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HDBind: encoding of molecular 
structure with hyperdimensional 
binary representations
Derek Jones1,2, Xiaohua Zhang3, Brian J. Bennion3, Sumukh Pinge1, Weihong Xu1, 
Jaeyoung Kang1, Behnam Khaleghi1, Niema Moshiri1, Jonathan E. Allen2 & Tajana S. Rosing1

Traditional methods for identifying “hit” molecules from a large collection of potential drug-like 
candidates rely on biophysical theory to compute approximations to the Gibbs free energy of the 
binding interaction between the drug and its protein target. These approaches have a significant 
limitation in that they require exceptional computing capabilities for even relatively small collections 
of molecules. Increasingly large and complex state-of-the-art deep learning approaches have gained 
popularity with the promise to improve the productivity of drug design, notorious for its numerous 
failures. However, as deep learning models increase in their size and complexity, their acceleration 
at the hardware level becomes more challenging. Hyperdimensional Computing (HDC) has recently 
gained attention in the computer hardware community due to its algorithmic simplicity relative to 
deep learning approaches. The HDC learning paradigm, which represents data with high-dimension 
binary vectors, allows the use of low-precision binary vector arithmetic to create models of the 
data that can be learned without the need for the gradient-based optimization required in many 
conventional machine learning and deep learning methods. This algorithmic simplicity allows for 
acceleration in hardware that has been previously demonstrated in a range of application areas 
(computer vision, bioinformatics, mass spectrometery, remote sensing, edge devices, etc.). To the best 
of our knowledge, our work is the first to consider HDC for the task of fast and efficient screening of 
modern drug-like compound libraries. We also propose the first HDC graph-based encoding methods 
for molecular data, demonstrating consistent and substantial improvement over previous work. We 
compare our approaches to alternative approaches on the well-studied MoleculeNet dataset and the 
recently proposed LIT-PCBA dataset derived from high quality PubChem assays. We demonstrate our 
methods on multiple target hardware platforms, including Graphics Processing Units (GPUs) and Field 
Programmable Gate Arrays (FPGAs), showing at least an order of magnitude improvement in energy 
efficiency versus even our smallest neural network baseline model with a single hidden layer. Our work 
thus motivates further investigation into molecular representation learning to develop ultra-efficient 
pre-screening tools. We make our code publicly available at https://github.com/LLNL/hdbind.

Keywords Hyperdimensional computing, Machine learning, Representation learning, Computational 
chemistry, Drug discovery

The modern drug discovery process consists of multiple sequential steps that progress from an initial large 
collection of candidates, sampled from the estimated 1060 − 10100 possible drug-like small molecule structures, 
to a smaller targeted set of hit or lead compounds with potential activity with protein targets of interest1. These 
candidates are filtered according to their likelihood of success based on a scoring function that uses either physics-
based modeling2 or, increasingly, properties inferred directly from data using machine learning3–5. The results 
of the virtual screen are then used to identify molecular leads for more rigorous—and expensive—experimental 
validation1. Public catalogs of drug-like molecules have grown to comprise tens of billions of possibilities6, 
while the number of available protein structures has simultaneously grown with the introduction of AI-enabled 
3D structure prediction tools, resulting in over 200 million publicly available predicted structures7,8. Even the 
exhaustive interrogation of the approximately 20,000 human proteins poses a considerable computational 
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challenge. While increasingly complex deep learning architectures are demonstrating state-of-the-art (SOA) 
results on a wide range of molecular property prediction tasks9–11, it is becoming increasingly clear that energy 
efficiency will become a greater priority over time as these models are, repeatedly, trained and deployed on 
increasingly vast human protein-drug interactome12.

Hyper-dimensional computing (HDC) is an emerging paradigm of lightweight machine learning that 
leverages the orthogonality of vectors in high dimensional space coupled with simple arithmetic operations for 
learning that are, comparatively to SOA deep learning architectures, simple to implement in hardware, and thus 
primed to take advantage of emerging hardware acceleration breakthroughs13–27. HDC has been demonstrated 
as a versatile and efficient approach for a growing variety of application domains including proteomics28, 
molecular property prediction29, medical image classification, visual scene understanding30,31, and biosignal 
classification18,19. HDC requires the specification of an encoding method to transform the original input data 
representation into a high-dimensional vector space as hypervectors14,15. Then, given a similarity metric defined 
on the high-dimensional space, commonly chosen as the cosine similarity, which is sensitive only to the 
relative orientation, similar hypervectors can then be aggregated in order to build higher-level class prototype 
representations that form the associative memory of the model14,15. Inference then simply requires computing the 
similarity between a query hypervector and the elements of the associative memory14,15. Despite the potential of 
HDC to provide a lightweight and energy efficient method for classification in the context of screening protein–
ligand interactions, to the best of our knowledge, there has only been a single previously reported study of HDC 
on a molecular machine learning task in general29, but this work does not consider the problem of protein-drug 
interactions. Our work is the first to use HDC to accelerate protein–drug interactions, in combination with 
a range of molecular representations including the well-studied Extended Connectivity FingerPrint (ECFP)32 
as well as representations extracted from a state of the art Large Language Model (LLM) and self-supervised 
graph pretraining algorithms9,10. Our work considers a panel of 6 molecular property prediction tasks derived 
from MoleculeNet11. We show improved performance compared to the SOA HDC-based approach MoleHD33 
as well as baseline traditional ML methods. Our results additionally show improvement in some cases over 
the finetuned LLM, MolFormer-XL9. We consider the LIT-PCBA binding interaction dataset, which collects 
experimental data across 15 protein targets selected from high-confidence PubChem Bioassay data34. Our work 
is thus the first HDC-based study of a real-world collection of molecular activity data beyond the benchmark 
datasets that have been considered until now, demonstrating a compelling use case for HDC in a challenging 
real-world application with a fair comparison to traditional physics-based molecular docking and baseline 
Multi-layer Perceptron (MLP) that is typically trained on top of a given molecular vector representation for a 
downstream task.

Materials and methods
Hyperdimensional computing (HDC)
Hyperdimensional computing (HDC) is an emerging paradigm for building lightweight and error-robust 
models for classification and clustering14,15. HDC leverages the properties of high-dimensional vector spaces. 
With increasingly large dimension size D : D ∈ Z+, the distance between any pair of randomly selected vectors 
converges towards the expected distance between all vectors15,35. Thus, nearly all vectors are unrelated and can 
be considered as quasi-orthogonal; it is then possible to attribute unique vectors to semantically meaningful 
properties of the dataset X : x ∈ Rn (i.e. element type, number of bonds, etc.)15,36. An encoding function ϕ(x) 
is specified to produce the representations in the high-dimension space H : h ∈ RD  from the samples of the 
dataset. The encoding function ϕ may incorporate prior knowledge about the mapping between the ambient data 
dimension and the high dimensional space or may be a parameterized function such as a neural network that is 
learned from the data15,33,37. Simple arithmetic operations can be used to reason with the the high-dimensional 
vectors h. The binding operator ⊗ : H × H → H  is used to create ordered tuples of points in H. We define ⊗ as 
the hadamard or element-wise product, which is associative and commutative:

 
⊗(a, b) =

∑
i

aibi. (1)

The bundling operator ⊕ : H × H → H  allows for the composition of information from disparate sources into 
a single representation15. We define ⊕ as the element-wise sum, which is associative and commutative:

 
⊕(a, b) =

∑
i

ai + bi. (2)

Lastly, permutation Π is used to, efficiently, incorporate positional information into the representation h15,29,38.
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Learning in HDC

Algorithm 1. HDC AM: build associative memory module A

Algorithm 2. HDC retrain: update associative memory module A

Algorithm 3. HDC test

HDC supports the development of lightweight classification models without the need of numerical 
optimization approaches such as stochastic gradient descent (SGD) or more sophisticated alternatives typically 
used to train deep neural networks39–41. Learning in HDC for a set of K classes proceeds by the construction of 
prototypes hk : k ∈ K  for each class k:

 
hk =

⊕
i|yi=k

ϕ(xi) (3)
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where xi is the ith sample from the dataset X and yi is the respective class label. The initial epoch of training 
consists of building the associative memory A of the model by applying ϕ(x) to the input dataset X producing 
a representative prototype vector hk  for each class with a single pass over the training set (Algorithm 1). To 
perform inference on a query hypervector hq , we simply compute:

 
ŷ = argmax

k∈K

ρ(hk, hq) = argmax
k∈K

ρ(hk, ϕ(xq)) (4)

where ρ denotes a user-specified similarity metric and xq  is the query data point.15. In our work we implement 
ρ as the cosine similarity:

 
ρ(hk, hq) = ρ(hk, ϕ(xq)) = cos(θ) = hk · ϕ(xq)

||hk|| ||ϕ(xq)||  (5)

After constructing A with single-pass learning, it can be further refined with a re-training phase (Algorithm 2). 
This phase tests the model predictions on the training set then updates A accordingly. This operation functions 
to increase the distance from the incorrect class prototype(s) while decreasing the distance to the correct class 
prototype. For testing the learned A, we simply compare the hypervectors of the test set with A using the user-
defined similarity metric ρ and select the index of the most similar prototype to represent the predicted class 
(Algorithm 3).

Encoding molecular data for HDC
Small drug-like molecules are often described using the “simplified molecular-input line-entry ststem” (i.e. 
SMILES) which encodes the structure as an ASCII string42. The SMILES string itself describes a depth-first 
traversal of the 2D molecular graph structure. The ECFP representation considers the graph representation 
of the molecule and is widely used in computational chemistry for tasks such as similarity search in chemical 
libraries as well as a feature for ML models. ECFP is based on the Morgan algorithm43, which was originally 
proposed to solve the molecular isomorphism problem and is widely used for chemical similarity analysis as 
well as general purpose representations for machine learning. The ECFP algorithm makes changes to MorganFP 
that improve efficiency, such as a user-defined iteration limit, a cache to store intermediate atom identifiers 
between iterations, and a hashing scheme to record the resulting representations32. Thus, ECFP effectively uses 
a bottom-up approach to collect progressively larger molecular substructures that are guaranteed to coherently 
preserve the graph structure as any entry in the ECFP corresponds to a valid subgraph of the input molecular 
graph whereas a randomly selected substring of a SMILES may not correspond to a valid subgraph or even a 
valid SMILES string32. ECFP allows for a user to specify the number of bits (i.e. vector length) n ∈ Z+ in a 
representation, commonly chosen as 1024 or 20485,11. Further, a maximum radius size r ∈ Z+ (i.e., number of 
edges (bonds) from a root node (atom)) for collecting substructure-graphs is specified to constrain the search 
for substructure information. Thus each binary value in the ECFP representations indicates the presence or lack 
thereof for a chemical substructure.

Random projection fingerprint encoding (RPFP)
Random Projection (RP) provides a simple method for dimensionality reduction44,45. RP can also be considered 
as the basis of an encoding method to produce high-dimensional embeddings h that preserve the relative 
distances of the input data15,38:

 z = xW ⊤  (6)

 h = σ(z)  (7)

where W ∈ RD×n is a matrix whose rows are randomly sampled from the surface of the unit sphere15. The 
quantization operator σ(z) is defined as:

 
σ(z) =

{ −1 where z ≤ 0
1 where z > 0  (8)

Direct ECFP encoding (DECFP)
The direct ECFP encoding (DECFP) approach simply uses the rdkit46 function GetMorganFingerprintAsBitVect 
to compute fingerprints for each molecule, which given their sparse binary properties satisfy our definition of 
hypervectors. The nBits parameter is adjusted to equal D corresponding to the hypervector dimension. This can 
be described as:

 z = En,r(s)  (9)

 h = σ(z)  (10)

where s denotes the SMILES string corresponding to a particular sample. As no matrix multiplications are 
required, the entire encoding process is carried out on the CPU.
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Large-scale self-supervised representations
Data-driven molecular representation learning has caught much attention in recent years in tandem with the 
rise of deep learning9,10,47,48. We investigate the SOA approach, MoLFormer9, as the basis of the molecular 
representation we consider. MoLFormer uses the masked language model framework49,50 and thus employs self-
supervision to learn to predict missing tokens from within a SMILES sequence9. An alternative pretraining 
paradigm instead uses the molecular graph representation along with graph-centric augmentations (atom 
masking, bond deletion, subgraph removal) and self-supervised contrastive learning objectives10,51. The SOA 
approach MolCLR10 is considered in our work. Previous work has considered the use of neural networks for 
the basis of an HDC embedding33, however we are the first to our knowledge to consider a model obtained 
from an extensive training run on large collections of publicly available molecular data9. Similarly to the ECFP 
encoding, we use the random projection approach described previously to realize the HDC embeddings as 
HDB-MoLFormer (Fig. 2) and HDB-MolCLR. This is a similar strategy to previous work which uses a deep 
convolutional neural network as a feature extractor to generate input representations for the random projection 
layer52.

Effectively, the HDB-MoLFormer and HDB-MolCLR strategies may be considered as a neural network of L 
layers where the initial 0 ≤ l ≤ L − 1 : l ≤ L layers are trained using a gradient-based optimization scheme 
with a self-supervised (pre-)training objective. The Lth layer in this network then uses a randomly sampled 
linear projection layer (bias omitted) with a sign activation function (Eq. 8) to truncate the input values to be in 
the binary space {−1, 1}. The outputs and their labels are collected to form the associative memory of the model 
which are subsequently used for HDC training and inference (Algorithm 1, 2, and 3).

Ranking compounds with HDC
To rank compounds for the HDC methods, we use the confidence estimation equation as described in 
MoleHD29. For a binary classifier, the range of similarity differences between the positive and negative classes 
are transformed linearly to the interval [0,1].:

 
η = 1

2 + ρ(hq, h0) − ρ(hq, h1)
4

 (11)

where h0 and h1 are respectively the negative and positive class prototype hypervectors contained in the model 
associative memory A and hq  is the query hypervector. Intuitively, if hq  is equally similar to both h0 and h1, 
η = 1

2 . If hq  is more similar to h1, η > 0.5, otherwise if hq  is more similar to h0, then η < 0.5.

Metrics
To facilitate comparison with previous work on MoleculeNet11, we use the receiver operating characteristic—
area under the curve (ROC-AUC) to measure performance of different models. The ROC-AUC metric compares 
the true positive rate (TPR) and false positive rate (FPR) of a classifier at various thresholds of a models score to 
identify a positive class. The area under the curve produced by the various thresholds is measured with respect 
to a perfect classifier (TPR=1, FPR=0 for all thresholds).

It is common in the high-throughput screening literature to measure performance in terms of a scoring 
function in terms of the to encounter the enrichment factor (EF) metric53,54, which attempts to measure how well 
a screening method may be able to improve the density of actives in a large database of molecular candidates. 
The EF metric is typically defined in terms of the hit rate for a sample compared to the background hit rate of the 
full database. As modern databases may reach billions, a tractable sample is chosen for ruther validation, such 
as the top 1% of compounds as ranked by the outputs of some scoring function. Let as, ab represent the number 
of actives and ns, nb the size of the sample and database respectively. Then let ps = as/ns be the probability of 
selecting an active from a sample of ranked compounds (i.e. sample hit rate) and pb = ab/nb be the probability 
of selecting an active compound from the database (i.e. background hit rate) of the database. The enrichment 
factor (EF) is then calculated as the ratio between the two quantities:

 
EF-x% = ps

pb
=

(
as

ns

)
/

(
ab

nb

)
= as

ab
· nb

ns
 (12)

where x = ns/nb is the fraction of top ranked molecules sampled from the database (e.g. x = 1%). This 
measurement of enrichment however is subject to the limitation of its sensitivity to the proportion of the 
active to inactive compounds in the test set, which is typically highly skewed in binding activity datasets34,55. 
Several works have proposed an alternative metric which instead uses a fixed false positive rate to measure the 
enrichment factor56–58. This approach removes the limitation of being dependent on the active to inactive ratio. 
To facilitate direct comparison to previously published methods58, we report this definition of roc-enrichment 
using a false positive rate of x% as ER-x%:

 ER-x% = ROC-Curve(FPR-x%) × 100 = TPRFPR-x% × 100 (13)

where TPR is the true positive rate given by the ROC-Curve at the false positive rate of x% (FPR-x%). We use 
x = 1% to compare with previous work58, however when considering large databases it may be more tractable 
to consider smaller sample sizes (i.e. x = 0.1%, 0.2%, and 0.5%).

Scientific Reports |        (2024) 14:29025 5| https://doi.org/10.1038/s41598-024-80009-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Training details
All methods presented are trained on the Lassen high-performance computing cluster at Lawrence Livermore 
National Laboratory. Coarse-grained parallelism was achieved for each dataset by randomly sampling a task 
and running independently on each node of a given allocation. Each node is equipped with an IBM Power 9 
CPU, 256GB of main memory, and 4x Nvidia V100 GPUs. Our experiments only consider a single GPU for all 
methods. All HDC methods share the same training and testing algorithms (Algorithm 1, 2, and 3), with the 
only difference being the encoding algorithms used to produce the high-dimensional vector representations. A 
batch size of 128 was used for training all HDC models considered to enable fair comparison between different 
hypervector dimension sizes D and GPU memory usage. All MLP models are optimized using Ray.Tune 
hyperparameter optimization library59. We use the AsynchronousHyperBand scheduler with default parameters 
to sample 50 configurations. The best model, according to the minimum validation loss, is selected to train on 
the full dataset and evaluated on the test set for performance metrics.

Energy analysis
To estimate energy usage, we use the following equation:

 E = P̄ × t (14)

where E is the energy usage (Joules), P̄  is the average power output (Watts) of the processor (CPU, GPU, or 
FPGA) over the course of the program execution, and t is the execution time or latency of the program. To 
collect power measurements for CPU and GPU we use the the variorum power and performance measurement 
tool60. We collect all performance measurements, not including the FPGA, on the Lassen HPC cluster using a 
single Nvidia V100 GPU.

Results
Molecular property classification on MoleculeNet
Previous work on supervised learning approaches
The MoleculeNet benchmark is a common performance benchmark for machine learning methods across 
a variety of regression and classification tasks. We consider a series of 6 classification tasks to compare with 
recently published SOA methods9,10. N-gram61, GeomGCL62, MolCLR10, and MolFormer-XL9 represent self-
supervised methods with SOA results as reported previously9. MolCLR10 is a molecular graph pretraining 
method composed of atom masking, bond deletion, and subgraph removal graph augmentations whose encoded 
representations are used as input to the normalized temperature-scaled cross-entropy (NT-Xent) contrastive 
loss63. MolCLR is trained on approximately 10 million SMILES strings collected from the PubChem database64. 
MoLFormer-XL9 is another recently proposed self-supervised pretraining method that is instead built using 
the masked language model framework49,50 and further expands the training set considered by MolCLR10 by 
two orders of magnitude, training on over 1 billion SMILES from PubChem64. The pre-trained MoLFormer 
and MolCLR models are then fine-tuned on the target MoleculeNet classification tasks by training an MLP 
on top of the output layers of the pre-trained networks using a supervised loss (e.g. cross-entropy or negative 
log-likelihood). Representative baseline supervised machine learning methods are collected from previously 
published methods9,65,66 except for our own implementation of the MLP.

HDC methods on MoleculeNet
To our knowledge, MoleHD33 is the only known previously published HDC approach for molecular property 
prediction in general. MoleHD uses an encoding of the SMILES string that is built upon the byte-pair encoding 
algorithm that accounts for atoms as cohesive structures and is trained using ChEMBL67,68. MoleHD collects 
the unique tokens collected by the SmilesPair Encoding algorithm67 and maps these tokens to unique, quasi-
orthogonal vectors of high dimension (e.g. 10,000). MoleHD also considers n-gram encoding methods, however 
the SPE method appears to produce the best overall method which we base our implementation on and our 
comparison. Results for all of the discussed models are compared to our proposed HDBind (HDB) approaches 
that consider two state-of-the-art self-supervised pretraining frameworks, MoLFormer10 and MolCLR9 and the 
well studied Extended Connectivity Fingerprint (ECFP)32 which incorporates substructure information derived 
directly from the molecular graph and its atom types and connectivity. Our hypothesis is that the explicit graph 
representation considered by the ECFP algorithm32 provides coherent substructure information (i.e. each ECFP 
bit corresponds to a valid molecular subgraph) that is crucial to identify in molecular property classification 
tasks49. Further, our hypothesis for large scale pretraining methods is that the random projection will preserve 
the structure of the original data in a randomly selected high dimensional space, with low required precision, 
allowing for extremely large vectors to be stored. Previous work has demonstrated the utility of these pre-trained 
representations in a variety of molecular property classification tasks, which we expect will benefit our proposed 
encoding approaches.

MoleculeNet classification results
Our results are given for 6 binary classification tasks in Table 1. We give results for HDC models with 
hypervector dimensionality D = 10, 000, as increasing the dimensionality to larger sizes (e.g. 1e5, 1e6) tends 
to yield marginal improvement at best on most tasks considered. Our results suggest that the best overall HDC 
model is HDB-MoLFormer, which is based upon the representation extracted from MoLFormer9 that is then 
randomly projected to the HDC representation. HDB-MoLFormer and is best in three of the 6 tasks among the 
HDC methods that we consider. The HDB-DECFP, which simply uses the representation generated directly 
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from the ECFP algorithm32, achieves competitive performance with HDB-MoLFormer on nearly each of the 
six tasks, while exceeding HDB-MoLFormer on three of six tasks though it is best only on the SIDER dataset. 
HDB-DECFP does not require the GPU for encoding the data into hypervectors, as opposed to our random 
projection-based approaches, allowing for significant energy savings (Table 2). Additionally, HDB-MoLFormer 
achieves SOA on two of the six tasks (BBBP, ClinTox) even when compared with the fine-tuned MoLFormer-XL9, 
demonstrating the ability of the approach to preserve learned substructure information provided by the more 
expensive pretraining. The HDB-Combo model, which combines the MoLFormer and DECFP representations 
(Fig. 1) achieves generally high performance five of the six tasks (BBBP, Tox21, ClinTox, HIV, and SIDER) 
though it fails to achieve the best overall performance on any task. Our results further show that increasing the 
hypervector dimension fails to significantly increase the performance of the HDB-Combo model further on the 
MoleculeNet classification benchmarks (SI Table S3, SI Figures S1–S6).

LIT-PCBA
Virtual molecular lead identification
The problem of virtual screening requires the specification of a scoring function that is applied to each of the 
candidate molecules, then these molecules are ranked accordingly then a filtered set above some threshold of the 
scoring function is selected for further processing with progressively more accurate but expensive algorithms. 
Scoring functions that approximate the experimental binding activity can be roughly divided into those that 
rely upon physics theory, machine learning, or some combination of the two54,71–75. A general workflow then 

Method Encode (J/mol)

HDB-DECFP 0.06

HDB-MoLFormer 0.39

HDB-Combo 0.50

MLP-small 0.07

MLP-large 0.07

Table 2. Encode energy estimates for each processor choice for the HDBind. We calculate power using the 
sum of the average CPU and GPU power output for all models. We include the energy for all feature extraction 
steps for all models (including MLP baselines) in addition to the encoding costs for HDBind models. Models 
that only require ECFP computation possess the lowest energy penalties (MLP baslines and HDB-DECFP).

 

Method BBBP Tox21 ClinTox HIV BACE SIDER

Molecules 2039 7831 1478 41,127 1513 1427

Tasks 1 12 2 1 1 27

RF9 71.4 76.9 71.3 78.1 86.7 68.4

SVM9 72.9 81.8 66.9 79.2 86.2 68.2

MLP 79.0 67.2 82.2 73.1 70.3 58.6

MGCN65 85.0 70.7 63.4 73.8 73.4 55.2

D-MPNN66 71.2 68.9 90.5 75.0 85.3 63.2

N-gram61 91.2 76.9 85.5 83.0 87.6 63.2

GeomGCL62 – 85.0 91.9 – – 64.8

MolCLRGIN10 73.6 79.8 93.2 80.6 89.0 68.0

MoLFormer-XL9 93.7 84.7 94.8 82.2 88.21 69.0

MoleHD33 84.4 – 98.7 – – 56.6

HDB-RPFP 94.8 (0.3) 70.8 (0.9) 86.3 (4.0) 71.8 (1.3) 71.3 (0.7) 55.2 (2.0)

HDB-MolCLR 66.8 (0.4) 68.0 (0.8) 71.2 (4.0) 70.6 (0.7) 82.4 (0.5) 61.2 (1.9)

HDB-MoLFormer 99.2 (0.1) 67.3 (1.0) 98.8 (0.0) 79.2 (0.6) 66.8 (0.4) 55.4 (1.9)

HDB-DECFP 93.8 (0.2) 69.6 (0.8) 90.6 (4.0) 77.8 (0.3) 74.7 (1.1) 61.4 (1.6)

HDB-Combo 97.4 (0.3) 70.1 (1.2) 90.7 (3.4) 77.4 (0.8) 67.0 (2.7) 58.8 (2.8)

Table 1. Comparison of supervised and self-supervised baselines on representative MoleculeNet benchmarks 
considered in previous work using the area under the curve of the receiver operating characteristic. All 
values are scaled by a factor of 100 for reader convenience. All methods are evaluated using scaffold splits to 
minimize the molecular similarity between the training and testing sets. All reported HDC models (HDBind 
and MoleHD33) use dimension D = 10k. *Denotes our implementation. ‘-’ denotes no value reported in the 
original work. Values in parentheses denote standard deviation of the average of 10 trials per task in each 
dataset. Results above the horizontal line correspond to SOA supervised and self-supervised baselines, below 
correspond to HDC methods.

 

Scientific Reports |        (2024) 14:29025 7| https://doi.org/10.1038/s41598-024-80009-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


first applies faster but less accurate docking methods, followed by more expensive and accurate calculations 
based on MM/GBSA or MD simulations74. Physics-based methods such as molecular docking76,77 are generally 
believed to be on the “fast” end of the spectrum of accuracy versus latency. More accurate methods including 
molecular mechanics/generalized Born surface area (MM/GBSA),78,79 which provides a more accurate binding 
energy calculation for a given docking pose, or binding free-energy calculations based upon intensive atomistic 
molecular dynamics (MD) simulations, are infeasible to run for even a relatively small number of candidate 
possibilities77,80. Benchmark datasets have long been used to validate a scoring function’s ability to distinguish 
active versus inactive molecules for a given protein target55,81. Recent research has identified limitations that 
have made these datasets trivial to learn thus overestimating the expected generalization performance when 
applied to real-world datasets34,58,82–85. The recently proposed LIT-PCBA34 benchmark dataset is derived from 
high-confidence PubChem assay data (7761 actives and 382,674 unique inactives, 1:50 class ratio) and provides 
a rigorous test set constructed using the Atomwise-developed AVE (asymmetric validation embedding) bias-
minimizing algorithm58,86. We additionally use a random stratified split of each protein-target specific dataset 
as a control with a 75%/25% train/test split ratio. To our knowledge, this represents the first demonstration of 
an HDC approach on a dataset of experimentally determined binding measurements of this scale of 100s of 
thousands33.

Enrichment results on LIT-PCBA
In Fig. 3, we choose to report the roc-enrichment factor (ER-1%) metric (Eq. 13)57,58,87. We consider two 
representative alternative approaches for molecular screening using either machine learning or physics-based 
knowledge, Pafnucy70 and GRIM69. Pafnucy is a 3D Convolutional Neural Network (3D-CNN) trained on the 
PDBBind88 dataset to predict the binding affinity of a protein–ligand complex70. GRIM69 is a fingerprint method 
that transforms the 3D atomic information, described using physics-based knowledge, in to a vector of 210 
integers describing the molecular interaction which are then used as the basis of the GRscore. Each of these 
methods requires a molecular docking simulation to generate plausible 3D structures of the binding complex87. 
Our proposed HDBind models considerably outperform our implementation of the MoleHD (using PyTorch) 
baseline with Smiles Pair Encoding (SPE)89 (SI Table S4). In Fig. 3 we give results compared to each of the 
representative methods we described. For dimension size D < 10k, our HDBind methods generally perform 
competitively with the GRIM and Pafnucy approaches across each molecular encoding approach. For D > 10
k however, a noticeable improvement is observed for the HDB-Combo, which combines the graph structural 

Fig.2. HDB-MoLFormer architecture description.

 

Fig. 1. Description of (a) the ECFP representation, (b) the Random Projection FingerPrint (RPFP), and (c) 
the HDB-Combo encoding. The HDB-Combo encoding uses the Hadamard (i.e., element-wise) product of the 
ECFP hypervector (DECFP) with the random projection of the MoLFormer representation, embedding the 
features learned from the large-scale self-supervised pretraining along with the coherent graph substructure 
information provided by the ECFP algorithm.
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information provided by the ECFP encoded into hypervectors (DECFP) with the pretrained representation 
extracted from the MoLFormer SMILES LLM9. Moreover, the performance of all HDBind molecular encoding 
methods tend to improve beyond the performance of GRIM and Pafnucy with increasing dimension size. To the 
best of our knowledge, our results, including HDB-Combo, represent the largest improvement in performance 
on this task that has been published to date58.

Classification results on LIT-PCBA
We choose the MLP as our baseline in order to compare against a standard approach for downstream prediction 
tasks that is relatively efficient compared to more complex approaches4,9,10,54 for which demonstrating energy 
efficiency would be trivial (Table 2). The MLP is trained directly on the ECFP representation to predict the 
binding activity of a drug molecule on each dataset, with no protein or 3D-structure information provided. The 
ECFP is generated using length 1024 and radius of 1. In this evaluation, we consider two splits of the dataset, a 
random stratified split, and the AVE split, to respectively assess model performance when making predictions on 
molecules similar to the training set and when making predictions on molecules that are maximally dissimilar to 
the training set. In Figs. 4 and 5 we characterise the effect of hypervector dimension choice D on classification 
performance of the active versus inactive molecules for both splits using the ROC-AUC metric. In the case of the 
random split, scaling D beyond 10k however does not yield increasing returns as the models appear to saturate 
or even degrade performance with D = 1, 000, 000. Despite this, for values of D ≥ 10k, nearly all models 
outperform our MLP baseline. However in the case of the AVE split, the benefit of increasing dimensionality is 
more pronounced as nearly every model considered benefits from larger vector representations, most noticeably 
the HDB-Combo method. Again, for values of D ≥ 10k, each our models outperform our MLP baseline model. 
We provide additional statistical significance of our results versus the baseline MLP model in SI Figures S7–S10.

Discussion
Energy efficiency as a performance metric
Energy efficiency is often over-looked in machine learning based systems in general and specifically for virtual 
drug screening12. A current trend in development often results in the use of a select set of foundation models that 
are expensive to train, but provide highly informative feature representations that can be leveraged for specific 
tasks. Increasingly these models are learned using self-supervision and result in state of the art performance 
in molecular property prediction9,10. Our setting assumes that for a given collection of drug-like molecules 
(purchasable libraries90), a feature extraction step (compute ECFP, MoLFormer or MolCLR embedding, etc.) will 
be performed once, resulting in a fixed cost that can be amortized over time with multiple subsequent screens 
performed as novel proteins are encountered and potentially complex queries over the interaction space are 
performed (novel viruses, mutations of known proteins, comparison of activity for new chemistry, etc.).

Fig. 3. Boxenplots of the ER-1% roc-enrichment metric for HDBind models we present on the AVE split of 
the LIT-PCBA dataset. The red dashed line refers to the mean previously reported best overall (re-scoring) 
method on LIT-PCBA, GRIM58,69. The dark red dotted dash line represents the previously reported Pafnucy 
3D-CNN result on LIT-PCBA58,70. The dotted red line denotes the mean ER-1% metric for our MLP baseline. 
The purple dashed line denotes our logistic regression baseline. For both Pafnucy and GRIM, we report the 
mean ER-1% over all 15 protein targets. For our MLP and logistic regression baselines, we report the mean 
over all 15 datasets and 10 random seeds. Additional sample sizes are included in SI Figures S11–S15.
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Feature extraction and encoding
We provide data describing the efficiency of the various feature extraction techniques we consider (SI Tables 
S5 and S6). The ECFP was found to be the most efficient representation to compute. Our results confirm that 
while the MoLFormer9 embedding helps to achieve our best models on the LIT-PCBA dataset with respect to 
the ROC-AUC metric, the energy penalty per molecule paid to achieve these models limits their utility versus 
a baseline MLP model using an ECFP embedding (Table 2). We additionally consider the combination of the 
ECFP and MoLFormer methods by element-wise multiplication (i.e. binding) of the constituent hypervectors.

HDBind inference on FPGA hardware
The popularity of GPUs lies within their superior performance in exploiting parallelism relative to CPUs, which 
is further enhanced by their relative ease of programming compared to other hardware platforms91. FPGAs 
however have found utility as target platforms for energy efficient algorithm implementations due to their 

Fig. 4. Boxenplot Comparison of ROC-AUC metric across different HDB model input representations and 
dimension size D on our random split of the LIT-PCBA dataset. The red and purple dashed lines represents the 
mean roc-auc over all 15 datasets for our MLP and logistic regression baseline models respectively. The dotted 
red line denotes random performance. The blue dashed line corresponds to the best HDBind ROC-AUC 
distribution.
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relative high degree of flexibility available to developers to use on-chip resources. The price of the resource 
can be amortized over time by savings in energy costs versus GPU hardware implementations. In this context, 
we explored key components of HDBind individually, synthesizing and implementing them based on insights 
from HD2FPGA92 using Vitis HLS 2021.293. This approach facilitated the evaluation of these components 
on the Xilinx Alveo U280 FPGA, enabling the assessment of potential energy efficiency improvements over 
traditional computing models. The power measurements, obtained from Vitis Analyzer, provided data on the 
energy consumption of our implementations. While the algorithm remains consistent with that detailed in the 
“Materials and methods” section, its implementation on FPGA, as guided by the architectural methodologies 
outlined in the HD2FPGA92, has afforded us a more granular approach to adjusting parallelism factors. This 
adaptability not only enhances the efficiency of our current implementations but also ensures that our approach 
can be scaled up for more capable future devices.

Fig. 5. Boxenplot Comparison of ROC-AUC metric across different HDB model input representations and 
dimension size D on the bias-minimizing AVE split of the LIT-PCBA dataset. The red and purple dashed 
lines represents the mean roc-auc over all 15 datasets for our MLP and logistic regression baseline models 
respectively. The dotted red line denotes random performance. The blue dashed line corresponds to the best 
HDBind ROC-AUC distribution.
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Energy analysis on GPU and FPGA
Figure 6 illustrates the advantage of using HDBind when presented with increasingly large collections of protein 
targets. For all models, we consider the energy for encoding and testing steps. We measure the power required 
for encoding as the sum of the average power output of the CPU and GPU. For testing, HDBind uses either 
a custom kernel for similarity search on the GPU94 or FPGA95. We measure the power required for testing 
using the average power output of the GPU or FPGA in isolation. HDB-DECFP is the most efficient encoding 
method overall and is expectantly similar to the energy required for the MLP encodings as each are simply 
computing the ECFP representation (Table 2). HDB-MoLFormer and HDB-Combo each require extraction of 
the LLM embedding on the GPU which imposes a relatively large overall encoding penalty (∼ 0.39 J/mol) that 
requires larger numbers of proteins (10 s of thousands) to be screened before the energy efficiency improvement 
of the testing step is realized versus the MLP baseline models (Table 2). Compared to inference on the GPU, 
the inference energy efficiency improves by a factor of 4.5× when considering the FPGA for inference. The 
improvement on FPGA is also considerable compared to both the largest and smallest MLP architectures 
(approx. 12.2×, 3.1× respectively) (Table 3). As a virtual screen campaign scales beyond the consideration of a 

Method Device Test (J/mol) Improvement factor

HDBind FPGA95 0.75 12.2

HDBind GPU94 3.37 2.7

MLP-small GPU 2.30 4.0

MLP-large GPU 9.18 1.0

Table 3. Test energy estimated for each processor choice for HDBind inference94,95 versus the MLP baseline 
models. Values are scaled by 10−6 for reader convenience.

 

Fig. 6. Energy usage of HDBind versus our largest and smallest MLP baselines, MLP-large and MLP-small 
respectively, versus number of protein targets screened with a fixed library of molecules. Energy is reported 
in terms of expenditure per molecule. We report the mean values per molecule using the HIV dataset from 
MoleculeNet11. For each method we include the feature extraction and encoding costs for each molecule. The 
HDB-DECFP model immediately outperforms all methods for screens involving a single protein on both the 
GPU and FPGA hardware. In particular, the HDB-DECFP with FPGA inference maintains the advantage over 
all screen sizes we consider (SI Table S8). The HDB-MoLFormer model pays a relatively high initial encoding 
cost that is amortized sufficiently to outperform the MLP-large baseline at the scale of 10s of thousands of 
protein targets on GPU and FPGA hardware. HDB-Combo pays the highest encoding cost overall, however at 
the scale of 10s of thousands of proteins, becomes more efficient than MLP-large when running inference on 
the FPGA.
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single protein, for a fixed library of molecules, the improvement in energy usage that is attained by HDBind on 
the FPGA grows by several orders of magnitude compared to the GPU-based HDBind implementation and the 
MLP baselines considered in our work. In Fig. 7 we give the latency of each method for the training and testing 
steps, normalized per molecule. When considering the overhead incurred from hyperparameter optimization 
of the MLP baseline, training an HDBind model becomes approximately an order of magnitude more efficient 
for most values of D that we considered. For testing, the HDBind models demonstrate a slight improvement 
over the MLP for values of D approaching 100k. When considering the FPGA for testing, the advantage grows 
approximately by an order of magnitude over the GPU-accelerated MLP. Given the inherent hardware-friendly 
characteristics of our implementation and the encouraging outcomes, advancing towards Application Specific 
Integrated Circuit (ASIC) development is promising, offering substantial benefits in efficiency and performance.

Conclusion
We have demonstrated the first comprehensive study of structure-based molecular encoding methods 
for HDC that additionally demonstrate consistent improvement over the competing SOA SMILES-based 
approaches. We additionally are the first to consider the use of molecular foundation models with HDC that 
leverage self-supervised learning on large unlabelled collections of SMILES strings and molecular graphs as 
input, demonstrating an improvement over SOA and ECFP-based approaches. Additionally we compare the 
performance of all methods on a broad collection of quantitative and qualitative molecular property prediction 
tasks in the well-studied MoleculeNet. We are the first to demonstrate the viability of HDC on a challenging 
benchmark protein-drug activity dataset, LIT-PCBA, which outperform physics-based molecular docking while 
being competitive with our MLP baseline method. The analysis of the computational burden and energy usage 
show clear advantages to using HDC approaches. We leave it to future work to improve the decision boundary 
learned by the HDC model, one approach employs metric learning to pretrain the projection layer, as considered 
in previous HDC works37. Improving the latency of the feature extraction and encoding steps can help improve 
the efficiency of the overall system96. In the case of the self-supervised representations we considered, MolCLR 
and MoLFormer, improving the energy efficiency of these steps will lower the threshold at which these methods 
will become more attractive compared to our MLP baseline. Our code is available for use with the publicly 
available datasets, to enable reproduction of our study at https://github.com/LLNL/hdbind.

Fig. 7. Processing latency measurements on the training (left) and testing (right) sets of LIT-PCBA. Times 
correspond to the GPU execution time per molecule measured using the PyTorch CUDA backend. (Left) 
Horizontal lines for MLP and HDBind correspond to the median time for training. The HDBind methods 
maintain similar training times for values of D up to approximately 100k. When considering the overhead 
for hyperparameter optimization for the MLP, HDBind demonstrates improved latency for all values of 
D considered in this study, including D = 1, 000, 000. (Right) Horizontal lines for MLP and HDBind 
correspond to the median time for training. The horizontal line for FPGA inference represents the mean time 
per molecule. The HDBind methods maintain similar testing times for values of D up to 100k. Inference on the 
FPGA for HDBind is over an order of magnitude faster than the MLP baseline.
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Data availability
All code is publicly available on github https://github.com/LLNL/hdbind. All MoleculeNet data is available at 
https://moleculenet.org/ and all LIT-PCBA data is available at https://drugdesign.unistra.fr/LIT-PCBA/.  A d d i t i 
o n a l reasonable requests can be made by contacting the corresponding authors.
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