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1
Abstract

PhaseLift: A novel framework for phase retrieval.

by

Vladislav Voroninski

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor John Strain, Chair

In many physical settings, it is difficult or impossible to measure the phase of a signal. The
problem is then to recover a signal from intensity measurements only. This phase retrieval problem
has challenged physicists, mathematicians and engineers for decades, being notoriously difficult to
solve numerically. We propose a novel framework for phase retrieval, which recasts the problem as
a low rank matrix recovery problem and provide theoretical guarantees and empirical demonstra-
tions of its performance, as well as connections of our results to quantum mechanics and random
matrix theory.
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Chapter 1

Introduction

1.1 Overview
In many applications, one would like to acquire information about an object but the physical nature
of detectors make it difficult or impossible to measure the phase of the signal. Typically, detectors
can often times record only the squared modulus of the Fresnel or Fraunhofer diffraction pattern
of the radiation that is scattered from an object, leaving out desired structural information which
comes from the phase of a signal. The problem then becomes to reconstruct an object from in-
tensity measurements only. This phase retrieval problem has a long history of challenges, with a
particularly important example in the practice of X-ray crystallography, in which one is faced with
recovering a signal or image from the intensity measurements of its Fourier transform.[45, 52].

Phase retrieval problems are notoriously difficult to solve numerically. This thesis proposes,
develops, analyses and tests a novel framework for phase retrieval, called PhaseLift, which is
provably robust and numerically efficient.

In chapter 2, which is based on the paper ”Phase retrieval from matrix completion”, coauthored
by Emmanuel Candes, Thomas Strohmer and Yonina Eldar [22], we explain the PhaseLift method-
ology, introduce some preliminary theoretical results and an empirical study of the effectiveness
of PhaseLift. In chapter 3, which is based on the paper ”PhaseLift: exact and stable quadratic
recovery”, co-authored by Emmanuel Candes and Thomas Strohmer [81], we show that PhaseLift
exactly recovers a fixed signal with high probability from quadratic gaussian measurements and
is furthermore stable with respect to noise. Chapter 4 makes a step in the direction of providing
theoretical results for PhaseLift with more structured measurement ensembles and connects these
results with Wright’s conjecture from Quantum Mechanics.

1.2 The phase retrieval problem

Application and a historical perspective
Historically, one of the first applications of phase retrieval is X-ray crystallography [66, 42], an
application that remains very important in the understanding of molecular structures. The phase
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retrieval problem occurs in many other areas of imaging science such as diffraction imaging [2],
optics [86], astronomical imaging [27], microscopy [65]. In particular, it is used in X-ray tomog-
raphy, which has become an invaluable tool in biomedical imaging to generate quantitative 3D
density maps of extended specimens on the nanoscale [29]. Other subjects where phase retrieval
plays an important role are quantum mechanics [75, 26] and even makes an appearance in differen-
tial geometry [13]. Phase retrieval has seen more activity in recent years due to the desire to image
individual molecules and other nano-particles, and the development of new imaging capabilities
such as new X-ray synchrotron sources that provide extraordinary X-ray fluxes [67, 80, 14, 65,
29]. References and various instances of the phase retrieval problem as well as some theoretical
and numerical techniques can be found in [45, 58, 52].

Statement of the problem
There are many ways in which one can pose the phase-retrieval problem, for instance depending
upon assuming a continuous or discrete-space model for the signal. In this thesis, we consider
finite length signals (one-dimensional or multi-dimensional) for simplicity, and because numerical
algorithms ultimately operate with discrete data. While our claims apply only to the discrete ver-
sion of the problem, our framework naturally extends to handle continuous objects as well.

Let x ∈ Cn be a signal and zi ∈ Cn be a family of sensing vectors. Assume that measurements
bi = |〈x, zi〉|2 are observed. Note that multiplying x by eiθ for any θ ∈ R does not change the
measurements and thus we can hope to recover x only up to a multiplication by a constant phase
factor of unit magnitude. From now on, if x ∈ C and y ∈ Cn, we say that x = y modulo phase
if ∃ θ ∈ R such that x = eiθy. The problem of quadratic recovery is to recover x modulo phase
from quadratic measurements bi = |〈x, zi〉|2.

Phase retrieval is the subset of instances of quadratic recovery which occur in practice, where
the sensing vectors zi are dictated by constraints of the physical setting. For instance, the Fourier
transform of x is

x̂[ω] =
1√
n

∑
0≤t<n

x[t]e−i2πωt/n, ω ∈ Ω. (1.2.1)

Here, Ω is a grid of sampled frequencies, such as Ω = {0, 1, . . . , n − 1} so that the mapping
above is the classical unitary discrete Fourier transform (DFT)1. Phase retrieval in the setting of
X-ray crystallography then consists of finding x from the magnitude coefficients |x̂[ω]|, ω ∈ Ω.
When Ω is the usual frequency grid as above and without further information about the unknown
signal x, this problem is ill-posed since there are many different signals whose Fourier transforms
have the same magnitude. Indeed, if x is a solution to the phase retrieval problem, then (1) cx
for any scalar c ∈ C obeying |c| = 1 is also solution, (2) the “mirror function” or time-reversed
signal x̄[−t mod n] where t = 0, 1, . . . , n − 1 is also solution, and (3) the shifted signal x[t −
a mod n] is also a solution. From a physical viewpoint these “trivial associates” of x are acceptable

1For later reference, we denote the Fourier transform operator by F and the inverse Fourier transform by F−1.
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ambiguities. But in general infinitely many solutions can be obtained from {|x̂[ω]| : ω ∈ Ω}
beyond these trivial associates [79].

In practice, people have employed various assumptions on the signal, holographic or oversam-
pling techniques to overcome this ambiguity. We will give a background on these approaches
before introducing the PhaseLift methodology.

1.3 Main approaches to phase retrieval
While holographic techniques have been applied successfully in certain areas of optical imaging,
they are generally difficult to implement in practice [1]. The development of algorithms for signal
recovery from magnitude measurements is still a very active field of research. Existing methods
for phase retrieval rely on various kinds of a priori information about the signal, such as positivity,
atomicity, support constraints and real-valuedness [35, 34, 59, 25]. Direct methods [43] are limited
in their applicability to small-scale problems due to their large computational complexity.

An approach proposed to alleviate the non-uniqueness problem is oversampling in the Fourier
domain [48]. While oversampling provably offers no unicity advantage for one-dimensional sig-
nals, it does so for multidimensional signals, where it has been shown that twofold oversampling
in each dimension almost always yields uniqueness for finitely supported, real-valued and non-
negative signals [16, 44, 79]. In other words, a digital image of the form x = {x[t1, t2]} with
0 ≤ t1 < n1 and 0 ≤ t2 < n2, whose Fourier transform is given by

x̂[ω1, ω2] =
1

√
n1n2

∑
x[t1, t2]e−i2π(ω1t1/n1+ω2t2/n2), (1.3.1)

is almost always uniquely determined from the values of |x̂[ω1, ω2]| on the oversampled grid ω =
(ω1, ω2) ∈ Ω = Ω1 × Ω2 in which Ωi = {0, 1/2, 1, 3/2, . . . , ni + 1/2}. (In other words, if we
think of (1/n1, 1/n2) as some Nyquist frequency, then we would need to sample at a rate at least
twice this Nyquist frequency.) This holds provided x has proper spatial support, is real valued and
non-negative.

As pointed out in [58], these uniqueness results do not imply the existence of a stable recovery
algorithm, or about the robustness and stability of commonly used reconstruction algorithms, a
claim that we will back up with empirical evidence in chapter 1 of this thesis. In general, well-
posedness does not immediately translate into numerical methods and as a result, the algorithmic
and practical aspects of the phase retrieval problem (from noisy data) still pose significant chal-
lenges.

The most popular methods for phase retrieval from oversampled Fourier data are alternating
projection algorithms proposed by Gerchberg and Saxton [37] and Fienup [35, 34]. These methods
often require the exploitation of signal constraints and parameter selection to increase the likeli-
hood of convergence to a correct solution [72, 59, 25, 61]. We describe below the simplest instance
of a widely used alternating projection approach [70], which relies on support constraints in the
spatial domain and oversampled measurements in the frequency domain. With T being a known
subset containing the support of the signal x (supp(x) ⊂ T ) and Fourier magnitude measurements
{y[ω]}ω∈Ω with y[ω] = |x̂[ω]|, the method works as follows:
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1. Initialization: Choose an initial guess x0 and set z0[ω] = y[ω] x̂0[ω]

|x̂0[ω]| for ω ∈ Ω.

2. Loop: For k = 1, 2, . . . inductively define

(1) xk[t] =

{
(F−1zk−1)[t] if t ∈ T ,
0 else;

(2) zk[ω] = y[ω]
x̂k[ω]

|x̂k[ω]|
for ω ∈ Ω

until convergence.

While this algorithm is simple to implement and amenable to additional constraints such as
the positivity of x, no convergence guarantees are known and in fact the limit set of the iterations
often depends non-trivially on the starting point. While projection algorithms onto convex sets
are well understood [15, 41, 88, 6], the set {z : |ẑ[ω]| = |x̂[ω]|} is not convex and, therefore, the
algorithm is not known to converge in general to the unique solution if there is one [53, 6, 58]. Some
progress toward understanding the convergence behavior of certain alternating projection methods
has been made in [57]. Good numerical results have been reported in certain oversampling settings,
but they appear to be nevertheless somewhat problematic in light of our numerical experiments
from Section 3.8. [60] points out that oversampling is not always practically feasible as certain
experimental geometries allow only for sub-Nyquist sampling; an example is the Bragg sampling
from periodic crystalline structures. Alternating projection algorithms may be more competitive
when applied in the framework of multiple structured illuminations, as proposed in the PhaseLift
methodology, instead of oversampling. Another direction of investigation is to utilize sparsity of
the signal, see [60, 56, 87]. Here, the signal is known to have only a few non-zero coefficients, but
the locations of the non-zero coefficients (that is, the support of the signal) are not known a priori.

In a different direction, a frame-theoretic approach to phase retrieval has been proposed in [3,
5], where the authors derive various necessary and sufficient conditions for the uniqueness of the
solution, as well as various numerical algorithms. The practical applicability of these results is
limited by the specific types of measurements required.
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Chapter 2

The PhaseLift Methodology
2.1 PhaseLift – a novel methodology
This chapter develops a novel methodology for phase retrieval based on a rigorous and flexible
numerical framework. Whereas most of the existing methods seek to overcome non-uniqueness by
imposing additional constraints on the signal, PhaseLift employs different techniques. There are
two main components to this approach.

• Multiple structured illuminations. We suggest collecting several diffraction patterns provid-
ing ‘different views’ of the sample, for instance, by modulating the light beam falling onto
the sample or by placing a mask right after the sample, see Section 3.2 for details. Taking
multiple diffraction patterns usually yields uniqueness as discussed in Section 2.4.

The concept of using multiple measurements as an attempt to resolve the phase ambiguity
for diffraction imaging was suggested in [68]. A variety of methods have been proposed to
carry out these multiple measurements; various gratings and/or of masks, rotation of the axial
position of the sample, and use of defocusing implemented by a spatial light modulator, see
[1]. Other approaches include ptychography,where one records several diffraction patterns
from overlapping areas of the sample, [77, 83].

• Formulation of phase recovery as a matrix completion problem. We suggest (1) lifting up
the problem of recovering a vector from quadratic constraints into that of recovering a rank-
one matrix from affine constraints, and (2) relaxing the combinatorial problem into a convex
program. The price we pay for trading the nonconvex quadratic constraints into convex
constraints is that we must deal with a highly underdetermined problem. However, recent
advances in the areas of compressive sensing and matrix completion have shown that such
convex approximations are often exact.

Although PhaseLift is a new approach for phase retrieval, the idea of solving problems in-
volving nonconvex quadratic constraints by semidefinite relaxations has a long history in
optimization, see [10].

This chapter demonstrates that taken together, multiple coded illuminations and convex program-
ming provide an effective approach to phase retrieval. Also, PhaseLift offers a principled way
of dealing with noise, simplifying the use of various statistical noise models. This is important
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because in practice, measurements are always noisy. In fact, this framework can be used to for-
mulate a regularized maximum likelihood method. Lastly, the framework can also include a priori
knowledge about the signal that can be formulated or relaxed as convex constraints.

2.2 Precedents
At the abstract level, the phase retrieval problem is that of finding x ∈ Cn obeying quadratic
equations of the form |〈ak, x〉|2 = bk. Casting such quadratic constraints as affine constraints
about the matrix variable X = xx? has been widely used for finding good bounds on a number
of quadratically constrained quadratic problems (QCQP). Indeed, solving the general case of a
QCQP is known to be NP-hard since it includes the family of Boolean linear programs [10]. The
approach usually consists in finding a relaxation of the QCQP using semidefinite programming
(SDP). An important example of this strategy is Max Cut, an NP-hard problem in graph theory
which can be formulated as a QCQP. In a celebrated paper, Goemans and Williamson introduced
a relaxation [38] for this problem, which lifts a nonlinear, nonconvex problem to the space of
symmetric matrices.

The idea of linearizing the phase retrieval problem by reformulating it as a problem of recov-
ering a matrix from linear measurements can be found in [5]. While this reference also contains
some intriguing numerical recovery algorithms, their practical relevance for most applications is
limited by the fact that the proposed measurement matrices either require a very specific alge-
braic structure which does not seem to be compatible with the physical properties of diffraction,
or the number of measurements is proportional to the square of the signal dimension, which is not
feasible in most applications.

In terms of framework, the closest approach is the paper [24], in which the authors use a
matrix completion approach for array imaging from intensity measurements. Although PhaseLift
executes a similar relaxation, there are some differences. We present a “noise-aware” framework,
which makes it possible to account for a variety of noise models in a systematic way. Moreover,
our emphasis is on a novel combination of structured illuminations and convex programming.

2.3 Methodology

Structured illumination
Suppose x = {x[t]} is the object of interest (tmay be a one- or multi-dimensional index). We shall
discuss illumination schemes collecting the diffraction pattern of the modulated object w[t]x[t],
where the waveforms or patterns w[t] may be selected by the user. There are many ways in which
this can be implemented in practice, and we discuss just a few of those.

• Masking. One possibility is to modify the phase front after the sample by inserting a mask
or a phase plate, see [54] for example. A schematic layout is shown in Figure 2.1. In [49],
the sample is scanned by shifting the phase plate as in ptychography (discussed below); the
difference is that one scans the known phase plate rather than the object being imaged.
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Figure 2.1: A typical setup for structured illuminations in diffraction imaging using a phase
mask.

• Optical grating. Another standard approach would be to change the profile or modulate the
illuminating beam, which can easily be accomplished by the use of optical gratings [55]. A
simplified representation would look similar to the scheme depicted in Figure 2.1, with a
grating instead of the mask (the grating could be placed before or after the sample).

• Ptychography. Here, one measures multiple diffraction patterns by scanning a finite illumi-
nation on an extended specimen [77, 83]. In this setup, it is common to maintain a substantial
overlap between adjacent illumination positions.

• Oblique illuminations. One can use illuminating beams hitting the sample at user specified
angle [31], see Figure 2.2 for a schematic illustration of this approach. One can also imagine
having multiple simultaneous oblique illuminations.

As is clear, there is no shortage of options and one might prefer solutions which require gener-
ating as few diffraction patterns as possible for stable recovery.

Lifting
Suppose we have x0 ∈ Cn or Cn1×n2 (or some higher-dimensional version) about which we have
quadratic measurements of the form

A(x0) = {|〈ak, x0〉|2 : k = 1, 2, . . . ,m}. (2.3.1)



CHAPTER 2. THE PHASELIFT METHODOLOGY 8

Figure 2.2: A typical setup for structured illuminations in diffraction imaging using oblique
illuminations. The left image shows direct (on-axis) illumination and the right image corre-
sponds to oblique (off-axis) illumination.

In the setting where we would collect the diffraction pattern of w[t]x0[t] as discussed earlier, then
the waveform ak[t] can be written as

ak[t] ∝ w[t]ei2π 〈ωk,t〉; (2.3.2)

here, ωk is a frequency value so that ak[t] is a patterned complex sinusoid. One can assume for
convenience that the normalizing constant is such that ak is unit normed, i.e. ‖ak‖2

2 =
∑

t |ak[t]|2 =
1. Phase retrieval is then the feasibility problem

find x
obeying A(x) = A(x0) := b.

(2.3.3)

As is well known, quadratic measurements can be lifted up and interpreted as linear measure-
ments about the rank-one matrix X = xx∗. Indeed,

|〈ak, x〉|2 = Tr(x∗aka
∗
kx) = Tr(aka

∗
kxx

∗) := Tr(AkX),

where Ak is the rank-one matrix aka
∗
k. In what follows, we will let A be the linear operator

mapping positive semidefinite matrices X into {Tr(AkX) : k = 1, . . . ,m}. Hence, the phase
retrieval problem is equivalent to

find X
subject to A(X) = b

X � 0
rank(X) = 1

⇔
minimize rank(X)
subject to A(X) = b

X � 0.
(2.3.4)
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Upon solving the left-hand side of (3.2.4), we would factorize the rank-one solution X as xx∗,
hence finding solutions to the phase-retrieval problem. Note that the equivalence between the left-
and right-hand side of (3.2.4) is straightforward since by definition, b = A(x0) = A(x0x

∗
0) and

there exists a rank-one solution. Therefore, our problem is a rank-minimization problem over an
affine slice of the positive semidefinite cone. As such, it falls in the realm of low-rank matrix com-
pletion or matrix recovery, a class of optimization problems that has gained tremendous attention
in recent years, see e.g. [74, 19, 20]. Just as in matrix completion, the linear system A(X) = b,
with unknown in the positive semidefinite cone, is highly underdetermined. For instance suppose
our signal x0 has n complex unknowns. Then we may imagine collecting six diffraction patterns
with n measurements for each (no oversampling). Thus m = 6n whereas the dimension of the
space of n× n Hermitian matrices over the reals is n2, which is obviously much larger.

We are of course interested in low-rank solutions and this makes the search feasible. This
also raises an important question: what is the minimal number of diffraction patterns needed to
recover x, whatever x may be? Since each pattern yields n real-valued coefficients and x has n
complex-valued unknowns, clearly at least two are needed. Further, in the context of quantum
state tomography, Theorem II in [36] shows one needs at least 3n − 2 intensity measurements to
guarantee uniqueness, hence suggesting an absolute minimum of three diffraction patterns. Are
three patterns sufficient? We partly address this question in Section 2.4.

Recovery via convex programming
The rank-minimization problem (3.2.4) is NP hard. We propose using the trace norm as a convex
surrogate [8, 62] for the rank functional, giving the familiar SDP (and a crucial component of
PhaseLift),

minimize Tr(X)
subject to A(X) = b

X � 0;
(2.3.5)

here and below X � 0 means that X is Hermitian positive semidefinite. This problem is convex
and there exists a wide array of numerical solvers including the popular Nesterov’s accelerated first
order method [69]. As far as the relationship between (3.2.4) and (3.2.5) is concerned, the matrix
A in most diffraction imaging applications is not known to obey any of the conditions derived in
the literature [19, 20, 74] that would guarantee a formal equivalence between the two programs.
Nevertheless, the formulation (3.2.5) enjoys great empirical performance as demonstrated in Sec-
tion 3.8. Furthermore, as shown in chapter 2, if measurement vectors ak sampled independently
and uniformly at random on the unit sphere, PhaseLift can recover x exactly (up to a global phase
factor) with high probability, provided that the number of measurements is on the order of n log n.

We mentioned earlier that measurements are typically noisy and that our formulation allows
for a principled approach to deal with this issue for a variety of noise models. Suppose the mea-
surement vector {bk} is sampled from a probability distribution p(·;µ), where µ = A(x0) is the
vector of noiseless values, µk = |〈ak, x0〉|2. Then a classical fitting approach simply consists of
maximizing the likelihood,

maximize p(b;µ)
subject to µ = A(x)

(2.3.6)
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with optimization variables µ and x. (A more concise description is to find x such that p(b;A(x))
is maximum.) Using the lifting technique and the monotonicity of the logarithm, an equivalent
formulation is

minimize − log(p(b;µ))
subject to µ = A(X)

X � 0, rank(X) = 1.

This is, of course, not tractable and our convex formulation suggests solving instead

minimize − log p(b;µ) + λTr(X)
subject to µ = A(X)

X � 0
(2.3.7)

with optimization variables µ and X (in other words, find X � 0 such that − log p(b;A(X)) +
λTr(X) is minimum). Above, λ is a positive scalar and, hence, our approach is a penalized or
regularized maximum likelihood method, which trades off between goodness and complexity of
the fit. When the likelihood is log-concave, problem (2.3.7) is convex and solvable. We give two
examples for concreteness:

• Poisson data. Suppose that {bk} is a sequence of independent samples from the Poisson
distributions Poi(µk). The Poisson log-likelihood for independent samples has the form∑

k bk log µk − µk (up to an additive constant factor) and thus, our problem becomes

minimize
∑

k[µk − bk log µk] + λTr(X)
subject to µ = A(X)

X � 0.

• Gaussian data. Suppose that {bk} is a sequence of independent samples from the Gaussian
distribution with mean µk and variance σ2

k (or is well approximated by Gaussian variables).
Then our problem becomes

minimize
∑

k
1

2σ2
k

(bk − µk)2 + λTr(X)

subject to µ = A(X)
X � 0.

If Σ is a diagonal matrix with diagonal elements σ2
k, this can be written as

minimize 1
2
[b−A(X)]∗Σ−1[b−A(X)] + λTr(X)

subject to X � 0.

Both formulations are of course convex and in both cases, one recovers the noiseless trace mini-
mization problem (3.2.5) as λ→ 0+.

In addition, it is straightforward to include further constraints frequently discussed in the phase
retrieval literature such as real-valuedness, positivity, atomicity and so on. Suppose the support of
x is known to be included in a set T known a priori. Then we would add the linear constraint

Xij = 0, (i, j) /∈ T × T.
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(Algorithmically, one would simply work with a reduced-size matrix.) Suppose we would like to
enforce real-valuedness, then we simply assume that X is real valued and positive semidefinite.
Finally positivity can be expressed as linear inequalities

Xij ≥ 0.

Of course, many other types of constraints can be incorporated in this framework, which provides
appreciable flexibility.

PhaseLift with reweighting
The trace norm promotes low-rank solutions and this is why it is often used as a convex proxy for
the rank. However, it is possible to further promote low-rank solutions by solving a sequence of
weighted trace-norm problems, a technique which has been shown to provide even more accurate
solutions [33, 21]. The reweighting scheme works like this: choose ε > 0; start with W0 = I and
for k = 0, 1, . . . , inductively define Xk as the optimal solution to

minimize Tr(WkX)
subject to A(X) = b

X � 0
(2.3.8)

and update the ‘weight matrix’ as

Wk+1 = (Xk + εI)−1.

The algorithm terminates on convergence or when the iteration count k attains a specified maxi-
mum number of iterations kmax. One can see that the first step of this procedure is precisely (3.2.5);
after this initial step, the algorithm proceeds in solving a sequence of trace-norm problems in which
the matrix weights Wk are roughly the inverse of the current guess.

As explained in the literature [33, 32], this reweighting scheme can be viewed as attempting to
solve

minimize f(X) = log(det(X + εI))
subject to A(X) = b

X � 0
(2.3.9)

by minimizing the tangent approximation to f at each iterate; that is to say, at step k, (2.3.8) is
equivalent to minimizing f(Xk−1) + 〈∇f(Xk−1), X − Xk−1〉 over the feasible set. (As for the
trace, the function log det(X + εI) serves as a surrogate for the rank functionial.) This can also be
applied to noise-aware variants where one would simply replace the objective functional in (2.3.7)
with

− log p(b;µ) + λTr(WkX),

at each step, and update Wk in exactly the same way as before.
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2.4 Preliminary Theory
The PhaseLift framework poses two main theoretical questions:

1. When do multiple diffracted images imply unicity of the solution?

2. When does the convex heuristic succeed in recovering the unique solution to the phase-
retrieval problem?

Developing comprehensive answers to these questions constitutes a whole research program, and
we will address the second question under some measurement assumptions in the next chapter. In
this chapter, we shall limit ourselves to introducing some theoretical results showing simple ways
of designing diffraction patterns, which give unicity. Our focus is on getting uniqueness from a
very limited number of diffraction patterns. For example, we shall demonstrate that in some cases
three diffraction images are sufficient for perfect recovery. Thus, we give below partial answers to
the first question and will begin to address the second in the next chapter.

A frequently discussed approach to retrieve phase information uses a technique from hologra-
phy. Roughly speaking, the idea is to let the signal of interest x interfere with a known reference
beam y. One typically measures |x + y|2 and |x − iy|2 and precise knowledge of y allows, in
principle, to recover the amplitude and phase of x. Holographic techniques are hard to implement
[1] in practice. Instead, we propose using a modulated version of the signal itself as a reference
beam which in some cases may be easier to implement.

To discuss this idea, we need to introduce some notation. For a complex signal z ∈ Cn, we let
|z|2 be the nonnegative real-valued n-dimensional vector containing the squared magnitudes of z.
Suppose first that x is a one-dimensional signal (x[0], x[1], . . . , x[n− 1]) and that Fn is the n× n
unitary DFT. In this section, we consider taking 3n real-valued measurements of the form

A(x) = {|Fnx|2, |Fn(x+Dsx)|2, |Fn(x− iDsx)|2}, (2.4.1)

where D is the modulation
D = diag({ei2πt/n}0≤t≤n−1).

and s is a nonnegative integer. These measurements can be obtained by illuminating the sample
with the three light fields 1, 1 + ei2πst/n and 1 + ei2π(st/n−1/4). We show below that these 3n
measurements are generally sufficient for perfect recovery.

Theorem 2.4.1 Suppose the DFT of x ∈ Cn does not vanish. Then x can be recovered up to
global phase from the 3n real numbers A(x) (3.2.1) if and only if gcd(s, n) = 1. In particular,
assuming gcd(s, n) = 1, if the trace-minimization program (3.2.5) or the iteratively reweighted
algorithm return a rank-1 solution, then this solution is exact.

Conversely, if the DFT vanishes at two frequency points k and k′ obeying k − k′ 6= s mod n,
then recovery is not possible from the 3n real numbers (3.2.1).

The proof of this theorem is constructive and we give a simple algorithm that achieves perfect
reconstruction. Further, one can use masks to scramble the Fourier transform as to make sure it
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does not vanish. Suppose for instance that we collect

A(Wx), W = diag({z[t]}0≤t≤n−1).

where the z[t]’s are iid N (0, 1). Then since the Fourier transform of z[t]x[t] does not vanish with
probability one, we have the following corollary.

Corollary 2.4.2 Assume that gcd(s, n) = 1. Then with probability one, x can be recovered up
to global phase from the 3n real numbers A(Wx) where W is the diagonal matrix with Gaussian
entries above.

Of course, one could derive similar results by scrambling the Fourier transform with the aid of
other types of masks, e.g. binary masks.

We now turn our attention to the situation in higher dimensions and will consider the 2D case
(higher dimensions are treated in the same way). Here, we have a discrete signal x[t1, t2] ∈ Cn1×n2

about which we take the 3n1n2 measurements

{|Fn1×n2x|2, |Fn1×n2(x+Dsx)|2, |Fn1×n2(x− iDsx)|2}, s = (s1, s2); (2.4.2)

Fn1×n2 is the 2D unitary Fourier transform defined by (1.3.1) in which the frequencies belong to
the 2D grid {0, 1, . . . , n1 − 1} × {0, 1, . . . , n2 − 1}, s is a pair of nonnegative integers and Ds is
the modulation

[Dsx][t1, t2] = ei2πs1t1/n1 ei2πs2t2/n1x[t1, t2].

With these definitions, we have the following result:

Theorem 2.4.3 Suppose the DFT of x ∈ Cn1×n2 does not vanish. Then x can be recovered up to
global phase from the 3n1n2 real numbers (2.4.2) if and only if gcd(s1, n1) = 1, gcd(s2, n2) = 1
and gcd(n1, n2) = 1. Under these assumptions, if the trace-minimization program (3.2.5) or the
iteratively reweighted algorithm return a rank-1 solution, then this solution is exact.

Again, one can apply a random mask to turn this statement into a probabilistic statement hold-
ing either with probability one or with very large probability depending upon the mask that is
used.

One can always choose s1 and s2 such that they be relatively prime to n1 and n2 respectively.
The last condition may be less friendly but one can decide to pad one dimension with zeros to
guarantee primality. This is equivalent to a slight oversampling of the DFT along one direction.
An alternative is to take 5n1n2 measurements in which we modulate the signal horizontally and
then vertically; that is to say, we modulate with s = (s1, 0) and then with s = (0, s2). These 5n1n2

measurements guarantee recovery if s1 is relatively prime to n1 and s2 is relatively prime to n2 for
all sizes n1 and n2, see Section 2.4 for details.
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Proof of Theorem 2.4.1
Let x̂ = (x̂[0], . . . , x̂[n−1]) be the DFT of x. Then knowledge of A(x) is equivalent to knowledge
of

|x̂[k]|2, |x̂[k] + x̂[k − s]|2, and |x̂[k]− ix̂[k − s]|2

for all k ∈ {0, 1, . . . , n− 1} (above, k − s is understood mod n). Write x̂[k] = |x̂[k]|eiφ[k] so that
φ[k] is the missing phase, and observe that

|x̂[k] + x̂[k − s]|2 = |x̂[k]|2 + |x̂[k − s]|2 + 2|x̂[k]||x̂[k − s]|Re(ei(φ[k−s]−φ[k])

|x̂[k]− ix̂[k − s]|2 = |x̂[k]|2 + |x̂[k − s]|2 + 2|x̂[k]||x̂[k − s]|Im(ei(φ[k−s]−φ[k]).

Hence, if x̂[k] 6= 0 for all k ∈ {0, 1, . . . , n− 1}, our data gives us knowledge of all phase shifts of
the form

φ[k − s]− φ[k], k = 0, 1, . . . , n− 1.

We can, therefore, initialize φ[0] to be zero and then get the values of φ[−s], φ[−2s] and so on.
This process can be represented as a cycle in the group Z/nZ as the sequence (0,−s,−2s, . . .).

We would like this cycle to contain n unique elements, which is true if and only if the cyclic
subgroup (0, s, 2s, . . .) has order n. This is equivalent to requiring gcd(s, n) = 1. If this subgroup
has a smaller order, then recovery is impossible since we finish the cycle before we have all the
phases; the phases that we are able to recover do not enable us to determine any more phases
without making further assumptions.

For the second part of the theorem, assume without loss of generality, that s = −1 and that
(k, k′) = (0, k0) (1 < k0 < n − 1). For simplicity suppose these are the only zeros of the DFT.
This creates two disjoint sets of frequency indices: those for which 0 < k < k0 and those for
which k0 < k ≤ n− 1. We are given no information about the phase difference between elements
of these two subgroups, and hence recovery is not possible. This argument extends to situations
where the DFT vanishes more often, in which case, we have even more indeterminacy.

Proof of Theorem 2.4.3
Let x̂ = {x̂[k1, k2]}, where (k1, k2) ∈ {0, 1, . . . n1−1}×{0, 1, . . . , n2−1} be the DFT of x. Then
we have knowledge of

|x̂[k1, k2]|2, |x̂[k1, k2] + x̂[k1 − ss, k2 − s2]|2, and |x̂[k1, k2]− ix̂[k1 − s1, k2 − s2]|2

for all (k1k2). With the same notations as before, this gives knowledge of all phase shifts of the
form

φ[k1 − s1, k2 − s2]− φ[k1, k2], 0 ≤ k1 ≤ n1, 0 ≤ k2 ≤ n2 − 1.

Hence, we can initialize φ[0, 0] to be zero and then get the values of φ[−s1,−s2], φ[−2s1,−2s2]
and so on. The argument is as before: we would like the cyclic subgroup ((0, 0), (s1, s2), (2s1, 2s2),
...) in Z/n1Z×Z/n2Z to have order n1n2. Now the order of an element (s1, s2) ∈ Z/n1Z×Z/n2Z
is equal to

lcm(|s1|, |s2|) = lcm(n1/gcd(n1, s1), n2/gcd(n2, s2)),
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where |s1| is the order of s1 in Z/n1Z and likewise for |s2|. Noting that lcm(a, b) ≤ ab and that
equality is achieved if and only if gcd(a, b) = 1, we must simultaneously have

gcd(s1, n1) = 1, gcd(s2, n2) = 1 and gcd(n1, n2)) = 1

to have uniqueness.

Extensions
It is clear from our analysis that if we were to collect |Fn1×n2x|2 together with

{|Fn1×n2(x+Dskx)|2, |Fn1×n2(x− iDskx)|2}, k = 1, . . . , K,

so that one collects (2K + 1)n1n2 measurements, then 2D recovery is possible if and only if
{s1, . . . , sK} generates Z/n1Z× Z/n2Z (and the Fourier transform has no nonzero components).
This can be understood by analyzing the generators of the group Z/n1Z× Z/n2Z.

A simple instance consists in choosing one modulation pattern to be (s1, 0) and another to
be (0, s2). If s1 is relatively prime to n1 and s2 is relatively prime to n2, these two modulations
generate the whole group regardless of the relationship between n1 and n2. An algorithmic way
to see this is as follows. Initialize φ(0, 0). Then by using horizontal modulations, one recovers all
phases of the form φ(k1, 0). Further, by using vertical modulations (starting with φ(k1, 0)), one
can recover all phases of the form φ(k1, k2) by moving upward.

2.5 Empirical Performance
This section introduces numerical simulations to illustrate and study the effectiveness of PhaseLift.

Numerical solvers
All numerical algorithms were implemented in Matlab using TFOCS [9] as well as modifications
of TFOCS template files. TFOCS is a library of Matlab-files designed to facilitate the construction
of first-order methods for a variety of convex optimization problems, which include those we
consider.

In a nutshell, suppose we wish to solve the problem

minimize g(X) := −`(b;A(X)) + λTr(X)
subject to X � 0

(2.5.1)

in which `(b;A(X)) is a smooth and concave (in X) log-likelihood. Then a projected gradient
method would start with an initial guess X0, and inductively define

Xk = P(Xk−1 − tk∇g(Xk−1)), (2.5.2)

where {tk} is a sequence of stepsize rules and P is the projection onto the positive semidefinite
cone. (Various stepsize rules are typically considered including fixed stepsizes, backtracking line
search, exact line search and so on.)
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TFOCS implements a variety of accelerated first-order methods pioneered by Nesterov, see

[69] and references therein. One variant [7] works as follows. Choose X0, set Y0 = X0 and
θ0 = 1, and inductively define

Xk = P(Yk−1 − tk∇g(Yk−1))

θk = 2
[
1 +

√
1 + 4/θ2

k−1

]−1

βk = θk(θ
−1
k−1 − 1)

Yk = Xk + βk(Xk −Xk−1),

(2.5.3)

where {tk} is a sequence of stepsize rules as before. The sequence {θk} is usually referred to as
a sequence of accelerated parameters, and {Yk} is an auxiliary sequence at which the gradient is
to be evaluated. The advantage of this approach is that the computational work per iteration is as
in the projected gradient method but the number of iterations needed to reach a certain accuracy
is usually much lower [69]. TFOCS implements such iterations and others like it but with various
improvements.

For large problems, e.g. images with a large number N of pixels, it is costly to hold the N ×N
optimization variableX in memory. To overcome this issue, our computational approach maintains
a low-rank factorization of X . This is achieved by substituting the projection onto the semidefinite
cone (the expensive step) with a proxy. Whereas P dumps the negative eigenvalues as in

P(X) =
∑
i

max(λi, 0)uiu
∗
i ,

where
∑

i λiuiu
∗
i (λ1 ≥ λ2 ≥ . . . ≥ λN ) is any eigenvalue decomposition of X , our proxy only

keeps the k largest eigenvalues in the expansion as in

Pk(X) =
∑
i≤k

max(λi, 0)uiu
∗
i . (2.5.4)

For small values of k—we use k between 10 and 20—this can be efficiently computed since we
only need to compute the top eigenvectors of a low-rank matrix at each step. Although this approxi-
mation gives good empirical results, convergence is no longer guaranteed. For a method like (2.5.2)
or (2.5.3), the main computational cost of single iteration is dominated by computing (2.5.4) whose
complexity is in turn governed by the costs of applying A and A∗. By maintaining a low-rank fac-
torization of X or Y , these costs are on the order of k ×M × n log n for x ∈ Cn, where M is the
number of illuminations. Roughly, each iteration costs on the order of k ×M FFTs.

Error measures
To measure performance, we will use the mean-square error (MSE). However, since a solution x0

is only unique up to global phase, it makes no sense to compute the squared distance between x0

and the recovery x̂0. Rather, we compute the distance to the solution space, i.e. we are interested
in the relative MSE defined as

min
c:|c|=1

‖cx0 − x̂0‖2
2

‖x0‖2
2

.
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This is the definition we will adopt throughout the paper;1 the Signal-to-Noise Ratio (SNR) of the
measured data is defined as SNR = 10 log10 ‖b− b̃‖2

2/‖b‖2
2, where b̃ denotes the noisy data.

Although our algorithm favors low-rank solutions, it is not guaranteed to find a rank-one solu-
tion. Therefore, if our optimal solution X̂0 does not have exactly rank one, we extract the rank-one
approximation x̂0x̂

∗
0 where x̂0 is an eigenvector associated with the largest eigenvalue. We use a

scaling such that ‖x̂0‖2
2 = ‖x0‖2

2. Note that the `2 norm of the true solution is generally known
since by Parseval’s theorem, the `2 norm of Fx0 is equal to ‖x0‖2. Hence, observing the diffraction
pattern of the object x0 reveals its squared `2 norm.

Alternating projections
For comparison, we will also apply an alternating projection algorithm in some of the experiments.
To describe this algorithm, put Ax := {〈aj, x〉}mj=1 in which the aj’s are as in (2.3.2) so that
A(x) = |Ax|2. In the setting of multiple illuminations, the alternating projection algorithm consists
of the following steps: (1) choose an initial guess x0; (2) compute b0 = Ax0 and for k = 0, 1, . . . ,

(i) adjust the modulus of bk so that it fits the measurements b,

b̃k[i] = b[i]
bk[i]

|bk[i]|
, i = 1, . . . ,m.

(ii) Reproject b̃k onto the range of A,

xk+1 = argmin ‖Ax− b̃k‖2,

bk+1 = Axk+1.

Observe that we can incorporate appropriate additional information about x (such as positivity for
example) via a suitable modification of the projection step (ii).

1-D simulations
Phase retrieval for one-dimensional signals arises in fiber optics [23, 47, 46], terahertz communi-
cations [51], speech recognition [73], as well as in the determination of concentration profiles and
the detection of planar disorder in diffraction imaging [2, 84]. We evaluate PhaseLift for noiseless
and noisy data using a variety of different ‘illuminations’ and test signals.

Noisefree measurements

In the first set of experiments we demonstrate the recovery of two very different signals from
noiseless data. Both test signals are of length n = 128. The first signal, shown in Figure 2.3(a))
is a linear combination of a few sinusoids and represents a typical transfer function one might
encounter in optics. The second signal is a complex signal, with independent Gaussian complex

1Alternatively, we could use ‖x0x
∗
0 − x̂0x̂

∗
0‖F /‖x0x

∗
0‖F , which gives very similar values.
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Figure 2.3: Two test signals and their reconstructions. The recovered signals are essentially
indistinguishable from the originals. Left figure is smooth signal and its reconstruction. Right
figure is random signal and its reconstruction.

entries (each entry is of the form a + ib where a and b are independent N (0, 1) variables) so that
the real and imaginary parts are independent white noise sequences; the real part of the signal is
shown in Figure 2.3(b).

Four random binary masks are used to perform the structured illumination so that we measure
|Ax|2 in which

A = F


W1

W2

W3

W4

 ,
where each Wi is diagonal with either 0 or 1 on the diagonal, resulting in a total of 512 intensity
measurements. We work with the objective functional 1

2
‖b−A(X)‖2

2 +λTr(X) and the constraint
X � 0 to recover the signal, in which we use a small value for λ such as 0.05 since we are
dealing with noisefree data. We apply the reweighting scheme as discussed in Section 2.3. (To
achieve perfect reconstruction, one would have to let λ→ 0 as the iteration count increases.) The
algorithm is terminated when the relative residual error is less than a fixed tolerance, namely,
‖A(x̂0x̂

∗
0)− b‖2 ≤ 10−6‖b‖2, where x̂0 is the reconstructed signal just as before. The original and

recovered signals are plotted in Figure 2.3(a) and (b). The MSE on a dB-scale (i.e., 10 log10(MSE))
is 87.3dB in the first case and 90.5dB in the second.

We have repeated these experiments with the same test signals and the same algorithm, but
using Gaussian masks instead of binary masks. In other words, the Wi’s have Gaussian entries on
the diagonal. It turns out that in this case, three illuminations—instead of four—were sufficient to
obtain similar performance. Furthermore, we point out that no re-weighting was needed, when we
used six or more Gaussian masks. Expressed differently, plain trace-norm minimization succeeds
with 6n or more intensity measurements of this kind.

We also applied the alternating projection algorithm of Section 2.5, with random initial guess,
to the examples above. When using three Gaussian masks (or the three operators I, F, FW related
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to the quantum mechanical setting), alternating projections always failed. It never found the correct
solution or even an approximation with a relative MSE less than 1. With four illuminations the
alternating projections algorithm computed the correct solution in about 40% of the experiments,
and returned a relative MSE larger than 1 in the other 60%. As we increase the number of masks,
the behavior of alternating projections improved, it succeeded in about 99% of the experiments
with eight Gaussian illuminations.

Noisy measurements

In the next set of experiments, we consider the case when the measurements are contaminated with
Poisson noise. The test signal is again a complex random signal as above. Four, six, and eight
illuminations with random binary masks are used. We add random Poisson noise to the measure-
ments for five different SNR levels, ranging from about 16dB to about 52dB. Since the solution
is known, we have calculated reconstructions for various values of the parameter λ balancing the
negative log-likelihood and the trace norm, and report results for that λ giving the lowest MSE. We
implemented this strategy via the standard Golden Section Search [50]. In practice one would have
to find the best λ via a strategy like cross validation (CV) or generalized cross validation (GCV).
For each SNR level we repeated the experiment ten times with different random noise and different
binary masks.

Figure 2.4 shows the average relative MSE in dB (the values of 10 log10(rel. MSE) are plotted)
versus the SNR. The error curves show clearly the desirable linear behavior between SNR and
MSE with respect to the log-log scale. The performance degrades very gracefully with decreas-
ing SNR. Furthermore, the difference of about 5dB between the error curve associated with four
measurement and the error curve associated with eight measurements corresponds to an almost
twofold error reduction, which is about as much improvement as one can hope to gain by doubling
the number of measurements.

We repeat this experiment with determinstic masks as described in Section 2.4 (see (3.2.1))
instead of random masks. To achieve robustness vis a vis noise, three masks (as in Theorem 2.4.1)
do not seem to suffice. We thus collect 7n measurements of the form |Fnx|2, and then {|Fn(x +
Dsx)|2, |Fn(x − iDsx)|2 with s = 3, 5, 7 as in (3.2.1). The recovery is very stable and the per-
formance curve is shown in Figure 2.5. For comparison we also show the peformance curve cor-
responding to seven Gaussian random masks. Gaussian random masks yield better MSE in this
example.

2-D simulations
We consider a stylized version of a setup one encounters in X-ray crystallography or diffraction
imaging. The test image, shown in Figure 2.6(a) (magnitude), is a complex-valued image of size
256× 256, whose pixel values correspond to the complex transmission coefficients of a collection
of gold balls embedded in a medium.
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Figure 2.4: Relative MSE versus SNR on a dB-scale for different numbers of illuminations
with binary masks. The linear relationship between SNR and MSE is apparent.

Figure 2.5: Relative MSE versus SNR on a dB-scale: seven illuminations with deterministic
masks and with random masks.
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Noisefree measurements

In the first experiment, we demonstrate the recovery of the image shown in Figure 2.6(a) from
noiseless measurements. We consider two different types of illuminations. The first type uses
Gaussian random masks in which the coefficients on the diagonal of Wk are independent real-
valued standard normal variables. We use four illuminations, one being constant, i.e. W1 = I , and
the other three Gaussian. Again, we choose a small value of λ set to 0.05 in 1

2
‖b − A(X)‖2

2 +
λTr(X) since we have no noise, and stop the reweighting iterations as soon as the residual error
obeys ‖A(x̂0x̂

∗
0)− b‖2 ≤ 10−4‖b‖2. The reconstruction, shown in Figure 2.6(b), is visually indis-

tinguishable from the original. Since the original image and the reconstruction are complex-valued,
we only display the absolute value of each image throughout this and the next subsection.

Gaussian random masks may not be realizable in practice. Our second example uses simple
random binary masks, where the entries are either 0 or 1 with equal probability. In this case, a
larger number of illuminations as well as a larger number of reweighting steps are required to
achieve a reconstruction of comparable quality. The result for eight binary illuminations is shown
in Figure 2.6(c).

We repeated the experiment using as test signal an image with independent standard normal
complex entries; that is, an entry is of the form z1 + iz2 where z1 and z2 are independent N (0, 1)
variables. Here, four Gaussian masks were not sufficient, but we did achieve successful recovery
with five Gaussian masks. We also applied the alternating projection algorithm to both test images.
In the goldballs example, alternating projections succeeded both with four Gaussian masks and
with eight binary masks. For the random image, however, alternating projections always failed
when we used five Gaussian masks. As in the one-dimensional example, the performance of alter-
nating projections improved as we increased the number of masks, eventually yielding consistent
recovery of the correct image when we employed eight or more Gaussian masks.

Noisy measurements

In the second set of experiments we consider the same test image as before, but now with noisy
measurements. In the first experiment the SNR is 20dB, in the second experiment the SNR is
60dB. We use 32 Gaussian random masks in each case. The resulting reconstructions are depicted
in Figure 2.7(a) (20dB case) and Figure 2.7(b) (60dB case). The MSE in the 20dB case is 11.83dB.
While the reconstructed image appears slightly more “fuzzy” than the original image, all features
of the image are clearly visible. In the 60dB case the MSE is 47.96dB, and the reconstruction is
virtually indistinguishable from the original image.

Multiple measurements via oversampling

Oversampling of two-dimensional signals is widely used to overcome the nonuniqueness of the
phase retrieval problem. We now explore whether this approach is viable.

Here, we consider signals with real, non-negative values as test images, a case frequently con-
sidered in the literature, see e.g. [66, 64, 63]. These images are of size 128×128. We take noiseless
measurements and apply PhaseLift as the alternating projection algorithm (also known as Fienup’s
Error Reduction Algorithm) [6, Section 4.A]. For each method, we terminate the iterations if the
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Figure 2.6: Original goldballs image and reconstructions via PhaseLift. Top: original image.
Middle Left: reconstruction using 3 Gaussian masks. Middle Right: Reconstruction using 8
binary masks. Bottom: Error between Top and Middle Right.
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Figure 2.7: Reconstructions from noisy data via PhaseLift using 32 Gaussian random masks.
Top: Low SNR. Bottom: High SNR.

relative residual error is less than 10−3 or if the relative error between two successive iterates is less
than 10−6. Since we assume that the support of the signal is known, there is no ambiguity of the
solution with respect to translations. Moreover, the support is chosen to be non-symmetric around
the origin, thus there is also no ambiguity with respect to reflections around the origin. Finally,
since the signal is real valued and positive, there is no ambiguity with respect to global phase in
this case.

• The simulations show that PhaseLift yields reconstructions that fit the measured data well,
yielding a small relative residual error ‖A(X) − y‖2/‖y‖2, yet the reconstructions are far
away from the true signal. This behavior is indicative of an ill-conditioned problem.

• The iterates of the alternating projection algorithm stagnated most of the time without con-
verging to a solution. At other times it did yield reconstructions that fit the measured data
well, but in either case the reconstruction was always very different from the true signal.
Moreover, the reconstructions vary widely depending on the initial (random) guess.
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Table 2.1 displays the results of PhaseLift as well as the alternating projection algorithm as de-
scribed in [6, Section 4. A] (the other versions discussed in Section 4 of [6] yield comparable
results). The setup is this: we oversample the signal in each dimension by a factor of r, where
r = 2, 3, 4, 5. For each oversampling rate, we run ten experiments using a different test signal
each time. The table shows the average residual errors over ten runs as well as the average relative
MSE. The ill-posedness of the problem is evident from the disconnect between small residual error
and large reconstruction error; that is to say, we fit the data very well and yet observe a large re-
construction error. Thus, in stark contrast to what is widely believed, our simulations indicate that
oversampling by itself is not a viable strategy for phase retrieval even for non-negative, real-valued
images.

Algorithm | Oversampling 2 3 4 5
‖A(X)− y‖2/‖y‖2 (Alt.Proj.) 0.0650 0.0607 0.0541 0.0713

Relative MSE (Alt.Proj.) 0.6931 0.6882 0.6736 0.6878
‖A(X)− y‖2/‖y‖2 (PhaseLift) 0.0051 0.0055 0.0056 0.0052

Relative MSE (PhaseLift) 0.4932 0.4893 0.4960 0.4981

Table 2.1: MSE obtained by alternating projections and by PhaseLift with reweighting from
oversampled DFT measurements taken on 2D real-valued and positive test images. The alter-
nating projection algorithm does not always find a signal consistent with the data as well as
the support constraint. (After the projection step in the spatial domain, the current guess does
not always match the measurement in Fourier space. After ‘projection’ in Fourier space, the
signal is not the Fourier transform of a signal obeying the spatial constraints.) Our approach
always finds signals matching measured data very well, and yet the reconstructions achieve a
large reconstruction error. This indicates severe ill-posedness since we have several distinct
solutions providing an excellent fit to the measured data.

2.6 Discussion
This chapter introduces a novel framework for phase retrieval, combining multiple illuminations
with tools from convex optimization, which has been shown to work very well in practice and bears
great potential. This work also calls for theory, improved algorithms and a physical implementation
of these ideas. For now, we would like to bring up important open problems.

At the theoretical level, we need to understand for which families of physically implementable
structured illuminations does the trace-norm heuristic succeed? How many diffraction patterns
are provably sufficient for the PhaseLift convex programming approach to work? Also, we have
empirically shown that our approach is robust to noise in the sense that the performance degrades
very gracefully as the SNR decreases. Can this be made rigorous?

In the next chapter, it will be proven that for measurement vectors sampled independently
and uniformly at random on the unit sphere, PhaseLift indeed reconstructs signals from noiseless
measurements and is robust to noise, provided that the number of measurements is on the order of
n log n.
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Chapter 3

PhaseLift for gaussian measuremenets

3.1 Overview
Suppose we wish to recover a signal x ∈ Cn fromm intensity measurements of the form |〈x, zi〉|2,
i = 1, 2, . . . ,m; that is, from data in which phase information is missing. We prove that if the
vectors zi are sampled independently and uniformly at random on the unit sphere, then the signal
x can be recovered exactly (up to a global phase factor) by solving a convenient semidefinite
program—a trace-norm minimization problem; this holds with large probability provided thatm is
on the order of n log n, and without any assumption about the signal whatsoever. This novel result
demonstrates that in some instances, the combinatorial phase retrieval problem can be solved by
convex programming techniques. Finally, we also prove that our methodology is robust to additive
noise.

3.2 Introduction
Formally, suppose x ∈ Cn is a discrete signal and that we are given information about the squared
modulus of the inner product between the signal and some vectors zi, namely,

bi = |〈x, zi〉|2, i = 1, . . . ,m. (3.2.1)

In truth, we would like to know 〈x, zi〉 and record both phase and magnitude information but can
only record the magnitude; in other words, phase information is lost. In the classical example
discussed above, the zi’s are complex exponentials at frequency ωi so that one collects the squared
modulus of the Fourier transform of x. Of course, many other choices for the measurement vectors
zi are frequently discussed in the literature, see [36, 5] for instance.

We wish to recover x from the data vector b, and suppose first that x is known to be real valued
a priori. Then assuming that x is uniquely determined by b up to a global sign, the recovery may
be cast as a combinatorial optimization problem: find a set of signs σi such that the solution to the
linear equations 〈x, zi〉 = σi

√
bi, call it x̂, obeys | 〈x̂, zi〉 |2 = bi. Clearly, there are 2m choices for

σi and only two choices of these signs yield x up to global phase. The complex case is harder yet,
since resolving the phase ambiguities now consists of finding a collection σi of complex numbers,
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each being on the unit circle. Formalizing matters, it has been shown that at least one version of
the phase retrieval problem is NP-hard [78]. Thus, one of the major challenges in the field is to find
conditions on m and zi which guarantee efficient numerical recovery.

A frame-theoretic approach to signal recovery from magnitude measurements has been pro-
posed in [3, 4, 5], where the authors derive various necessary and sufficient conditions for the
uniqueness of the solution, as well as various polynomial-time numerical algorithms for very spe-
cific choices of zi. While theoretically quite appealing, the drawbacks are that the methods are (1)
either algebraic in nature, thus severely limiting their stability in the presence of noise or slightly
inexact data, or (2) the number m of measurements is on the order of n2, which is much too large
compared to the number of unknowns.

Here we follow a different route and establish that if the vectors zi are independently and uni-
formly sampled on the unit sphere, then our signal can be recovered exactly from the magnitude
measurements (3.2.1) by solving a simple convex program introduced below; this holds with high
probability under the condition that the number of measurements is on the order of n log n. Since
there are n complex unknowns, we see that the number of samples is nearly minimal. To the best of
our knowledge, this is the first result establishing that under appropriate conditions, the computa-
tionally challenging nonconvex problem of reconstructing a signal from magnitude measurements
is formally equivalent to a convex program in the sense that they are guaranteed to have the same
unique solution.

Finally, our methodology is robust with respect to noise in the measurements. That is, when
the data are corrupted by a small amount of noise, we also prove that the recovery error is small.

Methodology
We introduce some notation that shall be used throughout to explain our methodology. Letting A
be the linear transformation

Hn×n → Rm

X 7→ {z∗iXzi}1≤i≤m
(3.2.2)

which maps Hermitian matrices into real-valued vectors, one can express the data collection bi =
|〈x, zi〉|2 as

b = A(xx∗). (3.2.3)

For reference, the adjoint operator A∗ maps real-valued inputs into Hermitian matrices, and is
given by

Rm → Hn×n

y 7→
∑

i yi ziz
∗
i .

As observed in [24, 22] (see also [56]), the phase retrieval problem can be cast as the matrix
recovery problem

minimize rank(X)
subject to A(X) = b

X � 0.
(3.2.4)

Indeed, we know that a rank-one solution exists so the optimal X has rank at most one. We then
factorize the solution as xx∗ in order to obtain solutions to the phase-retrieval problem. This gives
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x up to multiplication by a unit-normed scalar. This is all we can hope for since if x is a solution
to the phase retrieval problem, then cx for any scalar c ∈ C obeying |c| = 1 is also solution.1

Rank minimization is in general NP hard, and we propose, instead, solving a trace-norm relax-
ation. Although this is a fairly standard relaxation in control [8, 62], the idea of casting the phase
retrieval problem as a trace-minimization problem over an affine slice of the positive semidefinite
cone is very recent [24, 22]. Formally, we suggest solving

minimize Tr(X)
subject to A(X) = b

X � 0.
(3.2.5)

If the solution has rank one, we factorize it as above to recover our signal. This method which lifts
up the problem of vector recovery from quadratic constraints into that of recovering a rank-one
matrix from affine constraints via semidefinite programming is known under the name of PhaseLift
[22].

The program (3.2.5) is a semidefinite program (SDP) in standard form, and there is a rapidly
growing list of algorithms for solving problems of this kind as efficiently as possible. The crucial
question is whether and under which conditions the combinatorially hard problem (3.2.4) and the
convex problem (3.2.5) are formally equivalent.

Main result
In this chapter, we consider the simplest and perhaps most natural model of measurement vectors.
In this statistical model, we simply assume that the vectors zi are independently and uniformly
distributed on the unit sphere of Cn or Rn. To be concrete, we distinguish two models.

• The real-valued model. Here, the unknown signal x is real valued and the zi’s are indepen-
dently sampled on the unit sphere of Rn.

• The complex-valued model. The signal x is now complex valued and the zi’s are indepen-
dently sampled on the unit sphere of Cn.

Our main result is that the convex program recovers x exactly (up to global phase) provided
the number m of magnitude measurements is on the order of n log n.

Theorem 3.2.1 Consider an arbitrary signal x in Rn or Cn and suppose that the number of mea-
surements obeys m ≥ c0 n log n, where c0 is a sufficiently large constant. Then in both the real and
complex cases, the solution to the trace-minimization program is exact with high probability in the
sense that (3.2.5) has a unique solution obeying

X̂ = xx∗. (3.2.6)

This holds with probability at least 1− 3e−γ
m
n , where γ is a positive absolute constant.

1When the solution is unique up to multiplication by such a scalar, we shall say that unicity holds up to global
phase.
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Expressed differently, Theorem 3.2.1 establishes a rigorous equivalence between a class of

phase retrieval problems and a class of semidefinite programs. Clearly, any phase retrieval algo-
rithm, no matter how complicated or intractable, would need at least 2n quadratic measurements to
recover a complex valued object x ∈ Cn. In fact recent results, compare Theorem II in [36], show
that for complex-valued signals, one needs at least 3n − 2 intensity measurements to guarantee
uniqueness of the solution to (3.2.4). Further, Balan, Casazza and Edidin have shown that with
probability 1, 4n − 2 generic measurement vectors (which includes the case of random uniform
vectors) suffice for uniqueness in the complex case [3].

Geometry
We find it remarkable that the only solution to (3.2.5) is X̂ = xx∗. To see why this is perhaps
unexpected, suppose for simplicity that the trace of the solution were known (we might be given
some side information or just have additional measurements giving us this information) and equal
to 1, say. In this case, the objective functional is of course constant over the feasible set, and our
problem reduces to solving the feasibility problem

find X
such that A(X) = b, X � 0

(3.2.7)

with again the assumption that knowledge of A(X) determines Tr(X) (equal to Tr(xx∗) =
‖x‖2 = 1). In this context, our main theorem states that xx∗ is the unique feasible point. In other
words, there is no other positive semidefinite matrix X in the affine space A(X) = b. Naively,
we would not expect this affine space of large dimension—it is of co-dimension about n log n
and thus of dimension n2 − O(n log n) in the complex case—to intersect the positive semidefi-
nite cone in only one point. Indeed, counting degrees of freedom suggests that there are infinitely
many candidates in the intersection. The reason why this is not the case, however, is precisely
because there is a feasible solution with low rank. Indeed, the slice of the positive semidefinite
cone {X : X � 0} ∩ {Tr(X) = 1} is quite ‘pointy’ at xx∗ and it is, therefore, possible for the
affine space {A(X) = b} to be tangent even though it is of very small codimension.

Figure 3.1 represents this geometry. In this example,

x =
1√
2

[
1
−1

]
=⇒ xx∗ =

1

2

[
1 −1
−1 1

]
and the affine space A(X) = b is tangent to the positive semidefinite cone at the point xx∗.

Phase retrieval may be framed a problem in algebraic geometry since we are trying to find a
solution to a set of polynomial equations. For instance, we prove that there is no other positive
semidefinite matrix X in the affine space A(X) = b, or equivalently, that a certain system of
polynomial equations (a symmetric matrix is positive semidefinite if and only if the determinants
of all the leading principal minors are nonnegative) only has one solution; this is a fact that general
techniques from algebraic geometry appear to not detect.



CHAPTER 3. PHASELIFT FOR GAUSSIAN MEASUREMENETS 29

Figure 3.1: Representation of the affine space A(X) = b (gray) and of the semidefinite cone[
x y
y z

]
� 0 (red) which is a subset of R3. These two sets are drawn so that they are tangent

to each other at the rank 1 matrix 1
2

[
1 −1
−1 1

]
(black dot). Two views of the same 3D figure

are provided for convenience.

Stability
In the real world, measurements are contaminated by noise. Using the frameworks developed
in [18] and [40], it is possible to extend Theorem 3.2.1 to accommodate noisy measurements. One
could consider a variety of noise models as discussed in [22] but we work here with a simple
generic model in which we observe

bi = |〈x, zi〉|2 + νi, (3.2.8)

where νi is a noise term with bounded `2 norm, ‖ν‖2 ≤ ε. This model is nonstandard since
the usual statistical linear model posits a relationship of the form bi = 〈x, zi〉 + νi in which the
mean response is a linear function of the unknown signal, not a quadratic function. Furthermore,
we prefer studying (3.2.8) rather than the related model bi = |〈x, zi〉| + νi (the modulus is not
squared) because in many applications of interest in optics and other areas of physics, one can
measure squared magnitudes or intensities—not magnitudes.

We now consider the solution to

minimize Tr(X)
subject to ‖A(X)− b‖2 ≤ ε

X � 0.
(3.2.9)

We do not claim that X̂ has low rank so we suggest estimating x by extracting the largest rank-1
component. Write X̂ as

X̂ =
n∑
k=1

λ̂kûkû
∗
k, λ̂1 ≥ . . . ≥ λ̂n ≥ 0,
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and set

x̂ =

√
λ̂1 û1.

We prove the following estimate.

Theorem 3.2.2 Fix x ∈ Cn or Rn and assume the zi’s are uniformly sampled on the sphere of
radius

√
n. Under the hypotheses of Theorem 3.2.1, the solution to (3.2.9) obeys (‖X‖2 is the

Frobenius norm ofX)
‖X̂ − xx∗‖2 ≤ C0 ε (3.2.10)

for some positive numerical constant C0. We also have

‖x̂− eiφx‖2 ≤ C0 min(‖x‖2, ε/‖x‖2) (3.2.11)

for some φ ∈ [0, 2π]. Both these estimates hold with nearly the same probability as in the noiseless
case.

Thus our approach also provides stable recovery in presence of noise. This important property
is not shared by other reconstruction methods, which are of a more algebraic nature and rely on
particular properties of the measurement vectors, such as the methods in [36, 3, 5], as well as the
methods that appear implicitly in Theorem 3.1 and Theorem 3.3 of [22].

We note that one can further improve the accuracy of the solution x̂ by “debiasing” it. We

replace x̂ by its rescaled version sx̂ where s =
√∑n

k=1 λ̂k/‖x̂‖2. This corrects for the energy

leakage occurring when X̂ is not exactly a rank-1 solution, which could cause the norm of x̂ to be
smaller than that of the actual solution. Other corrections are of course possible.

Organization
The remainder of the chapter is organized as follows. Subsection 3.2 introduces some notation
used throughout. In Section 3.3 we present the main architecture of the proof of Theorem 3.2.1,
which comprises two key ingredients: approximate `1 isometries and approximate dual certificates.
Section 3.4 is devoted to establishing approximate `1 isometries. In Section 3.5, we construct ap-
proximate dual certificates and complete the proof of Theorem 3.2.1 in the real-valued case. Sec-
tion 3.6 shows how the proof for the real-valued case can be adapted to the complex-valued case.
Section 3.7 is concerned with the proof of Theorem 3.2.2. Numerical simulations, illustrating our
theoretical results, are presented in Section 3.8. We conclude the chapter with a short discussion
in Section 3.9.

Notations
Here we introduce notations that shall be used throughout the chapter. Matrices and vectors are
denoted in boldface (such asX or x), while individual entries of a vector or matrix are denoted in
normal font; e.g. the ith entry of x is xi. For matrices, we define

‖X‖p =
[∑

i

σpi (X)
]1/p

,
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(where σi(X) denotes the ith singular value ofX), so that ‖X‖1 is the nuclear norm, ‖X‖2 is the
Frobenius norm and ‖X‖∞ is the operator norm also denoted by ‖X‖. For vectors, ‖x‖p is the
usual `p norm. We denote the n−1 dimensional sphere by Sn−1, i.e. the set {x ∈ Rn : ‖x‖2 = 1}.

Next, we define Tx to be the set of symmetric matrices of the form

Tx = {X = xy∗ + yx∗ : y ∈ Rn} (3.2.12)

and denote T⊥x by its orthogonal complement. Note that X ∈ T⊥x if and only if both the column
and row spaces of X are perpendicular to x. Further, the operator PTx is the orthogonal projector
onto Tx and similarly for PT⊥x . We shall almost always useXTx as a shorthand for PTx(X).

Finally, we will abuse language and say that a symmetric matrix H is feasible if and only if
xx∗ +H is feasible for our problem (3.2.5). This means thatH obeys

xx∗ +H � 0 and A(H) = 0. (3.2.13)

3.3 Architecture of the Proof
In this section, we introduce the main architecture of the argument and defer the proofs of crucial
intermediate results to later sections. We shall prove Theorem 3.2.1 in the real case first for ease
of exposition. Then in Section 3.6, we shall explain how to modify the argument to the complex
and more general case.

Suppose then that x ∈ Rn and that the zi’s are sampled on the unit sphere. It is clear that we
may assume without loss of generality that x is unit-normed. Further, since the uniform distribu-
tion on the unit sphere is rotationally invariant, it suffices to prove the theorem in the case where
x = e1. Indeed, we can write any unit vector x as x = Ue1 where U is orthogonal. Since

|〈x, zi〉|2 = |〈Ue1, zi〉|2 = |〈e1,U
∗zi〉|2 =d |〈e1, zi〉|2,

the problem is the same as that of finding e1. We henceforth assume that x = e1.
Finally, the theorem can be equivalently stated in the case where the zi’s are i.i.d. copies of

a white noise vector z ∼ N (0, I) with independent standard normals as components. Indeed, if
zi ∼ N (0, I),

|〈x, zi〉|2 = bi ⇐⇒ |〈x,ui〉|2 = bi/‖zi‖2
2,

where ui = zi/‖zi‖2 is uniformly sampled on the unit sphere. Since ‖zi‖2 does not vanish with
probability one, establishing the theorem for Gaussian vectors establishes it for uniformly sampled
vectors and vice versa. From now on, we assume zi i.i.d. N (0, I).

Key lemma
The set T := Te1 defined in (3.2.12) may be interpreted as the tangent space at e1e

∗
1 to the manifold

of symmetric matrices of rank 1. Now standard duality arguments in semidefinite programming
show that a sufficient (and nearly necessary) condition for xx∗ to be the unique solution to (3.2.5)
is this:
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• the restriction of A to T is injective (X ∈ T and A(X) = 0⇒X = 0),

• and there exists a dual certificate Y in the range of A∗ obeying2

YT = e1e
∗
1 and Y ⊥T ≺ I⊥T . (3.3.1)

The proof is straightforward and omitted. Our strategy to prove Theorem 3.2.1 hinges on the fact
that a strengthening of the injectivity property allows to relax the properties of the dual certificate,
as in the approach pioneered in [39] for matrix completion. We establish the crucial lemma below.

Lemma 3.3.1 Suppose that the mapping A obeys the following two properties: for all positive
semidefinite matrices X ,

m−1‖A(X)‖1 < (1 + 1/9)‖X‖1; (3.3.2)

and for all matricesX ∈ T

m−1‖A(X)‖1 > 0.94(1− 1/9)‖X‖. (3.3.3)

Suppose further that there exists Y in the range of A∗ obeying

‖YT − e1e
∗
1‖2 ≤ 1/3 and ‖Y ⊥T ‖ ≤ 1/2. (3.3.4)

Then e1e
∗
1 is the unique minimizer to (3.2.5).

The first property (3.3.2) is reminiscent of the (one-sided) RIP property in the area of com-
pressed sensing [17]. The difference is that it is expressed in the 1-norm rather than the 2-norm.
Having said this, we note that RIP-1 properties have also been used in the compressed sensing lit-
erature, see [11] for example. We use this property instead of a property about ‖A(X)‖2, because
a RIP property in the 2-norm does not hold here because ‖A(X)‖2

2, as we prove in the appendix,
essentially because it involves fourth moments of Gaussian variables. The second property (3.3.3)
is a form of local RIP-1 since it holds only for matrices in T .

We would like to emphasize that the bound for the dual certificate in (3.3.4) is loose in the sense
that YT and e1e

∗
1 may not be that close, a fact which will play a crucial role in our proof. This is

in stark contrast with the work of David Gross [39], which requires a very tight approximation.

Proof of Lemma 3.3.1
We need to show that there is no feasible xx∗ + H 6= xx∗ with Tr(xx∗ + H) ≤ Tr(xx∗).
Consider then a feasibleH 6= 0 obeying Tr(H) ≤ 0, write

H = HT +H⊥T ,

and observe that
0 = ‖A(H)‖1 = ‖A(HT )‖1 − ‖A(H⊥T )‖1. (3.3.5)

2The notation A ≺ B means that B −A is positive definite.
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Now it is clear that xx∗ +H � 0⇒H⊥T � 0 and, therefore, (3.3.2) gives

m−1‖A(H⊥T )‖1 ≤ (1 + δ) Tr(H⊥T )

for some δ < 1/9. Also, Tr(HT ) ≤ −Tr(H⊥T ) ≤ 0, which implies that |Tr(HT )| ≥ Tr(H⊥T ).
We then show that the operator and Frobenius norms ofHT must nearly be the same.

Lemma 3.3.2 Any feasible matrixH such that Tr(H) ≤ 0 must obey

‖HT‖2 ≤
√

17

16
‖HT‖.

Proof Since the matrixHT has rank at most 2 and cannot be negative definite, it is of the form

−λ(u1u
∗
1 − tu2u

∗
2),

where u1 and u2 are orthonormal eigenvectors, λ ≥ 0 and t ∈ [0, 1]. We claim that we cannot
have t ≥ 1/4.3 Suppose the contrary and fix t ≥ 1/4. By (3.3.3), we know that

m−1 ‖A(HT )‖1 ≥ 0.94(1− δ)‖HT‖.

Further, since

‖HT‖ =
|Tr(HT )|

1− t
≥ 4

3
|Tr(HT )|

for t ≥ 1/4, it holds that

0 ≥ 5

4
(1− δ) |Tr(HT )| − (1 + δ) Tr(H⊥T ).

The right-hand side above is positive if Tr(H⊥T ) < 5
4

(1−δ)
(1+δ)

|Tr(HT )|, so that we may assume that

Tr(H⊥T ) ≥ 5

4

(1− δ)
(1 + δ)

|Tr(HT )| .

Since, |Tr(HT )| ≥ Tr(H⊥T ), this gives

0 ≥
[5

4
(1− δ)− (1 + δ)

]
Tr(H⊥T ).

If δ < 1/9, the only way this can happen is if Tr(H⊥T ) = 0 ⇒ H⊥T = 0. So we would have
H = HT of rank 2 and A(HT ) = 0. Clearly, (3.3.3) implies thatH = 0.

Now that it is established that t ≤ 1/4, the chain of inequalities follow from the relation
between the eigenvalues ofHT .

3The choice of 1/4 is somewhat arbitrary here.
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To conclude the proof of Lemma 3.3.1, we show that the existence of an inexact dual certificate

rules out the existence of matrices obeying the conditions of Lemma 3.3.2. From

0.94(1− δ)‖HT‖ ≤ m−1‖A(HT )‖1 = m−1‖A(H⊥T )‖1 ≤ (1 + δ) Tr(H⊥T ),

we conclude that

Tr(H⊥T ) ≥ 0.94
1− δ
1 + δ

‖HT‖ ≥ 0.94
1− δ
1 + δ

√
16

17
‖HT‖2, (3.3.6)

where we used Lemma 3.3.2. Next,

0 ≥ Tr(HT ) + Tr(H⊥T ) = 〈H , e1e
∗
1〉+ Tr(H⊥T )

= 〈H , e1e
∗
1 − Y 〉+ 〈H ,Y 〉+ Tr(H⊥T )

= 〈HT , e1e
∗
1 − YT 〉 − 〈H⊥T ,Y ⊥T 〉+ Tr(H⊥T )

≥ 1

2
Tr(H⊥T )− 1

3
‖HT‖2.

The third line above follows from 〈H ,Y 〉 = 0 and the fourth from Cauchy-Schwarz together with
|〈H⊥T ,Y ⊥T 〉| ≤ 1

2
Tr(H⊥T ). Hence, it follows from (3.3.6) that

0 ≥ 1

2

(
0.94

1− δ
1 + δ

√
16

17
− 2

3

)
‖HT‖2.

Since the numerical factor is positive for δ < 0.155, the only way this can happen is ifHT = 0. In
turn, ‖A(H⊥T )‖1 = 0 ≥ (1− δ) Tr(H⊥T ) which givesH⊥T = 0. This concludes the proof.

3.4 Approximate `1 Isometries
We have seen that in order to prove our main result, it suffices to show 1) that the measurement op-
eratorA enjoys approximate isometry properties (in an `1 sense) when acting on low-rank matrices
and 2) that an inexact dual certificate exists. This section focuses on the former and establishes
that both (3.3.2) and (3.3.3) hold with high probability. In fact, we shall prove stronger results than
what is strictly required.

Lemma 3.4.1 Fix any δ in (0, 1/2) and assume m ≥ 20δ−2 n. Then for all unit vectors u,

(1− δ) ≤ 1

m
‖A(uu∗)‖1 ≤ (1 + δ) (3.4.1)

on an event Eδ of probability at least 1− 2e−mε
2/2, where δ/4 = ε2 + ε. On the same event,

(1− δ)‖X‖1 ≤
1

m
‖A(X)‖1 ≤ (1 + δ)‖X‖1

for all positive semidefinite matrices. The right inequality holds for all Hermitian matrices.
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Proof This lemma has an easy proof. Let Z be the m× n matrix with zi’s as rows. Then

‖A(uu∗)‖1 =
∑
i

|〈zi,u〉|2 = ‖Zu‖2

so that
σ2

min(Z) ≤ ‖A(uu∗)‖1 ≤ σ2
max(Z).

The claim is a consequence of well-known deviations bounds concerning the singular values of
Gaussian random matrices [85], namely,

P
(
σmax(Z) >

√
m+

√
n+ t

)
≤ e−t

2/2

P
(
σmin(Z) <

√
m−

√
n− t

)
≤ e−t

2/2.

The conclusion follows from taking m ≥ ε−2 n and t =
√
mε (and from ε2 ≥ δ2/20 for 0 <

δ ≤ 1/2). For the second part of the lemma, observe that X =
∑

j λjuju
∗
j with nonnegative

eigenvalues λj so that

‖A(X)‖1 =
∑
j

∑
i

λj|〈uj, zi〉|2 =
∑
j

λj‖A(uju
∗
j)‖1.

The claim follows from (3.4.1). The last claim is a consequence of

‖A(X)‖1 ≤
∑
j

∑
i

|λj||〈uj, zi〉|2

together with
∑

j |λj| = ‖X‖1.

Our next result is concerned with the mapping of rank-2 matrices.

Lemma 3.4.2 Fix δ > 0. Then there are positive numerical constants c0 and γ0 such that if
m ≥ c0 [δ−2 log δ−1]n, A obeys the following property with probability at least 1− 3e−γ0mδ

2
: for

any symmetric rank-2 matrixX ,

1

m
‖A(X)‖1 ≥ 0.94(1− δ)‖X‖. (3.4.2)

Proof By homogeneity, it suffices to consider the case where ‖X‖ = 1. Consider then a rank-2
matrix X with eigenvalue decomposition X = u1u

∗
1 − tu2u

∗
2 with t ∈ [−1, 1] and orthonormal

ui’s. Note that for t ≤ 0, Lemma 3.4.1 already claims a tighter lower bound so it only suffices to
consider t ∈ [0, 1]. We have

1

m
‖A(X)‖1 =

1

m

m∑
i=1

∣∣∣|〈u1, zi〉|2 − t|〈u2, zi〉|2
∣∣∣ =

1

m

∑
i

ξi,

where the ξi’s are independent copies of the random variable

ξ = |Z2
1 − tZ2

2 |
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Figure 3.2: f(t) = E |Z2
1 − tZ2

2 | as a function of t.

in which Z1 and Z2 are independent standard normal variables. This comes from the fact that
〈u1, zi〉 and 〈u2, zi〉 are independent standard normal. We calculate below that

E ξ = f(t) =
2

π

(
2
√
t+ (1− t)(π/2− 2 arctan(

√
t))
)
. (3.4.3)

The graph of this function is shown in Figure 3.2; we check that f(t) ≥ 0.94 for all t ∈ [0, 1].
We now need a deviation bound concerning the fluctuation of m−1

∑
i ξi around its mean and

this is achieved by classical Chernoff bounds. Note that ξ ≤ Z2
1 + |t|Z2

2 is a sub-exponential
variable and thus, ‖ξ‖ψ1 := supp≥1 [E |ξ|p]1/p is finite.4

Lemma 3.4.3 (Bernstein-type inequality [85]) Let X1, . . . , Xm be i.i.d. sub-exponential random
variables. Then

P
(∣∣∣ 1

m

m∑
i=1

Xi − EX1

∣∣∣ ≥ ε
)
≤ 2 exp

[
−c0mmin

( ε2

‖X‖2
ψ1

,
ε

‖X‖ψ1

)]
in which c0 is a positive numerical constant.

We have thus established that for a fixed X ,

m−1‖A(X)‖1 ≥ (0.94− ε0)‖X‖

with probability at least 1− 2e−γ0mε
2
0 (provided ε0 ≤ ‖ξ‖ψ1 , which we assume).

To complete the argument, let Sε be an ε net of the unit sphere, Tε be an ε net of [0, 1], and set

Nε = {X = u1u
∗
1 − tu2u

∗
2 : (u1,u2, t) ∈ Sε × Sε × Tε}.

Since |Sε| ≤ (3/ε)n, we have
|Nε| ≤ (3/ε)2n+1.

4It would be possible to compute a bound on this quantity but we will not pursue this at the moment.
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Now for any X = uu∗ − tvv∗, consider the approximation X0 = u0u

∗
0 − t0v0v

∗
0 ∈ Nε, where

‖u0 − u‖2, ‖v − v0‖2 and |t− t0| are each at most ε. We claim that

‖X −X0‖1 ≤ 9ε, (3.4.4)

and postpone the short proof. On the intersection of

E1 = {m−1‖A(X)‖1 ≤ (1 + δ1)‖X‖1, for allX}

with E2 := {m−1‖A(X0)‖1 ≥ (0.94− ε)‖X0‖, for allX0 ∈ Nε},

m−1‖A(X)‖1 ≥ ‖A(X0)‖1 − ‖A(X −X0)‖1

≥ (0.94− ε)‖X0‖ − 9(1 + δ1)ε

≥ (0.94− ε)(‖X‖ − ‖X0 −X‖)− 9(1 + δ1)ε

≥ (0.94− ε)(1− 5ε)− 9(1 + δ1)ε

≥ 0.94− (15 + 9δ1)ε,

which is the desired bound by setting 0.94δ = (15 + 9δ1)ε. In conclusion, set δ1 = 1/2 and
take ε = 0.94δ/20. Then E1 holds with probability at least 1 − O(e−γ1mε

2
) provided m obeys

the condition of the theorem. Further, Lemma 3.4.2 states that E2 holds with probability at least
1− 2e−γ2m. This concludes the proof provided we check (3.4.4).

We begin with

‖X −X0‖1 ≤ ‖uu∗ − u0u
∗
0‖1 + |t− t0|‖vv∗‖1 + |t0|‖vv∗ − v0v

∗
0‖1.

Now
‖uu∗ − u0u

∗
0‖1 ≤ 2‖uu∗ − u0u

∗
0‖ ≤ 4‖u− u0‖2,

where the first inequality follows from the fact that uu∗−u0u
∗
0 is of rank at most 2, and the second

follows from

‖uu∗ − u0u
∗
0‖ = sup

‖x‖2=1

∣∣∣〈u0,x〉2 − 〈u,x〉2
∣∣∣

= sup
‖x‖2=1

∣∣∣〈u− u0,x〉〈u+ u0,x〉
∣∣∣ ≤ ‖u− u0‖2‖u+ u0‖2 ≤ 2‖u− u0‖2.

Similarly, ‖vv∗ − v0v
∗
0‖1 ≤ 4ε and this concludes the proof.5

Lemma 3.4.4 Let Z1 and Z2 be independent N (0, 1) variables and t ∈ [0, 1]. We have

E|Z2
1 − tZ2

2 | = f(t),

where f(t) is given by (3.4.3).
5The careful reader will remark that we have also used ‖X−X0‖ ≤ 5ε, which also follows from our calculations.
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Proof Set

ρ =
1− t
1 + t

and cos θ = ρ

in which θ ∈ [0, π/2]. By using polar coordinates, we have

E |Z2
1 − tZ2

2 | =
1

2π

∫ ∞
0

r3e−r
2/2 dr

∫ 2π

0

| cos2 φ− t sin2 φ| dφ

=
1

π

∫ 2π

0

| cos2 φ− t sin2 φ| dφ

=
2

π

∫ π

0

| cos2 φ− t sin2 φ| dφ

Now using the identities cos2 φ = (1 + cos 2φ)/2 and sin2 φ = (1− cos 2φ)/2, we have

E |Z2
1 − tZ2

2 | =
1 + t

π

∫ π

0

| cos 2φ+ ρ| dφ

=
1 + t

2π

∫ 2π

0

| cosφ+ ρ| dφ

=
1 + t

π

∫ π

0

| cosφ+ ρ| dφ

=
1 + t

π

∫ π

0

|ρ− cosφ| dφ

=
1 + t

π

[∫ θ

0

cosφ− ρ dφ+

∫ π

θ

ρ− cosφ dφ
]

=
2

π
(1 + t)[sin θ + ρ(π/2− θ)].

We recognize (3.4.3).

3.5 Dual Certificates
To prove our main theorem, it remains to show that one can construct an inexact dual certificate Y
obeying the conditions of Lemma 3.3.1.

Preliminaries
The linear mapping A∗A is of the form6

A∗A =
m∑
i=1

ziz
∗
i ⊗ ziz∗i ,

6For symmetric matrices,A⊗B is the linear mappingH 7→ 〈A,H〉B.
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which is another way to express that A∗A(X) =

∑
i〈ziz∗i ,X〉ziz∗i . Now observe the simple

identity:
E[ziz

∗
i ⊗ ziz∗i ] = 2I + In ⊗ In := S, (3.5.1)

where I is the identity operator and In the n-dimensional identity matrix. Put differently, this
means that for allX ,

S(X) = 2X + Tr(X)I.

The proof is a simple calculation and omitted. It is also not hard to see that the mapping S is
invertible and its inverse is given by

S−1 =
1

2

(
I − 1

n+ 2
In ⊗ In

)
⇔ S−1(X) =

1

2

(
X − 1

n+ 2
Tr(X)In

)
.

We will use this object in the definition of our dual certificate.

Construction
For pedagogical reasons, we first introduce a possible candidate certificate defined by

Ȳ :=
1

m
A∗AS−1(e1e

∗
1). (3.5.2)

Clearly, Ȳ is in the range of A∗ as required. To justify this choice, the law of large numbers gives
that in the limit of infinitely many samples,

lim
m→∞

1

m

∑
i

(ziz
∗
i ⊗ ziz∗i )S−1(e1e

∗
1) = E(ziz

∗
i ⊗ ziz∗i )S−1(e1e

∗
1) = e1e

∗
1.

In other words, in the limit of large samples, we have a perfect certificate since ȲT = e1e
∗
1 and

Ȳ ⊥T = 0. Our hope is that the sample average is sufficiently close to the population average so that
one can check (3.3.4). In order to show that this is the case, it will be useful to think of Ȳ (3.5.2)
as the random sum

Ȳ =
1

m

∑
i

Yi,

where each matrix Yi is an independent copy of the random matrix

1

2

[
z2

1 −
1

n+ 2
‖z‖2

2

]
zz∗

in which z = (z1, . . . , zn) ∼ N (0, I).
We would like to make an important point before continuing. We have seen that all we need

from Ȳ is
‖ȲT − e1e

∗
1‖2 ≤ 1/3

(and ‖Ȳ ⊥T ‖ ≤ 1/2). This is in stark contrast with David Gross’ approach [39] which requires a very
small misfit, i.e. an error of at most 1/n2. In turn, this loose bound has an enormous implication: it
eliminates the need for the golfing scheme and allows for the simple certificate candidate (3.5.2).
In fact, our certificate can be seen as the first iteration of Gross’ golfing scheme.
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Truncation
For technical reasons, it is easier to work with a truncated version of Ȳ and our dual certificate is
taken to be

Y =
1

m

∑
i

Yi 1Ei , (3.5.3)

where the Yi’s are as before and 1Ei are independent copies of 1E with

E = {|z1| ≤
√

2β log n} ∩ {‖z‖2 ≤
√

3n}.

We shall work with β = 3 so that |z1| ≤
√

6 log n.

Lemma 3.5.1 Let Y be as in (3.5.3). Then

P
(
‖YT − e1e

∗
1‖2 ≥

1

3

)
≤ 2 exp

(
−γm

n

)
, (3.5.4)

where γ > 0 is an absolute constant. This holds with the proviso thatm ≥ c1 n for some numerical
constant c1 > 0, and that n is sufficiently large.

Lemma 3.5.2 Let Y be as in (3.5.3). Then

P
(
‖Y ⊥T ‖ ≥

1

2

)
≤ 4 exp

(
− γ m

log n

)
. (3.5.5)

where γ > 0 is an absolute constant. This holds with the proviso that m ≥ c1 n log n for some
numerical constant c1 > 0, and that n is sufficiently large.

Y on T and proof of Lemma 3.5.1
It is obvious that for any symmetric matrixX ∈ T ,

‖X‖2 ≤
√

2‖Xe1‖2

since only the first row and column are nonzero. We have

YTe1 − e1 =
1

m

m∑
i=1

yi1Ei −
1

m

m∑
i=1

e1 1Eci , (3.5.6)

where the yi’s are independent copies of the random vector

y =
1

2

[
z2

1 −
1

n+ 2
‖z‖2

2

]
z1 z − e1 := (ξz1) z − e1. (3.5.7)

We claim that ∥∥∥ 1

m

m∑
i=1

e1 1Eci

∥∥∥
2
≤ 1/9,
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with probability at least 1 − 2e−γm for some γ > 0. This is a simple application of Bernstein’s
inequality. Set π(β) = P(Ec

i ) and observe that

π(β) = P(|z1| ≥
√

2β log n) + P(‖z‖2
2 ≥ 3n) ≤ n−β + e−

n
3 . (3.5.8)

The right-hand side follows from P(|z1| ≥ t) ≤ e−t
2/2 which holds for t ≥ 1 and from P(‖z‖2

2 ≥
3n) ≤ e−n/3. In turn, this last bound follows from

P(‖z‖2
2 − n ≥

√
2nt+ t2) ≤ e−t

2/2.

Returning to Bernstein, this gives

P
(∣∣∣ 1

m

m∑
i=1

1Eci − π(β)
∣∣∣ ≥ t) ≤ 2 exp

(
− mt2

2π(β) + 2t/3

)
.

Setting t = 1/18, β = 3 and taking n large enough so that π(3) ≤ 1/18 proves the claim.
The main task is to bound the 2-norm of the sum

∑m
i=1 yi1Ei and a convenient way to do this

is via the vector Bernstein inequality.

Theorem 3.5.3 (Vector Bernstein inequality) Let xi be a sequence of independent random vec-
tors and set V ≥

∑
i E ‖xi‖2

2. Then for all t ≤ V/max‖xi‖2, we have

P(‖
∑
i

(xi − Exi)‖2 ≥
√
V + t) ≤ e−t

2/4V .

It is because this inequality requires bounded random vectors that we work with the truncation∑m
i=1 yi1Ei .
Put ȳ = y 1E . Since ‖ȳ‖2

2 ≤ ‖y‖2
2, we first compute E ‖y‖2

2. We have

‖y‖2
2 = ‖z‖2

2z
2
1ξ

2 − 2z2
1ξ + 1, ξ =

1

2

[
z2

1 −
1

n+ 2
‖z‖2

2

]
,

and a little bit of algebra yields

‖y‖2
2 =

1

4
z6

1‖z‖2
2 −

1

2(n+ 2)
z4

1‖z‖4
2 +

1

4(n+ 2)2
z2

1‖z‖6
2 − z4

1 +
1

n+ 2
z2

1‖z‖2
2 + 1.

Thus,

E
[
‖y‖2

2

]
=

1

4
(15n+ 90)− 1

2(n+ 2)
(3n2 + 30n+ 72) +

1

4(n+ 2)
(n+ 4)(n+ 6)− 1

≤ 4(n+ 4), (3.5.9)

where we have used the following identities

E
[
z2

1‖z‖2
2

]
= n+ 2,

E
[
z2

1‖z‖6
2

]
= (n+ 2)(n+ 4)(n+ 6),

E
[
z4

1‖z‖4
2

]
= 3n2 + 30n+ 72,

E
[
z6

1‖z‖2
2

]
= 15n+ 90.
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Second, on the event of interest we have |ξ| ≤ β log n (assuming 2β log n ≥ 3), |z1| ≤√

2β log n and ‖z‖2 ≤
√

3n and, therefore,

‖ȳ‖2 ≤
√

6n (β log n)3/2 + 1 ≤
√

7n(β log n)3/2

provided n is large enough.
Third, observe that by symmetry, all the entries of ȳ but the first have mean zero. Hence,

‖E ȳ‖2 = |E y1 − ȳ1| = |E 1Ecy1| ≤
√

P (Ec)
√
E y2

1.

We have

y2
1 = (ξz2

1 − 1)2 =
1

4
z8

1 − z4
1 +

1

n+ 2
‖z‖2

2z
2
1 −

1

2(n+ 2)
‖z‖2

2z
6
1 +

1

4(n+ 2)2
‖z‖4

2z
4
1 + 1

and using the identities above

E y2
1 =

101

4
− 27n2 + 210n+ 288

4(n+ 2)2
≤ 22,

which gives

‖E ȳ‖2 ≤
√

22(n−β + e−
n
3 ).

Finally, with V = 4m(n+ 4), Bernstein’s inequality gives that for each

t ≤ 4(n+ 4)/[
√

7n(β log n)3/2]

,

‖m−1
∑
i

(ȳi − E ȳi)‖2 ≥ 2

√
n+ 4

m
+ t

with probability at most exp
(
− mt2

16(n+4)

)
. It follows that

‖m−1
∑
i

ȳi‖2 ≥
√

22(n−β + e−
n
3 ) + 2

√
n+ 4

m
+ t

with at most the same probability. Our result follows by taking t = 1/6, β = 3, m ≥ c1n where n
and c1 are sufficiently large such that√

22(n−β + e−
n
3 ) + 2

√
n+ 4

m
+

1

6
≤ 2

9
.
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Y on T⊥ and proof of Lemma 3.5.2
We have

Y ⊥T =
1

m

∑
i

Xi 1Ei ,

where theXi’s are independent copies of the random matrix

X =
1

2

[
z2

1 −
1

n+ 2
‖z‖2

2

]
PT⊥(zzT ). (3.5.10)

One natural way to bound the norm of this random sum is via the operator Bernstein’s inequality.
We develop a more customized approach, which gives sharper results.

DecomposeX as

X =
1

2

[
z2

1 − 1
]
PT⊥(zzT ) +

1

2

[
1− 1

n+ 2
‖z‖2

2

]
PT⊥(zzT ) := X(0) +X(1).

Note that since z1 and PT⊥(zzT ) are independent, we have EX(0) = 0 and thus, EX(1) = 0 since
EX = 0. With X̄(0)

i = X
(0)
i 1Ei and similarly for X̄(1)

i , it then suffices to show that∥∥∥∑
i

X̄
(0)
i

∥∥∥ ≤ m/4 and
∥∥∥∑

i

X̄
(1)
i

∥∥∥ ≤ m/4 (3.5.11)

with large probability. Write the norm as∥∥∥∑
i

X̄
(0)
i

∥∥∥ = sup
u

∣∣∣∑
i

〈u, X̄(0)
i u〉

∣∣∣,
where the supremum is over all unit vectors u that are orthogonal to e1. The strategy is now to
find a bound on the right-hand side for each fixed u and apply a covering argument to control the
supremum over the whole unit sphere. In order to do this, we shall make use of a classical large
deviation result.

Theorem 3.5.4 (Bernstein inequality) Let {Xi} be a finite sequence of independent random vari-
ables. Suppose that there exist Vi and c such that for all Xi and all k ≥ 3,

E |Xi|k ≤
1

2
k!Vic

k−2
0 .

Then for all t ≥ 0,

P
(∣∣∣∑

i

Xi − EXi

∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

2
∑

i Vi + 2c0t

)
. (3.5.12)

For the first sum in (3.5.11), we write∑
i

〈u, X̄(0)
i u〉 =

∑
i

ηi 1Ei ,
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where the ηi’s are independent copies of

η =
1

2

[
z2

1 − 1
]
〈z,u〉2.

The point of the decomposition X(0) + X(1) is that z1 and 〈z,u〉 are independent since u is
orthogonal to e1. We have E η = 0 and for k ≥ 2,

E |η 1E|k ≤ 2−k E |(z2
1 − 1) 1{z21≤2β logn}|k E |〈z,u〉|2k.

First,
E |(z2

1 − 1) 1{z21≤2β logn}|k ≤ (2β log n)k−2 E(z2
1 − 1)2 = 2(2β log n)k−2.

Second, the moments of a chi-square variable with one degree of freedom are well known:

E |〈z,u〉|2k = 1× 3× . . .× (2k − 1) ≤ 2kk!

Hence we can apply Bernstein inequality with Vi = 4, i = 1, . . . ,m, and c0 = 2β log n and, obtain

P
(∣∣∣∑

i

ηi 1Ei − E[ηi 1Ei ]
∣∣∣ ≥ mt

)
≤ 2 exp

(
−m

4

t2

2 + βt log n

)
.

We now note that

|E ηi1Ei | = |E ηi1Eci | ≤
√
P(Ec

i )
√
E η2

i =

√
3π(β)

2

which gives

P
(
m−1

∣∣∣∑
i

ηi 1Ei

∣∣∣ ≥ t+

√
3π(β)

2

)
≤ 2 exp

(
−m

4

t2

2 + βt log n

)
.

For instance, take t = 1/12, β = 3, m ≥ c1n and n large enough to get

P
(
m−1

∣∣∣∑
i

ηi 1Ei

∣∣∣ ≥ 1/8
)
≤ 2 exp

(
−γ m

log n

)
.

To derive a bound about ‖X̄(0)‖, we use (see Lemma 4 in [85])

sup
u

∣∣∣〈u, X̄(0)u〉
∣∣∣ ≤ 2 sup

u∈N1/4

∣∣∣〈u, X̄(0)u〉
∣∣∣,

where N1/4 is a 1/4-net of the unit sphere {u : ‖u‖2 = 1,u ⊥ e1}. Since |N1/4| ≤ 9n,

P(m−1‖X̄(0)‖ > 1/4) ≤ P
(
m−1 sup

u∈N1/4

∣∣∣〈u, X̄(0)u〉
∣∣∣ > 1/8

)
≤ 9n × 2 exp

(
−γ m

log n

)
.
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We deal with the second term in a similar way, and write∑

i

〈u, X̄(1)
i u〉 =

∑
i

ηi 1Ei ,

where the ηi’s are now independent copies of

η =
1

2

[
1− ‖z‖

2
2

n+ 2

]
〈z,u〉2.

On E, ‖z‖2
2 ≤ 3n and, therefore, E |η 1E|k ≤ 2kk!. We can apply Bernstein’s inequality with

c0 = 2 and V = 8m, which gives

P
(∣∣∣∑

i

ηi 1Ei − E[ηi 1Ei ]
∣∣∣ ≥ mt

)
≤ 2 exp

(
−m

4

t2

4 + t

)
.

The remainder of the proof is identical to that above and is therefore omitted.

Proof of Theorem 3.2.1
We now assemble the various intermediate results to establish Theorem 3.2.1. As pointed out,
Theorem 3.2.1 follows immediately from Lemma 3.3.1, which in turn hinges on the validity of the
conditions stated in (3.3.2), (3.3.3), and (3.3.4).

Lemma 3.4.1 asserts that condition (3.3.2) holds with probability of failure at most p1, where
p1 = 2e−γ1m and here and below, γ1, . . . , γ4 are positive numerical constants. Similarly, Lemma
3.4.2 shows that condition (3.3.3) holds with probability of failure at most p2, where p2 = 3e−γ2m.
In both cases we need that m > cn for an absolute constant c > 0.

Proceeding to the dual certificate in (3.3.4), we note that Lemma 3.5.1 establishes the first part
of the dual certificate with a probability of failure at most p3, where p3 = 3e−γ3m/n. The second
part of the dual certificate in (3.3.4) is shown in Lemma 3.5.2 to hold with probability of failure at
most p4, where p4 = 4e−γ4

m
logn . In the former case we need m > cn for an absolute constant c > 0

and in the latter m > c′n log n.
Finally, the union bound gives that under the hypotheses of Theorem 3.2.1, exact recovery

holds with probability at least 1− 3e−γm/n for some γ > 0, as claimed.

3.6 The Complex Model
This section proves that Theorem 3.2.1 holds for the complex model as well. Not surprisingly, the
main steps of the proof are the same as in the real case, but there are here and there some noteworthy
differences. Instead of deriving the whole proof, we will carefully indicate the nontrivial changes
that need to be carried out.

First, we can work withx = e1 because of rotational invariance, and with independent complex
valued Gaussian sequences zi ∼ CN (0, I, 0). This means that the real and imaginary parts of zi
are independent white noise sequences with variance 1/2.
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The key Lemma 3.3.1 only requires a slight adjustment in the numerical constants. The rea-

son for this is that while Lemma 3.4.1 does not require any modification, Lemma 3.4.2 changes
slightly; in particular, the numerical constants are somewhat different. Here is the properly ad-
justed complex version.

Lemma 3.6.1 Fix δ > 0. Then there are positive numerical constants c0 and γ0 such that if
m ≥ c0 [δ−2 log δ−1]n, A has the following property with probability at least 1 − 3e−γ0mδ

2
: for

any Hermitian rank-2 matrix X ,

1

m
‖A(X)‖1 ≥ 2(

√
2− 1)(1− δ)‖X‖ ≥ 0.828(1− δ)‖X‖. (3.6.1)

The proof of this lemma follows essentially the proof of Lemma 3.4.2. The function f(t) (cf.
equation (3.4.3)) now takes the form

E ξ = f(t) =
1 + t2

1 + t
, (3.6.2)

where ξ =
∣∣|Z1|2 − t|Z2|2

∣∣, with Z1 and Z2 independent CN (0, 1, 0), as demonstrated in the
following lemma.

Lemma 3.6.2 Let Z1 and Z2 be independent CN (0, 1, 0) variables and t ∈ [0, 1]. We have

E||Z1|2 − t|Z2|2| = f(t),

where f(t) is given by (3.6.2).

Proof Set
ρ =

1− t
1 + t

and cos θ = ρ

in which θ ∈ [0, π/2]. By using polar coordinates for the variables (x1, y1) associated with Z1 and
(x2, y2), associated with Z2 we have

E ||Z1|2 − t|Z2|2| =
1

2

∫ ∞
0

∫ ∞
0

|r2
1 − tr2

2|r1r2e
−r21/2e−r

2
2/2 dr1dr2

=
1

8

∫ ∞
0

r5e−r
2/2 dr

∫ 2π

0

| sinφ cosφ|| cos2 φ− t sin2 φ| dφ,
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Figure 3.3: The function f(t) in (3.6.2) as a function of t.

where we used polar coordinates again in variables (r1, r2). Now using the identities cos2 φ =
(1 + cos 2φ)/2, sin2 φ = (1− cos 2φ)/2 and 2 sinφ cosφ = sin 2φ we have

E |Z2
1 − tZ2

2 | =
1

2

∫ π

0

| sin 2φ|| cos 2φ+ ρ| dφ

=
1

2

[∫ θ

0

sinφ(cosφ− ρ) dφ+

∫ π

θ

sinφ(ρ− cosφ) dφ
]

=
1

2
(1 + t)[−1

2
cos 2θ + 2ρ cos θ +

1

2
]

=
1

2
(1 + t)[ρ2 + 1]

=
1 + t2

1 + t

as claimed.

The graph of f(t) is shown in Figure 3.3. The minimum of this function on [0, 1] is 2(
√

2−1) >
0.828. Furthermore, the covering argument in that proof has to be adapted; for example, unit
spheres need to be replaced by complex unit spheres.

A consequence of this change in numerical values is that the numerical factors in Lemma 3.3.2
need to be adjusted.

Lemma 3.6.3 Any feasible matrixH such that Tr(H) ≤ 0 must obey

‖HT‖2 ≤
√

5

4
‖HT‖.

Finally, with all of this in place, Lemma 3.3.1 becomes this:
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Lemma 3.6.4 Suppose that the mapping A obeys the following two properties: for some δ ≤
3/13: 1) for all positive semidefinite matricesX ,

m−1‖A(X)‖1 ≤ (1 + δ)‖X‖1; (3.6.3)

2) for all matricesX ∈ T

m−1‖A(X)‖1 ≥ 2(
√

2− 1)(1− δ)‖X‖ ≥ 0.828(1− δ)‖X‖. (3.6.4)

Suppose further that there exists Y in the range of A∗ obeying

‖YT − e1e
∗
1‖2 ≤ 1/5 and ‖Y ⊥T ‖ ≤ 1/2. (3.6.5)

Then e1e
∗
1 is the unique minimizer to (3.2.5).

We now turn our attention to the properties of the dual certificate we studied in Section 3.5.
The first difference is that the expectation of A∗A in (3.5.1) is different in the complex case. A
simple calculation yields

E
1

m
A∗A = I + In ⊗ In := S.

This means that for allX ,
S(X) = X + Tr(X)I. (3.6.6)

We note that in this case

S−1 = I − 1

n+ 1
In ⊗ In ⇔ S−1(X) = X − 1

n+ 1
Tr(X)In. (3.6.7)

We of course use this new S−1 in the complex analog of the candidate certificate (3.5.3). A conse-
quence is that in the proof of Lemma 3.5.1, for instance, (3.5.7) now takes the form

X =
[
|z1|2 −

1

n+ 1
‖z‖2

2

]
z̄1 z − e1 := (ξz̄1) z − e1. (3.6.8)

To bound the 2-norm of a sum of i.i.d. such random variables (as in Lemma 3.5.1), we employ
the same Bernstein inequality for real vectors, using the fact that ‖z‖2 = ‖(<(z),=(z))‖2 for any
complex vector z. Similarly (3.5.10) becomes

X =
[
|z1|2 −

1

n+ 1
‖z‖2

2

]
PT⊥(zz∗). (3.6.9)

To bound the operator norm of a sum of i.i.d. such random matrices (as in Lemma 3.5.2), we
again use a covering argument, this time working with chi-square variables with two degrees of
freedom, since |〈z,u〉|2 is distributed as 1

2
χ2(2). Since |〈z,u〉|2 are real random variables, we use

the same version of the Bernstein inequality as in the real-valued case. The only difference is that
the moments are now

E |〈z,u〉|2k = 2−k × (2 + 0)× (2 + 2)× (2 + 4)× . . .× (2 + 2k − 2) = k!
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3.7 Stability
This section proves the stability of our approach, namely, Theorem 3.2.2. Our proof parallels the
argument of Candès and Plan for showing the stability of matrix completion [18] as well as that of
Gross et al. in [40].

Just as before, we prove the theorem in the real case since the complex case is essentially
the same. Further, we may still take x = e1 without loss of generality. We shall prove stability
when the zi’s are i.i.d.N (0, In) and later explain how one can easily transfer a result for Gaussian
vectors to a result for vectors sampled on the sphere. Under the assumptions of the theorem, the
RIP-1-like properties, namely, Lemmas 3.4.1 and 3.4.2 hold with a numerical constant δ1 we shall
specify later. Under the same hypotheses, the dual certificate Y (3.5.2) obeys

‖PT (Y − e1e
∗
1)‖2 ≤ γ, ‖YT⊥‖ ≤

1

2
,

in which γ is a numerical constant also specified later.
Set X = xx∗ = e1e

∗
1 and write X̂ = X +H . We begin by recording two useful properties.

First, sinceX is feasible for our optimization problem, we have

Tr(X +H) ≤ Tr(X) ⇐⇒ Tr(H) ≤ 0. (3.7.1)

Second, the triangle inequality gives

‖A(H)‖2 = ‖A(X̂ −X)‖2 ≤ ‖A(X̂)− b‖2 + ‖b−A(X)‖2 ≤ 2ε. (3.7.2)

In the noiseless case, A(H) = 0 =⇒ 〈H ,Y 〉 = 0, by construction. In the noisy case, a third
property is that |〈H ,Y 〉| is at most on the order of ε. Indeed,

m|〈H ,Y 〉| = |〈A(H),AS−1(X)〉| ≤ ‖A(H)‖∞‖AS−1(X)‖1.

Since, ‖A(H)‖∞ ≤ ‖A(H)‖2 and

‖AS−1(X)‖1 ≤ m(1 + δ1)‖S−1(X)‖1 ≤ m(1 + δ1),

we obtain
|〈H ,Y 〉| ≤ 2ε(1 + δ1). (3.7.3)

We now reproduce the steps of the proof of Lemma 3.3.1, and obtain

0 ≥ Tr(HT ) + Tr(H⊥T ) ≥ 1

2
Tr(H⊥T )− γ‖HT‖2 − |〈H ,Y 〉|,

which gives

Tr(H⊥T ) ≤ 4ε(1 + δ1) + 2γ‖HT‖2 ≤ 4ε(1 + δ1) + 2
√

2γ‖HT‖, (3.7.4)
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where we recall thatHT has rank at most 2. We also have

0.94(1− δ1)‖HT‖ ≤ m−1‖A(HT )‖1 ≤ m−1‖A(H)‖1 +m−1‖A(H⊥T )‖1

≤ m−1/2‖A(H)‖2 + (1 + δ1) Tr(H⊥T ) (3.7.5)

≤ 2m−1/2ε+ (1 + δ1) Tr(HT⊥), (3.7.6)

where the second inequality follows from the RIP-1 property together with the Cauchy-Schwarz
inequality. Plugging this last bound into (3.7.4) gives

Tr(H⊥T ) ≤ 4ε(1 + δ1 + γαm−1/2) + βγ Tr(H⊥T ),

where

α =

√
2

0.94(1− δ1)
, β = 2α(1 + δ1).

Hence, when βγ < 1, we have

Tr(H⊥T ) = ‖H⊥T ‖1 ≤
4(1 + δ1 + γαm−1/2)

1− βγ
ε = c1 ε.

In addition, (3.7.6) then gives

‖HT‖ ≤
2m−1/2 + (1 + δ1)c1

0.94(1− δ1)
ε = c2 ε.

In conclusion,

‖H‖2 ≤ ‖HT‖2 + ‖H⊥T ‖2 ≤
√

2‖HT‖+ ‖H⊥T ‖1 ≤ (
√

2c2 + c1)ε = c0 ε,

and we also have ‖H‖ ≤ (c2 + c1)ε.
It remains to show why the fact that X̂ is close to X = xx∗ in the Frobenius or operator

norm produces a good estimate of x (recall that x = e1). Set ε0 := ‖X̂ −X‖ ≤ c0 ε. Below,
λ̂1 ≥ 0 is the largest eigenvalue of X̂ � 0, and û1 the first eigenvector. Likewise, λ1 = 1 is the
top eigenvalue ofX = e1e

∗
1. Since Tr(X̂) ≤ Tr(X),

λ̂1 ≤ λ1.

In the other direction, we know from perturbation theory that

|λ1 − λ̂1| ≤ ‖X̂ −X‖ = ε0.

Assuming that ε0 < 1, this gives λ̂1 ∈ [1− ε0, 1]. The sin-θ-Theorem [28] implies that

| sin θ| ≤ ‖X̂ −X‖
|λ̂1|

≤ ε0

1− ε0

,
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where 0 ≤ θ ≤ π/2 is the angle between the spaces spanned by û1 and e1. Writing

û1 = cos θe1 + sin θe⊥1

in which e⊥1 is a unit vector orthogonal to e1, Pythagoras’ relationship gives

‖e1 −
√
λ̂1û1‖2

2 = (1−
√
λ̂1 cos θ)2 + λ̂1 sin2 θ.

Since cos θ =
√

1− sin2 θ, we have

1 ≥
√
λ̂1 cos θ ≥

√
1− ε0 −

ε2
0

1− ε0

≥ 1− ε0

for ε0 < 1/3. Hence,

‖e1 −
√
λ̂1û1‖2

2 ≤ ε2
0 +

ε2
0

(1− ε0)2
≤ 13

4
ε2

0

provided ε0 < 1/3. Since we always have

‖e1 −
√
λ̂1û1‖2 ≤ ‖e1‖2 +

√
λ̂1‖û1‖2 ≤ 2,

we have established

‖e1 −
√
λ̂1û1‖2 ≤ C0 min(ε, 1).

This holds for all values of ε0 and proves the claim in the case where ‖x‖2 = 1. The general case
is obtained via a simple rescaling.

As mentioned above, we proved the theorem for Gaussian zi’s but it is clear that our results
hold true for vectors sampled uniformly at random on the sphere of radius

√
n. The reason is that

of course, ‖zi‖2 deviates very little from
√
n. Formally, set z̃i = [

√
n/‖zi‖2]zi so that these new

vectors are independently and uniformly distributed on the sphere of radius
√
n. Then

〈X, z̃iz̃
∗
i 〉 =

n

‖zi‖2
2

〈X, ziz
∗
i 〉,

and thus 〈X, ziz
∗
i 〉 is between (1−δ2) 〈X, z̃iz̃

∗
i 〉 and (1+δ2) 〈X, z̃iz̃

∗
i 〉with very high probability.

This holds uniformly over all Hermitian matrices. Thus if Ã(X) = {z̃∗iXz̃i}1≤i≤m,

(1− δ2)‖Ã(X)‖q ≤ ‖A(X)‖q ≤ (1 + δ2)‖Ã(X)‖q
for any 1 ≤ q ≤ ∞.

Now take bi = |〈x, z̃i〉|2 + νi and solve (3.2.9) to get X̃ = X + H̃ . Going through the same
steps as above by using the relationships between A and Ã throughout, and by using the dual
certificate Y associated with A, we obtain

‖Ã(H̃)‖2 ≤ 2ε, |〈H̃ ,Y 〉| ≤ 2ε(1 + δ1)(1 + δ2),

and
Tr(H̃T⊥) ≤ (1 + δ2)c1ε, ‖H̃T‖ ≤ (1 + δ2)c2ε.

Therefore,
‖H̃‖2 ≤ (1 + δ2)(

√
2c2 + c1)ε.

The rest of the proof goes through just the same.
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3.8 Numerical Simulations
In this section we illustrate our theoretical results with numerical simulations. In particular, we
will demonstrate PhaseLift’s robustness vis a vis additive noise.

We consider the setup in Section 3.2, where the measurements are contaminated with additive
noise. The solution to (3.2.9) is computed using the following regularized nuclear-norm minimiza-
tion problem:

minimize 1
2
‖A(X)− b‖2

2 + λTr(X)
subject to X � 0.

(3.8.1)

It follows from standard optimization theory [76] that (3.8.1) is equivalent to (3.2.9) for some
value of λ. Hence, we use (3.8.1) to compute the solution of (3.2.9) by determining via a simple
and efficient bisection search the largest value λ(ε) such that ‖A(X) − b‖2 ≤ ε. The numerical
algorithm to solve (3.8.1) was implemented in Matlab using TFOCS [9]. We then extract the largest
rank-1 component as described in Section 3.2 to obtain an approximation x̂.

We will use the relative mean squared error (MSE) and the relative root mean squared error
(RMS) to measure performance. However, since a solution is only unique up to global phase,
it does not make sense to compute the distance between x and its approximation x̂. Instead we
compute the distance modulo a global phase term and define the relative MSE between x and x̂ as

min
c:|c|=1

‖cx− x̂‖2
2

‖x‖2
2

.

The (relative) RMS is just the square root of the (relative) MSE.
In the first set of experiments, we investigate how the reconstruction algorithm performs as the

noise level increases. The test signal is a complex-valued signal of length n = 128 with indepen-
dent Gaussian complex entries (each entry is of the form a + ib where a and b are independent
N (0, 1) variables) so that the real and imaginary parts are independent white noise sequences. Ob-
viously, the signal is arbitrary. We use m = 6n measurement vectors sampled independently on
the unit sphere Cn.

We generate noisy data from both a Gaussian model and a Poisson model. In the Gaussian
model, bi ∼ N (µi, σ

2) where µi = |〈x, zi〉|2 and σ is adjusted so that the total noise power is
bounded by ε2. In the Poisson model, bi ∼ Poi(µi) and the noise bi − µi is rescaled to achieve
a desired total power as above (we might do without this rescaling as well but have decided to
work with a prescribed signal-to-noise ratio SNR for simplicity of exposition). We do this for five
different SNR levels,7 ranging from 5dB to 100dB. However, we point out that we do not make
use of the noise statistics in our reconstruction algorithm8, since our purpose is only to assume an
upper bound on the total noise power, as in Theorem 3.2.2.

For each SNR level, we repeat the experiment ten times with different noise terms, differ-
ent signals, and different random measurement vectors; we then record the average relative RMS
over these ten experiments. Figure 3.4(a) shows the average relative MSE in dB (the values of

7The SNR of two signals x, x̂ with respect to x is defined as 10 log10 ‖x‖22/‖x− x̂‖22. So we say that the SNR is
10dB if 10 log10 ‖x‖22/‖ν‖22 = 10.

8We refer to [22] for efficient ways to incorporate statistical noise models into the reconstruction algorithm.



CHAPTER 3. PHASELIFT FOR GAUSSIAN MEASUREMENETS 53

Figure 3.4: Performance of PhaseLift for Poisson noise. The stability of the algorithm is
apparent as its performance degrades gracefully with decreasing SNR. (a) Relative MSE on
a log-scale for the non-debiased recovery. (b) Relative RMS for the original and debiased
recovery.

Figure 3.5: Performance of PhaseLift for Gaussian noise. (a) Relative MSE on a log-scale for
the non-debiased recovery. (b) Relative RMS for the original and the debiased recovery.

10 log10(rel. MSE) are plotted) versus the SNR for Poisson noise. In each case, the performance
degrades very gracefully with decreasing SNR, as predicted by Theorem 3.2.2. Debiasing as de-
scribed at the end of Section 3.2 leads to a further improvement in the reconstruction for low SNR,
as illustrated in Figure 3.4(b). The results for Gaussian noise are comparable, see Figure 3.5.

In the next experiment, we collect Poisson data about a complex-valued random signal just as
above, and work with a fixed SNR set to 15dB. The number of measurements varies so that the
oversampling rate m/n is between 5 and 22 (m is thus between n log n and 4.5n log n). We repeat
the experiment ten times with different noise terms and different random measurement vectors for
each oversampling rate; we then record the average relative RMS. Figure 3.6 shows the average
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Figure 3.6: Oversampling rate versus relative RMS.

relative RMS of the solution to (3.2.5) versus the oversampling rate. We observe that the decrease
in the RMS is inversely proportional to the number of measurements. For instance, the error
reduces by a factor of two when we double the number of measurements. If instead we hold the
standard deviation of the errors at a constant level, the mean squared error (MSE) reduces by a
factor of about two when we double the number of measurements.

3.9 Discussion
In this chapter, we have shown that it is possible to recover a signal exactly (up to a global phase
factor) from the knowledge of the magnitude of its inner products with a family of sensing vectors
{zi}. The fact that on the order of n log nmagnitude measurements |〈x, zi〉|2 uniquely determinex
is not surprising. The part we find unexpected, however, is that what appears to be a combinatorial
problem is solved exactly by a convex program. Further, we have established the existence of a
noise-aware recovery procedure—also based on a tractable convex program—which is robust vis
a vis additive noise. To the best of our knowledge at the time of completion of this work, there are
no other results about the recovery of an arbitrary signal from noisy quadratic data of this kind.

An appealing research direction is to study the recovery of a signal from other types of intensity
measurements, and consider other families of sensing vectors. In particular, structured random
families would be of great interest. The next and final chapter is dedicated to a step in this direction.
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3.10 Appendix
We prove that the RIP in the 2-norm (and in any p-norm with p > 1) cannot hold for A. We derive
the claim for the real-valued setting, but the arguments can be easily extended to the complex-
valued setting. Here and below, |y| = (|y1|, . . . , |ym|).

Consider an m × n matrix A with i.i.d. rows zi =d N (0, I) and set A(X) = {z∗iXzi}mi=1.
Then for x ∈ Rn, A(xx∗) = |Ax|2 and

‖A(xx∗)‖2 =
( m∑
i=1

| 〈zi,x〉 |4
)1/2

.

Taking x = z1/‖z1‖2, we get

sup
u∈Sn−1

‖A(uu∗)‖2 ≥ ‖A(xx∗)‖2 =

(
m∑
i=1

∣∣∣∣〈zi, z1

‖z1‖2

〉∣∣∣∣4
)1/2

≥
∣∣∣∣〈z1,

z1

‖z1‖2

〉∣∣∣∣2 = ‖z1‖2
2 = Ω(n),

where the last equality holds with high probability.
Now, expand A into its singular value decomposition A =

∑n
i=1 σiuiv

∗
i with σ1 ≥ σ2 . . . ≥

σn. As a consequence of well-known deviations bounds concerning the singular values of Gaussian
random matrices [85], the inequalities

m(1− δ) ≤ σ2
n ≤ σ2

1 ≤ m(1 + δ)

for some δ with 0 < δ < 1 hold with high probability provided thatm ≥ Cn log n, where C > 0 is
a suitable constant. All singular values ofA are simple with probability 1 and thus un, the singular
vector corresponding to the smallest singular value, is well-defined and we can think of it as being
distributed uniformly at random on the unit sphere. Therefore, with high probability

‖un‖∞ = O(

√
log n√
m

).

This gives

inf
u∈Sn−1

‖A(uu∗)‖2 ≤ ‖A(vnv
∗
n)‖2 = ‖|Avn|2‖2 = ‖|σnun|2‖2

= σ2
n

( m∑
i=1

|uni|4
)1/2

= σ2
nO
(

log n√
m

)
= O(

√
m log n)

(also with high probability). This implies that

supu∈Sn−1 ‖A(uu∗)‖2

infu∈Sn−1 ‖A(uu∗)‖2

= Ω

(
n√

m log n

)
w.h.p.
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Therefore, unless we take m to be at least on the order of n2/ log2 n (which is much too large to
be of interest), the RIP-2 cannot hold. Similar arguments show that

supu∈Sn−1 ‖A(uu∗)‖p
infu∈Sn−1 ‖A(uu∗)‖p

= Ω

(
n

m
1
p log n

)
w.h.p.,

and thus the RIP-p cannot hold for p > 1, unless m is at least on the order of np/(log n)p. Obvi-
ously, since the RIP does not hold for rank-1 matrices, it cannot hold for higher ranks.
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Chapter 4

PhaseLift for unitary measurements

4.1 Overview
As proven above, PhaseLift recovers signals exactly with high probability when the measurement
vectors zi are iid gaussian and is furthermore provably stable with respect to measurement noise
under the same assumptions. However, the gaussian measurement model is not know to be phys-
ically realizable. Therefore it is of great interest to prove exactness results for PhaseLift under
more structured measurement assumptions, which will require far more technical proofs due to the
lack of probabilistic independence between sensing vectors from structured random measurement
ensembles. A step in this direction is to consider the zi as rows of iid Haar distributed unitary
matrices, which models a situation that occurs in quantum mechanics. In this chapter, we prove
that PhaseLift succeeds with high probability under this measurement model as long as the num-
ber of measurements m = O(n) and point out a corollary of the result which relates to Wright’s
conjecture from quantum mechanics.

Here we assume that measurements of the form {|Ukx|2}rk=1 are available, where the Ui are
sampled independently according to the Haar measure on U(n), the unitary group or O(n), the
orthogonal group, and the total number of measurements is m = rn. Below, we will label the
transpose of the row vectors of Uk as u(k)

i or enumerate them as {ui}mi=1. As in the gaussian case,
we may assume wlog that x = e1, in this case by the unitary/orthogonal invariance of the Haar
measure.

We proceed as in the previous chapter by showing that the measurement operator A in this
setting obeys some nice properties with high probability. Namely, we need to verify thatA satisfies
the condition of the following lemma, which is a very slight modification of Lemma 3.6.4 achieved
by noting that if Y ⊥T ≺ 0, then

〈
H⊥T , Y

⊥
T

〉
≤ 0.

Lemma 4.1.1 Suppose that the mapping A obeys the following two properties: for some δ ≤
3/13:

1) for all positive semidefinite matricesX ,

m−1‖A(X)‖1 ≤ (1 + δ)‖X‖1; (4.1.1)
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2) for all matricesX ∈ T

m−1‖A(X)‖1 ≥ 2(
√

2− 1)(1− δ)‖X‖ ≥ 0.828(1− δ)‖X‖. (4.1.2)

Suppose further that there exists Y in the range of A∗ obeying

‖YT − e1e
∗
1‖2 ≤ 1/5 and Y ⊥T ≺ 0. (4.1.3)

Then e1e
∗
1 is the unique minimizer to (3.2.5).

In particular, the RIP-1 property in this unitary case has implications related to Wright’s con-
jecture. Furthermore, we adapt a trick in the construction of the dual certificate, used by [30]
in the gaussian case, to reduce the number of necessary measurements from O(n log n) to O(n).
Establishing the above yields

Theorem 4.1.2 Take x ∈ Cn and assume that measurements of the form {|Ukx|2}rk=1 are avail-
able, where the Ui are sampled independently according to the Haar measure on U(n), the unitary
group or O(n), the orthogonal group, so that the total number of measurements is m = rn. Then
the PhaseLift algorithm succeeds in recovering x up to global phase with very high probability
when m = O(n).

4.2 Restricted Isometry Property of type 1

In the sequel we will label the transpose of the row vectors of Uk as u(k)
i or enumerate them as

{ui}mi=1. As in the gaussian case, we may assume wlog that x = e1, in this case by the uni-
tary/orthogonal invariance of the Haar measure.

First, we aim to establish a RIP-1 property on rank-2 matrices for this class of measurements.
Let A(X) = {

√
n(n+ 1) Tr(uiu

∗
iX)}mi=1, where A is a linear map from the Hermitian matrices.

Let X = x1x
∗
1 − λx2x

∗
2 be a rank-2 hermitian matrix in SVD form with 0 ≤ λ ≤ 1. Then

1√
n(n+ 1)

A(x1x
∗
1 − λx2x

∗
2) = {| 〈ui, x1〉 |2 − λ| 〈ui, x2〉 |2}mi=1

=d {| 〈ui, e1〉 |2 − λ| 〈ui, e2〉 |2}mi=1

= {|ui1|2 − λ|ui2|2}mi=1

where we used rotational invariance of Haar measure and the fact that there exist orthogonal or
unitary transformations taking any real/complex orthobasis to another orthobasis and uij denotes
the jth entry of the vector ui.

As in Lemma 3.4.1, to establish 1
m
‖A(X)‖1 ≤ (1 + δ)‖X‖1 for all psd matrices, it is enough

to consider X to be rank 1 psd. Taking any unit vector x ∈ Cn, we have

1

r

1√
n(n+ 1)

‖A(xx∗)‖l1 =
1

r

m∑
i=1

| 〈um, x〉 |2 = 1
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This implies that

1

r

1√
n(n+ 1)

‖A(X)‖1 ≤ (1 + δ)‖X‖1

for any δ > 0 and for any psd X . Now since m

r
√
n(n+1)

=
√

n
n+1

, we can get the desired property

with δ = 3
13

.
To get the other part of RIP-1, we need to examine the quantity

1

r

1√
n(n+ 1)

‖A(x1x
∗
1 − λx2x

∗
2)‖l1 =d 1

r

m∑
i=1

||ui1|2 − λ|ui2|2| =
1

r

r∑
k=1

n∑
i=1

||u(k)
i1 |2 − λ|u

(k)
i2 |2|

and show that it is lower bounded by a multiple of the operator norm of X = x1x
∗
1 − λx2x

∗
2 whp.

This sum may be expressed as a function of 2rn iid gaussian rvs. This function is not Lipschitz, so
we will use a surrogate function that is Lipschitz in order to apply Talagrand’s inequality [82] and
then show that this introduces only a very small error.

We will treat the real and complex cases simultaneously. To be specific, one way to obtain
the Haar measure on O(n) or U(n) is to perform Gram-Schmidt on the columns of a gaussian
or complex gaussian matrix. Thus, we will consider the columns u1 and u2 of a Haar-distributed
orthogonal matrix as the result of the Gram-Schmidt procedure on a pair of iid gaussian vectors ζ
and z. Introduce the functions v(x) = x

‖x‖2 and t(x, y) = x− y 〈y, x〉. Then if ζ, z are iid N (0, I)

or CN (0, I, 0), it can be verified that

(u1, u2) =d (v(z), v(t(v(ζ), v(z))))

We can now express the distribution of the quantity above as

1

r

m∑
i=1

||ui1|2 − λ|ui2|2| =d 1

r

r∑
k=1

F (ζ(k), z(k))

=
1

r

r∑
k=1

n∑
i=1

||v(z(k))i|2 − λ|v(t(v(ζ(k)), v(z(k))))i|2|

as a function of a 2rn component gaussian vector. The above function is not lipschitz and the
issue occurs in two places: first, when we normalize the vectors ζ and z and then when we nor-
malize the expression t(v(ζ), v(z)). Let us introduce the surrogate functions ṽ1(x) = x

(‖x‖2∨
√

n
c1

)

where c1 >> 1 and ṽ2 = x
(‖x‖2∨

√
c2)

where 0 < c2 < 1. Now, the surrogate function

1

r

r∑
k=1

F̃ (ζ(k), z(k)) =
1

r

r∑
k=1

n∑
i=1

||ṽ1(z(k))i|2 − λ|ṽ2(t(ṽ1(ζ(k)), ṽ1(z(k))))i|2|

is equal to the original with probability at least

1− 2rP{‖ζ‖2
2 <

n

c1

} − rP{|
〈

ζ

‖ζ‖2

,
z

‖z‖2

〉
|2 > 1− c2} ≥ 1− O

(
re−γn

)
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where γ can be made arbitrarily large by taking c1 large enough and c2 small enough. It now
remains to verify that the surrogate function is Lipschitz with a good enough constant and that it
introduces only a small error.

Consider the function g(x, y) =
∑n

i=1 ||xi|2 − λ|yi|2|, with x, y ∈ Rn or Cn and assume
‖xi‖2 ≤ 1, ‖yi‖2 ≤ 1. We have

|g(x1, y1)− g(x2, y2)| ≤
n∑
i=1

∣∣||x1i|2 − λ|y1i|2| − ||x2i|2 − λ|y2i|2|
∣∣

≤
n∑
i=1

|(|x1i|2 − |x2i|2)− λ(|y1i|2 − |y2i|2)|

≤
n∑
i=1

|(|x1i|+ |x2i|)(|x1i| − |x2i|)|+ λ|(|y1i|+ |y2i|)(|y1i| − |y2i|)|

≤ ‖|x1|+ |x2|‖2‖x1 − x2‖2 + λ‖|y1|+ |y2|‖2‖y1 − y2‖2

≤ 2‖x1 − x2‖2 + 2λ‖y1 − y2‖2

Now take

|F̃ (ζ1, z1)− F̃ (ζ2, z2)|
= |g(ṽ1(z1), ṽ2(t(ṽ1(ζ1), ṽ1(z1))))− g(ṽ1(z2), ṽ2(t(ṽ1(ζ2), ṽ1(z2))))|
≤ 2‖ṽ1(z1)− ṽ1(z2)‖2 + 2λ‖ṽ2(t(ṽ1(ζ1), ṽ1(z1)))− ṽ2(t(ṽ1(ζ2), ṽ1(z2)))‖2

≤ 2Lip(ṽ1)‖z1 − z2‖2 + 2λLip(ṽ2)‖t(ṽ1(ζ1), ṽ1(z1))− t(ṽ1(ζ2), ṽ1(z2))‖2

≤ 2Lip(ṽ1)‖z1 − z2‖2 + 2λLip(ṽ2)Lip(t|B(0,1)2)‖(ṽ1(ζ1), ṽ1(z1))− (ṽ1(ζ2), ṽ1(z2))‖2

≤ 2Lip(ṽ1)‖z1 − z2‖2 + 2λLip(ṽ2)Lip(t|B(0,1)2)Lip(ṽ1)‖(ζ1, z1)− (ζ2, z2)‖2

One can verify that in either the real or complex case, when ‖xi‖2, ‖yi‖2 ≤ 1, the function t
satisfies

‖t(x1, y1)− t(x2, y2)‖2 ≤ 2‖(x1, y1)− (x2, y2)‖2

For x ∈ Rn, let ṽ(x) = x
‖x‖2∨c for some positive constant c. Now, we have that D( x

‖x‖2 ) =
1
‖x‖32

(‖x‖2
2I−xx∗) and hence ‖D( x

‖x‖2 )‖ ≤ 2
‖x‖2 . Thus, ‖D(ṽ)‖ ≤ 2

c
on B̄(0, c)c so that Lip(ṽ|U) ≤

2
c

for any open convex set U ∈ B̄(0, c)c . Furthermore, we have D(ṽ) = 1
c
I on B(0, c) and thus

‖D(ṽ)‖ ≤ 1
c

on B(0, c) so that Lip(ṽ|B̄(0,c)) ≤ 1
c
.

Take xi ∈ B̄(0, c)c, i = 1, 2 such that the line connecting these two points intersects B̄(0, c).
Assume that the point(s) of intersection are z1 and z2 (with the line from x1 to x2 first hitting z1

and then z2). Then we have
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‖ṽ(x1)− ṽ(x2)‖2 ≤ ‖ṽ(x1)− ṽ(z1)‖2 + ‖ṽ(z1)− ṽ(z2)‖2 + ‖ṽ(z2)− ṽ(x2)‖2

≤ 2

c
‖x1 − z2‖2 +

1

c
‖z1 − z2‖2 +

2

c
‖z2 − x2‖2

≤ 2

c
‖x1 − x2‖2

where for the sets Ui we take B(xi, ‖zi − xi‖2). The other cases of arrangements of xi are
similarly proven. We conclude that Lip(ṽ) ≤ 2

c
. Note that this implies that in the complex case,

we also have Lip(ṽ) ≤ 2
c

with ṽ defined analogously. We have thus established that Lip(ṽ1) ≤
√
c2√
n

and Lip(ṽ2) ≤ 2√
c1

. Using this information,

|F̃ (ζ1, z1)− F̃ (ζ2, z2)| ≤
16
√

c1
c2√
n
‖(ζ1, z1)− (ζ2, z2)‖2

Finally, this implies

Lip(
1

r

r∑
k=1

F̃ (ζ(k), z(k))) ≤ 1√
r

16
√

c1
c2√
n

By Talagrand’s inequality, we have

P{

∣∣∣∣∣1r
r∑

k=1

F̃ (ζ(k), z(k))− E

[
1

r

r∑
k=1

F̃ (ζ(k), z(k))

]∣∣∣∣∣ ≥ t} ≤ e−c(rn)t2

for a constant c which depends on ci. Let

G̃ =
1

r

r∑
k=1

F̃ (ζ(k), z(k)), G =
1

r

r∑
k=1

F (ζ(k), z(k)).

G and G̃ are both bounded by 2 and disagree on a set of probability O (re−γn), thus

lim
n→∞

∣∣∣E[G̃]− E [G]
∣∣∣ = 0.

So that if we fix t apriori, then for all n large enough

P{|G− E [G]| ≥ t}

≤ P{
∣∣∣G̃− E[G̃]

∣∣∣ ≥ t−
∣∣∣G̃−G∣∣∣− ∣∣∣E[G̃]− E [G]

∣∣∣}
≤ P{G 6= G̃}+ P{

∣∣∣G̃− E[G̃]
∣∣∣ ≥ t−

∣∣∣E[G̃]− E [G]
∣∣∣}

≤ O
(
re−γn

)
+ e−c(rn)(t/2)2
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Therefore, we have established

P{

∣∣∣∣∣1r
m∑
i=1

||ui1|2 − λ|ui2|2| − E

[
1

r

m∑
i=1

||ui1|2 − λ|ui2|2|

]∣∣∣∣∣ ≥ t} ≤ e−c(rn)(t/2)2 + O
(
re−γn

)
for constants c and γ which depend on ci. To achieve an arbitrarily fast exponential rate, first select
ci so that γ is as large as needed, then fix r large enough.

We claim that E
[∣∣|ui1|2 − λ|ui2|2∣∣] = 1

n
1+λ2

1+λ
, which we compute below. We have from [4] that

(|ui1|2, . . . , |uin−1|2) are uniformly distributed on {(x1, . . . xn−1);xi ≥ 0,
∑n−1

i=1 xi ≤ 1}. Thus

E
[∣∣|ui1|2 − λ|ui2|2∣∣] 1

(n− 1)(n− 2)

= (n− 3)!

∫
Rn−1

|x1 − λx2|χ{∑n−1
i=1 xi≤1,xi≥0}dx1 . . . dxn−1

= (n− 3)!

∫
R2

|x1 − λx2|χ{x1+x2≤1,xi≥0}

∫
Rn−3

χ{x3+...xn−1≤1−(x1+x2)}dx3 . . . dxn−1

=
(n− 3)!

(n− 3)!

∫
R2

|x1 − λx2|(1− (x1 + x2))n−3χ{x1+x2≤1,xi≥0}dx1dx2

=

∫ 1

0

∫ [
χ{x1≤λx2}(λx2 − x1) + χ{x1≥λx2}(x1 − λx2)

]
(1− (x1 + x2))n−3χ{0≤x2≤1−x2}dx1dx2

=

∫ 1

0

χ{λx2≤1−x2}

∫ λx2

0

(λx2 − x1)(1− (x1 + x2))n−3dx1

+ χ{λx2≥1−x2}

∫ 1−x2

0

(λx2 − x1)(1− (x1 + x2))n−3dx1

+ χ{λx2≤1−x2}

∫ 1−x2

λx2

(λx2 − x1)(1− (x1 + x2))n−3dx1dx2

=

∫ 1
1+λ

0

∫ λx2

0

(λx2 − x1)(1− (x1 + x2))n−3dx1 +

∫ 1−x2

λx2

(x1 − λx1)(1− (x1 + x2))n−3dx1dx2

+

∫ 1

1
1+λ

∫ 1−x2

0

(λx2 − x1)(1− (x1 + x2))n−3dx2dx2
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=

∫ 1
1+λ

0

λx2

(
−1

n− 2
(1− (x1 + x2))n−2

∣∣∣∣λx20

)
−
∫ λx2

0

x1(1− (x1 + x2))n−3dx1dx2

+

∫ 1
1+λ

0

∫ 1−x2

λx2

x1(1− (x1 + x2))n−3dx1 − λx2

(
−1

n− 2
(1− (x1 + x2))n−2

∣∣∣∣1−x2λx2

)
dx2

+

∫ 1

1
1+λ

λx2

(
−1

n− 2
(1− (x1 + x2))n−2

∣∣∣∣1−x20

)
−
∫ 1−x2

0

x1(1− (x1 + x2))n−3dx1dx2

=

∫ 1
1+λ

0

λx2

(
−1

n− 2
(1− (1 + λ)x2))n−2 +

1

n− 2
(1− x2)n−2

)
−
∫ λx2

0

x1(1− (x1 + x2))n−3dx1dx2

+

∫ 1
1+λ

0

∫ 1−x2

λx2

x1(1− (x1 + x2))n−3dx1 − λx2

(
1

n− 2
(1− (1 + λ)x2))n−2

)
dx2

+

∫ 1

1
1+λ

λx2

(
1

n− 2
(1− x2)n−2

)
dx1 −

∫ 1−x2

0

x1(1− (x1 + x2))n−3dx1dx2

=
λ

(1 + λ)2

−1

n− 2

∫ 1

0

x2(1− x2)n−2dx2 + λ
1

n− 2

∫ 1
1+λ

0

x2(1− x2)n−2dx2

−
∫ 1

1+λ

0

−1

n− 2
x1(1− (x1 + x2))n−2

∣∣∣∣λx20 − 1

(n− 2)(n− 1)
(1− (x1 + x2))n−1

∣∣∣∣λx2
0

dx2

+

∫ 1
1+λ

0

−1

n− 2
x1(1− (x1 + x2))n−2

∣∣∣∣1−x2λx2
− 1

(n− 2)(n− 1)
(1− (x1 + x2))n−1

∣∣∣∣1−x2
λx2

−λ
(1 + λ)2

1

n− 2

∫ 1

0

x2(1− x2)n−2dx2 +
λ

n− 2

∫ 1

1
1+λ

x2(1− x2)n−2dx2

−
∫ 1

1
1+λ

−1

n− 2
x1(1− (x1 + x2))n−2

∣∣∣∣1−x20 − 1

(n− 2)(n− 1)
(1− (x1 + x2))n−1

∣∣∣∣1−x2
0

dx2
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=
λ

(1 + λ)2

−1

n− 2

∫ 1

0

x2(1− x2)n−2dx2 +
λ

n− 2

∫ 1
1+λ

0

x2(1− x)2)n−2dx2

−
∫ 1

1+λ

0

−1

n− 2
λx2(1− (1 + λ)x2)n−2 − 1

(n− 2)(n− 1)
(1− (1 + λ)x2)n−1

+
1

(n− 2)(n− 1)
(1− x2)n−1dx2 +

∫ 1
1+λ

0

1

n− 2
λx2(1− (1 + λ)x2)n−2

+
1

(n− 2)(n− 1)
(1− (1 + λ)x2)n−1dx2

+
−λ

(1 + λ)2

1

n− 2

∫ 1

0

x2(1− x2)n−2dx2 +
λ

n− 2

∫ 1

1
1+λ

x2(1− x2)n−2dx2

−
∫ 1

1
1+λ

1

(n− 2)(n− 1)
(1− x2)n−1dx2

=
λ

(1 + λ)2)

−1

n− 2

∫ 1

0

x(1− x)n−2dx+
λ

n− 2

∫ 1
1+λ

0

x(1− x)n−2dx

+
λ

(1 + λ)2

1

n− 2

∫ 1

0

x(1− x)n−2dx+
1

1 + λ

1

(n− 2)(n− 2)

∫ 1

0

(1− x)n−1dx

− 1

(n− 2)(n− 1)

∫ 1
1+λ

0

(1− x)n−1dx+
λ

(1 + λ)2

1

n− 2

∫ 1

0

x(1− x)n−2dx

+
1

1 + λ

1

(n− 2)(n− 2)

∫ 1

0

(1− x)n−1dx− λ

(1 + λ)2

1

n− 2

∫ 1

0

x(1− x)n−2dx

+
λ

n− 2

∫ 1

1
1+λ

x(1− x)n−2dx− 1

(n− 2)(n− 1)

∫ 1

1
1+λ

(1− x)n−1dx

=
λ

n− 2

∫ 1

0

x(1− x)n−2dx+

[
2

1

1 + λ
− 1

]
1

(n− 2)(n− 1)

∫ 1

0

(1− x)n−1dx

=
1

n(n− 1)(n− 2)

[
λ+

1− λ
1 + λ

]
=

1

n(n− 1)(n− 2)

1 + λ2

1 + λ

Thus

E

[
1

r

m∑
i=1

||ui1|2 − λ|ui2|2|

]
=

1 + λ2

1 + λ

which, as in the complex gaussian case, achieves its minimum on [0, 1] of 2(
√

2− 1) > 0.828.
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Implications related to Wright’s conjecture
Using the same covering argument over rank-2 indefinite matrices as in Lemma 3.4.2, we obtain
the RIP-1 property for unitary matrices. Since RIP-1 is stronger than injectivity of the measure-
ments, this shows that there exists some integer r such that the measurements |Uix|ri=1, where Ui
are iid Haar distributed unitary matrices, are injective up to global phase with very high probability
(Wright’s conjecture is that there exist a set of 3 unitary operators which yield injective measure-
ments). It would be interesting to see how small of an integer r can be achieved by probabilistic
arguments, say by using more sophisticated concentration arguments.

4.3 Dual certification
We start with a useful property:

Moments of entries of a unitary matrix
Wlog, we shall further treat below the complex case only. We record some useful identities from
[71]. Let uij be an entry of a n× n Haar distributed unitary matrix. Then

E[|uij|2d] =
d!

n(n+ 1) . . . (n+ d− 1)

Which implies that E[|uia|4] = 2
n(n+1)

. Using the identity

1

n
= E[|uia|2] = E[|uia|2(

n∑
b=1

|uib|2)] = E[|uia|4] + (n− 1)E[|uib|2|uia|2]

we obtain, for a 6= b

E[|uia|2|uib|2] =
1

n(n+ 1)

Dual Certificates
With A as above, it can be verified that

1

m
E [A∗A] = I − 1

n+ 1
I ⊗ I = S

and we have S−1(X) = X − 1
n+1

Tr(X)In. Thus, the regular construction of the dual certificate
would be
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1

m
A∗AS−1(e1e

∗
1) =

1

m

m∑
i=1

n(n+ 1)uiu
∗
i ⊗ uiu∗i (e1e

∗
1 −

1

n+ 1
In)

=
n(n+ 1)

m

m∑
i=1

(|ui1|2 −
1

n+ 1
)uiu

∗
i

=
n

m

m∑
i=1

((n+ 1)|ui1|2 − 1)uiu
∗
i

Let ψn = E
[
(n)(n+ 1)(|ui1| ∧ 3√

n+1
)4
]
. ψn is slightly less than 2. Using a construction

similar to that found in [5], we could then take the enhanced certificate to be

Y =
1

m

m∑
i=1

(2n(n+ 1)(|ui1| ∧
3√
n+ 1

)2 − n(2ψn − 1))uiu
∗
i

We have then the expected value of this sum is 1 in the upper left corner, near to -1 on the rest of
the diagonal and zero elsewhere. Furthermore, the contribution of the |ui1| term is capped to not
be too large. We thus hope to acquire the same properties of the enhanced dual certificate as in the
gaussian case.

Behavior of YT
Here we control the quantity ‖YT − e1e

∗
1‖F . We can re-write the certificate as

Y =
1

r

r∑
k=1

n∑
i=1

(2(n+ 1)(|u(k)
i1 | ∧

3√
n+ 1

)2 − (2ψn − 1))u
(k)
i u

(k)
i

∗

where {u(k)
i }ni=1 are (indexed by k) iid Haar distributed on Un. To show that ‖YT −e1e

∗
1‖F is small,

it is enough to show that

‖1

r

r∑
k=1

xk − e1‖2

is small, where

xk =d

n∑
i=1

(2(n+ 1)(|ui1| ∧
3√
n+ 1

)2 − (2ψn − 1))ūi1ui
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We have

E
[
‖xk‖2

]
= E

[
n∑
i=1

∣∣∣∣(2(n+ 1)(|ui1| ∧
3√
n+ 1

)2 − (2ψn − 1))

∣∣∣∣2 |ui1|2
]

= nE

[(
4(n+ 1)2

(
|ui1| ∧

3√
n+ 1

)4
)
|ui1|2

]
+

nE

[(
(2ψn − 1)2 − 4(n+ 1)(2ψn − 1)

(
|ui1| ∧

3√
n+ 1

)2
)
|ui1|2

]

= 4n(n+ 1)2 E

[(
|ui1| ∧

3√
n+ 1

)4

|ui1|2
]

+ (2ψn − 1)2

− 4n(n+ 1)(2ψn − 1)E

[(
|ui1| ∧

3√
n+ 1

)2

|ui1|2
]

≤ 4n(n+ 1)2 E
[
|ui1|6

]
+ (2ψn − 1)2 − 4n(n+ 1)(2ψn − 1)E

[(
|ui1| ∧

3√
n+ 1

)4
]

= 4n(n+ 1)2 3!

n(n+ 1)(n+ 2)
+ 4ψ2

n − 4ψn + 1− 4(2ψn − 1)ψn

= 24
n+ 1

n+ 2
+ 1− 4ψ2

n ≤ 24

Furthermore, we have

‖xk‖2 =

(
n∑
i=1

|(2(n+ 1)(|ui1| ∧
3√
n+ 1

)2 − (2ψn − 1))ūi1|2
)1/2

≤
√

21

These facts allow us to apply the vector Bernstein inequality (Theorem 3.5.3) to get that ‖YT −
e1e
∗
1‖F is as small as necessary with probability at least 1− e−cr for some constant c.

Behavior of YT⊥
We would like to show that YT⊥ ≺ 0 whp. It is enough to consider sup{〈x, YT⊥x〉 ;x ∈ CSn, x1 =
0} and we aim to control this quantity via a covering argument. Using rotational invariance, we
have

〈x, YT⊥x〉 =d 〈e2, YT⊥e2〉 =
1

r

r∑
k=1

n∑
i=1

(2(n+ 1)(|u(k)
i1 | ∧

3√
n+ 1

)2 − (2ψn − 1))|u(k)
i2 |2

=
1

r

r∑
k=1

n∑
i=1

(2(n+ 1)(|u(k)
i1 | ∧

3√
n+ 1

)2)|u(k)
i2 |2 − (2ψn − 1)
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A straightforward application of Talagrand’s inequality fails here. Bernstein’s inequality for weakly
dependent variables also fails [12], so we will use an approach that involves conditioning and Ta-
lagrand’s inequality. It suffices to show that

1

r

r∑
k=1

n∑
i=1

(2(n+ 1)(|u(k)
i1 | ∧

3√
n+ 1

)2 − φn)|u(k)
i2 |2

concentrates well about 0, where

φn = E

[
1

r

r∑
k=1

n∑
i=1

(2(n+ 1)(|u(k)
i1 | ∧

3√
n+ 1

)2)|u(k)
i2 |2

]

= E
[
2n(n+ 1)(|ui1| ∧

3√
n+ 1

)2)|ui2|2
]
≤ 2

we have,

1

r

r∑
k=1

n∑
i=1

(2(n+ 1)(|u(k)
i1 | ∧

3√
n+ 1

)2 − φn)|u(k)
i2 |2

=d 1

r

r∑
k=1

G(ζ(k), z(k))

=
1

r

r∑
k=1

n∑
i=1

(2(n+ 1)(|v(z(k))i| ∧
3√
n+ 1

)2 − φn)|v(t(v(ζ(k)), v(z(k))))i|2

and as before, we consider the surrogate function

1

r

r∑
k=1

G̃(ζ(k), z(k)) =
1

r

r∑
k=1

n∑
i=1

(2(n+ 1)(|ṽ1(z(k))i| ∧
3√
n+ 1

)2− φn)|ṽ2(t(ṽ1(ζ(k)), ṽ1(z(k))))i|2

Now,

P

(
|1
r

r∑
k=1

G̃(ζ(k), z(k))| ≥ t

)
= E

[
E
[
χ{| 1

r

∑r
k=1 G̃(ζ(k),z(k))|≥t}

∣∣∣(z(1), . . . , z(r))
]]

= Ez

[
Pζ

(∣∣∣∣∣1r
r∑

k=1

G̃(ζ(k), z(k))

∣∣∣∣∣ ≥ t

)]

≤ Ez

[
Pζ

(∣∣∣∣∣1r
r∑

k=1

G̃(ζ(k), z(k))− Eζ

[
1

r

r∑
k=1

G̃(ζ(k), z(k))

]∣∣∣∣∣ ≥ t−

∣∣∣∣∣Eζ
[

1

r

r∑
k=1

G̃(ζ(k), z(k))

]∣∣∣∣∣
)]

≤ Ez

[
Pζ

(∣∣∣∣∣1r
r∑

k=1

G̃(ζ(k), z(k))− f({z(i)}ri=1)

∣∣∣∣∣ ≥ t− t1

)
χ{|f({z(i)}ri=1)|≤t1}

]
+ P(|f({z(i)}ri=1)| > t1)
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where f({z(i)}ri=1) = Eζ
[

1
r

∑r
k=1 G̃(ζ(k), z(k))

]
.

It now suffices to analyze the quantities Lipζ(G̃(ζ, z)) and Eζ
[
G̃(ζ, z)

]
as functions of z.

For x ∈ Rn or Cn, g(x) =
∑n

i=1 ai|xi|2 and ‖x1‖2 + ‖x2‖2 ≤ 2, we have

|g(x1)− g(x2)| ≤ 2‖a‖∞‖x1 − x2‖2

Letting ai =
(

2(n+ 1)(|ṽ1(z)i| ∧ 3√
n+1

)2 − φn
)

and noting ‖a‖∞ ≤ 20∣∣∣G̃(ζ1, z)− G̃(ζ2, z)
∣∣∣ = |g(ṽ2(t(ṽ1(ζ1), ṽ1(z))))− g(ṽ2(t(ṽ1(ζ2), ṽ1(z))))|

≤ 2‖a‖∞‖ṽ2(t(ṽ1(ζ1), ṽ1(z)))− ṽ2(t(ṽ1(ζ2), ṽ1(z)))‖2

≤ 40Lip(ṽ2)Lip(t|B(0,1)2)Lip(ṽ1)‖ζ1 − ζ2‖2

In conclusion

Lipζ(G̃(ζ, z)) ≤ 8 ∗ 40

√
c1
c2√
n

uniformly in z and thus

Lip(
1

r

r∑
k=1

G̃(ζ(k), z(k))) ≤ 1√
r

8 ∗ 40

√
c1
c2√
n

uniformly in
(
z(1), . . . , z(r)

)
. This gives that

Pζ

(∣∣∣∣∣1r
r∑

k=1

G̃(ζ(k), z(k))− f(z(1), . . . , z(r))

∣∣∣∣∣ ≥ t)

)
≤ e−crnt

2

for a constant c which depends on ci but does not depend on z. Now we need to show that
f(z(1), . . . , z(r)) concentrates well about its mean and that this mean is very small. We have

f(z(1), . . . , z(r))

=
1

r

r∑
k=1

n∑
i=1

Eζ
[
|ṽ2(t(ṽ1(ζ(k)), ṽ1(z(k))))i|2

](
2(n+ 1)(|ṽ1(z(k))i| ∧

3√
n+ 1

)2 − φn
)

Let
h(z) = {Eζ

[
|ṽ2(t(ṽ1(ζ), ṽ1(z)))i|2

]
}ni=1.

and
p(z) = {(2(n+ 1)(|ṽ1(z)i| ∧

3√
n+ 1

)2 − φn)}ni=1
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First, using the following facts,

E [ṽ1(ζ)i] = 0

E [ṽ1(ζ)aṽ1(ζ)b] = 0, a 6= b

E
[
|ṽ1(ζ)i|2

]
≤ 1

n

E
[
| 〈ṽ1(ζ), y〉 |2

]
≤ ‖y‖2

2

1

n
E [2ṽ1(ζ)iȳi 〈ṽ1(ζ), y〉] = 0

for any y ∈ Cn, we establish

Eζ
[
|ṽ2(t(ṽ1(ζ), ṽ1(z)))i|2

]
≤ Eζ

[
1

c2

|(t(ṽ1(ζ), ṽ1(z)))i|2
]

≤ 1

c2

Eζ
[
|ṽ1(ζ)i|2 + |ṽ1(z)i|2 |〈ṽ1(z), ṽ1(ζ)〉|2 − 2<(ṽ1(ζ)i ¯̃v1(z)i 〈ṽ1(ζ), ṽ1(z)〉)

]
≤ 1

c2

[
1

n
+ |ṽ1(z)i|2‖ṽ1(z)‖2

2

1

n

]
≤ 2

c2n

Thus, for any z, ‖h(z)‖∞ ≤ 2
c2n

.

Now we shall compute Lip(
∑n

i=1 hi(z)pi(z)) directly:∣∣∣∣∣
n∑
i=1

hi(z1)pi(z1)−
n∑
i=1

hi(z2)pi(z2)

∣∣∣∣∣
≤ ‖h(z1)‖∞

n∑
i=1

|pi(z1)− pi(z2)|+ ‖p(z2)‖∞
n∑
i=1

|h(z2)− h(z2)|

≤ 2(n+ 1)‖h(z1)‖∞
n∑
i=1

∣∣∣∣(|ṽ1(z1)i| ∧
3√
n+ 1

)2 − (|ṽ1(z2)i| ∧
3√
n+ 1

)2

∣∣∣∣+
‖p(z2)‖∞ Eζ

[
n∑
i=1

∣∣|ṽ2(t(ṽ1(ζ), ṽ1(z1)))i|2 − |ṽ2(t(ṽ1(ζ), ṽ1(z2)))i|2
∣∣]

≤ 2(n+ 1)‖h(z1)‖∞2(‖|ṽ1(z1)| ∧ 3√
n+ 1

− |ṽ1(z2)| ∧ 3√
n+ 1

‖2)+

‖p(z2)‖∞ Eζ [2‖ṽ2(t(ṽ1(ζ), ṽ1(z1)))− ṽ2(t(ṽ1(ζ), ṽ1(z2)))‖2]

≤
[
2(n+ 1)‖h(z1)‖∞2Lip(ṽ1) + ‖p(z2)‖∞2Lip(ṽ2)Lip(t|B(0,1)2)Lip(ṽ1)

]
‖z1 − z2‖2

≤

16
n+ 1

n

√
c1/c2√
n

+ 320

√
c1
c2√
n

 ‖z1 − z2‖2
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Thus,

Lip(f(z(1), . . . , z(r))) = O
(√

c1

c2

1√
rn

)
This will allow us to get the desired concentration of f(z(1), . . . , z(r)) around its mean via Tala-
grand’s inequality. Namely, we obtain

P
(∣∣f(z(1), . . . , z(r))− E

[
f(z(1), . . . , z(r))

]∣∣ ≥ t
)
≤ e−crnt

2

for a constant c which depends on ci.

Let F = 1
r

∑r
k=1G(ζ(k), z(k)) and F̃ = 1

r

∑r
k=1 G̃(ζ(k), z(k)). Then E

[
f(z(1), . . . , z(r))

]
=

E
[
F̃
]

and note E [F ] = 0. Since both F and F̃ are bounded and differ on a set of exponentially

small probability, for any valid choice of ci, limn→∞ E
[
F̃
]

= 0 and so having fixed t apriori, for n
large enough

P
(∣∣f(z(1), . . . , z(r))

∣∣ ≥ t

2

)
≤ e−crn(t/4)2

Taking t1 = t
2
, this implies

P

(
|1
r

r∑
k=1

G̃(ζ(k), z(k))| ≥ t

)
≤ e−crn(t− t

2
)2 + e−crn(t/4)2

Now using that F and F̃ differ on a set of probability at most O(re−γn), we have

P (|F | ≥ t) ≤ P{|F̃ | ≥ t− |F̃ − F |}
≤ P{F 6= F̃}+ P{|F̃ | ≥ t}
≤ O(re−γn) + e−crn(t/2)2 + e−crn(t/4)2

Therefore, we have established

P{〈x, YT⊥x〉 ≥ t+ φn − (2ψn − 1)} ≤ O(re−γn) + e−crn(t/2)2 + e−crn(t/4)2

To get an arbitrarily fast exponential rate of concentration, fix γ to be as large as needed by choos-
ing ci appropriately, then fix r large enough. Note that φn ≤ 2 and ψn is very close to 2 so that
φn − (2ψn − 1) ≈ −1. Choosing an appropriate t, we get that YT⊥ is negative definite with high
probability via the standard covering argument, which completes the proof of the main theorem.
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