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Abstract

The genetic control of gene expression is a core component of human physiology. For the

past several years, transcriptome-wide association studies have leveraged large datasets

of linked genotype and RNA sequencing information to create a powerful gene-based test of

association that has been used in dozens of studies. While numerous discoveries have

been made, the populations in the training data are overwhelmingly of European descent,

and little is known about the generalizability of these models to other populations. Here, we

test for cross-population generalizability of gene expression prediction models using a data-

set of African American individuals with RNA-Seq data in whole blood. We find that the

default models trained in large datasets such as GTEx and DGN fare poorly in African Amer-

icans, with a notable reduction in prediction accuracy when compared to European Ameri-

cans. We replicate these limitations in cross-population generalizability using the five

populations in the GEUVADIS dataset. Via realistic simulations of both populations and

gene expression, we show that accurate cross-population generalizability of transcriptome

prediction only arises when eQTL architecture is substantially shared across populations. In

contrast, models with non-identical eQTLs showed patterns similar to real-world data.

Therefore, generating RNA-Seq data in diverse populations is a critical step towards multi-

ethnic utility of gene expression prediction.
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Author summary

Advances in RNA sequencing technology have reduced the cost of measuring gene

expression at a genome-wide level. However, sequencing enough human RNA samples

for adequately-powered disease association studies remains prohibitively costly. To this

end, modern transcriptome-wide association analysis tools leverage existing paired geno-

type-expression datasets by creating models to predict gene expression using genotypes.

These predictive models enable researchers to perform cost-effective association tests with

gene expression in independently genotyped samples. However, most of these models use

European reference data, and the extent to which gene expression prediction models

work across populations is not fully resolved. We observe that these models predict gene

expression worse than expected in a dataset of African-Americans when derived from

European-descent individuals. Using simulations, we show that gene expression predic-

tive model performance depends on both the proportion of genetic variants shared

between population-specific prediction models as well as the genetic relatedness between

populations. Our findings suggest a need to carefully select reference populations for pre-

diction and point to a pressing need for more genetically diverse genotype-expression

datasets.

Introduction

In the last decade, large-scale genome-wide genotyping projects have enabled a revolution in

our understanding of complex traits [1–4]. This explosion of genome sequencing data has

spurred the development of new methods that integrate large genotype sets with additional

molecular measurements such as gene expression. A recently popular integrative approach to

genetic association analyses, known as a transcriptome-wide association study (TWAS) [5,6],

leverages reference datasets such as the Genotype-Tissue Expression (GTEx) repository [7] or

the Depression and Genes Network (DGN) [8] to link associated genetic variants with a

molecular trait like gene expression. The general TWAS framework requires previously esti-

mated cis-eQTLs for all genes in a dataset with both genotype and gene expression measure-

ments. The resulting eQTL effect sizes build a predictive model that can impute gene

expression in an independently genotyped population. A TWAS is similar in spirit to the

widely-known genome-wide association study (GWAS) but suffers less of a multiple testing

burden and can potentially detect more associations as a result [5,6].

Unlike a normal GWAS, where phenotypes are regressed onto genotypes, in TWAS the

phenotype is regressed onto the imputed gene expression values, thus constituting a new gene-

based association test. TWAS can also link phenotypes to variation in gene expression and

provide researchers with additional biological and functional insights over those afforded by

GWAS alone. While these models are imperfect predictors, predicted gene expression allows

researchers to test phenotype associations to expression levels in existing GWAS datasets with-

out measuring gene expression directly. In particular, these methods enable analysis of pre-

dicted gene expression in very large cohorts (~104–106 individuals) rather than typical gene

expression studies that measure expression directly (~102–103 individuals). Several methods

have been recently developed to perform TWAS in existing genotyped datasets. PrediXcan [6]

uses eQTLs precomputed from paired genotype-expression data, such as those in GTEx, in

conjunction with a new genotype set to predict gene expression. These gene expression predic-

tion models are freely available online (PredictDB), creating resources for external researchers.

Related TWAS approaches, such as FUSION[5], MetaXcan [9], or SMR [10], leverage eQTL
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information with GWAS summary statistics instead, thus circumventing the need for raw indi-

vidual-level genotype data.

As evidenced by application to numerous disease domains, the TWAS framework is capable

of uncovering new genic associations [11–17]. However, the power of TWAS is inherently lim-

ited by the data used for eQTL discovery. For example, since gene expression varies by tissue

type, researchers must ensure that the prediction weights are estimated using RNA from a tis-

sue related to their phenotype, whether that be the direct tissue of interest or one with suffi-

ciently correlated gene expression [18]. Furthermore, the ability of predictive models to

impute gene expression from genotypes is limited by the heritability in the cis region around

the gene [6]. Consequently, genes with little or no measurable genetically regulated effect on

their expression in the discovery data are poor candidates for TWAS.

A subtler but more troubling issue arises from the lack of genetic diversity present in the

datasets used for predictive model training: most paired genotype-expression datasets consist

almost entirely of data from European-descent individuals [8,18]. The European overrepresen-

tation in genetic studies is well documented [19–21] and has severe negative consequences for

equity as well as for gene discovery [22], fine mapping [23–25], and applications in personal-

ized medicine [26–34]. Genetic architecture, linkage disequilibrium, and genotype frequencies

can vary across populations, which presents a potential problem for the application of predic-

tive models with genotype predictors across multiple populations.

The training data for most models in the models derived from PrediXcan weights in Pre-

dictDB (predictdb.org) are highly biased toward European ancestry: GTEx version v6p sub-

jects are over 85% European, while the GTEx v7 and DGN subjects are entirely of European

descent. The lack of suitable genotype-expression datasets in non-European individuals leads

to scenarios in which PredictDB models trained in Europeans are used to predict into non-

European or admixed populations. As shown previously in the context of polygenic risk scores

[35], multi-SNP prediction models trained in one population can suffer from unpredictable

bias and poor prediction accuracy that impair their cross-population generalizability. Recent

analyses of genotype-expression data from the Multi-Ethnic Study of Atherosclerosis (MESA)

[36–38], which includes non-European individuals, explore cross-population transcriptome

prediction and conclude that predictive accuracy is highest when training and testing popula-

tions match in ancestry. These results are consistent with our experience analyzing admixed

populations, but offer little insight into the mechanisms underlying the cross-population gen-

eralizability of transcriptome prediction models, particularly when eQTL architecture is

known.

Here we investigate the cross-population generalizability of gene expression models using

paired genotype and gene expression data and using simulations derived from real genotypic

data and realistic models of gene expression. We analyze prediction quality from currently

available PrediXcan prediction weights using a pilot subset of paired genotype and whole

blood transcriptome data from the Study of African Americans, Asthma, Genes, and Environ-

ment (SAGE) [39–42]. SAGE is a pediatric cohort study of childhood-onset asthma and pul-

monary phenotypes in African American subjects of 8 to 21 years of age. To tease apart cross-

population prediction quality, we turn to GEUVADIS and the 1000 Genomes Project datasets,

which includes multiple populations each with more samples than our SAGE cohort [4,43,44].

The GEUVADIS dataset has been used extensively to validate PrediXcan models [6,38]. How-

ever, recent analyses suggest that GTEx and DGN PrediXcan models behave differently on the

constituent populations in GEUVADIS [45,46]. GEUVADIS provides us an opportunity to

investigate predictive models with an experimentally homogeneous dataset: the GEUVADIS

RNA-Seq data were produced in the same environment under the same protocol, from lym-

phoblastoid cell lines (LCLs) that, despite some variation in when cells were collected [47], are
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derived from similar sampling efforts and treatments, thereby providing a high degree of tech-

nical harmonization. We train, test, and validate predictive models wholly within GEUVADIS

with a nested cross-validation scheme. Finally, to understand the consequences of eQTL archi-

tecture on TWAS, we use existing 1000 Genomes data to simulate large samples of two ances-

tral populations and an admixed population and then apply the same “train-test-validate”

scheme with various simulated eQTL models to study cross-population prediction efficacy

when a gold standard is known.

Results

Concordance of measured gene expression and PrediXcan predictions is

lower than expected

We compared transcriptome prediction accuracy in SAGE whole blood RNA using three Pre-

dictDB prediction weight sets for whole blood RNA: GTEx v6p, GTEx v7, and DGN. We also

evaluated expression prediction with four of the MESA monocyte weight sets: MESA_ALL

(populations combined), MESA_AFA (African Americans), MESA_AFHI (combined African

Americans and Hispanic Americans), and MESA_CAU (Caucasians). For each gene where

both measured RNA-Seq gene expression and predictions are available in SAGE, we compute

both the coefficient of determination (R2) and Spearman correlation to analyze the direction

of prediction. As we are primarily interested in describing the relationship between predicted

outcome and real outcome, we prefer Spearman’s ρ to describe correlations, while for deter-

mining prediction accuracy, we use the standard regression R2, corresponding to the squared

Pearson correlation, to facilitate comparisons to prior work. We then benchmark these against

the out-of-sample R2 and correlations from GTEx v7 and MESA as found in PredictDB. Pre-

diction results in SAGE were available for 11,545 genes with a predictive model from at least

one weight set. Not all sets derived models at the same genes: since the estimation of these pre-

diction models requires both high quality expression data and inferred eQTLs, each weight set

from PredictDB may have a different number of gene models. Therefore, intersecting seven

different weight sets reduces the overall number of models available for comparison. After

applying the recommended filters, the prediction results across all seven weight sets over-

lapped at 273 genes, of which 39 genes had predictions with positive correlation to measure-

ments. These subsets contained genes that were expressed somewhat higher than average (S1

Fig). This small number of genes in common is largely driven by MESA_AFA, the repository

with the smallest number of predictive models. However, MESA_AFA contains the models

that should best reflect the genetic ancestry of African Americans in SAGE (S1 Table). We

note that MESA_AFA also has the smallest training sample size among our weight sets

(N = 233) [38], so the small number of predicted genes from MESA_AFA probably results

from the small training sample size and not from any feature of the underlying MESA_AFA

training data.

Here, we highlight the union of genes across model sets for investigation. The concordance

between predicted and measured gene expression over the union of 11,545 from all seven

weight sets, with corresponding training metrics from PredictDB as benchmarks, shows worse

performance than expected for R2 (Fig 1) and correlations (Fig 2). The highest mean R2 of

0.0298 was observed in MESA_AFA, while the lowest was observed in MESA_ALL (R2 =

0.0250), suggesting little appreciable difference in prediction quality between prediction

weight sets. R2 for SAGE cluster heavily around 0 (S2 Fig), while R2 for the prediction weight

repositories show a wider distribution of R2 (S3 Fig). We note the intersection of all prediction

models is limited, but reflects a similar pattern: results for the 273 common genes (S4–S6 Figs)

and the 39 genes with positive correlations (S7 and S8 Figs) showed little difference from the
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R2 shown in Fig 1. Because SAGE is an independent validation set for the training populations,

we would expect to observe some deterioration in prediction R2 due to out-of-sample estima-

tion. However, Fig 1 shows a marked difference in model performance.

More noteworthy is the substantial proportion of predictions in SAGE with negative corre-

lations to the real data. All seven weight sets produced gene expression predictions with nega-

tive correlations, but average performance across genes varied. The least negative mean

correlation across prediction weight sets was observed in GTEx v6p (-0.0044), while the most

negative mean correlation (-0.0204) was observed with MESA_AFA (MESA African Ameri-

cans, S1 Table). The observation that correlations to SAGE measurements are sometimes neg-

ative on average suggests that some large R2 values seen in Fig 1 may result from gene models

with incorrect direction of prediction, thereby limiting interpretability of results. While there

are some fluctuations in prediction accuracy, the fact that correlations vary from -0.0204 to

Fig 1. A comparison of R2 between prediction and measurement in SAGE, with PredictDB test metrics as benchmarks, for 11,545 genes total. The prediction

weights used here are, from left to right: GTEx v6p, GTEx v7, DGN, MESA African Americans, MESA African Americans and Hispanics, MESA Caucasians, and all

MESA subjects. Test R2 from model training in GTEx 7 and MESA (“test_R2_avg” in PredictDB) appear on the right and provide a performance baseline. The number of

genes per weight set varies; see S1 Table.

https://doi.org/10.1371/journal.pgen.1008927.g001

Fig 2. Spearman correlations of measured gene expression versus predicted expression from PrediXcan. The order of the weight sets matches Fig 1. Test correlations

for GTEx v7 and MESA correspond to “rho_avg” from PredictDB.

https://doi.org/10.1371/journal.pgen.1008927.g002
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-0.0044 indicates that no prediction weight set produces practically meaningfully better corre-

lations to data than the others. In contrast, the published models for these genes show positive

correlations to their training data, ranging from 0.308 in GTEx_v7 to 0.379 in MESA_AFA,

indicating no obvious incapacity for accurate prediction, even with out-of-sample data. How-

ever, available predictions into SAGE from otherwise valid prediction models are uniformly

limited in power to capture true genotype-expression relationships.

To analyze genes with high prediction R2 in the original experiment, we focus on genes in

GTEx v7 with cross-validated R2 > 0.2 in the reference population. Our choice of R2 is

informed by observed R2 between predictions and measurements in DGN (see Fig 3 of [6])

and focuses our analysis on genes predicted better than average. Fig 3 compares PredictDB

testing R2 against the empirical R2 from regressing predictions onto observations in SAGE. In

this case, even the better-imputed gene models derived from PredictDB have limited ability to

capture gene expression accurately in SAGE (mean R2 0.031, IQR [0.0027, 0.037]). We see a

similar trend with MESA models (S9–S12 Figs), in which R2 in SAGE is consistently much

lower (mean R2 0.026–0.030) than test R2 from each prediction weight set (test R2 0.373–

0.392).

Since SAGE data were ascertained on the basis of rs28450894 and by extension gene

NFKB1 [39], we checked if results were biased by ascertainment. Among the 273 genes in com-

mon to all weight sets, only one gene model, SLC39A8, lay within 1 megabase in either direc-

tion of rs28450894 on chromosome 4. Only two of the SNP predictors for SLC39A8 showed

more than moderate linkage disequilibrium (R2 > 0.2) with rs28450894: SNP rs72696152

(MESA_ALL, R2 = 0.675) and rs4648011 (DGN, R2 = 0.262) (S3 Table). However, the resulting

prediction quality were close to 0 like the remaining 272 genes, as the linear model R2 for

SLC39A8 ranged from 0.0007 (GTEx v7) to 0.0102 (GTEx v6p), indicating no obvious bias

away from 0 (S4 Table).

Cross-population prediction quality declines with increasing genetic

distance

Real-world comparisons of RNA-Seq datasets can be subject to numerous sources of heteroge-

neity besides differential ancestry. Possible confounders include technical differences in

sequencing protocols, differences in the age of participants [48] or cell lines [47], and the post-

mortem interval to tissue collection (for GTEx) [49–51]. The small sample size of our SAGE

cohort (n = 39) limits our ability to account for these possible confounders. To investigate

cross-population generalizability in an experimentally homogeneous context, we turn to GEU-

VADIS [43]. The GEUVADIS data include two continental population groups from the 1000

Genomes Project: the Europeans (EUR373), composed of 373 unrelated individuals from four

subpopulations (Utahns (CEU), Finns (FIN), British (GBR), Toscani (TSI)), and the Africans

(AFR) composed of 89 unrelated Yoruba (YRI) individuals. In light of the known bottleneck

in Finnish population history [52], we analyze EUR373 both as one population and as two

independent subgroups: the 95 Finnish individuals (FIN) and the 278 non-Finnish Europeans

(EUR278). We used expression data, generated and harmonized together by the GEUVADIS

Consortium, with matched whole-genome genotype data in the resulting four populations

(EUR373, EUR278, FIN, and AFR) to train predictive models for gene expression in a nested

cross-validation scheme [6] and perform cross-population tests of prediction accuracy.

Table 1 shows R2 from three training sets (EUR373, EUR278 and AFR) into the four testing

populations (EUR373, EUR278, FIN, and AFR) for genes with positive correlation between

prediction and measurement. While the number of genes with applicable models including

genetic data varies in each train-test scenario (see S5 Table), we note that not all predictive
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models are trained on equal sample sizes, so the resulting R2 only provide a general idea of

how well one population imputes into another; see S13 Fig for a distributional summary. Anal-

yses within a population use out-of-sample prediction R2 to avoid overfitting across train-test

scenarios. Predicting from a population into itself yields R2 ranging from 0.079–0.098

(Table 1) consistent with the smaller sample sizes in GEUVADIS versus GTEx and DGN. In

contrast, predicting across populations yields more variable predictions, with R2 ranging from

Fig 3. A comparison of R2 from SAGE and GTEx v7 training diagnostics. The SAGE R2 are computed from regressing PrediXcan predictions onto gene

expression measurements. The GTEx v7 R2 are taken from PredictDB (“test_R2_avg”). The red dotted line marks where R2 between the two groups match,

while the blue line denotes the best linear fit.

https://doi.org/10.1371/journal.pgen.1008927.g003
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0.029–0.087. At the lower range of R2 (0.029–0.039) are predictions from AFR into European

testing groups (EUR373, EUR278, and FIN). Alternatively, when predicting from European

training groups into AFR, the R2 are noticeably higher (0.051–0.054). Prediction from

EUR278 into FIN (R2 = 0.087) is better than prediction from EUR278 into AFR (R2 = 0.051),

suggesting that prediction R2 may deteriorate with increased genetic distance. A comparison

of the 564 genes in common across all train-test scenarios (Table 2) yields a subset of genes

with potentially more consistent gene expression levels (see S14 Fig for distributional summa-

ries). In this case involving better-predicted genes, we see that prediction quality between the

European groups improves noticeably (p-value ~ 0, Dunn test). Among European training

sets, the lowest R2 is 0.183 for EUR278 predicting into EUR278. R2 increases to 0.201 (EUR373

to EUR373) and attains its maximum at 0.216 (EUR278 to FIN), possibly a consequence of

diminished haplotypic diversity from Finnish population bottlenecking as mentioned previ-

ously. In contrast, R2 between Europeans and Africans ranges from 0.095 (AFR to EUR373) to

0.147 (EUR373 to AFR), a significant improvement (p-value< 7.07 x 10−22, Dunn test) that

nonetheless highlights a continental gap in prediction performance. AFR predicts better into

FIN (R2 = 0.111) than the other European populations (R2 = 0.095–0.096), similar to what we

observe with predictions from EUR373 into FIN. But AFR predicts better into itself (R2 =

0.130) than to other populations; similarly, European predictions into AFR are noticeably

lower (R2 = 0.141–0.147) than into other European populations (R2 = 0.183–0.216). In general,

populations seem to predict better into themselves, and less well into other populations.

Combining all European subpopulations obscures population structure and can complicate

analysis of cross-population prediction performance. To that end, we divide the GEUVADIS

data into its five constituent populations and randomly subsample each of them to the smallest

population size (n = 89). We then estimate models from each subpopulation and predict into

all five subpopulations. Table 3 shows average prediction R2 from each population into itself

and others (see S15 Fig for distributional summaries). The populations consistently predict

Table 1. Prediction R2 between populations in GEUVADIS for genes with positive correlation between predic-

tions and measurements. The number of genes analyzed in each scenario varied in each case; see S5 Table. Scenarios

where the training sample is contained in the testing sample cannot be accurately tested and are marked with “n/a”.

EUR373 includes all 373 Europeans, EUR278 includes only the 278 non-Finnish Europeans, FIN includes only the 95

Finnish individuals, and AFR includes only the 89 Yoruba.

R2 Train Pop

EUR373 EUR278 AFR

Test Pop EUR373 0.098 n/a 0.029

EUR278 n/a 0.096 0.030

FIN n/a 0.087 0.039

AFR 0.054 0.051 0.079

https://doi.org/10.1371/journal.pgen.1008927.t001

Table 2. Prediction R2 between populations in GEUVADIS for 564 gene models that show positive correlation

between prediction and measurement in all 9 train-test scenarios that were analyzed. Scenarios that were not tested

are marked with “n/a”. As before, EUR373 includes all 373 Europeans, EUR278 includes only the 278 non-Finnish

Europeans, FIN includes only the 95 Finnish individuals, and AFR includes only the 89 Yoruba.

R2

(564 genes)

Train Pop

EUR373 EUR278 AFR

Test Pop EUR373 0.201 n/a 0.096

EUR278 n/a 0.183 0.095

FIN n/a 0.216 0.111

AFR 0.147 0.141 0.130

https://doi.org/10.1371/journal.pgen.1008927.t002
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well into themselves, with prediction R2 ranging from 0.104–0.136. We observe that prediction

quality using models trained in CEU shows a miniscule decline relative to other EUR subpopu-

lations. This observation is potentially due to the older age of CEU LCLs [45,53,54], but did

not appreciably change our results. In contrast, a more notable difference exists between the

EUR subpopulations and YRI. The cross-population R2 between CEU, TSI, GBR, and FIN

ranges from 0.103 to 0.137, while cross-population R2 from these populations into YRI ranges

from 0.062 to 0.084. Prediction between YRI and the EUR populations taken together is con-

sistently lower than within the EUR populations (S17 Fig) and statistically significant (p-

value < 1.36 x 10−4, Dunn test; see S8 Table). The cross-population differences remain for the

142 genes with positive correlation in all train-test scenarios (Table 4, S16 Fig), where R2 for

prediction into YRI ranges from 0.166 to 0.244, while R2 within EUR populations ranges from

0.239 to 0.331. These results clearly suggest problems for prediction models that predict gene

expression across populations, in similar regimes to those tested with linear predictive models

and datasets of size consistent with current references. In addition, since AFR is genetically

more distant from the EUR subpopulations than they are to each other, we interpret these

results to imply that structure in populations can potentially exacerbate cross-population pre-

diction quality (S18 Fig).

Table 3. Cross-population prediction performance across all five constituent GEUVADIS populations over genes with positive correlation between predictions and

measurements. All populations were subsampled to N = 89 individuals. The number of genes represented varies by training sample (CEU: N = 1029, FIN: N = 1320, GBR:

1436, TSI: 1250, YRI: 914).

R2 Mean (Std Err) Training population

CEU TSI GBR FIN YRI

Testing Pop CEU 0.115 0.106 0.107 0.103 0.069

(0.139) (0.139) (0.134) (0.133) (0.116)

TSI 0.124 0.121 0.124 0.118 0.083

(0.158) (0.151) (0.149) (0.145) (0.13)

GBR 0.132 0.137 0.136 0.133 0.087

(0.16) (0.155) (0.156) (0.155) (0.132)

FIN 0.128 0.130 0.130 0.130 0.084

(0.158) (0.155) (0.153) (0.152) (0.134)

YRI 0.065 0.069 0.063 0.062 0.104

(0.108) (0.112) (0.1) (0.102) (0.138)

https://doi.org/10.1371/journal.pgen.1008927.t003

Table 4. Cross-population prediction performance across all five subsampled GEUVADIS populations over the 142 genes with positive correlation between predic-

tion and measurement in all 25 train-test scenarios. As in Table 3, all populations were subsampled to n = 89 subjects.

R2 Mean (Std Err)

(142 genes, all positive correlation)

Training population

CEU TSI GBR FIN YRI

Testing Pop CEU 0.239 0.269 0.291 0.297 0.201

(0.18) (0.177) (0.166) (0.168) (0.164)

TSI 0.307 0.294 0.331 0.322 0.227

(0.188) (0.21) (0.182) (0.185) (0.185)

GBR 0.320 0.326 0.318 0.350 0.235

(0.175) (0.181) (0.191) (0.178) (0.183)

FIN 0.318 0.320 0.343 0.323 0.244

(0.191) (0.198) (0.182) (0.201) (0.192)

YRI 0.166 0.205 0.195 0.189 0.213

(0.164) (0.163) (0.157) (0.156) (0.177)

https://doi.org/10.1371/journal.pgen.1008927.t004
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Admixture influences cross-population gene expression prediction quality

under known eQTL architecture

The unresolved question is the extent to which these results hold with oracle knowledge of

eQTL architecture, something impossible to investigate in real data when the causal links

between eQTLs and gene expression can only be estimated. To investigate genomic architec-

tures giving rise to gene expression, and in particular to investigate behavior in admixed popu-

lations, we forward-simulated haplotypes from HapMap3 [55] CEU and YRI using HAPGEN2

[56] and then sample haplotypes in proportions consistent with realistic admixture propor-

tions (80% YRI, 20% CEU) [57] to construct a simulated African-American (AA) admixed

population. We simulated n = 1000 samples for each population, a much larger sample than

what is available in GEUVADIS and comparable to the training sample size of DGN or

MESA_ALL PrediXcan models. We simulated eQTL architectures under an additive model of

size k causal alleles (k = 1, 10, 20, and 40) in the ancestral populations (CEU and YRI) and an

expression phenotype with cis-heritability h2 = 0.15 (recapitulating the average h2 in DGN

whole blood RNA-Seq data [6]) using the genomic background of genic regions on chromo-

some 22, thus testing various model sizes and LD patterns. To tease apart the effect of shared

eQTL architecture, we allow the two ancestral populations CEU and YRI to share eQTLs with

fixed effects in various proportions (0%, 10%, 20%, . . ., 100%) to test a range of eQTL architec-

tures. The admixed population AA always inherited all eQTLs from the two ancestral popula-

tions, which yielded different numbers of eQTLs per gene depending on how many eQTLs

were shared by CEU and YRI. For example, for eQTL model size k = 10, when CEU and YRI

shared all 10 eQTLs, then all three populations had the exact same 10 eQTLs. When CEU and

YRI shared half of their eQTLs with each other, then each one had 5 population-specific

eQTLs, and AA inherited 15 total eQTLs (5 unique to CEU, 5 unique to YRI, and 5 shared). If

CEU and YRI shared no eQTLs, then all eQTLs were population-specific, and AA inherited 20

eQTLs (10 from CEU and 10 from YRI; see S19 Fig for an illustration). With these simulations

providing known architectures for comparison, we then apply the train-test-validate scheme

as before.

Fig 4 shows the cross-population Spearman correlations between predicted and simulated

phenotypes in our simulated AA, CEU, and YRI, partitioned by proportion of shared eQTLs,

for k = 10 causal eQTLs in the ancestral populations (CEU and YRI). Scenarios with k = 20

and k = 40 causal eQTLs show similar trends (S20 Fig and S21 Fig). Prediction within a popu-

lation produced similar correlations in all cases, ranging from 0.310 to 0.338 (S6 Table). The

case of models with 100% shared eQTL architecture–where eQTL positions and effects are

exactly the same between the ancestral populations–yields predictions with no loss in cross-

population generalizability, with correlations ranging from 0.299 to 0.336 even when predict-

ing across populations (S7 Table). This case suggests that eQTLs that are causal in all popula-

tions can impute gene expression reliably regardless of the population in which they were

ascertained, provided that the eQTLs can be correctly mapped and genotyped in all popula-

tions, that the eQTL effects are identical across populations, and that a linear model of eQTLs

is assumed. For cases where eQTL architecture is not fully shared across populations, we see

that prediction from each population into the other improves as the proportion of shared

eQTLs increases (Fig 4). The cross-population correlation between predicted gene expression

versus measurement is highest from YRI to AA (0.238 to 0.338), intermediate from CEU to

AA (0.218 to 0.310), and lowest between CEU and YRI (0.0020 to 0.326). Prediction quality

from AA to CEU and YRI interpolates that of YRI to AA and CEU to AA, with correlations

ranging from 0.223 to 0.338. Prediction quality from AA to CEU or YRI shows a slight upward

trend as more eQTLs are shared, an artifact of eQTL inheritance in our simulations; as
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described previously, AA eQTL models are largest (20 eQTLs) when CEU and YRI share no

eQTLs and smallest (10 eQTLs) when CEU and YRI share all eQTLs. Consequently, when pre-

dicting between two populations, the choice of which population is used to train predictive

models can produce differences in prediction quality. Prediction quality between AA to CEU

and AA to YRI is not significantly different (p-value ~ 1, Dunn test). All other train/test sce-

narios are significantly different from each other (S9 Table). The results for k = 10, 20, and 40

eQTLs show a consistent trend of prediction quality driven primarily by differences in eQTL

architecture, with additional minor influence from ancestral similarity between populations

(k = 10, Fig 4, similar plots in S20 Fig and S21 Fig). Although less realistic for most genes

[5,6,18], we also analyzed models with a single causal eQTL. Trends for single-eQTL models

are more difficult to analyze due the limitations of binary inference as to whether the causal

SNP is identified or not. Nevertheless, when the causal eQTL is identified and shared across

populations, prediction quality is high in all cases. If the causal eQTL differs across popula-

tions, then cross-population prediction between AA and YRI or CEU is noticeably better than

prediction between CEU and YRI (S22 Fig), in line with results for other values of k that sug-

gest that eQTL sharing is the primary driver of gene expression prediction quality.

Power to detect associations declines with decreasing shared ancestry

Simulation of gene expression demonstrates that gene expression prediction quality is modu-

lated by both shared eQTL architecture and shared genetic ancestry. These results suggest pos-

sible effects of cross-population generalizability on the power to detect associations between a

Fig 4. Correlations between predictions and simulated gene expression measurements from simulated populations across various proportions of shared eQTL

architecture with 10 causal cis-eQTLs. Here YRI is simulated from the 1000 Genomes Yoruba, CEU is simulated from the Utahns, and AA is constructed from YRI and

CEU. The black line represents the upper bound of correlation 0.387 dictated by our choice h2 = 0.15 for the genetic heritability of expression. Each trend line represents

an interpolation of correlation versus shared eQTL proportion. Gray areas denote 95% confidence regions of LOESS-smoothed mean correlations conditional on the

proportion of shared eQTLs.

https://doi.org/10.1371/journal.pgen.1008927.g004
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phenotype and gene expression measures in a TWAS. For each of our three populations (AA,

CEU, and YRI), we used the simulated gene expression measures to simulate a continuous

phenotype whose variation depends on expression of a single causal gene. For simplicity, the

phenotypes shared the same causal gene, the same effect size, and the same environmental

noise model. We tested various effect sizes from 1 x 10−5 to 1 and drew the environmental

noise from a zero-mean normal distribution with variance 0.01. The effect sizes produced a

continuous spectrum of genetic heritability values h2 spanning the full range of heritability for

gene expression. We then regressed the phenotype onto predicted gene expression measures,

resulting in nine association tests, one for each train-test scenario. For simplicity, we focused

on the prediction scenario with k = 10 causal eQTLs per gene. To see how shared eQTL archi-

tecture affects power, we used predicted expression measures with 0%, 50%, and 100% shared

eQTLs per gene.

Fig 5 shows power curves for the association tests for the nine prediction scenarios for all

three tested eQTL architectures. Unsurprisingly, power improves as populations share more

causal eQTLs and as more phenotypic heritability is driven by gene expression. For example,

with 100% shared eQTLs and phenotypic heritability 0.205, cross-population power ranges

between 0.69–0.86. In contrast, average power under a model of 0% shared eQTLs between

ancestral populations (CEU to YRI, YRI to CEU), varies from a scant 0.02 to 0.14 as phenotype

heritability increases from 0 to 1, indicating some ability to predict gene expression at geneti-

cally controlled genes even without shared eQTLs. AA shows better cross-population power,

ranging from to 0.38 (AA to YRI, AA to CEU) to 0.82 (CEU to AA) and 0.88 (YRI to AA), an

expected outcome since AA inherits all eQTLs from the ancestral populations. Power also

improves with shorter genetic distance between populations. Fig 6, which is a cross-section

of Fig 5, shows power for each train-test scenario across various shared eQTL architectures for

β = 0.05, corresponding to a phenotype heritability of h2 = 0.205, indicating moderate genetic

control. TWAS in this case using gene expression imputed from matched populations has

higher power across all eQTL architectures, from 0.88–1.00, compared to cross-population

TWAS, where power varies substantially. For an architecture with no shared eQTLs, power

between CEU and YRI is 0.02, while power is higher for CEU to AA (0.82) and YRI to AA

Fig 5. Curves depicting power to detect association under various TWAS scenarios. The x-axis represents the proportion of phenotypic variance explained by gene

expression. As in Fig 4, AA reflects simulated African-Americans constructed from YRI and CEU. The curves represent logistic interpolations of whether or not the

causal gene was declared significant in an association test of a phenotype from the testing population with gene expression predicted from a training population into the

testing population. Gray areas denote 95% confidence regions of mean power conditional on the effect size.

https://doi.org/10.1371/journal.pgen.1008927.g005
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(0.86). TWAS power for expression predicted from AA to CEU (0.39) or YRI (0.38) is much

lower due to the aforementioned structure of eQTL inheritance; when CEU and YRI share 0 of

10 eQTLs, AA has 20 eQTLs, 10 from each ancestral population. As the proportion of shared

eQTLs jumps from 0% to 50% and 100%, power increases across all cross-population scenar-

ios, reaching up to 0.86 (YRI to AA, 100% shared eQTLs). When eQTLs are fully shared,

power from YRI to AA (0.86) is higher than from CEU to AA (0.83), indicating an effect of

genetic distance on prediction quality. Indeed, when controlling for eQTL architecture,

increasing genetic similarity between reference and target populations yields more significant

median association test t-statistics (S23 Fig).

Admixture proportion interpolates power in two-way admixture

The results in Fig 6 show how genetic distance affects power in TWAS association tests for one

particular admixture proportion, but offer limited insight about how power changes across the

admixture spectrum. To understand how admixture proportion affects TWAS power in a gen-

eral admixed population with two ancestral populations, we simulated multiple admixed pop-

ulations from CEU and YRI with admixture proportions varying at 10% increments. When

the admixed population has 0% YRI admixture, it is fully drawn from haplotypes from CEU,

whereas a population with 100% YRI admixture is drawn exclusively from haplotypes from

YRI. It is important to note that in neither case does the admixed population exactly match the

reference CEU or YRI since the genotypes for the admixed population are formed from an

independent shuffling of the CEU or YRI haplotypes. For each admixed population, we

estimated prediction models of gene expression as done in our previous analyses. For compu-

tational efficiency, we investigated the scenario of 50% shared eQTLs across reference popula-

tions and the number of eQTLs per gene equal to 10. Populations still shared the same causal

gene, effect size, and environmental noise model.

Fig 7 shows power across admixture proportions for all cross-population scenarios. The

phenotypes were simulated at effect sizes β = 0.005, 0.01, and 0.025, and environmental vari-

ance σ2 = 0.01, corresponding to heritability h2 = 0.06, 0.20, and 0.58, respectively. To compare

and contrast across each train and test scenario, we plot the overall trends of performance in

Fig 6. Power for phenotype-expression association tests with cross-population imputed gene expression for heritability h2 = 0.205. The cross-population scenarios

are ordered left to right from least admixture (CEU to YRI, 0% admixture proportion in our simulation) to most admixture (YRI to AA, 80% admixture proportion).

Power increases on two axes: (1) as the proportion of shared eQTL architecture increases, and, to a lesser extent, (2) as genetic distance decreases between reference and

target populations. Power is consistently high when training and testing populations match.

https://doi.org/10.1371/journal.pgen.1008927.g006
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Fig 7, and provide the exact mean power estimates and 95% confidence intervals for each sce-

nario in S10–S12 Tables. To avoid confusion with previous references to AA, which had a

fixed admixture proportion, here we denote the admixed population for all proportions as AD.

As expected, statistical power increases with the genetic heritability of the phenotype for all

prediction scenarios. However, the different admixture proportions yield directional changes

in power when gene expression is predicted to or from AD. For example, when h2 = 0.20 and

gene expression is predicted from AD to CEU, power at 0% YRI admixture is 0.56 (95% CI:

0.462–0.658) and declines linearly with increasing YRI admixture; at 100% YRI, statistical

power for AD to CEU is 0.46 (95% CI: 0.362–0.558). For AD to YRI, power at 0% YRI admix-

ture starts at 0.42 (95% CI: 0.323–0.512) and increases linearly to 0.53 (95% CI: 0.431–0.628) at

100% YRI. We observe similar changes in power for CEU to AD (decreasing power as YRI

proportion increases) and YRI to AD (increasing power as YRI proportion increases). The

four directional trends also hold for h2 = 0.06 and h2 = 0.58, though power for cross-popula-

tion scenarios involving AD is much lower in the former case and almost universally high in

the latter case. In essence, the varying admixture proportions in this two-way admixed popula-

tion yield a continuous linear trend of statistical power between the two ancestral populations:

when AD is genetically closer to CEU, power for gene expression predicted in these popula-

tions is highest, and declines as AD becomes genetically closer to YRI. Similarly, when predict-

ing from AD to YRI or vice versa, power is lowest when the two populations are genetically

distinct, intermediate as the two populations become more genetically similar, and maximized

when they are most alike.

Discussion

Our goal with this study was to understand the extent to which gene expression prediction

models estimated in one population can accurately predict the genetic component of gene

expression in a different population. Cross-population generalizability of gene expression pre-

diction models is an important but understudied issue for TWAS analyses. Among TWAS

resources, we focused on PrediXcan as a test case with openly distributed prediction models

available for multiple populations [6,38]. Using 39 subjects from the SAGE study [39–42] we

compared predicted expression values from PrediXcan models to measured gene expression

Fig 7. Power for various cross-population train-test scenarios with varying YRI admixture for three phenotypic heritability levels h2 = 0.06, 0.20, and 0.58,

corresponding to effect sizes 0.005, 0.01, and 0.025, respectively. Power increases as heritability increases, but also as populations become more genetically similar.

Raw power estimates and 95% confidence intervals are listed in S10–S12 Tables.

https://doi.org/10.1371/journal.pgen.1008927.g007
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on the same subjects and found that predictions matched poorly to measurements. Our inves-

tigation with the GEUVADIS dataset [43] offered us a more homogenous environment and

larger sample size in which to train and test gene expression prediction models. Prediction

quality in GEUVADIS using both continental and constituent subpopulations provided stron-

ger evidence of cross-population generalizability issues with transcriptome prediction, but

could not control for eQTL predictors that vary between populations. To that end, our simula-

tion of an admixed population from 1000 Genomes CEU and YRI haplotypes [4,44] allowed

us to finely control eQTL positions and effects as well as the causal genes in a TWAS. The sim-

ulation results show that both gene expression prediction accuracy and statistical power

decrease as population eQTL models begin to diverge and genetic distance increases between

populations for varying admixture proportions.

Our results highlight two points: firstly, since prediction within populations is better than

prediction between populations, our results reaffirm prior investigations [38] that population

matching matters for optimally predicting gene expression. This is consistent with our results

of impaired transcriptome prediction performance in SAGE with currently available resources.

Secondly, despite decreased prediction accuracy when predicting between different popula-

tions, the populations that are more closely genetically related demonstrate somewhat better

cross-population prediction and power to detect associations in TWAS. Our simulations of

prediction between ancestral populations and an admixed one under varying admixture pro-

portions neatly summarize this relationship: the admixture proportion from each ancestral

population interpolates the power available from each ancestral population, and power is max-

imized when the admixed population is most closely related to one or the other ancestral pop-

ulation. However, while the differences in power under varying admixture are statistically

meaningful, they are smaller than differences attributable to different eQTL architectures or to

different levels of genetic heritability of a phenotype.

Prediction results from GTEx, DGN, and MESA into SAGE suggest that current predictive

models, even for genes with greater heritability, perform worse than expected despite matching

tissue types. Our investigation into cross-population prediction accuracy with GEUVADIS

data replicates this lack of cross-population generalizability as observed with current predictive

models from PredictDB, demonstrating that heterogeneity in RNA-Seq protocols does not

fully explain our observations. Our results parallel prior evidence [45] that PredictDB models

themselves do not predict as well as expected into GEUVADIS despite controlling for tissue

type, strongly suggesting that our observations about PrediXcan predictions in SAGE could

hold true in other datasets. Since transcriptome prediction models use multivariate genotype

predictors trained on a specific outcome, the impaired cross-population application can be

viewed as an analogous observation to that seen previously in polygenic scores [35].

Our simulations control for many technical issues that are otherwise difficult to overcome

with real data, such as oracular knowledge of positions and effect sizes of causal eQTLs. Never-

theless, in our simulations we see issues with cross-population prediction that we first observed

when applying existing PrediXcan models to SAGE genotype data. Certainly, SAGE differs in

important ways from GTEx, DGN, and MESA: SAGE is a pediatric asthma case-control cohort

study in African-American children, so we cannot rule out technical heterogeneity introduced

by differences in age, study design, and ethnicity. Furthermore, our SAGE sample includes

RNA-Seq data for n = 39 subjects, a dataset leveraged previously to validate genetic associa-

tions, but is nevertheless somewhat small by contemporary standards [39]. However, technical

heterogeneity between SAGE and existing PrediXcan models cannot solely explain the poor

prediction performance. Our simulation results strongly suggest that problematic cross-popu-

lation prediction performance between PrediXcan models and SAGE is deeper than differ-

ences in expression data.
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Our investigations into the architecture of gene expression indicate that the power to detect

associations is primarily determined by the degree of shared eQTLs across populations. In our

simulations, this can be approximated as a (quasi-)linear interpolation of the prediction in the

ancestral or reference populations into the admixed populations. However, the same is not

true of overall levels of power in the admixed population: under 100% shared eQTL scenarios,

cross-population generalizability is high, so the choice of training population matters less. In

practical terms, this result bodes well for prediction of genes with eQTLs that do not vary by

population. It is curious that in high-heritability genes, even models that share no eQTLs still

retain power to detect scenarios: for genetically distant populations (CEU and YRI), power

ranges from 0.10–0.14. Without shared eQTLs, this implies that local linkage disequilibrium

between population-specific eQTLs, combined with high heritability, enables some degree of

cross-population prediction. When cross-population statistical power is driven by LD and h2

instead of expression signals, then subsequent interpretation of association hits, such as direc-

tion and strength of effect, becomes difficult to link to actual biological relationships between

phenotype and gene expression.

It is important to note that our observations do not reflect shortcomings of either the initial

PrediXcan or TWAS frameworks. Nor do our findings affect the positive discoveries made

using these frameworks over the past several years. These methods fully rely on the data used

as input for training, and the most commonly used datasets for model training are overwhelm-

ingly of European descent. Here we note that the current models fail to capture the complexity

of the cross-population genomic architecture of gene expression for populations of non-Euro-

pean descent. Failing to account for this could lead researchers to draw incorrect conclusions

from their genetic data, particularly as these models would lead to false negatives.

To this end, our simulations strongly suggest that predicting gene expression in a target

population is improved by using predictive models constructed in a genetically similar training

population. Maximizing prediction quality crucially depends on both genetic architecture and

eQTL architecture. If populations share the exact same eQTL architecture, then they are essen-

tially interchangeable for the purposes of gene expression prediction so long as eQTLs are gen-

otyped and accurately estimated, which remains a technological and statistical challenge. As

the proportion of shared eQTL architecture decreases between two populations, both cross-

population prediction quality and TWAS power decrease as well. In both SAGE and GEUVA-

DIS, we observe cross-population patterns consistent with an imperfect overlap of eQTLs

across populations. Ensuring representative eQTL architecture for all populations in geno-

type-expression repositories will require a solid understanding of true cross-population and

population-specific eQTLs. However, expanding the amount of global genetic architecture

represented in genotype-expression repositories, which can be accomplished by sampling

more populations, provides the most desirable course for improving gene expression predic-

tion models. Additionally, this presents an opportunity for future research in methods that

could improve cross-population generalizability, particularly when one population is over-rep-

resented in reference data. Tools from transfer learning could facilitate porting TWAS eQTL

models from reference populations to target populations using little or no RNA-Seq data.

In light of the surging interest in gene expression prediction and TWAS, we see a pressing

need for freely distributed predictive models of gene expression estimated from coupled tran-

scriptome-genome data sampled in a variety of populations and tissues. The recently published

predictive models with multi-ethnic MESA data constitute a crucial first step in this direction

for researchers working with admixed populations [38]. However, the clinical and biomedical

research communities must push for more diverse genotype-expression resources to ensure

that the fruits of genomic studies benefit all populations.

PLOS GENETICS On the cross-population generalizability of gene expression prediction models

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008927 August 14, 2020 16 / 28

https://doi.org/10.1371/journal.pgen.1008927


Online resources

PredictDB: http://predictdb.org/

GTEx: http://gtexportal.org/

DGN: http://dags.stanford.edu/dgn/

GEUVADIS: https://www.ebi.ac.uk/Tools/geuvadis-das/

Source code: https://github.com/asthmacollaboratory/sage-geuvadis-predixcan

Results and simulation data: https://doi.org/10.7272/Q6RN362Z

Methods

Ethics statement

This study uses data from the Study of African Americans, Asthma, Genes, and Environments

(SAGE) cohort, approved for human subjects research under expedited review by UCSF IRB

10–02877 with reference #244919. All subjects gave written consent for genotyping, phenotyp-

ing, and data usage for general research use.

Genotype and RNA-Seq data

RNA-Seq (RNA sequencing) data generation and cleaning protocols for 39 SAGE subjects

analyzed here were initially described in (Mak, White, Eckalbar, et al. 2018) [39]. Genotypes

were generated on the Affymetrix Axiom array as described previously [58]. Genotypes were

then imputed on the Michigan Imputation Server [59] with EAGLE v2.3 [60] and the 1000

Genomes panel phase 3 v5 [44] and then subjected to the following filters: missing

samples < 5%, missing genotypes at any given SNP<5%, SNP minor allele frequency > 1%,

p-value for deviation from Hardy-Weinberg Equilibrium >1 x 10−4, and genotype imputation

R2 > 0.3. The choice of the 1000 Genomes panel follows GTEx protocol, though GTEx used

the smaller 1000 Genomes phase 1 panel [4]. Gene expression counts were processed through

the GTEx v6p eQTL quality control pipeline and as described previously [18]. Per GTEx proto-

col, gene expression values were corrected for 3 genotype principal components, 15 PEER fac-

tors, and sex. Gene expression values were filtered to have>0.1 reads per kilobase per million

reads (RPKM) in at least 10 individuals and at least 6 reads in at least 10 individuals. This filter-

ing process kept 20,985 genes with Ensembl identifiers for analysis, of which 20,268 were auto-

somal genes. We then quantile normalized the remaining gene expression values across

samples as our gene expression measurements.

GEUVADIS genotype VCF files and normalized gene expression data (filename GD462.

GeneQuantRPKM.50FN.samplename.resk10.txt.gz) were downloaded directly from the

EMBL-EBI GEUVADIS Data Browser. Genotypes were filtered similarly to SAGE subjects. No

manipulation was performed on expression data. This process yielded 23,722 genes for analysis.

Running PrediXcan models

We ran PrediXcan on SAGE subjects using PredictDB prediction weights from three paired

genotype-expression datasets from PredictDB: GTEx, DGN, and MESA [6,9,38,61]. For GTEx,

we used both GTEx v6p and GTEx v7 weights. For MESA, we used all weight sets from the

freeze dated 2018-05-30: African Americans (MESA_AFA), African Americans and Hispanics

(MESA_AFHI), Caucasians (MESA_CAU), and all MESA samples (MESA_ALL). Overall, the

analysis included 11,545 genes, of which only 273 had both normalized RNA-Seq measures

and predictions from all weight sets. Of these, 126 had positive correlation between prediction

and measurement. We assessed prediction quality by comparing PrediXcan predictions to

normalized gene expression from SAGE using linear regression and correlation tests.
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Estimation of prediction models

We trained prediction models in GEUVADIS on genotypes in a 500Kb window around each

of 23,723 genes with measured and normalized gene expression. GEUVADIS subjects were

partitioned into various groups: the Europeans (EUR373), the non-Finnish Europeans

(EUR278), the Yoruba (AFR), and the constituent 1000 Genomes populations (CEU, GBR,

TSI, FIN, and YRI). For each training set, we performed nested cross-validation. The external

cross-validation for all populations used leave-one-out cross-validation (LOOCV). The inter-

nal cross-validation used 10-fold cross-validation for EUR373 and EUR278 and LOOCV for

the five constituent GEUVADIS populations in order to fully utilize the smaller sample size

(n = 89) compared to EUR278 (n = 278) and EUR373 (n = 373). Internal cross-validation used

elastic net regression with mixing parameter α = 0.5 as implemented in the glmnet package in

R. The nonzero weights for each SNP from each LOOCV were compiled and averaged for

each gene, yielding a single set of prediction weights for each gene. Predictions were computed

by parsing genotype dosages from the target population corresponding to the nonzero SNP

predictors, and then multiplying dosages against the prediction weights. The resulting predic-

tions were compared to normalized gene expression measurements downloaded from the

GEUVADIS data portal. We applied two additional filters to ensure that gene expression mod-

els were suitable for analyses. Firstly, we removed genes that did not have any eQTLs in their

predictive models. Secondly, genes where fewer than half of the individuals had nonmissing

predictions were removed from further analysis. This latter filter discarded those genes for

which expression was not easy to predict across multiple samples. Coefficients of determina-

tion (R2) were computed with the lm function in R. Spearman correlations were computed

with the cor.test function in R.

Simulation of gene expression

We downloaded a sample of 20,085 HapMap 3 SNPs [55] from each of CEU and YRI on chro-

mosome 22 as provided by HAPGEN2 [56]. The data include 234 phased haplotypes for CEU

and 230 phased haplotypes for YRI. We forward-simulated from these haplotypes to obtain

two populations of n = 1000 individuals each. We then sampled haplotypes in proportions of

80% YRI and 20% CEU to obtain a mixture of CEU and YRI where the ancestry patterns

roughly mimic those of African Americans. For computational simplicity, and in keeping with

the high ancestry LD present in African Americans [62,63], for each gene we assumed local

ancestry was constant for each haplotype. For each of the three simulated populations, we

applied the same train-test-validate scheme used for cross-population analysis in GEUVADIS.

Genetic data for model simulation were downloaded from Ensembl 89 and included the largest

100 genes from chromosome 22. We defined each gene as the start and end positions corre-

sponding to the canonical transcript, plus 1 megabase in each direction. We removed two

genes, PPP6R2 andMOV10L1, that spanned no polymorphic markers within 2 megabases of

their start and end positions in the HapMap3 dataset, resulting in 98 gene models used for

analysis. To simulate predictive eQTL models, we tested multiple parameter configurations for

each gene: we varied the number of causal eQTLs in the ancestral populations (k = 1, 10, 20,

and 40) and the proportion of shared eQTL positions (p = 0.0, 0.1, 0.2, . . ., 0.9, 1) between

ancestral populations. The admixed population always inherited all eQTLs from the ancestral

populations. Causal eQTLs were chosen at random among SNPs with at least 5% minor allele

frequency. The same 5% minor allele frequency floor was applied to each population. Each

model included a simulated gene expression phenotype with cis-heritability set to 0.15. For

each parameter configuration, we ran 100 different random instantiations of the model

simulations.
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Simulation of TWAS

Using the simulated gene expression measures with k = 10 causal eQTLs per gene in ancestral

populations, we simulated a continuous phenotype with a known genetic architecture that

depended on 1 causal gene. We tested prediction scenarios with 0%, 50%, and 100% eQTLs

shared across populations. For each eQTL architecture, the three populations AA, CEU, and

YRI shared the same causal gene G, the same causal effect size β, and the same environmental

noise ε. G was chosen randomly. Effect sizes were fixed, and we tested various effect magni-

tudes β = 1 x 10−5, 5 x 10−5, 1 x 10−4, . . ., 1 x 10−1, 5 x 10−1, 1, yielding a spectrum of phenotype

heritability explained by gene expression. The environmental noise ε was drawn from an N
(0,0.12) distribution. Consequently, phenotypes therefore only varied with the expression mea-

sures from G. For a given population c, the phenotype yc was then simulated as

yc ¼ Gbþ ε:

For each combination of shared eQTL architecture, G, and β, this procedure yielded one yc
per individual in a population. We then performed a TWAS with yc onto the predicted gene

expression values, yielding three TWAS per yc, one for each reference prediction population.

We then queried the resulting association p-value at G and tabulated whether it was declared

significant (yes) or not (no) against a Bonferroni-corrected threshold of 0.05 / 98, accounting

for all 98 genes in the TWAS. We ran this procedure for 100 random instantiations of (G, ε)

and computed association test power with a logistic interpolation of the yes/no results.

Analysis tools

Analyses used GNU parallel [64]. The R packages used for analysis include argparser, assert-

that, data.table, doParallel, dunn.test, knitr, optparse, peer, the Bioconductor packages anno-

tate, biomaRt, and preprocessCore, and the tidyverse bundle [65–76]. All plots were generated

with ggplot2 [77].

Supporting information

S1 Table. Summary statistics for analyzing gene expression prediction in SAGE for all

seven weight sets in PredictDB. SAGE has measurements for 20,985 genes, of which 20,268

are autosomal. The intersection of genes with both predictions and measurements in SAGE

across all seven weight sets is 273 (see S4–S6 Figs), of which 39 produce predictions positively

correlated to data in all comparisons (see S7 and S8 Figs).

(XLSX)

S2 Table. Summary statistics for each filtering step in the analysis of gene expression mod-

els from GEUVADIS for the 3 training populations EUR373, EUR278, and AFR. The analy-

sis of prediction vs. measurement contains 5038 genes in common between all three

populations. Of these genes, 1476 genes demonstrate positive correlation between predictions

and measurements.

(XLSX)

S3 Table. SNPs in linkage disequilibrium with rs28450894, on which SAGE RNA-Seq data

were ascertained. Each SNP is a prediction weight in at least one prediction weight set (Pre-

diction Weights). SNPs corresponding to the largest two R2 values for each repository are listed

here.

(XLSX)
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S4 Table. R2 between predictions and observations for gene SLC39A8 (Ensembl ID

ENSG00000138821). Some predictors for SLC39A8 are in linkage disequilibrium with SNP

rs28450894, but the resulting R2 are not obviously biased away from 0.

(XLSX)

S5 Table. Summary statistics from training and testing results with continental GEUVA-

DIS populations for gene models with positive correlations. The R2 correspond to Table 1.

The column “Correlation” lists the Spearman correlations for each scenario, while “Tran-

scripts” gives the number of gene models used to compute the R2 and correlation summaries.

(XLSX)

S6 Table. Spearman correlations between prediction versus simulated measurement from

simulated populations to themselves across various shared eQTL proportions for k = 10

causal eQTLs.

(XLSX)

S7 Table. Prediction performance under fully shared eQTL architecture for k = 10 eQTLs

yields reliable cross-population gene expression prediction. Results for other sizes of eQTL

models are similar.

(XLSX)

S8 Table. A Dunn test shows statistically significant differences when predicting between

AFR and EUR populations versus predicting between EUR populations.

(XLSX)

S9 Table. Differences in cross-population prediction performance are statistically significant,

with a few notable exceptions. Prediction from AA to CEU or YRI is essentially the same, but all

other scenarios are different, indicating that the direction of prediction does matter.

(XLSX)

S10 Table. Power estimates and 95% confidence intervals for each train-test scenario

(Train-Test) and each proportion of YRI (YRI proportion) corresponding to the left panel

of Fig 7 for effect size 0.005 (h2 = 0.06).

(XLSX)

S11 Table. Power estimates and 95% confidence intervals for each train-test scenario

(Train-Test) and each proportion of YRI (YRI proportion) corresponding to the center

panel of Fig 7 for effect size 0.01 (h2 = 0.20).

(XLSX)

S12 Table. Power estimates and 95% confidence intervals for each train-test scenario

(Train-Test) and each proportion of YRI (YRI proportion) corresponding to the right

panel of Fig 7 for effect size 0.01 (h2 = 0.58).

(DOCX)

S1 Fig. Distributions of log-transformed values of transcripts-per-million (TPM) from

GTEx v7. The overall distribution of gene expression values from GTEx v7 (“All GTEx v7

genes”) shows lower average gene expression than the 273 genes in common across all PrediX-

can sets (“Common genes”) as well as the 39 of those genes with positive correlation. TPM val-

ues were downloaded directly from GTEx v7 (gtexportal.org).

(TIFF)

S2 Fig. Distribution of R2 in SAGE. In contrast to Fig 1, the comparison to test R2 from Pre-

dictDB is removed to facilitate comparison of prediction weight sets in SAGE. The weight sets
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are ordered from left to right: GTEx v6p, GTEx v7, DGN, MESA African Americans, MESA

African Americans and Hispanics, MESA Caucasians, and all MESA subjects.

(TIFF)

S3 Fig. Violin plots of R2 between predictions and measurements in SAGE, with testing R2

from each PrediXcan repository included for benchmarking. The prediction weights used

here are, from left to right: GTEx v6p, GTEx v7, DGN, MESA African Americans, MESA Afri-

can Americans and Hispanics, MESA Caucasians, and all MESA subjects. Test R2 from model

training in GTEx 7 and MESA (“test_R2_avg” in PredictDB) appear on the right and provide a

performance baseline. R2 for SAGE cluster heavily near zero, while testing R2 from each repos-

itory are more evenly distributed.

(TIFF)

S4 Fig. R2 of measured gene expression versus predictions from PrediXcan. The prediction

weights used here are, from left to right: GTEx v6p, GTEx v7, DGN, MESA African Americans,

MESA African Americans and Hispanics, MESA Caucasians, and all MESA subjects. Test R2

from model training in GTEx 7 and MESA (“test_R2_avg” in PredictDB) appear on the right

and provide a performance baseline.

(TIFF)

S5 Fig. A violin plot of the R2 as shown in S4 Fig. Compared to the distributions from S3 Fig,

the test R2 from PrediXcan repositories show that these 273 genes are somewhat better pre-

dicted on average compared to all 11,545 genes shown in Fig 1. However, R2 in SAGE are still

heavily biased towards 0, indicating no obvious change in prediction quality.

(TIFF)

S6 Fig. R2 in SAGE for all PrediXcan prediction weight sets, similar to S4 Fig, but without

testing R2 from PredictDB. The distributions are taken over the 273 genes in common to all

weight sets.

(TIFF)

S7 Fig. R2 between prediction and measurement in SAGE only using the 39 genes with pos-

itive correlation between prediction and measurement in all weight sets and benchmarks.

(TIFF)

S8 Fig. R2 in SAGE for all PrediXcan prediction weight sets, similar to S7 Fig, but without

testing R2 from PredictDB. The distributions are taken over the 39 genes with positive corre-

lation in all weight sets.

(TIFF)

S9 Fig. A comparison of R2 from SAGE and MESA_ALL training diagnostics, similar to

Fig 3. The SAGE R2 are computed from regressing PrediXcan predictions onto gene expres-

sion measurements. The MESA_ALL R2 are taken from PredictDB (“test_R2_avg”).

(TIFF)

S10 Fig. A comparison of R2 from SAGE and MESA_AFA training diagnostics, similar to

Fig 3. The SAGE R2 are computed from regressing PrediXcan predictions onto gene expres-

sion measurements. The MESA_AFA R2 are taken from PredictDB (“test_R2_avg”).

(TIFF)

S11 Fig. A comparison of R2 from SAGE and MESA_AFHI training diagnostics, similar to

Fig 3. The SAGE R2 are computed from regressing PrediXcan predictions onto gene
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expression measurements. The MESA_AFHI R2 are taken from PredictDB (“test_R2_avg”).

(TIFF)

S12 Fig. A comparison of R2 from SAGE and MESA_CAU training diagnostics, similar to

Fig 3. The SAGE R2 are computed from regressing PrediXcan predictions onto gene expres-

sion measurements. The MESA_CAU R2 are taken from PredictDB (“test_R2_avg”).

(TIFF)

S13 Fig. Violin plots of the distribution of R2 from Table 1. The train-test scenarios from

left to right are Africans to Africans, Africans to non-Finnish Europeans, Africans to all Euro-

peans, Africans to Finns, non-Finnish Europeans to Africans, non-Finnish Europeans to non-

Finnish Europeans, non-Finnish Europeans to Finns, all Europeans to Africans, and all Euro-

peans to all Europeans.

(TIFF)

S14 Fig. Violin plots of the distribution of R2 from Table 2. The groups are ordered as in

S13 Fig. The 564 genes presented here are somewhat better predicted than average. Effects of

training sample size are evident, in which Europeans (EUR373, n = 373) generally yield higher

R2 than Africans (AFR, n = 89). A notable distributional different exists between Europeans

predicting into Africans (EUR373 to AFR) vs. Europeans (EUR373 to EUR373), the latter of

which shows an upward bias of R2.

(TIFF)

S15 Fig. Distributions of R2 across all 25 train-test scenarios using the 5 constituent GEU-

VADIS populations (CEU, FIN, GBR, TSI, and YRI). The distributions correspond to

Table 3. Distributions from scenarios where a population predicts into itself (CEU_CEU,

FIN_FIN, GBR_GBR, TSI_TSI, or YRI_YRI) have noticeably fewer R2 near 0, indicating

improved prediction.

(TIFF)

S16 Fig. Distributions of R2 across 142 genes in common to all 25 train-test scenarios. The

train-test scenarios are ordered as in S15 Fig. The 142 genes represented here are predicted

better than average. Population-level differences can be seen, particularly between the four

European populations (CEU, FIN, GBR, and TSI) and YRI.

(TIFF)

S17 Fig. Prediction R2 between AFR (YRI) and EUR (CEU, TSI, GBR, and FIN). Predicting

into and from AFR produces consistently lower R2 than predicting within EUR, suggesting a

potential decrease in prediction accuracy when predicting across continental population

groups.

(TIFF)

S18 Fig. Genetic distance versus prediction accuracy over 142 genes with positive correlation

across all train-test scenarios. Here the GEUVADIS populations are arranged into three groups.

AFR to AFR includes prediction from YRI into itself; EUR to AFR includes prediction into YRI

from CEU, GBR, TSI, and FIN; and EUR to EUR includes prediction within and between all

European populations in GEUVADIS. Clustering by genetic distance separates prediction

between European populations from prediction between European populations and AFR. FST are

taken from the 1000 Genomes Project (S11 Table) (The 1000 Genomes Consortium, 2010).

(TIFF)

S19 Fig. A schematic of three shared eQTL architectures for the case of k = 10 eQTLs per

gene. Blue encodes eQTLs specific to CEU; red encodes eQTLs specific to YRI; and gold

PLOS GENETICS On the cross-population generalizability of gene expression prediction models

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008927 August 14, 2020 22 / 28

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008927.s024
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008927.s025
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008927.s026
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008927.s027
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008927.s028
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008927.s029
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008927.s030
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008927.s031
https://doi.org/10.1371/journal.pgen.1008927


encodes eQTLs shared between CEU and YRI. Models for CEU and YRI always had k eQTLs.

AA always inherited all eQTLs from the ancestral populations. Consequently, the number of

eQTLs in AA varied depending on how many eQTLs CEU and YRI shared.

(TIFF)

S20 Fig. Correlations between predictions and simulated gene expression measurements

from simulated populations across various proportions of shared eQTL architecture with

20 causal cis-eQTLs.

(TIFF)

S21 Fig. Correlations between predictions and simulated gene expression measurements

from simulated populations across various proportions of shared eQTL architecture with

40 causal cis-eQTLs.

(TIFF)

S22 Fig. Mean correlations between predictions and simulated gene expression measure-

ments from simulated populations for a single causal cis-eQTL. For this simplified eQTL

architecture, the ancestral populations (CEU and YRI) either share the causal eQTL (TRUE)

or not (FALSE). In the TRUE case, AA has 1 eQTL shared with CEU and YRI; in the FALSE

case, it has 2 unique eQTLs, one from each of CEU and YRI. Error bars denote 95% confidence

intervals.

(TIFF)

S23 Fig. Distributions of t-statistics across various shared eQTL proportions for all nine

train-test scenarios with 1000 Genomes populations for a fixed TWAS effect size and fixed

number of causal eQTLs. The labels are ordered from left to right from least admixture pro-

portion (CEU to YRI, 0% admixture proportion) to highest admixture proportion (YRI to AA,

80% admixture proportion), with train-test scenarios from a population into itself on the right

of each panel. Increasing proportions of shared eQTLs yield stronger association statistics

from cross-population predictions. Fully shared eQTL architectures yield consistently high

power across populations. Median t-statistics increase as populations share more haplotypes,

while association tests with gene expression predicted in the same population show consis-

tently high power.
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13. Lamontagne M, Bérubé J-C, Obeidat M, Cho MH, Hobbs BD, Sakornsakolpat P, et al. Leveraging lung

tissue transcriptome to uncover candidate causal genes in COPD genetic associations. Hum Mol

Genet. 2018; 27: 1819–1829. https://doi.org/10.1093/hmg/ddy091 PMID: 29547942

14. Thériault S, Gaudreault N, Lamontagne M, Rosa M, Boulanger M-C, Messika-Zeitoun D, et al. A tran-

scriptome-wide association study identifies PALMD as a susceptibility gene for calcific aortic valve ste-

nosis. Nat Commun. 2018; 9: 988. https://doi.org/10.1038/s41467-018-03260-6 PMID: 29511167
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