingRate*PartDepositFrac/RoomVolume 



 

83 
 

λ4,6 = HCW.skin.PropSA*AirSettle*visit.rate 
λ4,7 = HCW.text.PropSA*AirSettle*visit.rate 
 
Transfer from respiratory tract (5), skin (6), and textiles (7) of HCW. From the HCW 
respiratory tract, there is also transfer to the skin (9) of patient 2, and the porous (10) and 
nonporous (11) surfaces in patient 2’s room 
λ5,6 = (Af/An)*ρ.nos*τ.nos 
λ6,1 = λ6,9 = (Ac/Ahcw)*ρ.sk*τ.sk.hcw*visit.rate 
λ6,2 = λ6,10 = (Ac/Ahcw)*ρ.por*τ.por.hcw*visit.rate 
λ6,3 = λ6,11 = (Ac/Ahcw)*ρ.sur*τ.sur.hcw*visit.rate 
λ6,5 = (Af/Ahcw)*ρ.nos*τ.nos 
λ6,7 = (Ac/Ahcw)*ρ.por*τ.por.hcw 
λ7,6 = (Ac/Ap.hcw)*ρ.por*τ.por.hcw 
 
Transfer rates from patient 2 compartments. Rates from respiratory tract (mucous membranes, 
8), skin (9), porous surfaces (10), and nonporous surfaces (11) largely follow the rates already 
calculated 
λ8,9 = λ5,6 
λ9,6 = λ1,6 

λ9,8 = (Af/Apt)*ρ.nos*τ.nos 
λ9,10 = λ1,2 
λ9,11 = λ1,3 
λ10,6 = λ2,6 
λ10,9 = λ2,1 
λ11,6 = λ3,6 
λ11,9 = λ3,1 

 
Elimination rates (12) from skin (1, 6, 9), porous surfaces (2, 7, 10), nonporous surfaces (3, 11), 
and air (4). Elimination in air includes degradation plus exhaust. 
λ1,12 = λ6,12 = λ9,12 = μ.sk 
λ2,12 = λ7,12 = λ10,12 = μ.por 
λ3,12 = λ11,12 = μ.sur 
λ4,12 = μ.air + exhaust.air 
 
Steady state air concentration 
Room.Concentration.Steady.State = EmitRate*CoughEmitAir / (exhaust.air + μ.air) 
 
First-order transfer rate out of each compartment 
λ1,L = λ1,2 + λ1,3 + λ1,6 + λ1,12 
λ2,L = λ2,1 + λ2,6 + λ2,12 
λ3,L = λ3,1 + λ3,6 + λ3,12 
λ4,L = λ4,1 + λ4,2 + λ4,3 + λ4,5 + λ4,6 + λ4,7 + λ4,12 
λ5,L = λ5,6 
λ6,L = λ6,1 + λ6,2 + λ6,3 + λ6,5 + λ6,7 + λ6,9 + λ6,10 + λ6,11 + λ6,12 
λ7,L = λ7,6 + λ7,12 
λ8,L = λ8,9 
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λ9,L = λ9,6 + λ9,8 + λ9,10 + λ9,11 + λ9,12 
λ10,L = λ10,6 + λ10,9 + λ10,12 
λ11,L = λ11,6 + λ11,9 + λ11,12 
 
The full mass balance matrix: 
 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

dN1 dt⁄
dN2 dt⁄
dN3 dt⁄
dN4 dt⁄
dN5 dt⁄
dN6 dt⁄
dN7 dt⁄
dN8 dt⁄
dN9 dt⁄
dN10 dt⁄
dN11 dt⁄ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
‐λ1,L λ2,1 λ3,1 λ4,1 0 λ6,1 0 0 0 0 0
λ1,2 ‐λ2,L 0 λ4,2 0 λ6,2 0 0 0 0 0
λ1,3 0 ‐λ3,L λ4,3 0 λ6,3 0 0 0 0 0
0 0 0 ‐λ4,L 0 0 0 0 0 0 0
0 0 0 λ4,5 ‐λ5,L λ6,5 0 0 0 0 0
λ1,6 λ2,6 λ3,6 λ4,6 λ5,6 ‐λ6,L λ7,6 0 λ9,6 λ10,6 λ11,6

0 0 0 λ4,7 0 λ6,7 ‐λ7,L 0 0 0 0
0 0 0 0 0 0 0 ‐λ8,L λ9,8 0 0
0 0 0 0 0 λ6,9 0 λ8,9 ‐λ9,L λ10,9 λ11,9

0 0 0 0 0 λ6,10 0 0 λ9,10 ‐λ10,L 0
0 0 0 0 0 λ6,11 0 0 λ9,11 0 ‐λ11,Lے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

X

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

Nଵ
Nଶ
Nଷ
Nସ
Nହ
N଺
N଻
N଼
Nଽ
Nଵ଴
Nଵଵے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

൅

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
Gଵ
Gଶ
Gଷ
Gସ
0
0
0
0
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 
In shorthand: 
N`(t) = Λ × N + G 
 
The steady state solution is obtained with the above matrix 
NSS = Λ−1 × (− G) 
 
To examine the role of surfaces (porous and nonporous) versus skin, we run a comparison 
simulation of the above equation, setting all surface transfer rates to 0 
λ1,3 = λ1,4 = λ3,1 = λ3,5 = λ4,1 = λ4,5 = λ5,3 = λ5,4 = λ5,9 = λ5,10= λ8,9 = λ8,10 = λ9,5 = λ9,8 = λ10,5 = λ10,8 
=λ3,12 = λ9,12 = λ4,12 = λ10,12= λ5,13 = λ13,5 =λ4,3 = λ4,4 = λ4,13 = 0 
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Summary of literature elimination rates for selected pathogens 

Acinetobacter baumannii 

Acinetobacter baumannii (Table A7) are limited in only having elimination results available for 
nonporous surfaces [114,118–120]. There are sufficient data to generate a range of estimates, as 
described in the text. A study of Acinetobacter calcoaceticus var anitratus formed an adequate 
basis for comparing elimination on surfaces versus human skin [117]. Detailed time decay data 
extracted from the figures of this study indicated substantially higher first order decay 
coefficients on fingertips (2.5 h−1) than on Formica surfaces (0.11 h−1). Although these rates are 
one to three orders of magnitude higher than for Acinetobacter baumannii (Table A7), they 
form a basis for judging that elimination on fingertips will be approximately 23 times that on 
surfaces (2.5/0.11 = 22.7). 

SARS Coronavirus 

SARS coronavirus (SARS-CoV) elimination is restricted to four studies, reviewed in Otter et 
al. [127]. Rabenau et al. [124] and Chan et al. [125] quantitatively evaluated elimination on 
plastic surfaces. Though Chan et al. illustrated elimination rates are dependent on temperature 
and humidity, by assuming moderate humidity (30 – 50%) and room temperature (21 – 25 °C), 
we obtain similar rates for both studies (Table A8), averaging 0.032 h−1, which we will use for 
elimination rates on nonporous surfaces. Other coronaviruses have also been examined on 
various nonporous surfaces, including human CoV, transmissible gastroenteritis virus (TGEV), 
and mouse hepatitis virus (MHV) [127]. The range of elimination rates observed either similar 
or faster than SARS-CoV on nonporous surfaces, ranging from 0.035 h−1 [160] up to 1.6 h−1 
[161], also suggesting that SARS-CoV is relatively stable on dry surfaces [125,127]. Only Lai 
et al. [115] examine SARS-CoV stability on textiles. To judge elimination in textiles, we see 
from Lai et al. [115] that the time to inactivation on a plastic gown (nonporous) was longer than 
for a cloth lab coat (porous, textile). With a starting inoculum of 106, 105, or 104 TCID50 ml−1, 
Lai et al. observed that the ratio of times to inactivation was 2, 24, and 12 between the plastic 
and cloth. Taking the median value (12), we extrapolate from the nonporous surface (i.e., 12 x 
0.032 h−1) arriving at a rate of 0.38 h−1 for textiles. As there are no studies of SARS-CoV 
elimination on skin or in air, the rate for nonporous surfaces will be employed. 

Streptococcus pyogenes 

Ranges for elimination rates of Streptococcus pyogenes vary widely, depending on the data 
source and study method. Historic studies performed from 1897 to 1947 report similar survival 
time ranges on dust (3 d to 195 d) and on textiles (5 d to 120 d) [105,107], suggesting that 
survival on porous and nonporous surfaces would be similar. For more quantitative rates of 
elimination on surfaces, we use the data from Wagenvoort et al. [121] and Marks et al. [122]. 
Wagenvoort et al. [121] determined elimination in eight S. pyogenes clinical strains, including 
four strains in Group A, which cause more serious and invasive infections. Model fitting to the 
decay rates indicated a mean elimination rate of 0.023 h−1 for the eight strains (0.020 h−1 for the 
four Group A strains). Marks et al. [122] compared survival of planktonic growth versus 
biofilms on in vitro prefixed epithelia, the latter intended to represent growth in the 
nasopharynx. Although the rates were two orders of magnitude lower on biofilms (Table A9), 
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the data for planktonic growth are more relevant for our purposes of depicting survival on 
surfaces. These results from four experiments [data extracted from Fig 1b, d in 122] indicate 
decay rates that are best described by a power function (i.e., [bacteria, cfu ml−1] = α*[time, 
min]β) over 120 days, with the exponential term varying between β = −2.1 and β = −3.3. In 
order to approximate first-order decay, an exponential decay function was fitted to the data 
from the first four sample points (0.5 h, 1 d, 3 d, and 7 d), resulting in an average rate of 0.078 
h−1 (Table A9). Although the decay would be slower with longer durations, the early part of the 
curve represents the rate for the majority of colonies. For a representative elimination rate for 
textiles, surfaces, and air, we take the average of the two studies [121,122] (0.078 and 0.023), 
resulting in 0.051 h−1. 

Elimination rates for Streptococcus spp. are more rapid on skin, with Marks et al. reporting 
complete loss of Streptococcus pneumoniae in 1 h [122]. Although we found no quantitative 
data comparing Streptococcus pyogenes in skin versus surfaces, Smith-Vaughan et al. [116] 
estimate survival rate via relative cfu count swabbed from hands versus glass. Our data 
extraction from this study indicated that the rate on skin (2.28 h−1) was 4 times that on glass 
surfaces (0.57 h−1). Given data limitations, we estimate an elimination rate on skin that is 4 
times that on surfaces (0.05 h−1), resulting in 0.2 h−1. 

Bordetella pertussis 

Mitscherlich and Marth [105] report elimination rates as survival durations in air, human skin, 
textiles (linen and teddy bear), and nonporous surfaces (glass and plastics) from two previously 
published studies. The original studies were published in German and Russian and therefore 
could not be consulted. Survival durations varied among media, studies, and samples, ranging 
from < 1 to 6 h on skin to 3 – 5 d on plastic (Table A10). Employing average values as 
described in Table A10, we obtain loss rates of 0.051 h−1 in air and 0.34 h−1 in skin. For textiles 
(porous surfaces) and nonporous surfaces, we take the average of the two values available, 
resulting in 0.021 h−1 for textiles and 0.047 h−1 for nonporous surfaces. 
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Table A7. Elimination rate data extracted for Acinetobacter baumannii. 

        Initial  Final    Loss rate   

Strain traits  Study method  Medium  Duration 
(h) 

Initial 
count (cfu) 

Final 
count 
(cfu) 

Data Extraction 
Method 

Average 
(h−1) 

Ref 

Biofilm forming 
(Strain 

"Survival assays were determined by viable counts 
of the cells inoculated on to glass cover slips and 
stored under controlled conditions of temperature 
and relative humidity" 

Glass  864  ~1,200  0  Zero order: 1/(Survival 
Time) 

0.0012  [118] 

Biofilm forming 
(Strain 

See above  Glass  864  ~1,200  0  Zero order: 1/(Survival 
Time) 

0.0012  [118] 

Not biofilm forming 
(Strain AB143) 

See above  Glass  431  1,100  0  Zero order: 1/(Survival 
Time) 

0.0023  [118] 

Not biofilm forming 
(Strain AB001) 

See above  Glass  431  1,100  0  Zero order: 1/(Survival 
Time) 

0.0023  [118] 

Long surviving 
strains, often dry 
sources (Type 1) 

“Ceramic, polyvinyl chloride (PVC), rubber, and 
stainless steel samples (5 by 5 cm) were disinfected 
with 70% ethanol and contaminated with 0.1 ml of 
the bacterial solution. The total number of 
contaminated samples was 1,800 (45 samples per 
strain and material). All samples were stored in a 
dark, dust‐protected climate chamber at 22 6 2°C 
with 50% 6 5% relative humidity.” 

Ceramic, 
PVC, 

Rubber, 
Steel 

2680  17,989,000   1,413   ImageJ followed by 
fitting to exponential 
decay function 

0.00086  [114] 

Long surviving 
strains, often dry 
sources (Type 2) 

See above  Ceramic, 
PVC, 

Rubber, 
Steel 

339  306,196  422  ImageJ followed by 
fitting to exponential 
decay function to first 
6 data points. Later 
data had slower decay 

0.012  [114] 
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Short surviving 
strains, often wet 
sources (Type 3) 

See above  Ceramic, 
PVC, 

Rubber, 
Steel 

332  16,444  136  See above  0.014  [114] 

Short surviving 
strains, often wet 
sources (Type 4) 

See above  Ceramic, 
PVC, 

Rubber, 
Steel 

386  265  6  See above  0.010  [114] 

Hospital outbreak 
strain capable of 
surviving 329 days 

Dry in darkened bottle plugged with cotton wool 
for 14 days. Allowed to resuspend in liquid 
medium, vortexed, and plated 

Glass bottle  1848  25,177  1  ImageJ followed by 
fitting to exponential 
decay function to first 
12 data points. Later 
data had no decay for 
long time 

0.0053  [119] 

Outbreak and 
episodic strains (N = 
39 strains), all taken 
from patient 
biological cultures 

Glass cover slips with 31% relative humidity  Glass  35      Extract data from 
table. Then zero 
order: 1/(survival 
time) 

0.0016  [120] 

Acinetobacter 
calcoaceticus var 
anitratus (3 strains) 

Inoculating fingertips of healthy volunteers  Fingertips  1      ImageJ fitting to strain 
data from study Figure 
2 followed by 
exponential decay 
function 

2.5  [117] 

Acinetobacter 
calcoaceticus var 
anitratus (3 strains) 

Inoculating 2.5 cm2 sheets of sterilized Formica  Formica 
surfaces 

72      ImageJ fitting to strain 
data from study Figure 
4 followed by 
exponential decay 
function 

0.11  [117] 

 



 

     
 

89

Table A8. Elimination rate data extracted for SARS‐CoV and related coronavirus studies. 

Species 
(Strain) 

Study method  Medium  Duration 
(h) 

Initial 
count 
(TCID50 

ml−1) 

Final 
count 
(TCID50 

ml−1) 

Data Extraction 
Method 

Loss 
Rate 

Average 
(h−1) 

Notes  Ref 

SARS ‐ CoV  Dried and then stored in 
polystyrene petri dish at 21–
25°C. Residual infectivity based 
on cytopathic effect, as well as 
immunostaining of infected 
cells.  

Plastic        ImageJ followed 
by fitting to 
exponential 
decay function 

0.044  Good data quality  [124] 

SARS – CoV 

(HKU 
39849) 

10 μl dried on 24 well plastic 
plate, incubated at multiple 
temperatures and relative 
humidities. Residual virus was 
determined by titration. 

Plastic  672  107   ImageJ followed 
by fitting to 
exponential 
decay function 

0.020  Paper looked at role of 
temperature and humidity. 
Reported loss rate is for results 
from 50% humidity and 22‐25°C  

[125] 

SARS – CoV 
(CVU6109) 

Samples serially diluted to initial 
concentrations, 5 ml added to 
material surface, absorbed at 
room temperature, and 
evaluated for survival after 
multiple survival times. Virus 
determination in a cell culture 
tube, after incubation at 37°C 
for 4 d. 

Plastic 
(gown) 

48  106  0  Zero order: 
1/(Survival Time) 

0.042  Inactivation faster with cloth 
than plastic. Experiment was 
semiquantitative (no time series; 
binary outcome) 

[115] 

SARS – CoV 
(CVU6109) 

See above  Plastic 
(gown) 

24  105  0  Zero order: 
1/(Survival Time) 

0.042  See above  [115] 

SARS – CoV 
(CVU6109) 

See above  Plastic 
(gown) 

1  104  0  Zero order: 
1/(Survival Time) 

1  See above  [115] 

SARS – CoV 
(CVU6109) 

See above  Cloth 
(lab coat) 

24  106  0  Zero order: 
1/(Survival Time) 

0.042  See above  [115] 
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SARS – CoV 
(CVU6109) 

See above  Cloth 
(lab coat) 

1  105  0  Zero order: 
1/(Survival Time) 

1  See above  [115] 

SARS – CoV 
(CVU6109) 

See above  Cloth 
(lab coat) 

0.083  104  0  Zero order: 
1/(Survival Time) 

12  See above  [115] 

Turkey CoV 
(French 
TCoV) 

Storage in 400 μl suspension at 
21.6°C in plastic vial with fetal 
calf serum added 

Suspension        Exponential 
decay function to 
raw data 

0.024  In liquid  [162] 

Human CoV 
229E 

10 μl of suspension dried at 21°C 
in drying hood 

Aluminum         ImageJ followed 
by fitting to 
exponential 
decay function 

0.607    [161] 

Human CoV 
OC43 

See above  Aluminum         ImageJ followed 
by fitting to 
exponential 
decay function 

1.6    [161] 

TGEV, 
MHEV 

Suspended in cell culture 
medium and placed on polished 
surfaces. 

 

Stainless 
steel  

      Data provided as 
regression 
coefficients for 
log concentration 
ratios.  

0.37  Surrogate mammalian strains for 
SARS‐CoV. Median value for 18 
experimental replicates at 20°C 
at each of 3 humidities (20, 50, 
and 80%) for the two strains (3 
replicates per condition). The 
range of coefficients is wide 
(−0.052 to −1.083) 

[163] 

Human CoV 
229E 

Lysates were spread on coupons 
of material and then stored at 
room temperature, removed 
and evaluated on a plaque 
assay. The unit of analysis was 
plaque forming units 

Teflon  120      ImageJ followed 
by fitting to 
exponential 
decay function 

0.047  Objective of the study was to 
illustrate benefit of copper for 
virus mortality 

[160] 

Human CoV  See above  Silicone  120      ImageJ followed 
by fitting to 
exponential 

0.035  See above  [160] 
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229E  rubber  decay function 

Human CoV 
229E 

See above  Stainless 
steel 

120      ImageJ followed 
by fitting to 
exponential 
decay function 

0.055  See above  [160] 
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Table A9. Elimination rate data extracted relevant for Streptococcus pyogenes. 

Species (Strain)  Study method  Medium  Duration 
(h) 

Initial 
count 
(cfu) 

Data extraction method  Loss 
rate 
(h−1) 

Ref 

S. pyogenes (771 
and JRS4) 

Samples were grown to either mid‐exponential 
or stationary phase, then transferred to 24 well 
plastic plates, then dried for 30 min, 
resuspended, and plated for viable colony 
counts. 

Plastic  168.5  ~108  First 4 times (median values for each 
time) extracted from study Figure 1B and 
D for planktonic results using ImageJ, 
exponential decay function fitted, then 
averaged (N=4) 

0.078  [122] 

S. pyogenes (771 
and JRS4) 

Samples grown to mid‐exponential phase, and 
then transferred to paraformaldehyde‐prefixed 
epithelial cells on glass plates to form biofilms. 
Then dried for 30 min, resuspended, and plated 
for viable colony counts. 

Nasopharyngeal 
cells (in vitro) 

168.5  ~106  Median values for all times for each of 
two strains extracted for biofilm results 
(study Figure 1F) using ImageJ, 
exponential decay function fitted, then 
averaged 

0.0026  [122] 

S. pyogenes (8 
clinical strains) 

1 ml suspension sample in PBS was placed in 
glass bottle plugged with cotton wool and 
allowed to dry at room temperature. 
Resuspended and plated for viable colony 
counts. Count at d1 is initial count. Readings 
taken every 1 ‐ 2 d from d 14 to d 37 

Glass  888  108  Exponential decay function fitted for each 
individual strain in Table 1 [121]. ND 
values were set at 1/2 the lowest 
recorded value (5 cfu) and data after the 
last two ND results for each strain were 
deleted. Strain 7 was fitted based on first 
4 data points only. 

0.023  [121] 

Streptococcus 
pneumoniae 
(ATCC 49619) 

Known concentration in serum broth added to 
sterilized hands, then swabbed at given time 
points and evaluated by plating.  

Skin  3  242-
435 

Nonzero data points from 3, 60, and 120 
min were fitted to exponential decay 
curves. Initial time point (t0) was excluded 
to account for loss due to swabbing. Only 
Serum broth results were used. 

2.3  [116] 

Streptococcus 
pneumoniae 
(ATCC 49619) 

Known concentration in serum broth added to 
glass plate, then swabbed at given time points 
and evaluated by plating.  

Glass  15  380-
685 

Data from times 0, 60, and 120 min were 
extracted from study Figure 1 with ImageJ 
and then fitted to exponential decay 
curves. Other time points excluded to 
match with skin study. Only Serum broth 
results used. 

0.57  [116] 
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Table A10. Elimination rate data for Bordetella pertussis. All data were obtained from Mitscherlich and Marth [105]. 

Study method  Medium  Duration 
range 

Duration 
assumed (h) 

Initial 
count (cfu) 

Data Extraction Method  Loss rate 
(h−1) 

Culture suspension was atomized at room temperature 
(RT). 

Air  19 ‐ 20 h  19.5    Zero order: 1/(Survival Time). Mean 
value. 

0.051 

Grown on saline suspension mixed with saliva, transferred 
to glass slides, and survival duration at RT recorded.  

Glass  < 1 h ‐ 1 d  12  108  Zero order: 1/(Survival Time). Using 
1/2 maximum survival time (12 h) 

0.083 

Suspension atomized on surface and then stored at RT.  Plastic  3 ‐ 5 d  96  108  Zero order: 1/(Survival Time). Using 
mean survival time (4 d) 

0.010 

10 μl suspension transferred to 2 cm2 area skin of healthy 
volunteers. 

Skin  <1 h ‐ 6 h  3  108 Zero order: 1/(Survival Time). Using 
1/2 maximum survival time (3 h) 

0.33 

10 μl suspension transferred to teddy bear hide and stored 
at RT. 

Textile  1 ‐ 4 d  60  108 Zero order: 1/(Survival Time). Using 
mean survival time (2.5 d) 

0.017 

10 μl suspension transferred to linen and stored at RT.  Textile  6 h ‐ 3 d  39  108 Zero order: 1/(Survival Time). Using 
mean survival time (39 h) 

0.026 
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Appendix 3. 

Appendix to Chapter 3. Integrative statewide assessment of combined environmental and 
socioeconomic stressors versus chronic disease: California case study. 

 

Spatial joining of CalEnviroScreen versus hospital data 

The spatial levels of organization for the CalEnviroScreen (CES) versus ICD-9 datasets are 
different, requiring generation of a geographic correspondence. While CES is organized at the 
census-tract scale, the spatial reference point for ICD-9 is the zip code. Further, census tracts 
are precise polygon features while zip codes correspond to linear USPS route areas, post office 
box collection points, or large volume customer collection points, requiring further treatment to 
allow correspondence with polygon features [155]. Zip code tabulation areas (ZCTA) are 
polygons, developed and employed by the US Census to approximate the areal coverage of zip 
codes [164]. ZCTAs are similar but not identical to zip codes, such that treating them as the 
same would lead to data-comparability issues, as well as data loss. Because ZCTA is an 
aggregate scale that can be used to test for and address spatial autocorrelation, we incorporated 
all data up to the scale of ZCTA. The following procedure was employed to achieve this: 

1. The ESRI 2014 zip code point data layer and the ESRI ZCTA boundary spatial polygon 
layer (based on 2010 Census) were downloaded from the web. Point estimates of zip 
codes were obtained from ESRI’s zip code point file layer 
(http://www.arcgis.com/home/item.html?id=1eeaf4bb41314febb990e2e96f7178df) on 
June 14, 2015. ZCTA polygon estimates were downloaded on May 19, 2015. 

2. ICD-9 zip codes that represent post office boxes or large volume customers were 
assigned to ZCTA in ArcMap by doing a spatial join (point to polygon) between the 
ESRI zip code point layer and the ESRI ZCTA polygon layer. That is, each ZCTA was 
defined to contain the corresponding zip code area, in addition to all PO boxes and large 
volume customers located within the geographic boundaries of that ZCTA. The ZCTA 
polygons were also automatically set to represent the spatial locations for all zip code 
areas (i.e., not PO boxes or large volume customers). 

3. Each ZCTA has a total population estimate in the 2010 US Census. These data were 
downloaded from www.socialexplorer.com on May 13, 2015. This was used as the 
denominator term in the disease burden estimate . 

4. ICD-9 diagnosis frequencies were summed from all corresponding zip codes by ZCTA. 
That is, diagnosis counts from all zip codes including PO Box and zip code areas were 
summed within the corresponding ZCTA. 

5. ICD-9-based disease burden estimates were determined for each ZCTA, as described in 
Methods of Chapter 3 

6. CalEnviroScreen (CES) results and the derived multivariate indicators (i.e., PCA 
results) were aggregated from the census-tract scale to the ZCTA scale using the 
population-weighted average of corresponding values. Data aggregation was performed 
on the census tracts and parameters from the original CES October, 2014 dataset after 
transformation, and also on the PCA results. The population-weighting scheme was 
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based on results from the MABLE/Geocorr12 population weighting algorithm [165], 
which were downloaded on September 30, 2015. 

7. SAR requires all polygons to have adjacent neighbors; there can be no isolated 
polygons. Therefore, four geographically isolated ZCTAs having CES data were 
removed from the analysis: 93608 (Cantua Creek), 95257 (Wilseyville), 95925 
(Challenge), and 96052 (Lewiston). All of these sites were in rural areas, with low to 
moderate CES scores (8.4 to 41.9), a low overall population (152 to 2196 residents in 
the 2010 census), and mostly Caucasian inhabitants (51% to 90%). Two ZCTAs were 
separated from other ZCTAs by narrow channels: 94501 (city of Alameda) and 92662 
(Newport Beach). These two ZCTAs were manually joined to adjacent ZCTA polygons 
using the ArcMap editor. 

8. Linear model and SAR model analyses were then performed on the resulting data at the 
ZCTA scale. 

Correlation among diseases in ICD-9 database 

In the study analyses, we opted to focus on hospitalization rate for a subset of specific 
diagnoses, rather than the total frequency of ICD-9 diagnoses (see Chapter 3 Data and 
Methods). The multivariate correlation structure for reported ICD-9 codes (count person−1 yr−1) 
was examined across all zip codes (N = 1667) for each of the individual diagnoses, as well as 
the total rate of hospitalizations with at least one of the diagnoses (i.e., the “disease burden 
indicator” in Chapter 3). Data were square root transformed to achieve multivariate normality 
and analyzed via Pearson correlation coefficients. A positive correlation was observed for 
almost all pairwise comparisons (Table A12). Correlations were strong among total diagnosis 
rate, pneumonia, chronic obstructive pulmonary disease (COPD), asthma, myocardial 
infarction (MI; heart attack), and cerebral vascular accident (CVA; stroke) (Table A12, Figure 
A4). In principal component analysis of this correlation matrix, the first principal component 
(PC), which was negatively associated with all diseases, explained 45% of the variance in the 
data set. This PC was also very strongly associated with total reported codes (r = −0.90). These 
findings indicate that examination of the separate diagnoses would only provide limited unique 
information. This supported the development of a general indicator of disease burden that 
combines the different results. For this reason, we employed the disease burden indicator, as 
described in the text. 
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Table  A11.  Parameters  used  in  analysis,  description,  original  units,  and  transformation  applied.  All  environmental  and  socioeconomic 

parameters were developed at the census‐tract scale and are summarized here, following Faust et al. [36]. Hospital use was available at the zip 

code scale.  

Name 
Parameter 

Class 
Description  Units  Years  Transformation 

Ozone  Environmental  Average of daily maximum 8 hr concentrations that are above 
CA ambient standard of 0.07 ppm. 

ppm  2009‐
2011 

Cube root 

PM2.5  Environmental  Annual mean concentration  μg m−3 2009‐
2011 

Untransformed 

Diesel PM  Environmental  Estimated daily emissions in a 4 km2 area for a July workday 
from combined on‐road and off‐road sources 

kg d−1 2010  Cube root 

Traffic density  Environmental  Sum of traffic volume (vehicle km) per unit time per road length 
within 150 m buffer of census tract 

Vehicle 
km h−1 
km−1 

2004  Cube root 

Drinking water  Environmental  Drinking water contaminant metric , defined as the sum of 
percentiles for concentration of ten water contaminants 

%  2005, 
2009, 
2013 

ArcSin 
(Square root) 

Pesticides  Environmental  Pesticide active ingredient used in production agricultural 
applications per unit area; includes 69 hazardous and volatile 
pesticides  

lb mi−1 2009‐
2011 

Log10a 

Toxic release  Environmental  Modeled toxicity‐weighted chemical concentrations released to 
air from industrial facilities; data were obtained from USEPA 
Toxic Release Inventory, following the Risk Screening 
Environmental Indicators tool.  

lb yr−1 2010  Log10 

Water body 
impairments 

Environmental  Total number of pollutants listed as impairments in 303d Total 
Maximum Daily Load regulatory program 

Unitless 2010  Cube root 

Groundwater 
sites 

Environmental  Weightedb sum of sites that could adversely impact 
groundwater, such as leaking underground chemical storage 
tanks, dry cleaners, dairies, airports. Sites were obtained from 
the GeoTracker data base maintained by the CA State Water 
Resources Control Board. 

Unitless  2013  Log10a 
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Cleanup sites  Environmental  Weightedb sum of sites with cleanup planned or underway due 
to hazardous chemicals. Sites were obtained from the 
EnviroStor data base maintained by the CA Department of Toxic 
Substances Control. 

Unitless  2013  Cube root 

Hazardous waste 
sites 

Environmental  Weightedb sum of hazardous waste permitted facilities and 
sites that generate hazardous waste. Sites were obtained from 
the EnviroStor hazardous waste facilities data base maintained 
by the CA Department of Toxic Substances Control. 

Unitless  2013  Log10a 

Solid waste sites  Environmental  Weightedb sum of sites or facilities containing solid waste. Site 
types include waste disposal and composting sites, waste tire 
sites, or other site types that may contain and release 
hazardous materials  

Unitless  2013  Log10a 

Age  Socioeconomic  Percent of population that is < 10 or > 65 years old  %  2010  Square root 

Education  Socioeconomic  Percent of population >25 years old without a high school 
degree or equivalent 

%  2008‐
2012 

Cube root 

Linguistic 
isolation 

Socioeconomic  Percent of population >14 years old that were not fluent English 
speakers 

%  2008‐
2012 

Cube root 

Poverty  Socioeconomic  Percent of population with household income less than two 
times the federal poverty line 

%  2008‐
2012 

Square root 

Unemployment  Socioeconomic  Percent of population >16 years old and workforce eligible that 
is not currently employed 

%  2008‐
2012 

Square root 

Over 65  Demographic  Percent of population ≥ 65 years old (US Census)  %  2010  Square root 

Disease diagnosis 
rate 

Health 
outcome 

Total number of instances of ICD‐9 code reporting events per 
year per total population within zip code tabulation area 

Events 
person−1 
yr−1 

2008 ‐ 
2011 

sign൫√DDR൯ ∗ 
lnሺห√DDRห ൅ 1ሻ c 

a. To account for the presence of zeros, values were log10 transformed following the order‐of‐magnitude stabilizing procedure described in McCune and 

Grace [148]: y = log10(x + 10C) – C, where C = floor(log10(min(x))) 

b. Site weighting was based on expected hazard of the site type and distance from populated census block within the census tract [36] 

c. Modulus transformation per John and Draper [149] 
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Table A12. Pearson correlation coefficients among the prevalence of ICD‐9 codes for 14 specific disease diagnoses, examined in California Zip 

code tabulation areas. Had Dx: indicates the presence of any of the 14 diagnoses for a specific visit. The color of the boxes indicates strength 

and direction of the association, with red indicating negative association and blue indicating positive association. 
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D
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ea 

P
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cer 

B
reast can

cer 

Lym
p
h
o
m
a 

Leu
kem

ia 

D
ep

ressio
n
 

Sch
izo

p
h
ren

ia 

Pneumonia  0.87                                     

COPD  0.89  0.85                                  

Asthma  0.77  0.68  0.60                               

MI  0.73  0.69  0.65  0.58                            

CVA  0.77  0.72  0.70  0.61  0.73                         

Diarrhea  0.16  0.13  0.06  0.17  0.15  0.13                      

Pancreatic cancer  0.29  0.24  0.18  0.22  0.33  0.31  0.21                   

Lung cancer  0.54  0.49  0.54  0.41  0.41  0.50  0.07  0.24                

Breast cancer  0.38  0.30  0.28  0.32  0.33  0.42  0.18  0.35  0.32             

Lymphoma  0.54  0.47  0.38  0.51  0.49  0.49  0.24  0.36  0.33  0.44          

Leukemia  0.31  0.28  0.22  0.27  0.31  0.33  0.19  0.28  0.24  0.27  0.31       

Depression  0.42  0.29  0.19  0.43  0.38  0.37  0.30  0.29  0.21  0.38  0.46  0.29    

Schizophrenia  0.53  0.39  0.36  0.47  0.29  0.28  0.28  0.23  0.16  0.21  0.38  0.18  0.51 

Low birth weight  0.04  0.07  −0.09  0.17  0.02  0.02  0.13  0.12  −0.02  0.08  0.14  0.10  0.11  0.21 
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Figure A4. Scatterplot matrix of selected hospital visit rate (health outcome) parameters. All data were 
normalized to ZCTA total population and square root transformed. Had Dx: indicates the total rate of 
hospitalization for at least one of the diagnoses; COPD = chronic obstructive pulmonary disease; MI = 
myocardial infarction (heart attack). 
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Figure A5. Total hospital ICD‐9 diagnostic codes (count person−1 yr−1) versus total population in each 
ZCTA (zip code tabulation area). Vertical dotted line: total population of 100; Horizontal dotted line: 
diagnostic code count of 1. The plot illustrates that for ZCTA with populations below 100, variability 
increased substantially. These ZCTA were thus removed from further analysis. 
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Figure A6.  Scatterplot matrix  indicates  positive  correlation  among  four  socioeconomic  vulnerability 

indicators. 
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