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ABSTRACT
Antidepressant Pharmacogenetics: Searching for Genetic Determinants
of Treatment Response

Jeffrey Brian Kraft Jr.

Major depressive disorder is one of the most common and debilitating psychiatric
disorders. Psychopharmacological agents are the most widely used form of treatment,
although they are not universally effective and can produce significant side effects in
some patients. The most common psychopharmacological agents used to treat major
depression are the selective serotonin reuptake inhibitors, or SSRIs. Often, these drugs
take several weeks to relieve depressive symptoms. Individualized therapy would have
great clinical utility by identifying patients that are likely to respond positively to SSRI
therapy a priori. The goal of this thesis is to investigate the use of genetic markers for
guiding treatment with SSRIs.

We utilized several complementary pharmacogenetic approaches and two
depressed populations treated with SSRIs. The first was a small (N=96) population given
fluoxetine, and the second was a large (N=1,953) population taking citalopram. We used
the fluoxetine population and a variant discovery approach to uncover novel variation and
previously unknown tagging SNPs in the molecular target of SSRIs, the serotonin
transporter, then employed a linkage disequilibrium mapping approach to investigate
variants for association to response. Several variants in the promoter region of the gene
were associated with fluoxetine outcome. No markers were associated with response

when investigated in our citalopram population.

viii



We also investigated relevant candidate genes for association with citalopram
response and tolerance. Variants within the FEV gene, a master transcription factor in the
serotonin pathway, were associated with a number of response phenotypes and mouse
work implicates this gene in citalopram response. None of our other candidate genes
demonstrated association with citalopram response.

Utilizing a panel of approximately 20,000 non-synonymous cSNPs for association
with citalopram response, one SNP in the gene LRP2 was significantly associated with
response in the African American population. We also performed a whole genome
association study using over 500,000 SNPs from across the genome. Using a two-stage
study design, none of the most highly associated markers in the discovery sample were

also associated in the validation sample.
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CHAPTER 1
INTRODUCTION TO MAJOR DEPRESSIVE DISORDER

AND ANTIDEPRESSANT PHARMACOGENETICS

1.1 Major Depressive Disorder (MDD)
1.1.1 Scope of MDD

Major depression is one of the most common and disabling psychiatric disorders
(1). Depression is a leading cause of disability worldwide and the treatment of depression
costs the United States more than $40 billion annually (2-5). Depression is strongly
associated with suicide, which is the eleventh leading cause of death in the US overall,
and the fourth leading cause of death among 25-44 year olds (4,6). The average age of
onset for major depression is 25 years, and depression is often chronic and characterized
by recurrences throughout the lifespan, with some estimates of recurrence as high as 85%
(7).

Major depressive disorder, as defined in the DSM-1V, is characterized by at least
two weeks of pervasively depressed mood and/or diminished interest accompanied by
vegetative and cognitive symptoms, including sleep and appetite disturbances,
psychomotor and energy disturbances, cognitive changes and suicidal thoughts (8).
Depression has high co-morbidity with other psychiatric disorders and substance abuse,
and recent studies suggest that depression may be an independent risk factor for some
somatic disorders such as heart disease and diabetes (9). Major depression affects 16% of
the population in the United States over the course of a lifetime, with almost 6% of the

population being depressed in any one year, and the societal burden due to depression is



tremendous (1,10). By the year 2020, depression is estimated to become the leading cause
of years of life lost to disability in both developing and developed countries (5).

As with most psychiatric disorders, the disease we label major depressive disorder
is likely to be heterogeneous with several different underlying etiologies (e.g. reaction to
stressful events, induced by drugs, etc.), likely to be responsible. It appears, however, that
most patients with major depression respond to a wide variety of treatments, including
psychotherapies, medications, and other somatic treatments such as electroconvulsive
therapy (11). Psychopharmacological treatment is currently the most common form of
treatment and in particular, selective serotonin reuptake inhibitors (SSRIs) have become
the most frequently prescribed antidepressant (12).

1.1.2 Antidepressant Response

While effective treatments for depression are available, it is clear that there is a
large degree of clinical heterogeneity in response to antidepressants. The response rate to
most antidepressants in clinical trials is on the order of 50-60%, with an even lower
remission rate of 35-45% (13,14). Thus far several clinical or demographic characteristics
have been associated with poor response to antidepressants including non-Caucasian
ancestry, unemployment, low income or education, longer MDD index episodes, and
concurrent psychiatric disorders (15). Thus far no reliable biological predictors have been
found to be associated with antidepressant response (16). Because of this, patients who
do not respond to their first antidepressant treatment often have to try other
antidepressants in order to achieve remission. This trial and error process puts an
enormous burden on the patient especially given the length of treatment required to gauge

clinical effectiveness of the drugs (typically 4 weeks or longer).



Another problem is the adverse effects of antidepressants which often result in
non-compliance and discontinuation of treatment. However, there is currently no way to
predict whether or not a patient will experience the adverse effects. With the use of
selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine and citalopram, side
effects such as nausea, sexual dysfunction, headache, sleep disturbance, tremor, and
weight disturbances are commonly reported. One example of the magnitude of the
problem is sexual side effects, which can occur in ~50% of those taking SSRIs. A
potentially devastating side effect involves increases in suicidal thinking among
depressed patients, particularly adolescents, prescribed SSRIs although other studies have
shown no increased risk of suicide due to SSRI treatment and this controversial issue

remains highly contentious (17,18).

1.2 Antidepressant Pharmacogenetics
1.2.1 Pharmacogenetics Overview

Pharmacogenetics, defined as the study of genetic variability between individuals
in response to exogenous substances, as a field dates back to the late 1950s. The earliest
modern pharmacogenetic discoveries of hereditary variation in drug response involved
drugs such as succinylcholine, primaquine, and isoniazid. These classic studies set the
stage for subsequent pharmacogenetic investigation, which currently focus on the genes
that contribute to the pharmacokinetics (the actions of the body on drugs over a period of
time) and pharmacodynamics (the biochemical and physiological effects of drugs and

their mechanisms of action) of a particular drug (19).



A great deal is known about the common inter-individual variation in Phase I
(oxidation, reduction, or hydrolysis) and Phase II (conjugation) drug metabolizing
proteins, at both the enzymatic and DNA sequence levels (20). For example, an extensive
catalog of functional variants and haplotype configurations in the genes encoding
cytochrome P450 enzymes has been amassed (21). A major example of the success of
pharmacogenetics involves the drug metabolizing protein, thiopurine methyltransferase
(TPMT). Children who inherit two defective copies of this gene can experience fatal
hematological side effects when administered 6-mercaptopurine, a chemotherapeutic
agent used in pediatric leukemia, while patients with two normal copies of the gene for
this enzyme require higher doses of the medication (22).

Numerous examples exist for members of the cytochrome P450 family of
metabolic enzymes but efforts at identifying genes involved in pharmacodynamics for
particular medications have also been successful. Individual variations and haplotypes in
the type 2 B-adrenergic receptor have been found to be associated with response to f3-
agonists in the treatment of asthma (23). In addition, the dosing of warfarin, was recently
shown to be significantly influenced by the subject’s genotype at a pharmacodynamic
target of the drug (VKORCI1) (24).

1.2.2 Pharmacogenetics of Response to Tricyclic Antidepressants

Studies performed in the 1960s and 1970s revealed that upon repeated
administration of one or another class of antidepressants, both response and non-response
to antidepressant class were significantly concordant between family members (25,26).
This finding has been replicated more recently in relatively small samples (27,28). The

important role of cytochrome P450s in tricyclic antidepressant (TCA) metabolism is



well-documented, and is reflected in the extensive work showing correlation between
blood levels and response and toxicity, as well as the potential benefits of therapeutic
drug monitoring for patient safety and reduced costs (29).

Pharmacogenetic analysis guided by these observations revealed in one study that
patients missing CYP2D6 could not be effectively treated with tricyclics (30). This locus
has been suggested to account for 34% of the variation in plasma nortriptyline levels
(31). Some authors recommend that pharmacogenetic considerations be taken into
account with the use of tricyclics, suggesting substantial dose reductions in persons with
the “poor metabolizer” phenotype of CYP2D6 or CYP2C19 (32).

1.2.3 Pharmacogenetics of SSRI Response

The current widespread use of SSRIs in depression along with recent advances in
molecular genetics have resulted in sizeable body of literature on SSRI pharmacogenetics
(33). The majority of these studies focus on putative pharmacodynamic genes related to
monoamine function, including the serotonin transporter (the molecular target for SSRIs),
tryptophan hydroxylase 1, monoamine oxidase A, and the 1A and 2A serotonin receptors.
These case-control studies as a whole examine a small number of polymorphic loci in
these genes, and utilize fairly small sample sizes, often with heterogeneity in diagnosis
(unipolar and bipolar depression) and medication use.

An Italian group has shown in a series of studies some evidence of an association
between the long allele of a functional promoter polymorphism in the serotonin
transporter and loosely defined depression, including cases of bipolar disorder in the
depressed phase of the illness (34-37). Other groups have reported similar findings and

these are further explored in Chapter 2 (38-40). These reports are of interest as this



polymorphism is usually defined by the long and short alleles, with the long allele
leading to increased in vitro transcription of the SLC6A4 gene and serotonin uptake in
cell lines (41). Additional notable findings in the pharmacogenetics of SSRI response
have included associations to tryptophan hydroxylase (34), serotonin 2A receptor (42),
GRIK4 (43), G protein 3 (44,45), angiotensin converting enzyme (46), and the
glucocorticoid receptor FKBP5 (47).

There has been little exploration of association between genetic variants in any of
these genes and adverse events related to SSRI treatment. A small study showed that the
short allele of the serotonin transporter promoter polymorphism was associated with the
development of insomnia and agitation in a population of 36 outpatients (48). A study by
Murphy et al of 124 subjects with geriatric depression treated with the SSRI paroxetine
showed that the genotype for a variant in the 2A serotonin receptor (HTR2A) predicted
both greater rates of discontinuation and severity of adverse events (49).

There have also been several previous studies investigating the relationship
between SSRI medications and pharmacokinetic genes. The pharmacokinetics of many
SSRIs, including citalopram, are affected by CYP2D6 and CYP2C19 genotype status,
although there is no evidence regarding how plasma levels of citalopram influence
clinical efficacy or tolerance (50). In fact, the Evaluation of Genomic Applications in
Practice and Prevention (EGAPP) initiative recently found insufficient evidence to
support a recommendation for or against use of CYP450 testing in adults beginning SSRI
treatment for non-psychotic depression (51). In a study of 53 Chinese patients with major

depression taking citalopram, CYP2C19 genotype status was significantly associated



with clearance of citalopram and the metabolic ratio of desmethylcitalopram to

citalopram, but not associated with the primary clinical outcome (52).

1.3 Genomics and Association Studies
1.3.1 Overview

The effort to sequence the human genome has dramatically altered the potential
impact of pharmacogenetics on human health as the vast majority of human genes have
now been localized and annotated (53,54). Perhaps one of the greatest benefits of
sequencing the human genome has been the discovery of the incredible level of sequence
diversity between humans. Single Nucleotide Polymorphisms (single base pair
substitutions) are the most abundant type of DNA variation with over 12 million
individual SNPs having already been identified and referenced at dbSNP. Single
nucleotide polymorphisms are effective markers for genetic studies, partly out of their
abundance, but also due to the development of efficient and inexpensive methodologies
for assaying SNPs (55).

In the context of the Human Genome Project, pharmacogenetics can now be
broadened to “pharmacogenomics”, with our new annotated knowledge of genes,
proteins, and SNPs allowing a more general analysis of the many different genes that
may determine drug behavior.

1.3.2 Genetic Association Studies

Pharmacogenetic phenotypes are complex traits with contributions from

pharmacodynamic genetic variants (transporters, receptors), pharmacokinetic genetic

variants (absorption, metabolism, elimination), and environmental factors. Given the



genetic complexity of antidepressant response, a powerful strategy for determining these
genetic factors would be through use of an association study, also termed linkage
disequilibrium (LD) mapping (56). In LD mapping, unobserved historical recombinations
in an outbred population are used to identify genes that influence the risk for a trait by
exploiting the physical proximity between a susceptibility gene and a marker locus (57).

LD mapping thus assumes that some proportion of the cases have a common
ancestor who had the disease-associated variation. The individuals who share this
variation are also likely to share alleles at sites neighboring the actual disease locus due
to linkage disequilibrium (58). The main advantage of this approach rests on the
statistical power derived from the ability to collect substantial numbers of unrelated cases
and controls (59). A number of interacting factors influence the likelihood of success in
LD mapping designs, including the effect size of the trait variant, frequencies of marker
and trait alleles, as well as LD relationships (60).

A disadvantage of LD mapping is the reliance on the assumption that common
disorders are caused by high frequency variants, which is known as the common disease-
common variant hypothesis (CDCV) (61,62). This assumption is useful for LD mapping,
since rare alleles (which are “newer”) generally do not have significant LD with
neighboring alleles, nor are common enough to be seen sufficiently often enough to allow
reliable measures of association. Unless the actual causative rare allele is genotyped, it
will generally not be captured by LD mapping. The CDCV hypothesis states that
common alleles, each contribute by themselves very small increases in risk (e.g. odds
ratios from 1.1 to 1.5 for single alleles), but when combined and interacting with each

other can determine the overall genetic risk for an individual (63).



The common disease-common variant hypothesis is not universally accepted, and
an alternative framework known as the common disease rare variant (CDRV) hypothesis
has been proposed. This hypothesis states that for any given complex phenotype several
(on the order of 100s — 1,000s) of rare variants exist in different genes and pathways that
each are individually sufficient to cause the trait (64,65). This model is most similar to
the molecular basis of most known Mendelian disorders. Unfortunately, using outbred
populations it is difficult to collect enough samples to have adequate power to detect
extremely rare variants (< 1% minor allele frequency) and family based studies are often
not practical in pharmacogenetics, given the low likelihood that an extended pedigree
would have sufficient numbers of members treated with the same medication.

1.3.3 Whole Genome Association Studies

A recently developed extension of LD mapping involves interrogating several
thousands of markers across the entire genome and has been termed “whole genome
association” (61). A major advantage of whole genome studies is that no understanding
of the biological mechanism of the phenotype is required a priori, allowing susceptibility
genes to be identified that were not considered candidate genes for the phenotype. To
date a number of whole genome association studies have been published, and while there
have been a few exceptional findings, results have been mixed and debate remains
regarding the utility of these endeavors (66-73). For example, recent large studies of type
IT diabetes (T2D) found marginal genome-wide significance for a number of genes and
required combining data from all these studies (FUSION, WTCCC, DBI, & DiaGen) to
uncover novel susceptibility genes for T2D and also demonstrated that integrating the

results from multiple genome scans can aid the prioritization of signals for replication,



and allow confirmation of genes at appropriate levels of statistical confidence not

possible with individual genome-wide association studies (70-73).

1.4 Pitfalls for Linkage Disequilibrium (LD) Mapping
1.4.1 Marker Selection

There are numerous challenges to genetic association studies, whether in either a
candidate gene or whole genome context. An obvious issue with these studies is which
SNPs to genotype: with over 12 million known SNPs in the human genome and candidate
genes often extending beyond 100kb, current genotyping technologies prohibit complete
ascertainment of all the SNPs within most candidate genes or all the SNPs in the human
genome in reasonably sized clinical samples. Therefore, several groups have developed
methods that exploit the LD between markers in order reduce genotyping redundancy
while maintaining the genetic diversity within a region. One of the simplest methods
attempts to select proxies, or “tagSNPs”, in order to capture allelic information at other
loci based solely on the pairwise r* measure of LD (74). Other methods select SNPs
(haplotype tagging, or htSNPs) that capture the underlying haplotype structure (75,76).
There is no consensus in the field on which method has the most efficiency or power in
association studies but all of this may be rendered irrelevant in the near future with whole
genome resequencing. For the candidate gene studies we undertook, we selected tagSNPs
based on the r* metric for LD alone.

For whole genome association studies the SNP marker panels are on fixed arrays
in order to reduce production costs, therefore the investigator cannot change the SNPs to
be genotyped. Current marker panels for whole genome studies have focused on gene-

centric SNPs (ParAllele Biosciences), evenly spaced SNPs (Affymetrix), or used public
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resources like HapMap to select SNPs based on patterns of LD (Illumina). In our gene-
centric analysis presented in Chapter 6, we used a combination of approximately 40,000
gene-centric markers, including all known non-synonymous SNPs, by ParAllele
Biosciences and in our genome-wide association discussed in Chapter 7, we used 500,000
evenly spaced SNPs utilizing the Affymetrix platform.

1.4.2 Phenotypic Heterogeneity

As with all genetic studies of complex traits, phenotypic heterogeneity is a
concern. We can safely assume that the majority of clinical diagnoses in psychiatry, as
has been shown with several types of cancer, are composed of different subtypes with
distinct molecular mechanisms. Diagnostic techniques are limited in all fields of
medicine and this is an even greater concern for psychiatric phenotypes, since these
phenotypes usually require the use of structured interviews or questionnaires for
diagnosis.

In our study, we attempted to limit phenotypic heterogeneity through the use of
response pattern analysis (77,78). SSRI and other antidepressant medications have high
placebo response rates, reaching 50% in some clinical trials. It has been shown that
patients who have a delayed response (>2 week) to active medication and continue to
maintain their response every week until week 12 (“specific responders’) are more likely
to relapse if blindly switched to placebo than patients displaying an early and inconsistent
response (“non-specific responders”) (78). Although the delayed response may not be a
critical factor in determining true drug response, a sustained response seems to strongly
predict specific response status (79). Thus, a subset of patients that appear to be

responding to the medication are in fact having a placebo, or non-specific response. We,
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therefore, performed association tests with this phenotypic subtype in order to limit
heterogeneity by accounting for non-specific response to SSRI medication.
1.4.3 Population Stratification

One of the primary concerns for population-based genetic association studies is
ethnic stratification. The desire to avoid the biases due to population stratification has
caused family-based association tests to become quite popular in human genetics (80).
Unfortunately, as stated above, pharmacogenetic studies generally cannot efficiently
collect family based samples. Population stratification occurs when cases and controls
have different allele frequencies due to differences in background population that is
unrelated to outcome status. In the work described in this thesis, the majority of markers
investigated showed some level of differentiation in allele frequency based on self-
reported race. For population stratification to have a confounding effect on genetic
association studies, there also must be a difference in baseline response (or disease) rates
between the ancestry subgroups (81). In the STAR*D sample set, described in Chapters 3
thru 7, using self-reported race as a proxy for ancestry, several differences in response
and tolerance existed across racial groups, indicating the need to adjust for population
stratification in this sample.

Uncorrected population stratification can cause false positive associations and
can also mask true associations that occur within subpopulations (81). Several methods
have been proposed to adjust and correct for population stratification. The simplest
involves subdividing the clinical population based on self-reported race and testing for

association within each substratum. It has been shown that self-reported race correlates
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well with genetic ancestry based on microsatellite and large-scale SNP genotyping
(82,83). We used this method in our candidate gene studies in the STAR*D sample.

Another method, known as genomic control (GC), uses unlinked markers across
the genome to produce a scaling factor that is proportional to the degree of stratification
(84). This scaling factor is then used to adjust the % value of individual SNP tests for
differences in population background. The disadvantage of this method is that it applies
the same scaling factor to all SNPs tested, when clearly some SNPs are more
differentiated across populations than others. We used this GC procedure in our candidate
gene studies in the fluoxetine sample, as described in Chapter 2.

An alternative to the GC procedure is structured association, which also uses
unlinked markers to detect stratification, then attempts to define underlying subgroups
within the stratified sample (85). After subpopulations are identified, association testing
can then be performed within homogeneous subpopulations and additionally, a composite
test statistic across all subpopulations can be calculated. A popular Markov chain Monte
Carlo (MCMC) method for modeling population substructure is implemented in the
program structure, which estimates the proportion of ancestry (Q) from “K” populations
for each individual (86). Given that population subdivisions may be not occur as discrete
clusters and the presumed levels of admixture in samples drawn from the United States,
correctly choosing “K” is a difficult task. One way to select “K” is to run the model for
several values of “K”, and then use the estimates of the posterior probability of the model
fit to select the most parsimonious value. In our whole genome association study
described in Chapter 7, we used a structured association method to correct for population

stratification within the STAR*D sample.
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An alternative to using self-reported ancestry and structured association is a
method called principal components analysis (PCA). This multivariate method utilizes
genotype data to infer continuous axes of genetic variation. Intuitively, the axes of
variation reduce the data to a small number of dimensions, describing as much variability
as possible between the samples (87-90). A series of principal components are generated
which capture variability between samples due to stratification that are then used as
covariates in regression analyses. This method is not sensitive to the number of axes
inferred or subject to the computational limits like structured association methods.

1.4.4 Corrections for Multiple Comparisons

Another challenge to association studies is the issue of multiple comparisons. Put
another way, the likelihood of type I statistical error increases when one subjects a
number of independent observations to the same significance criterion that would be used
when considering a single event. In LD mapping, often several SNPs per gene are
genotyped (or several thousand in whole genome studies), and some markers will reach
statistical significance due to chance alone. One way to account for these multiple
comparisons is to use a Bonferroni correction. For example, if we set a p <0.05 Type |
() error rate as our study-wide criteria for significance and interrogate 500 markers. A
Bonferroni corrected criteria for significance would be p < 0.0001 (o/N) for each
individual SNP comparison. Bonferroni correction assumes the individual tests are
independent of each other and clearly this is not the case for closely linked SNPs due to
linkage disequilibrium, therefore this correction is generally considered overly

conservative by geneticists (91). Permutation based empirical significance testing can
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allow for more accurate assessment of association in the presence of linkage
disequilibrium (92).

An additional method for controlling type I error is to use a split sample study
design (93). With this method a study sample could be split into two roughly equal
halves: a discovery set, in which all markers will be genotyped, and a validation set, in
which only the markers that reached the stated significance threshold in the discovery set
are genotyped. Besides the cost-savings in terms of genotyping load this method also
sidesteps some of the multiple testing issues since in the validation set only a subset of
the total markers are tested, which requires less adjustment. However, by splitting the
sample, we also greatly sacrifice power (94,95). We utilized a split sample design for our
whole genome association study. There is still debate on which design is most powerful

for whole genome association studies.

1.5 Summary of Chapters

In this study, we interrogated naturally occurring genetic variants for association
to antidepressant response. The goal of this work is to identify genetic markers that can
help guide drug choice or dosing of psychopharmacological therapy with an SSRI. This
work was performed using two clinical populations of depressed subjects administered
SSRIs: a small (N=96) population taking fluoxetine (Chapters 2), and a larger (N=1,953)
population taking citalopram (Chapters 4 thru 7). A flow chart of the projects described
in this thesis is shown in Figure 1.1.

In Chapter 2 of this dissertation, we utilized dHPLC and direct sequencing

approaches to identify new variants within the SSRI pharmacodynamic target gene, the
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serotonin transporter (SLC6A4). We focused our investigation on the coding regions,
intron-exon boundaries and 5’ conserved non-coding sequence of this gene. To this end
we screened 7.4kb in each of 96 patient samples in the fluoxetine population and
discovered 27 variants of which 21 had not been previously described within the dbSNP
database. Only one SNP (rs25531) showed modest association with our response
phenotype (p < 0.01). Also of interest, the promoter length polymorphism did not show
association within the fluoxetine sample (96).

Chapter 3 attempts to further explore association between the serotonin
transporter and antidepressant response utilizing a much larger population taking
citalopram (STAR*D). We selected tagSNPs and genotyped 10 SNPs and the promoter
length polymorphism in the SLC6A4 locus. No tagSNPs or haplotypes, including the
variants that were associated with fluoxetine response in Chapter 2, were significantly
associated with citalopram response or response specificity (97).

In Chapter 4, we investigated the role of the ETS transcription factor FEV for its
role in citalopram response. We utilized HAPMAP data along with the direct sequencing
of coding regions, intron-exon boundaries and 5’ conserved non-coding sequence to
select tagSNPS and other variants of interest within FEV. We then genotyped these nine
markers in the entire STAR*D clinical population searching for association with
citalopram response. Several markers were significantly associated with citalopram
response or response specificity (p < 0.05). In collaboration with Miles Berger from the
laboratory of Larry Tecott, we also assessed the role FEV using knockout mice of the

murine homologue to FEV, Pet-1. Utilizing the tail suspension test we observe an
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approximate 50% reduction in immobility time in wild type mice however, Pet-1
knockout mice show no difference (p <0.01).

Chapter 5 explores the role of the SSRI pharmacodynamic candidate genes:
activator protein 2 beta (AP-2f), activator protein delta (AP-23), serotonin 1B receptor
(HTR1B), and its adaptor protein pl11 (S100A10), for association to citalopram response
utilizing an LD-based candidate gene approach. We genotyped 26 tagSNPs across these
four candidate genes. No tagSNPs or haplotypes were significantly associated with
citalopram response or response specificity.

In Chapter 6, we make use of a gene-centric approach by genotyping
approximately 40,000 SNP markers with about 20,000 non-synonymous, coding SNPs
and 20,000 tagSNPS in the discovery set of the citalopram population. Using a
combination of low p value and high odds ratio as selection criteria, we then chose SNPs
that were then genotyped in the remaining half of the citalopram population, in an effort
to validate the initial association. We attempted to replicate 45 SNPs that were most
highly associated with our response phenotype. One of these SNPs (rs6716834)
replicated their initial association in the validation set (p = 0.005) within the African
American ethnic group. As a secondary analysis, we also attempted to utilize the power
of the entire sample in a one-stage design in which 12 SNPs showed significant
association with response in the entire citalopram population, 5 in the Caucasian
subgroup and 7 in the African American subgroup.

In Chapter 7, we use a genome-wide approach by genotyping approximately
500,000 SNP markers spread across the genome in the citalopram population. We use a

two-stage design in which we split the sample, and then use one group to look for
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associated markers (discovery) and the other group to validate the initial associations
(validation). A number of markers that were highly associated within the discovery
sample were replicated in the validation sample. This work has revealed a number of
interesting genes that may play an important of role in antidepressant response. It may
also identify potential pathways for citalopram’s molecular mechanism of action, which
is not fully understood.

Chapter 8 summarizes these results and discusses the current challenges facing
pharmacogenetics and complex disease association mapping in general, and offers

suggestions for future directions.
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CHAPTER 2
SEQUENCE ANALYSIS AND VARIANT DISCOVERY IN THE SEROTONIN
TRANSPORTER (SLC6A4) FOR ASSOCIATION WITH RESPONSE TO

FLUOXETINE'

2.1 Introduction

Major depressive disorder (MDD) is a prevalent and disabling psychiatric
disorder characterized by depressed mood, a number of neurovegetative symptoms, and
functional impairment (1). Selective serotonin reuptake inhibitors (SSRIs) are effective
medications for MDD and are the most widely prescribed antidepressants worldwide, and
among the most commonly prescribed medications of any type. Despite recent advances
in antidepressant pharmacotherapy, response rates are variable and are typically about
60% for the first drug administered (2). The underlying mechanism for this variation is
complex, involving both environmental and genetic factors and their interaction (3-5).

One possible genetic mechanism involves the SLC6A4 gene, which encodes the
serotonin transporter. This protein initiates the antidepressant effect of SSRIs, which are
drugs that are thought to act primarily by terminating serotonin reuptake by the
presynaptic serotonergic neuron.

Many studies have tested for genetic association between deoxyribonucleic acid
(DNA) variants in the serotonin transporter and SSRI response (6). Most studies have
focused on a single common polymorphism located in the promoter region of SLC6A4.

This insertion/deletion polymorphism (HTTLPR), reported to be 44 base pairs (bp) in

T This chapter has been published previously: Kraft J.B., Slager S.L., McGrath P.J., & Hamilton S.P. “Sequence Analysis of the
serotonin transporter and associations with antidepressant response.” Biological Psychiatry 2005; 58(5): 374-381. Reprinted with
permission.
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length, has two common alleles, the long and the short, with the long allele having been
shown to have higher in vitro transcription than the short allele (7). The results of these
studies have been mixed. Two studies, including one of our own, found no association
between SSRI response and the promoter variant (8,9). Multiple studies have reported a
positive association with the long allele (10), and two studies have reported a negative
association between the long allele and treatment response (11,12). This disparity among
these studies might be partially explained by the fact that the studies finding positive
association between response and the long allele were investigating Caucasian subjects,
whereas those that found a negative association were studying Asian populations. No
study has focused on Africans or African Americans, and the allele frequency differences
between African American and other populations add complexity to association studies in
diverse populations (13). Meta-analysis suggests that this polymorphism might be
associated with MDD itself, although with a small effect (14). There is an equivocal
imaging literature regarding the actual functional effect of HTTLPR genotype on
transporter availability (15,16), although some groups have reported associations between
genotype and functional imaging phenotype (17,18).

SLC6A4 covers 37.8 kilobases (kb) of genomic sequence on chromosome
17q11.2, contains a 630-amino-acid open reading frame, and has 15 exons, including 2
non-coding exons, designated 1A and 1B (19). A study done by Glatt and colleagues
screened the exonic regions for variants in an uncharacterized sample of 450 people and
found the locus to contain no common variants with the minor allele frequency (MAF) >
10%. They did, however, find 18 rare variants (MAF < 1%) and 2 variants occurring at

allele frequencies of 0.01 and 0.03 (20). A mutation screen in a much smaller disease
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sample similarly yielded no coding variants (21). Given that SLC6A4 is the therapeutic
target of SSRIs, we sought to screen a well phenotyped population of persons with MDD
for DNA variants in exons as well as surrounding introns to accomplish two things: 1) to
identify SLC6A4 DNA variation in a depressed population; and 2) to further investigate
the role of the SLC6A4 locus in antidepressant response. This work represents a natural
extension of our previous work using the same gene and clinical sample, in which we
identified association between anonymous markers and antidepressant response (9).
Specifically, we found a SNP, rs25533, in the promoter region associated with
antidepressant response but found no association with the HTTLPR and antidepressant
response. To do this, we tested for association between variants in the sample and a
response phenotype. We tested both single variants as well as haplotypes. We also
describe biochemical assays suggesting that a single nucleotide polymorphism (SNP) in
the promoter region of the gene might play a role in the transcription of the serotonin

transporter.

2.2 Materials and Methods
2.2.1 Fluoxetine Study Sample

We genotyped 96 research subjects diagnosed with unipolar MDD enrolled in a
National Institute of Mental Health—funded fluoxetine discontinuation protocol (Patrick J.
McGrath, principal investigator, New York State Psychiatric Institute). Diagnoses were
established with the Structured Clinical Interview for DSM-IV Axis I Disorders—Patient
Edition (22). No minimum score on a depression severity rating scale was required for

inclusion. Baseline medical screening included medical history, physical examination,
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electrocardiogram, complete blood count, urinalysis, blood chemistry, thyroid function,
and a urine drug screen.

Exclusion criteria were: significant suicide risk; pregnancy, breastfeeding, or
absence of effective contraception for women; unstable physical disorders; neurological
disorders significantly affecting central nervous system function, including history of
seizures; lifetime history of any organic mental disorder, psychotic disorder, or mania;
substance abuse or dependence active in the previous 6 months, excepting nicotine
dependence; concurrent use of medications suspected to cause or exacerbate depression
(e.g., B-blockers or corticosteroids) or to have significant antidepressant or anxiolytic
properties; clinical or laboratory evidence of hypothyroidism without adequate and stable
replacement; history of non-response to an adequate SSRI trial; or SSRI in a past or
current depressive episode (defined as a 4-week trial of a minimum of 40 mg of
fluoxetine or its daily equivalent). Study subjects were included if they occasionally took
a non-benzodiazepine hypnotic, thyroid hormone replacement at a constant and effective
dose for at least 3 months before the study, or oral contraceptives not temporally
associated with onset or exacerbation of depression. Diuretics, oral hypoglycemics, and
antihypertensives were permitted. Subjects in an established psychotherapy not believed
to be effective for depression (i.e., other than interpersonal or cognitive behavioral
therapy) were included. No subject began psychotherapy at entry or during the study.

Subjects’ response patterns were categorized as responders, non-responders, or
placebo-responders by pattern analysis after 12 weeks of open-label fluoxetine
monotherapy (23). Subjects were subsequently followed for 12 months with double-blind

fluoxetine maintenance versus placebo and again categorized by response type. Response
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was judged by use of the Clinical Global Impression of Improvement score, whereby a
score of “much improved” or “very much improved” was required for response. The
mean (SD) baseline score on the 17-item Hamilton Rating Scale for Depression (HAMD-
17) for all subjects was 23.18 (4.9) (n = 93, missing = 3). The mean end of treatment
HAMD-17 score for responders was 4.42 (2.9) (n = 74, missing = 3). The mean end of
treatment HAMD-17 score for non-responders was 15.6 (6.0) (n = 17, missing = 2).

An additional response phenotype was generated with response pattern analysis to
attempt to decrease the apparent response to medication that is actually a placebo
response. This analysis is based on the observation that a pattern of delayed but sustained
response to medication characterizes “placebo” or non-specific response. Response
pattern was defined in the following manner (24,25). “Specific” response was defined as
response at week 12 with response beginning after the second week and sustained until
week 12; “non-specific” or “placebo-pattern” response began in weeks 1 or 2 and was not
sustained for all subsequent weeks until week 12. The average (+SD) age was 37.1 £ 11.6
years, and the male/female ratio was 49% to 51%. There were 77 responders (80%) and
19 non-responders (20%) to a 12-week trial of fluoxetine. Use of pattern analysis
indicated that 20 of 77 responders (26%) were non-specific responders. The breakdowns
of non-responder, responder, & specific responder can be seen in Figure 2.1. The subject
population was 78% Caucasian, 6% African American, 8% Hispanic, 5% Asian, and 3%
other. No significant differences in ethnicity (by exact test, p = 0.07) or age (by t test, p =
0.19) were found between responders and non-responders. Institutional review board
approval was obtained from the New York State Psychiatric Institute and the University

of California, San Francisco, and each research participant provided informed consent.
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2.2.2 Gene Sequence and Polymerase Chain Reaction Primers

Genomic and complementary DNA sequences were obtained from GenBank
(accession numbers AC104984 and BC069484), and primers were designed with Primer3
software (26) and manufactured by Invitrogen (Carlsbad, California). Primers were
designed to give products between 350 bp and 600 bp in length. These products were
designed to span exons and include flanking intronic sequence at the 5" and 3’ ends.
Eighteen primer pairs were designed to screen 7.9 kb of sequence, including all 15 exons
(NT_010799) and the promoter length polymorphism (HTTLPR) (accession numbers
AB061799 — AB061801) in the promoter region (Table 2.1).
2.2.3 DNA Analysis

Genomic DNA was extracted from whole blood with a Puregene genomic DNA
purification kit (Gentra Systems, Minneapolis, Minnesota). Deoxyribonucleic acid was
quantified with an ND-1000 spectrophotometer (NanoDrop Technologies, Rockland,
Delaware).
2.2.4 DNA Amplification

For all 96 samples, amplification was performed in a final volume of 10 puL.
containing 20 ng genomic DNA template, 50 pmol/L deoxyribonucleoside triphosphates
(dNTPs), 1 mol/L anhydrous betaine, 50 mmol/L KCI, 20 mmol/L Tris-HCI (pH 8.4), 2.5
mmol/L MgCl,, 200 nmol/L primers, and 0.25 units Platinum Taq DNA polymerase
(Invitrogen, Carlsbad, California), then cycled according to a touchdown protocol at
94°C for 3 min, followed by 7 cycles at 94°C for 30 sec, 65°-59°C for 30 sec (decreased
by 1°C intervals per cycle), and 72°C for 30 sec, followed by 38 cycles at 94°C for 30

sec, 58°C for 30 sec, and 72°C for 30 sec, with a final 10 min at 72°C. For amplicons 1
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and 8, Platinum Taq High-Fidelity DNA polymerase was used along with MgSO4
concentration of 2 mmol/L in place of MgCl,. For amplicons 1, 8, and 16, the touchdown
protocol was modified to annealing temperatures of 72°C, 60°C, and 61°C, respectively.
For the HTTLPR, amplification was performed in a final volume of 6 pL containing 20
ng genomic DNA template, 200 umol/L dNTPs, 1.5 mol/L anhydrous betaine, 15
mmol/L (NHy4),SO4 (pH 9.3), 50 mmol/L Tris-HCI (pH 8.4), 2.5 mmoL MgCl,, 0.1%
Tween 20, 500 nmol/L primers, and 0.25 units JumpStart AccuTaq LA DNA polymerase
(Sigma-Aldrich, St. Louis, Missouri), then cycled at 94°C for 1 min, followed by 45
cycles at 94°C for 30 sec and 68°C for 4 min, with a final 30 min at 68°C. All reactions
were performed on a GeneAmp PCR System 9700 (Applied Biosystems, Foster City,
California) in 384-well plates (MJ Research, Waltham, Massachusetts).
2.2.5 Denaturing High-Performance Liquid Chromatography Screening

All amplicons with the exception of 1, 8, 16, and the HTTLPR were screened by
denaturing high-performance liquid chromatography (dHPLC) on a WAVE Nucleic Acid
Fragment Analysis System (Transgenomic, Omaha, Nebraska). Denaturation temperature
and column gradient conditions were determined with Wavemaker software v4.1.44
(Transgenomic, Omaha, Nebraska). All samples were amplified and screened by eye for
variant waveforms. Samples with deviation from the most common waveform along with
at least one sample with the common waveform were subsequently subjected to direct
sequencing. Amplicons 1, 8, 16, and the HTTLPR were subjected to direct sequencing

with primary screening by dHPLC.
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AMPLICON Region PRIMERS SIZE m
LPR HTTLPR ggcgttgccgctctgaatgc 419 68
gagggactgagctggacaaccac
1 Exon 1A  dagcgcaaccccatccagcgggagce 390 72
cgctggggcgcatgcacctectcg
2 Exon 1B caccccagcatcagtaacct 493 58
cccctttgtcttggatgeta
3 Exon 2 atggactgccatgtagcaaa 498 58
agctcagccactagggtggt
4 Exon 2 agagctcggaggtgatcca 454 58
tcgcagcctgtgatactgac
5 Exon 3 ggatgtgatcctgcctgttc 519 58
tgcctaaggcctgactgatt
6 Exon 4 gcctggagtcecttggaatg 501 58
actcccacccctgatagctt
7 Exon 5 tgtgctttgtggtccttcag 454 58
agagagagggtgcatcatgg
8 Exon 6 tgactccaagggttgtgatctttctge 515 60
gattcaggcataaacccatccagt
9 Exon 7 ggcttcagtgtgcaagtcty 454 58
ccaatcaccttcctccacac
10 Exon 8 catggcagtcagagcttcag 461 58
catgcccagcecttctttg
11 Exon 9 tgtcaaccacctcctcctet 416 58
gccaagggacagtgcttaat
12 Exon 10  Cttacccctccctectgtte 456 58
gtgggatctgcggtaaaatg
13 Exon 11 cacgcctggctaattttcac 487 58
atcgggaggtcacatcttgt
14 Exon 12 gtaggaattccggcttgtca 452 58
ggattacaggtgcccatcac
15 Exon 13 tcacatcttgggaatttccty 484 58
aggctttgggagatgcctta
16 Exon 14 aaggctcatcattttcttccat 543 58
gggaatatgtccaggggaat
17 Exon 14 tccgcttgaatgctgtgtaa 460 58
tggctagcgagatagcatcc

Table 2.1: PCR amplicon information including forward & reverse primer sequences,
length in basepairs (bp), and primer annealing temperature.
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2.2.6 DNA Sequencing

Before direct sequencing, the excess primers and deoxynucleotides in the
polymerase chain reaction (PCR) products were then degraded by adding a 5-pL solution
of 1 unit of shrimp alkaline phosphatase (Roche, Indianapolis, Indiana), 0.5 units of
Escherichia coli Exonuclease I (USB, Cleveland, Ohio), 5 mmol/L MgCl,, and 50
mmol/L Tris-HCI (pH 8.5). The mixture was incubated at 37°C for 90 min, followed by
deactivation for 15 min at 95°C. Sequencing reactions were performed with BigDye v3.1
(Applied Biosystems, Foster City, California) chemistry at a 1/16th scale in 5 pL total
volume containing 1 pL template (approximately 25 ng), 2.5 pmol primer, 0.75 pL
Applied Biosystems 5x buffer, .5 uL BigDye v3.1, and 1.75 pL water. The reactions
were cycled at 96°C for 3 min, followed by 25 cycles at 96°C for 10 sec, 50°C for 5 sec,
and 60°C for 4 min. The reactions were performed on a GeneAmp PCR System 9700
(Applied Biosystems) in 384-well plates (MJ Research). Reactions were then purified
with Montage MultiScreen-SEQ (Millipore, Bedford, Massachusetts) plates and the
Hamilton Microlab 4200 (Hamilton, Reno, Nevada) 96-probe liquid robotic system.
Samples were analyzed on a Prism 3730x] DNA Analyzer (Applied Biosystems), and
analysis of mutations was performed with Mutation Surveyor v2.30 software
(SoftGenetics, State College, Pennsylvania). For SNP 1 (rs25531), samples that were
homozygous for the minor G allele were amplified, run on a 2% agarose gel, then gel
purified according to the manufacturer’s instructions (Qiagen, Valencia, California) to
separate the long and short HTTLPR alleles and then subject to direct sequencing. All

variants were submitted to dbSNP. With this sample set, the probability that we would
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detect variants at a minor allele frequency of 1% was 85.2%, and >99.9% for variants
with minor allele frequencies of >5%.
2.2.7 Genomic Control Genotyping

To correct for population stratification within the sample collection, we
previously reported the results of the genomic control method (27,28) and found minimal
evidence of stratification (9). In brief, we genotyped 20 C/T SNPs distributed over the
majority of chromosomes and calculated the ¥ tests of association. The average of these
statistics was used to correct for the observed stratification. In the response group versus
non-response group comparison, genomic control analysis resulted in A of 1.21,
indicating a need to adjust p values for slight population stratification. In the other two
phenotypic comparisons, specific response versus non-specific response and specific
response versus all others, genomic control analysis resulted in A < 1.0, indicating that we
could not detect stratification between these two patient populations. This inflation factor
is then used to adjust for potential population stratification. If there is truly no inflation
due to population stratification, then the inflation factor would have a value of 1. Our
estimated inflation factor indicates modest stratification, but this is not statistically
significant, though our lack of significance can be due to low power (sample size = 20
markers). Regardless, we can still use our estimate of 1.21 to adjust for possible
stratification.
2.2.8 Statistical Analysis

Three phenotypic comparisons were made, based on the results from the response
pattern analysis described above. The comparisons made were 1) all responders (specific

and non-specific) versus non-responders; 2) specific responders versus both non-specific
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responders and non-responders; and 3) specific responders versus non-specific
responders. Single-point association tests were performed by logistic regression with the
statistical package R 1.6.1 (29). Alleles were coded as 0, 1, or 2, corresponding to the
presence of 0, 1, or 2 copies of the rare allele. This coding scheme was chosen because of
its robustness to departure from the true additive genetic model (30). Tests for
associations using and multi-marker haplotypes were implemented in COCAPHASE
v2.403 (31). This program uses an unconditional logistic regression based on a log-linear
model and reports likelihood ratio tests. The expectation-maximization algorithm infers
haplotypes and calculates maximum-likelihood frequency estimates. Permutation
(100,000 permutations) was used to estimate the significance of the results for haplotype
analyses. COCAPHASE was also used to estimate linkage disequilibrium (LD) across
selected regions of SLC6A4.
2.2.9 Electrophoretic Mobility Shift Assays

Oligonucleotides were designed for the G and A alleles of rs25531 (5'-
GCATCCCCCCTGCACCCCC(G/A)GCATCCCC-3") as well as the AP-2 consensus
oligonucleotide (5'-GATCGAACTGACCGCCCGCGGCCCGT-3") and manufactured by
Invitrogen. Oligonucleotides were annealed to make double-stranded DNA (dsDNA),
then labeled by 3’-end labeling with Klenow fragment (New England Biolabs, Beverly,
Massachusetts) in a 50-pL reaction consisting of 5 pLL of 10x Klenow buffer (100
mmol/L Tris, 500 mmol/L NaCl, 100 mmol/L MgCl,, and 10 mmol/L dithiothreitol), 2
uL (2 pmoL/uL) dsDNA template, 1 pL (5 units) Klenow, 1uL alpha deoxycytidine
triphosphate (adCTP) (3000 Ci/mmol), 3 pL of ANTP mixture (100 pmol/L of

deoxyadenosine triphosphate, deoxyguanosine triphosphate, and deoxythymidine
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triphosphate), and 38 pL. water. Labeled oligonucleotides were separated from
unincorporated adCTP by means of Sephadex G-50 spin columns (Amersham
Biosciences, Piscataway, New Jersey). Binding reactions were done in 15 pL consisting
of 1 uL (5 ng) HeLa cell nuclear extracts (Santa Cruz Biotechnology, Santa Cruz,
California), 3 pL 5% binding buffer (50 mmol/L Tris, 750 mmol/L KCl, 2.5 mmol/L
ethylenediaminetetraacetic acid, 0.5% Triton-X 100, 62.5% glycerol [vol/vol], and 1
mmol/L DTT), 1 uL. (1 pg) poly dA - dT, 1 uL (approximately 300,000 counts per
minute) labeled oligonucleotide, and 9 pL. water. Binding reactions were loaded onto a
6% non-denaturing polyacrylamide gel and run at 180 V for 2 hours at 25°C. The gel was
transferred to 3M paper and dried for 1 hour before being exposed to a Phosphorlmager
screen (Amersham Biosciences) overnight. The optical density of each band was

determined with ImageQuant 3.3 software (Molecular Dynamics, Sunnyvale, California).

2.3 Results
2.3.1 Sequencing Results

We screened 2628 bp of exonic and 4783 bp of intronic or flanking sequence,
totaling 7.4 kb in each of 96 samples. This translates to 712 kb screened in our
population. Our effort screened more intronic sequence (2:1 ratio) than had been done by
other studies (20,21).
2.3.2 SNP Detection

Our effort yielded 27 variants in the SLC6A4 locus, comprising 25 SNPs and 2
insertion/deletions. Of these, 21 were newly discovered variants, including 20 nonexonic

variants, 1 SNP in an untranslated exon, and 1 SNP in a coding exon (Table 2.2). Sixteen
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of the 27 were singletons (3 exonic), and only 2 had MAFs greater than 10%. Of special
interest was a SNP (rs25531) just upstream of the HTTLPR. This SNP, which had been

previously encountered in SLC6A4-sequencing screens, had an MAF of 10% (21,32). It

resides in the complex of repeat units that constitute the HTTLPR, and it occurs 18 bp 5’
to the site where a 43-bp insertion/deletion defines the 14-repeat (deleted, or “short”) or

16-repeat (inserted, or “long”) common HTTLPR alleles.

2.3.3 Single Marker Association

In our primary phenotypic comparison, response versus non-response to
fluoxetine, we tested SNP rs25531, the only SNP with a sufficient minor allele frequency
that had not been already analyzed in our previous work (9). We first tested for an
association by using an additive model and found nominal statistical significance (p =
0.03); however, because there were only two individuals who were homozygous for the
minor allele (both non-responders), we also tested for an association by using a dominant
model (carrier versus noncarrier of the minor allele) and found non-significant results (p
=0.09, odds ratio .37, 95% confidence interval 0.12—1.17). The odds ratio suggested that
rare allele carriers were less likely to respond to treatment. This variant showed no
significant deviation from Hardy-Weinberg equilibrium.

We also tested for association between this variant and two other response
phenotypes. Because we are able to determine the specificity of response pattern, we are
able to separate specific (“true*) responders from non-specific (“placebo”) responders
(see Methods and Materials for description of pattern analysis). Our two phenotypes
based on this refinement consist of 1) specific responders versus all others (i.e., non-

specific responders and non-responders); and 2) specific responders versus non-specific
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responders. Both comparisons resulted in no significant association between the
phenotype and rs25531. Four known SNPs, also found by sequencing in this population
(rs6353, rs6354, rs6355, and rs140700) (Table 2.2), were previously tested for
association in this same population with fluoxetine response, none of which were
significantly associated with treatment response (9). The low allele frequencies seen for
the remainder of the newly discovered variants provides insufficient power to detect
association between the variant and phenotype in our sample, thus we did not formally
test for association with these variants.
2.3.4 Haplotypic Association

To examine potential interaction between alleles from different variants within a
gene, we inferred haplotypes from unphased genotypes and tested for association with
our primary phenotype. For this analysis, we focused on the SNP rs25531 and two other
nearby variants. One is the HTTLPR and the other is an SNP near the non-coding exon
1A (rs25533), which was nominally associated with our responder versus nonresponder
phenotypic comparison in our previous work (9). Thus, we used genotypic data for the
SNP rs25531 described from the previous section in conjunction with our HTTLPR and
1s25533 genotypes obtained from our previously published work (9). The expectation
maximization algorithm estimated six haplotypes (Table 2.3). We found a significant
global test of association (p = 0.02); however, the 100,000 permutation global p value
was nonsignificant (p = 0.10). Of interest, inspection of the inferred haplotypes suggests
that a haplotype containing the A, 14-repeat, and T alleles of rs25531, HTTLPR, and
1$25533, respectively, is more common in responders, whereas a haplotype containing

complete mismatches for these variants (G, 16-repeat, C) occurs more often in non-
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responders (Table 2.3). On the basis of allele frequencies of the individual markers, we
would expect the A—16-repeat—T haplotype to be the most common, and indeed it was
estimated to occur at nearly equivalent allele frequencies in responders (48%) and non-
responders (50%).
2.3.5 Linkage Disequilibrium

We estimated LD between SNP rs25531, the HTTLPR, and the nearby SNP
rs25533 by using D’ and r>. The LD seemed to be strong among the three markers (Table
2.4) according to D’ but less so according to another metric of LD, r*. We also estimated
LD within the responders and the non-responders and observed stronger LD among the
markers in the responders than in the non-responders (Table 2.4), although given the
potential for wide variability due to small sample sizes, comparisons warrant caution.
2.3.6 Functional Characterization of SNP rs25531

We sought to analyze further the role that rs25531 plays in antidepressant
response. To confirm that rs25531 lies upstream of the insertion/deletion constituting the
HTTLPR, a matter of debate in the literature, we gel purified and sequenced separately
the long and short alleles of samples homozygous for the minor G allele(32,33). The
resulting sequence data show that the polymorphism is 5’ to HTTLPR and can occur in
the context of a long or short HTTLPR allele. This polymorphism still lies within the
greater repeat structure of the promoter region. According to the repeat architecture of a
previous sequence analysis of the HTTLPR (32), this polymorphism occurs 5’ to the 43-
bp (not 44-bp, as is typically reported) deletion that delineates the most common 14- and
16-repeat alleles seen in the human population. In other words, rs25531 occurs within the

sixth repeat, whereas the deleted segment occurs within the seventh through ninth repeats
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of the most common configuration of the HTTLPR. The A allele, also seen in
chimpanzee, occurs in the 20-bp  allele of Nakamura et al, whereas the minor G allele
corresponds to the 20-bp p allele. Our sequence data indicate that the 43-bp deletion is
defined by removing 15 bp of the o repeat, an entire 20-bp  repeat, and eight bases of a n
repeat. This region is outlined in Figure 2.2.

The base substitution in rs25531 alters a consensus binding sequence for the
activator protein 2 (AP-2) transcription factor. To test the possibility that this variation
changes the binding properties of this segment of DNA for AP-2, we carried out a series
of electrophoretic mobility shift assays. First, we determined that oligonucleotides
containing rs25531 and flanking sequence were retarded by nuclear extracts. The banding
pattern from both the G and A oligonucleotides matched that of a consensus recognition
sequence for AP-2 (Figure 2.3). This protein—DNA interaction was quantitatively greater
in the less common G allele oligonucleotide than that seen with major A allele
oligonucleotides but less than that of consensus AP-2 oligonucleotides. This effect was
inhibited by incubating nuclear extracts with excess unlabeled G or A allele
oligonucleotides (data not shown), as well as excess unlabeled consensus AP-2
oligonucleotides. This effect was specific for AP-2, because unlabeled consensus SP1
oligonucleotides failed to inhibit this effect. Negative control samples lacking nuclear

extract did not lead to any bands other than the free probe (data not shown).
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Noncoding Noncoding No. of
Location Coding (Exonic) (Intronic) Position ¥ Variant SNP # Coding Chromosomes dbSNP
Promoter 419 26247 A->G 1 N 19 rs25531
Exon 1A 75 315 27876 G—A 2 N 1 rs34845320
28063 C-T 3 N 2 rs35206195
Exon 1B 97 396 40695 C—-A 4 N 37 rs6354
40731 C—-A 5 N 1 rs28914831
40784 G—-A 6 N 1 rs28914827
40868 C-oT 7 N 1 rs34871173
Exon 2 343 123 174 41391 T-C 8 N 1 rs7212502
41398 G—-A 9 N 1 rs34102420
41783 G-C 10 Y 2 rs6355 t
Exon 3 135 384
Exon 4 220 281 45158-45159  ATC 11 N 1 rs34019821
45549 AA 12 N 1 rs34459452
Exon 5 139 315
Exon 6 135 370 47204 G-A 13 N 21 rs140700 t
47244 C-T 14 N 1 rs35886704
47549 G—-A 15 N 1 rs35721756
Exon 7 104 267 47684 G->A 16 N 5 rs34956669
47817 G-C 17 N 4 rs34083002
Exon 8 128 333 50551 G—->A 18 N 4 rs34149483
Exon 9 113 303 52263 G-A 19 Y 1 rs6353 t
52400 G-A 20 N 2 rs35842343
Exon 10 132 324 53113 G-A 2 N 1 rs34954201
Exon 11 100 387 54156 G->T 22 N 2 rs35467658
54293 cC-G 23 N 1 rs34332000
54300 G-C 24 N 1 rs34876533
Exon 12 101 351 55780 C-»T 25 Y 1 rs33919215
Exon 13 168 316 60197 T-C 26 N 1 rs34129293
Exon 14 75 440 267 65307 C->T 27 N 1 rs34500314

Table 2.2: Results for variant discovery sequencing in SLC6A4 within the fluoxetine

sample set. Chimpanzee reference allele in boldface and number of chromosomes out of
192 indicated. { indicates a SNP was previously identified and present in dbSNP at time
of study. { Indicates position in reference to accession AC104984.14.
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Haplotype Frequencies
&\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Non-Responders Responders
A-14RPT-T 11 (29%) 67 (44%)
A - 16RPT -C 0 (0%) 2 (1%)
A-16RPT-T 19 (50%) 74 (48%)
G-14RPT-T 2 (5%) 0 (0%)
G- 16RPT - A 6 (16%) 6 (4%)
G-16RPT-T 0 (0%) 5 (3%)

Table 2.3: Estimated Frequencies for haplotypes containing variants in the promoter and
exon 1A region of SLC6A4. Haplotypes consist of variants: rs25531, HTTLPR, and
rs25533 (in order). The number of repeats is indicated by 14RPT or 16RPT,
corresponding to “short” and “long” alleles, respectively.
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rs25531 HTTLPR |  rs25533
> rs25531 HTTLPR |  rs25533
rs25531 1.00 Y 0.72
e2553 100 k\\\\\\\\%\%\\\\\\x\\\\\\\\\\{\\\i\i\\\\\\\\\\&

Table 2.4: Linkage Disequilibrium estimates with R? and D’ using three markers
(rs25531, HTTLPR, and rs25533). Shown in panel A.) LD estimates in the entire sample
using R’ (above diagonal) and D’ (beneath diagonal) and B.) LD estimates using D’ in
the responders (above diagonal) and non-responders (beneath diagonal).
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TGCAGCCCTCCCAGCATCCCCCC
TGCAACCTCCCAGCAACTCCC
TGTACCCCTCCTAGGATCGCTCC
TGCATCCCCCATTATCCCCCCC
TTCACCCCTCGCGGCATCCCCCC
TGCACCCCCRGCATCCCCCC
TGCAGCCC[CCCCAGCATCTCCCC
TGCACCCCCAGCATCCCCCC
TGCAGCCC]TTCCAGCATCCCCC
TGCACCTCTCCCAGGATCTCCCC
TGCAACCCCCATTATCCCCCC
TGCACCCCTCGCAGTATCCCCCC
TGCACCCCCCAGCATCCCCCCA
TGCACCCCCGGCATCCCCCC
TGCACCCCTCCAGCATTCTCCT

< T PR DI INOINO N DQ

Figure 2.2: Nucleotide sequence of SLC6A4 promoter repeat polymorphism.

A.) Repeat segments are designated as in Nakamura et al (2000) and represent a 16-
repeat sequence. The location of the A/G single nucleotide polymorphism rs25531 is
designated by a bolded “R” in the first repeat. The 43 base pair sequence deleted in
“short” or 14-repeat alleles is marked by brackets. B.) Representative electropherograms
showing rs25531 homozygote common AA (1), homozygote rare GG (2), and
heterozygote AG (3). Panels 4 & 5 show the G allele on both the 14RPT (4) & 16RPT (5)
backgrounds.
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Figure 2.3: Electrophoretic mobility shift assay of the putative activator protein 2 (AP-2)
consensus site surrounding the location of rs25531. Upper panel: Autoradiograph
showing various labeled oligonucleotides (middle row) incubated with nuclear extracts
(upper row) with or without various competing unlabeled oligonucleotides (bottom row).
Lower panel: Quantitation of band patterns from the autoradiograph, expressed in units
of intensity.
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2.4 Discussion

Pharmacogenetic investigations are rapidly expanding, in part because of
increased interest in predicting response to drug treatments based on common genetic
variation. In psychopharmacology, as throughout the rest of medicine, clinicians often
face variability in clinical response coupled with a lack of clinical or biological predictors
of response. We have focused on a well-characterized sample with MDD being treated
with a single SSRI, fluoxetine, in which we have previously identified association
between anonymous markers and antidepressant response (9). We thus sought to identify
variants that might explain this association, using a combination of dHPLC and direct
sequencing to screen comprehensively both the exonic regions of the gene and much of
the surrounding intronic regions for variation. We tested for association with a treatment
response phenotype, using both single loci and multilocus haplotypes. Our SNP
discovery effort yielded many new variants not previously reported, although many
occurred at such low frequencies as to not be useful in association studies, unless
substantially larger populations are used. Our study has confirmed what other groups
have also found: that coding regions of SLC6A4 are not particularly variable (20,21).

In our primary phenotype, categorical response versus non-response, we found
suggestive evidence of an association with SNP rs25531, with the minor allele being
more likely to reduce response to treatment. The HTTLPR was not significantly
associated in single-locus analysis, as previously noted (9); but a test of the three marker
haplotypes, including the HTTLPR and the flanking SNPs rs25531 and rs25533, was
negatively associated with treatment response (p = 0.02), although this was not

significant when the permuted global significance p value was calculated. No significant
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association was found with our other two phenotypic comparisons, specific responders
versus all others and specific responders versus non-specific responders. Although
beyond the scope of our focused hypothesis regarding overall antidepressant response,
other phenotypes, such as the genotypic effect on temporal course of response, might be
of interest for subsequent investigation.

We characterized SNP rs25531 functionally to ascertain a biological basis for
how this SNP could affect clinical outcome. Because rs25531 lies just upstream of the
HTTLPR in the gene’s promoter region, and HTTLPR genotype has been shown to affect
transcriptional activity, we investigated the role of this SNP as a potential modulator of
transcription factor binding. The minor G allele creates a consensus AP-2 binding
sequence, and oligonucleotides containing this allele showed greater binding to nuclear
extracts when compared with the major A allele. Although others have reported that the
minor G allele of this SNP occurs in a region of the long (16-repeat) allele of the
HTTLPR, and thus is missing from chromosomes carrying the short allele (14 repeats)
we did not find this to be the case, confirmed by subsequent groups (33,34). We detected
the G allele on short allele chromosomes. Given the region’s repetitive nature, sequence
misalignment, with the placement of the insertion/deletion in particular, might explain
this discrepancy.

Many studies have been published that investigated HTTLPR in a variety of
neurobehavioral phenotypes. Such studies often find association between the HTTLPR
and the phenotype of interest, only to go unreplicated or to show association with the
opposite allele. Because rs25531 lies just upstream of the insertion/deletion that

characterizes the HTTLPR and might play a regulatory role in the gene, rs25531 could be
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a confounding factor in these studies. We find evidence in our data that rs25531 is
associated with both response and with HTTLPR, and as a result, the association between
HTTLPR and response might depend on which allele one is considering at the rs25531
site. According to our haplotype analyses, there is support for this claim, with the long
HTTLPR allele occurring more often in the non-responders, given that the minor G allele
is present. When the A allele of rs25531 is present, we observe the short allele occurring
more often in the responders.

Although the results of this study are promising, they are also subject to
limitations. The primary disadvantage of this study is the small sample size, which
contributed to a greatly reduced ability to detect associations between phenotype and
genotype. This limitation is crucial because it suggests that our sample might not have
been large enough to 1) detect relevant uncommon/rare variants; and 2) detect association
between variants we discovered and our drug response phenotype. This type II error
could presumably be addressed by a much larger clinical sample, as described in the
subsequent chapter. A limitation in any case—control association study is confounding
based on population stratification. By using a genomic control method in our population,
we previously noted little evidence for stratification in our sample, given the constraint of
our sample size and the number of markers used (9). For the amount of stratification
detected in this sample, we would have to adjust the significance values of our
association results minimally. In this context, we are fairly confident that we have
avoided cryptic stratification or bias that can be associated with the use of racial or
cultural identifiers, although a larger sample size and more markers might allow us to

detect more modest stratification (35). Likewise, a larger sample will facilitate replication
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of our finding of association between fluoxetine response and rs25531. The interpretation
of our association data also necessitates consideration of multiple testing. The correlation
between phenotypes tested, as well as the observed correlation of marker-to-marker
relationships, makes traditional corrections for multiple comparisons inappropriately
conservative. We have thus left our significance tests uncorrected.

Although our investigation into the biological consequences of rs25531 showed
enhancement of AP-2 binding activity, the role of AP-2 in serotonin pathway biology is
relatively unknown. The transcription factor AP-2 is a critical factor in mammalian
neural gene expression (36). Many genes involved in brain neurotransmitter systems have
AP-2 binding sites in their regulatory regions. Additionally, regional monoamine
metabolite levels vary with AP-2 protein levels (37), and chronic treatment with
antidepressants alters both AP-2 levels and DNA-binding activity of AP-2 (38,39);
however, no clear picture immediately surfaces as to how AP-2 directly affects response
to SSRIs. Thus, our observation that response to fluoxetine might be mediated by altering
AP-2 function must be deemed provisional until further in vivo experiments are
conducted. One approach, as described in chapter 5, is to look directly at the role of DNA
variation in the gene encoding the AP-2 protein in relation to antidepressant response.

In summary, we have made an in-depth investigation into the role of DNA
variants within the serotonin transporter for response to fluoxetine and found several
interesting associations. We observed suggestive evidence of an association (by both
single-locus and haplotypic analysis) with non-response and the minor allele of an SNP
near the HTTLPR. All the associations we observed within our population were located

within the promoter region of this gene. Previous studies finding association with the
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HTTLPR, our own observations associating several variants within the promoter region,
and functional data suggesting that at least two of these variants play a role in the
regulation of serotonin transporter suggest that the 5’ region of this gene might play a role

in the response of SSRIs.
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CHAPTER 3
ANALYSIS OF ASSOCIATION BETWEEN THE SEROTONIN TRANSPORTER
(SLC6A4) AND RESPONSE TO CITALOPRAM IN THE STAR*D CLINICAL

SAMPLE'

3.1 Introduction

Pharmacologic treatment with selective serotonin reuptake inhibitors (SSRIs) is a
mainstay in the treatment of major depressive disorder (MDD). There is prominent
heterogeneity in response to antidepressants (1), and as of yet, there are no explanations
for this observed variability. One possibility that has generated great interest, however, is
that this variability results from genetic variation at the SLC6A4 locus (2). A number of
studies have tested the association between DNA variations in this gene and response to
various SSRIs (3). The results of these studies are inconclusive, however, particularly
when different populations are investigated. In studies of the promoter variant
(HTTLPR), some work finds no association with response (4,5), whereas other reports
show an association with treatment response (6), although the associated allele varies
with ethnicity (Table 3.1).

A limitation of the previous studies is that most did not systematically study
variation across this gene, instead focusing almost exclusively on the promoter variant or,
to a lesser extent, on an intronic tandem repeat polymorphism (7). Although our group
failed to find association between the HTTLPR and SSRI response, we did detect

nominal association between two single nucleotide polymorphisms (SNPs), rs25531 and

T This chapter has been published previously: Kraft JB, Peters EJ, Slager SL, Jenkins GD, Reinalda MS, McGrath PJ., & Hamilton
SP. “Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample.” Biological
Psychiatry 2007; 61(6): 734-742. Reprinted with permission.
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rs25533, near the HTTLPR in the 5’ region of this gene in studies of 96 subjects treated
with fluoxetine (5,8). This work was described in detail in the previous chapter. Table 3.1
summarizes the findings of these previous studies, which were chosen for inclusion if the
study analyzed variants in the serotonin transporter in depressed samples being treated
with an SSRI. In several of these studies, analyses were carried out by modeling recessive
or dominant transmission of the short allele, but this was not done in others.

In this study, we sought to conduct a more definitive study by genotyping variants
in the SLC6A4 gene in a large sample of subjects with major depression whose response
to treatment had been carefully characterized. All of the subjects were treated with the
SSRI citalopram. This sample was collected in the course of Sequenced Treatment
Alternatives to Relieve Depression (STAR*D), a prospective, multicenter, randomized
clinical trial involving 4,041 outpatients in both primary and specialty care settings

(9,10).
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3.2 Materials and Methods
3.2.1 Sample

Of the 4,041 subjects, DNA was obtained from 1,953 subjects as part of the
National Institute of Mental Health (NIMH) Human Genetics Initiative. The design of
STAR*D was to enroll adults experiencing a major depressive episode who exhibited
neither an inadequate response nor intolerance to an adequate trial of any of the STAR*D
protocol treatments during the current episode. The overall aim of STAR*D (principal
investigator, A. John Rush, NIMH Contract NO1-MH-90003) was to determine
prospectively which of a number of treatments are beneficial for subjects experiencing an
unsatisfactory clinical outcome following treatment with citalopram. Because the
STAR*D trial design has been described extensively (9-11), it is summarized only briefly
here.

To make the findings as generalizable as possible, STAR*D used broad inclusion
criteria (10,11) and enrolled a diverse population, including good minority representation.
Diagnoses were made using the Psychiatric Diagnostic Screening Questionnaire (12), and
depressive symptoms were assessed with the 16-item Quick Inventory of Depressive
Symptomatology Self-Report version (QIDS-SR) collected at clinic visits. The QIDS-SR
is highly correlated with the 17-item Hamilton Rating Scale for Depression (HRSD,7),
and scores can be converted readily between the two instruments (13). Subjects meeting
criteria and providing consent were administered citalopram as the initial treatment. The
protocol encouraged 12 weeks of treatment with vigorous dosing of open-label

citalopram (20-60 mg/day).
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The subsample of 1,953 participants who consented to provide DNA samples was
61.8% female and 38.2% male, with ethnic proportions of 78.1% Caucasian, 16.1%
African American, 3.5% multiracial, 1.1% Asian, 1.2% Pacific Islander/Native
American, and 0.1% unspecified; 14.0% of the sample reported being Hispanic, and
43.5% of the sample came from primary care clinics, with the remaining 56.5% coming
from specialty clinics. For this analysis, we report on analyses on DNA from 1,914
participants (98%). Baseline demographic and clinical data on these 1,914 subjects are
presented in Table 3.2.

Access to the DNA samples and clinical data was approved by the STAR*D
Ancillary Studies Committee, and clinical data were obtained from the Data Coordinating
Center of STAR*D. Approval to carry out the work described here was obtained by the
Committee on Human Research at the University of California, San Francisco.

3.2.2 Marker Selection

To provide adequate coverage of the entire SLC6A4 locus, tagging SNPs were
chosen based on our previous genotyping and variant discovery efforts (5,8). Tagging
SNPs were selected from a data set of SNP variants that were common (> 5% minor
allele frequency) in a subset of Caucasian patients (n = 75) from our previous studies.
Thirteen SNPs met this criteria, and seven were selected as tagging SNPs using a linkage
disequilibrium (LD) threshold of r* > 0.8, as implemented in the program “ldselect.pl”
(14). Because our initial variant characterization efforts were performed using a largely
Caucasian population, we compared our tagging SNP set to HapMap data for this
genomic region, which contained 10 common SNPs in a sample of 30 Yoruban trios

(HapMap build 16¢.1, June 2005). Two additional tagging SNPs from HapMap data were
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selected for this study (rs16965628 and rs2020933) because they had large (> .25) minor
allele frequency differences between Yoruban samples and Caucasian samples. In
addition, two markers that were previously reported to be associated with antidepressant
response (5-HTTLPR and rs25531); (3,5,8) were also included in this study, for a total of
11 markers (Table 3.3). The distribution of markers at the SLC6A4 is schematized in
Figure 3.1.
3.2.3 Sample DNA Analysis

DNA was quantified using the Quant-IT DNA Assay Kit, Broad Range
(Molecular Probes, Eugene, OR, USA) and fluorescence read on the VICTOR2 1420
Multilabel Counter (PerkinElmer Life Sciences, Boston, MA, USA). Gender was verified
by the use of a PCR based assay of the sexually dimorphic amelogenin locus (15).
3.2.4 DNA Analysis and Genotyping

DNA from subjects was quantified and then used as a template to amplify specific
regions of the gene via polymerase chain reaction (PCR). Variants were assayed by either
fluorescence polarization detection of template-directed dye-terminator incorporation
(FP-TDI) or by the use of restriction fragment length polymorphism analysis (RFLP).
3.2.5 DNA Amplification

All samples were amplified using polymerase chain reaction (PCR) in 5
microliters (uL) reactions containing 200 nM of the forward and reverse primers (Table
3.3), 5 ng genomic DNA template, 50 uM dNTPs (Roche, Indianapolis, IN, USA), 1 M
anhydrous betaine (Acros Organics, Geel, Belgium), 50 mM KCl, 20 mM Tris-HCI (pH
8.4), 2 mM MgCl,, and 0.2 units (U) Platinum Taq DNA polymerase (Invitrogen,

Carlsbad, CA, USA). All primers and TDI probes were designed using Primer3 software
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(16) and manufactured by Invitrogen. Samples were cycled using a touchdown protocol at
94°C for 3 min, followed by seven cycles of 94°C for 30 s, 65-59°C for 30 s (decreased
by 1°C intervals per cycle), and 72°C for 30 s, followed by 38 cycles of 90°C for 30 s,
58°C for 30 s, and 72°C for 30 s, with a final 10 min at 72°C. The reactions were
performed on either an Applied Biosystems GeneAmp PCR System 9700 (Foster City,
CA, USA) or a DNA Engine Tetrad PTC-225 thermal cycler (MJ Research/Bio Rad,
Hercules, CA, USA). For SNP rs25533, reactions were changed to include 10 ng
genomic DNA template, 500 uM dNTPs, 300 nM forward and reverse primers, and 0.3
units (U) Platinum Taq DNA polymerase and the following protocol was used: 94°C for
3 min, followed by 35 cycles of 94°C for 30 sec, 68°C for 30 sec, 72°C for 30 sec with a
final 10 min at 72°C.

For SNP rs25531 and the 5S-HTTLPR, conditions were changed so that
amplification was performed in a final volume of 10 pL containing 25 ng of genomic
DNA template, 300 uM dNTPs, 1.5 M anhydrous betaine, 15 mM ammonium sulfate (pH
9.3), 50mM Tris-HCI (pH 8.4), 2.5 mM MgCl,, 0.1% Tween 20, 500 nM primers, and
0.5 units Platinum Taq DNA polymerase then amplified using the following protocol:
94°C for 3 min, followed by 35 cycles of 94°C for 45 sec, 68°C for 30 sec, 72°C for 60

sec with a final 10 min at 72°C.
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3.2.6 Polymorphism Genotyping

All markers except rs25531, rs25533, and the 5-HTTLPR were genotyped using
fluorescence polarization detection of template-directed dye-terminator incorporation
(FP-TDI). Following PCR, the excess primers, deoxynucleotides, and pyrophosphate in
the PCR reaction were then degraded by adding a 0.1 pl of 10X PCR Clean-Up Reagent,
containing a mixture of shrimp alkaline phosphatase and exonuclease I (PerkinElmer,
Wellesley, MA, USA), 0.1ul of inorganic pyrophosphatase (Roche Applied Science,
Indianapolis, IN, USA), and 0.8 pl of PCR Clean-Up Dilution Buffer to each 5 pl PCR
reaction (PerkinElmer, Wellesley, MA, USA). The mixture was then incubated at 37°C
for 60 min, followed by inactivation for 15 min at 80°C. The final step was the addition
of a 4 pl solution containing a final concentration of 0.5 uM TDI probe, 1 pl of 10X TDI
Reaction Buffer, 0.5 pl of AcycloTerminator Mix (containing R110 and TAMRA-labeled
AcycloTerminators, corresponding to the polymorphic base), and 0.025 ul of AcycloPol
DNA polymerase (PerkinElmer). This mixture was cycled at 95°C for 2 min, followed by
25 cycles of 94°C for 15 s and 55°C for 30 s. Following template-directed incorporation,
fluorescence polarization was read using a VICTOR2 1420 Multilabel Counter
(PerkinElmer), and genotypes were read using custom software.

For rs25531 and rs25533, genotyping was carried out using restriction fragment
length polymorphism (RFLP) analysis. The reason for this is that traditional
hybridization-based or single-base extension techniques will not work for the highly
repetitive region surrounding rs25531. The minor allele in both these SNPs introduces an
Hpa II digestion site which was exploited for genotyping. Following PCR amplification,

samples were then digested in a 10 pl reaction containing 1 pul 10X Buffer 1 (New
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England Biolabs, Ipswich, MA, USA), 5 ul PCR product, and 1 unit of Hpa II enzyme
(New England Biolabs). The reaction was incubated at 37°C for 90 minutes followed by
heat inactivation at 80°C for 15 min. Samples were then separated on a 3% NuSieve
(Cambrex Corporation, East Rutherford, NJ, USA) agarose gel at 150V for 1 hour and
genotyped based on the presence of cut DNA of predicted sizes. The 5-HTTLPR marker
was genotyped by separating the PCR product on a 2.5% agarose gel at 150V for 1 hour
and determining the size of the bands. To verify genotypes for the HTTLPR and rs25531,
a subset of 384 samples from the total number of 1,914 samples (~20%) was subjected to
direct sequencing. All genotypes were concordant.
3.2.7 Phenotypic Definitions

We define five interrelated response phenotype definitions of response to
citalopram, building upon those described in the previous chapter. The first two are
responders and non-responders: responders are subjects who had at least 42 days of
treatment and whose QIDS-SR on their final clinical visit shows > 50% reduction in
score; the remaining subjects, who had at least 42 days of treatment, were then
considered non-responders. The > 50% reduction in symptom severity on the HRSD,7 is
the conventional definition of response in clinical trials. We used the QIDS-SR score to
estimate severity because all subjects had this rating, and it correlates highly with the
HRSD7 scores (13). We required this 42-day (or 6-week) threshold to ensure an adequate
exposure to citalopram and to enhance the power to find associations between genotype
and response by reducing potential heterogeneity. Using this threshold, we found no
statistical difference in the average total dosage of citalopram between those who were on

the trial for at least 42 days (average total dosage = 29.88 mg) and those who were not
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(average total dosage = 30.43 mg). The 254 subjects with < 42 days of treatment were
excluded from analysis.

The third phenotype definition is remission. Remission was defined as a QIDS-SR
score < 5, which closely corresponds to the conventional definition of an HRSD score of
<7 (13). The final two phenotypes are based on our attempt to reduce heterogeneity
further by attempting to separate placebo response from true drug response in
antidepressant trials (17). Some response to antidepressant medication is a placebo
response, which we posit may have either no genetic determinant or a different genetic
substrate than “true” drug response. Thus, it is of interest to limit our definition of
response to true pharmacologic response rather than placebo response. For these
phenotypes, a “specific” pattern of response was defined by persistence, or the
maintenance of response for the remainder of the study once it was attained. Previous
studies considered “specific” patterns to be further characterized by delayed response,
that is, after the first 2 weeks (18,19). We were unable to employ this criterion because
the STAR*D study design did not include ratings before week 2. We defined persistent
responders as those subjects who had a sustained response at all consecutive visits
following the first visit with a response, as measured by > 50% reduction in QIDS-SR
scores. Those whose response occurred only at the last visit were removed from the
analysis. In contrast, “non-specific” responders were those subjects who responded using
QIDS-SR reduction criteria, but did not maintain their response following the first visit
with a response.

Note that “specific” and “non-specific” responders are a subset of responders (as

defined by the response phenotype described earlier). Moreover, because visits were at
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least 2 weeks apart, we assumed that intervening weeks were characterized by the
response defined by the previous visit. We compared “specific” responders to non-
responders, allowing us to test the hypothesis that the “specific” response to citalopram
represented a more genetically homogenous group of persons taking citalopram. We also
compared “specific” responders to “non-specific” responders to test whether there are
genetic difference between “true” drug responders and “placebo” responders, as
suggested in our previous work (5).
3.2.8 Statistical Analysis

The frequency distributions of demographic and clinical variables were examined
in the combined sample and by the five phenotypes. To control for any potential
population stratification, all analyses were stratified by race categories: Caucasian and
African American. Other racial categories were not considered because of the small
numbers of those samples. We tested for Hardy—Weinberg equilibrium within each of the
Caucasian and African American groups, and all subjects from a stratum were used in the
analysis because all subjects had depression, and the evaluated polymorphisms were not
suspected to influence risk of depression. Linkage disequilibrium was estimated using r*.

We used unconditional logistic regression analysis to examine associations of the
11 genetic polymorphisms and each of the four phenotypic comparisons. These
comparisons are 1) Responder versus Non-responder, 2) Remitter versus Non-remitters,
3) “Specific” Responders versus Non-responders, and 4) “Specific” Responders versus
“Non-specific” Responders. Each polymorphism was modeled individually as gene—
dosage effects in the regression models. This coding scheme was chosen because of its

robustness to departure from the true additive genetic model (20). Regression analyses
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were either unadjusted or adjusted for potential confounding effects, including gender,
age, education (years of school), months in current major depressive episode (MDE), and
years since first MDE. We estimated odds ratios (OR) and 95% confidence intervals
(Cls) for the carriers of the minor allele versus non-carriers of the minor allele. Because
of the large number of statistical tests, significance threshold was set at 0.01, and
permutation tests were performed on any test that resulted in an asymptotic p value of
0.01 or less.

Association between haplotypes and the four phenotypic comparisons were
calculated using a score test implemented in the computer program HAPLO.SCORE
(21). This test uses the expectation—maximization algorithm to estimate the posterior
probability of each person’s haplotype. These posterior probabilities are then used to
calculate a person’s expected haplotype score in the logistic regression analyses. All
haplotypes with frequencies > 0.01 were simultaneously tested in the analysis. Global p
values and individual haplotype p values were obtained. Statistical tests were performed
in SAS version 8.2 or Splus version 6.2.1 statistical packages. All statistical analyses
were carried out in collaboration with Dr. Susan L. Slager (Mayo Clinic).

3.2.9 Post-Hoc Analysis Methods

For the intent to treat analysis and the longitudinal analyses, we stratified the
analyses by race (Caucasian or African American). For the intent to treat analysis, all
subjects with at least 1 follow-up were analyzed. We determined response as any subject
whose QIDS-SR on his/her final clinical visit shows at least a 50% reduction in score.
Tests for association were then analyzed as discussed in Statistical Analysis. For the

longitudinal analysis, we used generalized estimating equations (GEE), which is an
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extension of generalized linear models that accounts for correlated repeated
measurements within individuals. We used the exchangeable correlation structure and all
subjects with at least one follow up were analyzed for the association between the raw

QIDS-SR score and each DNA variant.
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3.3 Results

Of the 1,953 subjects who consented to give DNA, data for 1,914 subjects are
described in this report. The 39 samples that were unavailable for genotyping did not
differ from the remaining samples in demographic or clinical variables. Using our
responder versus non-responder phenotype (R/NR), 1,660 of the 1,914 samples could be
categorized, with 991 responders and 669 non-responders, for a response rate of 59.7%.
We excluded 254 because they did not reach the 6-week treatment threshold. The clinical
and demographic characteristics of the 1,914 samples are shown in Table 3.2. Significant
demographic and clinical differences between responders and non-responders within the
current study included years of schooling (p < 0.001), months in current MDE (p <
0.001), length of current MDE >24 months (p = 0.001), baseline QIDS-SR (p = 0.008),
and years since first MDE (p = 0.02). The presence of recurrent depression or a family
history of depression did not differ between responders and non-responders. Of the
responders, 826 (83.3% of responders) were considered to be remitters. For the analysis
of specificity of the 991 responders, 679 (68.5%) were categorized as “specific”
responders, and 187 (18.9%) as “non-specific” responders, with the remaining 125
(12.6%) responders unclassifiable for the specificity response phenotype. The ratio of
“specific” to “non-specific” responders is similar to that seen in our previous work (5).

We used the phenotypes described to test two general hypotheses. First, we
sought to determine whether SLC6A4 variants are associated with general indicators of
response (responders vs. non-responders, remitters vs. non-responders) based on changes
in the QIDS-SR. Second, we sought to examine whether SLC6A4 variants influences

response in a subgroup of responders likely to exhibit a “true” drug response (“specific”
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responders versus non-responders, “specific” responders versus “non-specific”
responders). All analyses were stratified by ethnicity, which for this analysis are
Caucasian and African American. None of the variants showed significant deviation from
Hardy—Weinberg equilibrium within any of the ethnic groups (results not shown).
Linkage disequilibrium (LD) was present among the polymorphisms. Figure 3.2 shows
the extent of LD for each ethnic group, using the r’ metric. Given our SNP ascertainment
strategy, we did not expect prominent association between markers.

The association results for the 11 polymorphisms for the response versus non-
response comparison for each of the two ethnic groups are shown in Table 3.4. The minor
allele frequencies among the non-responders within the Caucasians ranged from 5%
(rs2020933) to 46% (rs2020934). None of the variants were found to be associated with
response at a relaxed significance threshold of p < 0.01. We found similar results for our
other three phenotypic comparisons: “specific” responders versus non-responders;
“specific” responders versus “non-specific” responders; and remitters versus non-
responders (Table 3.4). We also found no evidence of confounding adjusting for gender,
age, education, months in current MDE, and years since first MDE in the regression
analyses.

We then constructed haplotypes and tested for association with the four
phenotypic comparisons to account for possible interactions among the 11 variants within
the serotonin transporter. Our global test of association with the responder versus non-
responder phenotypic comparison was found to be non-significant in either Caucasian or
African-American groups (p = 0.55 & p = 0.28), respectively. Similar results were

observed for the other phenotypic comparisons (results not shown).
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Figure 3.2: Linkage disequilibrium at the SLC6A4 locus. r* was estimated in Caucasian
(top) and African American (bottom) samples. r° is displayed using Haploview, with
darker boxes representing larger values of r*. Haplotype "blocks" are represented using
the criteria of Gabriel, et al (22).
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3.4 Discussion

We failed to detect association between any of the SNPs within the SLC6A4 and
antidepressant response phenotype. Our failure to detect association in a large sample is
strong evidence against a role for common variation in this gene as a factor in response to
SSRIs. In our primary phenotype, categorical response versus non-response, our results
differed with regard to a number of other studies in which associations were found
between response and SLC6A4. There may be a number of reasons for this including
differences in outcome measures, drugs, ethnicities, and analytical approaches.

For our outcome measures, we used the QIDS-SR. This instrument has been
shown to have high correlation (Pearson’s correlation = 0.81) with the standard HRSD
(13), which has been used in many of the previous studies. Despite this high correlation,
however, variability in these measurements may explain the difference in results among
the studies, especially if the effect size of any SLC6A4 genotypic effect is modest (23).

All of the studies in Table 3.1 and this study tested for association between
SLC6A4 and an SSRI. It would be ideal to compare all of the previous studies to our
own. Unfortunately, each of the previous studies differs strikingly from the others, with
wide variation in treatment trial design, drug choice, marker choice, outcome measures,
and statistical methods in each of the studies reviewed in Table 3.1. For example, the
systematic and vigorous dosing strategy employed by STAR*D differs from the forced
titrations or flexible dosing approaches used in the other studies, raising the possibility
that those studies may be more sensitive to effects due to genotype x dose interactions.
Although it is presumed that the SSRIs are equivalent in terms of mechanism, this has not

been proven definitively and thus remains a potential explanation for the difference
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between studies using different SSRIs. Another difference may involve the inclusion
criteria applied to the various studies. The inclusion criteria for STAR*D was HRSD;7 >
14, which was somewhat lower than several of the previous studies that used the HRSD;
for assessment, suggesting that the STAR*D sample may be less severely affected.

The only previous study that is most directly comparable to ours based on drug is
by Arias and colleagues, which investigated only the S-HTTLPR variant (24). This study
used citalopram and defined response as > 50% reduction in HRSD;; at 4 weeks and
remission as HRSD,; < 7 at 12 weeks. Because this definition is different from ours, we
carried out analyses to emulate this approach (> 50% reduction in QIDS-SR at 28 days or
QIDS-SR <5 at 84 days) and still found no association between SLC6A4 and treatment
response (data not shown). In this context, if the association between this gene and
antidepressant response is not consistently found in samples with adequate power, the
previous findings are likely spurious because of small sample sizes and low prior
probability of the genetic variants affecting response (25). Finally, using four markers
and differing phenotypes, McMahon and colleagues reported no association between
SLC6A4 and antidepressant response in the STAR*D data set (26). The same group has
recently reported no association to response with the 5-HTTLPR in the same data set,
essentially confirming our results presented here (27).

An important issue in case—control association studies of antidepressant response
(or association studies in general) is population stratification, which in theory may lead to
spurious associations. To correct for potential ethnic stratification, we analyzed each
population subgroup separately to test for association. Although methods have been

developed for quantitating and correcting for stratification (28,29), previous studies have
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shown that self-reported ethnicity closely corresponds with clustering of marker allele
frequencies (30). We found dramatic differences in allele frequencies among the ethnic
groups for many of the markers used here, with the average allele frequency difference
between Caucasians and African Americans of 0.17 (Table 3.4). Because of these
differences across the ethnic groups found in our study, ethnicity may explain the
differences in results across the previous studies. In a number of the previous studies,
ethnicity is not clearly delineated, however (Table 3.1).

A major strength of our study is that we attempted to reduce heterogeneity of the
clinical phenotype. Accurate assessment of clinical phenotype is essential in
pharmacogenetic studies. This is particularly true with antidepressant therapy, because
placebo response rates can be as high as 60% for patients with MDD (31). Previous
studies with serotonin pathway gene variants and SSRI antidepressant response have
failed to address these concerns. Given the high placebo response rate for many
antidepressants, it may prove necessary to control for non-specific responses in
pharmacogenetic studies of antidepressant response (32). In this regard, we examined two
phenotypes that might better represent those subjects who are responding to the
biochemical effects of the medication, “specific” responders and remitters. Our goal for
these refined phenotypes was to decrease phenotypic heterogeneity among the
responders, possibly introduced by any placebo response. We failed to observe any
association to the serotonin transporter using these phenotypes, however.

Another strength of our study is that we more fully interrogated the SLC6A4 gene
than previous studies. Our tag SNP approach, using HapMap information, and our own

previous dense genotyping of the gene (5) has sufficiently covered the gene. Furthermore,
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our in-depth sequencing survey of this gene (8) has provided few useful markers beyond
publicly available common SNPs. In addition to single-locus analysis, we used
haplotypic analyses to allow us to determine whether combinations of alleles were
associated with treatment response. The use of both single-locus and haplotypic
association has allowed us to take a more comprehensive look at the role of DNA
variation in the serotonin transporter locus in antidepressant treatment response. Thus far,
the vast majority of the previous studies on serotonin transporter variants in
antidepressant response have focused on single polymorphism associations.

A possible limitation of our study may be our choice of clinical phenotype, that is,
antidepressant response, as our primary phenotype. We restricted our analyses to subjects
receiving 6 weeks of treatment and required a 50% reduction in symptomology. In doing
this, we excluded some 250 subjects; although we believe requiring sufficient medication
exposure to reduce placebo response should increase the probability of detecting an
association to drug response. Note that the rates of response and remission in our analysis
were higher when compared with that of a recent analysis of 2,876 STAR*D subjects, in
which subjects with less than 6 weeks of treatment were included (10), suggesting a
strong correlation between response and length of treatment. Nevertheless, it might be
argued that an intent-to-treat approach may be useful. We have done this for the
Caucasian and for the African American subjects who had at least one treatment
assessment and found that a single marker, rs140700, resulted in a p value of 0.009 in the
Caucasian subsample. In a longitudinal analysis using generalized estimating equations
and the raw QIDS-SR scores measured at each treatment assessment, we found results

similar to our primary analysis, that is, none of the SNPs had p values < 0.01 for either
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race. Thus, the fact that these alternative post hoc approaches resulted in similar results to
those reported further support our findings of no association between this gene and
antidepressant response.

An additional potential limitation arises because this open study, without placebo
control or measure of adherence (i.e., serum level monitoring), might have shown only
placebo response and therefore may not provide a valid phenotype for gene finding,
although this seems less plausible given the similarity in response and remission rate to
controlled studies where compliance is measured.

Another limitation of this report involves its generalizability to the STAR*D
sample as a whole. There are significant differences between the sample providing DNA
and the 2,087 STAR*D subjects who did not provide DNA for the genetics study. For
example, the subject who gave DNA was significantly more likely to 1) come from a
primary care clinic (43.5% vs. 34.7%, p < 0.0001); 2) be a Caucasian subject and not be
an African American subject (78.4% vs. 73.0%, 15.8% vs. 19.2%, p = 0.0003); 3) be
Hispanic 14.6% vs. 11.2%, p = 0.006) ; 4) be married (42.6% vs. 39.9%, p = 0.003); 5)
have recurrent depression (76.0% vs. 71.5%, p = 0.002); 6) be older (42.6 vs. 38.5, p <
0.0001); 7) be more educated 13.6 vs. 13.3 years, p = 0.007); 8) have more MDEs (6.4
vs. 5.4, p=0.003); and 9) have a longer illness (16.6 vs. 13.6 years, p < 0.0001). It is
difficult to formulate how these differences, typically of small magnitude, would affect
the generalizability of our results. In any case, it must be stated that the results may not
be generalizable to subjects who are not inclined to provide DNA samples, who in the
STAR*D sample appear to have observable differences with the subjects who provided

DNA samples.
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Furthermore, the clinical importance of some of these statistically significant
differences, which are presumably driven by the large sample, is unknown. For example,
the average number of years of education was 13.6 in subjects who gave DNA, which
was significantly different from the average of 13.3 years in the subjects who did not
provide blood samples. The effect size for this observation of a 0.3 year difference in
schooling is minute, so that even if it is unlikely to arise by chance, it would be difficult
to imagine a scenario or mechanism through which this would affect attempts to find a
genetic association. The difference between primary care and specialty care subjects in
STAR*D has been shown to be negligible (33). We also compared baseline QIDS-SR in
our sample between specialty and primary care clinics and found no significant difference
for all subjects (p = 0.70) or for groups stratified by ethnicity (Caucasians p = 0.30,
African Americans p = 0.23), comparable to the findings in an analysis of 2,876
STAR*D subjects (10). The response rates between primary care and specialty clinics
were similar for our primary response phenotype (57.8% vs. 60.5%, p = 0.32) and for our
remission phenotype (53.3% vs. 56.3%, p = 0.38). Although the age of onset of MDD in
STAR*D subjects has been shown to be related to a number of clinical variables (34), we
found that it was not correlated with treatment response.

Finally, we cannot exclude the fact that our results may be false negatives. Given
our sample size in the Caucasian sample, we have 80% power to detect a minimal odds
ratio of 1.39, assuming 5% significance level, dominant model, and common allele
frequency greater than 0.2. Our largest observed odds ratio in the Caucasian sample,

given a common allele frequency of at least 0.2, was 1.31 (range 1.02—1.31). To detect
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effects of this magnitude or less, we would need to increase our sample size by at least
50%. To date, we have the largest sample collection of patients.

In summary, we have looked in depth at the molecular target of SSRIs, the serotonin
transporter, in the largest clinical sample analyzed to date and tested the role of DNA
variants within this gene in citalopram response and failed to find any associations using
both single loci and haplotypic analyses. At this point, we cannot definitively answer the
ultimate question: at what point can we say that the contribution of genotype in SLC6A4
to antidepressant response is negligible? We have not accounted for the possibility of
gene—gene or gene—environment interaction. By itself, however, this gene does not affect
response to drug in our representative population with citalopram using our outcome
assessment. Because it appears serotonin plays an important role in depression, this study
may simply suggest that variation within other genes in the serotonin pathway such as
enzymes that affect serotonin levels (TPH1,TPH2, MAOA) or the serotonin receptors
(SHT2A, SHT2C) may contribute to SSRI response. Similarly, it is possible that
serotonin itself may be part of a cascade of events and any genetically determined
variability in antidepressant response may lie elsewhere in the cascade or in another

neural system all together.
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CHAPTER 4
SEQUENCE ANALYSIS AND VARIANT DISCOVERY IN THE FIFTH EWING
VARIANT (FEV) GENE FOR ASSOCIATION WITH RESPONSE TO

CITALOPRAM'

4.1 Introduction

As detailed in Chapter 1, a major theory for the mechanism of action of SSRI’s
involves the products of serotonin pathway genes. Having already investigated a critical
gene in the serotonin pathway, the serotonin transporter (see chapters 2 and 3), we sought
examine other genes that may play a role in antidepressant response. Recent work using a
murine model system has pointed us to the transcription factor FEV (Fifth Ewing
Variant) which has been reported to control transcription of a number of genes within the
serotonin system. Work done by Deneris and colleagues using the murine homolog of
FEV, Pet-1, has shown that this gene is expressed exclusively in serotonergic neurons
earlier than the serotonin specific markers SLC6A4 or TPH and that expression of crucial
serotonergic genes such as tryptophan hydroxalase, monamine oxidase A, and the
serotonin transporter are all disrupted by obliterating Pet-1 expression (1,2).

Studies done on FEV using postmortem brain tissue has revealed that FEV
mRNA is robustly and exclusively expressed in the major serotonin-containing cell
groups of the dorsal and median raphe nuclei (3,4). The only investigation into variation
within the FEV locus was done using a case/control SIDS population consisting of 96

cases of African American and Caucasian ethnicity and 96 ethnically matched controls.

T This chapter has been submitted for publication: Kraft J.B., Berger M.L., Mangir D.E., Garriock H.A., Peters E.J., Slager S.L.,
Jenkins G.D., Reinalda M.S., McGrath P.J., Tecott L.H., & Hamilton S.P. “The role of serotonin-system regulatory transcription
factor FEV in citalopram response.” 2008
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They describe 3 variants in or around exon 3 (rs452985, rs860573, & rs2301296) that
were not associated with SIDS. They also describe a previously unknown polymorphism
IVS2-191 190insA (rs35898226) within intron 2 of FEV that was associated with
increased risk of SIDS (5).

As an upstream transcription factor that appears to exert control over the
expression of a number of previously reported risk factors for depression or
antidepressant response and given the central role of the serotonin system in mediating
the effects of selective serotonin reuptake inhibitors, such as citalopram, we hypothesized
that the Pet-1/FEV locus would be necessary for the antidepressant effects of SSRIs.

In this Chapter, I describe the results of mutation screening in the FEV gene, as
well as the results of an association study between DNA variants in this gene and
antidepressant response. Finally, I will present data showing the effect of deletion of this
gene in mice on antidepressant responsiveness. My goal was to enrich the marker set that
we genotyped with potentially novel SNPs from the study population, as well as to

identify SNPs with possible functional relevance to the antidepressant effects of SSRI’s.

4.2 Materials and Methods
4.2.1 STAR*D Study Population

The study population consisted of the subjects who consented to give DNA from
the STAR*D antidepressant trial, as reviewed in Chapter 3. Within each ethnic group,
and gender, we randomly split our subjects a priori into a discovery and validation
sample set. Due to heterogeneity within our self-identified “White” subjects, as

uncovered via the structure analysis described later (Chapter 7), all analyses were split
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into three racial subgroups: White, non-Hispanic; White, Hispanic; and African
American. Other self-reported race classes were not analyzed.
4.2.2 Gene Sequence and Polymerase Chain Reaction Primers

Genomic and complementary DNA sequences were obtained from GenBank
(accession number NM_017521), and primers were designed with Primer3 software (6)
and manufactured by Invitrogen (Carlsbad, California). These products were designed to
span exons and include flanking intronic sequence at the 5" and 3’ ends. Six primer pairs
were designed to screen 7.9 kb of sequence, including all 3 exons (NM_017521) and 2
highly conserved areas in the promoter region of the gene (Table 4.1).
4.2.3 Sample DNA Analysis

DNA was quantified using the Quant-IT DNA Assay Kit, Broad Range
(Molecular Probes, Eugene, OR, USA) and fluorescence read on the VICTOR2 1420
Multilabel Counter (PerkinElmer Life Sciences, Boston, MA, USA). Gender was verified

by the use of a PCR based assay of the sexually dimorphic amelogenin locus (7).
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4.2.4 DNA Amplification

For the randomly chosen subset of 96 samples to be sequenced, samples were
amplified using polymerase chain reaction (PCR) in 5 microliters (uL) reactions
containing 500 nM of the forward and reverse primers (Table 4.1), 5 ng genomic DNA
template, 300 uM dNTPs (Roche, Indianapolis, IN, USA), 1 M anhydrous betaine (Acros
Organics, Geel, Belgium), 50 mM KCl, 20 mM Tris-HCI (pH 8.4), 2 mM MgCl,, and
0.25 units (U) Platinum Taq DNA polymerase (Invitrogen, Carlsbad, CA, USA). Samples
were cycled using a touchdown protocol at 94°C for 3 min, followed by seven cycles of
94°C for 30 s, 65-59°C for 30 s (decreased by 1°C intervals per cycle), and 72°C for 30 s,
followed by 38 cycles of 90°C for 30 s, 58°C for 30 s, and 72°C for 30 s, with a final 10
min at 72°C. All reactions were performed on a GeneAmp PCR System 9700 (Applied
Biosystems, Foster City, California) in 384-well plates (MJ Research, Waltham,
Massachusetts).
4.2.5 DNA Sequencing

Before direct sequencing, the excess primers and deoxynucleotides in the
polymerase chain reaction (PCR) products were then degraded by adding a 5 pL solution
of 1 unit of shrimp alkaline phosphatase (Roche, Indianapolis, Indiana), 0.5 units of
Escherichia coli Exonuclease I (USB, Cleveland, Ohio), 5 mmol/L MgCl,, and 50
mmol/L Tris-HCI (pH 8.5). The mixture was incubated at 37°C for 90 min, followed by
deactivation for 15 min at 95°C. Sequencing reactions were performed with BigDye v3.1
(Applied Biosystems, Foster City, California) chemistry at a 1/16th scale in 5 pL total
volume containing 1 pL template (approximately 25 ng), 2.5 pmol primer, 0.75 pL

Applied Biosystems 5% buffer, 0.5 uL BigDye v3.1, and 1.75 pL water. The reactions
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were cycled at 96°C for 3 min, followed by 25 cycles at 96°C for 10 sec, 50°C for 5 sec,
and 60°C for 4 min. Reactions were then purified with Montage MultiScreen-SEQ
(Millipore, Bedford, Massachusetts) plates and the Hamilton Microlab 4200 (Hamilton,
Reno, Nevada) 96-probe liquid robotic system. Samples were analyzed on a Prism 3730xI1
DNA Analyzer (Applied Biosystems), and analysis of mutations was performed with
Mutation Surveyor v2.30 software (SoftGenetics, State College, Pennsylvania). All
variants were submitted to dbSNP. With this sample set, the probability that we would
detect variants at a minor allele frequency of 1% was 85.2%, and >99.9% for variants
with minor allele frequencies of >5%.
4.2.6 Marker Selection

To provide adequate coverage of the entire FEV locus, five tagging SNPs were
chosen based on the HapMap data for this genomic region, which contained
approximately 20 common SNPs (HapMap build 16c¢.1, June 2005). In addition, four
markers from our variant discovery effort were also included in this study, for a total of 9
markers (Table 4.2). The distribution of markers at the FEV locus is schematized in

Figure 4.1.

93



chrz
ek "
e —

by
4

" " L " " " " i " i L i [ " " " i L "
219665k 219670k 219675k

Entrez genes

NM_017521
mne fa
1 e s o 7I
= © > - e o = ~ =
S 2 2 2 2 § 2 2 2
2 9 w @ 3 3 @& © @

Figure 4.1: Schematic showing the genomic layout for the FEV locus and the relative
locations of the 9 SNPs investigated for association to citalopram response in the
STAR*D sample. Yellow regions in the gene are coding portions while the blocks
represent exons and the lines introns.
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4.2.7 Polymorphism Genotyping

Markers FEVO1, FEV02, rs452985, rs452400, rs860573, and rs16859448 were all
genotyped on a multiplex genotyping platform called SNPlex (Applied Biosystems,
Foster City, CA). Markers FEV05 & rs359965 were genotyped using a 5’ nuclease assay
(Tagman).

The remaining SNP, FEV03, was genotyped via restriction length fragment
analysis (RFLP) due to complications with both the multiplex genotyping platform as
well as Tagman. The minor allele introduces an Nla III digestion site which was
exploited for genotyping. Following PCR amplification, samples were then digested in a
10 pl reaction containing 1 pl 10X Buffer 4 (New England Biolabs, Ipswich, MA, USA),
5 ul PCR product, 0.1 pl 100X BSA, and 1 unit of Nla III enzyme (New England
Biolabs). The reaction was incubated at 37°C for 90 minutes followed by heat
inactivation at 80°C for 15 min. Samples were then separated on a 3% NuSieve
(Cambrex Corporation, East Rutherford, NJ, USA) agarose gel at 150V for 1 hour and
genotyped based on the presence of cut DNA of predicted sizes.

4.2.8 Statistical Analysis

Four phenotypic comparisons were made, based on the results from the response
pattern analysis described previously (Chapter 2). The comparisons made were 1) all
responders (specific and non-specific) versus non-responders (Resp42); 2) specific
responders versus non-responders (Spec.Resp.); 3) remitters versus non-responders
(Remit) and 4) tolerant versus intolerant (Tolerant). Single-point association tests were
performed by logistic regression with the statistical package R 1.6.1 (8). Alleles were

coded as 0, 1, or 2, corresponding to the presence of 0, 1, or 2 copies of the rare allele.
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This coding scheme was chosen because of its robustness to departure from the true
additive genetic model and departures from Hardy-Weinberg equilibrium (9).

To take full advantage of the power of our sample, we also analyzed the data
using self-reported ancestry as a covariate in an attempt to adjust for population
stratification. Single-locus association tests were performed by logistic regression using
self-reported ancestry as a covariate with the statistical package R 1.6.1.

4.2.9 Animal Care and Background

The animal experiments described in this chapter were carried out by Miles
Berger in the laboratory of Laurence Tecott at UCSF. Pet-1 KO and wild type control
littermates were obtained from heterozygote matings. For these crosses, the original Pet-1
null allele (Hendricks et al, 2003) was backcrossed twice onto C57bl6/j background; thus
all experimental animals contained approximately 87.5% C57Bl6/j genomic background
and approximately 12.5% 129Sv background.

Adult Pet-1 KO and wild type control littermates were maintained in low profile
microisolator cages with four to five animals per cage. All animals had ad libitum access
to food and water, and cages were changed biweekly. All other animal care was
performed in accord with NIH guidelines and the Institutional Animal Care and Use
Committee (IACUC) of the University of California, San Francisco.

4.2.10 Tail Suspension Test

Adult Pet-1 KO and wild type control littermates were injected intraperitoneally
with 10 mg/kg citalopram dissolved in saline or control solution 30 minutes prior to tail
suspension testing, and housed individually in fresh cages until testing. Tail suspension

testing was performed as described (10) with slight modifications (11).
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In brief, mice were attached by their tails with a one inch by half inch piece of duck tape
to an 8 inch long wire suspended inside of a large box (two feet by one foot by one foot).
The mouse was placed facing the inside of the box so there were no other visual cues
available it, and a camcorder was placed five feet away to record the animal’s behavior
during the six minute test. The experimenter left the room immediately after attaching the
animal’s tail to the wire to avoid any human interference with the test. All video footage
was scored for immobility time by a blinded observer. At least 8 mice were included in

each treatment group.

4.3 Results
4.3.1 Sequencing Results

We screened 709 bp of exonic and 2,980 bp of intronic or flanking sequence,
totaling 3.7 kb in each of 96 samples. This translates to 355 kb screened in our
population.
4.3.2 SNP Detection

Our effort yielded 15 variants in the FEV locus, comprising 14 SNPs and 1
insertion/deletion. Of these, 13 were newly discovered variants, none of which were
found in exons and 5 of which were found in upstream promoter regions (Table 4.1). Five
of the 15 were singletons, and only 1 had a MAF greater than 5%. For our follow up
genotyping, we concentrated on 4 of the 5 “common” SNPs found ignoring FEV04

(rs3835980) which had previously been reported in the dbSNP database.
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4.3.3 Single Marker Association

In our primary phenotypic comparisons, we tested nine SNPs found in or around
the FEV locus. Stratifying by the three ethnic groups, we tested for association by using
an additive model and found marginal significance (p < 0.05) for eight of the nine
markers looked at. Only the marker FEV05 did not show marginal association with any
of the 4 phenotypes in any of the 3 ethnic groups. It should be noted that none of these
associations meet a corrected p-value given the number of multiple comparisons we are
considering. It would be expected that with a p-value threshold of p < 0.05, we would
observe 5% of tests to be positive by chance alone. However, we find that taking all 4
phenotypes and 3 ethnicities into account, nearly 25% or 5 times as many as expected are
positive. This is even more striking when considering the most highly powered subgroup
of white, non-Hispanic which comprises nearly 80% of our sample. In that subgroup, 19
of the 36 tests (53%) show association at p < 0.05 level. This is more than ten times that
expected by chance but the p values are all marginal (0.007 <p < 0.05). These variants
showed no significant deviation from Hardy-Weinberg equilibrium and the observed
associations do not seem to be due to LD as the average r” values for each ethnic group
were less than 0.4
4.3.4 Single Marker Association with Self-Reported Ancestry as Covariate

Using our four primary phenotypic comparisons, we tested nine SNPs found in or
around the FEV locus using self-reported ancestry as a covariate within the logistic
regression model. As seen in Table 4.3, several markers are associated with the three
related response phenotypes (#1-3) at levels that exceed Bonferroni correction (p <

0.0056). The associated SNPs had dominant odds ratios between 1.25 and 2.22. The
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tolerance phenotype is largely negative for markers in the FEV which could be explained
by reduced power due to the relatively low numbers of intolerant subjects or may
possibly be an indication that this gene does not play a role in the tolerance of citalopram.
4.3.5 Linkage Disequilibrium

We estimated LD between all markers in the FEV region by using D' and r*. LD
patterns using markers within the gene are shown in Table 4.4. Graphical representations
for each ethnic subgroup are shown in Figures 4.2, 4.3, & 4.4. Mean LD using the r*
metric was 0.31 for Non-Hispanic Caucasians, 0.22 for Hispanic Caucasians, and 0.13 for
African Americans. These values are too low to explain the large number of positive
results within this gene being due to inter-relatedness between the markers being tested.
4.3.6 Behavioral Effects of FEV in Murine Model System

In collaboration with Miles Berger in the laboratory of Laurence Tecott, the
effect of citalopram treatment on mice deleted for the murine orthologue of FEV, Pet-1,
was evaluated using a well established mouse model of antidepressant action, the tail
suspension test (12).

To further examine the role of the FEV locus in antidepressant response, we
measured response to citalopram in mice deficient in Pet-1, the murine homologue of
FEV. We treated Pet-1 KO and wild type control animals with citalopram and then
measured their immobility time in the tail suspension test. We observed an approximate
50% decrease in immobility time in the tail suspension test in wild type animals treated
with citalopram versus placebo, but no change in immobility time in Pet-1 KO animals

treated with citalopram versus placebo (p < 0.01) (Figure 4.5).
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4.4 Discussion

In this study, we sought to test whether DNA variation in the candidate gene FEV
is associated with clinical response to SSRI treatment. To accomplish this we used known
HAPMAP genotype data and our complete exon resequencing information to select
tagging SNPs within this gene and then examined FEV in a large population taking
citalopram. Our analysis showed several different markers associated with a number of
related response phenotypes (Table 4.2) with significance values less than p = 0.05.
These associations are at best considered marginal given the large number of statistical
tests that were performed. While we cannot say for sure that variation at this locus
appears to significantly influence patient response to citalopram, our genetic data and
behavioral/functional tests suggest further study.

In our primary phenotypes, we found modest evidence of association with SNPs
across multiple phenotypes within a given ethnic subgroup. For example, significant
associations were observed for SNPs rs359965 and rs452985 for all 4 phenotypes within
the non-Hispanic Caucasian group and SNP FEVO01 was significant for every phenotype
except specific response in the African American group. There were also SNPs which are
significant for one phenotype across multiple ethnic populations. For example, SNP
rs452400 shows positive association for the Resp42 phenotype in both the non-Hispanic
Caucasian and African American groups. In almost all cases, these findings cannot be
accounted for in terms of LD between markers. For example, rs452400 is associated with
Resp42 phenotype in African Americans (p < 0.05) while 2 markers (rs16859448 and
rs452985) are in high LD (r* values of 0.85 & 0.88, respectively) yet show no evidence of

association (p values of 0.27 & 0.31, respectively) (Figure 4.4).
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Using self-reported ancestry as a covariate allowed us to analyze the entire
STAR*D sample correcting for population stratification but without the associated loss of
power incurred when doing stratified analysis. We found several independent markers
associated with our related response phenotypes of response, remission, and specificity of
response at a level exceeding a Bonferroni correction for the number of tests performed.
These associations within the FEV locus provide evidence that this gene plays a role in
citalopram response within the STAR*D clinical sample.

Our mouse work shows that the murine homologue of FEV (Pet-1) is crucial for
antidepressant behavioral effects of citalopram in the tail suspension test. It is not yet
known if this effect is due to direct interaction of FEV with citalopram or through
regulation of other downstream effectors that are direct or indirect targets of the drug.
Association data suggest a role for variation in the gene itself, and future work should
focus on interaction between variants in this gene and other serotonin pathway
components. Taken together, these findings in humans and mice suggest that the
FEV/Pet-1 locus may be an important genomic locus for antidepressant responsivity in
mammals.

Although the results of this study are promising, they are also subject to
limitations. A limitation in any case—control association study is confounding based on
population stratification. We attempted to control for population stratification in this
study by analyzing the data within self-identified ethnic groups, as this has been shown to
correlate well with marker allele frequencies (13). The interpretation of our association
data also necessitates consideration of multiple testing. The correlation between

phenotypes tested, as well as the observed correlation of marker-to-marker relationships,
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makes traditional corrections for multiple comparisons inappropriately conservative. We
have thus left our significance tests uncorrected. Also, while we have attempted to
capture the majority of common variation within these genes, current genotyping costs
prohibit complete ascertainment of all variants. Soon, advances in DNA sequencing
technology will make possible deeper resequencing of genes associated with phenotypes
of interest. Future investigation of FEV in antidepressant response might include
complete resequencing of the FEV locus, including the entirety of introns, as well as
flanking sequences that may harbor regulatory sequences.

In summary, we have made an in-depth investigation into the role of DNA
variants within the gene FEV for association to citalopram response in a large patient
population. Using single locus tests, we observed a number of nominal associations
between several markers and a number of inter-related phenotypes. When using self-
reported ancestry as a covariate in the analysis, several of the polymorphisms we
interrogated appear to be associated with citalopram response in the STAR*D population.
Given the results of our association study and our behavioral/functional data suggesting
the importance of Pet-1 (FEV) in citalopram action, this gene may warrant further
investigation. Given that little is known about exactly how SSRIs exert their
antidepressant effects in vivo, interrogation of DNA variation in other neuronal pathways

or across the entire genome may be needed to clarify the picture.
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CHAPTER 5
LINKAGE DISEQUILIBRIUM MAPPING OF VARIANTS IN CANDIDATE GENES

FOR ASSOCIATION WITH RESPONSE TO CITALOPRAM

5.1 Introduction

A prominent theme to the work described in previous chapters involves
investigation of the role of various candidate genes in determining antidepressant
response. [ have previously discussed the findings of many of our previously conceived
candidate genes (Chapters 2-4). In this chapter, [ will now focus on candidate genes
identified from the publications of other labs and represent our efforts to replicate those
observations with regard to citalopram response within the STAR*D population.

Work published by Svennigsson et al. in a Science article in 2006, showed that a
protein called p11 (S100A10) interacted with the serotonin 1B receptor and increased
localization of 5-HTp receptors at the cell surface (1). It was also shown that
overexpression of p11 increased 5-HT;p receptor function and recapitulated certain
behaviors seen after antidepressant treatment in mice. Further, adding to the allure of p11
expression appeared to be modulated by antidepressant treatment (2). As described earlier
(Chapter 1), we had previously been interested in the transcription factor AP-2 due to the
interaction with an associated SNP in the promoter region of the serotonin transporter.
There is support in the literature that helped to elevate AP-2 as a major candidate gene.
Among the most instrumental was work from Damberg and colleagues showing that
brainstem levels and activity of several isoforms of AP-2 were changed after treatment

with antidepressants and that levels of AP-2 correlated with monoamine turnover in the

112



rat brain (3-5). Given the findings described above we elected to investigate four
candidate genes for association to antidepressant response, pl1 (S100A10) and SHT1B,
as well as two isoforms of AP-2 (AP-2[3 & AP-29).

In this study, we sought to conduct a more definitive study by tagging variation
within these genes and genotyping these variants in a large sample of subjects with major
depression whose response to treatment had been carefully characterized. This sample
was collected in the course of Sequenced Treatment Alternatives to Relieve Depression

(STAR*D), which has been described previously (Chapter 3).

5.2 Materials and Methods
5.2.1 STAR*D Study Population

The study population consisted of the subjects who consented to give DNA from
the STAR*D antidepressant trial, as reviewed elsewhere (see Chapter 3). To limit
heterogeneity within our analyses, the analyses for the SI00A10 & HTR1B loci were
done by splitting samples into two self-identified racial subgroups: White and African
American. Due to heterogeneity within our self-identified “White” subjects, as uncovered
via the structure analysis described later (Chapter 7), the analyses for TFAP2p &
TFAP26 were split into three racial subgroups: White, non-Hispanic; White, Hispanic;
and African American. Other self-reported race classes were not analyzed due to very

small sample sizes, and thus diminished power to detect association.
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Gene dbSNP Identifier Assay Method Location Position
HTR1B rs6298 TAQMAN 6ql4.1b 78,168,588
HTR1B rs130058 TAQMAN 6q14.1b 78,168,877
HTR1B rs11568817 TAQMAN 6ql4.1b 78,168,978

S100A10 rs6678672 TAQMAN 1921.3b 149,171,591
S100A10 rs1873311 TAQMAN 1g21.3b 149,178,804
TFAP2B rs9367415 SNPLEX 6pl2.3a 50,828,883
TFAP2B rs2143081 SNPLEX 6pl2.3a 50,829,670
TFAP2B rs2272903 SNPLEX 6pl2.3a 50,833,407
TFAP2B rs2076309 SNPLEX 6pl2.3a 50,836,237
TFAP2B rs2817399 TAQMAN 6pl2.3a 50,851,357
TFAP2B rs2817407 SNPLEX 6pl2.3a 50,853,073
TFAP2B rs1569777 SNPLEX 6pl2.3a 50,855,581
TFAP2B rs2245173 SNPLEX 6pl2.3a 50,857,376
TFAP2B rs2817419 SNPLEX 6pl2.3a 50,859,742
TFAP2B rs2817420 SNPLEX 6pl2.3a 50,860,168
TFAP2B rs2817421 SNPLEX 6pl2.3a 50,863,913
TFAP2D rs11961359 SNPLEX 6pl2.3a 50,726,739
TFAP2D rs760899 SNPLEX 6pl2.3a 50,740,443
TFAP2D rs9381890 SNPLEX 6pl2.3a 50,741,533
TFAP2D rs9395616 SNPLEX 6pl2.3a 50,747,310
TFAP2D rs2235497 SNPLEX 6pl2.3a 50,749,910
TFAP2D rs9367409 SNPLEX 6pl2.3a 50,751,064
TFAP2D rs9369971 SNPLEX 6pl2.3a 50,758,719
TFAP2D rs6928472 SNPLEX 6pl2.3a 50,759,344
TFAP2D rs2235495 TAQMAN 6pl2.3a 50,774,776
TFAP2D rs9349557 SNPLEX 6pl2.3a 50,780,012

Table 5.1: List of candidate genes investigated and tagSNPS genotyped within each locus
as well as method of genotyping. All data based on HapMap build 34 of the genome and
dbSNP buil 124 including HapMap Phase II data.
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HTR1B S100A10 TFAP2B/D
Location 6q14.1b 1921.3b 6p12.3a
HapMap Build HG34/dbSNP124 | HG34/dbSNP124 | HG34/dbSNP124
Start Position 78,167,530 149,171,000 50,715,964
Ending Position 78,169,200 149,183,800 50,865,963
Size of Region 1.67 kb 12.8 kb 150 kb
# SNPs in Region 9 18 197
MAF >5% CEU 5 13 96
MAF >5% YR 3 13 102
tagSNPs for CEU 3 4 14
tagSNPs for YRI 2 5 17
tagSNPs for STAR*D 3 2 21

Table 5.2: List of regions investigated and breakdown of SNPs in the region. Number of
tagSNPS genotyped within each locus are listed as “tagSNPs for STAR*D”. Represents

HapMap Phase 11 data.
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5.2.2 Marker Selection

To provide adequate coverage of the all four candidate genes, tagging SNPs were
chosen based on the HapMap data for each genomic region (HapMap build 19, October
2005, NCBI B34 assembly, dbSNP b124) using the method of Carlson et al. (6). Detailed
information on the genes and tagging SNPs selected are listed in Table 5.1 and linkage
disequilibrium (LD) values for the SNPs selected are described in Tables 5.3 through 5.6.
Due to the diverse ethnic makeup within the STAR*D population, we chose to select
tagSNPs based on both the HapMap CEU and the YRI populations to ensure adequate
coverage within such a diverse sample.
5.2.3 Polymorphism Genotyping

For the eight tagSNPs genotyped using 5’ exonuclease fluorescence (Tagman)
assays (Table 5.1), 5 ul reactions containing 10ng of dried genomic DNA template, 2.5 ul
of Universal Tagman PCR Master Mix (Applied Biosystems), 0.085 ul of 20X Tagman
assay probe (Applied Biosystems), and 2.42 ul of sterile H,0 were cycled at 95°C for 10
minutes, followed by 40 cycles of 92°C for 15 seconds and 60°C for 1 minute. Reaction
fluorescence was read and genotypes were scored on an ABI 7900HT Sequence
Detection System (Applied Biosystems). All other tagSNPs were genotyped on a
multiplex genotyping platform called SNPlex (Applied Biosystems, Foster City, CA).
5.2.4 Statistical Analysis

Three phenotypic comparisons were made, based on the results from the response
pattern analysis described previously (Chapter 2). The comparisons made were 1) all
responders (specific and non-specific) versus non-responders (Resp42); 2) specific

responders versus non-specific responders (Specific); and 3) remitters versus non-
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responders (Remit). Single-point association tests were performed by logistic regression
with the statistical package R 1.6.1 (7). Alleles were coded as 0, 1, or 2, corresponding to
the presence of 0, 1, or 2 copies of the rare allele. This coding scheme was chosen
because of its robustness to departure from the true additive genetic model (8).

Haploview was used to estimate linkage disequilibrium (LD) across regions of the genes.

5.3 Results
5.3.1 Single Marker Association

In our primary phenotypic comparisons, we tested five SNPs in the regions of the
S100A10 and HTR1B genes (S100A10=2 SNPs / HTR1B=3 SNPs). Stratifying by the
two ethnic groups, Caucasian and African American, we tested for association by using
an additive model and found marginal significance (p < 0.05) for one marker (rs130058)
in HTR1B gene when looking in the entire African American sample using the specific
response phenotype (Table 5.7). Those markers with nominal associations (p <0.1)
within S100A10 & HTR1B did not meet even modest corrections for multiple
corrections.

In our primary phenotypic comparisons, we tested twenty-one SNPs found in the
TFAP2B & TFAP26 gene cluster. Stratifying by the three ethnic groups, White, non-
Hispanic; White, Hispanic; and African American, we tested for association by using an
additive model and found marginal significance (p < 0.05) for four markers (rs2245173,
1s2817420, rs9381890, & rs2235495) occurring in different ethnic groups as well as

within different phenotypes (Table 5.8). Those markers with nominal associations within
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the TFAP2B & TFAP23 gene cluster did not meet even modest corrections for multiple
corrections.
5.3.2 Linkage Disequilibrium

As expected, the tagSNPs selected for each gene had relatively low levels of
linkage disequilibrium as this was used as selection criteria. Also of interest was that the
efficiency of tagSNPs was vastly different for the different genes depending on the
density of genotyped SNPs within the HapMap Phase II data (Table 5.2). HTR1B
required 3 tagSNPs while SI00A10 needed only 2 tagSNPs. TFAP2B & TFAP2D are
located within a 150kb block and tagSNPs were chose to tag this block containing both
genes with 11 tagSNPs falling within the TFAP2p locus and 10 in the TFAP26 gene for a

total of 21.
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RS11568817 | RS130058 RS6298

RS11568817
RS130058
RS6298 0.33 0.18

RS11568817 | RS130058 RS6298

RS11568817
RS130058
RS6298

Table 5.3: Linkage disequilibrium patterns within the HTR1B locus. D’ values on upper
diagonal shaded in red and pairwise r* values for each SNP pair on lower diagonal shaded
in blue. Caucasian & African Americans are shown separately in A & B, respectively.
Levels of shading indicate strength of LD with darker colors indicated stronger LD.
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RS1873311 | RS6678672
RS1873311
RS6678672 0.04
B.
RS1873311 | RS6678672
RS1873311
RS6678672

Table 5.4: Linkage disequilibrium patterns within the ST00A 10 locus. D’ values on upper
diagonal shaded in red and r* values on lower diagonal shaded in blue. Caucasian &
African Americans are shown separately in A & B, respectively. Levels of shading
indicate strength of LD with darker colors indicated stronger LD.
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5.4 Discussion

In this study, we sought to test whether DNA variation within several interesting
candidate genes from the literature was associated with clinical response to citalopram
treatment using the STAR*D sample. To accomplish this we used known HAPMAP
genotype data to select tagSNPs within these four genes and then examined these genes
in a large population taking the SSRI citalopram. Our analysis showed several different
markers associated with a number of related response phenotypes (Table 5.7 & Table 5.8)
with significance values less than p = 0.05. These associations are at best considered
marginal given the large number of statistical tests that were performed. While we cannot
say for sure that variation at these loci does not appear to significantly influence patient
response to citalopram, our genetic data based upon a LD mapping, tagSNP approach
suggests that variation within these genes do not significantly contribute to an
individual’s response to citalopram.

A limitation in any case—control association study is confounding based on
population stratification. We attempted to control for population stratification in this
study by analyzing the data within self-identified ethnic groups, as this has been shown to
correlate well with marker allele frequencies (7). The interpretation of our association
data also necessitates consideration of multiple testing. The correlation between
phenotypes tested, as well as the observed correlation of marker-to-marker relationships,
makes traditional corrections for multiple comparisons inappropriately conservative. We
have thus left our significance tests uncorrected.

In summary, using a tagSNP approach, we have made an effort to investigate the

role of genetic variation in four genes (HTR1B, S100A10, TFAP2p, and TFAP28) with
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regards to their effect on response to citalopram in a large patient population. Using
single locus tests, we observed a number of nominal associations between several
markers and a number of inter-related phenotypes. None of the polymorphisms we
interrogated appear to be strongly associated with citalopram response in the STAR*D
population. Furthermore, we were unable to find genetic evidence to validate previous
assertions in the literature that these genes play a role in depression or antidepressant
response. Given the largely negative results that we have found using a candidate gene
approach and that little is known about exactly how SSRIs exert their antidepressant
effects in vivo, we will, in the future, employ a systematic approach to looking at
variation across the entire genome to help elucidate genetic determinants of

antidepressant response.
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CHAPTER 6
GENE-CENTRIC ANALYSIS REVEALS MARKERS ASSOCIATED WITH

RESPONSE TO CITALOPRAM IN A LARGE CLINICAL SAMPLE WITH MDD

6.1 Introduction

As described in previous chapters, major depression is among the most common
psychiatric disorders and treatment with selective serotonin reuptake inhibitors (SSRIs) is
a mainstay in the treatment of MDD (1). There is prominent heterogeneity in response to
antidepressants (2), which is thought to be at least partly under genetic control (3,4).

To date, studies looking for genetic loci affecting antidepressant response have
been inconclusive in small samples (5,6). However, recent studies designed to be much
more powerful (7,8) have generally failed to discover variants within known candidate
genes strongly believed to influence antidepressant response based on a presumed
understanding of the mechanism of action of antidepressant drugs.

The general lack of success of candidate gene studies, even in large samples, is
not unique to psychiatric genetics and has led to the development of technologies that
enable scientists to interrogate large number of variants from across the genome
independent of assumed biological pathways or mechanisms of action. Such studies,
whether genome-wide or targeted, are becoming increasingly popular in many areas with
highly significantly associated variants being discovered for complex genetic disorders
(9-17). Many of these studies have identified loci that were not uncovered during

candidate gene experiments.

T This chapter will be submitted for publication: Kraft J.B., Shyn S.I., Garriock H.A., Peters E.J., Reinalda M.S., Jenkins G.D., Slager
S.L., McGrath P.J., & Hamilton S.P. “Gene-Centric Analysis Reveals Markers Associated with Response to Citalopram in the
STAR*D Clinical Sample.” 2008
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Large-scale studies, due to the extent of hypothesis testing, require validation
(18), and study design has been a focus of much discussion recently as investigators seek
strategies to evaluate the validity and generalizability of their findings (19). The most
common design analyzes all genotypic data without a replication stage. The primary
disadvantages of this approach are the larger cost and the lack of a validation step. A
variation on this approach is to work with other research teams to validate findings, as
has been done recently in type 2 diabetes (20-22).

Another approach involves split-sample or two-stage designs (23), in which SNP
genotyping is done on one portion of the sample initially and then positive findings
within this first group are then genotyped in the rest of the samples to validate the initial
associations. The primary disadvantages of this approach are a diminution of power and
the lower likelihood of weak genetic effects replicating, although it might be the best
available option for singular samples. It has been suggested recently that an alternative to
a split-sample design would be to genotype a fraction of a sample set, followed by
genotyping of those SNPs showing association in the remainder of the samples. A joint
analysis of all samples genotyped for this smaller set of markers is then carried out. This
approach obtains the cost savings of a two-stage design, while generally retaining the
power of a one-stage approach (24), with the attendant lack of validation.

The selection criteria for determining which markers to carry on to the second
stage of genotyping have been discussed far less but may be of equal importance. The
most straightforward strategy would be to select a priori those markers that meet the
chosen level of significance for the validation stage. One way to enhance the likelihood

of choosing high value SNPs for validation is to preferentially weight SNPs based on
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prior information, such as when the SNP occurs in a linkage peak or known candidate
gene for the phenotype (25,26).

Finally, it may be useful to select SNPs that represent a larger genetic effect
despite showing a lower level of statistical significance (i.e., having a lower p value).
With the large samples used for many current studies, it is likely that there will be
markers with dramatically small p values coming from the discovery stage. Many of
these will have negligible effect sizes and therefore the clinical implications of such
variants are not immediately clear. It thus may be of great interest to find SNPs that
suggest a substantial contribution to risk, and still show an adequate level of significance
using association statistics. Undoubtedly, this approach would result in not considering
SNPs that are highly associated with a trait, but with a small effect. Another hazard of
choosing such markers involves enrichment for low frequency variants, for which allele
frequency differences between cases and controls may be unreliable, thus leading to
spuriously large odds ratios.

As described in previous chapters, we are determining if common DNA variants
contribute to antidepressant response status in a large clinical sample (N=1,914) taking
the SSRI citalopram (Celexa). Here, we report an analysis of 40,113 gene-based SNPs,
including 20,000 non-synonymous SNPs, in a two-stage design (27). We additionally
sought to test if using both significance levels and a threshold effect size (e.g., odds ratio
>2.0) as criteria for SNP selection for stage-two genotyping would be a successful
approach to discovering clinically relevant variants associated with antidepressant

response in our whole genome study.
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6.2 Materials and Methods
6.2.1 Study Design

We used a two stage design to identify associated variants and validate our
findings. We selected 962 subjects for the first stage (discovery) and 952 subjects for our
second stage (validation). These subjects were selected by random sampling controlling
for gender, race, and Resp42 phenotype, thus assuring comparability of the discovery and
validation samples for the most meaningful characteristics. All markers with trend test p
<0.001 and with a dominant OR > 2.0 were selected for genotyping in the second stage.
It might be argued that power is sacrificed by not using a single stage design using all
samples for analysis, or a two-stage design with joint analysis (25). While it is true that
our approach sacrifices power, these other approaches do not provide true replication of
association findings. Since we are aware of no other sample of comparable size that
exists now or for the foreseeable future, we believe we must sacrifice some power for the
ability to assess the validity of our findings.
6.2.2 STAR*D Study Sample

The study population consisted of the subjects who consented to give DNA from
the STAR*D antidepressant trial, as reviewed elsewhere (see Chapter 3). To limit
heterogeneity within our analyses, the analyses were done by splitting samples into two
self-identified racial subgroups: White and African American. Due to heterogeneity
within our self-identified “White” subject, as uncovered via the structure analysis

described later (Chapter 7), the analyses were also ran splitting STAR*D into three racial
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subgroups: White, non-Hispanic; White, Hispanic; and African American. Other self-
reported race classes were not analyzed due to small sample sizes.
6.2.3 Polymorphism Genotyping

Approximately 40,000 markers were genotyped by ParAllele Biosciences (South
San Francisco, CA) using Molecular Inversion Probes (MIP), so named because the
oligonucleotide probe central to the process undergoes a unimolecular rearrangement
from a molecule that cannot be amplified, into a molecule that can be amplified. This
rearrangement is mediated by hybridization to genomic DNA and an enzymatic "gap fill"
process that occurs in an allele-specific manner. The resulting circularized probe can be
separated from cross-reacted or unreacted probes by a simple exonuclease digestion and
then amplified using PCR probes sites common to all MIPs (36). Of the 40,113 assays,
593 were duplicate assays and 39,635 passed genotyping quality control. Ten HapMap
samples were typed from 2-7 times as external controls, and 5 STAR*D samples were
genotyped in duplicate. Duplicate genotyping showed repeatability of 99.92%. SNP and
amelogenin data identified one X0 female and one XXY male. 37 of the 45 SNPs
genotyped on the validation set of samples were genotyped using the SNPlex multiplex
genotyping platform (Applied Biosystems, Foster City, CA) with 7 remaining SNPs
genotyped using a 5’ nuclease assay (Tagman) and 1 SNP genotyped with restriction
length fragment analysis (RFLP ) due to assay failure with both SNPlex and Tagman
(Table 6.1).
6.2.4 Marker Information & Selection

The 40,113 markers genotyped for our study were not chosen to cover the

genome, and are spaced approximately one marker per 72kb (Figure 6.1). SNPs were
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chosen by ParAllele to a) represent common variation in genes, and b) represent available
known non-synonymous variants. The initial experimental design was to add
approximately 60,000 additional markers to provide a higher density of tagging SNPs in
genes, with little coverage of non-genic regions. As discussed in the next chapter, this

approach was supplanted by a larger-scale effort.
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6.2.5 Statistical Analysis

The frequency distributions of demographic and clinical variables were examined.
To control for any potential population stratification, we stratified our analyses by self-
reported ethnicity: Caucasian and African-American. We tested for Hardy-Weinberg
equilibrium within each of the ethnic groups, and for these analyses, all subjects from a
stratum were used in the analysis since all subjects had depression and the evaluated
polymorphisms were not suspected to influence risk of depression. Linkage
disequilibrium was estimated using the r* metric.

We used unconditional logistic regression analysis to examine associations of
genetic polymorphisms and response to citalopram. Each polymorphism was modeled
individually as gene-dosage effects in the regression models. This coding scheme was
chosen because of its robustness to departure from the true additive genetic model (28).
Multivariate regression analysis was used to control for possible confounding by sex, age,
education (years of school), months in current major depressive episode (MDE), and
years since first MDE. We estimated odds ratios (OR) and 95% confidence intervals
(Cls) for the carriers of the minor allele versus non-carriers of the minor allele. In the
validation stage, markers were considered significant only if they met a threshold p value
(p <£0.006) and had the same direction of effect as in the discovery stage. The same
directionality requirement is important as it will remove those SNPs where the allele
associated with improved response switches between the discovery and validation
samples but each different alelele remains significantly associated.

As a secondary analysis, we evaluated the combined effect of multiple SNPs on

citalopram response. For this analysis we used SNPs significantly associated when
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considering the entire dataset (p < 0.001 in the combined sample). We selected the allele
that was more common in the responder group and treated this allele as the protective
allele. We then summed up the total number of protective alleles each individual had.
This total was modeled as a continuous variable in a logistic regression analysis. One
thousand permutations were run to obtain the corrected type I error rate and odds ratio
estimate. Statistical tests were performed in SAS version 8.2 or Splus version 6.2.1

statistical packages.

6.3 Results
6.3.1 Two-Stage Primary Analysis

In our two-stage strategy, we genotyped approximately half of our sample for
40,113 SNPs located in or near known or predicted genes, including approximately
20,000 non-synonymous SNPs. We then sought to validate our initial findings by
genotyping the second half of our sample for SNPs that met our a priori threshold for
statistical significance and effect size. Markers with a trend test p <0.001 and with a
dominant OR > 2.0 were selected for genotyping in the second stage. Markers that had p
< 0.006 in the validation stage for the same allele were considered to show replication.
We found that 45 SNPs met our selection criteria in our discovery population and were
therefore genotyped in the remainder of our sample (Table 6.1). Only one SNP in the
LRP2 locus (rs6716834) met the criteria for replication, and occurred in the African-
American sample. The minor allele frequency for responders was 0.29 in the discovery
sample, compared to 0.52 in the non-responders (p = 5.3 x 10-5, dominant odds ratio =

0.29 [95% confidence interval = 0.14-0.60]). In the validation sample, the responder
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minor allele frequency was 0.33, versus 0.53 in non-responders (p = 0.006, dominant
odds ratio = 0.41 [95% confidence interval = 0.17-0.94]) (Table 6.2). Combining
discovery and validation samples, we observed continuing support for the LRP2 SNP (p
= 1.3 x 10-6, dominant odds ratio = 0.33 [95% confidence interval = 0.19-0.58]).
6.3.2 One-Stage Secondary Analysis

As a secondary analysis, we evaluated the additive effect of multiple SNPs on
response to citalopram. We used twelve markers that met our discovery stage criteria and
then met a relaxed level of significance in the combined dataset (p < 0.001) (Table 6.2).
Within the Caucasian sample, there were five SNPs from five different genes that were
used in this analysis. Thus the number of “protective” alleles (i.e., the allele increased the
likelihood of response) for each Caucasian individual ranged from 0 to 10. We found a
highly significant trend of response with increasing number of protective alleles
(permutation p < 0.0001). That is, for each additional protective allele, the likelihood of
response increases 55% (odds ratio = 1.55, 95% confidence interval = 1.37-1.73) (Figure
6.2). Within the African-American group, there were seven SNPs from six genes that
were genotyped in stage two. Because, two SNPs (rs915033 and rs915034) were in
strong LD (12 = 0.95) with each other, only rs915033 was used. We also found a
significant effect (permutation p < 0.0001), with an effect size of OR =2.01 (95%
confidence interval = 1.76-2.34) for each additional allele (Figure 6.3). This suggests
multiple independent susceptibility loci acting in an additive manner with no real

evidence of epistasis, although we have not formally tested for such.
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6.4 Discussion

Our 40,113 marker, two-stage design study implicated one SNP in the LRP2 locus
with antidepressant response with a relatively large effect size. The dominant odds ratio
for the minor allele was 0.29 in the discovery set, and 0.41 in the validation set.

The most likely role for the protein LRP2 in antidepressant response involves its
function at the blood brain barrier and possible role in transport of drug into the central
nervous system. The SNP associated with antidepressant response within LRP2 is a non-
synonymous coding change within the protein changing a serine to an asparagine at
amino acid position 83. This is a relatively mild mutation that is predicted to not be a
“significant” amino acid substitution and to be well tolerated (score 0.79) as determined
by the SIFT algorithm (29-32). This gene is relatively large (~250kb) and contains some
31 non-synonymous SNPs within its 79 exons. DNA variation in the gene has been
previously associated with side effects to the chemotherapeutic agent cisplatin,
highlighting the role that this protein may play in drug transport (33,34).

Spurious associations due to population stratification within a sample are a major
concern for case-control association studies. To correct for potential ethnic stratification,
we analyzed both the African American & Caucasian groups separately to test for
association. As described above, we also tested for the possible confounding effects of a
small subgroup of Hispanics within the Caucasian sample by further dividing the
Caucasians on the basis of Hispanic ancestry and found that all markers still remained
associated with our phenotype (Table 6.3).

A limitation of our study is that our choice of 40,113 markers does not represent a

comprehensive whole genome association study. While approximately half of these
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markers were chosen as tag SNPs, the other half of the markers represents coding SNPs
within known genes. These 40,113 markers have an average spacing of about 72kb
between them which is much larger than what that would be desired for a whole genome
study. Even with a non-ideal choice of markers, we were able to discover one marker that
was validated within our two-stage design and 11 other markers using a more relaxed
threshold. Two of these 12 SNPs were non-synonymous coding changes and minor allele
frequencies varied dramatically among the markers (3%-40% MAF). These markers were
found to be in several intriguing genes including NR5A1 (a transcription factor involved
in steroid and hormone production in response to stress), KCND?2 (a potassium ion
channel expressed in the brain), and EMR4 (a novel epidermal growth factor expressed in
the brain). These results provide us with plausible genes for antidepressant response and
provide a picture of what could be uncovered using a larger number of markers designed
to more adequately survey the genome. This study will be addressed in detail within
Chapter 7.

In summary, we have looked at approximately 40,000 markers throughout the
genome in a very large clinical sample using a two-stage “split” sample design to find an
association with a single marker (rs6716834) within the LRP2 gene. Although not
validated in the two-stage design, we have also implicated 11 other markers in our entire
sample found in various loci including some promising genes such as a potassium
channel and calcitonin b related peptide. It appears that the LRP2 gene does affect
response to drug in our representative population with citalopram using our outcome

assessment phenotypes.
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CHAPTER 7
WHOLE GENOME ASSOCIATION STUDY

OF RESPONSE TO CITALOPRAM

7.1 Introduction

While candidate gene study designs are often utilized in the investigation of
complex diseases, having a prioi knowledge of the causative (or even likely causative)
candidate genes is often difficult for most phenotypes. Indeed, identification of new genes
is often the driving force behind complex disease studies. Genome-wide linkage studies
have been performed for years, but as discussed in Chapter 1, logistical difficulties arise
from collecting families for pharmacogenetic studies. Recent advances in SNP
genotyping technology and reduction in costs have made whole genome association
(WGA) studies entirely feasible (1). The first reports of WGA studies have appeared in
the literature and there have been some great successes such as the CFH gene and
macular degeneration (2), however, complexities and questions remain regarding the
optimal analysis of WGA data (3).

The obvious strength of being able to assay most of the genes in the human
genome is tempered by concerns about multiple testing penalties, population
stratification, and the apparent non-replication of many smaller candidate gene
association studies. Despite these methodological considerations, large WGA studies are
currently progressing with studies such as the Wellcome Trust Case Control Consortium
(WTCCC), which genotyped over 16,000 subjects with various common diseases as well

as 3,000 control samples, and the Genetic Association Information Network (GAIN) who
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are investigating a number of complex disorders. Both of these projects are consortium-
based and have pledged to make their raw genotype and clinical data publicly available
shortly after it is generated, allowing other investigators to apply different analytical
techniques.

We undertook conducting a WGA study using a subset of the STAR*D patient
population for which DNA samples were collected, which consists of over 1,900
depressed subjects taking the SSRI citalopram. In order to limit Type | error and reduce
overall genotyping costs, we used a two-stage study design (4). In the first stage, we
genotyped approximately half of the sample (discovery set, N=964) for 500,567 SNPs
distributed across the human genome. The most highly associated SNPs were then
genotyped in the second half of the sample (validation set, N=975) to asses if they would
replicate the initial association.

Here we report the initial analysis of the WGA data, including descriptions of the
genotype data manipulation and quality control checks. Single locus SNP association
results are reported for response, specificity of response, remission, and intolerance
phenotypes. We analyzed the data using the Cochran-Mantel-Haenszel test to compare
across self-reported ethnic strata. While none of the putative associations investigated in
the second stage replicated their strong initial associations, as discussed below, this is a
very preliminary analysis involving the “lowest hanging fruit” and as such broader, more

comprehensive genotyping in the validation sample set needs to be performed.
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7.2 Materials and Methods
7.2.1 STAR*D Study Population

The study population consisted of the subjects who consented to give DNA from
the STAR*D antidepressant trial, as reviewed elsewhere (see Chapter 3). Within each
ethnic group, and gender, we randomly split our subjects a priori into a discovery and
validation sample set (Table 7.1). The entire discovery and validation sets were
genotyped using the WGA platforms. Due to heterogeneity within our self-identified
“White” subject, as uncovered via the structure analysis described below, all analyses
were split into three racial subgroups: White, non-Hispanic; White, Hispanic; and African
American. Other self-reported race classes were not analyzed.
7.2.2 Genotyping

The Affymetrix 500K array (5) was used (N=500,567 successful SNPs) to
genotype the discovery set, and genotypes were scored using Affymetrix’s BRLMM
algorithm (6). In addition, the Affymetrix 5.0 array (5) was used (N=500,567 successful
SNPs) to genotype the validation set, and genotypes were scored using Affymetrix’s
BRLMM-P algorithm. Twelve samples were genotyped on both platforms, concordance

rate of 99.29%, to ensure compatibility of genotype information between platforms.
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7.2.3 WGA Quiality Control

Raw data files were transferred to us by Affymetrix for the discovery set and
generated “in-house” for the validation set. Genotypes were generated using the BRLMM
and BRLMM-P algorithms for the discovery and validation sets, respectively. This data
was imported along with phenotype data into Progeny 7.0 software. Data was then output
in standard linkage format using Progeny and analyzed using PLINK and STATA-MP
version 9.

We removed samples from the data for two reasons: low sample call rates (<95%)
and samples with self-reported ancestry not falling into the 3 main ethnic groups. Of the
500,568 SNPs that were successfully genotyped, we removed SNPS that: had no
chromosomal annotation in doSNP (121), were duplicated within the panel (1), were on
the X chromosome for ease of analysis (10,525), had a call rate less that 95% within the
sample set, and had minor allele frequencies less than 0.1% across the sample set. The
remaining SNPs were used in the analyses described below. In order to be tested for
association to citalopram response phenotypes, SNPs were required to conform to Hardy-
Weinberg equilibrium (HWE). SNPs were tested for departure from HWE within each of
the 3 racial subgroups and markers with a significant departure from HWE (p <
0.000001) in two of the three racial subgroups were excluded from association analysis.

SNP quality control and descriptive statistics were generated using custom
files (“WGA_STARD_QC.do”, “MAF_STARD.do”, “WGA_Spacing.do”, written by

Jeffrey Kraft) and executed in STATA-MP version 9 or from the program PLINK (7).
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7.2.4 Linkage Disequilibrium Analysis

In order to assay the amount of redundancy in the SNP genotype data, SNP
binning based on pairwise r* values was performed. Within each racial subgroup (White,
non-Hispanic, White Hispanic, and African American), pairwise r* for each SNP with all
other SNPs within a 1 megabase sliding window was calculated. This was process
repeated for all the SNPs in the WGA panel. Data was then compiled, any redundancy
was removed, and number of proxy SNPs at several r* thresholds was calculated. This
was performed using “matrix of pairwise LD” function within PLINK and custom scripts,
written by Jeffrey Kraft, and executed in STATA-MP version 9.
7.2.5 Structure Analysis

In order to assess the levels of genetic heterogeneity in the sample, the MCMC
method of Pritchard et al was performed, as implemented in structure version 2.0 (8).
Using the entire STAR*D sample set and 2,500 random SNPs from the WGA data from
across the genome, the algorithm was run using 10,000 burn-ins followed by 100,000
iterations. Several runs were performed assuming from 1 to 4 underlying subpopulations
(“K™), and results for each “K” were stable in terms of estimates of alpha, Fst, and
proportion ancestry (“Q”) for each individual, indicating the algorithm had not
inadvertently settled at a local maximum.
7.2.6 Single Locus Analysis

In this report, all association analyses were carried out by stratifying by self-
reported ethnicity and then comparing across ethnic strata. We investigated four clinical
phenotypes, citalopram response, specificity of response to citalopram, citalopram

remission, and intolerance to citalopram. All of these phenotypes have been described in

153



detail previously for this study population (see section 3.2.7). We used the software
PLINK to test each SNP in the WGA panel for association to the four phenotypes within
the three ethnic subgroups in each of the subsets (discovery and validation). Only SNPs
that passed the QC filters described above were used in the association analysis although
these thresholds were applied independently to the discovery and validations subsets
resulting in two unique groups of SNPs. We used an allelic model and the Cochran-
Mantel-Haenszel (CMH) test to investigate single locus associations across ethnic strata.
Dominant (minor allele carrier versus non-carrier) odds ratios for each SNP were also
calculated.

We sought to only investigate the most highly associated SNPs within each
phenotype. Our strategy was to rank order the p-values using the allelic model in the
discovery set, then take the most highly associated 10 SNPs in each phenotype to follow
up using the validation set. We then required these follow-up SNPs to have a significance
of p < 0.05 in the validation sample set in order to declare study-wide significance.

For our post-hoc one-stage analysis, we combined the discovery and validation
sets and rank ordered the p values, reporting the top 10 markers for each phenotypic
comparison.

7.2.7 SNP x SNP Interaction Analysis

The 10 SNPs with the lowest p-values from the single loci analyses in the entire
STAR*D sample were modeled for pair-wise SNP interactions using the epistasis
function of PLINK. The epistasis test uses logistic regression and makes a model based
on allele dosage for each SNP, A and B, and fits the model: Y = b0 + b1.A + b2.B +

b3.AB + e, where the test for interaction is based on the coefficient b3. Dominant (minor
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allele carrier versus non-carrier) odds ratios for each SNP x SNP interaction were also

calculated. These analyses were done on the entire STAR*D sample.

7.3 Results
7.3.1 WGA Data Descriptions and QC

Using our QC filters (described in detail within section 7.2.3) a total of 469,170
SNPs passed in our discovery sample, 435,512 SNPs in our validation set, and 445,260
SNPs in the entire STAR*D sample. Overall, these SNPs had a very high call rate (mean
99.1%).

SNPs were not uniformly distributed across the entire genome. Large gaps exist in
centromeric and telomeric regions of some chromosomes. This is due to technical
difficulties that arise from assaying those regions which are abundant in repetitive DNA
sequences. On average there was a marker every 5.7kb (median 2.5kb), however assay
coverage was variable with coverage on the X chromosome markedly lower and no
markers present on the Y chromosome (Figure 7.1). As seen in Figure 7.2, the
distribution of intermarker distances is largely skewed due to a small number of very
large gaps between SNPs (not shown).

Marker minor allele distribution varied between racial subgroups. The Non-
Hispanic Caucasian subgroup had a lower average minor allele frequency than either
Hispanic Caucasians or the African American subgroup (0.20/0.21/0.22, respectively),
and had fewer SNPs with a minor allele frequency greater than 5% as well (348,467 /

359,487 / 397,909, respectively, see Figure 7.2).
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7.3.2 Assessment of Population Structure

As discussed previously, population stratification can lead to confounding in case-
control association studies. We ran a structure analysis, described in detail in Chapter
1.4.3, on the discovery and validation sample set using 2,500 random SNPs from across
the genome (Figure 7.3). The results indicated that a model with 3 genetic subgroups
(i.e., K=3) was the best fit for the data. A clear distinction was seen between the self-
reported African American and White samples, and the third genetic subpopulation

correlated well with Hispanic ancestry.

156



O G'Z IN0QR 1. J3|[BWS YoNnwW SeMm a0UuelSIp dNS-41ul Ueipaw ay) ajIym g /G Ajerewixoldde sem sawosoine
22 |1e Ss042e 39URISIP dNS-J81ul aBeIaAY "BLIOSOWO0IYD AQ UMOP USX0IQ S8OUBIBLIP dNS-J81ul uesw Buimoys ainbiH ;17 ainbi-

QLUIOSOWoIYD
7T 0z 81 9T b1 71 o1 g g 7 z 0
——,— ey e+ mo
=
+ @
i»
| =
»
-um.m
o
B o
(=]
[
| -]
+ -]
=
] o
- o1 2
t &
1 =
=
L 51T

) §°Z = @oUejSIp dNS-183Ul Ue|Pa
a) L'§ = 9dUe)ISIp dNS-19)U] Uealy

157



‘056G < 4VIA & BulAey SiaxJew |e101
3U3 JO 95/8 YIM ‘Jej} 1sow e SI uonnqguisip asoym dnoibgns
URILIBWY URILILY 3yl 10} SISy ("D %G < 4VIA e Bulaey

SANS 8y} J0 9508 IN0ge Y}M ‘uolIngLisIp axeIpawaiul

ue moys dnoibgns ueiseane) JluedsiH ay) J0J S1Nsay

("9 %S < 4VIN & Bulney 948/ AJuo pue ss3| 0 %T J0

4VIN B Bulney SINS U} JO %ET ISOW[e Y1 ‘uonnguisip
Pamas 1sowW ayl moys dnoabigns ueiseane) JluedsiH

-UON 8y 1o} synsay (W ‘sixe-A ayl uo umoys SdNS |e101 ayl
J0 uoiodoud s, uig yoes yum ‘(suiq %T u1) 4VIN dNS a3y}
SI SIxe-x ay1 uQ "sdnoubgns Jeioes £ ayl Jo yaea ul (4vIN)
salouanbaly a)8je Joutw Aq SINS 0 welboisiH :z'/2 ainbi

fauanbal g &)y Jouy
) T £ i L a

S0

SANS (BI040 UDIlaE] 4

Sl

(a

Aauanbalq aja)y Joupy
£ c

Aauanbal J a)a)y Jouny
£ C

S0

S4NS |10 40 udljael4

51

=i

ST [EI0] 40 UdI}oEl ]

-1

@)

158

(v



Hispanic Rl
Caucasians

e

2 3
Ho. of Subpopulations g}

3 Non—Hispanic
Caucasians

African
Americans

e

Figure 7.3: Results of structure analysis using 2,500 random SNPs in the entire STAR*D
sample set. A) Plot shows the percent identity (Q) from the 3 subpopulations for each
subject. Subjects are ordered based on self-reported race, as shown to the right of the
structure plot. B) Graph of the posterior probability of the model at various numbers of
historical subpopulations (K). The addition of a 4™ subpopulation does not significantly
strengthen the model fit, thus K=3 was used.
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7.3.3 Linkage Disequilibrium Analysis

Given the marker density in this study, there was a great amount of LD between
the SNPs on our WGA panels, as would be expected. Also, as expected based on
population history, the African American subgroup showed less LD on average than the
Non-Hispanic Caucasian subgroup and the Hispanic Caucasians displayed an
intermediate amount of LD comparatively (Figures 7.4-7.6).

In order to get a sense of the redundancy of the genotype data, which is an
important consideration in determining the number of independent tests performed, we
ran an r? threshold binning approach on the SNPs in the WGA panel. Using a sliding
window of 1 million base pairs around the target SNP, the number of proxy SNPs was
determined using various thresholds of r?. These analyses revealed significant
redundancy in the SNPs genotyped. In the Non-Hispanic Caucasian subgroup, using an r?
= 1.0 threshold, which means the genotype of one SNP perfectly predicts the genotype of
another SNP in all cases, 10% of the SNPs have at least one perfect proxy. At a reduced,
but still conservative, threshold of r* = 0.80 (common threshold for selecting tagSNPs),
nearly 60% of the SNPs have at least one good proxy in the dataset (Figure 7.4). Fewer
than 200,000 SNPs were correlated at the 0.80 level with no other SNP. In the Hispanic
Caucasian and African American subgroups, redundancy was still high, though, as

expected, at a level less than in the Non-Hispanic Caucasians (Figures 7.5 & 7.6).
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Figure 7.4: Amount of LD and redundancy of SNPs at various r? thresholds in the Non-
Hispanic Caucasian racial subgroup. All SNPs are shown on the y-axis. Using a sliding
window of 1Mb around the target SNP, the number of proxy SNPs (SNPs in LD above
the threshold) for each SNP was determined using an r* threshold of 1, 0.90 and 0.80 (x-
axis).
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Figure 7.5: Amount of LD and redundancy of SNPs at various r? thresholds in the
Hispanic Caucasian racial subgroup. All SNPs are shown on the y-axis. Using a sliding
window of 1Mb around the target SNP, the number of proxy SNPs (SNPs in LD above
the threshold) for each SNP was determined using an r* threshold of 1, 0.90 and 0.80 (x-
axis).
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Figure 7.6: Amount of LD and redundancy of SNPs at various r? thresholds in the African
American racial subgroup. All SNPs are shown on the y-axis. Using a sliding window of
1Mb around the target SNP, the number of proxy SNPs (SNPs in LD above the threshold)
for each SNP was determined using an r” threshold of 1, 0.90 and 0.80 (x-axis).
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7.3.4 Single Locus Association — Discovery Set

We performed four phenotypic comparisons in our subjects as described in detail
previously. The results for all the SNPs across the genome for the four phenotypes
(remission, response, specificity of response, and tolerance) are shown in Figures 7.7 thru
7.10, respectively. One marker (SNP_A-2024840) was significant in the remission
phenotype using a Bonferroni corrected threshold with a significance of 1.01x10”". Four
SNPs (SNP_A-1843477, SNP_A-2242408, SNP_A-1837056, and SNP_A-1842826)
showed significance with the tolerance phenotype at levels exceeding a Bonferroni
corrected threshold (p < 1.07x107). For the response and specificity of response
phenotypes no markers were significant at the Bonferroni corrected threshold.

The significance values and dominant odds ratios for the top 10 rank ordered
SNPs in the discovery set for each of the four phenotypes are listed in Table 7.2. quantile-
quantile (QQ) plots for the remission, response, and specificity of response phenotypic
comparisons showed no gross inflation of the chi-squared statistics (Figure 7.11A-
7.13A). The tolerance phenotype showed systematic inflation which can be indicative of
confounding due to population stratification or other factors (Figure 7.14A). Most likely,
this is due to the small numbers of genotype counts that accompany this rare phenotype.
7.3.5 Single Locus Association — Validation Set

We genotyped the validation set using the Affymetrix 5.0 platform containing the
same 500,568 SNPs as mentioned previously and then looked for replication of the top 10
SNPs from the discovery set in the second phase of the study. For the tolerance
phenotype, one SNP (SNP_A-2139836) replicated with a significance value of 0.018. For

the remission, response and specificity of response phenotypes, none of the top 10 SNPs
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yielded a significant association in the validation sample (p<0.05), using the same
genotypic model and data coding format as in the discovery set analysis (Table 7.3).
Several of the SNPs selected for replication from the discovery set did not meet the QC
standards in the validation set and therefore association results are not presented for these
few SNPs.

7.3.6 Single Locus Association — Entire STAR*D Sample

Our results from our two stage design were largely negative with only one SNP
showing replicated association (in a fairly rare phenotype), therefore, we attempted to
analyze our data, post-hoc, as a one-stage study to maximize the power of our clinical
sample. This analysis was only possible due to the dense marker genotyping on both sets
of STAR*D (discovery and validation). We combined the discovery and validation set
genotypes and rank ordered the p values in the combined sample.

No markers showed association with any of the phenotypic comparisons at levels
exceeding a Bonferroni corrected threshold (p < 1.12x10°). The significance values and
dominant odds ratios for the top 10 rank ordered SNPs in the entire STAR*D sample for
each of the four phenotypes are listed in Table 7.4 and the quantile-quantile (QQ) plots
for these phenotypic comparisons showed no gross inflation of the chi-squared statistics
with the exception of the tolerance phenotype as seen previously (Figure 7.11B-7.14B).

Our genome-wide results were unable to verify and replicate previously reported
associations in the literature with the candidate genes SLC6A4, TPH2, FKBP5, ACE, or
GNB3. We did find associations (p < .01) with SNPs in HTR2A & GRIK4, which is
consistent with reports from the McMahon group working on the STAR*D sample , but

we don’t consider them significant due to the number of tests performed (Table 7.5).
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7.3.7 SNP x SNP Interaction Analysis — Entire STAR*D Sample

The results from our pair-wise SNP interaction analysis were largely negative.
All unique pair-wise combinations of the top 10 SNPs for each phenotypic comparison
were tested for the associated phenotype. The interaction analysis for the remission
phenotype showed only one of the 45 unique interactions had significance p < 0.05. The
interaction analyses for response and specificity of response phenotypes also showed
only one interaction with significance less than 0.05. The interaction analysis for the
tolerant phenotype was able to be calculated for only two pair-wise interactions (both
non-significant) due to the rarity of this phenotype (i.e. for most pair-wise combinations
of SNPs, there were not cases and controls who had the rare allele of both SNPs). Despite
the 3 positive interactions, one in each of 3 phenotypes, these results are in line with what
would be expected by chance due to the large number of tests and do not demonstrate that
significant interaction exists between the most highly associated markers in each

phenotype.
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Phenotype SNP Chr. Allelel Allele 2 Discovery Set
P-Value OR (95% CI)

remit SNP_A-2024840 13 A G 1.01E-07 0.5 (0.39-0.65)
remit SNP_A-4218787 7 G A 1.34E-07 1.97 (1.53 - 2.54)
remit SNP_A-2042516 1 A G 1.10E-06 2.07 (1.54 - 2.78)
remit SNP_A-4238877 13 T A 2.17E-06  1.92 (1.46 - 2.52)
remit SNP_A-4266303 7 A C 477E-06 1.6 (1.31-1.96)
remit SNP_A-4230512 8 C T 5.68E-06 3.05 (1.86 - 4.99)
remit SNP_A-1789669 13 C T 7.87E-06 1.81(1.39-2.35)
remit SNP_A-2141865 13 C G 8.69E-06 1.8 (1.39-2.34)
remit SNP_A-2256177 13 T C 8.99E-06 1.8 (1.39-2.33)
remit SNP_A-2149893 2 G A 9.44E-06  0.27 (0.15-0.5)
resp42 SNP_A-4218787 7 G A 4.52E-07 1.88(1.47-24)
resp42 SNP_A-2024840 13 A G 5.68E-07 0.54 (0.43 -0.69)
resp42 SNP_A-2042516 1 A G 1.62E-06 2(1.51-2.67)
resp42 SNP_A-2149893 2 G A 4.43E-06 0.29 (0.17 - 0.51)
resp42 SNP_A-4266303 7 A C 6.35E-06  1.56 (1.29 - 1.9)
resp42 SNP_A-4227466 1 G A 6.69E-06 0.57 (0.45-0.73)
resp42 SNP_A-4238877 13 T A 7.23E-06 1.82 (1.4 -2.37)
resp42 SNP_A-2057977 16 T G 9.21E-06 0.65 (0.53-0.79)
resp42 SNP_A-2297908 11 T C 9.94E-06 2.18(1.53-3.1)
resp42 SNP_A-2128247 3 G A 1.36E-05 1.55(1.27 - 1.89)
spec_resp SNP_A-4218787 7 G A 6.68E-07 1.94 (1.49 - 2.53)
spec_resp SNP_A-2057977 16 T G 2.44E-06 0.61(0.49-0.75)
spec_resp SNP_A-4261350 13 G A 5.41E-06 1.82 (1.4 - 2.36)
spec_resp SNP_A-1915448 11 T C 6.63E-06 0.6 (0.49-0.75)
spec_resp SNP_A-2024840 13 A G 7.78E-06 0.55(0.42-0.72)
spec_resp SNP_A-1996954 9 T C 9.46E-06 1.85(1.41-2.44)
spec_resp SNP_A-4196344 16 C G 1.06E-05 1.6 (1.3-1.98)
spec_resp SNP_A-4266303 7 A C 1.63E-05 1.59 (1.29 - 1.95)
spec_resp SNP_A-4238877 13 T A 1.68E-05 1.85(1.39 - 2.45)
spec_resp SNP_A-2007509 20 T C 1.84E-05 1.59 (1.28 - 1.96)
tolerant SNP_A-1843477 13 A G 4.04E-10  0.07 (0.02-0.19)
tolerant SNP_A-2242408 12 A G 3.96E-09 N/A
tolerant SNP_A-1837056 5 A G 1.03E-08 0.08 (0.03 - 0.22)
tolerant SNP_A-1842826 15 T C 1.32E-08 N/A
tolerant SNP_A-2288013 19 C T 1.76E-07  0.09 (0.03 - 0.28)
tolerant SNP_A-4195753 10 C A 3.15E-07 0.05(0.01 - 0.24)
tolerant SNP_A-2095694 11 A C 4.19E-07 0.03 (0-0.27)
tolerant SNP_A-1943222 1 A G 4.68E-07 0.2(0.11-0.38)
tolerant SNP_A-2139836 4 A G 6.26E-07 0.06 (0.02 - 0.25)
tolerant SNP_A-1962163 2 T A 7.05E-07 0.02 (0 - 0.25)

Table 7.2: List of top 10 associated SNPs in the discovery set from each of the four
phenotypic comparisons (remit, resp42, spec_resp, & tolerant). “N/A” as the odds ratio
indicates the dominant odds ratio cannot be calculated.
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Validation Set

Phenotype SNP Chr. Allelel Allele?2
P-Value OR (95% ClI)

remit SNP_A-2024840 13 A G 0.684 0.94 (0.69 - 1.28)
remit SNP_A-4218787 7 G A 0.178 1.24 (0.91-1.7)
remit SNP_A-2042516 1 A G 0.417 0.87 (0.62 - 1.22)
remit SNP_A-4238877 13 T N e

remit SNP_A-4266303 7 A C 0.827 1.03 (0.81 -1.31)
remit SNP_A-4230512 8 C T 0.747 1.1 (0.61 - 1.98)
remit SNP_A-1789669 13 C T 0.515 0.91 (0.67 - 1.22)
remit SNP_A-2141865 13 C G 0.493 0.9 (0.67 - 1.21)
remit SNP_A-2256177 13 T C 0.572 0.92 (0.68 - 1.24)
remit SNP_A-2149893 2 G A 0.473 0.8 (0.43-1.47)
resp42 SNP_A-4218787 7 G A 0.157 1.24 (0.92 - 1.68)
resp42 SNP_A-2024840 13 A G 0.866 0.97 (0.73 - 1.31)
resp42 SNP_A-2042516 1 A G 0.184 0.81 (0.59 - 1.11)
resp42 SNP_A-2149893 2 G A 0.823 0.94 (0.53 - 1.65)
resp42 SNP_A-4266303 7 A C 0.745 1.04 (0.82-1.31)
resp42 SNP_A-4227466 1 G A 0.833 0.97 (0.71 - 1.32)
resp42 SNP_A-4238877 13 T Al —
resp42 SNP_A-2057977 16 T G 0.453 1.1 (0.86 - 1.39)
resp42 SNP_A-2297908 11 T C 0.705 1.08 (0.73 - 1.6)
resp42 SNP_A-2128247 3 G A 0.722 0.96 (0.75 - 1.22)
spec_resp SNP_A-4218787 7 G A 0.092 1.33 (0.95 - 1.85)
spec_resp SNP_A-2057977 16 T G 0.791 1.04 (0.8 - 1.35)
spec_resp SNP_A-4261350 13 G N
spec_resp SNP_A-1915448 11 T C 0.745 1.05 (0.79 - 1.39)
spec_resp SNP_A-2024840 13 A G 0.778 1.05 (0.76 - 1.45)
spec_resp SNP_A-1996954 9 T C 0.165 1.24 (0.91 - 1.69)
spec_resp SNP_A-4196344 16 C G | -
spec_resp SNP_A-4266303 7 A C 0.899 1.02 (0.78 - 1.32)
spec_resp SNP_A-4238877 13 T A | e
spec_resp SNP_A-2007509 20 T c | -
tolerant SNP_A-1843477 13 A G 0.103 N/A
tolerant SNP_A-2242408 12 A G | -
tolerant SNP_A-1837056 5 A G | -
tolerant SNP_A-1842826 15 T C 0.418 2.3 (0.29 - 18.33)
tolerant SNP_A-2288013 19 C T 0.595 1.5(0.33-6.72)
tolerant SNP_A-4195753 10 C A 0.278 N/A
tolerant SNP_A-2095694 11 A C 0.124 N/A
tolerant SNP_A-1943222 1 A G 0.777 1.1 (0.57 - 2.15)
tolerant SNP_A-2139836 4 A G 0.018 0.17 (0.03 - 0.87)
tolerant SNP A-1962163 2 T A 0.783 0.73 (0.08 - 6.83)

Table 7.3: List of top 10 associated SNPs in the discovery set from each of the four

phenotypic comparisons (remit, resp42, spec_resp, & tolerant). Listed are the p-values for

the validation set. “N/A” as the odds ratio indicates the dominant odds ratio cannot be

cal

culated. “--

set.
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Distance

Phenotype |SNP Chr. Gene Relevant Function Relevant Expression
From Gene
remit SNP_A-4218787 |7 55kb UBE3C expressed in brain
remit SNP_A-2312802 |20  |100kb BMP7 Cat+ binding / Wnt signaling regulator highly expressed in brain
remit SNP_A-4198575 |3 IN IQSEC1 B-1 integrin / cell adhesion expressed in brain
remit SNP_A-2024840 |13  [25kb HMGB1 DNA transcription / DNA repair | -
remit SNP_A-1866894 |18  |IN NOL4 RNA binding highly expressed in brain
remit SNP_A-2260830 |3 15kb IQCB1 interacts with calmodulin / neural growth expressed in brain
remit SNP_A-2170173 |15 [IN RORA circadian rhythm highly expressed in brain
remit SNP_A-2235053 (20  [120kb BCAST | e highly expressed in brain
remit SNP_A-1937160 |18 [IN WDR7 exocytosis of neurotransmitters highly expressed in brain
resp42 SNP_A-4218787 |7 55kb UBE3C expressed in brain
resp42 SNP_A-4198575 |3 IN IQSEC1 B-1 integrin / cell adhesion expressed in brain
resp42 SNP_A-2170173 |15 |IN RORA circadian rhythm highly expressed in brain
resp42 SNP_A-2312802 (20  [100kb BMP7 Cat+ binding / Wnt signaling regulator highly expressed in brain
resp42 SNP_A-4201095 |1 IN MAN1A2 Cat+ binding highly expressed in brain
resp42 SNP_A-4212364 |7 225kb IGFBP3 cell growth expressed in brain
resp42 SNP_A-4283086 |2 >500kb |- [ e e
resp42 SNP_A-4301367 |13  [10kb RFC3 DNAreplication /DNArepair | -
resp42 SNP_A-2311397 |13  |[5kb RFC3 DNAreplication / DNA repair | -
spec_resp |SNP_A-4218787 |7 55kb UBE3C expressed in brain
spec_resp  [SNP_A-1937160 |18 |IN WDR7 exocytosis of neurotransmitters highly expressed in brain
spec_resp  |SNP_A-1983260 |5 50kb SNCAIP neuronal degradation via a-synuclein highly expressed in brain
spec_resp  |SNP_A-4198575 (3 IN IQSEC1 B-1 integrin / cell adhesion expressed in brain
spec_resp  [SNP_A-2170173 |15 (IN RORA circadian rhythm highly expressed in brain
spec_resp  [SNP_A-2023819 |1 350kb AJAP1 celladhesion | e
spec_resp  |SNP_A-1970535 |21 IN SLC37A1 sugar fransport | e
spec_resp  |SNP_A-1847174 |17  |20kb NPTX1 Ca++ binding / synaptic transmission highly expressed in brain
spec_resp  |SNP_A-4202268 |3 450kb FOXP1 transcription factor / neural growth expressed in brain
tolerant SNP_A-2245760 |22 |IN SCUBE1 Ca++ binding / neural growth / platelet function | highly expressed in brain/platelets
tolerant SNP_A-1795580 |7 IN FAM20C Ca++ binding highly expressed in brain
tolerant SNP_A-2139836 |4 350kb CXXC4 Whnt signaling regulator highly expressed in brain
tolerant SNP_A-2118974 |4 350kb CXXC4 Wnt signaling regulator highly expressed in brain
tolerant SNP_A-4236225 |4 375kb FRG1 DNAtranscripon | -
tolerant SNP_A-2098107 |8 15kb MSRA oxidative stress / DNA repair expressed in brain
tolerant SNP_A-1915683 |4 IN SORCS2 neuropeptide signaling highly expressed in brain
tolerant SNP_A-1796662 |4 250kb CXXC4 Whnt signaling regulator highly expressed in brain
tolerant SNP_A-1978347 |4 300kb CXXC4 Whnt signaling regulator highly expressed in brain
tolerant SNP_A-1894206 |2 IN NPAS2 transcription factor / circadian rhythm / autism highly expressed in brain

Table 7.6: List of top 10 associated SNPs in the discovery set from each of the four
phenotypic comparisons (remit, resp42, spec_resp, & tolerant) along with the closest
gene to the associated SNP and that distance away. “-----“ indicates either expression of
functional data could not be found. Highlighted SNPs indicate they were found in more
than one phenotype.
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7.4 Discussion

Association studies involving this large number of markers present both unique
analytical and computational challenges. In our study, we pursued a limited number (N =
20) of single locus associations in each of four phenotypic comparisons using our
validation sample set, only one of which replicated (p<0.05) the initial association for
either phenotype comparison (SNP_A-2139836). This SNP is intergenic and is 250kb
away from the closest known gene, CXXC4, which is a negative regulator of the
canonical Wnt signaling pathway and highly expressed in several regions of the brain (9).
Since it did meet our criteria for study-wide significance, this variant (which is greater
than 250kb from any known gene) deserves follow-up testing in other study populations
taking SSRIs.

It has been argued that a joint analysis of the combined discovery and validation
sample sets is more powerful than the two-stage replication strategy (10). With this in
mind, we analyzed our data post-hoc as a one-stage design. The top hits from this
analysis provide several interesting findings with biological plausibility (Table 7.6). Of
interest were two genes involved in canonical Wnt signaling and highly expressed in the
brain. Five genes that bind calcium and were also highly expressed in the brain also
showed association. Finally, the genes NPAS2, implicated in autism studies, and RORA
are both involved in circadian rhythm regulation and were among the most associated
SNPs. In addition to being largely associated (p < 1x10™) in the entire sample, these
markers reside in genes whose functional roles could easily play a role in depression or

response to antidepressants.
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We originally chose a replication based strategy as we were chiefly interested in
the ability of the putatively associated SNPs to consistently show association in different
populations. In order for these SNPs reported from either our two-stage or one-stage
design to be used in clinical decision making, replication in different populations is
essential, as non-replication of putative associations is an unfortunate reality that is all too
common with complex genetic phenotypes.

Given that we had an adequate sample size to replicate the initial associations in
the validation set, the reason for the general lack of replication is unclear, though there
could be several underlying causes. In order to limit Type | error in the screening stage
we only attempted to replicate SNPs that were within the 10 most significant p-values in
the discovery set. However, only a handful of these associations would survive a
Bonferroni correction for multiple comparisons, so there is a reasonable risk that these
are false-positive signals in the discovery dataset. It is quite possible that findings that
reliably replicate are much further down in the rank ordering. Unfortunately, it’s unclear
how many independent tests were performed and thus require adjustment, given the high
levels of LD seen in the data. Population stratification could also be underlying the lack
of replication although we attempted to control for population stratification using self-
reported race as a proxy for genetic ancestry. This strategy was guided by a structure
analysis using 2,500 SNPs in the entire STAR*D population dataset. Analyzing the data
using a principal components analysis may better correct for stratification in the sample.

The non-replication could also be due to unknown heterogeneity between the
discovery and validation sample sets. This heterogeneity could be a clinical characteristic

(e.g., depression subtype) or epistatic DNA variation that was not controlled for in the
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sample splitting, but that nonetheless alters the strength of the association. Extending or
altering the BRLMM calling algorithm, which is designed to give the highest call rates
the data allows, to focus on call quality could be useful and is under development (11).

As mentioned previously, this study was designed to investigate only the most
“low hanging fruit”, and was not intended to be a comprehensive follow-up of the
discovery sample set results. Certainly, additional genetic models need to be tested in the
discovery set (genotypic, dominant, recessive, etc.). Also, a larger proportion of follow-
up SNPs will need to be investigated. Fortunately, the validation set is already genotyped
for the same 500,000 markers as the discovery set and given the two-stage study design,
multiple correction penalties for the follow-up of SNPs will be far less than the correction
for the entire WGA panels, allowing for more liberal selection criteria. For example,
there are 25 SNPs for the remission phenotype meeting p-values of < 0.01 in discovery
and validation analyses, as well as having a p-value < 0.005 in the overall analysis. While
not striking, it is of note that the signals are in the same direction in the two samples, and
perhaps worthy of further consideration.

The statistical sacrifice with the two-stage design is of course a reduction in
power. However, even with a split sample, we can capture (and replicate) clinically
meaningful effect sizes with reasonable power. With dense marker data for both the
discovery and validation sets, a more powerful analysis using a one-stage design is also
possible. An FDR based approach may also be worthwhile, given that the actual
causative SNPs may not be the most highly associated SNPs and would be missed using

the current analysis. Permutation techniques could also be used, but could prove
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challenging due to current computational limits, although newer techniques can
approximate permutation results more quickly (12).

Alternatively, follow-up SNPs could also be selected using an effect-size (OR)
threshold, instead of one based purely on a significance threshold. This approach may be
of particular utility in pharmacogenetic studies, where the eventual goal is to develop
genetic tests for use in clinical treatment and this would yield the SNPs with the largest
clinical effects, regardless of biological meaning. Fine mapping of SNPs in the validation
set for regions surrounding the putatively associated SNPs would also be beneficial, since
differences in LD patterns across the discovery and validation sample sets could
complicate indirect association analysis. In addition to SNP data, the panels used to
genotype the discovery sample set yield quantitative hybridization data that can in theory
be used to score copy number variations, or CNVs (13). Identifying and testing these
CNVs for association to citalopram response would be worthwhile, though the techniques
for performing this are still being developed.

For complex genetic diseases, the common disease/common variant hypothesis
states that several DNA variants will, in combination, contribute a clinically meaningful
risk of having the phenotype. Techniques for uncovering interacting loci are poorly
developed, largely due to the computation and statistical burden of the number of tests
that can be performed. For instance, performing all pairwise comparisons (SNP x SNP)
with our WGA panel would require 1.3 x 10 statistical tests. With needing to correct for
this many tests, sample sizes like the one used in this study have power only to detect
unrealistically large interaction effects (14). The correction penalties for more than two

SNPs interacting are even more severe. Additionally, as higher level interaction testing is
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performed, the number of subjects with the desired allelic combination to be tested is
reduced, further decreasing the statistical power. Thus, for powerful interaction analysis,
extremely large clinical populations, on the order of tens of thousands of patients, will
need to be collected or limited numbers of markers to test in interaction analyses. Our
attempt to test for interactions between markers showed no significant interactions in any
of the 4 phenotypes tested.

We also investigated previously reported genes (e.g. FKBP5, HTR2A, etc.) in the
literature for association using our whole genome data. We were not able to validate any
previously reported associations for the genes SLC6A4, TPH2, FKBP5, ACE, & GNB3
in the STAR*D sample using the markers we had genotyped. We did find evidence of
association with markers in GRIK4 and HTR2A (p < 0.01) but we would dismiss these
due to the number of tests being performed.

In summary, here we have presented the preliminary results of a two stage whole
genome association study for citalopram response and tolerance using the STAR*D
clinical population. While only one of the single locus associations (SNP_A-2139836) in
our discovery sample set met our replication criteria in the validation sample set, this
SNP is near a quite plausible candidate gene (CXXC4). This gene is an inhibitor of the
canonical Wnt signaling pathway, is highly expressed in several regions of the brain, and
may play a role in synaptic rearrangement and plasticity. Combining the data together to
maximize power led to many strong associations in biologically interesting gene

pathways.
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It is clear that further analysis is required to comprehensively follow-up the
discovery set results and replication of our findings in other populations taking SSRIs
will be crucial to understanding which hits are real and clinical meaningful. Finally,
given the lack of understanding of citalopram’s mechanism of action, gene-agnostic
studies such as these may be required to find genetic markers that are informative and

predictive of citalopram response or tolerance.
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CHAPTER 8

SUMMARY AND FUTURE DIRECTIONS

8.1 Summary of Dissertation Work

The overarching goal of this thesis was to find genetic markers associated with
antidepressant response that could be used as predictive markers for future antidepressant
treatment in patients. The experiments described in the previous chapters have attempted
to establish genetic markers that are predictive of a depressed subject’s clinical outcome
following antidepressant therapy. To accomplish this goal, several complementary
genetic approaches have been utilized (outlined in Figure 1.1). Our initial efforts involved
a small but highly characterized (N=96) depressed patient population taking the selective
serotonin reuptake inhibitor (SSRI) fluoxetine in which we investigated the serotonin
transporter, the molecular target of SSRIs. In order to uncover novel SNPs or potentially
functional variants, the coding regions, intron-exon boundaries, and conserved non-
coding regions were directly screened in all subjects in the fluoxetine population. Within
the fluoxetine patient sample, several SNPs in SLC6A4 were associated (p < 0.05) with
response and response specificity and several previously unknown SNPs were identified,
all of which were at low minor allele frequencies (MAF < 0.05) (1).

In an attempt to replicate the initial associations within the serotonin transporter,
tagging SNPs were selected to adequately capture variation within the gene and then
genotyped in the large STAR*D sample (N=1,953), which had been treated with the
SSRI citalopram. None of the variants were associated with citalopram response or

response specificity (2). This apparent lack of replication could be due to several factors
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including Type I error, differences between the drug’s mechanisms of action, or
differences between the clinical populations, particularly in terms of genetic
heterogeneity.

We then explored variation within the transcription factor FEV as a possible
modulator of citalopram response. Using a one-stage study design, several of the variants
in FEV that we screened were significantly (p < 0.05) associated with citalopram
response within the STAR*D population. In collaboration with Miles Berger from the
laboratory of Dr. Larry Tecott, we examined a murine model of FEV using mice deficient
for the FEV homologue, Pet-1. Using a well accepted model for depression in mice (tail
suspension test), we found that citalopram treatment, while effective for wild-type
controls, had no effect on the knockout mice for Pet-1. The genetic and functional data
provides excellent support for a role for FEV in citalopram response and this gene should
be investigated further.

We also investigated variation within a number of other pharmacodynamic
candidate genes as possible predictors of citalopram response or tolerance. These
candidate genes included the serotonin 1B receptor (5-HT1B), a protein called p11
(S100A10), and two isoforms of the transcription factor AP-2 (AP-2 & AP-26) which
gained our interest due to functional evidence from our earlier studies of SLC6A4 (1).
Unfortunately, none of the variants in any of these 4 candidate genes that we screened
were significantly associated (p < 0.05) with citalopram response within the STAR*D
population. The genetic data suggested these genes do not play a role in citalopram

response or tolerance in our sample.
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Given the difficulty we and others have had in predicting relevant candidate genes
a priori, we used a panel of gene-centric markers to investigate a large number of genes
using a two-stage study design to genotype over 40,000 SNPs in approximately half of
the STAR*D sample. Forty-five of these SNPs were associated with citalopram response
using a combination of significance level (p < 0.001) and effect size (odds ratio > 2.0) as
criteria in the discovery sample set. We attempted to replicate these significantly
associated SNPs in the validation sample set. One of these SNPs showed significant (p <
0.01) association with response in the validation sample set. Furthermore, in exploratory
analysis we looked at the entire data set using a one-stage design and twelve markers
were predictive of response to citalopram in the entire STAR*D sample.

In our last analysis, we used a whole genome association (WGA) platform and a
two-stage study design to genotype over 500,000 SNPs in the discovery half of the
STAR*D sample. Several of these SNPs were associated with citalopram response,
specificity of response, remission or tolerance at high significance levels in the discovery
sample set. We attempted to replicate significantly associated SNPs within the discovery
set at a threshold of p < 1x10~ using the validation sample set. Three SNPs showed
evidence of replication in the tolerance phenotype (rs4274851, rs10026406, and
1$6959125). However, none of the SNPs showed significant (p < 0.05) association with
response, specificity of response, or remission in the validation sample set. This non-
replication could be due to a variety of factors, including uncorrected population
stratification, unknown clinical confounders, or simple Type I error in the discovery set.

This was an attempt to replicate the “low hanging fruit” of the discovery portion

of the WGA study. For example, the “truly” associated variants may not have provided
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the most extreme estimates of statistical significance, and instead may be represented by
more modest, but consistent, measures of significance. An example is the gene HEX6,
which was found with modest association independently in the Type II diabetes studies
done by the FUSION, WTCCC, and DGI GWAS consortium groups and when the data
was combined across studies, this gene becomes quite significant (p < 1.0x107) (3-5). An
unanswered question is how far to pursue findings for replication (e.g., absolute p-value

threshold, effect size, significance in more than one subgroup of phenotype).

8.2 Future Directions

The field of human genetics examining complex phenotypic traits has been
evolving at a stunning pace since the sequencing of the human genome. Much of the
evolution of the field can be traced to rapidly advancing genotyping technologies that
increase genotype throughput and reduce genotyping costs. Thanks to these advances,
larger scale genotyping, like our WGA study involving 500,000 SNPs, can now be
completed in a few weeks. The scale of genotyping will continue to grow, as Affymetrix
and Illumina have both already released a 1 million SNP panel, part of which will be
designed to detect copy number variants (CNVs). It is now becoming clear that within the
next decade, large-scale targeted genome resequencing in large sample sets will become
economically feasible. This will allow us to better address complex phenotypes utilizing
both common variants and rare variants simultaneously (SNPs, CNVs, microsatellites,
etc.) and lead to a better understanding on the role of genetics on complex phenotypes.

This is not without pitfalls as a question with both practical and theoretical implications,
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however, is will the field be able to interpret such high density genetic data in meaningful
ways?

The largest concern for population based association studies has been the risk of
confounding due to population stratification. Population stratification is thought to play a
role in the non-replication of many association studies, and as study populations become
larger the risk of confounding also increases due to recruitment across wider geographic
and sub-population distances. Current methods for detecting and correcting for
population stratification, such as structure, can perform adequately, but for small scale
genotyping studies they require additional marker genotyping which can be cost
prohibitive and with large scale genotyping data computational power becomes a concern
(6). The development of efficient ancestry informative marker (AIM) panels that have
maximal allele frequency differences across subpopulations would have great utility in
small scale association studies (7-11). The selection of AIMs for distant subpopulations
(e.g., Africans and Asians) in order to detect large levels of stratification is fairly
straightforward, given the dense marker data available from the HapMap project (12-14).

Recent reports suggest population stratification may have a confounding effect
even within isolated populations such as Iceland and Europe, which were both thought to
be relatively homogeneous (15,16). Selection of AIMs for more subtle levels of
stratification across continental clines will require more large scale genotyping in these
subpopulations in order to define their allele frequencies. For WGA studies, and in the
future whole genome resequencing studies, the dense amount of marker data available
should allow for accurate matching of cases and control based on ancestry and

consequently little reduction in statistical power.
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Another major hurdle in the development of analytical methods is the issue of
multiple testing (17). It is difficult to separate true associations from those caused by
chance when performing 500,000 or more single locus tests. When several phenotypes
and several populations are examined, the problem obviously is amplified. The problem
becomes much larger when searching for interacting SNPs, which are a cornerstone of
the common disease common variant hypothesis. False discovery rate (FDR) methods
can be used to gauge how many SNPs to move forward in multi-stage studies, and aren’t
affected by inter-marker relatedness (18). Increases in computational power will allow for
permutation based methods to be applied across entire WGA panels, which will take into
account inter-marker relatedness. However, given the inherent risk of Type I error from
the number of tests and since we often have no a priori reason to believe putatively
associated SNPs in WGA studies, replication in separate populations will be of the
utmost importance. Even this gold standard is problematic, when “independent”
populations may differ subtly by phenotypic definition or less subtly by differences in
population ancestry or genotyping platform. Statistical limits may make innovative study
designs, along with the collection of large clinical populations for replication, the only
way to get through the multiple testing concerns in large scale associations studies. There
is still room for flexibility in the face of this seeming statistical absolutism. For example,
it may be possible to look for patterns of association to variation in networks of genes
representing pathways, although the methodology for such investigation has not been
adequately developed. Similarly, common sense and curiosity may still have a role in
addressing our data. For example, a pattern of low-level association to many uncorrelated

variants within a single gene may highlight genes for further examination. Likewise,
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modest association in genes with compelling biological connection to the phenotype
could generate additional hypothesis testing.

Analytical techniques in the genetics of complex traits have not evolved as
quickly as methods for genotyping. For instance, as recently as 10 years ago, it was still
unclear whether useful amounts of LD exist in the human genome (19). It is clear now
that significant LD extends to useful distances in human populations (20,21). The
HapMap project, which was completed (phase II) during the course of this project, allows
users to select tagging SNPs from the publicly available dataset of dense markers across
the genome, which is an invaluable resource to LD mapping. However, much is still
unclear about the most powerful way to utilize LD in association studies. For example,
determining association between traits and rare variants is a challenge, as tagging
strategies are largely ineffective, and truly massive samples would be required for
reliable estimates of association (22).

Currently, the utility of haplotype testing in association studies is still debatable,
as some feel it does not add enough additional information to single locus testing to
justify the multiple correction penalties (23). A substantial number of methods have been
published in the past 5 years that utilize LD in order to select tagging SNPs (24-28). It
seems that the most analytically straightforward, based on a threshold for pairwise 1%, has
also become the most popular method for selecting tagging SNPs, though other methods
appear to be more efficient at reducing genotyping load. It’s still unclear exactly how
well tagging SNPs will transfer across different human populations, although much

research has focused on this question (29,30).
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Single nucleotide polymorphisms have been the major type of variation
investigated in genetic association studies for the past decade, largely because of their
ability to be easily assayed in a cost-effective manner. However, it is becoming
increasingly clear that other types of variation, namely copy number variation (CNVs), is
common in the genome and may contribute to human phenotypes. Copy number variants
take the form of segmental duplications or deletions, and are thought to alter at least as
much of the human genome as SNPs (31). Given their sizable changes to the genome,
CNVs are reasonably thought to cause considerable differences in expression or function
of the genes they encompass, although there is little evidence for this as of yet. Since the
majority of genotyping techniques focus on a small area around the SNP of interest
(generally less than 100bp), CNVs that encompass interrogated SNPs can have a
detrimental and often unknown effect on genotype accuracy and quality. Fortunately,
current genotyping methods for WGA studies mostly rely on hybridization to a fixed
DNA array, which yields quantitative data that can be scored for copy number variants as
well as SNPs (32). A catalog of common CNVs in the human genome and a large,
detailed search for common CNVs across the genome similar to the SNP Consortium
project is currently being investigated and will greatly aid in the integration of CNVs into
WGA studies (33-36).

Large collections of well-phenotyped subjects are crucial to the success of
complex genetics in the next decade. Large populations are necessary in order to provide
replication of initial findings, to lessen the burden of multiple testing by increasing
power, and for studies of interacting SNPs, which is a critical component of the common

disease common variant hypothesis of complex diseases. Alternatively, for the common
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disease rare variant (CDRV) hypothesis, where individual variants are thought to have
large effect sizes but occur very infrequently, large collections of patients will be
necessary to find adequate number of subjects carrying the risk variant. There will always
be room for more specialized samples, such as from isolated populations, in order to
reduce heterogeneity that may interfere with LD mapping. Likewise, informative family-
based samples will continue to be useful.

While single investigators typically have the resources to collect on the order of
hundreds of patients at best, large government sponsored clinical trials (such as
STAR*D) and late phase investigational drug trials can involve large numbers of
subjects, but usually not more than two or three thousand. Even with all the resources
used to fund such studies, it is becoming clear that sufficiently powered pharmacogenetic
studies will require on the order of tens of thousands of patients. For this scale of
populations, large consortia will need to be formed, where investigators share subject
DNA, phenotype data, and ultimately, credit for any findings. Examples of efforts on a
similar scale can be seen with the Type I diabetes genetic consortium or the Welcomme
Trust Consortium (37-39).

As with all genetics research, false positives and disappointments are common,
and more subjects are always needed. I feel with healthy cooperation among researchers
and some luck, in the next decade there will be many examples of the clinical utility of

personalized medicine.

197



8.3 References

1.

10.

11.

12.

Kraft JB, Slager SL, McGrath PJ, and Hamilton SP. Sequence Analysis of the
Serotonin Transporter and Associations With Antidepressant Response. Biol
Psychiatry 2005; 58(5): 374-381

Kraft JB, Peters EJ, Slager SL, Jenkins GD and others. Analysis of Association
Between the Serotonin Transporter and Antidepressant Response in a Large
Clinical Sample. Biological Psychiatry 2006; In Press

Genome-Wide Association Study of 14,000 Cases of Seven Common Diseases and
3,000 Shared Controls. Nature 2007; 447(7145): 661-678

Salonen JT, Uimari P, Aalto JM, Pirskanen M and others. Type 2 Diabetes Whole-
Genome Association Study in Four Populations: the DiaGen Consortium. American
Journal of Human Genetics 2007; 81(2): 338-345

Saxena R, Voight BF, Lyssenko V, Burtt NP and others. Genome-Wide Association
Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science 2007;
316(5829): 1331-1336

Falush D, Stephens M, and Pritchard JK. Inference of Population Structure Using
Multilocus Genotype Data. Linked Loci and Correlated Allele Frequencies.
Genetics 2003; 164(4): 1567-1587

Price AL, Butler J, Patterson N, Capelli C and others. Discerning the Ancestry of
European Americans in Genetic Association Studies. PL0S. Genet. 2008; 4(1): €236

Price AL, Patterson N, Yu F, Cox DR and others. A Genomewide Admixture Map
for Latino Populations. Am. J. Hum. Genet. 2007; 80(6): 1024-1036

Tian C, Plenge RM, Ransom M, Lee A and others. Analysis and Application of
European Genetic Substructure Using 300 K SNP Information. PL0S. Genet. 2008;
4(1): e4

Tian C, Hinds DA, Shigeta R, Adler SG and others. A Genomewide Single-
Nucleotide-Polymorphism Panel for Mexican American Admixture Mapping. Am.
J. Hum. Genet. 2007; 80(6): 1014-1023

Tian C, Hinds DA, Shigeta R, Kittles R and others. A Genomewide Single-
Nucleotide-Polymorphism Panel With High Ancestry Information for African
American Admixture Mapping. Am. J. Hum. Genet. 2006; 79(4): 640-649

Choudhry S, Coyle N, Tang H, Salari K and others. Population Stratification

Confounds Genetic Association Studies Among Latinos. Human Genetics 2006;
118(5): 652-664

198



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Seldin MF, Shigeta R, Villoslada P, Selmi C and others. European Population
Substructure: Clustering of Northern and Southern Populations. PL0S. Genet 2006;
2(9): el43

Tian C, Hinds DA, Shigeta R, Kittles R and others. A Genomewide Single-
Nucleotide-Polymorphism Panel With High Ancestry Information for African
American Admixture Mapping. Am J Hum Genet 2006; 79(4): 640-649

Helgason A, Yngvadottir B, Hrafnkelsson B, Gulcher J and others. An Icelandic
Example of the Impact of Population Structure on Association Studies. Nat Genet
2005; 37(1): 90-95

Campbell CD, Ogburn EL, Lunetta KL, Lyon HN and others. Demonstrating
Stratification in a European American Population. Nat Genet 2005; 37(8): 868-872

Carlson CS, Eberle MA, Kruglyak L, and Nickerson DA. Mapping Complex
Disease Loci in Whole-Genome Association Studies. Nature 2004; 429(6990): 446-
452

Fernando RL, Nettleton D, Southey BR, Dekkers JC and others. Controlling the
Proportion of False Positives in Multiple Dependent Tests. Genetics 2004; 166(1):
611-619

Huttley GA, Smith MW, Carrington M, and O'Brien SJ. A Scan for Linkage
Disequilibrium Across the Human Genome. Genetics 1999; 152(4): 1711-1722

Reich DE, Cargill M, Bolk S, Ireland J and others. Linkage Disequilibrium in the
Human Genome. Nature 2001; 411(6834): 199-204

Ardlie KG, Kruglyak L, and Seielstad M. Patterns of Linkage Disequilibrium in the
Human Genome. Nat. Rev. Genet. 2002; 3(4): 299-309

Zondervan KT and Cardon LR. The Complex Interplay Among Factors That
Influence Allelic Association. Nat. Rev. Genet. 2004; 5(2): 89-100

Clark AG. The Role of Haplotypes in Candidate Gene Studies. Genet Epidemiol
2004; 27(4): 321-333

Carlson CS, Eberle MA, Rieder MJ, Yi Q and others. Selecting a Maximally
Informative Set of Single-Nucleotide Polymorphisms for Association Analyses
Using Linkage Disequilibrium. Am. J Hum. Genet. 2004; 74(1): 106-120

Weale ME, Depondt C, Macdonald SJ, Smith A and others. Selection and
Evaluation of Tagging SNPs in the Neuronal-Sodium-Channel Gene SCN1A:
Implications for Linkage-Disequilibrium Gene Mapping. Am J Hum Genet 2003;
73(3): 551-565

199



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Ke X and Cardon LR. Efficient Selective Screening of Haplotype Tag SNPs.
Bioinformatics. 2003; 19(2): 287-288

Stram DO. Tag SNP Selection for Association Studies. Genet Epidemiol. 2004;

Liu Z, Lin S, and Tan M. Genome-Wide Tagging SNPs With Entropy-Based Monte
Carlo Method. J. Comput. Biol. 2006; 13(9): 1606-1614

De Bakker PI, Burtt NP, Graham RR, Guiducci C and others. Transferability of Tag
SNPs in Genetic Association Studies in Multiple Populations. Nat Genet 2006;
38(11): 1298-1303

Mueller JC, Lohmussaar E, Magi R, Remm M and others. Linkage Disequilibrium
Patterns and TagSNP Transferability Among European Populations. Am J Hum
Genet 2005; 76(3): 387-398

Redon R, Ishikawa S, Fitch KR, Feuk L and others. Global Variation in Copy
Number in the Human Genome. Nature 2006; 444(7118): 444-454

Carson AR, Feuk L, Mohammed M, and Scherer SW. Strategies for the Detection
of Copy Number and Other Structural Variants in the Human Genome. Hum
Genomics 2006; 2(6): 403-414

Sharp AJ, Locke DP, McGrath SD, Cheng Z and others. Segmental Duplications
and Copy-Number Variation in the Human Genome. Am. J. Hum. Genet. 2005;
77(1): 78-88

Tuzun E, Sharp AJ, Bailey JA, Kaul R and others. Fine-Scale Structural Variation
of the Human Genome. Nat. Genet. 2005; 37(7): 727-732

Freeman JL, Perry GH, Feuk L, Redon R and others. Copy Number Variation: New
Insights in Genome Diversity. Genome Res. 2006; 16(8): 949-961

Conrad DF, Andrews TD, Carter NP, Hurles ME and others. A High-Resolution
Survey of Deletion Polymorphism in the Human Genome. Nat. Genet. 2006; 38(1):
75-81

Rich SS, Concannon P, Erlich H, Julier C and others. The Type 1 Diabetes Genetics
Consortium. Ann. N. Y. Acad. Sci. 2006; 1079 1-8

Samani NJ, Erdmann J, Hall AS, Hengstenberg C and others. Genomewide
Association Analysis of Coronary Artery Disease. N. Engl. J. Med. 2007; 357(5):
443-453

Genome-Wide Association Study of 14,000 Cases of Seven Common Diseases and
3,000 Shared Controls. Nature 2007; 447(7145): 661-678

200



Publishing Agreement

It is the policy of the University to encourage the distribution of all theses and
dissertations. Copies of all UCSF theses and dissertations will be routed to the library
via the Graduate Division. The library will make all theses and dissertations accessible
to the public and will preserve these to the best of their abilities, in perpetuity.

Please sign the following statement:

I hereby grant permission to the Graduate Division of the University of California, San
Francisco to release copies of my thesis or dissertation to the Campus Library to provide
access and preservation, in whole or in part, in perpetuity.

Yoty B F—~it —

Author Signature Date

201



	Title Page
	Copyright
	Acknowledgements
	Permissions
	Abstract
	Table of Contents
	List of Tables

	List of Figures
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Chapter6
	Chapter7
	Chapter8
	Library Release




