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different designs at 1.55 GHz are given below: 

0.6 22 14 15 0.25 5 16 23 

In conclusion, the design method of assigning multiple 
electrical functions to an individual or small group of discrete 
components has been demonstrated to form an effective 
miniaturization technique. It has enabled the realization of 
miniaturized L-band MIC LNA stages to excellent electrical 
performance. The miniaturization technique is applied both 
to a conventional design topology as well as to a series 
feedback configuration. Each LNA is realized on the same 
size of surface area of 4.8 mm x 8.8 mm. This size is believed 
to be the most compact L-band MIC LNA reported to date 
with the optimum noise figure characteristics. 
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ABSTRACT 
The generalized Fresnel integral semes as a canonical function for the 
uniform ray field representation of several high-h-frequency diffmction 
mechanisms. In this article, an example of application of this canonical 
function is examined, which is concerned with the difiction at a plane 
angular sector with soft boundary conditions on its faces. Closed-form 
erpressions for computing this canonical function are presented, and it is 
shown that the approximate formulation adopted herein is accurate and 
very fast to calculate. 0 1995 John Wley & Sons, Inc. 

1. INTRODUCTION 
As is well known, in the vicinity of a shadow boundary, the 
electromagnetic field diffracted by an edge may be described 
in terms of the Fresnel integral. In this region, the scattered 
field does not have a ray optical behavior; therefore, its 

subsequent diffraction mechanisms cannot be treated by a 
direct application of the uniform theory of diffraction (UTD). 
The analytical description of the composite shadow boundary 
transition phenomena involves the generalized Fresnel inte- 
gral (GFI). This integral was first introduced by Clemmow 
and Senior [l], and its properties were exhaustively analyzed 
by Jones [2]. Several authors employed the GFI in double and 
multiple knife-edge problems [3-51, and, more recently, in 
vertex diffraction problems [6-81. 

In this article, in order to examine practical features of 
the GFI, the formulation of a vertex diffraction problem is 
explicitly considered, which is concerned with the diffraction 
at a plane angular sector interconnecting two straight edges. 
This formulation is based on that obtained in [9] for the case 
of an incident plane wave and observation in the far-field 
zone. Here, an observation point at finite distance from the 
tip is considered for the case where soft boundary conditions 
(bc) are imposed on the faces of the plane angular sector. 
The analytical details of the present formulation are beyond 
the purpose of this article and may be found in [lo]. Here, 
only the final, high-frequency expression is given as an appli- 
cation of GFI. In particular, the properties of the generalized 
transition function that describe the vertex first-order transi- 
tion regions are discussed in connection with the properties 
of the GFI. 

The use of the GFI in the vertex problem, as well as in 
other diffraction problems, becomes very practical for engi- 
neering applications, if accurate, closed-form expressions are 
available for the GFI. In fact, the direct numerical calcula- 
tion of this integral is not a straightforward matter, due to 
rapid oscillations of the integrand that occur for certain 
combinations of the two real arguments. Although simple 
approximations have been presented in the literature [ 1, 111, 
their range of applicability has not been well specified. For 
this reason, the regions of applicability of the above approxi- 
mate existing formulas are investigated and specified. Fur- 
thermore, simple closed-form approximations are derived for 
the remaining regions. Thus, a very efficient, closed-form 
formulation is obtained to cover the entire argument plane. 

2. DIFFRACTION AT A SOFT PLANE ANGULAR SECTOR 

Let us consider a plane angular sector formed by two straight, 
semiinfinite edges, which are interconnected with an angle R. 
Suppose that soft bc are imposed on the two faces. At each 
edge (n = 1,2) it is useful to define a local coordinate system 
with its origin at the vertex and the z, axis along the edge; 
accordingly, a spherical coordinate system ( r ,  p,, 4,) is also 
defined, where r is the distance from the tip and 4, vanishes 
on the top face. Let us also assume a scalar, unit incident 
plane wave propagating in a direction (PA, 4;). 

The leading asymptotic diffracted field from this structure 
can be obtained by using the UTD diffraction coefficients at 
the two edges. This approach leads to a field discontinuity 
when the diffraction point disappears from the tip or abruptly 
changes its location from one edge to the other. This discon- 
tinuity should be compensated by a vertex diffraction contri- 
bution. This contribution can be obtained by applying a 
spectral formulation to the diffraction coefficient derived in 
[9]. This procedure leads to 
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where 

d,, = sin-[2sin 4; sin n(cos( PA - n) - COS 1 /2 
2 

+ sin-[2 +m sin pm sin ~ ( C O S  fi; - p, + n))] 1/2 2 
+[(cost p,: - n) - cos p,) 

x(c0s p, - cos( P; + u))11/2, (2) 

in which (- 1)'I2 = -1 is assumed for the square roots. The 
generalized transition function (GTF) T is defined as 

in which the real arguments are 

(4) 

- 
Si = * { 2 m c O s  

where the upper (lower) signs apply to 4; < (> ) T, and the 
function G in (3) is the GFI, defined as 

e - j r 2  Y ixz  

2T J t 2 + y 2  
~ ( x , y )  --e j - dt . (6) 

The GTF in (3), which was first introduced in [6], reduces to 
unity for large K = b, namely, at far-field distance from the 
tip, as usually happens in the standard UTD transition func- 
tion. 

In order to obtain the complete scattered field from the 
plane angular sector, both the geometrical-optics (GO) field 
and the first-order UTD diffracted field from the two edges 
should be added to the vertex diffracted field in (1). Further- 
more, it is worth noting that the double diffraction contribu- 
tion for this soft case is of a higher asymptotic order and can 
be neglected in the present analysis. 

When the observation point crosses the cone defined by 
pi = p,! (shadow boundary cone, SBC), the first-order 
diffraction point on the ith edge disappears from the tip and 
a discontinuity occurs in the dominant asymptotic contribu- 
tion. It is worth noting that the diffracted field in (1) exhibits 
apparent singularities at the SBCs. As can be inferred from 
(4) and the formulas that are presented in the next section 
for the GFI, the GTF vanishes at the same SBCs; here the 
vertex contribution ICI, in (1) is limited and discontinuous to 
compensate for the discontinuities of the first-order contribu- 
tions. 

The peculiarity of the GTF is that of changing the spread- 
ing factor of the vertex contribution depending on the obser- 
vation point. Close to a SBC, one of the parameters Sj 
vanishes and the GTF provides a cylindrical spreading factor 
in +" that allows compensation for the discontinuity of the 
UTD first-order contributions. When the observation point 
approaches the intersection between the two SBCs, the GO 

contribution also disappears. In this case, both the parame- 
ters Si and Zi vanish and the GTF produces a plane wave 
unit spreading factor, which allows compensation for the GO 
discontinuity also. 

In the next section, closed-form expressions for calculating 
the GFI are presented. These expressions not only allow the 
GTF properties discussed above to be verified, but also serve 
as an amrate  algorithm for calculating the GTF with an 
effort that is comparable with that for computing the ordi- 
nary UTD transition function. 

3. CLOSED-FORM EXPRESSIONS FOR THE GFI 
In the present case, as in most practical cases in diffraction 
problems, the arguments x and y of the GFI are real 
numbers. Taking into account that G is antisymmetric with 
respect to both the variables, that is [2], 

we restrict the present analysis to the quarter plane x 2 0, 
y 2 0. Next, this same region is subdivided in seven regions as 
shown in Figure 1. Different approximate formulas are em- 
ployed in each region and the various boundaries are chosen 
in order to minimize the discontinuity between the relevant 
contiguous approximations. 

All the above approximations involve only the ordinary 
Fresnel integral defined as 

(8) 

which can be quickly calculated by employing the simple 
series expansions given in [12]. For our purpose, the small 
argument series expansion suggested in this reference has 
been extended up to 5 = 12 by retaining a number of terms 
equal to 12&. Furthermore, 11 terms of the asymptotic 
expansion have been retained for 5 > 12. In this way, a 
truncation error less than 5 X has been found for all 
the values of 6.  

For the sake of convenience, we will adopt the notation 
G , ( x , y )  to denote the approximation of G ( x , y )  in the ith 
region ( i  = 1, 7). 

Figure 1 
imations 

Subdivision of the argument plane for the various approx- 
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In region 1 (x  < 0.4; y < 0.4), the GFI has been approxi- 
mated by using [ll]: 

1 1 
2 Tr 

G, (x ,y)  = -exp(jx2) 

which is easily obtained (a) first by adding to and subtracting 
from (6) an integral from zero to x; thus, the integral from 0 
to a is easily recognized as a standard Fresnel integral; (b) 
next a quadratic approximation of the exponential function is 
used in the remaining integral contribution; (c) finally, this 
latter approximate expression is integrated by parts. 

In region 2 (0.4 < x < 24, x > 4y), a suitable approxima- 
tion is obtained by first replacing ( t 2  + y2)-' by its expansion 
in powers of (y/tI2, and then integrating the first three terms 
to yield 

2 jxF( x )I 

- '( y 1  - 2 9  - 4X3F(X)]. (10) 
657 x 

Although the above procedure is the same as that adopted in 
[l], it is worth noting that our formula does not coincide with 
Eq. (14) of [l], due to a typographical error in the same 
reference. 

In region 3 ( x  > 24; x > y), the asymptotic approximation 
Dl 

(11)  

provides quite accurate results. In region 4 (y/4 < x < y; 
0.4 < y < 24), the following exact representation [Ill: 

G(x ,y )  = G4(x,y) = 

may be employed, in which 

- j v 2 y 2  

I (x ,y )  = /' ~ d a .  
x/y u 2  + 1 

(13) 

In this region, the above integral can be calculated without 
relevant efforts except for high values of y (y  = 20-24). For 
such values, the integrand in (12) exhibits a rapid oscillatory 
behavior and the integration may be critical. In order to 
overcome this difficulty and to improve the algorithm's effi- 
ciency, it is found that an approximate explicit expression for 
I(x,y) may be obtained in terms of standard Fresnel inte- 
grals. To this end, the function ( c r 2  + l)- '  is expanded in a 
Taylor series in a neighborhood of u = 0.6. By truncating 

this series at the fourth power of a and integrating it term by 
term, the following representation is obtained: 

4 

I (x ,y )  = c @,Z,(~ ,Y) ,  (14a) 

a,, = 0.98926061, (14b) 

a, = 0.12808114, (144  

a2  = - 1.59843183, (14d) 

a3 = 1.35987246, (14e) 

a4 = -0.37895149, (14f) 
1 

(15a) 
Y 

m =  0 

I,(x,y) = -[F(x)e-J"' - F(y)e-JY'], 

(15b) 

which has been found to be very effective. 
Finally, in the remaining part of the quarter plane x > 0, 

y > 0, the GFI can be calculated by invoking the symmetry 
property [2, Eq. (All11 

i 
G,(x,y) = --F(x)F(y) - G,-,(y,x),  n = 5,6 ,7 .  

Tr 

(16) 

It should be stressed that, although the approximations in 
(9)-(12) are known in the literature, the regions of their 
applicability in the argument plane are not well defined by 
the various authors. Then, our choice of these regions should 
be carefully checked, particularly across the boundary be- 
tween contiguous regions, where small discontinuities of 
G(x,y) may occur. To this end, we have referred to the 
percent error, 

at the boundary between the adjacent regions m and n.  
Table 1 shows the maximum value of em, at every boundary. 
The worst case occurs at the boundary between regions 1 and 
7 ( E , ~  = 0.65%). 

Region 4 is covered by the new approximation (12) that 
has been checked by comparison with a direct, accurate 
numerical integration. Figure 2 shows the percent amplitude 
error for G4 in (12) on the four paths shown in the inset of 

TABLE 1 Discontinuities at the Boundaries between Contiguous Approximations 

1 - 5  0.02% 1 - 2  0.05% 1 - 2  0.45% 7 - 3  0.24% 
1 - 4  0.35% 5 - 4  0.03% 5 - 6  0.02% 2 - 3  0.41% 
1 - 7  0.65% 4 - 7  1 0 4 %  4 - 6  0.12% 6 - 3  0.18% 
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Figure 2 Percent amplitude error for G4 in Eq. (12), when it is 
calculated by numerical integration of (13) or by the approximate 
expression (14) 

the same figure. Actually, the relative percent amplitude 
error exhibits a small oscillatory behavior, and the maximum 
envelope of each error is plotted in Figure 2. The approxi- 
mate expressions agree very well with the numerical integra- 
tion, and a maximum error of 0.07% has been found. 

Finally, Figure 3 shows the amplitude and phase level 
lines of G ( x , y )  that have been plotted by means of our 
algorithm. The region 0 < x < 4, 0 < y < 8 with a zoom for 
the region 0 < x < 1,0  < y < 1 has been reported. 

4. NUMERICAL EXAMPLES 

The following numerical examples are devoted to demon- 
strate both the effectiveness of the formulation (1) in the 
transition regions close to the SBCs and the accuracy of the 
GFI calculation by using the approximated formulas pre- 
sented in the previous section. In Figure 4 and 5, the dashed, 
dotted, and continuous lines represent the fist-order UTD 
plus the GO fields, the vertex contribution, and the total 
scattered field, respectively. Figure 4 shows the amplitude (a) 
and the phase (b) of the scattered field at a distance r = 2A 
from the tip of an R = 90" plane angular sector. The scan 
plane and the direction of the incident plane wave are 
specified in the inset of the same figure, where the SBCs are 
also depicted. As can be inferred from this figure, when the 
observation point P passes through these cones, the UTD 
diffracted field abruptly disappears and the tip contribution 
provides the required continuity of the total scattered field 
for both the amplitude and the phase. 

The results presented in Figures 5(a) and 5(b) show the 
scattered field at a distance 2A, for a plane angular sector 
with fl = 135". The scan plane is symmetrical with respect to 
the plane angular sector, and the observation point passes 
through the intersection between two SBCs; in this case, both 
the GO contribution and the first-order diffracted field con- 
tributions simultaneously disappear. As mentioned in Section 
2, in this condition all the parameters fii and in the GFI 
vanish; again, the tip contribution provides the expected 
continuity of the total field. 

5. CONCLUSIONS 
At high frequency, the transition regions of multiple diffrac- 
tion mechanisms are uniformly described by means of gener- 
alized transition functions involving the GFI. A diffraction 
problem in which the GFI plays an important role is that of a 
vertex discontinuity. A high-frequency formulation for the 
diffracted field at a vertex in a plane angular sector as been 

0. 0 1.0 2.0 3.0 4.0 
z-axis 

0.0 0.25 0.5 0.75 1.0 
2-azis 

Figure 3 Amplitude- (solid lines) and phase- (dashed lines) level 
lines of G(x, y) 

presented in terms of GFIs. In order to render this formula- 
tion useful for practical engineering problems, accurate 
closed-form formulas for calculating the GFI have been pre- 
sented. Simple, approximate expressions have been suggested 
that involve only elementary functions and the ordinary Fres- 
nel integral. In this way, the calculation of generalized transi- 
tion functions occurring in vertex and multiple diffraction 
problems is not more complicated than the calculation of the 
ordinary UTD transition functions of the wedge canonical 
problem. 

The accuracy of the algorithm for the GFI has been 
demonstrated by testing the relative discontinuity between 
adjacent approximations and the present error with respect 
to the direct numerical integration. Furthermore, its applica- 
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Figure 4 Amplitude (a) and phase (b) of the field scattered from a soft plane angular sector. ( 
R = 90”. Dashed lines, first-order UTD; dotted lines, vertex contribution; solid lines, total field) 
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Figure 5 Amplitude (a) and phase (b) of the field scattered from a soft plane angular sector. (Scan plane symmetric with respect to 
the plane angular sector; r = 2h, 0 = 135”. Dashed line, fist-order UTD + GO; dotted lines, vertex contribution; solid lines, total 
field) 

tion in the vertex problem has shown a good performance in 
the uniform description of the transition regions. 
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ABSTRACT 
In this article, the authors attempt to treat both strong misting and slight 
twisting of fiber via a consistent asymptotic approach to the coupled-mode 
theory. In strong twisting, an admirably simple and useful asymptotic 
equation is derived in the form R f  = const., which relates the minimum 
required twist rate 7 with the minimum allowable radius of curvature R 
In slight twisting an oscillatory pattern of the polarization behauior 
clearly reveals the advantageous feature of a twist-spun fiber, which is 
made by a prior spinning of the fiber before a twi3ting. 0 1995 John 
Wiley & Sons, Inc. 

INTRODUCTION 
Around the late 1970s, when the technology of making con- 
ventional optical fiber was fairly well established, attempts 
had begun to make polarization-maintaining fibers in view of 
the need of a stable mode, or a stable polarization, during 
transmission. For the past 15 years or more, R & D regarding 
specialized fibers to maintain linearly polarized light, and to 
maintain circularly polarized light, ran an almost parallel 
race. Although linearly polarized light has been used almost 
exclusively in fiber-optic practice, the advantages of light 

transmission in circularly polarized light were recognized 
early by scientists engaged in this art. 

Over the past 15 years the advances in R & D regarding 
specialized optical fibers has turned out to be much more in 
favor of polarization-maintaining fibers for linearly polarized 
light. A multitude of Linear-polarization-maintaining or hi-bi 
(highly birefringent) fibers were successfully fabricated around 
the early 198Os, notably the bow-tie 121, the Panda, and the 
elliptical-cladding fibers, and have been applied to many 
practical fiber-optic systems. In contrast, despite the fact that 
assiduous efforts have been made in devising specialized fiber 
structures for circular-polarization-maintaining fibers, the ad- 
vancements made in R & D regarding practical circular- 
polarization-maintaining fibers have been by far less fruitful 
[3]. The only means available to produce a practical circular- 
polarization-maintaining fiber is still to twist a conventional 
fiber [41. 

The circular-polarization-maintaining property of twisted 
fiber has been extensively studied theoretically and experi- 
mentally in the literature [l-3, 51. Because the twist rate 
cannot be too large because of the need to maintain mechan- 
ical strength, the twist-induced circular birefringence achieved 
is orders of magnitude lower than the linear birefringence 
achieved in the said linear-polarization-maintaining fibers. 
Because of the low circular birefringence induced by way of 
twisting, it has appeared difficult to employ long lengths of 
twisted fiber which require curved sections to negotiate a 
natural course of the transmission line, and are required to 
resist a variety of random perturbations [6]. For short fiber- 
optic devices, which can be packaged in a conditioned artifi- 
cial environment, it remains of interest to explore if it is 
feasible to use twisted fiber for the transmission of light of a 
circular SOP (state of polarization). 

The aim of this article is to make a relatively comprehen- 
sive and in-depth study of the SOP behaviors of twisted fiber 
in general, and twist-spun fiber in particular, in order to 
carefully explore the scope of their actually probable utility. 
Treated in the article are two kinds of problems relating to 
twisting of fiber. 

One problem concerns strong twisting of fiber. Central to 
the problem is to examine whether or not some kind of fiber 
strongly twisted within the limit of its mechanical strength 
can achieve a circular birefringence strong enough to sup- 
press the extrinsic linear birefringence due to a rough bend- 
ing or an intensive transverse pressure likely to occur in 
practice. 

The other problem concerns slight twisting of fiber, which 
is laid practically straight. What is of concern in this problem 
is the occurrence of violent pulsations of the SOP, and how 
such violent SOP pulsations are related to the intrinsic bire- 
fringence of the fiber. The said problems of strong twisting 
and slight twisting are both dealt with via the coupled-mode 
analyses. 

ANALYTIC APPROACH VIA COUPLED MODES 
For a twist-spun single-mode fiber, the two local modes W, 
and W,, which refer to normal modes in the fiber at its 
unspun state, satisfy the coupled-mode equations: 

(1) 

(2)  

in which /3 = (PI  + &)/2, Ap = ( - P2), and c is the 
coupling coefficient. In principle, Eqs. (1) and (2) apply 

dW,/dz = - j (  P - AP/2)W1 + cW2, 

dW,/dz = -cW, - j (  p + AP)W2, 
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