
UC Irvine
UC Irvine Previously Published Works

Title
Reduced Cognition in Syngap1 Mutants Is Caused by Isolated Damage within Developing 
Forebrain Excitatory Neurons

Permalink
https://escholarship.org/uc/item/5wt2m2sz

Journal
Neuron, 82(6)

ISSN
0896-6273

Authors
Ozkan, Emin D
Creson, Thomas K
Kramár, Enikö A
et al.

Publication Date
2014-06-01

DOI
10.1016/j.neuron.2014.05.015

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5wt2m2sz
https://escholarship.org/uc/item/5wt2m2sz#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Neuron

Article
Reduced Cognition in Syngap1 Mutants
Is Caused by Isolated Damage within Developing
Forebrain Excitatory Neurons
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SUMMARY

Syngap1 haploinsufficiency is a common cause of
sporadic intellectual disability. Syngap1 mutations
disrupt developing pyramidal neurons, although it
remains unclear if this process contributes to cogni-
tive abnormalities. Here, we found that haploinsuffi-
ciency restricted to forebrain glutamatergic neurons
was sufficient to disrupt cognition and removing
mutations from this population prevented cognitive
abnormalities. In contrast, manipulating Syngap1
function in GABAergic neurons had no effect on
cognition, excitability, or neurotransmission, high-
lighting the specificity of Syngap1 mutations within
forebrain excitatory neurons. Interestingly, cognitive
abnormalities were reliably predicted by the emer-
gence of enhanced excitatory synaptic function
in mature superficial cortical pyramidal cells, which
was a neurophysiological disruption caused by Syn-
gap1 dysfunction in developing, but not adult, fore-
brain neurons. We conclude that reduced cognition
in Syngap1 mutants is caused by isolated damage
to developing forebrain glutamatergic neurons. This
damage triggers secondary disruptions to synaptic
homeostasis inmature cortical pyramidal cells,which
perpetuates brain dysfunction into adulthood.

INTRODUCTION

Intellectual disability (ID) is characterized by low IQ and behav-

ioral deficits, reaching a prevalence of 1%–3% worldwide. This

is a devastating brain disorder in whichmany patients are unable

to care for themselves, placing a tremendous emotional and

economic burden on families and society (Centers for Disease

Control and Prevention, 2004; Doran et al., 2012). SYNGAP1/

Syngap1 (now referred to as Syngap1 for simplicity) is among
the most commonly mutated genes in sporadic ID. De novo

autosomal dominant mutations in Syngap1 that produce hap-

loinsufficiency account for 2%–8% of these cases, and the ma-

jority of patients have more severe forms of ID (Berryer et al.,

2013; de Ligt et al., 2012; Hamdan et al., 2009, 2011a, 2011b;

Krepischi et al., 2010; Rauch et al., 2012). Considering the rela-

tively high prevalence of sporadic ID in the population, the sur-

prising frequency of pathogenic Syngap1 mutations in enriched

patient populations suggest that there are tens-of-thousands of

undocumented individuals carrying these mutations. Affected

individuals also have a high incidence of childhood seizures

and autism spectrum disorder. Syngap1 haploinsufficiency has

been causally linked to epileptic encephalopathy, a devastating

and often fatal form of childhood epilepsy that dramatically im-

pairs cognitive development (Carvill et al., 2013). These recently

identified patients with epileptic encephalopathy and Syngap1

mutations also share ID and autism spectrum disorder comor-

bidities. Thus, proper Syngap1 gene dosage is essential for the

normal development of human cognition and appears to modify

important aspects of neural excitability and sociability.

The Syngap1 heterozygous knockout mouse line (Syngap1+/�)
has emerged as a robust model to understand the patho-neuro-

biology that underlies reduced cognitive ability and neural hyper-

excitability in sporadic ID and epilepsy. Syngap1+/�mice display

significant cognitive, emotional, and social abnormalities, which

supports the idea that inactivating mutations of this gene directly

cause cognitive impairment (Berryer et al., 2013; Guo et al.,

2009; Komiyama et al., 2002; Muhia et al., 2010). Reduced Syn-

gap1 function in development accelerates the maturation of

excitatory synaptic function in forebrain pyramidal cells (Clement

et al., 2012, 2013), suggesting that damage to developing gluta-

matergic neurons may contribute to cognitive abnormalities in

Syngap1mutants. However, a causal link between cognitive de-

fects in Syngap1 haploinsufficiency and developing glutamater-

gic neurons has not been shown. The change in glutamatergic

neuron synapse development could be an inconsequential sec-

ondary outcome arising from dysfunction in other cell subtypes.

Indeed, elegant studies in models of syndromic neurodevelop-

mental disorders (NDDs) have shown that a single pathogenic
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Figure 1. Altered EEG Activity, Reduced Seizure Threshold, and Cortical Hyperexcitability in Adult Syngap1+/– Mice

(A) Representative cortical EEG traces from chronically implanted, behaving Syngap1 +/� conventional mutant mice (n = 3) reveal frequent generalized sharp

epileptiform discharges (upper left), and occasionally brief (<1 s) or prolonged (>10 s) seizures with a myoclonic jerk or little behavioral accompaniment during

video monitoring (lower three traces). WT mice (n = 2) showed no evidence of hyperactive EEG spike discharges or seizures (top right). Electrodes record

bilaterally from temporal and parietal cortices over left and right hemispheres in upper traces, and from left parietal cortex in lower seizure traces.

(B) Reduced flurothyl seizure threshold in both Syngap1+/� and Syngap1+/lx-st mutant mice (red bars) compared to WT controls (blue bars). Time (in seconds)

taken to reach three separate events, first clonus (1st C), tonic-clonic (T/C), and total hindlimb extension (THE), during the course of the procedure weremeasured

(legend continued on next page)
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mutation can affect the function of various cell types in the brain

(Chao et al., 2010; Lioy et al., 2011). Furthermore, these studies

demonstrate that multiple cell types are sufficient to drive cogni-

tive, behavioral, and/or electrophysiological abnormalities in the

CNS of NDDmodels. Thus, it remains unclear if altered develop-

ment of glutamatergic neurons contributes importantly to cogni-

tive deficits in Syngap1 mutants. In addition, it is not known if

other neuronal subtypes are also sufficient to drive cognitive ab-

normalities in these mice.

Complete restoration ofSyngap1 protein expression (SynGAP)

in adultmutants has nodetectable benefit on behavior andcogni-

tion, demonstrating thatSyngap1 haploinsufficiency is a disorder

of brain development (Clement et al., 2012). Interestingly, all

currently reported baseline neurophysiological abnormalities

observed in young glutamatergic neurons of Syngap1+/� mice,

such as enhanced excitatory synaptic transmission, are tran-

siently expressed during development (Clement et al., 2012,

2013). Thus, it also remains unclear how Syngap1 mutations in

development affect adult brain function. Indeed, because the

abnormal cognition persists throughout life, these findings sug-

gest that there are undiscovered neurophysiological abnormal-

ities in adult mice that arise from abnormal brain development

and reflect abnormal cognition. To explore causal links between

Syngap1dysfunction in developing glutamatergic neurons, stabi-

lized changes to adult brain function, and altered cognitive ability,

we combined cell-type specific and inducible conditional mouse

lines with behavioral endophenotyping and electrophysiology.

Using this approach, we found that germline Syngap1mutations

induced a persistent form of stabilized cortical hyperexcitability

that lasted into adulthood. Remarkably, this was caused exclu-

sively by abnormal function of developing glutamatergic neurons

located in the forebrain, because no phenotypic role for Syngap1

in neurons that release GABA was apparent. Unexpectedly, ab-

normalities indevelopingglutamatergicneuronscausedanemer-

gent, secondary disruption to glutamatergic synaptic strength

in adult neurons that reliably predicted the presence of reduced

cognition. These data demonstrate that altered neurodevelop-

mental processes in a single sensitive cell type can perpetuate

brain dysfunction into adulthood by altering excitatory/inhibitory

(E/I) balance through a disruption of synaptic homeostasis.

RESULTS

Cortical Hyperexcitability and Progressively Worsening
Superficial Pyramidal Cell E/I Balance in Adult Syngap1
Mutants
We sought to investigate how altered brain development in

Syngap1+/� mice disrupts the function of the adult CNS. First,
and plotted in the y axis. Syngap1+/�: RMANOVA; genotype effect, F(1,19) =

Syngap1+/lx-st: RMANOVA; genotype effect, F(1,24) = 5.47,p = 0.028; genotype x

(C) Syngap1+/� mPFC slices exhibit higher evoked excitability compared to WT c

data from VSD imaging of evoked circuit activity in response to electrical stimulati

The color scale codes VSD signal amplitude expressed as SD multiples above

based response analysis (see Experimental Procedures). The y axis shows the sum

electrical stimulation. Student’s t test: 50 mA, n = 7WT, n = 7mutant, t(12) = 1.44, p

n = 7 mutant, t(13) = 2.59, p = 0.022.

WT (+/+), blue; mutants (+/�), red for all bar graphs. Error bars represent SEM. *
we performed electroencephalography (EEG) paired with video

monitoring to examine spontaneous cortical activity in mutants

(Figure 1A), which revealed frequent and widespread cortical

discharges of high amplitude in mature Syngap1+/� mice

(>12 weeks), but not in wild-type (WT) littermates. These epilep-

tiform discharges were intermittent, ranging in frequency from 1

to 681/hour (average 81/hr). However, they did not coincide with

any significant motor events. Interestingly, cortical generalized

seizures with myoclonic features have also been reported in

patients with Syngap1 loss of function mutations (Berryer et al.,

2013) and with lower cognitive ability (Carvill et al., 2013). We

reasoned that cortical hyperexcitability might reflect a reduced

seizure threshold in adult mutants. A flurothyl-induced activation

paradigm (Clement et al., 2012) revealed a clear reduction in

seizure threshold in two distinct Syngap1 haploinsufficient

mouse lines (Figure 1B). To determine if network hyperexcit-

ability in mutants was preserved in ex vivo preparations, we

performed fast voltage-sensitive dye (VSD) imaging in acute

brain slices derived from adult Syngap1 animals. Slices from

adult Syngap1+/� mice resulted in significantly larger signals

throughout the cortex when compared to slices derived from

WT littermates (Figure 1C).

Because SynGAP is a potent regulator of glutamatergic syn-

apse function (Clement et al., 2012, 2013; Rumbaugh et al.,

2006), we hypothesized that elevated unitary synaptic strength

in cortical pyramidal neurons contributes to slice hyperexcitabil-

ity. To test this idea, we measured miniature excitatory postsyn-

aptic currents (mEPSCs) from medial prefrontal cortex (mPFC)

layer 2/3 (L2/3) neurons in acute slices prepared from WT or

Syngap1+/� mice (Figures 2A and 2B). Interestingly, mEPSCs

were normal in young cortical neurons (Figures 2C–2E). How-

ever, by adulthood, there was an increase in both the amplitude

and frequency of the events (Figures 2F–2H). We also patched

neurons in slices derived from the Syngap1+/lx-st mice. Neurons

from this mouse line also exhibited enhanced mEPSC function

in Layer 2/3 neurons (Figures 2I–K). To determine if the E/I ratio

was disrupted in L2/3 pyramidal neurons, we acquired miniature

inhibitory postsynaptic currents (mIPSCs) from neurons in slices

derived from adult Syngap1+/� or WT littermates. There was a

reduction in mIPSC amplitude in conventional Syngap1+/�

mice (Figure 2L), but no change in mIPSC properties in the

Syngap1+/lx-st mice (Figure 2M). However, because excitatory

unitary synaptic strength was increased in both models relative

to GABAergic neuron synaptic transmission, this is consistent

with an elevated E/I ratio in mature mPFC cortical neurons in

mice with Syngap1 haploinsufficiency. Furthermore, L2/3 neu-

rons were hyperexcitable in response to evoked neurotrans-

mitter release (Figure S1 available online). We next measured
20.46, p = 0.00023; genotype x event interaction, F(2, 38) = 0.99, p = 0.38.

event interaction, F(2,48) = 6.46, p = 0.0033.

ontrol slices when examined with fast VSD imaging. (Top) Example time series

on of 200 mA at 1 ms. All image frames were averaged over eight separate trials.

the mean baseline. Warmer colors indicate greater excitation. (Bottom) Pixel-

med response (in the SDmultiple units) across the defined response frames to

= 0.18; 100 mA, n = 8WT, n = 8mutant, t(14) = 1.78, p = 0.096; 200 mA, n = 8WT,

p < 0.05.
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electrically isolated excitatory and inhibitory evoked responses

from individual L2/3 pyramidal cells in mPFC slices from adult

WT and Syngap1mutants (Figures S1A–S1C). There was no sig-

nificant effect of peak excitatory responses in the basal pathway,

although there was an increase in the slope of the input/output

curve (Figures S1D and S1E). Importantly, evoked E/I balance

was significantly shifted in both pathways (Figures S1L and

S1M), which is consistent with ourmEPSC/mIPSC data and sup-

ports the conclusion that L2/3 neurons are hyperexcitable in

Syngap1 mutants.

To this point, our measurements have been restricted to syn-

aptic properties of L2/3 pyramidal neurons. However, there are

other possible cellular causes of network hyperexcitability,

such as alterations to the function of distinct classes of local

inhibitory neurons in the superficial cortex (Figure 2B). Therefore,

we probed Syngap1 mutants for changes in two major subtypes

of cortical GABAergic neurons. To label Parvalbumin-positive

(PV+) neurons in the Syngap1+/� background, we crossed

Syngap1+/� mice that also contained the Ai9 Cre-dependent re-

porter allele (Madisen et al., 2010) with PV+-ires-Cre driver mice

(Hippenmeyer et al., 2005; Figure 3A). tdTomato+ (TD+) neurons

from both genotypes exhibited properties consistent with those

of PV+ neurons (Table S1; Helm et al., 2013; Lazarus and Huang,

2011). There were no genotype differences in firing properties of

these cells at PND 14 (Figure 3B). In contrast, there was a sub-

stantial decrease in firing rate in PV+ neurons in Syngap1+/�

mice by 6 weeks of age (Figure 3C), which was consistent with

cortical hyperexcitability. Interestingly, by 9 weeks of age, the

difference between genotypes was no longer significant (Fig-

ure 3D). We next measured unitary synaptic strength onto PV+

neurons in mature animals. Overall, there was a small reduction

in mEPSC amplitude in PV+ neurons (Figure 3E). However, this

was only present in males (two-way ANOVA for PV+ mEPSC

amplitude: genotype effect, F(1,61) = 6.00, p = 0.02; sex effect

F(1,61) = 5.01, p = 0.03; genotype*sex F(1,61) = 4.72, p = 0.03). In
Figure 2. The Gradual Development of E/I Imbalance in L2/3 Pyramida

(A) A coronal section through the mouse brain illustrating where in the mPFC targ

prelimbic cortex; IL, infralimbic cortex.

(B) A high-magnification differential interference contrast image of example L2/3

(C) Example recordings of mEPSC events in PND14 Syngap1+/� animals. Scale

(D) Bar graph and cumulative percentage plots show normal mEPSC amplitud

t(27) = 0.40, p = 0.69; two sample K-S test on cumulative percentage distributio

(E) Bar graph and cumulative percentage plots show normal mEPSC frequenc

t(27) = 1.66, p = 0.11; two sample K-S test on cumulative percentage distributio

(F) Example recordings of mEPSC events in >9-week-old Syngap1+/� animals. S

(G) Bar graph and cumulative percentage plots show increased mEPSC amplitud

t(21) = 3.61, p = 0.0016; two sample K-S test on cumulative percentage distribu

(H) Bar graph and cumulative percentage plots show increased mEPSC frequenc

t(21) = 3.02, p = 0.0065; two sample K-S test on cumulative percentage distribu

(I) Example recordings of mEPSC events in >9-week-old Syngap1+/lx-st animals.

(J) Bar graph and cumulative percentage plots show increased mEPSC amplit

t(21) = 2.57, p = 0.018; two sample K-S test on cumulative percentage distributi

(K) Bar graph and cumulative percentage plots show slightly increased mEPSC fre

t(21) = 1.50,p = 0.15; two sample K-S test on cumulative percentage distribution

(L) Bar graphs and example recordings show reduced mIPSC amplitude and norm

n = 12 neurons +/�; t(22) = 2.57, p = 0.02 for mIPSC amplitude; t(22) = 0.88, p =

(M) Bar graphs and example recordings show normal mIPSC amplitude and norm

n = 7 neurons +/�; t(14) = 0.48, p = 0.64 for mIPSC amplitude; t(14) = 0.40, p =

WT(+/+), blue; mutants(+/�), red for all bar graphs. Error bars represent SEM. *p
contrast, there was no sex-genotype interaction in L2/3

pyramidal cell mEPSC properties (two-way ANOVA for L2/3

neuron mEPSC amplitude: genotype effect, F(1,102) = 11.22,

p = 0.0011; sex effect, F(1,102) = 6.24, p = 0.014;genotype*sex,

F(1,102) = 0.054, p = 0.81. Two-way ANOVA for L2/3 neuron

mEPSC frequency: genotype effect, F(1,102) = 17.42, p =

0.0000629; sex effect, F(1,102) = 0.003, p = 0.96;genotype*sex,

F(1,102) = 0.35, p = 0.55; combined data). Thus, PV+ neurons

may contribute to hyperexcitability at some stages of develop-

ment, but individual changes in cellular and synaptic properties

in these neurons do not stabilize in the fully mature CNS.

We next probed for potential cellular disruptions in somato-

statin-positive (SST+) local inhibitory neurons. Surprisingly, there

were no genotype effects in any major cellular or synaptic

measures in adult (>9 weeks) SST+ neurons (Figures 3F–3I;

Table S1). There was a robust increase in action potential width

of these neurons. However, this is a relatively minor physiolog-

ical disruption with an unknown impact on network function

(Table S1). Together, these data indicate that critical measures

of inhibition are largely unaffected in the fully mature superficial

cortex of Syngap1 mutants.

E/I Imbalance Predicts Cognitive Abnormalities and
Results from Syngap1 Dysfunction Exclusively in
Glutamatergic Neurons of the Developing, but Not
Mature, Forebrain
Increased pyramidal cell excitatory synaptic strength appeared

to be a reliable signature of altered neurophysiological function

in themutant cortex, suggesting thatSyngap1 haploinsufficiency

is principally a disease of altered glutamatergic neuron func-

tion. However, an abundance of SynGAP protein is found in

both glutamatergic and GABAergic neurons in various cortical

and subcortical areas of the brain, including heavy expression

in the striatum (Moon et al., 2008; Porter et al., 2005; Zhang

et al., 1999). Therefore, we explored the behavioral contribution
l Neurons in Syngap1+/– Mice

eted whole-cell recordings were performed. Cg1, cingulated cortex area 1; PL,

neurons and simplified diagram of L2/3 circuitry.

bar represents 20 pA, 100 ms.

e in PND14 Syngap1+/� animals (n = 15 neurons +/+, n = 14 neurons +/�;

n Z = 1.17, p = 0.13).

y in PND14 Syngap1+/� animals (n = 15 neurons +/+, n = 14 neurons +/�;

n Z = 1.14, p = 0.15).

cale bar represents 20 pA, 100 ms.

e in >9-week-old Syngap1+/� animals (n = 12 neurons +/+, n = 11 neurons +/�;

tion Z = 4.34, p < 0.001).

y in >9-week-old Syngap1+/� animals (n = 12 neurons +/+, n = 11 neurons +/�;

tion Z = 3.99, p < 0.001).

Scale bar represents 20 pA, 100 ms.

ude in >9-week-old +/lx-st animals (n = 9 neurons +/+, n = 14 neurons +/�;

on Z = 5.42, p < 0.001).

quency in >9-week-old +/lx-st animals (n = 9 neurons +/+, n = 14 neurons +/�;

Z = 3.53, p < 0.001).

al mIPSC frequency in >9-week-old Syngap1+/� animals. (n = 12 neurons +/+,

0.39 for mIPSC frequency). Scale bar represents 30 pA, 100 ms.

al mIPSC frequency in >9-week-old Syngap1+/lx-st animals. (n = 9 neurons +/+,

0.70 for mIPSC frequency). Scale bar represents 20 pA, 100 ms.

< 0.05, **p < 0.01.
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Figure 3. Intrinsic and Synaptic Properties of L2/3 Inhibitory Neurons in Syngap1+/– Mice

(A) Experimental strategy to record from PV+ interneurons in L2/3. Images show differential interference contrast and fluorescent image of a PV+ interneuron.

(B) Normal current injection frequency response curve of PV+ interneurons at PND14. Example traces show firing responses of +/+ and +/� neurons in response

to 450 pA, 1 s long current injection (n = 11 neurons +/+, n = 11 neurons +/�, repeated-measures ANOVA genotype effect F(1,20) = 0.11,p = 0.75, genoty-

pe*stimulus level F(6,120) = 0.11, p = 0.99). Scale bar represents 50 mV, 300 ms.

(C) Reduced current injection frequency response curve of PV+ interneurons at 6 weeks. Example traces show firing responses of +/+ and +/� neurons in

response to 450 pA, 1 s long current injection (n = 15 neurons +/+, n = 16 neurons +/�, repeated-measures ANOVA genotype effect F(1,29) = 14.74, p = 0.001

genotype*stimulus level F(6,174) = 1.67, p = 0.13). Scale bar represents 50 mV, 300 ms.

(D) Normal current injection frequency response curve of PV+ interneurons at >9 weeks. Example traces show firing responses of +/+ and +/� neurons in

response to 450 pA, 1 s long current injection (n = 18 neurons +/+, n = 18 neurons +/�, repeated-measures ANOVA genotype effect F(1,34) = 0.87, p = 0.36,

genotype*stimulus level F(6,204) = 0.864, p = 0.52). Scale bar represents 50 mV, 300 ms.

(E) Reduced excitatory input into PV+ interneurons. (Top) Example recordings of mEPSC events in PV+ interneurons. (Left) Bar graph and cumulative percentage

plots show reduced mEPSC amplitude in PV+ interneurons (n = 31 neurons +/+, n = 34 neurons +/�; t(63) = 2.63, p = 0.01; two sample K-S test on cumulative

percentage distribution Z = 2.15, p = 0.0002). (Right) Bar graph and cumulative percentage plots show normal mEPSC frequency in PV+ interneurons (n = 31

neurons +/+, n = 34 neurons +/�; t(63) = 0.14, p = 0.88; two sample K-S test on cumulative percentage distribution; Z = 0.58, p = 0.89). Scale bar represents 15 pA,

125 ms.

(F) Experimental strategy to record from somatostatin-positive (SST+) interneurons in L2/3. Pictures show differential interference contrast and fluorescent image

of a SST+ interneuron.

(G) Normal current injection frequency response curve of SST+ interneurons at >9 weeks. Example traces show firing responses of +/+ and +/� neurons in

response to 120 pA, 1 s long current injection (n = 23 neurons +/+, n = 21 neurons +/�, repeated-measures ANOVA genotype effect F(1,42) = 1.77, p = 0.19,

genotype*stimulus level F(6,252) = 1.02, p = 0.41). Scale bar represents 50 mV, 300 ms.

(H) Normal excitatory input into SST+ interneurons. (Top) Example recordings of mEPSC events in SST+ interneurons. (Left) Bar graph and cumulative percentage

plots show normal mEPSC amplitude in SST+ interneurons (n = 12 neurons +/+, n = 15 neurons +/�; t(25) = 1.19, p = 0.24; two sample K-S test on cumulative

percentage distribution Z = 1.25, p = 0.087). (Right) Bar graph and cumulative percentage plots show normal mEPSC frequency in SST+ interneurons (n = 12

neurons +/+, n = 15 neurons +/�; t(25) = 0.15, p = 0.88; two sample K-S test on cumulative percentage distribution Z = 0.77, p = 0.59). Scale bar represents 15 pA,

125 ms.

(I) Normal inhibitory input into SST+ interneurons. (Top) Example recordings of mIPSC events in SST+ interneurons. (Left) Bar graph and cumulative percentage

plots show normal mIPSC amplitude in SST+ interneurons (n = 34 neurons +/+, n = 22 neurons +/�; t(54) = 0.38, p = 0.71; two sample K-S test on cumulative

(legend continued on next page)
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of in vivo Syngap1 dysfunction in distinct cellular populations. In

the first set of experiments, we crossed the conditional knockout

line (Syngap1+/fl; Clement et al., 2012) with EMX1-ires-Cre driver

mice (Gorski et al., 2002). This mouse driver line induces Cre-

mediated recombination in forebrain glutamatergic neurons

and glia (Figure 4A). Importantly, SynGAP is a neuron-enriched

gene (Chen et al., 1998; Kim et al., 1998; Kozlenkov et al.,

2014) with no observable expression in glial cells (G.R., unpub-

lished data), indicating that this Cre driver line is an excellent

tool to determine if Syngap1 genetic damage in developing

cortical pyramidal cells is sufficient to disrupt cognitive develop-

ment. SynGAP levels were reduced in the hippocampus, but not

striatum, in extracts taken from Emx1-Cre;Syngap1+/fl mice

(Figure 4B). Importantly, a reduction in SynGAP protein levels

was also observed in the frontal cortex (Figure S2). The behav-

iors displayed by Emx1-Cre;Syngap1+/flmicewere indistinguish-

able from those of conventional Syngap1 mutants. Relative to

WT littermates, EMX1-Cre;Syngap1+/fl mice spent more time in

the open arm of the elevated plus maze (Figure 4C), were hyper-

active in the open field (Figure 4D), and failed to spontaneously

alternate (Figure 4E). Conventional Syngap1 Het mice had

deficits in remote (30 day old) fear memory (Figure S3), allowing

us to include an additional measure of cognition in the behav-

ioral battery. Again, similar to conventional Syngap1 mutants,

Emx1-Cre;Syngap1+/fl mice exhibited a remote memory deficit

(Figure 4F). We next assessed adult seizure threshold. Consis-

tent with the behavioral endophenotyping results, the Emx1-

Cre;Syngap1+/fl mice also had a reduced seizure threshold

(Figure 4G) that was qualitatively similar to conventional germline

Syngap1 mutants (Figure 1B).

To induce haploinsufficiency in developing GABAergic neu-

rons, we next crossed Syngap1 conditional knockout mice to

Gad2-ires-Cre driver mice (Taniguchi et al., 2011; Figure 4H).

A reduction in SynGAP expression in the striatum, but not hippo-

campus, confirmed haploinsufficiency in the target neuronal

population (Figure 4I). Unexpectedly, SynGAP levels in the

hippocampus of Gad2-Cre mice increased slightly. Therefore,

we also probed SynGAP expression levels in the frontal cortex

of Gad2-Cre;Syngap1+/fl mice. There was no change in SynGAP

expression (Figure S2), which is consistent with low expression

of SynGAP in cortical GABAergic neurons (Zhang et al., 1999).

Surprisingly, despite SynGAP expression being reduced

in GABAergic neurons in the CNS, including the striatum,

there were no changes in behavior or seizure threshold (Figures

4J–4N).

If disruptions to forebrain glutamatergic neurons are the

primary driver of the endophenotype in Syngap1+/� mice, then

rescuing the mutation exclusively in this population should pro-

tect animals from developing behavioral abnormalities. To test

this, we crossed EMX1- or GAD2-ires-Cre drivermice to theSyn-

gap1 conditional rescue line (Syngap1+/lx-st; Clement et al., 2012;

Figures 5A and 5G). Remarkably, reversing the pathogenic
percentage distribution Z = 1.15, p = 0.14). (Right) Bar graph and cumulative p

neurons +/+, n = 22 neurons +/�; t(54) = 0.15, p = 0.88; two sample K-S test on

15 pA, 125 ms.

WT(+/+), blue; mutants(+/�), red for all bar graphs. Error bars represent SEM. *p
mutations only in forebrain glutamatergic neurons (Emx1-

Cre;Syngap1+/lx-st mice) was sufficient to protect animals from

developing major behavioral impairments, including altered anx-

iety and risk-taking, reduced working memory, and disrupted

remote contextual memory (Figures 5B–5F). Interestingly,

Emx1-Cre;Syngap1+/lx-st mice were still hyperactive in the open

field (Figure 5C) and exhibited a reduced seizure threshold

(Figure 5F), suggesting that extracortical neurons contribute to

these abnormalities. This notion was supported by the observa-

tion that seizure threshold was rescued after global reversal of

Syngap1 haploinsufficiency (Figure S4). In a complementary

set of experiments, reversal of a pathogenic Syngap1 mutation

in GABAergic neurons located throughout the entire CNS

(Gad2-Cre;Syngap1+/lx-st) provided no improvement to core

Syngap1 behavioral abnormalities (Figure 5H–5L).

Enhanced excitatory synaptic function in mature pyramidal

neurons is present in both of our models of Syngap1 haploinsuf-

ficiency (Figures 2F–2K). These data suggested that this neuro-

physiological abnormality is predictive of cognitive dysfunction

and/or hyperexcitability in Syngap1 mutants. To test this,

we patch-clamped L2/3 neurons in mPFC acute slices taken

from EMX1- and Gad2-ires-Cre mice crossed to each of our

conditional Syngap1 mutant lines. Both Emx1-Cre;Syngap1+/fl

(forebrain glutamatergic conditional disruption) and Gad2-

Cre;Syngap1+/lx-st (GABAergic neuron rescue) animals, which

were offspring that had reduced cognition and altered seizure

thresholds (Figures 4C–4G and 5G–5L), had enhanced excit-

atory synaptic strength in L2/3 mPFC pyramidal neurons

(Figures 6A–6C, 6J, and 6K). Interestingly, no changes to

pyramidal cell synaptic function were observed in either Gad2-

Cre;Syngap1+/fl (GABAergic conditional disruption) or Emx1-

Cre;Syngap1+/lx-st (forebrain glutamatergic neuron rescue)

lines (Figures 6D–6I), which were offspring that had normal

cognitive ability. We also tested the reliability of the reduced

mIPSCs observed in Syngap1+/� line as a signature of cognitive

ability, but found that neither Emx1-Cre;Syngap1+/fl nor Gad2-

Cre;Syngap1+/fl displayed reduced mIPSCs (Figure S5).

These data indicate that excitatory synaptic function in mature

superficial pyramidal neurons reliably predicts cognitive

ability, but not behavioral seizure threshold, in adult Syngap1

mutant mice.

In the next set of experiments, we further explored the relation-

ship between enhanced excitatory synaptic strength in L2/3 py-

ramidal neurons and cognitive disability in Syngap1mutants. To

do this, we induced global Syngap1 haploinsufficiency in mature

animals and then probed for physiological and behavioral

changes (Figure 7A). We first confirmed that tamoxifen injections

reduced SynGAP protein by 50% in the experimental animals

(Figure 7B), which is the level of expression observed in germline

heterozygous knockout mice (Clement et al., 2012). Despite the

conditional reduction of SynGAP protein in adulthood, mEPSC

amplitude or frequency were not changed (Figures 7C and 7D),
ercentage plots show normal mIPSC frequency in SST+ interneurons (n = 34

cumulative percentage distribution Z = 1.26, p = 0.084). Scale bar represents

< 0.05.
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consistent with the idea that changes in adult L2/3 pyramidal

neuron excitatory synaptic function is a secondary consequence

of abnormal brain development. Based on our prior experiments

demonstrating the predictive value of this adult physiological

measure on cognitive ability, these data suggested that adult-

induced haploinsufficiency would have negligible effects on

cognition. Indeed, there was no change in core Syngap1 behav-

iors; open field locomotion (Figure 7E), elevated plus maze open

arm time (Figure 7F), the ability to spontaneous alternate in a

T-maze (Figure 7G), and remote memory (Figure 7H). However,

seizure threshold was reduced (Figures 7I and 7J), indicating

that this behavior is dissociable from cognitive dysfunction and

elevated cortical pyramidal cell excitatory synaptic function in

Syngap1 mutants.

Next, we explored the idea that stronger excitatory synaptic

function in L2/3 pyramidal cells was unrelated to reduced

SynGAP function in mature neurons, but instead is caused by

a complex molecular process that originates within developing

superficial pyramidal neurons. To test this, we exploited the abil-

ity to reverse pathogenic Syngap1mutations globally in the CNS

(Clement et al., 2012). As a proof of principle, however, we first

sought to discover a neurophysiological disruption in adult

Syngap1 mice that was sensitive to adult genetic reversal to

demonstrate the effectiveness of this mouse model as a tool to

differentiate developmental verses homeostatic consequences

of pathogenic Syngap1 mutations in brain cells. We chose to

focus on long-term potentiation (LTP) deficits because they are

well described in Syngap1 Hets (Kim et al., 2003; Komiyama

et al., 2002). Axonal excitability, release, and postsynaptic

responses were not affected by Syngap1 haploinsufficiency

(Figures 8A–8C), although stabilization of LTP was drastically

impaired in adult mutants (Figure 8D). Strikingly, LTP deficits
Figure 4. Syngap1 Haploinsufficiency in Glutamatergic, but Not GABA

(A) Experimental schematic depicts mouse breeding strategy and implementati

offspring of an Emx1-Cre x Syngap1+/fl cross.

(B) Hippocampal (HPC) and dorsal striatal (STR) tissue were dissected from Emx1

blot analysis of SynGAP protein levels normalized to b-tubulin after behavioral and

mutant, HPC: t(10) = 3.45; p = 0.0063; STR: t(10) = 0.051; p = 0.96.

(C–F) Emx1-Cre;Syngap1+/+ and Emx1-Cre;Syngap1+/fl mice were run in a behav

(OFT), an unforced discrete-two-trial spontaneous alternation task (SA), and a co

OF, and Ctxl FC tests. One-sample t test with 50%chance level as hypothetical me

WT, n = 18 mutant, t(32) = 5.44, p = 5.48E-06. OF - distance traveled (M): n = 12 W

p = 0.0011; n = 12 mutant: t(11) = 0.48; p = 0.64. Ctxl FC - % freezing: n = 7 WT

(G) Emx1-Cre: Syngap1+/+ and Emx1-Cre: Syngap1+/fl mice were subjected to a fl

first clonus (1st C), tonic-clonic (T/C), and total hindlimb extension (THE), during t

within each of the two cohorts. RMANOVA - genotype effect: F(1,32) = 10.79; p

(H) Experimental schematic depicts mouse breeding strategy and implementati

offspring of a Gad2-Cre x Syngap1+/fl cross.

(I) Hippocampal (HPC) and dorsal striatal (STR) tissue were dissected from Gad2

blot analysis of SynGAP protein levels normalized to b-tubulin after behavioral and

mutant, HPC: t(10) = 2.35; p = 0.040; STR: t(10) = 8.61; p = 0.00000612.

(J–M)Gad2-Cre: Syngap1+/+ and Gad2-Cre: Syngap1+/fl mice were run in a behav

(OFT), an unforced discrete-two-trial spontaneous alternation task (SA), and a co

OF, and Ctxl FC tests. One-sample t test with 50%chance level as hypothetical me

WT, n = 14mutant, t(28) = 1.30, p = 0.20. OF - distance traveled (M): n = 12WT, n =

n = 12 mutant, t(11) = 3.46; p = 0.0054. Ctxl FC - % freezing: n = 12 WT, n = 11

(N) Gad2-Cre: Syngap1+/+ and Gad2-Cre: Syngap1+/fl mice were subjected to a fl

first clonus (1st C), tonic-clonic (T/C), and total hindlimb extension (THE), during

RMANOVA - genotype effect-F(1,22) = 0.60; p = 0.45; genotype x event interact

WT, blue; mutants, red for all bar graphs. Error bars represent SEM. *p < 0.05, *
were completely rescued by adult reversal of the pathogenicmu-

tation (Figure 8D). We next conducted fluorescence deconvolu-

tion tomography (Chen et al., 2007; Vogel-Ciernia et al., 2013) to

gain molecular insight into how pathogenic Syngap1 mutations

could disrupt the synaptic signaling steps thought to be involved

in LTP consolidation (Rex et al., 2009). Slices were collected

2 minutes after LTP-inducing theta bursts and immunostained

for PSD95 and Ras-GTP or phosphorylated ERK1/2 (Figure 8E).

Theta bursts doubled the number of Ras-GTP+ excitatory syn-

apses associated with high levels of Ras-GTP (p = 0.012,

t test, two-tails) in WT, but not mutants (p > 0.10; Figure 8F,

left). A similar pattern was found for p-ERK1/2; theta stimulation

caused a pronounced increase in the double-labeled contacts in

WT slices (p < 0.0001), but had no detectable effect in Hets (p >

0.95). Note that baseline levels of PSDs associated with high

concentrations of p-ERK were substantially and significantly

elevated relative to WTs in the mutants (p = 0.029, U-test; Fig-

ure 8F, right), indicating that reduced SynGAP protein in mature

spines derepresses resting levels of activated ERK1/2. In accor-

dance with the LTP results, conditional rescue of Syngap1 hap-

loinsufficiency returned the pERK1/2 response to theta bursts

to levels obtained in WT mice (control versus theta bursts: p =

0.002). We further investigated group differences by counting

the number of double-labeled synapses at various intensities

of pERK1/2 immunostaining, an analysis that included all

pERK-positive contacts. Theta bursts shifted the frequency dis-

tribution to the right in WT mice (p < 0.0001, two-way ANOVA;

Figure 8G), as expected if the LTP-inducing stimulation

increased the pool of activated kinase at a relatively small subset

of synapses. A similar effect was observed for slices prepared

from conditional rescue mice (p < 0.0001; Figure 8H), but was

altogether absent (p > 0.95) in Hets (Figure 8I).
ergic, Neurons Mimics the Germline Mutant Endophenotype

on timing of a behavioral test battery and flurothyl-induced seizures for adult

-Cre: Syngap1+/+ and Emx1-Cre: Syngap1+/fl mice and processed for western

seizure paradigm testing. Normalized density - unpaired t test: n = 6 WT, n = 6

ioral battery consisting of an elevated plus maze task (EPM), an open field test

ntextual fear conditioning paradigm. Unpaired t tests were performed for EPM,

anwere performedwith each group for SA. EPM -%Open arm duration: n = 16

T, n = 12, t(22) = 5.18; p = 3.39E-05. SA - % alternation: n = 10 WT, t(9) = 4.71;

, n = 10 mutant, t(15) = 4.44, p = 0.00036.

urothyl-induced seizure paradigm. Time taken to reach three separate events,

he course of the procedure was measured and WT and HET groups compared

= 0.0025; genotype x event interaction: F(2,64) = 1.67; p = 0.20.

on timing of a behavioral test battery and flurothyl-induced seizures for adult

-Cre: Syngap1+/+ and Gad2-Cre: Syngap1+/fl mice and processed for western

seizure paradigm testing. Normalized density - unpaired t test: n = 6 WT, n = 6

ioral battery consisting of an elevated plus maze task (EPM), an open field test

ntextual fear conditioning paradigm. Unpaired t tests were performed for EPM,

anwere performedwith each group for SA. EPM -%Open arm duration: n = 16

12, t(22) = 0.20; p = 0.85. SA -% alternation: n = 12WT, t(11) = 3.45; p = 0.0055;

mutant, t(21) = 1.71, p = 0.1027.

urothyl-induced seizure paradigm. Time taken to reach three separate events,

the course of the procedure was measured and the two groups compared.

ion-F(2,44) = 2.42; p = 0.10.

*p < 0.01, ***p < 0.001.
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Figure 5. Reversal of Pathogenic Mutations in Forebrain Glutamatergic Neurons Is Sufficient to Rescue Cognitive and Emotional

Endophenotypes Present in Syngap1 Mutants

(A) Experimental schematic depicts mouse breeding strategy and implementation timing of a behavioral test battery and flurothyl-induced seizures for adult

offspring of an Emx1-Cre x Syngap1+/lx-st cross.

(B–E) Emx1-Cre: Syngap1+/+ and Emx1- Syngap1+/lx-st mice were run in a behavioral battery consisting of an elevated plus maze task (EPM), an open field test

(OFT), an unforced discrete two-trial spontaneous alternation task (SA), and a contextual fear conditioning paradigm. Unpaired t tests were performed for EPM,

OF, andCtxl FC tests. One-sample t test with 50%chance level as hypothetical meanwere performedwith each group for SA. EPM -%Open armduration: n = 15

WT, n = 15 mutant, t(28) = 0.21, p = 0.83. OF - distance traveled (M): n = 15 WT, n = 15, t(28) = 3.09; p = 0.0045. SA - % alternation: n = 15 WT, t(14) = 4.40;

p = 0.00050; n = 15 mutant: t(14) = 4.43; p = 0.00060. Ctxl FC - % freezing: n = 11 WT, n = 11 mutant, t(20) = 0.81, p = 0.42.

(F) Emx1-Cre: Syngap1+/+ and Emx1-Cre: Syngap1+/lx-st mice were subjected to a flurothyl-induced seizure paradigm. Time taken to reach three separate events,

first clonus (1st C), tonic-clonic (T/C), and total hindlimb extension (THE), during the course of the procedure was measured and the two groups compared.

RMANOVA - genotype effect: F(1,20) = 8.35; p = 0.0091; genotype x event interaction: F(2,40) = 0.22; p = 0.80.

(G) Experimental schematic depicts mouse breeding strategy and implementation timing of a behavioral test battery and flurothyl-induced seizures for adult

offspring of a Gad2-Cre x Syngap1+/lx-st cross.

(H–K)Gad2-Cre: Syngap1+/+ andGad2-Cre:Syngap1+/lx-st micewere run in a behavioral battery consisting of an elevated plusmaze task (EPM), an open field test

(OFT), an unforced discrete two-trial spontaneous alternation task (SA), and a contextual fear conditioning paradigm. Unpaired t tests were performed for EPM,

OF, and Ctxl FC tests. One-sample t test with 50% chance level as hypothetical mean was performedwith each group for SA. EPM -%Open arm duration: n = 17

WT, n = 16 mutant, t(31) = 6.83, p = 9.92E-08. OF - distance traveled (M): n = 17 WT, n = 16, t(31) = 3.78; p = 0.00067. SA - % alternation: n = 17 WT, t(16) = 1.14;

p = 0.27; n = 16 mutant, t(15) = 1.57; p = 0.14. Ctxl FC - % freezing: n = 13 WT, n = 12 mutant, t(23) = 5.36, p = 0.0000191.

(L)Gad2-Cre: Syngap1+/+ andGad2-Cre: Syngap1+/lx-st mice were subjected to a flurothyl-induced seizure paradigm. Time taken to reach three separate events,

first clonus (1st C), tonic-clonic (T/C), and total hindlimb extension (THE), during the course of the procedure was measured and the two groups compared.

RMANOVA - genotype effect-F(1,23) = 11.69; p = 0.0024; genotype x event interaction-F(2,46) = 0.96; p = 0.39.

WT, blue; mutants, red for all bar graphs. Error bars represent SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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Finally, we measured mEPSCs from mPFC L2/3 pyramidal

cells in WT, Het, and rescue animals to examine how SynGAP

expression levels in adulthood influence this neurophysiological

disruption that is also present in adult Syngap1 mutants. In

striking contrast to the hippocampal plasticity deficits, elevated

synaptic strength in L2/3 Het pyramidal neurons was not

improved by the adult genetic repair strategy (Figures 8J and

8K). Importantly, we confirmed that the frontal cortices of con-

ventional Syngap1 Hets also have elevated levels of p-ERK1/2
1326 Neuron 82, 1317–1333, June 18, 2014 ª2014 Elsevier Inc.
(Figure S6). Together, these findings support the idea that

enhanced excitatory synaptic strength in superficial cortical

pyramidal cells arises from developmental neuronal damage,

indicating that this neurophysiological disruption is indepen-

dent of homeostatic alterations to Ras/ERK dendritic spine

signaling caused by low SynGAP levels in adult neurons. These

data also further validate the predictive value of enhanced

L2/3 excitatory synaptic strength in Het mice because adult

reversal of pathogenic Syngap1 mutations does not improve
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performance in behavioral measures of cognition (Clement

et al., 2012).

DISCUSSION

There is a great interest in defining the brain regions and spe-

cific cell types responsible for cognitive deficits in NDDs, with

the hope of developing tailor-made therapies for each specific

condition. Prior studies in other models of NDDs suggest that

cognition and behavioral adaptations are impaired through de-

fects in a wide variety of cell types and circuits. However, not

all cell types expressing the mutation are required to reproduce

important elements of the disorder. For example, deletion

of MECP2 in GABAergic neurons phenotypically mimics the

constitutive germline deletion (Chao et al., 2010), whereas

restoration of gene function in glia provides significant rescue

(Lioy et al., 2011). A similar relationship between GABAergic

neuron dysfunction and NF1 mutations also exists (Cui et al.,

2008). Interestingly, NF1, like Syngap1, is a RasGAP, although

there is a clear distinction between the cell and temporal-spec-

ificity mediated by disruption to these two ID-related genes

(see the Supplemental Experimental Procedures for a detailed

comparison of these two RasGAP-related ID models). Cell

type and brain region specificity has also been extensively

studied in the Tsc1 model, where cerebellar neurons, astro-

cytes, and thalamic excitatory neurons have been implicated

in various behavioral phenotypes (Meikle et al., 2007; Normand

et al., 2013; Tsai et al., 2012; Uhlmann et al., 2002). Although

cortical hyperexcitability results from excitatory neurons in

Fmr1 knockout mice, cell type specificity of cognitive defects

has not been thoroughly examined (Hays et al., 2011). Due to

the robust nature of cognitive deficits in Syngap1+/� mice, we

succeeded in identifying a sensitive cell type (e.g., forebrain

pyramidal neurons) that is both necessary and sufficient

to account for the bulk of the behavioral endophenotype. This

specificity is highlighted by the minimal functional impact of

these mutations in other cell types, such as GABAergic neurons
Figure 6. Enhanced L2/3 Excitatory Synaptic Function Is an Indicator o

(A) Example recordings of mEPSC events from +/+ and +/fl mice obtained by Em

(B) Bar graph and cumulative percentage plots show increased mEPSC amplitud

sample K-S test on cumulative percentage distribution Z = 4.24, p < 0.001).

(C) Bar graph and cumulative percentage plots show increased mEPSC frequen

sample K-S test on cumulative percentage distribution Z = 3.39, p < 0.001).

(D) Example recordings of mEPSC events from +/+ and +/fl mice obtained by Ga

(E) Bar graph and cumulative percentage plots show normal mEPSC amplitude in G

test on cumulative percentage distribution Z = 1.12, p = 0.16).

(F) Bar graph and cumulative percentage plots show normal mEPSC frequency in

K-S test on cumulative percentage distribution Z = 0.69, p = 0.73).

(G) Example recordings of mEPSC events from +/+ and +/lx-st mice obtained by

(H) Bar graph and cumulative percentage plots show normal mEPSC amplitude in

sample K-S test on cumulative percentage distribution Z = 0.62, p = 0.83).

(I) Bar graph and cumulative percentage plots show normal mEPSC frequency in

sample K-S test on cumulative percentage distribution Z = 0.50, p = 0.96).

(J) Example recordings of mEPSC events from +/+ and +/lx-st mice obtained by

(K) Bar graph and cumulative percentage plots show increased mEPSC amplitude

sample K-S test on cumulative percentage distribution Z = 3.86, p < 0.001).

(L) Bar graph and cumulative percentage plots show increased mEPSC frequenc

Two sample K-S test on cumulative percentage distribution Z = 4.34, p < 0.001)

WT, blue; mutants, red for all bar graphs. Error bars represents SEM. *p < 0.05,
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located throughout the CNS. In addition to all forebrain pyrami-

dal neurons, the EMX1 driver line used in this study causes

Cre-mediated recombination in glial and Cajal-Retzius cells

(Gorski et al., 2002). Syngap1 is highly enriched in neurons

(Kim et al., 1998). Thus, glia are unlikely to underlie major

aspects of the mouse endophenotype. However, our results

cannot rule out the possibility that other cell types, such as

Cajal-Retzius cells, contribute to cognitive defects in Syngap1

Hets.

Enhanced excitatory synaptic drive onto mature superficial

pyramidal neurons resulting from the developmental impact of

pathogenic Syngap1 mutations may disrupt the computational

power of local synaptic networks by affecting the coding of infor-

mation (Petersen and Crochet, 2013). This idea is supported by

the current findings of abnormal cortical discharges in mature

Syngap1 mutants. Interestingly, similar cortical discharges are

observed in patients with human Syngap1 haploinsufficiency

(Berryer et al., 2013) and the presence of these types of high-

frequency oscillations in humans is associated with reduced

cognition (Nicolai et al., 2012). As a result, even if cellular and/

or network signatures of hyperexcitability cannot be directly

linked to reduced cognition in mature Syngap1+/� mice, the

presence of similar measures of abnormal EEG signals in both

mice and humans with pathogenic Syngap1mutations indicates

the potential for them to serve as a robust endpoint in transla-

tional studies aimed at improving brain function and cognitive

ability in patients.

Our current studies employing temporal and cell type-

specific alterations of SynGAP expression further support

the emerging idea that pathogenic Syngap1 mutations cause

cognitive abnormalities through developmental brain damage

(Clement et al., 2012, 2013). Although we do not know the exact

role of Syngap1 during the developmental critical period, one

possibility is that early synapse maturation caused by patho-

genic disruptions to this gene (Clement et al., 2012, 2013)

may permanently fix the adult spines to a larger size. Indeed,

we have found that newly born spines in the developing
f Reduced Cognition in Syngap1 Mutants

x1-Cre x Syngap1+/fl cross. Scale bar represents 20 pA, 100 ms.

e in Emx1-Cre;+/fl mice (n = 10 +/+, n = 12 +/fl, t(20) = 4.92, p = 0.000082; two

cy in Emx1-Cre;+/fl mice (n = 10 +/+, n = 12 +/fl, t(20) = 2.26, p = 0.035; two

d2-Cre x Syngap1+/fl cross. Scale bar represents 20 pA, 100 ms.

ad2-Cre;+/flmice (n = 11 +/+, n = 11 +/fl, t(20) = 0.03, p = 0.98; two sample K-S

in Gad2-Cre;+/fl mice (n = 11 +/+, n = 11 +/fl, t(20) = 0.14, p = 0.89; two sample

Emx1-Cre x Syngap1+/lx-st cross. Scale bar represents 20 pA, 100 ms.

Emx1-Cre;+/lx-st mice (n = 17 +/+, n = 13 +/lx-st, t(28) = 0.00045, p = 0.99; two

in Emx1-Cre;+/lx-st mice (n = 17 +/+, n = 13 +/lx-st, t(28) = 0.68, p = 0.50; two

Gad2-Cre x Syngap1+/lx-st cross. Scale bar represents 20 pA, 100 ms.

in Gad2-Cre;+/lx-st mice (n = 19 +/+, n = 19 +/lx-st, t(36) = 2.49, p = 0.017; two

y in Gad2-Cre;+/lx-st mice (n = 19 +/+, n = 19 +/lx-st, t(36) = 3.15, p = 0.0033.

.

**p < 0.01, ***p < 0.001.
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Syngap1 mutant brain are larger than nascent spines born to

WT neurons (M. Aceti and G.R., unpublished data). Dendritic

spine volume is tightly coupled to AMPA receptor function at in-

dividual postsynapses in both the cortex and hippocampus

(Matsuzaki et al., 2001; Noguchi et al., 2011). Thus, abnormally

large spines in mature cortical pyramidal cells in Syngap1 mice

may degrade the ability of these neurons to scale down synap-

tic excitation in response to environmental stimuli or changing

social conditions (Wang et al., 2011). Indeed, according to the

principle of homeostatic regulation of neuronal firing rates (Tur-

rigiano, 2008), excitatory synapses in Syngap1 mutants would

be expected to scale down their strengths to compensate for

the enhanced network excitability that is clearly present in

these mice. Thus, the gradual emergence of elevated excitatory

synaptic function in L2/3 neurons as a secondary consequence

of Syngap1 disruption in development is representative of an

altered form of synaptic homeostasis that degrades the ability

of mature L2/3 neurons to optimally balance excitation relative

to inhibition.
EXPERIMENTAL PROCEDURES

The generation of conventional Syngap1+/� mice (Kim et al., 2003), condi-

tional knockout line (Syngap1+/fl), and conditional rescue line (Syngap1+/

lx-st) has been described previously (Clement et al., 2012). All Syngap1

mice are maintained on a BL6/B129sv/ev hybrid background as previously

described (Clement et al., 2012; Guo et al., 2009). Emx1-Cre (#05628),

Gad2-Cre (#10802), PV-Cre (#8069), Inducible CAG-Cre-ERt (#004682),

TdTomato Ai9 (#007905), and GIN-GFP (#03718) lines were purchased from

Jackson Laboratories. According to the supplier, these lines are maintained

on a pure C57/BL6j background (n > 5 generations), except for the PV-Cre

line, which is on a hybrid B6;129p2 background, and the GIN-GFP line, which

is on a FVB/NJ background. In general, male Cre drivers were used in mating

schemes, except for EMX1-ires-Cre crosses, due to rare occurrences of Cre

activity in sperm cells. Video EEG recordings lasted for 2 weeks and random

samples of the recordings were analyzed for evidence of spiking. VSD imaging
Figure 7. Global Induction of Syngap1 Haploinsufficiency in Adulthood

(A) Experimental strategy to induce Syngap1 haploinsufficiency during adulthoo

mice, the following four groups of mice were generated and used for experim

Syngap1+/fl. All animals were injected with tamoxifen at 8 weeks of age.

(B) Hippocampal (HPC) tissue was dissected from Cre(�)/Syngap1+/+, Cre(�) /S

western blot analysis of SynGAP protein levels normalized to b-tubulin after behav

n = 5 WT, n = 6 mutant, t(9) = 0.44; p = 0.66; Cre(+): n = 7 WT, n = 7 mutant, t(12

(C) Cumulative percentage plots and example recordings show normal mEPSC am

amplitudes 12.59 ± 0.48 +/+, 12.83 ± 0.35 +/fl, t(20) = 0.40, p = 0.69; mean mEP

sample K-S test on cumulative percentage distributions: Z = 1.07, p = 0.2 for mE

(D) Cumulative percentage plots and example recordings show normal mEPSC am

amplitudes 13.04 ± 0.24 +/+, 12.67 ± 0.47 +/fl; mean mEPSC frequencies 12.33

sample K-S test on cumulative percentage distributions Z = 1.28, p = 0.07 for m

(E–H) Cre(�)/Syngap1+/+, Cre(�)/Syngap1+/fl, Cre(+)/Syngap1+/+, Cre(+)/Syngap1

task (EPM), an open field test (OFT), an unforced discrete two-trial spontaneous

t tests were performed for EPM, OF, and Ctxl FC tests. One-sample t test with 50

EPM -%Open arm duration - Cre(�): n = 15WT, n = 18mutant, t(31) = 0.16, p = 0.8

(M) - Cre(�):n = 15 WT, n = 16 mutant, t(29) = 0.55, p = 0.59; Cre(+): n = 16 WT,

t(12) = 2.63, p = 0.022; Cre(�)/Syngap1+/fl: t(14) = 3.21, p = 0.0062; Cre(+)/Syngap

% freezing: Cre(�): n = 11 WT, n = 11 mutant, t(20) = 0.83, p = 0.41. Cre(+):n = 1

(I and J) Cre(�)/Syngap1+/+, Cre(�)/Syngap1+/fl, Cre(+)/Syngap1+/+, Cre(+)/Synga

to reach three separate events, first clonus (1st C), tonic-clonic (T/C), and total hin

WT and HET groups compared within each of the Cre(�) and Cre(+) groups. RM

interaction-F(2,50) = 0.66; p = 0.52. Cre(+): genotype effect-F(1,22) = 4.58; p = 0

WT, blue; mutants, red for all bar graphs. Error bars represent SEM. *p < 0.05, **
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in cortical slices was performed as previously described (Clement et al., 2012;

Xu et al., 2010). mPFC slices for whole cell electrophysiology experiments

were prepared as described elsewhere (Clement et al., 2013). Behavioral par-

adigms, tamoxifen injections, and fluorothyl-induced seizure protocol were

carried out as described previously (Clement et al., 2012). Extracellular slice

physiology and fluorescence deconvolution tomography has been described

in detail elsewhere (Babayan et al., 2012; Chen et al., 2007, 2010; Vogel-Cier-

nia et al., 2013). All proposed animal research was approved by the TSRI

Animal Care and Use Committee and the studies were subsequently overseen

by this office. For precise details pertaining to all experimental procedures

used in this in this study, please refer to the Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.neuron.2014.05.015.
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Has a Minimal Impact on L2/3 Synaptic Function and Behavior

d. Following a cross between Syngap1+/fl and hemizygous CreERt transgenic

ents: Cre(�)/Syngap1+/+, Cre(�)/Syngap1+/fl, Cre(+)/Syngap1+/+, and Cre(+)/

yngap1+/fl, Cre(+)/Syngap1+/+, and Cre(+)/Syngap1+/fl mice and processed for

ioral and seizure paradigm testing. Normalized density - unpaired t test - Cre(�):

) = 6.86; p = 0.00000174.

plitude and frequency in (Cre�) animals. (n = 11 +/+, n = 11 +/fl; mean mEPSC

SC frequencies 10.14 ± 1.07 +/+, 11.25 ± 0.65 +/fl, t(20) = 0.89, p = 0.38; two

PSC amplitude; Z = 1.02, p = 0.25 for mEPSC interevent interval).

plitude and frequency in (Cre+) animals. (n = 12 +/+, n = 12 +/fl; mean mEPSC

± 0.67 +/+, 12.08 ± 0.74 +/fl, t(22) = 0.70, p = 0.49; t(22) = 0.25, p = 0.80; two

EPSC amplitude; Z = 0.59, p = 0.88 for mEPSC interevent interval).
+/fl mice were run in a behavioral battery consisting of an elevated plus maze

alternation task (SA), and a contextual fear conditioning paradigm. Unpaired

% chance level as hypothetical mean were performed with each group for SA.

7; Cre(+):n = 16WT, n = 17mutant, t(31) = 0.68, p = 0.50. OF - distance traveled

n = 17 mutant, t(31) = 1.40, p = 0.17. SA - % alternation - Cre(�)/Syngap1+/+:

1+/+: t(15) = 2.42, p = 0.028; Cre(+)/Syngap1+/fl: t(12) = 2.92, p = 0.013. Ctxl FC -

3 WT, n = 9 mutant, t(20) = 0.4, p = 0.69.

p1+/fl mice were subjected to a flurothyl-induced seizure paradigm. Time taken

dlimb extension (THE), during the course of the procedure were measured and

ANOVA – Cre(�): genotype effect-F(1,25) = 0.22; p = 0.64; genotype x event

.044; genotype x event interaction-F(2,44) = 2.18; p = 0.12.

p < 0.01, ***p < 0.001.

http://dx.doi.org/10.1016/j.neuron.2014.05.015
http://dx.doi.org/10.1016/j.neuron.2014.05.015
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Dobrzeniecka, S., Côté, M., Perreau-Linck, E., Carmant, L., et al.; Synapse to

Disease Group (2009). Mutations in SYNGAP1 in autosomal nonsyndromic

mental retardation. N. Engl. J. Med. 360, 599–605.

Hamdan, F.F., Daoud, H., Piton, A., Gauthier, J., Dobrzeniecka, S., Krebs,

M.O., Joober, R., Lacaille, J.C., Nadeau, A., Milunsky, J.M., et al. (2011a).

De novo SYNGAP1 mutations in nonsyndromic intellectual disability and

autism. Biol. Psychiatry 69, 898–901.

Hamdan, F.F., Gauthier, J., Araki, Y., Lin, D.T., Yoshizawa, Y., Higashi, K.,

Park, A.R., Spiegelman, D., Dobrzeniecka, S., Piton, A., et al.; S2D Group
d Has a Differential Effect on Synaptic Defects Originating in Distinct

d. Following a cross between Syngap1+/fl and hemizygous CreERt transgenic

Cre(�)/Syngap1+/+, Cre(�)/Syngap1+/fl, Cre(+)/Syngap1+/+, Cre(+)/Syngap1+/fl.

two stimulation pulses) for the indicated three groups of hippocampal slices.

ree groups. Stimulation current was increased across a series of steps and the

mice at each step in the input/output curve. Scale represents 1 mV/5 ms.

lope of the fEPSP was normalized to the mean value for a 10-minute baseline

ich LTP was recorded, received 3/min pulses throughout the session.

pal slice collected 2 min after a theta burst train. The images were processed

perimental Procedures. Intensely labeled structures are shown. (i: p-ERK1/2; ii:

for synapses associated with very dense labeling for Ras-GTP (left) or pERK

theta bursts (TBS) or low-frequency baseline stimulation only (C). Values are

timulation. Asterisks represent statistical significance for the matched control

02; ****p < 0.0001).

ling for slices given control baseline stimulation (dashed line) or TBS (solid line)

trol versus TBS groups (F(31,928) = 14.54; p < 0.0001).

< 0.0001).

).

amplitude and frequency in (Cre�) animals. (n = 17 +/+, n = 17 +/lx-st; mean

ean mEPSC frequencies 8.89 ± 0.60 +/+, 11.11 ± 0.75 +/lx-st, t(32) = 2.30, p =

0.001 for mEPSC amplitude; Z = 3.22, p < 0.001 for mEPSC interevent interval).

C amplitude and frequency in (Cre+) animals. (n = 21 +/+, n = 16 +/lx-st; mean

ean mEPSC frequencies 9.16 ± 0.66 +/+, 10.95 ± 0.75 +/lx-st, t(35) = 2.03, p =

.001 for mEPSC amplitude; Z = 2.80, p < 0.001 for mEPSC interevent interval).



Neuron

Cause of Cognitive Dysfunction in Syngap1 Mutants
(2011b). Excess of de novo deleterious mutations in genes associated with

glutamatergic systems in nonsyndromic intellectual disability. Am. J. Hum.

Genet. 88, 306–316.

Hays, S.A., Huber, K.M., and Gibson, J.R. (2011). Altered neocortical rhythmic

activity states in Fmr1 KO mice are due to enhanced mGluR5 signaling and

involve changes in excitatory circuitry. J. Neurosci. 31, 14223–14234.

Helm, J., Akgul, G., and Wollmuth, L.P. (2013). Subgroups of parvalbumin-

expressing interneurons in layers 2/3 of the visual cortex. J. Neurophysiol.

109, 1600–1613.

Hippenmeyer, S., Vrieseling, E., Sigrist, M., Portmann, T., Laengle, C., Ladle,

D.R., and Arber, S. (2005). A developmental switch in the response of DRG

neurons to ETS transcription factor signaling. PLoS Biol. 3, e159.

Kim, J.H., Liao, D., Lau, L.F., and Huganir, R.L. (1998). SynGAP: a synaptic

RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20,

683–691.

Kim, J.H., Lee, H.K., Takamiya, K., and Huganir, R.L. (2003). The role of synap-

tic GTPase-activating protein in neuronal development and synaptic plasticity.

J. Neurosci. 23, 1119–1124.

Komiyama, N.H., Watabe, A.M., Carlisle, H.J., Porter, K., Charlesworth, P.,

Monti, J., Strathdee, D.J., O’Carroll, C.M., Martin, S.J., Morris, R.G., et al.

(2002). SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and

learning in the complex with postsynaptic density 95 and NMDA receptor.

J. Neurosci. 22, 9721–9732.

Kozlenkov, A., Roussos, P., Timashpolsky, A., Barbu, M., Rudchenko, S.,

Bibikova, M., Klotzle, B., Byne, W., Lyddon, R., Di Narzo, A.F., et al. (2014).

Differences in DNA methylation between human neuronal and glial cells

are concentrated in enhancers and non-CpG sites. Nucleic Acids Res. 42,

109–127.

Krepischi, A.C., Rosenberg, C., Costa, S.S., Crolla, J.A., Huang, S., and

Vianna-Morgante, A.M. (2010). A novel de novo microdeletion spanning

the SYNGAP1 gene on the short arm of chromosome 6 associated with mental

retardation. Am. J. Med. Genet. A. 152A, 2376–2378.

Lazarus, M.S., and Huang, Z.J. (2011). Distinct maturation profiles of

perisomatic and dendritic targeting GABAergic interneurons in the mouse pri-

mary visual cortex during the critical period of ocular dominance plasticity.

J. Neurophysiol. 106, 775–787.

Lioy, D.T., Garg, S.K., Monaghan, C.E., Raber, J., Foust, K.D., Kaspar, B.K.,

Hirrlinger, P.G., Kirchhoff, F., Bissonnette, J.M., Ballas, N., and Mandel, G.

(2011). A role for glia in the progression of Rett’s syndrome. Nature 475,

497–500.

Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H.,

Ng, L.L., Palmiter, R.D., Hawrylycz, M.J., Jones, A.R., et al. (2010). A robust

and high-throughput Cre reporting and characterization system for the whole

mouse brain. Nat. Neurosci. 13, 133–140.

Matsuzaki, M., Ellis-Davies, G.C., Nemoto, T., Miyashita, Y., Iino, M., and

Kasai, H. (2001). Dendritic spine geometry is critical for AMPA receptor

expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–

1092.

Meikle, L., Talos, D.M., Onda, H., Pollizzi, K., Rotenberg, A., Sahin, M., Jensen,

F.E., and Kwiatkowski, D.J. (2007). A mouse model of tuberous sclerosis:

neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myeli-

nation, seizure activity, and limited survival. J. Neurosci. 27, 5546–5558.

Moon, I.S., Sakagami, H., Nakayama, J., and Suzuki, T. (2008). Differential

distribution of synGAP alpha1 and synGAP beta isoforms in rat neurons.

Brain Res. 1241, 62–75.

Muhia, M., Yee, B.K., Feldon, J., Markopoulos, F., and Knuesel, I. (2010).

Disruption of hippocampus-regulated behavioural and cognitive processes

by heterozygous constitutive deletion of SynGAP. Eur. J. Neurosci. 31,

529–543.
Nicolai, J., Ebus, S., Biemans, D.P., Arends, J., Hendriksen, J., Vles, J.S., and

Aldenkamp, A.P. (2012). The cognitive effects of interictal epileptiform EEG

discharges and short nonconvulsive epileptic seizures. Epilepsia 53, 1051–

1059.

Noguchi, J., Nagaoka, A., Watanabe, S., Ellis-Davies, G.C., Kitamura, K.,

Kano, M., Matsuzaki, M., and Kasai, H. (2011). In vivo two-photon uncaging

of glutamate revealing the structure-function relationships of dendritic spines

in the neocortex of adult mice. J. Physiol. 589, 2447–2457.

Normand, E.A., Crandall, S.R., Thorn, C.A., Murphy, E.M., Voelcker, B.,

Browning, C., Machan, J.T., Moore, C.I., Connors, B.W., and Zervas, M.

(2013). Temporal and mosaic Tsc1 deletion in the developing thalamus dis-

rupts thalamocortical circuitry, neural function, and behavior. Neuron 78,

895–909.

Petersen, C.C., and Crochet, S. (2013). Synaptic computation and sensory

processing in neocortical layer 2/3. Neuron 78, 28–48.

Porter, K., Komiyama, N.H., Vitalis, T., Kind, P.C., and Grant, S.G. (2005).

Differential expression of two NMDA receptor interacting proteins, PSD-95

and SynGAP during mouse development. Eur. J. Neurosci. 21, 351–362.

Rauch, A., Wieczorek, D., Graf, E., Wieland, T., Endele, S., Schwarzmayr, T.,

Albrecht, B., Bartholdi, D., Beygo, J., Di Donato, N., et al. (2012). Range of

genetic mutations associated with severe non-syndromic sporadic intellectual

disability: an exome sequencing study. Lancet 380, 1674–1682.

Rex, C.S., Chen, L.Y., Sharma, A., Liu, J., Babayan, A.H., Gall, C.M., and

Lynch, G. (2009). Different Rho GTPase-dependent signaling pathways initiate

sequential steps in the consolidation of long-term potentiation. J. Cell Biol.

186, 85–97.

Rumbaugh, G., Adams, J.P., Kim, J.H., and Huganir, R.L. (2006). SynGAP

regulates synaptic strength and mitogen-activated protein kinases in cultured

neurons. Proc. Natl. Acad. Sci. USA 103, 4344–4351.

Taniguchi, H., He, M., Wu, P., Kim, S., Paik, R., Sugino, K., Kvitsiani, D., Fu, Y.,

Lu, J., Lin, Y., et al. (2011). A resource of Cre driver lines for genetic targeting

of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013.

Tsai, P.T., Hull, C., Chu, Y., Greene-Colozzi, E., Sadowski, A.R., Leech, J.M.,

Steinberg, J., Crawley, J.N., Regehr, W.G., and Sahin, M. (2012). Autistic-like

behaviour and cerebellar dysfunction in Purkinje cell Tsc1mutant mice. Nature

488, 647–651.

Turrigiano, G.G. (2008). The self-tuning neuron: synaptic scaling of excitatory

synapses. Cell 135, 422–435.

Uhlmann, E.J., Wong, M., Baldwin, R.L., Bajenaru, M.L., Onda, H.,

Kwiatkowski, D.J., Yamada, K., and Gutmann, D.H. (2002). Astrocyte-specific

TSC1 conditional knockout mice exhibit abnormal neuronal organization and

seizures. Ann. Neurol. 52, 285–296.

Vogel-Ciernia, A., Matheos, D.P., Barrett, R.M., Kramár, E.A., Azzawi, S.,

Chen, Y., Magnan, C.N., Zeller, M., Sylvain, A., Haettig, J., et al. (2013). The

neuron-specific chromatin regulatory subunit BAF53b is necessary for synap-

tic plasticity and memory. Nat. Neurosci. 16, 552–561.

Wang, F., Zhu, J., Zhu, H., Zhang, Q., Lin, Z., and Hu, H. (2011). Bidirectional

control of social hierarchy by synaptic efficacy in medial prefrontal cortex.

Science 334, 693–697.

Xu, X., Olivas, N.D., Levi, R., Ikrar, T., and Nenadic, Z. (2010). High precision

and fast functional mapping of cortical circuitry through a novel combination

of voltage sensitive dye imaging and laser scanning photostimulation.

J. Neurophysiol. 103, 2301–2312.

Zhang, W., Vazquez, L., Apperson, M., and Kennedy, M.B. (1999). Citron binds

to PSD-95 at glutamatergic synapses on inhibitory neurons in the hippocam-

pus. J. Neurosci. 19, 96–108.
Neuron 82, 1317–1333, June 18, 2014 ª2014 Elsevier Inc. 1333


	Reduced Cognition in Syngap1 Mutants Is Caused by Isolated Damage within Developing Forebrain Excitatory Neurons
	Introduction
	Results
	Cortical Hyperexcitability and Progressively Worsening Superficial Pyramidal Cell E/I Balance in Adult Syngap1 Mutants
	E/I Imbalance Predicts Cognitive Abnormalities and Results from Syngap1 Dysfunction Exclusively in Glutamatergic Neurons of ...

	Discussion
	Experimental Procedures
	Supplemental Information
	Acknowledgments
	References




