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COlnpensation for Crystal Penetration 
in High Resolution Positron Ton10graphy 

Ronald H. Huesman, Eva M. Salmeron, John R. Bal<:er 
Donner Laboratory and Lawrence Berkeley Laboratory 

University of California, Berkeley, CA 94720 

Abstract 

We have characterized the effects of crystal penetration 
by annihilation photons in circular ring positron tomo­
graphs. They are most serious in high resolution instru­
ments having small detectors. When annihilation pho­
tons are not normally incident and penetrate some dis­
tance into the scintillator before interacting, the mea­
surement of their transverse position becomes uncertain. 
This penetration of photons into the detector material 
before interaction is a statistical process which leads 
to significant displacement and anisotropy of the point 
spread function. The subject of this work is mathemati­
cal correction of emission datasets by performing a two­
dimensional spatially variant deconvolution of the emis­
sion data in sinogram format. Examples for the Donner 
GOO-Crystal Positrori Tomograph are presented, and the 
amplification of statistical errors resulting from the cor­
rection procedure is also discussed. 

1 Introd uction 

The detection of annihilation photons in positron tomog­
raphy is often- performed with a scintillating material sur­
rounding the transverse section. In our PET designs, 
individual scintillation crystals form a ring around the 
transverse section, each crystal being coupled to a pho­
tomultiplier tube. This ring of crystals is tightly packed 
to form an annulus. 

When annihilation photons are not normally incident 
and penetrate some distance into the scintillator be­
fore interacting, the measurement of their trapsverse po­
sition becomes uncertain. This happens because the 
photon can pass obliquely through a crystal and enter 
the neighboring crystal before interacting. The effect is 
more pronounced with high resolution tomographs which 
have very small crystals, such as the Donner GOO-Crystal 
Positron Tomograph and causes radial blurring that in­
creases with distance from the center of the tomograph, 
as shown in figure 1. Although the subject of this work is 

'This work was supported by th~ Office of Energy Research, Of­
fice of Health and Environmental Research, of the U.S. Department 
of Energy under contract No DE-AC03-76SFOOO98. 

mathematical compensation for crystal penetration, ac­
tive research to measure the depth of interaction in the 
detectors is also underway. [1] 

Figure 2 illustrates penetration of non-normally inci­
dent annihilation photons into the detector material be­
fore interaction. We assume here that the detectors have 
very good resolution but that they can measure the in­
teraction point of the photons only in the azimuthal di­
rection. The solid vertical line represents the path of 
two opposing annihilation photons. It is usually assumed 
that these photons have been detected at the inner face 
of the scintillation crystals. Since the photons penetrate 
some distance into the crystals before interacting, the 
measured interaction point of a photon is the projection 
of the actual interaction point onto the inner crystal sur­
face. This effect tends to shift the measured path of the 
annihilation photons toward the center of the tomograph, 
usually with a change in angle. The vertical grey stripe 
on figure 2 represents the envelope of measured chords. 

From the detection geometry, it can be seen that the 
effects of crystal penetration are more pronounced for 
actual chords which are further from the center of the 
tomograph. 

2 Correction for physical effects 

It is well known that undesireable physical effects in the 
data acquisition process can be most easily compensated 
for by using optimization methods to perform tomo­
graphic image reconstruction. These optimization meth­
ods are generally implemented as iterative algorithms, 
and the statistical properties of the resulting images are 
difficult to characterize. 

Conversely, direct image reconstruction methods are 
based on analytic inversion formulas and are usually at 
least an order of magnitude faster than iterative algo­
rithms. Direct methods are implemented as linear al­
gorithms, and statistical analysis is straightforward, but 
physical effects can be difficult to incorporate. If kinetic 
analysis and compartmental modeling of sequential sets 
of images are to be performed, the statistical properties 
of images can be used to calculate error bounds on the 
model parameters. [2] 
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Figure 1: a) Upper, schematic diagram of a phantom 
with 37 line sources in a 20 cm diameter cylinder of lucite. 
b) Lower , reconstructed image (backprojection of filtered 
projections) of 37 point hot spot phantom data taken 
with the Donner 600-Crystal Positron Tomograph . 

Outer crystal surface 

Envelope of ii[[ 
resulting chords :::: 
(grey) -----} 
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Figure 2: Effects of crystal penetration in an ideal ring. 

In what follows we assume that the ideal PET data 
acquisition process is represented by 

(p) = Ff (1) 

where f is a vector representing the distribution of ra­
dionuclide in the imaging plane, p is a vector representing 
the measured data with (p) its expectation, and F is a 
matrix operator representing the ideal data acquisition 
process. The direct reconstruction algorithm is repre­
sented by 

f = Dp* (2) 

where p* are measured data, f is our estimate of the 
radionuclide distribution and D is a matrix. 

There are two classes of physical effects in PET that 
can be easily accomodate by direct methods. [3] The 
first of these (denoted by the matrix operator H) can 
be interpreted as a modification of the source distribu­
tion before an ideal experiment; e.g. , radioactive decay 
and the positron range effect. The second class of ef­
fects (denoted by the matrix operator G) can be inter­
preted as modifying the dataset from an ideal experi­
ment ; e.g., attenuation, intercrystal scatter, crystal pen­
etration, and instrumental effects such as detection effi­
ciency and dead-time. For these two classes of physical 
effects the non-ideal PET data acquisition process is rep­
resented by 

(P) = G[F(Hf)] (3) 

and if the matrices G and H are invertible, the radionu­
clide distribution is estimated as 

(4) 

.. 

, 
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Since crystal penetration can be mod~led by G, the 
goal of this work is to generate the sinogram blurring 
matrix, G, and its inverse G- I and apply it to the ac­
quired sinogram dataset as follows 

(5) 

Then , the reconstructed image corrected for crystal pen­
etration is given by 

f=Dp 

and the covariance matrix of the estimate is given by 

cov(/) 

where 

Dcov(P)DT 

DG-Icov(p*)(G-I)T DT 

(6) 

(7) , 

(8) 

(9) 

In what follows, we shall reconstruct dataset with 
enough events . that statistical fluctuations will not be 
evident and any artifacts will be due to the correction 
procedure. The reconstruction method used is backpro­
jection of filtered projections [4], and a ramp filter is used 
without smoothing. 

3 Methods 

An acquired dataset may be visualized by presenting 
it as a sinogI'am (a two-dimensional array of histogram 
bins corresponding to pairs of crystals of the tomograph). 
Vertical position on the sinogram represents the the angle 
of the paths of annihilation photons, and the horizontal 
position rep'resents distance from the . center of the to­
mograph. Figure 3 shows a single ,chord of angle e and 
distance z from the center. On the left is a drawing of 
a tomograph of 32 detectors, and on the right is a sino­
gram showing diamond shaped billS which correspond to 
chords passing through the front faces of pairs of crystals. 
The sinogram bin filled with gray is the bin in which the 
single chord falls. Projection angles, B, range from -900 

to +900 in this sinogram format and z takes on both 
positive and negative values. 

3.1 Monte Carlo simulation of data 

We define ideal PET data as having been acquired by a 
circular ring tomograph where the annihilation photons 
interact at the front face of the detectors. The effect of 
crystal penetration is studied by comparing ideal data 
with data where annihilation photons penetrate into the 
crystals before interacting. The depth of interaction is 
governed by an exponential distribution with an attenu­
ation coefficient equal to 1.0 cm- l . This is an approxi­
mate number for 511 keV photons in BGO, and we have 
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Figure ·3: Representation of a sinogram element in the 
tomograph. 

simplified the physical model such that an incident pho­
ton Interacts exactly once in the detectors (as if the total 
cross-section' were due only to photoelectric interactions). 

We have performed Monte Carlo simulations of crys­
tal penetration using the geometry of the Donner 600-
Crystal Positron Tomograph in the clam shut mode (or 
position). This device is comprised of a 600 close-packed 
3 mm wide BGO crystals in. a circular ring of diameter 
60 cm. The average depth of the crystals is 25 nUll, and 
the patient port is 30 cm in diameter. [5] The character 
of the results of these simulations is shown in Figure 4 
for crystals with and without penetration. 

3.2 Generation of the 'penetration ma­
trix G 

In order to post correct ,data for crystal penetration, we 
need the transition probabilities which would transform 
ail ideal dataset into one with peHetration. The sinogram 
blurring matrix can be created from Monte Carlo simu­
lations or evaluated from closed form integrals with the 
geometric and physical characteristics described above. 
For Monte Carlo simulations, each of the following is re­
peated many times ' to improve the statistical quality of 
the matrix estimate; 

1. generate randomly a position at the face of the two 
crystals comp9sing the ideal chord, 

2. calculate the actual chord formed, 

3. let this chord penetrate into each crystal with a ran­
dom depth selected from the exponential distribu­
tion described above, and 

4. histogram an event for the new pair of crystals cor­
responding to the bluTTed chord. 

The results given in this paper were derived from the 
generation of one million Monte Carlo events per chord. 
Examples of the transition probabilities in the blurring 
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Figure 4: Reconstructed images (backprojection of fil­
tered projections) of Monte Carlo penetration simula­
tions for 37 point hot spot phantom. a) Upper , without 
penetration b) Lower, with penetration. 
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.0 .017 .0 
.013 .232 

.001 .189 1·284 1 
.013 .232 

.0 .017 .0 

Table 1: Matrix elements in sinogram format for chords • 
6 cm ti·om the center of the Donner 600-Crystal Positron 
Tomograph . The value in the small box is the diagonal 
element, and the center of the tomograph is to the left. ,.( 

.0 .001 .0 .0 
.001 .002 .0 

.0 .028 .062 .0 
.013 .078 .135 

.005 .036 .170 
.013 .078 .135 

.0 .028 .062 .0 
.001 .002 .0 

.0 .001 .0 .0 

Table 2: Matrix elements in sinogram format for chords 
12 cm from the center of the Donner 600-Crystal Positron 
Tomograph. The value in the small box is the diagonal 
element, and the center of the tomograph is to the left. 

matrix are given in tables 1 and 2 for ideal chords at 
6 cm and 12 cm from the center of the tomograph , re­
spectively. The diagonal elements of the matrix are in the 
small rectangles. The values in these tables are transition 
probabilities of the average ideal chord being transferred 
to another sinogram bin closer to the center of the to­
mograph. In both tables , bins closer to the center of the 
tomograph are on the left. 

3.3 Matrix structure 

Notice that the number of different probability values in 
the blurring matrix is limited · due to rotational symme­
t ry. Transition probabilities from sinogram bins t he same 
distance from the center have the same description but 
with a rotation on resulting chords, so that respective 
columns of the matrix are permutat ions of one another. 
Thus, it is possible to construct a circulant block matrix 
G [6]. 

Circulant block for G is obtained by arranging the el­
ements of the data vector , p , in blocks according to dis­
tance from the center of the tomograph and by ordering 
the elements within each block according to angle. Fur­
thermore, since the transition matrix only moves chords 
close to the center , arranging the blocks of p in order 
of decreasing distance from the center makes the matrix 
lower triangular. The structure of the matrix and blocks 
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is illustrated in equations 10 and 11. 
The high resolution Donner 600-Crystal Positron To­

mograph puts each crystal in coincidence with 201 crys­
tals on the opposite side of the ring leading to 201 radial 
sampling positions in clam shut mode and 200 radial sam­
ples in clam open position. The two corresponding ma­
trices have dimension of 603002 and 602002 , respectively. 
But, for the shut position, for example, a buffer of di­
mension L = 101 is sufficient for the diagonal scalars, and 
only N = 5050 buffers of dimension JVI = 600 are used for 
the non-zero circulant blocks of G, so (5050 x 600) + 101 
real values define the transition matrix. 

Gll 0 0 

I G= [ ~, G22 
(10) 

Gl~1 
0 

GM2 GMM 

gfl g~l kl 
g3 

kl 
g£-1 g'l.} 

kl 
g£ 

kl 
gl 

kl 
g2 

kl 
g£-2 

kl 
g£-1 

kl kl kl kl kl 

G
1d = 

g£-1 gL gl g£-3 g£-2 
(11) 

kl 
g3 

kl 
g4 

kl 
g5 

kl 
gl 

kl 
g2 

g~l kl 
g3 g~l kl 

g£ 
kl 

gl 

3.4 Matrix inversion 

It can be shown that G is an invertible matrix (the diag­
onal elements are all non-zero) , so a corrected sinogram 
can be obtained by calculating G-l and multiplying it by 
the acquired sinogram. We choose to compute and ap­
ply matrix inverses rather than using back substitution 
[7] because the circulant block properties' [6] of G can be 
used to improve the speed of the computation and G- 1 

is useful for covariance calculations [2]. 
The inverse is found by solving 

(12) 

where I is the identity matrix. Let Gk1 be the block · 
elements of G and gf} be the elements of block Gkl. Sim­
ilarly, let Bkl be the block elements of G-l and bf} be 
the elements of block Bkl . Since G k1 and Bkl are cir­
culant blocks, only bfJ needs to be calculated (see the 
Appendix). 

bkk = _1_ 
JJ kk gl1 

l·kl - bll [bkk kl ~ (~bkn kl )] 11j - - 11 11 glj + L..J L..J Imgl (j -m+l) m o d M 
10=1+1 m=1 

(14) 
For a faster computation of the inverse, we can work 

with the discrete Fourier transform of the rows of the 
Gkl and Bkl . The inner sum in the Equation 14, 
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I:~=1 bjng~_j+l' is the periodic convolution of the two 
matrices Gkl and Bkl. In Fourier space a convolution be­
comes a multiplication; i.e ., the Fourier transform diago­
nalizes Gkl and Bkl . If gkl is the vector Fourier transform 
of the row repI1esenting Gkl and 13kl of Bkl alp! and (.Ik! , , tJ' I--'tJ 
their respective elements, 

( 

k-l ) _ II kk kl 101 
13kl- -bll bll 9 + L 13kng 

11=1+1 

(15) 

and 

f3kl - _bkk [bl! ~kl + ~ (f3kl1~111)] Ij - 11 ll .... lj L..J Ij .... lj 

n=I+1 

(16) 

This can save a lot oftime computing when calculating 
the inverse of G, if a fast Fourier transform (FFT) of 
the G k1 and Bkl is performed. That speedup depends 
011 n, the length of the vector to transform; good FFT 
algorithms exist for n being a power of 2, for even number 
n, and for n a product of prime numbers, so it is possible 
to perform an FFT for any n. But tests show that in 
Donner PET case for the 600 crystal matrix the Fourier 
transform is very interesting, and not really time saving 
for the 601 crystal case (unfortunately, 601 is prime). 
FFTs can also be used to multiply the inverse matrix 
and sinogram. 

4 Results 

Figure 5 shows a reconstruction performed using the new 
correction procedure on simulated data for the 37 point 
hot spot phantom. Points that are on the outer edge 
are clearly improved over those reconstructed without 
correction shown in figure 4b. 

Also visible in figure 5 however, are artifacts due to the 
correction procedure. These artifacts arise from the fact 
that the Monte Carlo simulation of this phantom used 
point sources. The matrix, G, has elements which are the 
average transition probability over the diamond-shaped 
sinogram bins shown in figure 3. Chords passing through 
an ideal point source fall on a sine wave in the sinogram, 
and the local path of the sine wave through a sinogram 
diamond will have different transition probabilities than 
the average over that diamond. 

The deblurring procedure can cause substantial am­
plification of the statistical noise present in the emis­
sion data. Equation 9 describes the error propagation 
of the proposed restoration technique when the error of 
the data measurement process is known. Figure 6 shows 
the statistical uncertainty (square root of the variance) 
for corrected projection values when the emission dataset 
is assumed to be homoscedastic with unit variance; i.e. , 
cov(p*) = I. We see that the error propagation becomes 
very large for chords far from the center. Figures 7 and 8 
show two columns of the correlation matrix for projec­
tion chords that are 6 cm and 12 cm, respectively, ii'om 
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Figure 5: Reconstructed image (correction of sinogram 
with new method before backprojection of filtered pro­
jections) of Monte Carlo penetration simulation for 37 
point hot spot phantom. 

the center of the tomograph when the emission dataset 
is assumed to homoscedastic. Figures 6 through 8 have 
assumed each measured projection value to be indepen­
dent and to have equal uncertain ty; however, this is not. 
necessarily true for real data. 

100 

50 

o+=======-----+----------~ 
o 50 100 

Radial bin 

Figure 6: Projection standard deviation for chords that 
have been corrected with t he new method vs. distance 
from t he center of the Donner 600-Crystal Positron To­
mograph . 

The new correction procedure was applied to the same 
Donner 600-Crystal Positron Tomograph emission data 
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24. e 

- 1.12113 17.0>""--___ _ 

------=--"JL, ." 

Figure 7: Projection correlation values in sinogram for­
mat for chords 6 cm from the center of the Donner 600-
Crystal Positron Tomograph that have been corrected 
with the new method. 

24.13 

-1.1213 ejectio n en9le 
52. "7"- _____ _ 

Rod I e I 
-2 4.13 

Figure 8: Projection correlation values in sinogram for­
mat for chords 12 cm from the center of the Donner 600-
Crystal Positron Tomograph that have been corrected 
with the new method. 
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used in figure 1 and the resul ting image is shown in fig­
ure 9. We notice here the same type of artifacts that are 
present in figu re 5, except to a lesser extent. 

Figure 9: Reconstructed image (correction of sinogram 
with new method before backprojection of filtered pro­
jections) of 37 point hot spot phantom data taken with 
the Donner 600-Crystal Positron Tomograph. 

5 Conclusions 

VVe have developed a new method of compensating for 
crystal penetration by performing a two-dimensional, 
spatially variant deconvolution on the emission dataset . 
The method appears to amplify statistical noise a great 
deal in order to gain a modest improvement in radial 
resolution. The statistical correlations in the corrected 
projections are so high that images resulting from statis­
tically poor data are expected to have a high degree of 
correlated noise. 

Preliminary tests indicate that the method causes arti­
facts for data generated from point sources, because the 
assumptions made when the blurring transition probabil­
ities were calculated are not met . Indeed, in other studies 
not. report.ed here, the blurring matrix faithfully predicts 
the effect of crystal penetration when a point source is 
replaced by a Gaussian distribution with standard devi­
ation equal to the radial sampling of the tomograph. 
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7 Appendix 

With Gkl being the block elements of G, Bkl the corre­
sponding block elements of G-1, Ikl the same for ], and 
N the number of blocks in a row, we can write 

N 

]kl = L BknGnl 

n=l 

(17) 

G-1 is a lower triangular matrix as G, then with k ?': I 

k 

]kl = L BknGnl (18) 
n=l 

or 

k 

]kl = Bk1Gll + L BknGnl (19) 
n=l+l 
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then 

or 

Bkk = (Ckk)-l 

As the blocks C kk are in fact gtr [kk then 

Bkk _ _ l_[kk 
- kk 

gu 

we can write 

and with k i= l 

or 

k 

BklCll + L Bkncnl = 0 
71=1+1 

k 

(20) 

(21) 

(22) 

(23) 

(24) 

Bkl = _(Cll)-l L Bkncn1 (25) 
71=1+1 

compute as 

Bkl = -bill (b~fCkl + I: Bkncn1 ) (26) 
n=l+l 

The b~j elements of Bkl must now be computed for 

k i= l, M is the row dimension of all Bkl, C kl blocks 
(k > n, n > l) 

(27) 

C k1 and Bkl are circulant blocks so we only need to 
calculate btJ 
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