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A Speech Based Connectionist Model of Human Short Term Memory
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Abstract

In recent years connectionist modelling of Shon
Term Memory (STM) has been a popular subject of
research amongst cognitive psychologists. The direct
implications in natural language generation and
processing, of the speech based phenomena observed
in immediate recall STM experiments, make the
development of a psychologically plausible STM
model very attractive. In this paper we present a
connectionist Short Term Store (STS) which is
developed using both traditional STM theories of
interference and decay trace. The proposed store has
all the essential characteristics of human short term
memory. Itis capable of on-line storage and recall of
temporal sequences, it has a limited span, exhibits
clear pnmacy and recency effects, and demonstrates
word-length and phonological similarity effects.

Introduction

Short Term Memory (STM) has been a major subject
of investigation for cognitive psychologists since the
50's. Initial experiments established that STM has a
limited storage capacity, or span (Miller 1956). It
was later shown that when span is exceeded,
immediate STM recall performance is impaired in a
very specific way. Only the first few, primacy, and
the last few, recency, memory items can be recalled
at some significant level of accuracy (Postman &
Philips 1965). Subsequent experiments established
that span is affected when memory items are
phonologically similar. This feature of STM is
known as the Phonological Similarity Effect (PSE)
(Baddeley 1966). Later, it was also shown that the
time taken to articulate a memory item has a negative
effect on span.
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Recall performance is reduced when longer words
are stored in STM (Baddeley et. al. 1975). This STM
feature is known as the Word Length Effect (WLE)
and together with PSE suggests that for written
verbal material STM access involves some form of
speech processing. Further experiments using
articulatory suppression, during both STM storage
and recall phases (Baddeley 1990), have shown that
there exists a route for STM access which involves
phonological encoding with the possible use of a
lexicon. This immediately relates STM performance
to language generation processing tasks and makes
the modelling of STM a very attractive task indeed.
There are two major STM theories. One claims that
span is limited mainly due to interference; more
recent memory traces affecting earlier ones. The
other claims that forgetting occurs because memory
races decay through time. Interference theory has
been supported by a number of mathematical STM
models such as (Murdock 1983) (Schweikert 1986)
and does conform with psychological data.
However, mathematical models fail to provide an
account for some of the speech based characteristics
of STM recall experiments (Brown & Hulme 1991).
Trace decay as applied in the working memory model
of STM (Baddeley 1990) provides an account to all
speech based aspect of STM recall but fails in at least
two ways. It does not provide an explicit
computational model of STM which will facilitate
testable theoretical predictions, while the articulatory
loop rehearsal mechanism is not completely
consistent with recent experimental evidence
(Baddeley 1986) (Howard & Franklin 1990).
Pioneering work on STM connectionist modelling
was done by Grossberg (1976) and was further
strengthened with the connectionist theory revival of
the early 80's resulting in a number of connectionist
STM models which conformed, to some degree, with
psychological evidence. Some of these models
adopted the interference theory (Wang & Arbib
1991) and others the trace decay theory (Brown
1989) (Burgess & Hitch 1992). We discuss these
models and some general STM modelling issues
next



Connectionist Models of STM

One particular area in connectionist theory which is
closely related to STM modelling is that concemned
with the problem of serial order. In its simpler form
the problem of serial order manifests itself in list
lcamming and recall, a task very similar to that of
immediate recall STM experiments. Is it possible for
a connectionist network to learn a sequence of
patterns and recall them in their original order?
Various solutions have been given to this problem
(Jordan 1986) (Elman 1988) (Norris 1990)
(Houghton 1989) (Bairaktaris 1992). It is essential
for any STM model to perform the serial order task.
For example, Brown (1990) uses the solution
proposed in Norris (1990) to construct his STM
model, Burgess and Hitch use the solution of
Houghton (1990) for their sequence storage and
generation, while Wang & Arbib (1991) STM model
is a improved variation of Houghton's solution.

In general most of the STM models in the literature
perform well in the sequence generation task.
Performance starts breaking down when they are
tested against STM performance criteria such as
span, primacy and recency, WLE and PSE. From all
the connectionist STM models only Burgess &
Hitch's (1992) makes an attempt to address all the
above criteria. Their model is based on the trace
decay theory of STM but a major part of its
dynamical behaviour depends on the existence of
random noise rather than decay. In brief, their model
does well with span, pnmacy and WLE, but fails to
demonstrate recency, PSE and it is not capable of on-
line list learning.

A close study of the Burgess & Hitch model revealed
that the majority of the problems with their model
were due to the fact that they failed to distinguish
between a Short Term Memory and Short Term Store
(STS). To identify a separate STS embedded in STM
is clearly consistent with the working memory
(Baddeley 1986) framework. Such an approach, also
favoured by Brown & Hulme (1991), provides the
advantage of separating the process of generating the
phonological code from the actual siorage and
retrieval of memory items. This paper describes an
STS mechanism which has an accurately defined
phonological interface to the main STM mechanism.

The model

We will divide the description of our model in two
parts. First we will give an account of its static
characteristics and then we will describe its dynamic
behaviour as an STS module. The network model of
STS is shown in Exhibit 1.
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Exhibit 1. Two layer Short Term Store.

It comprises two layers of units, an input layer where
the phonological code of the memory items is
clamped and the STM layer where the actual memory
items are stored. The two layers of units are fully
connected with bidirectional connections, The STM
layer nodes are also fully interconnected with
excitatory connections. Similar STM models, which
emphasize different aspects of STM, have been
previously described in the literature (Zipser 1991)
(Wang et. al 1991). The phonological encoding layer
is provided with a sufficient number of nodes in
order to store all the significant features of the
memory item. It is assumed that a pre-processor is
available for the generation of the phonological code.
Such a simple pre-processor network is described in
Burgess & Hitch (1992). It must be made clear
however that the generation of the phonological code
is a complex process which possibly requires the
generation of intermediate phonetic codes (Besner
1987) as well as the use of a lexicon (Monsell 1987).
It should also be mentioned that the quality of the
phonological code used by the STM layer is subject
to modality effects and various reception conditions
such as articulatory suppression (Howard et. al.
1990). We are currently developing a model which
deals explicitely with the generation of the
phonological code.

Each node in the input layer stores a feature of the
item's phonological code in a binary form and in such
a way that phonologically similar items have similar
codes. The input nodes propagate their values to the
STM layer where a different node is allocated to the
representation of every memory item. The
connections between the input and the STM layer are
modified using a hebbian learning rule in order to
retain the phonological code of every memory item.
It is shown in Bairaktaris (1991, 1992) that using a
modifiable threshold technique, a one-to-one
correspondence between STM nodes and memory
items can be achieved without the use of intra layer
inhibitory connections (Grossberg 1976). To avoid
limiting the system's capacity artificially, STM nodes
are allocated to the memory items dynamically
(Bairaktaris 1991). For a network with j input nodes
the STM node activation A; and output O; are
computed as follows:



A|=EJWUPJ
Oj=Aiif Aj>T;and 0= 0if A; ST}

where P is the vector of the activations of the input
nodes, W is the weight mainx of the connecuon
between the input nodes and STM nodes and T is
vector of the threshold of the STM nodes. The node
allocation, threshold setting and weight modification
mechanisms are described in more detail in
Bairaktaris (1991, 1992). When an STM node fires
its output decays through time as follows:

T TI  I
Oj(t+1) = 0j(t) - (A-010) where 8, A are constants

The effect of the above decay rule is shown in
Exhibit 2 for 0j(0)=1,8=A =0.6.

The weight Zij on the connection between nodes i
and j in the STM layer is modified as follows:

Zij(1+1) = Zij(t) + Oi(1) Oj(1) (1)

During the recall phase, where there no activation
propagated from the input layer to the STM layer,
STM nodes compute their activation solely on
feedback from other STM nodes as follows:

It is assumed thal every node receives a constant
amount of activation from background noise.
However not all the nodes fired at the presence of
background noise. It is only the node which
represents the first memory item, and has the lowest
threshold, which will fire thus initiating the recall
phase:

A1(1) = x where x is constant; typically x = 0.15
The training regime between the input layer and the
STM layer guarantees that there is a one-to-one
correspondence between the memory items and the
STM nodes. In recall mode however, more than one
STM node can be active at any time. This means that
the system cannot decide about the exact recall
sequence of the memory items. The relative output
of node i (trace decay) against the sum of output of
all the nodes (interference) in STM is the probability
(IPi) assigned to the hypothesis of the system recalling
memory item 1 at ime t:

pi(y = 2L
EjOj(l)

The proposed network architecture is very similar to
the model of the articulatory loop described in
Baddeley (1986). There are however two major
differences between the Baddeley approach and our
model.
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Exhibit 2. Output from STM nodes decays through
ume,

Baddeley proposes that memory items are rehearsed
and dynamically stored in the loop between the
phonological encoding and the STM layer and that
span is limited purely due to trace decay. Our model
stores the memory items in the STM nodes while the
item sequence is stored, maintained and

by the recurrent connections in the STM layer.
Rehearsal is possible, but not essential (Howard et.
al. 1990), via the bidirectional connections between
the input layer and STM. Furthermore, recall of the
memory items depends on both trace decay of
individual memory nodes and interference from other
memories.

We will now describe the dynamic behaviour of the
proposed model. To simplify the description, we will
focus on the dynamic behaviour of the STM layer
assuming that the input layer provides all the
appropriate phonological memory traces. As is
described above when a node in the STM is allocated
to the representation of a memory item its output is
set to 1 and it decays thereafter. The longer it takes
for the second memory item to be registered in the
STM layer the weaker the recurrent output signal
from the previous memory item becomes. When the
second memory item is allocated a node in the STM
layer, the connection between the previously active
ETM node and the current one is modified as shown
in (1). Modifications on the STM recurrent
connections occur in the same way every time a new
memory item it added. A close inspection of Exhibit
(3) reveals that by the time the ninth memory item is
registered in STM the output of the first item has
diminished to zero. This shows that the output decay
mechanism applied on the STM nodes, imposes an
implicit limit on span which is very close to the
empirical 7+2 observation made in Miller (1956).
During recall the node representing the first memory
item becomes active due to background noise and
initiates the sequence generation process.
Immediately after the first node all the other nodes in
the layer receive varying degrees of activation
depending on their original position in the sequence.
Depending on whether their activation exceeds their
preset threshold, they activate themselves or not. A
wave of nodes firing is spread through the layer.
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Exhibit 3. Output of STM nodes during recall.

Exhibit 3 shows the output of 7 STM layer nodes
through time. The original encoding corresponds to a
sequence of 7 memory items presented at equal time
intervals. In the example shown 8=A=0.6 and x =
0.15. Exhibit 3 demonstrates a case where more than
one node fires at the same time. At time t = 4, nodes
5 and 6 fire simultaneously, but node 5 has a
relatively stronger output than node 6. Therefore the
relative probability of the system recalling memory
item 5 at time 4 is higher than the probability of
recalling item 6. In general, the probability of
recalling a memory item X at a particular time Y, is
equivalent to the relative output of the node
representing item X at time Y, over the sum of the
output from all the nodes in STM at the same time Y.
To place this into the context of STM immediate
recall experiments, the probability of recalling item 1
at ime 0, item 2 at time 1, item 3 at time 2 and so on
is equivalent to the probability of correctly recalling
all the memory items in their original positions in the
sequence. Exhibit 4 shows the recall probabilities for
every memory item, for the same sequence of items
and same parameter settings of exhibit 3.

Exhibit 4. The probabilities of correctly recalling 7
memory items in their original ordering.
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The above interpretation of the network's dynamics is
used throughout the simulation results presented in
the following section.

Simulation Results

The proposed STM store was simulated for a variety
of different parameter settings before the results
reported below were achieved. Setting the x
parameter of the network proved to be a difficult
task, but at the same time a number of 'interesting"
network behaviours emerged from the simulation
process. These behaviours are currently analyzed
within the context of neuropsychological, ‘patient
specific', STM evidence. Here we will only refer to
the simulations results that are relevant to our task; to
demonstrate that the proposed model conforms to
psychological evidence. In all the results presented
below, x=0.15and § = A = 0.6.

Exhibit 4 shows that the model demonstrates clear
primacy and recency effects. For a list of 7 items the
network is capable of recalling all the items in their
original order, with greater confidence for the first
and last list items and smaller confidence for the
intermediate items. As is shown in Exhibit 5, the
network also demonstrates primacy and recency
effects for list lengths of 10 and 20. When span is
exceeded, the probability of correctly recalling
intermediate list items is effectively 0.

In the introduction of the paper it was mentioned that
when the memory items are phonologically similar
immediate recall success rates are decreased.
Phonologically similar memory items will produced
phonologically similar codes at the input layer of our
model and because of the hebbian leaming algorithm
between the input and the STM layer activation will
pass not only to the node allocated to the current
memory item but also to the nodes which represent
phonologically similar items.
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Exhibit 5. Primacy and recency effects for lists of 10
and 20 items
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Exhibit 6. Phonological Similarity Effect when
recalling a lists of 5 phonologically similar and
dissimilar items,

The effect of phonologically similar memory items
on the model's recall rates is shown in Exhibit 6 for a
list of 5 similar and 5 dissimilar items. The
phonologically similar list has lower recall rates that
the dissimilar list, still both lists maintain the
characteristic primacy and recency effects. An close
of node outputs in the STS revealed that items with
similar phonological representation are more likely to
be recalled in their reverse list order.

In the description of our STS model it was mentioned
that for the generation of the phonological code pre-
processing of the raw data has to be made. It is
reasonable to assume that the time taken to articulate
a memory item is proportional to the pre-processing
time required to generate the phonological code.
This means that for longer words it will take longer
before our model is provided with its phonological
code, and for shorter words the generation of the
equivalent phonological code will be shorter. In
order to simulate the time taken to articulate a word
in our model, we modified the number of time steps
taken before two consecutive memory items are
clamped at the input units. In all the simulations
described above a new memory item was encoded in
the STM at every time step.

Exhibit 7. Word Length Effect when recalling lists
of 5 short and long words.
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Exhibit 7 shows recall rates for a list of § items, for
both the standard case of registering a new memory
item at every step (Short Word) and for the case
where a new memory item was registered every three
time steps instead of one (Long Word). Exhibit 7
shows that recall rates are worse for long words Llist
than the short words list. Primacy effect is present in
both cases, but recency is only present for the short
word list case. Absence of primacy for the long word
list case looks somewhat inconsistent with the
psychological evidence. However, looking back at
the original word length experiments (Baddeley et. al
1975) the recency effect in their experimental results
is not very strong either. In fact the graph of Exhibit
7 is extremely similar to the equivalent word length
effect graph in (Baddeley et. al. 1975).

Conclusions

A connectionist network model of a short term
memory store was presented. The proposed network
architecture comprises a fully interconnected layer of
nodes which interacts with the core of the Short Term
memory using a layer of input units where the
phonological code of the memory item is clamped.
The model uses a constructive learning algorithm
which combined with a hebbian-type synaptic
modification rule allows on-line storage of memory
items. The proposed network is different to earlier
STM models, in that the interpretation of its
dynamics incorporates both the decay trace and the
interference STM theories. Simulation results
demonstrated that the model conforms to some of the
major STM psychological evidence. The basic span,
primacy and recency STM effects, are faithfully
reproduced by the network model. These are the
standard benchmark STM effects that have to be met
by all STM models. It is in the interpretation of the
main speech based STM effects, such as word length
and phonological similarity, that our model makes a
significant contribution. It provides an explicit
computational account of the above effects by
accurately reproducing the psychological data.
Furthermore, it can explain some more subtle speech
based STM effects, such as phonemic confusion,
where non-adjacent phonologically similar list items
are transposed during recall.

The proposed model is currently augmented with the
development of a network model for the generation
of the phonological code. This is intended to provide
a computation account for some of the lexical access
STM effects such thyme and pseudo-homophone
judgement.

References

Baddeley, A.D., 1966. Short-term memory for word
sequences as a function of acoustic, semantic and



formal similarity. Quarterly Journal of Experimental
Psychology, 18:302-309.

Baddeley, A.D., 1986. Working Memory. London:
Oxford University Press, Oxford Psychology Series,
11:75-107.

Baddeley, A.D., Thomson, N. Buchanan, M., 1975.
Word Length and the Structure of Short Term
Memory. Jounal of Verbal Leamning and Verbal
Behaviour 14:575-589.

Bairaktaris, D., 1991. Adapuve Pattem Recognition
in a Real-World Environment. PhD. Thesis, Dept. of
Computational Science, University of St Andrews.
Bairaktaris, D.,1992. Discovering temporal structure
using Hebbian leaming. In Beale, R. and Finlay, J.
(eds), Neural Networks and Pattern Recognition in
Human Computer Interaction. Ellis Howard, U.K.
Besner, D., 1987. Phonology, Lexical Access and
Reading and Articulatory Suppresion: A critical
review. The Quarterly Journal of Experimental
Psychology, 39A:467-478.

Brown, G.D.A, & Hulme, C., 1991. Connectionist
Models of Human Shor-Term Memory. In Progress
in Neural Networks. ed.O. Omidvar, publ. Ablex,
Norwood NJ, in press.

Brown, G.D.A, 1990. A Neural Net Model of Human
Short-term Memory Development. In Lecture Notes
in Computer Science: Proceedings of EURASIP
Workshop on Neural Networks. Heidelberg: Springer
Verlag.

Brown, G.D.A., 1989, A Connectionist Model of
Phonological Short Term Memory, In Proceedings.
of the 11th Annual Conference of the Cognitive
Science Society, 572-579. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Burgess, N., Hitch, G., 1992. Towards a network
model of the articulatory loop. Journal of Memory
and Language.

Burgess, N., Moore, M.A., Shapiro, J.L.,1990.
Human-Like Forgetting in Neural Network Models
of Memory, Technical Report, Dept. of Theoretical
Physics, University of Manchester,

Elman, J, 1998. Finding Structure in Time, CLR
Technical Report 8801, Centre for Research in
Language, University of California, San Diego.
Grossberg, S., 1976. Adaptive Pattern Classification
and Universal Recoding: I Parallel Development and
Coding of Neural Feature Detectors. Biological
Cybemetics, 23:121-134.

Hinton, G.E., Plaut, D.C., 1987. Using fast weights 10
deblur old memories. In Proceedings. of the Ninth
Annual Conference of the Cognitive Science Society.
Hiilsdale, NJ: Lawrence Erlbaum Associates.
Houghton, G., 1989. The problem of serial order: A
neural network model of sequence learning and
recall. In Proceedings 2nd European Workshop on
Language Generation, Edinburgh.

Howard, D., Franklin, S., 1990. Memory Without
Rehearsal, In Neuropsychological Impairments of
Short Term Memory:287-320. eds. Vallar & Shallice,
Cambridge University Press.

Jordan, M.I., 1986. Serial Order: A Parallel
Distributed Processing Approach. Technical Report

146

8604. Institute for Cognitive Science, University of
California, San Diego.

Miller, G.A., 1956. The magical Number Seven, Plus
or Minus Two: Some limits on Our Capacity for
Processing Information. Psychological Review,
63:81-97.

Monsell, S., 1987. On the relation between lexical
input and output pathways for speech, Language
Perception and Production:273-311. Academic Press
Inc.

Murdock, B.B., 1983. A distributed Model for Serial-
Order Generation, Psychological Review, 90:316-
338.

Norris, D., 1990. Dynamic net model of human
speech recognition. In G.T. Altman (Ed.) Cognitive
Models of Speech Processing: Psycholinguistic and
Computational Perspectives, MIT Press, in press.
Postman, L., & Phillips, L.W., 1965. Short-term
temporal changes in free recall. Quarterly Journal of
Experimental Psychology, 17:135-.

Schweickert R., & Boruff, B., 1986. Short-Term
Memory Capacity: Magic Number or Magic Spell?.
Journal of Experimental Psychology, Leamning,
Memory, and Cognition: 419-425.

Wang, D., Arbib, A M., 1991, A Neural Model of
Temporal Sequence Generation with Interval
Maintenance. In Proceedings of the 13th Annual
Meeting of Cognitive Science Society, 944-948.
Waugh, N.C., & Norman, D.A., 1965. Primary
Memory. Psychological Review:89-104.

Zipser, D., 1991. Recurrent Network Model of the
Neural Mechanism of Short-Term Active Memory.
Neural Computation, 3:179-193.



	cogsci_1992_141-146



