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1. Introduction
This review summarizes techniques for solving Laplace’s equation,

VZQ = 0. (L)

An emphasis is placed on analytic procedures and how they can be used
with numerical methods to obtain accurate solutions .at relatively low
computer costs. Analytic procédures are also important because asymp-
totic solutions provide wvaluable validations of numerical calculations

and insights into how results are best displayed and correlated.

By studying in detail the rotating disk electrode [l] (see also
{2]), the framework for determining theoretically the current distribu-
tion under the condition wheren both migration and convective mass
transfer are important was established. Other important geometries for
which this general problem has been investigated include the flow-
channel reactor [3], [4], the rotating ring-disk electrode system [5],

and the tubular reactor [6].

For the most general current distribution problem, if a mass-
transfer. boundary layer exists and electroneutrality holds in the bulk
solution, Laplace’s equation, coupled with other transport equations,
must be solved. The discussion will, therefore, remain relevant to these
problems, even though the examples are limited to problems where
Laplace’'s equation dictates completely the current distribution.
Specifically, the determination of potential and current density distri-
butions in the absence of coﬁcentration variations 1is discussed.
Laplace's'equation also describes diffusion-limited current distribu-

tions when migration, convection, and transients are neglected.



Current distribution problems in which concentration variations are
neglected are called primary or secondary, depending on the bogndary
conditions specified along the electrode. As a first approximation,
concentration variations are negligible when the average current density
is much less than the mass-transfer limited, average current density.
(If the current distribution is highly nonuniform, the local current
density can be so large in certain regions that concentration variations
are important, even though the above condition 'is satisfied.) Since
inductance effects are normally only important for times so short as to
be of 1little practical importance, Laplace's equation shouid also be
considered adequate to describe the transient current distribution in

response to a step change in the electrode potential, for example.

Recent reviews related to the solution of current distribution
problems were given by Prentice and Tobias [7j and Ibl [8]. Newman's
review [9] 1is similar in scope, except that it gives more details
related to solution techniques. Our goal is the same as Newman'’s,
except that we focus on Laplace’s equationnand we emphasize how analytic
and numerical procedures are complementary tools. Fleck [10] and Kojima
[11] summarized geometries for which the primary current distribution
has been determined. We discuss principally problems important to elec-
trochemistry, but it {is fruigful to explore other literature where
Laplace’s equation arises (see, for example, [12]). We loosely refer to
potential gradients as current densities. In the absence of concentra-

tion variations, they are related through Ohm’s law.



2. Boundary Conditions

In modeling, most of the interesting characteristics of an electro-
chemical system enter through its boundary conditions. Particularly,
since Laplace’s equation and the insulating boundary conditions are
homogeneous and linear, the electrochemical parameters enter the problem
statement through the electrode boundary conditioms. Polarization

parameters, therefore, are discussed in that section.

2.1. Insulators
Insulator boundary conditions are straightforward:

3%

=0, (2)

where d/dn signifies the component of the gradient normal to the insu-
lating surface. Insulator boundary conditions are also used to reflect
geometric symmetry. The domain over which the calculations are neces-

sary can then be reduced, thus minimizing possibly the computational

effort,

2.2. Electrodes

Electrode boundary conditions are more interesting. Depending on
the physics and chemistry of the system, the specified condition differs
substantially. 1In this section, the more common boundary conditions and

their physical significance are discussed.

2.2.1. Specified Potential Distribution

The primary current distribution is obtained when the potential of
the solution adjacent to the electrode is set equal to the electrode

potential: Qo = V. Problems of this nature, sometimes referred to as

‘



Dirichlet-type problems, have been studied extensively because analytic
solution procedures are often successful. Conformal mapping procedures
[10], [11] are particularly powerful for solving two-dimensional prob-
lems. Conformal mapping techniques, though, are limited in their use

because, in general, it is difficult to obtain the proper mapping.

Using separation of variables in a coordinate system appropriate
for the geometry, Newman [13] determined analytically the primary
current distribution on a disk electrode. Primary current distributions
require careful numerical analyses (14], [15] since the current distri-

bution is generally very nonuniform.

Physically, a constant potential boundary condition implies that
the surface overpotential is negligible compared to the ohmic potential
drop in the solution. We sometimes loosely ?efgr to this as a system
with very fast kinetics. For any angle of intersection B between the
electrode and insulator that is greater than n/2 radians (see figure 1),
the current density at the electrode edge is infinite. This necessarily
causes a large, local surface overpotential, which is inconsistent with
the original assumption. The primary current distribution is, there-
fore, almost never realized physically. It is still important to calcu-
late because it gives the ohmic resistance of the cell and Because, in
the absence of mass-transfer effects, it gives the maximum variation of
current density on the electrode. It also provides an important asymp-

totic limit that may be approached.
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Figure 1. Primary current distribution in the edge region of an electrode
and insulator.



2.2.2. Specified Current Distribution

" A specified constant current distribution is the opposite extreme
of a constant potential boundary condition because it corresponds physi-
cally to very slow electrode kinetics. Conformal mapping procedures do
not handle easily these or other Neumann-type boundary conditions. His-
torically, these problems, therefore, have not been investigated as

extensively as problems with Dirichlet boundary conditions.

Nevertheless, Neumann boundary conditions can be important in elec-
trode design and in the design of corrosion protection systems. For
example, White and Newman [16] discussed the effect that side reactions
have on the shape of limiting current curves obtained on a rotating disk
electrode. They discussed the importance of éalculating the maximum
variation in the solution potential adjacent to the working electrode.

For the disk electrode, the maximum difference in potential between the

center and edge occurs for a constant current distribution [2], [17]:

0.363r i
(0% ) - ——2 28 (3

O max [

A hemispherical pit, investigated in reference [18], represents another

geometry of importance in understanding corroding systems.

For some applications, a nonuniform current distribution is speci;
fied. For the rotating hemisphere electrode, the mass-transfer-limited
current distribution is nonuniform ([19]. The corresponding potential
distribution on the hemisphere is given in reference [20]. Newman {21],
[22] discussed the importance of Neumann boundary conditions in the
analysis of corrosion systems. For example, a specified current distri-

bution for the anodic reaction may be dictated by the limiting current



distribution for the reduction of 02.

2.2.3. Butler-Volmer Equation

More general to a prescribed potential or current distribution is a
condition relating the local current density to the local surface over-
potential, Mg which is the potential difference between the electrode
and the solution adjacent to the electrode: n, = v - @o. When such
boundary conditions are used, the current distribution is called secon-
dary. Many electrochemical reactions are described adequately by the

Butler-Volmer equation:

a Fn —a Fn
i =1 Jexp a_3S| _ exp —< 21t (4)
o RT RT

The nonlinearity of this equation makes it difficult to obtain analytid

solutions. This boundary condition, however, is handled eésily with
numerical techniques.: Only for a limited range of intermediate g is
the full Butler-Volmer equation necessary. Therefore, for many studies,
it is desirable to study two simplified forms of this rela;ion because

the compilation of results is more straightforward.

Linear Kinetics—For small surface overpotentials, which occur when
the average current density is much smaller than the exchange current
density, the Butler-Volmer equation is linearized to give the important

simplification of linear kinetics,

(¢ +a )Fi
{2 € __ O (5)
i n_.
RT s

Since equation (4) can be expressed as
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a Fn a Fn :
a 's 1 a .
i = 10 1+ BT + 21 RT + . . . (6)
a F -aF 2
_ 1 - c ns + 1 c r's .
1o RT 21 RT ’

the linear kinetics approximation applies when Fns/RT << 1.

Wagner [23] emphasized that equation (4) can also be linearized
around a nonzero surface overpotential if its variation is sufficiently
small. This procedure is particularly relevant for electroplating where
the process is designed to give a reiatively uniform current distribu-
tion. It is sometimes suggested that the Tafel relationship can always
be linearized around some average surface overpotential, and, hence, it
is only necessary to solve the linear kinetics case. Wagner [23] stated
that this is often an incorrect assertion because the surface overpoten-
tial can vary sufficiently that linearization is not wvalid. Appendix B
of West et al. [24] shows explicitly by a regular-perturbation analysis
when the Tafel kinetics relation, discussed below, is approximated ade-

quately by a linear kinetics relation for the rotating disk electrode.

Tafel Kinetics—A second important simplification of the Butler-
Volmer equation occurs at large g For large, anodic surface overpo-
tentials, equation (4) becomes

aaFns
RT

(7)

i = zoexp
This is known as the Tafel kinetics relation and becomes valid when
'iavgl >> i;, that 1is, when Fqs/RT >> 1. An analogous relation can be

written for cathodic reactions, where large, negative surface overpoten-

tials may arise.
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2.2.4., Polarization Parameters

It is useful to quantify our references to "fast" and "slow" kinet-
ics. In 1940, Kasper [25] discussed the effect of the electrode size on
the uniformity of the current distribution. Hoar and Agar [26] dis-
cussed more generally, and Wagner [23] subsequently clarified, the
importance of the dimensionless group that is now known as the Wagner

number:

Wa = = —==—1|. . , -(8)

where L is some length characteristic of the electrode geomeéry. The
Wagner number represents the ratio of kinetic to ohmic resistances. The
primary current distribution applies when Wa = 0, and a constant current
density boundary condition is appropriate when Wa — «. To characterize
the current distribution, it is not sufficient to know only the value of
the Wagner number since the distribution can differ depending, for exam-

Ple, on whether linear or Tafel kinetics applies.

In this review, we follow Newman [l] in using polarization parame-
ters that are inversely related to the Wagner number. For linear kinet-
ics, the ratio of the ohmic resistance to the kinetic resistance is

given by a dimensionless exchange current density:

(e _+a )FLi
J-—2_c 0 (9
RT«x )
For Tafel kinetics, the exchange current density affects the value of
the average surface overpotential but does not influence the distribu-

tion of current density. Instead, a dimensionless average current den-

sity is the important parameter:
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e FL|i_ |
5 = 2_2V8 (10)
RTx

For linear or Tafel kinetics, when there exists one characteristic
length, knowledge of the value of J or § is sufficient to describe the
current distribution. J or § is sufficient to describe completely the
current distribution. If the full Butler-Volmer equation is used, it is
necessary to specify J, §, and the ratio of transfer coefficients,
aa/ac.

It should be remembered that counterelectrodes exist. The current
distribution on the counterelectrode influences the current distribution
on the working electrode, and the effect increases the closer they are
placed together. The effect of bringing the counterelectrode close to
the working electrode is readily seen for the primary current distribu-
tion in the channel geometry [27]. For a given ratio of the charac-
teristic lengths, West and Newman [28] showed the influence of the coun-
terelectrode polarization parameter on the éurrent distribution on the

working electrode.

2.2.5. Passivation Kinetics

The previous two sections focus on equations that can be obtained
from a Butler-Volmer equation. Not all electrochemical reactions can be
described by such a relationship. Most obviously, ﬁassivating systems,
where the current density abruptly drops to a small current density at

the Flade potential, can not be described by a Butler-Volmer equation.

Because of the experimental difficulties in subtracting the ohmic
drop near the active-passive transition, controversy concerning the

correct form of the polarization curve exists. Figure 2, taken from
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reference [29], shows three possible shapes for the active-passive tran-
sition of iron in sulfuric acid. Attention should be focused to the
right of the 1imitiﬁg current plateau (near the passivation potential)
because the plateau itself is caused by concentration variations, which
we are not discussing. Mass-transfer effects principally change the
surface pH, which changes the value of the Flade potential [30] but

probably has little influence on the shape of the transition.

For simplicity, Law and Newman {[31] and Russell and Newman [32]
used curve b to try to understand the passivation phenomena observed on
the rotating disk electrode. Haili [33] and Newman [21] reviewed the
controversy over which of the four curves in figure 2 is the best
description. Dukovic [34] also reviewed work concerned with the proper
shape of the polagization'curve. He presented results related to the
anodic protection of 316 stainless steel in 67 percent sulfuric acid.
He used an experimental curve that shows an active-passive transition

similar to curve b and also includes transpassive dissolution.

For many applications, the precise form of the active-passive tran-
sition is not crucial. For simplicity then, it may be easiest to assume

a sharp transition,

2.2.6. Transients

When the electrode potential or current is varied with time, it may

be necessary to include double-layer charging:

o1 (11)
J.-Ca—t+f(r]s).

C is the double-layer capacity, and f(ns) relates the faradaic current

to the surface overpotential. It may, for example, be a Butler-Volmer
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Current density
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- Figure 2. A schematic of the polarization curve for the dissolution of iron in 1 M sulfuric

acid, showing four possible paths for the active-passive transition. The fi :
from reference [29]. P n. The figure is taken

13



14

relation.

Nisancioglu and Newman [35], [36], [37] presented a series of
papers that describe the transient current distribution on a disk elec-
trode. If the faradaic reaction is described by linear kinetics, the
faradaic current is negligible compared to the capacitive current for
times t < RTC/Fio. A double layer can be nonuniformly charged. The
time that it takes for the charge on an ideally polarizable electrode to
redistribute to a uniform state is another characteristic quantity that
appears in transient problems. For the rotating disk electrode, this

time constant is given by 7 = roC/x [38].

Equation (11) suggests that, for a short time after a step change
in the current or electrode potential, the primary current distribution
is approached. This 1is well known in the AC impedance literature, where
the ohmic resistance is obtained when the frequency w — = (i.e.,
t — 0). That the current distribution can change with frequency con-
tributes to the phenomenon of frequency dispersion on an electrode with

a nonuniform current distribution [39].'

2.2.7. Moving Boundaries

For anodic dissolution or cathodic deposition, the shape of an
electrode changes with time. The local change in the electrode shape is

related to the local current density through

dh
—_n_M , (12)
ac nFp "n’
where hn is the distance normal to the surface. Wagner [40] gave an
analytic solution for an electropolishing process applied to an initial

surface with low amplitude, sinusoidal roughness. His analysis assumes
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that the current density is mass-transfer limited, but, since convection
and migration are ignored, Laplace’s equation applies. Fedkiw [41]
extended Wagner'’s results by carrying out a regular perturbation in the

ratio of the amplitude to wavelength.

Most of the other analyses are numerical. Alkire et al. [42] simu-
lated with finite element methods the growth of an electrode that is
initially coplanar with an insulating surface. Riggs et al. [43]
modeled shape change during a high-rate electrochemical machining pro-
cess. Prentice and Tobias [44] simulated deposition onto a corner elec-
‘,trode and into a wedge where the angle of intersection between the elec-
trode and insulator is acute. Other interesting studies include papers

by Deconinck et al. [45] and Hume and coworkers [46].

Linear.stability analyses are used to predict the initial rate of
growtﬁ of an irregular surface. Particular emphasis has been placed‘on
dendrite growth. In these problems, in addition to the surface overpo-
tential caused by the faradaic reaction, it is necessary to include the
stabilizing effects of the "capillarlty ove;poFential," which accounts
for changes in the surface free energy with the radius of curvature.
Landau [47] and Barkey and coworkers [48], [49] reviewed this litera-
ture. In the analysis of Barkey et al., which is applied to copper
deposition on rotating cylinders, Laplace’s equation is solved for the
potential and for the concentration of the reacting species. The two
fields are coupled through Faraday’s law and the concentration overpo-
tential. Their results generalize the analyses of Wagner [40], Landau
[47], and Aogaki and Makino [50]}. A classic analysis concerned with the

initial growth of dendrites was givén by Mullins and Sekerka ([51].
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Details about proceeding with linear stability analyses can be found in

the fluid-mechanics literature (see, for example, White [52]).
3. Solution Methods

3.1. Numerical Methods

Klingert, Lynn, and Tobias [53] were the first to study numerically
current distributions. Fleck [10] discussed the wuse of finite-
difference methods for determining current distributions. Many other
techniques have been used and were reviewed by Prentice and Tobias [7].
Since their review, the trend in solving for current distributions has
been towards using finite-element methods and techniques ba;ed on
Green’s second theorem (for example, boundary-element methods). These
techniques provide the greatest flexibility f;r solving Laplace'’s equa-
tion in geometries that can not be mapped into a rectangular domain. A
general discussion of finite-element methods can be found, for example,
in references [54] or [55]. Discussions of boundary-element. methods are

found in references [56], [57], and [58].

Within the context of current distribution problems, Dukovic [34]
discussed the relative advantages of the two methods. Hume et al. [59]
compared finite-element and boundary-element methods as they are applied
to a moving boundary problem. Matlosz et al. [60] used both techniques
to calculate the secondary current distribution in a Hull cell. Cahan
et al. [61l] introduced a procedure based on Green’'s theorem. Previously,
Alkire and Mirarefi (6], and Newman and coworkers {[3], [5], (9], [1l4],

[62] used numerical methods based on Green’s theorem.
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Morris and Smyrl [63] used finite-element methods for a three-
dimensional study of galvanic interactions on heterogeneous surfaces.
In a subsequent paper, Morris and Smyrl [64] gave current distributions
on irregular, heterogeneous surfaces that were numerically created with
Voronoi tessellations. A major result of this and their previous paper
is that the simulation ‘of an axisymmetric, disk inclusion elucidates
much of the important behavior of galvanic interactions. Consequently,
for many applications, three-dimensional simulations are unnecessary.
Shih and Pickering [65] used a technique based on Green'’'s theorem for a
three-dimensional study of the current distribution on a square elec-
trode imbedded in an insulating plane. Zamani et al. [66] reviewed the
modeling of cathodic protection systems. They emphasized, that for prac-
tical geometries, finite-element and boundary-element methods are more
useful than finite-hifference methods. They discuss both two and three-
dimensional studie;, and conclude that, for three-dimensional

geometfies, boundary-element methods are preferred because of the diffi-

culties in generating a three-dimensional, finite-element grid.

General software for solving Laplace’s equation is popular. For
the simulation of certain cases (for example, systems with large polari-
zation parameters), these programs are expected to provide solutions of
low accuracy. Nevertheless, general software can be useful for these
problems because, often, high accuracy is not necessary. With insight
from asymptotic solutions and analytic techniques, the computer code (or

the problem formulation) can be modified to enhance the accuracy.

Computers also permit more information to be obtained from pro-

cedures that are mainly analytic. A series solution, for example, pro-



18

vides little information unless it is evaluated numerically, and its
results are displayed graphically. Orazem and Newman [67] and Diem et
él. [68]. used a computer with Schwarz-Christoffel transformations to
evaluate numerically the resulting integrals. A formal solution,

without this numerical evaluation, would be of little value.

3.2, Coordinate Transformations

Most researchers are, at least, familiar with the outcome of coor-
dinate transformations for they have wundoubtedly been exposed to
cylindrical or spherical coordinate systems. A goal of such transforma-
tions 1Is to find coordinates f;r which the boundary conditions can be
expressed easily. Hence, for simple cases, an analytic solution can be
Aattained. Newman {9] discussed extensively coordinate transformations;
therefore our treatment is. brief. As an example,‘he psed rotational-
elliptic coordinates, shown in figure 3, to demonstrate how the disk-
electrode system can be mapped into a rectangular geometry. Since';he
mapping is not conformal, the form of Laplace’s equation changes and is
also given in figure 3. We present here a coordinate system, which has

also found use in some electrochemical systems.

Tangent-sphere coordinates were utilized to solve for the AC fre-

quency dispersion on a mercury drop at the end of a capillary [39]. The
coordinates are defined by
2rop 2rou
T3 .2 T3 7 (1
p +v b o+ v
where r is the radius of the mercury drop. Because of the symmetry of

the problem, there is no # dependence. The derivatives of potential

with respect to the cylindrical coordinates are related to. the
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axis of symmetry (r = 0)

n=1
z=18N
disk

electrode

r=rV (1+£)(1-1)

insulating plane

Figure 3. A schematic of the rotating-disk-electrode system, shown in the original coordinate
system and in a space defined by the rotational-elliptic coordinates, where Laplace's equation is

d 200 d _ 20Py _
i((l*'é)f)'*‘ﬁ((l ﬂ)-a?’-) 0
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derivatives with respect to the new variables through
3¢ 3P du 3% v -1 EZ - u2 3¢ a9
ar"aportavar x| 2 o o (14)

and

g :l[————ﬁ-"z - u” 0 + py gg] (15)

éz r, 2 av du
Following this procedure the second derivatives can be determined. The
substitutions are straightforward, but the algebra can be laborious.

With these substitutions, Laplace’s equation becomes

3 ] ae a3 b a®

|2, 2au Taw| 2. 20w "% (16)
K p + v B JTR i 7

Sides and Tobias [69] also used tangent-sphere coordinates to describe
the primary current distribution around an attached, insulating bubble.

Moon and Spencer [70] provided a compilation of coordinate systems.
They also gave Laplace’s equation written in terms of the new coordi-

nates. For some situations, conformal mapping, discussed below, is

valuable for providing new coordinate systems.

3.3. Conformal Mapping

Moulton [71] wused conformal mapping to solve for the primary
current distribution on two electrodes placed at arbitrary positions on
an otherwise‘insulating rectangle. Fleck [10] and Kojima [1l1l] gave
electrochemical cells to which conformal mapping procedures have been
applied. Unless it is coupled with other methods, conformal mapping is
limited in its use to primary current distributions in two-dimensional
geometries. Most texts that discuss the applications of complex vari-

ables explain conformalimapping (see, for example, Churchill [72]).
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The goal of conformal mapping is to map a geometry into one in
which the solution is known. The form of Laplace’s equation always

remains the same,

— + — =0, (17)

where u and v are the new coordinates. Orazem and Newman [67] mapped
the geometry shown in figure 4a into the rectangle shown in figure 4c.
The coordinate system shown in figure 4b is an intermediate geometry
used in the solution procedure. The mappings are obtained by. a

Schwarz-Christoffel transformation, which maps a straight line into a

polygon.

To demonstrate conformal mapping, we discuss how the current dis-
tribution on a récessed electrode deviates from the current distribution
of an electrode that is coplanar with én insulati‘hg plane. The problem
may be important, for example, for electroplating processes common in
the electronics industry. Figure 5a shows the geometry of interest.
Wagner [23] gave the current distribution for a zero aspect ratio

(m/n = 0):

1) 20 - 2yt

T

(18)
avg

The counterelectrode can be considered a hemi;:ylinder placed very far
from the working electrode. To obtain a solution, the cell is mapped
into the geometry shown in figure 5c; figure 5b shows an in‘termediate_
coordinate system that is used in the mapping. These coordinates are

related through
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h T
C
T z-plane
L
4a. Z=2Ze+ jz;
g
D
E F G H A B C D
4b. SOOEOEES SOEECEREnS t'plane
- -d -C -b -a a b c d t=t+ ]t
4c.
X.-plane
X=Xt iXi

a b

Figure 4. Schematic diagram of a slotted-electrode cell. Figure 4a shows the cell in
the original coordinate system. To facilitate solution of Laplace's equation it is mapped
conformally to the coordinate system of figure 4c, with the coordinate system shown in
figure 4b as an intermediate coordinate system. See reference [67] for details.



z-plane

Sa. l
m
w-plane
5b.
s-plane
5c¢.

Figure 5. A schematic of the mappings used to determine the ohmic resistance of a
recessed, planar electrode, with a counterelectrode placed at a distance very far from
the working electrode.
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dz _ c Jw=l-a Jw+l+a

174 JWiita (19)
dw L Jerl

and

w = sin(s). (20)

The constants a and C can be related to m and n by integrating equation

(19):
l+a 2 2\t
m=C f SM_;L dw 2L)
1 w2 -1
and
n = C (l+a) E[(1+a)~ %], (22)

where E[(1+a)—2] is the complete elliptic integral of the second kind,

as defined by Abramowitz and Stegun [73].

The solution to Laplace’s equation in the s-plane is

=35, (23)

where ¢c is the potential of the counterelectrode, the potential of the
working electrode is set to zero, and s, specifies the location of the
counterelectrode in the s-plane. The current distribution in the w-

plane is given by

so _ a0 %5 a0 % (24)
dw., ds. 8w, 3s_ 3w’
1 1 1 r 1

Equation (23) shows that the second term on the right side of equation

(24) is zero. The Cauchy-Riemann conditions,

— - £ —* - - (25)

can be. used show that



25

¢
8% _ ¢ 2y
v 3 (1 =-w) . (26)
i c

Following the same procedure for the z-plane,

©

b

ok = ((1+a)? - wi)“ . (27)

3z
1

Q=
0

For small m/n, the constants introduced in equation (19) are deter-

mined through

m = % acC (28)

and

n=C[l - % In(a)]. (29)

Furthermore, it can be shown for small m/n that
iz _=n) . e
"~ _ Jn/m (30)
i —
avg Jx
and, at the center of the electrode,

i(z _=0)

r 2 lm '
- " {1 - ln(m/n)}. (31)
avg
Equation (30) shows how an infinite current density is approached when
the aspect ratio goes to zero, and the second term on the right side of
equation (31) shows that, for small aspect ratios, the current distribu-

tion near the center of the electrode is adequately described by the

current distribution for zero m/n.
The ohmic resistance of this cell is given by

S
HkR = L (32)
©

1

where W 1is the width of the cell (perpendicular to the page). For

m/n =-0, since s, = 1n(22c/n), the ohmic resistance is given by
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In(2z /n)
WkR = —S (33)
fe} =
The deviation from this resistance, for small m/n, is
WKR — WkR_ = = = 2 1n(m/n)
x R ﬁ2 n ’ (34)

Equations (30), (31) and (34) are asymptotically wvalid for small
m/n. The current distribution and ohmic resistance for a cell similar to
this one was investigated by Diem et al. [68]. Their analysis can be
used to indicate when this predicted behavior is valid. West and Newman
[74] gave a singular-perturbation analysis that shows more generally the

characteristics of recessed electrodes for small aspect ratios.

3.4. Separation of Variables

For some cells with sufficiently simple boundary conditions, a
solution can be obtained by the method of separation of variables. For
such a solution to be possible, the boundary conditions must be linear,
and all but one must be homogeneous. Most texts on partial differential
equations discuss this technique (for example, see reference [12] or
[(75]). Both Ibl [8] and Newman [9] used the disk-electrode geometry as

an example to demonstrate the method of separation of variables.

It should also be realized that, for some coordinate systems, a
less trivial solution must be proposed. Moon and Spencer [70] gave
solutions that can be "guessed" to solve Laplace’s equation. 1In the

tangent-sphere coordinate system defined earlier we would set

2 2.k
= (s +v) MNW). (35)
Substituting this guess into equation (16) verifies that a solution of

this form is separable, although it might not satisfy the boundary
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conditions.

We discuss here problems that can be solved without much compli-
cated algebra. The first problem is concerned with the potential dis-
tribution in a mercury-pool electrolysis cell at the limiting current.

Its solution was originally given by Newman and Harrar [76].

Figure 6 shows the geometry that is being modeled. Laplace’s equa-

tion in cylindrical coordinates is

2
l 3 3% ad
r 8r[r ar] + 2 - 0. (36)
dz
The boundary conditions are
% iav ,
8¢ _ “avg o, .o, (37)
ad
ar " 0 atr = o (38)
. ‘2
3¢ _ lavg Iw
3z~ = ;5 at z=h, r =< rc, o (39
c
and
‘9
7z - 0 atz=h, r> r_. (40)

Because the boundary conditions specified at z = 0 and z = h are both
nonhomogeneous, a separation of variables solution is not possible. By
solving instead for ¥, where

Y =9 — f%gg z, | (41)
the boundary condition at z = 0 becomes a homogeneous, insulator condi-

tion. At z = h, the boundary condition is



L

Figure 6. Axisymmetric cylindrical cell with the working electrode at the bottom and the
counterelectrode at the top (taken from reference [76]).
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av J"avg ri
r
c
and
v iav
E o228 forr>r. (43)
az K c

We now assume that U¥(r,z) = R(r)Z(z), substitute into equation

(36), and obtain the following ordinary differential equations:

R _ 1 3R 2
2+rar+'\nR 0 (44)
ar
and
2
-a-—z-,\zz-o. ) (45)
2 n .
az

An is a constant that arises because separation of variables is possible
and will be determined from the boundary conditions. The solution to
equation (44), when the insulator boundary condition at r = r, is

applied, is

R(r) = AJ (A ), (46)

r

w .
where Jo is the Bessel function of the first kind of order zero, and An
is the nth root of Jl(x). The solution to equation (45) that satisfies
the insulating boundary condition at z = 0 is

Z(z) = Bncosh()\n ﬁi}. (47)

Since an infinite number of An satisfy the above equations, ¥ can be

written as

i r ©
- Vg w 2 L
¥ = ) Ccosh(A =) (A ). (48)

n=1 w w
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Functions that satisfy Sturm-Liouville problems, such as equation
(44) and. its boundary conditions, are orthogonal. That is, if the solu-
tions to the problem are ¢n and the boundary conditions are specified at

a and b, then

b
0 - f¢n(x)¢m(x)w(x)dx for m » n. (49)
a N

w(x) is a weighting function defined by Hildebrand [77]. For equation
(44) the weighting function is r. Using the orthogonality condition, we

conclude that the last boundary condition is satisfied if

r

r
2 2705

c - r, 1''n r, (50)

n

A2 10,01 sinh (A p/r,)

This problem may also&be of interest for cathodic protection, where
it is important to know the maximum potential variati;n along an elec-
trode. The results could be compared with equation (3), which gives the
max imum potential difference for an isolated disk electrode. Newman and
Harrar [76] discussed the influence of the geometric ratios rb/rc and
h/rw on the potential variations on the working electrode. It may also
be interesting to calculate how the potential along the counterelectrode
varies. Pierini and Newman [15] showed how the geometric ratios affect

the ohmic resistance of this cell.

Figure 7 shows another geometry and set of boundary conditions for
which the solution can be obtained from separation of variables. For
now, we will not consider whether this problem statement is physically
realistic. The mathematics will eventually confirm our intuition that

it is not.



Figure 7. Two electrodes at different potentials placed into contact with one another.
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The solution to this problem in cartesian coordinates is

© n —2¢o sinh(An(W -y
®(x,y) = L (1) n = 1/2) cos (A x) Sinh (O W) (51)
n=-1 n
We often desire the current density along the working electrode:
L x.0y = - 38 ) ZnQO © sin(An(L - x)) (52)
¥ ®ayly=0 T "L & = tamh(A_W)

This series does not converge, although this may not be obvious without
a close inspection. In fact, the series solution gives no insight into
how the current density behaves near the singular point x =L, y = 0.
In the next section, a technique that provides this insight is dis-

cussed.

3.5. Similarity Transformations

Similarity transformations are useful for elucidating the current
distribution at short times or near singular points in space. Similar-

ity solutions for various situations are given by Sedov [78].

To demonstrate the method and its.gsefulness, we explore the nature
of the singularity that is discussed at the end of the previous section.
Sufficiently close to the singular point, the location of the other
boundaries 1is unimportant. Hence, the current distribution near
X =L, y =0 is expected to be independent of the characteristic lengths
L and W. 1In this region, then, one might assume that

2 - £, | (53)
o

where n = y/(L-x) . Since the second derivatives expressed in terms of

these variables are
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1 % _ d% [éﬂ]2+é£32f1_ 1 dr (s
B, o2 g2 Lox a1 a2 " omy? dn?
and
1 3% 2y df n’  df
? . 2" 2 dg ¥ 2 2’ (55)
o 3y (t-x)° M (L-x)° dn

Laplace’s equation can be written as

2 .
1+ L 2m o (56)

dn dn

For the similarity transformation to work, the boundary conditions must

also be functions only of n. For this case, they are

f=1 at n =0 and f — 0 as 1n — o, (57)
Equation (56) is a Legendre equation of imaginary argument of order zero

and has the ‘solution

¢ 2 -1 a

3 ~ f(m) =1-=tan "n. : (58)
o

The current density along the working electrode near the singular point

is given by

x® Kk®
9% o df 2_o (59)
T

1,0 = =* ayly=0 =~ T=x dnln-0 " x® I=x -

The current density given by equation (59) is infinite at x = L.
For all physical situations, the current density remains finite because
the kinetic resistance is never quite zero. Nevertheless, for some
cases, a current distribution is approximately correct over most of the
electrode despite the singularity. Depending on the application, such
current distributions are not too bothersome because they contain
"integrable" singularities, and may in some sense display the correct

average Dbehavior. The singularity of equation (59) is called
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nonintegrable because the total current is infinite. The model, then,
is of no practical use, and our intuition is confirmed that two conduc-
tors in physical contact with one another can not be set at different

potentials’.

A current distribution containing a singularity of the form
i(x) « x? as x — 0 is integrable if n < 1. Equation (80) shows that
the singularity that occurs in most primary current distribution calcu-
lations is integrable. This indicates that the assumptions leading to
this equation, while not strictly correct, are, at least, more realistic

than the situation modeled here.

Similarity transformations might find greater use for equations
other than Laplaée's. For example, they are of great utility for
transient-diffusion problems {[12] and for boundary-layer theory [79].
The method is discussed here because it is useful to develop devices for
thinking about asymptotic behavior. Being comfortable with similarity
transformations will help one master, for example, singular perturbation

techniques.

To summarize, similarity transformations involve the combination of
the independent variables, resulting in an ordinary differential equa-
tion, which must be solved instead of a partial differential equation.
For such a procedure to work, it is necessary that the boundary condi-
tions can be combined and expressed consistently in terms of the simi-
larity variable and that the original, independent variables do not

appear explicitly in the ordinary differential equation,
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3.6. AC Impedance Analyses

Laplace’s. equation sometimes arisés in the explanation of AC
impedance data. Newman [39] showed how nonuniform current distributions
can cause frequency dispérsion on a disk electrode. Jak3ié and Newman
[80] later showed that this model satisfies the Krémers-Kronig rela-
tions. Glarum [81] also solved for the frequency dispersion on a disk
electrode to show the usefulness of variational approximations. Glarum
and Marshall [82] used these results to interpret experimental data. To
quantify frequency dispersion caused by surface roughness, the frequency
response of electrodes with fractal roughqess has been investigated

(83], [84], [85].

We demonstrate how AC impedance analyses are carried out. First,
it is necessary to determine the steady-state current distribution so
that a linear analysis of "the frequency response is possible. For our
purposes, we assume that it is described by Laplace’s equation. The
boundary conditions everywhere except the working electrode are homo-
geneous and, hence, uninteresting. Along the working electrode, we

assume Tafel kinetics:

30 o F v - a)
i(x) = -« 3y = 1P| BT v-2)| +cC T , (60?

where the last term is zero for the steady-state solution.

To «carry out an AC impedance analysis, a small-amplitude,

sinusoidal perturbation is placed on the electrode potential:

v-v__+ Re{vef“" , (61)

where Re{x)} is the real part of the complex variable x and ¥ is a real
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constant. To determine the transient current distribution in response
to this perturbation, it is convenient to split the potential into its

steady-state and transient parts:

D - st + Re{&(x,y)ejwt}. (62)

Because the value of ¥ is very small, ¥ is also small. Since &__ satis-
fies Laplace’s equation, & must also satisfy it. When the steady-state
potential and current distributions are subtracted from the electrode
boundary condition, the boundary condition for &, after it is justifi-

ably linearized, becomes

aaF
—x oo = | Lo (%) + jeC v - &o) , (63)

where iss(x) is the steady-state current distribution.

Finally, we can solve Laplace's equation for the real and imaginary

parts of 3. They are coupled through

_ r _a ss _ (64)
" ay RT @ ar,o) + wc$i,o
and
33 . a Fi (x)
- 1l - - a S$S _ (65)
" dy RT ai,o + wC(? ar,o) :

A similar analysis could be carried out for a sinusoidal, small-
amplitude perturbation of the average current density. Because of the
linearity of the analysis, the complex impedance will be the same. Tri-
bollet and Newman ([86], [87] outlined the correct solution procedure
when concentration variations exist, and the more general transport

equations must be solved.
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3.7. Boundary Integral Techniques™ -

As discussed in section 3.1, numerical techniques based on Green's
second theorem are popular. Newman [9] discussed the use of these
methods for the disk electrode. In this section, we present the neces-
sary equations for developing numerical methods for two-dimensional,

three-dimensional, and axisymmetric geometries.

Boundary integral methods are based on the second form of Green's

theorem

£ [gv2¢ - @vzg]dv - g; n-[gV¢ - @Vg]dA. (66)

A clever choice of g greatly facilitates the determination of the poten-

tial. Specifically, g is chosen to satisfy

2
V'g = 6§(x~x_,y-y_,2-2 ), 67
g ( 7 7q q) (67)
where § is the three-dimensional Dirac delta function, x, y, and z are
the cartesian coordinates, and xq,yq,zq specifies a point. A Green's

function g that satisfies equation (67) is g = 1/53, where

: 2 2 . 2)% (68)
- | (x-x + (y~- + (z-z .
€3 [( 7 =y (z-2 ) }
Physically, g can be thought of as the potential at xq,yq,zq due to a

point source of current at x,y,z.

If & satisfies Laplace’s equation, substitution of g into equation

(66) gives
-.®(x_,y ,z ) = [ n- L 9 - ov Llaa, (69)
37799 Sy g €,
where aq is 4n for a point; xq,yq,zq in the domain of the problem, 2«

for a point on a smooth boundary, and zero for a point outside the
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domain. For a point where the boundary does not vary in a smooth

manner, a, is determined as shown in figure 8. The solution for ¢ is

3
now reduced to a problem on the boundary of the domain. Once the poten-
tial and current are known everywhere on the boundary, the potential can

be found anywhere in the domain.

Since equation (67) is linear, solutions for g can be superposed.
Specifically, if 8y satisfies Laplace’s equation, g, * l/E3 is also a
solution. Choosing 8y s° that n-V(gh + 1/53) = 0 everywhere along the
boundary of the domain can reduce greatly the numerical computation

necessary for a solution since equation (69) becomes

1

-a.%(x ,y ,z - n|(=— + V®|dA. 70

3¥x 7z = [ on |G+ gy) (70)
av 3

This approach is taken, for example, by Alkire and Mirarefi [6] and has

been used extensively by mathematical physicists [88]. A good discus-

sion of these methods was given by Greenberg [89].

For two-dimensional geometries with no z dependence, an equation
analogous to equation (69) can be written:
3¢
® 2 a®
a2¢(xq,yq) - g;[fz I lnf2 an]dl, (71)

where 3/3n implies the component of the gradient of the function normal

to the boundary. a, is 27 for a point inside the domain, zero for a

2
point outside the domain, and n for a point on a smooth boundary. Fig-
ure. 8 shows @, for a point on a discontinuity on the surface. 52 is

given by

2 A 79
£, = [(x—xq> + -y )] : (72)
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Three Dimensions - Two Dimensions

oc3=Rhm0 izs o= lim [ Cg
o> Y\ R; 2" R~ 0 | R,

Figure 8. Schematic showing the coefficient given in equation (7) for two-dimensional geo-
metries. Ag is the surface area of the sphere that falls within the domain of the problem, and

Csis the circumference of a circle that falls within the domain.
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For axisymmetric geometries, integration of equation (69) over §

yields
3 _ . g
—a3¢(rq,zq) g; {g an d an]rdl, (73)
where
4K
&= = 74
[(r+r )2 + (z—-2z )2]k 74
q q
K(m) is the complete elliptic integral of the first kind, and
arrq
m = =, (75)

2 2
(r+rq) + (z-zq)
Tables and approximate forms of K(m) are found in reference [73]. After
integration over 4, df signifies the length element for the the path
enclosing the region in the r,z half plane and n signifies a direction
normal to this path. Where the path coincides with the =z-axis, the

integrand of equation (73) is zero.

Wrobel and Brebbia gave [90]

3 _2/‘ r2 - r2 - (z-z )2
g _ £ K(m) + d s E(m) fe, (76)

an 2
[(r+rq)2 . (z+zq)2]5 (r—rq) + (z—zq)

_ AE(m)(z-zq) .

2 2% 2 N Z
[(r+rq) + (z+zq) ] [(r—rq) + (z—zq) ]
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T

where e, and e, are the normal vectors in the r and z directions,’' and
E(m) is the complete elliptic integral of the second kind. To calculate

the potential in the plane of the disk electrode, equation (73) becomes

(9]

To i (DK(m)r

8 (r) = o [ B dr. a7

e r+r
0

3.8. Perturbation Analyses

Perturbation analyses extend results that are strictly wvalid when
some parameter or coordinate approaches an extreme value of zero or
infinity. For example, perturbation methods can elucidate the charac-
teristics of’ the current distribution as the polarization parameter
becomes large or smail. They have also been used to déscribe the
current distribution at short.tiﬁes [37] after a step change in elec-
trode potential. A regular perturbation analysis can be used when some
simplifying assumption that applies when the parameter is set to zero
(or infinity) is a good approximation over the entire domain. For exam-
ple, West et al. [24] used a regular perturbation analysis to show how
the linear and Tafel current distributions deviate from a uniform
current distribution when J (or §) — 0. The analysis is regular

because, when J or § is small but nonzero, it is still true everywhere

f Useful relations for deriving these and similar equations are:

dK (m) - K(m) + E(m)
dm 2m 2m(1l-m)

and

dE(m) _ 1 _
dm Zm[E(m) K(m)]
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that the local surface overpotential is very large compared to the ohmic

potential drop.

For linear kinetics, when J = 0, the current distribution is wuni-
form, and the ohmic potential drop is zero. Hence, &o is equal to the
potential at infinity, which, for this problem, is arbitrarily set equal
to zero. These facts suggest that the potential is appropriately

expanded as

% - J¢(1) + J2¢(2) + , (78)

where all of the ¢(n)

are of order unity. Substitution of equation (78)
and the linear kinetics relationship into equation (77) gives a formal
solution for the potential, where terms of the same order in ~f are
e@uated. Each Q(n) can be determined from equation (77), with a known

integrandAthat has a current density determined from the (n-1)th poten-

tial distribution. West et al. [24] gave

-1+ J(S(l)—é(l)) + J2(5(2)-¢(1)3(1)—¢(2)) + ., (D
o o o o o 3

avg

(n)

1o}

where the & arise as corrections to the average current density.

A similar procedure can be followed for Tafel kinetics. As Wagner
(23] suggested, the first correction to a uniform current distribution
is the same as for linear kinetics. For larger values of the polariza-
tion parameter, the two distributions deviate. Figure 9, taken from
reference [24], shows the first-order correction to the current density
at the edge and center of a disk electrode. Also shown are results cal-

culated from the procedure described in reference [1].
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Figure 9. Calculated and predicted current densities for linear and Tafel kinetics
at the center and edge of a disk electrode for small polarization parameters. For
linear kinetics, the current density depends on J, and, for Tafel kinetics, it depends

on J (taken from reference [24]).
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For large, finite polarization parameters, the primary current dis-
tribution can be a poor approximation near an electrode edge because the
surface overpotential is no longer small when compared to the ohmic
potential drop. It may, though, describe quite accurately the current
distribution away from the edge region. This indicates that a singular
perturbation treatment is necessary to elucidate how a primary current
distribution is approached. Figure 10, taken from Smyrl and Newman
[91], shows for the rotating disk electrode how, for large average
current densities, the primary current distribution is a good approxima-
tion over most of the electrode. Smyrl and Newman [91] showed expli-
citly how a secondary current distribution described by Tafel kinetics
approaches the primary current distribution for any geometry inuwhich
the electrode and insulator are coplanar. Nisancioglu and Newman [37]

provided similar results for linear kinetics. West and Newman [92] gen-

eralized the results for any 8 for linear and Tafel kinetics.

Singular perturbation analyses are interesting because they can
provide more physical insight than a brute-force, numerical method.
They also can give results where the more traditional numerical tech-
niques fail. Van Dyke [93] discussed in detail singular perturbation
analyses, which are sometimes called ;ethods of matched asymptotic
expansions. For more information, we also recommend references [94],

[95] and {9].

4. Applications

In solving a problem numerically, it is helpful to have an idea of
the general nature of the solution and perhaps of detailed behavior in

certain regions. Asymptotic methods and solutions can then provide a



25 T l T T
20—
| § = oo — (PRIMARY)
L= § =90---
ifi
avg
0
10 :4
|
I
]
!
5 -
0.5 1 =T 1 |
0.0 0.2 0.4 0.6 0.8 - 10
‘ r/ro

Figure 10. The primary current distribution compared to the distribution calculated for a
large value of the polarization parameter for Tafel kinetics (reproduced from reference

(91D).
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guide in selecting numerical methods that harmonize with the inherent

cingularities of the problem.

4.1. Primary Current Distributions

Primary current distributions require special attention to solve
numerically because they can contain current densities that are infinite
at the edges of the electrodes. By solving Laplace’s equation near the

edge, one can show that the current density on the electrode varies as

(“/2ﬂ_1) , . (80)

i(r) = Por
where r is the radial distance away from the electrode. Po is a con-
stant that is proportional to the average current density and is deter-
mined by specific geometric details. Equation (80) is universally true
for small r for primary current distributions. The potential distribu-

tion in this region is

B(r,0) = - %’3 Por”/zﬂsin[%%]. (81)

For the rotating disk electrode, where B8 = n, a comparison of this

asymptotic formula with the equation given by Newman [13]:

i(r) o
i T2 2% (82)
avg (r~ - r")

would show that P = /;;75 iavg'

Numerically, it is often easier to determine a primary current dis-
tribution as a series of problems with prescribed current distributions.
In this way, if a singularity exists, it can be accounted for accu-

rately. Since the problem is linear, the resulting potential distribu-

tions can be superimposed until the constant potential boundary condi-
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tion is satisfied. This technique was used to determine the current dis-
tribution on ring electrodes [62], ring-disk electrodes [5], [l4], and
disk electrodes in axisymmetric cylindrical cells [15]. It is particu-
larly useful with boundary integral methods because integrable singular-
ities are accurately evaluated if done carefully. Caban and Chapman
[96] used an orthogonal collocation‘procedure to calculate current dis-
tributions on plane, parallel electrodes. Villadsen and Michelson [97]

also discussed collocation methods.

To determine the primary current distribution on the electrode
shown in figure 11, the correct singularities at x = 0 and x = L must be

imbedded into the problem:

-1/3

i(x) = Ax -1/2

N
+ n-E-:l C ¥, (X). (83)

+ B(L - x)

The first two terms are chosen to go to infinity at the electrode edges
in a manner prescribéd by equation (80). The ¢n(x) are a set of orthog-
onal functions, and tbe constants A, B, and Cn'are détermined so that
the constant potential boundary condition is satisfied. In theory, any
set of orthogonal functions will work, but, in practice, some work
better than others. The best choice of ¢n(x) minimizes the number of
'functions N necessary to satisfy the constant potential boundary condi-
tion to within a specified accuracy. The best orthogonal functions

might be determined by solving a related Sturm-Liouville problem.

It is wusually best to choose orthogonal functions that have the
correct behavior as determined by some boundary condition or by
geometric symmetry. For example, one might try to determine numerically

the primary current distribution of a recessed disk electrode, shown in
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T counterelectrode
insulators

.........................................................

working
electrode

Figure 11. Schematic of a cell for which the primary current distribution might be expanded
in a series given by equation (83).
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figure 12. Since, at r = 0, 6P2n/ar = 0, one might try to superimpose
even Legendre polynomials. At r = r_, one needs din/dr = 0 according to
equation (80). To satisfy this condition, the arguments of the function

can be modified:

N
i(r) = L CP, sin[fg;]] . (84)
n=0 o

An alternative series, suggested from the Sturm-Liouville problem dis-

cussed in section 3.4, is

N
i(r) = ¥ C I (A r/r). (85)
n=0

The An are the roots of Jl(x), chosen to satisfy the zero-derivative

condition at r = r, [98]:

aJo(Anr/ro) An )
— ar r=r_ - ;; Jl(kn) ) _ (86)

Secondary current distributions can also be determined with these.
techniques, although it is no longer necessary to imbed singularities.
For linear kinetics, potential distributions resulting from prescribed
current distributions can be superimposed until the boundary conditions
are satisfied. For Tafel or Butler-Volmer kinetics, potential distribu-
tions can still be superimposed, but determining the coefficients Cn is

a nonlinear, iterative process.

4.2. Conformal Mapping

Conformal mapping procedures are useful for primary current distri-
butions, but, alone, they are not of great utility for problems with
mixed or Neumann boundary conditions. Newman [27] mapped conformally a

flow-channel reactor so that its insulators and electrodes are coplanar
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Figure 12. Schematic diagram of an axisymmetric, recessed disk electrode.
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in the new geometry. As discussed in section 3.3, Laplace’s equation
maintains the same form. Therefore, equation (71) provides a simple
numerical procedure to determine the potential from a known current dis-
tribution. After an explicit relation between the original and
transformed coordinates is used, the governing integral equation can be

written as

L i (x) (X -x) n(y _—h)
A .2
Q(xq,yq) -%, - g 1n|sinh ——75;——] + sin ——75;—— ]dx
_ (87)
2 o |7 (x %) 2| ™Y
2n f ——*———— In|sinh __75;__ + sin ?ﬁ? dx,

where &  is a constant, which might' be evaluated, for example, by
requiring that the total currents on the two electrodes have the same
magnitude but opposite sign:

0= i G0+ i (x) ]dx. - (88)
0 H

If the current distribution is unknown but related to the local surface
overpotential, an iterative procedure can determine the potential. Pod-
dubnyi and Rudenko {99] used a similar method for linear kinetic distri-

butions on a triangular-profiled cathode.

To describe how the current distribution deviates from a primary
distribution, West and Newman {92] mapped the wedge shown in figure 1 so
that the insulator and electrode are coplanar. The deviation ¥ from the

primary potential is given by

¥ (x) = £ [ in(xx )’ [f(w/:o)x('a/"_l) + x—l/z]dx, (89)
T 2% 0 9

In the original coordinate system, the normal gradient

/8

where x = r

of the potential along the electrode is given by
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13
5 E®), (90)

and the quantity x(ﬂ/"—l)

relates the derivative of potential in the
original coordinate system to the derivative of potential in the new
coordinate system. If the more specialized equation (89) is not used, ¥
could be obtained from a procedure that requires finding simultaneously

the potential on both the electrode and insulator; thus, the savings in

computer costs can be substantial.

Instead of mapping geometries so that they are coplanar, two coor-
dirate transformations could be used so that the electrodes are placed
on opposite endéhof a rectangle. An advantage to this procedure is that
the conformal mapping effectively provides a proper mesh spacing in the
original coordinate system, where an accurate solution may require the
placement of more nodes near an electrode edge, where the current den-

sity varies rapidly.

4.3. Interpolation and Integration

To attain accurate solutions with the boundary integral equations
discussed in sections 3.7 and 4.2, accurate integration and in%erpola-
tion of the current density and potential are necessary. In particular,
equations (80) and (81l) are necessary to describe the behavior of singu-
larities that arise in the determination of primary potential distribu-
tions. To help demonstrate how equations (80) and (8l) are important, we
discuss the evaluation of the boundary integral equations that describe

the current distribution on a disk electrode.

If the primary current distribution, given by equation (82), were

unknown, it could be determined from
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9x o (&(r) - <I>O)E(m)r
i) ==-7 3 dr , (91)
r (r—rq) (r+rq)

[«]

where equation (91) is obtained by differentiating equation (73) with

respect to zq. The primary potential distribution on the insulator

(13],
P (r) = ¢P[ 1 -2 can 222 - 1)*], (92)
o) s o
could be determined from equation (77). To evaluate these integral

equations, the potential and current density would be approximated by
interpolating between the points at which they are evaluated directly.
Equé;ion (80) shows that the current dénsity near the electrode edge
should be assumed to vary as (ro - r)-k. Interpolating the current den-
sity in this manner helps to eliminate numerical artifacts that often

arise. Equation (81l) suggests interpolating the potential along the
]

insulator, near the electrode, as (r -~ ro) .

As Edwards [100] discussed, an integrand with a singularity of the

form x ©* as x — 0, can best be integrated by changing the variable of

L(1-1)/2 xl—d.

integration to Y, where Y = or Y = Equation (77) con-

tains an integrable singularity of the form (ro-r)-k. This implies that

it is advantageous to change the variable of integration to Y = (ro—r)h.

After this change of variable, with the exact form of in substituted in,

equation (77) becomes

2r i Iz, K(m) (r ~v%)dy
¢(r ) - [o] an [o]
q

e

(93)

1

2.5 2
0 (2ro-Y ) {rq+ro—Y )
which eliminates the singularity caused by the current density as

r—r_. K(m), though, still presents a problem because it contains a
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logarithmic singularity when r — rq. Logarithmic singularities can be
handled by the method of Kantorovich and Krylov [10l1] or a special Gaus-

sian quadrature formula [102].

For secondary current distributions, equation (91) 1is unnecessary
because equation (77) and the relation between the surface overpotential
and the current density are sufficient. For large, finite polarization
parameters, the current distribution is highly nonuniform, although it
is not singular. Such distributions, then, can be difficult to deter-
mine accurately, and the use of a function incorporating the asymptotic

behavior discussed in section 3.8 should be helpful.

4.4, Verifying Numerical Calculations

Most numerical techniques are tested by solving problems that have
been investigated by a more accurate procedure. The solutions of new
problemsr are normally verified qualitatively by wvisually inspecting
plots of pote;tial or current distributions. For careful work, a more
quantitative test of calculations might be desired. West et al. [24]
discussed how previous singular perturbation analyses can be used to
show when numerical methods fail as the polarization parameter becomes
large. In their method, they concentrate on the current density at the
edge of the electrode because, in this region, the distribution varies

the most and, hence, is likely to be the most susceptible to errors.

Specifically, they suggested plotting i /ia against

vg
J(l = ©/28) for linear kinetics and against 5(2ﬂ/” - for Tafel kinet-

edge

ics, where J and § are the appropriately defined polarization parameters

for the geometry of interest. If the numerical calculations are accu-
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rate, such plots vary linearly for large polarization parameters. Addi-
tionally, the slope that accurate calculations must follow can be
predicted if Po’ as defined in section 4.1, is known. For linear kinet-

ics, the slope is given by

ied e (aa+ac)Fio (=m/28) 94
P A O | g ' N
o
and, for Tafel kinetics,
J.'ed e aaFPo (2p/m=L)
_Pg_ - AT(ﬂ) e . (95)
o

AL and AT are constants for a given angle of intersection between the
electrode and insulator. They are shown in figure 13, which is repro-

duced from reference [24]. -

Since the primary current distribution is an imgortanc asymptotic
distributién to determine, Po will ofteﬁ be known. Therefore, a quanti-
tative test of numerical procedures is available for many studies. It
may also be important to develop tests for more general current distri-

bution problems, where concentration variations play a role.

5. Conclusions

Techniques for solving Laplace’s equation are reviewed. We
emphasize that, even with the increasing availability of sophisticated
computers, it is wuseful to know analytic and asymptotic solution
methods. Our brief discussion indicates the more important methods and
provides an overview of the literature, where more solution detail; and

examples are given.
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0.0 0.5 1.0 1.5 2.0

angle (radians)/r

Figure 13. Dimensionless coefficient that can be used with equation (94) or (95) to
determine the slope of the suggested plots for valid, numerical calculations for high
polarization parameters and no concentration variations. (taken from reference [24]).
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7. List of Symbols

a, C constants used in the mappings shown in figure 5,
cm ’

An’Bn’Cn coefficients of a series

As, Cs surface area and circumference showﬁ in figure 9

c double-layer "capacity, F/cm

e..e, unit normal vectors

F Faraday’'s constant, 96487 C/equiv

g Green’s function, cm

hn normal distance to the boundary, cm

i current density, A/cm2

in normal component of the current density,'A/cm2

io exchange current density, A/cm2

J A1

J dimensionless exchange current density




J
n

K(m) ,E(m)

Wa

WkR

2
§(x_,y ,
¢ q'7q zq)

n,§
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Bessel function of the first kind of order n

complete elliptic integral of the first and
second kinds

characteristic lengths, cm

characteristic lengths of a recessed electrode,cm
molecular weight, g/mol

parameter defined in equation (80), A/cm<1+ﬂ/2ﬂ)
even Legendre polynomials

universal gas constant, 8.3143 J/mol-K
cylindrical coordinates, cm

radius of the disk or the mercury drop, cm
time, s

absolute temperature, K

electrode potential, V

Wagner number

dimensionless cell resistance of a recessed
electrode

"Cartesian coordinates, cm

transfer coefficients

coefficients defined in figure 9

angle shown in figure 1, radians

Dirac delta function

dimensionless average current density
rotational elliptic coordinates
similarity variable used in section (3.5)
solution conductivity, S/cm

nth root of Jl(x)
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g surface overpotential, V

b,V tangent-sphere coordinates

52 distance for two-dimensional geometries, cm

§3 distance for three-dimensional geometries, cm

n 3.141592654

P deposit density, g/cm3

T time constant, s
VQ potential of the solution, V

@o solution potential adjacent to the electrode, V
1] potential defined by equation (41) |
¢n : orthogonal polynomials

w frequency, s

Subscripts )

avg average

i, r imaginary and real parts of a complex variable
max maximum

q coordinate at which the potential is being solved
ss steady state
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