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We conducted ambient noise tomography (ANT) using data from 342 seismographs

distributed over a 50×50 km area encompassing the July 2019 Ridgecrest earthquakes (M7.1

and M6.4). By employing the locally sparse tomography (LST) method—an unsupervised

machine learning approach—we effectively modeled small-scale geophysical structures using

only data from the study region. The Rayleigh group speed derived from LST showed superior

accuracy in predicting travel times compared to conventional regularized least-squares inversion

techniques. From surface wave dispersion maps, we constructed a 3D shear velocity model,

which revealed a heterogeneous low-velocity zone (LVZ) surrounding the causative faults, with
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a significant 40% reduction in shear wave velocity primarily concentrated in the upper 2–3 km.

Additionally, imaged LVZs associated with inactive portions of the Little Lake Fault System

suggest the presence of enduring damage zones.

Building on this work, we introduced a method to fuse multiresolution seismic tomogra-

phy models with physics-informed probabilistic graphical models (PIPGMs), which incorporate

physical constraints like ray-path density. Using synthetic checkerboard models and fault zone

structures from the Ridgecrest earthquake sequence, the PIPGM fusion method demonstrated

marked improvements in travel-time residuals, image quality, and peak signal-to-noise ratios

compared to conventional approaches. This novel fusion framework enables the integration

of gridded velocity models of varying resolutions, offering a powerful computational tool for

enhancing the quality and interpretability of seismic imaging data. We extended the Probability

Graphical Model (PGM) to 3D velocity models combining tasks, including synthetic and real

fault zone structures, and demonstrated significant improvements—reducing computed travel-

time residuals by 44% for 3D models, respectively, over conventional methods. Unlike traditional

techniques, the PGM’s adaptive weighting preserves complex features from high-resolution data

and effectively transfers these enhancements to the broader low-resolution background, making

it a valuable tool for advancing seismic tomography and ground motion simulation.

We applied the newly proposed Mixture of Experts (MoE) to combine the features learned

from multiple machine learning models and enhance the capabilities of medical Internet of Things

(IoT) systems for blood pressure monitoring by integrating advanced technologies such as flexible

sensors, wireless data communication, and intelligent algorithms. This integration facilitates

efficient data collection, real-time analytical processing, and seamless online sharing of results.

This model employs a dynamic MoE gating network, which intelligently directs incoming data

to specialized expert models that are each optimized for distinct measurement scenarios. This

model fusion through the MoE framework enables the system to adaptively respond to diverse

environmental and individual physiological characteristics, thereby significantly enhancing the

accuracy of blood pressure predictions by 15–18% over conventional methods.
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Chapter 1

Introduction

We conducted ambient noise tomography (ANT) across a 50×50 km area encompassing

the July 2019 Ridgecrest earthquakes (M7.1 and M6.4) using data from 342 seismographs.

Employing the locally sparse tomography (LST) method—an unsupervised machine learning

approach—we achieved high-resolution imaging of small-scale geophysical structures using

only local data. LST outperformed conventional regularized least-squares inversion in predicting

Rayleigh wave travel times, revealing a heterogeneous low-velocity zone (LVZ) with up to 40%

reductions in shear wave velocity, concentrated in the upper 2–3 km. The imaged LVZs also

include inactive portions of the Little Lake Fault System, indicating persistent fault damage.

To enhance seismic imaging further, we developed a physics-informed probabilistic

graphical model (PIPGM) framework for fusing multiresolution tomography models. By incor-

porating physical constraints like ray-path density, PIPGM significantly improved image quality,

travel-time residuals, and peak signal-to-noise ratios compared to traditional methods. Synthetic

and real 3D fault zone models demonstrated a 44% reduction in residuals, preserving complex

high-resolution features while enhancing broader low-resolution areas. This fusion framework

provides a robust computational tool for advancing seismic tomography and improving ground

motion simulations.

1



1.1 Ambient Noise Tomography for Ridgecrest

Ambient Noise Tomography (ANT) is a seismic imaging technique that utilizes ambient

seismic noise to infer the subsurface structure of the Earth [1]. Unlike conventional seismic

methods, which rely on active sources such as explosions or controlled vibrations, ANT exploits

naturally occurring background noise, typically generated by ocean waves, atmospheric distur-

bances, and human activities. This makes it an efficient and non-invasive method for geophysical

investigations [2].

The core principle of ANT lies in extracting the Green’s function [3] G(x, t) between

two stations from the cross-correlation of ambient noise signals recorded at these locations.

Mathematically, the cross-correlation [4] C(τ) between the signals sA(t) and sB(t) at stations A

and B is given by:

C(τ) =
∫

∞

−∞

sA(t)sB(t + τ)dt, (1.1)

where τ is the time lag.

Under ideal conditions, the cross-correlation converges to the Green’s function G(x, t),

which describes the response of the medium to a point source. This relationship can be expressed

as:

C(τ) ∝ G(x, t)+G(x,−t), (1.2)

where G(x,−t) represents the time-reversed Green’s function. The symmetry arises due to the

reciprocity of seismic wave propagation.

By analyzing the extracted Green’s functions, group and phase velocities of surface

waves can be measured. These velocities are frequency-dependent and provide insights into the

shear wave velocity structure of the Earth. The phase velocity c(ω) at angular frequency ω is

related to the dispersion relationship:

c(ω) =
ω

k(ω)
, (1.3)
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where k(ω) is the wavenumber. These dispersion curves are inverted to obtain subsurface shear

velocity profiles.

In practical applications, a dense network of seismic stations enables the construction

of topographic maps, revealing lateral and vertical variations in the Earth’s properties [5]. The

resolution of these maps depends on the density of station coverage and the quality of ambient

noise data. Solving ANT and the related inverse problem requires powerful techniques that utilize

advanced mathematical models and computational algorithms to extract detailed information

from data that would otherwise be inaccessible. These technologies continue to evolve, driven by

advances in computational power and algorithmic innovation [6], broadening their application

scope and enhancing their resolution and accuracy.

In Chapter 2, we investigated the complex shallow fault zones associated with the 2019

Ridgecrest earthquakes (M6.4 and M7.1) through high-resolution seismic imaging. Using data

from 342 seismographs distributed across a 50×50 km area, the study applies ambient noise

tomography (ANT) with a machine-learning-based locally sparse tomography (LST) approach.

This innovative methodology improves upon traditional regularized least-squares inversion by

effectively modeling small-scale geophysical structures using unsupervised machine learning.

The results highlight the heterogeneous and enduring nature of fault damage zones,

with some LVZs correlating with inactive faults, suggesting the long-term persistence of these

structures. This has profound implications for understanding fault mechanics and improving

seismic hazard analysis. Our proposed method contributes a powerful computational approach

for seismic imaging and a deeper understanding of fault zone structures, providing valuable tools

for both academic research and practical seismic risk assessment.

1.2 PGMs for 2D Model Fusion

Probabilistic Graphical Models (PGMs) are a comprehensive way to represent and

manipulate joint probability distributions. They are composed of vertices representing random
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variables and edges representing probabilistic dependencies between these variables [7]. Among

the two main types of graphical models—Bayesian Networks and Markov Random Fields—the

latter is especially significant in the context of image processing due to its suitability for modeling

undirected relationships.

Markov Random Fields (MRFs) are a subset of PGMs used extensively for spatial data

analysis, particularly in image smoothing and restoration [8]. An MRF is defined over an

undirected graph where each node corresponds to a random variable representing some attribute

of the image, such as pixel intensity. The edges encode the conditional dependencies between

these variables [9]. In the realm of image smoothing, the goal is to recover a noise-free image

from a noisy observation by modeling the pixel values as an MRF [10]. It finds applications in

various related fields such as computer vision [11], denoising problems [12], and spatial signal

processing [13]. An MRF captures the local conditional independence properties of random

variables, making it a powerful tool for modeling joint probability distributions over a set of

variables.

Let G = (V,E) be an undirected graph, where V represents the set of nodes (random

variables) and E represents the edges that define dependencies between these variables. A

random vector X = {Xv : v ∈V} is said to form a Markov Random Field with respect to G if it

satisfies the following Markov properties:

• Pairwise Markov Property: For any two non-adjacent nodes u,v, the variables Xu and Xv

are conditionally independent given all other variables:

P(Xu,Xv | X\{Xu,Xv}) = P(Xu | X\{Xu,Xv})P(Xv | X\{Xu,Xv}). (1.4)

• Local Markov Property: Each node v is conditionally independent of all other nodes

given its neighbors N(v):

P(Xv | X\{Xv}) = P(Xv | {Xu : u ∈ N(v)}). (1.5)

4



• Global Markov Property: For any two sets of nodes A and B, if all paths between A and

B are blocked by a separating set C, then A and B are conditionally independent given C:

P(XA,XB | XC) = P(XA | XC)P(XB | XC). (1.6)

The joint probability distribution of an MRF can be expressed in terms of potential functions

ψc(Xc), defined over the cliques c of the graph.

We explore the integration of multi-resolution seismic velocity models to enhance the

accuracy of seismic imaging and ground motion simulations in Chapter 3. Addressing the

challenges of varying spatial resolutions due to differences in inversion methods, data coverage,

and ray-path density, the study introduces a novel Physics-Informed Probabilistic Graphical

Model (PIPGM). This framework combines high- and low-resolution models while preserving

fine-scale details and ensuring smooth transitions between regions of varying resolution.

The proposed PIPGM framework incorporates physical constraints, such as ray-path

density and gradient information, to adaptively enhance low-resolution models using high-

resolution data. This approach reduces artifacts, sharp boundaries, and misalignments, improving

overall image quality and interoperability. Evaluations using both synthetic checkerboard models

and real fault-zone structures from the 2019 Ridgecrest earthquake sequence demonstrate the

efficacy of PIPGM. Compared to conventional methods, PIPGM achieves a 38% reduction in

travel-time residuals and superior performance in preserving fine-scale features. This work

underscores the potential of combining computational techniques with physics-based models to

improve seismic imaging, particularly for applications in fault zone analysis and earthquakes.

1.3 3D model Fusion with Generalized PGM

The fourth chapter focuses on the integration of multiresolution seismic velocity models,

a critical challenge in geophysical research with applications in ground motion simulations and

earthquake hazard analysis. Using Probability Graphical Models (PGMs), this study develops
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a novel framework that addresses the limitations of traditional velocity model fusion methods

like Gaussian smoothing and cosine tapering in 3D model fusion. The proposed approach

leverages high-resolution (HR) subdomains to enhance low-resolution (LR) regions, preserving

fine structural details while maintaining global model coherence.

In Chapter 4, we proposed a Bayesian Maximum A Posteriori (MAP) problem formu-

lated to integrate HR and LR data using PGMs. The framework effectively captures spatial

correlations and anisotropy, enabling accurate reconstruction of complex geological structures.

The model employs a Markov Random Field (MRF)-based representation to iteratively adjust

pixel values and cluster labels, ensuring smooth transitions across resolution boundaries. The

integration process uses Gibbs sampling and Expectation-Maximization (EM) techniques [14] to

optimize velocity distributions. The efficacy of the 3D PGM approach is demonstrated through

synthetic checkerboard models and real-world data from the 2019 Ridgecrest earthquake se-

quence. Comparative analysis with benchmark methods (Gaussian filters, cosine tapering, and

dictionary learning) reveals a 44% reduction in travel-time residuals for 3D models, underscoring

the PGM’s superior accuracy and resolution.

We also introduce a transformative computational approach to seismic tomography,

providing a robust tool for integrating diverse geophysical datasets. It lays the groundwork for

future advancements in seismic imaging, enabling more precise characterizations of Earth’s

subsurface and enhancing the predictive accuracy of seismic hazard models.

1.4 MoE-Based Fusion method from Multi-model Learning

Multi-model learning involves the integration of multiple learning algorithms to improve

predictive performance, robustness, and generalization over what could be achieved with a single

model. This approach is particularly useful in scenarios where different models capture various

aspects of the data, leading to a more comprehensive understanding of the problem space. One

prominent framework within multi-model learning is the Mixture of Experts (MoE), which
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dynamically allocates the task of prediction among an ensemble of expert models [15], each

specialized in different regions of the input space.

The MoE model is essentially a form of ensemble learning where each expert’s prediction

is weighted by a gating mechanism [16] that determines the relevance of each expert for a

given input. The overall output of the system is a weighted combination of the experts’ outputs.

Mathematically, this can be represented as:

y =
K

∑
i=1

gi(xxx) fi(xxx), (1.7)

where y is the output, xxx is the input, fi(xxx) are the outputs of the K expert models, and gi(xxx) are the

gating functions’ outputs, which are typically implemented as softmax functions [17] to ensure

that the gating outputs sum to one. Each expert can be a different model (e.g., linear models,

neural networks), and the gating functions themselves can be learned alongside the experts, often

using techniques such as Expectation-Maximization or backpropagation in a neural network

context.

The strength of the MoE model lies in its ability to learn complex, non-linear decision

boundaries by partitioning the input space into regions that are easier to model, effectively

allowing experts to specialize. This specialization can lead to better performance on complex

tasks that may be too challenging for a single model to handle effectively. MoEs have been

successfully applied in various domains, including speech recognition, image classification,

and natural language processing, where the diversity of data and task complexity make it a

particularly suitable choice.

In Chapter 5, we developed an enhanced medical Internet of Things (IoT) system for

blood pressure monitoring. This enhancement is achieved through the integration of fiber optic

sensors, wireless data transmission, and intelligent algorithms. These technologies allow for effi-

cient data collection, real-time analysis, and online result sharing, overcoming challenges faced

by traditional blood pressure measurements which can be affected by individual physiological
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differences such as skin conditions and body shapes.

The key innovation in the paper is the application of a Mixture of Experts (MoE) model

within the IoT system, which improves blood pressure prediction accuracy by 15–18% compared

to traditional methods [18]. The MoE model uses a gating network that dynamically adapts

to varying measurement environments and individual characteristics by directing input data to

specialized experts fine-tuned for specific scenarios. This methodology allows the system to

handle complex scenarios more effectively by utilizing the strengths of various expert models

in response to the dynamic nature of physiological and environmental changes. This adaptive

capability makes the MoE model particularly effective in enhancing the predictive performance

and adaptability of the health monitoring system.
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Chapter 2

Imaging the Velocity Model around the
Ridgecrest Area with Ambient Noise To-
mography (ANT)

2.1 Introduction

The 2019 Ridgecrest earthquakes (M6.4 and M7.1) [19] in the Eastern California Shear

Zone (ECSZ) highlight the need for accurate fault zone imaging to assess seismic hazards.

These events occurred in zones with extensive distributed faulting, indicating underlying low-

velocity zones (LVZs). Fault damage zones, characterized by depth-dependent dimensions

and velocity reductions, influence seismic wave propagation, ground motion amplification, and

rupture dynamics.

We perform ambient noise tomography (ANT) of the Ridgecrest region. Conventional

3D and machine learning-based 2D surface wave tomography are used to obtain a data-driven

velocity model which helps illuminate the extent of the fault zone damage. Geological mapping

studies [20] find extensive distributed faulting in a zone several kilometers wide around the 2019

Ridgecrest ruptures. While the depth extent is unknown, we assume that this documented off-fault

deformation in Ridgecrest is the surface expression of underlying fault damage characterized by

a low-velocity zone (LVZ).

Ambient noise is a reliable tool for seismic imaging of Earth’s crust, due to the abundance
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of shallow surface waves. Cross-correlations of noise obtained between station pairs provide

estimates of group or phase velocities of the intervening media. The accuracy of the ANT

depends on the spacing of the virtual-source receiver pairs. Deployments of dense seismic arrays

have provided particularly high-resolution measurements for recent near surface tomography

studies [21, 22, 23]. Rayleigh waves, with prominent significance on vertical-component records,

are sufficient to obtain an abundance of ray paths. The ambient noise cross-correlation leads to

depth-dependent velocity structure using surface wave dispersion inversion [24, 25].

The depth resolution of tomography depends on the frequency range used. We apply

ambient noise correlation techniques to a rich dataset collected during 58 days in 2019 (07/13–

09/08), consisting of a combination of a coarse regional deployment and dense 2D arrays across

the M6.4 and M7.1 July 2019 Ridgecrest surface ruptures [26]. Specifically, we estimate the

S-wave velocity structure to 1 km depth using 0.02–1 Hz Rayleigh waves. Group travel-times

are extracted from narrow-band cross-correlation peaks. From these, 2D Rayleigh wave velocity

models are estimated. Surface-wave dispersion analysis across a broad frequency range is

then carried out at each grid point providing a local shear wave profile using a fully nonlinear

direct-search algorithm [27]. Finally, we stack the resulting S-wave profiles to construct a 3D

S-wave model from the surface to a depth of 5 km.

Typically, ANT is performed using regularized least squares and travel-time residuals

or Eikonal equation inversion [28]. Recently, probabilistic neural network [29], random mesh

projection [30] and dictionary learning [31, 32] have been used to generate the velocity models.

[32] proposed improving tomography models by incorporating unsupervised machine learning.

The method, locally sparse travel time tomography (LST), was demonstrated on a Nodal seismic

array dataset from Long Beach, CA 2011 [23]. The LST approach separates the overall or global

tomography map into patches of small-scale or local variation, and considers the local and global

information separately [32]. LST, via sparse modeling, is capable of resolving sharp as well as

smooth Earth features based on the data. Using the method for fault-zone imaging studies has

the potential to improve resolution, for example at the boundaries of the LVZ, over conventional
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tomography approaches. We resample the travel times using cross-validation resampling to

compare two ANT approaches: LST and Gaussian smoothing-kernel regularized least squares

(LSQ) tomography (Eq. S7). For both approaches, the parameters are chosen to minimize the

travel time residual on withheld data (data not used to calculate model parameters).

2.2 Data Processing and Methodology

2.2.1 Data

We used the continuous seismic records (500 Hz sampling rate) from 07/13/2019 to

09/08/2019 around the Ridgecrest area by Catchings et al. (2020) on 342 seismic sensors, 65

nodes in a regional array with 8–15 km spacing and 277 nodes in 6 dense arrays with 60–170 m

spacing (A1, A2, and B1–B4 in Fig. 2.1(a)). All seismic data are from the FDSN 3J network.

2.2.2 Noise Tomography with Locally-sparse Model

We first bandpass-filtered the data using a 0.02—1.00 Hz 2nd-order Butterworth filter

and down-sampled the records to a 5 Hz sampling rate. An amplitude truncation technique was

applied for removal of aftershocks [3], and spectral whitening [4] was then used to create data

with a uniform amplitude spectrum. The data from every station pair were cross-correlated

segment by segment, and the resulting correlograms were stacked over 6-hour intervals. Finally,

a thresholding policy was adopted for quality control (see Section S1 for more details).

In conventional tomography, the least squares fit between observed and calculated travel

times is minimized with regularization from the smoothness prior. Here, the slowness pixels

are represented by the vector s′ = s0 + sg ∈ RN , where s0 is a reference slowness and sg is a

perturbation from the reference. The travel time observations are t′ = t0 + tg ∈ RN , where t0 and

tg are the reference travel times and perturbations. Since the reference slowness s0 is known,

the reference travel time t0 is t0 = As0, where A ∈ RM×N denotes the tomography matrix. We
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estimate the perturbations by

t = Asg + ε, (2.1)

where ε ∈ RM is noise.

As a refinement of conventional tomography, LST introduces an additional slowness

vector ss ∈ RN , which captures the local slowness features [32] using sparse modeling and

dictionary learning. Here, D ∈ Rn×Q is a dictionary of Q atoms, and xi ∈ Rn are the sparse

coefficients with n being the number of pixels in a patch. R is a binary matrix which selects a

particular patch from sg, and the Bayesian maximum a posteriori (MAP) estimations {̂sg, ŝs, X̂}

are formulated as

{̂sg, ŝs, X̂,D}= argmin
sg,ss,X,D

{
∥∥w(t−Asg)

∥∥
2

2
+λ1

∥∥ss − sg
∥∥

2
2
+λ2 ∑

i
∥Dxi −Riss∥2

2}

subject to∥xi∥0 = T ∀i,

(2.2)

with X̂ = [x̂1, . . . , x̂I] and λ1, λ2 are hyperparameters. The dictionary D is learned during the

optimization to represent local geophysical features with the sparse model. w is a weight

matrix which normalizes the biased ray-azimuth distribution. Such normalization is necessary

because the seismic stations within the deployment of coarse regional and dense 2D arrays (Fig.

2.1(b)) are highly unevenly-distributed, causing a significant bias of the the ray-path with certain

azimuths. The normalization term w generates an unbiased azimuth distribution among the

stations involved in our imaging (see Fig. 2.1(c)). We set l = 10 pixels (corresponding to ∼4 km)

as our patch size, and λ1 = 1.58 and λ2 = 0.40 are the optimal hyperparameters picked from

cross-validation tests (see Section 2.3 and the Supporting Information).

2.3 Cross-validation: Model Selection

Fixed training datasets can be subdivided or resampled to obtain statistics of the data and

models designed to explain them [33]. Cross-validation is one such technique, which is often
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used for selecting parameters for a model based on its performance on unseen samples [34]. In

cross-validation, a given dataset is divided into multiple training and validation datasets, called

folds. The model weights are estimated using the training data, and its performance is evaluated

on the validation set for each fold. The purpose of this test is to evaluate the model’s ability to

predict new data that was not used for training, over a sequence of different subdivisions of the

data. This approach provides insight on the model’s generalization to unseen data samples, and

can indicate if the model is over- or underfitting the training data. In this work, models are chosen

based on minimum average error on the validation set over the individual folds. Furthermore, the

velocity models from the individual folds are used to obtain model uncertainty.

To evaluate the quality of velocity models obtained by the LST algorithm, we compare

results from the LST method along with the least-squared (LSQ) tomography method [35].

Both LST and LSQ methods are used with a 10-fold cross-validation — we evenly

sampled the station-wise travel time pairs into 10 folds and the sampled data in each fold have the

same azimuth distribution (see Fig. 2.1(c)) as the original data to avoid any direction-based bias.

The LSQ model is solved assuming a constant reference velocity. The LST models are initialized

using either a constant reference velocity, or the LSQ velocity model. The LST dictionary is

initialized using Gaussian random atoms. Then, our LST and LSQ models are iteratively trained

on 9-fold data and tested on the remaining fold. Our tests are performed on 0.7–0.9 Hz, 0.5–0.7

Hz, and 0.2–0.5 Hz data and we use the normalized travel time residual (NTTR) as the evaluation

loss

lossNTTR =
∥∥w(t− t̂)

∥∥2
2 =

√
∑

i
wi(ti − t̂i)2, (2.3)

where w is the direction normalization vector for each fold, t is the observed real travel time

vector, and t̂ = Ass is the predicted travel time vector from tomography results. wi, ti and t̂i are

the i-th elements in w, t and t̂.

We summarize the averaged (mean) and the standard deviation of the Rayleigh group

velocity (inverse slowness) maps for the 10-fold tests in different frequency bands in Fig. 2.2(a)–
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(b), and the 10-fold mean and standard deviation of the NTTR losses in Fig. 2.2(c). Lower

averaged loss indicates tomography maps which better predicted the travel time, and lower

loss variance denotes higher confidence and more stable results. The LST method outperforms

conventional LSQ on these terms. Initializing the LST learning algorithm with a good prior,

which starts the learning algorithm closer to the optimal solution, can further improve the travel

time residuals (see Fig. 2.2(a)). The lower frequency band corresponds to deeper velocity

structure. We observe that the average velocity increases and the width of the LVZs shrinks

as the sensitivity zone goes deeper. Generally, the LST provides lower velocities inside the

LVZs, which results in a stronger contrast between the LVZs and the surrounding areas, and also

sharpens the boundaries of the LVZs. Since each fold-test drops 10% of the ray paths randomly,

the smaller standard deviation indicates that the LST model can provide results with higher

confidence and stability (see Fig. 2.2(b)).

2.4 Synthetic experiments

2.4.1 2D Ambient Noise Tomography

Fig. 2.3(a) shows the Rayleigh group velocity map generated by the averaged 10-fold

cross-validation tests on LST, representing a depth-average captured by the resolution kernel

for 0.02–1 Hz, namely the upper ∼1 km. The image shows relatively disjoint and spatially

complex low-velocity regions on the map, in particular surrounding the surface rupture of the

M7.1 and M6.4 Ridgecrest earthquakes. The average velocities of the surrounding material and

the low-velocity zones are 2.8 and 1.7 km/s, respectively, and the width of these zones vary from

0 to 5 km.

The phase gradients mapped from daily passes of the Sentinel satellites [36] are superim-

posed on the group velocity map in Fig. 2.3(a), indicating distributed faulting from the 2019

Ridgecrest events. There is a strong correlation between the LVZs and these phase gradients,

suggesting that the distributed faulting occurred inside a kilometer-wide deformation zone.
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Based on the Rayleigh wave group velocity resolution kernels, each frequency band

senses different depths of the the shear wave velocity [37]. For the bands in Fig. 2.3(c)–(d) the

peak depths are 300 m (0.7–0.9 Hz), 450 m (0.5–0.7 Hz), and 700 m (0.2–0.5 Hz). Notice that

the average velocity of the LVZs decrease/width of the LVZs shrinks as the depth increases, in

agreement with the expected localization at greater depth found by other fault zone studies such

as [21, 22].

2.4.2 Surface Wave Dispersion Inversion

The Rayleigh wave group velocities obtained by cross-correlation of ambient noise at

each station pair are used to estimate group velocity dispersion curves. We use the fundamental

mode dispersion curves picked in the frequency range of 0.1–3.0 Hz, and the estimated group

velocities are inverted for a 1D shear-wave profile using a stochastic damped least-squares

inversion that minimizes the L2 norm misfit between synthesized and observed data (We use

the SURF96 program [37]. Examples of dispersion curves and the resulting S-wave profile are

shown in Fig. S3.). The technique [37] allows for the evaluation of partial derivatives of the

Rayleigh wave group velocities with respect to the S-wave velocity and density for each layer.

The model parameters are iteratively perturbed from the initial guess with a starting model taken

from the Southern California Earthquake Center Community Velocity Model Version S-4.26

[38], which generally converges after a few iterations. The shear velocity profile is estimated for

station pairs generated by every other station. The regions on either side of the surface rupture

are modeled separately because of differences in the elevation of the stations (low elevations on

the western side and high elevations on the eastern side).

Fig. 2.4(a) shows cross sections of shear wave velocities from the inverted surface wave

dispersion curves at the dense arrays A1, A2, B1, B2, B3, and B4, and a composite 3D image

of shear wave velocities obtained by the sparse arrays is shown in Fig. 2.4(b). We observe

relatively wide LVZs in the upper 1 km range of Fig. 2.4(a) and Fig. 2.4(b) in our LST results.

The surface traces from the M6.4 and M7.1 Ridgecrest events intersect the cross sections near
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the center of the LVZs, and the shallow cross sections reveal distinct LVZ flower structures, as

observed by [22]. However, the complexity of the fault zone, as characterized from the variation

of particularly the width of the LVZ, is remarkable. For example, the fault zone at arrays A1 and

B1 appear to delineate two or more separate low-velocity parts of the fault zone, which may

represent a concentration of damage along different locations of the rupture for past events.

2.5 Conclusions

Our tomographic model of the Ridgecrest area obtained using ambient noise and the LST

approach resolves up to 5 km-wide flower-shaped LVZs with a velocity contrast of 40% to the

host rock. The imaged LVZs are intersected by the fault traces of the M7.1 and M6.4 Ridgecrest

events, suggesting an origin as a fault damage zone. It is unlikely that sedimentary deposits

significantly contributed to the LVZs, which in several areas are located on topographic relief

(refer to Fig. 2.1(a)). In addition, the LVZs are relatively uncorrelated with depths to bedrock

obtained from inversion of gravity data [39]. We have shown that our LST method, by being

primarily data-driven, can yield improved seismic velocity images over conventional approaches

in terms of smaller predicted travel time residuals. We further obtained data-driven estimates

of the model uncertainty with a cross-validation resampling method. It was observed that the

model obtained with LST had lower uncertainty than that from regularized LSQ.

2.6 Supplemental materials

2.6.1 Data Preprocessing

The cross-correlation is performed on the 6-hour interval-pairs from two stations, and the

highest value of the absolute value of the cross-correlation curve is located to extract the travel

time. The final travel time between the two stations is averaged over all 6-hour interval-pairs.

Based on the Rayleigh wave travel time and the distance between the station-pairs, the averaged

travel speed is calculated. We adopted the thresholding policy for the quality control. All the
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station-pairs which provide an averaged-speed higher than 3.5 km/s or slower than 1 km/s are

removed.

2.6.2 Locally Sparse Model

The global problem can be written as

ŝg = argmin
sg

1
σ2

ε

∥∥W (t −Asg)
∥∥2

2 +
1

σ2
g

∥∥sg − ss
∥∥2

2 (2.4)

= argmin
sg

∥∥W (t −Asg)
∥∥2

2 +λ1
∥∥sg − ss

∥∥2
2 , (2.5)

where λ1 = (σε/σg)
2 is a regularization parameter, and W is a direction normalization vector.

The local problem is written from above, with each patch solved from the global estimate ŝg

from (12) (decoupling the local and global problems), giving

{x̂i, D̂}= argmin
xi,D

∥∥Dxi −Riŝg
∥∥ ,subject to∥xi∥0 = T. (2.6)

With the estimate of coefficients X̂ = [x̂1, . . . , x̂I] and the global slowness ŝg, we can solve for ss

ŝs = argmin
ss

1
σ2

g

∥∥ŝg − ss
∥∥2

2 +
1

σ2
p
∑

i
∥Dx̂i −Riss∥2

2 (2.7)

= argmin
ss

λ2
∥∥ŝg − ss

∥∥2
2 +∑

i
∥Dx̂i −Riss∥2

2 , (2.8)

where λ2 = (σp/σg)
2 is a regularization parameter.

Considering that λ1 are λ2 represent the ratios between σε , σp, and σg, Fig. 2.5 shows the

change of travel-time mean-squared errors with hyperparameters. The regularization parameter

values for LST and conventional tomography were selected to minimize the normalized travel

time residual (NTTR):

lossNTTR = ∥W (t − t̂)∥2
2 =

√
∑

i
wi(ti − t̂i)2, (2.9)
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where t is the observed real travel time vector, and t̂ = Ass is the calculated travel time vector

from our tomography results. wi, ti and t̂i are the i-th elements in W , t and t̂.

2.6.3 Least-Squared Model

The LSQ method provides the maximum a posteriori (MAP) estimate of the slowness

vector ŝ by

ŝ = (AT A+ηΣΣΣ
−1
L )−1AT t, (2.10)

where η is the regularization parameter, and ΣΣΣL(i, j) = exp(−Di, j/L) is a smoothing kernel. Di, j

is the distance between the i-th and j-th elements in the slowness image s, and L is the parameter

used to control the length of the smoothness scale. The smoothness kernel size L is set to 10

based on cross-validation and consistent with the LST patch size. It was found that values of L

in the neighborhood of L = 10 pixels (roughly corresponding to ∼4 km) minimized the residual

on validation data.

2.6.4 Parameter Selection

We carried out an additional test, where our LST model was iteratively trained on 9-fold

data and tested on the remaining fold, and the NTTR loss was averaged over 10 iterations. We

tested a group of hyperparameter combinations and summarize the corresponding NTTR loss in

Fig. 2.5. Considering our tomography matrix has a size of 96×112, we choose l = 10 pixels as

our patch size. λ1 = 1.58 and λ2 = 0.40 were selected as the optimal combination for the LST

models, and η = 0.40 is selectd as the optimal value for the LSQ model from the parameter

validation tests (shown in Fig. 2.5).
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Figure 2.1. (a) Station locations (red triangles) and fault traces (green lines), (b) ray coverage in
the model region (blue box), and (c) histogram of ray azimuths for the original and normalized
distributions.
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Figure 2.2. (a) 10 fold-averaged Rayleigh wave group velocity maps using least square (LSQ)
and LST methods for 0.7–0.9, 0.5–0.7, and 0.2–0.5 Hz with the 2 km/s contour lines (white)
superimposed. The LST is initialized by the least-square results. The difference maps (LSQ-
LST) are superimposed with fault traces from field mapping (green lines), phase gradients of
the Sentinel1 radar satellite (blue traces), and the 2 km/s Rayleigh wave velocity contour lines
from the LST maps. (b) 10 fold-averaged mean (bins) and standard deviation (errorbars) of
the normalized travel time residual (NTTR) losses derived by the LSQ and LST, which were
initialized by either uniform or LSQ-estimated velocities.
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Figure 2.3. Rayleigh wave group velocity maps obtained using LST for bandwidths (a) 0.02–1,
(b) 0.7–0.9, (c) 0.5–0.7, and (d) 0.2–0.5 Hz with superimposed fault traces that ruptured in the
2019 sequence (green lines), other Quaternary faults (black lines) and Sentinel1 phase gradients
(blue traces). The velocity models are averaged over cross-validation folds.
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Figure 2.4. (a) Vertical cross-section of the shear wave velocities from the A1, A2, B1, B2, B3,
and B4 station arrays. The intersection with the surface rupture of the M6.4 and M7.1 Ridgecrest
events (green circles) and 2 km/s contours (white lines) are indicated. (b) Composite 3D image of
shear wave velocities obtained from inversion of Rayleigh waves dispersion curves, delineating
flower-shaped LVZs.
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Figure 2.5. NTTR loss as a function of (a) hyperparameters λ1 and λ2 and (b) η . The red circle
highlights the hyperparameters with the smallest NTTR loss.

Figure 2.6. (a) An example of 1 hr of vertical component data recorded by one of the Nodes at
the Ridgecrest area and (b) the corresponding spectrogram.
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Figure 2.7. (a) Rayleigh wave dispersion curves and (b) inverted S-wave profiles for 50 station
pairs picked from the B1 Nodal array (see Fig. 1 in our main manuscript). The red line is the
median curve.

Figure 2.8. Rayleigh wave group velocity maps obtained using LST for bandwidths (a) 0.02–1,
(b) 0.7–0.9, (c) 0.5–0.7, and (d) 0.2–0.5 Hz with superimposed primary fault traces (green lines),
Quaternary faults (purple lines) and phase gradients (yellow lines). The velocity models are
averaged over cross-validation folds.
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Chapter 3

2D Multi-resolution Tomography Model
Fusion with Physics-informed Probability
Graphical Models

3.1 Introduction

The resolution of velocity models varies due to inversion approaches, ray coverage, etc.

For example, large-scale Community Velocity Models (CVMs) are typically characterized by

relatively low resolution, while high-resolution velocity models are limited to smaller areas with

dense station coverage. Combining such velocity models with different resolutions is useful

to improve CVMs, e.g., for ground motion estimation or dynamic rupture modeling, where a

range of scales is needed [e.g., 40]. However, when models with different resolutions are directly

superimposed, sharp boundaries caused by misaligned patterns may produce artifacts in the

modeled seismic waves. The problem of fusing low- and high-resolution models is conventionally

addressed by extracting patterns from various models and utilizing them as boundary conditions

for wave propagation. Border merging has been performed by Gaussian smoothing [5] and by

defining a weighting region [41]. However, this process depends on experts manually choosing

models, and fine-tuning parameters is often time-consuming.

The exploration of multiscale problems has surged across diverse geophysical fields,

encompassing full wave inversion, ground motion modeling, and surface-wave tomography.

26



A pivotal discovery is the scale-dependent nature of anisotropy, a finding that has substantial

implications for how we perceive the structure of the Earth [42]. Analyses from both physical

and signal processing viewpoints bring to light key challenges associated with the effect of spatial

heterogeneities on seismic wave propagation. These studies have shown that seismic waves

cannot distinguish between large-scale anisotropy and small-scale isotropic heterogeneities much

smaller than a wavelength [43], enhanced by the potent spatial and directional dependence of

tomographic resolution. Such dependency may provoke space- and direction-oriented smoothing

[44], eliciting apparent anisotropy fluctuations that bear no intrinsic connection to Earth’s

anisotropy.

The construction of multiscale models has traditionally employed tactics such as mul-

tiscale element fitting [45], Gaussian kernel smoothing [46], and adaptive filtering methods,

such as sparse learning [47, 48, 32]. Zhang et al.[49] proposed a data-driven DL method for

transformations between seismic velocity models of different resolutions, which involves a linear

decomposition of an input signal using a small set of basis signals, or atoms, learned from HR

and LR pairwise data. Although these methods have proved efficient, they might not fully grasp

the vast complexity of the earth’s structure.

Probabilistic Graphic Methods (PGMs) can process images with complex structures,

owing to their power to extract the underlying relations among images [50, 51]. In modeling

pixel points and their interactions using a graph, a structured environment emerges, shaped by

the spatial characteristics of the pixels’ geometric connections in various applications, including

denoising [52], segmentation [53], and seismic detection problems [54]. Beyond conventional

graphs, PGMs have been extended to high-dimensional spaces, such as multilayer graphs [55] and

hypergraphs [56]. Furthermore, graph neural networks (GNNs) and graph convolutional networks

(GCNs) are important tools in image processing and computer vision [57, 58]. Bayesian methods

provide a framework for modeling uncertainty, learning from data, and making predictions.

They have found broad applications in a variety of seismic fields, such as seismic tomography

[59], full-wave inversion [60], and ground motion prediction [61]. Among all the PGMs and
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Figure 3.1. (a) Excerpt of S-wave velocities from the Southern California Earthquake Center
(SCEC) Community Velocity Model (CVM) version S-4.26 (hereafter referred to as the low-
resolution (LR) CVM) at 0.5 km depth around the Ridgecrest area. (b) High-resolution (HR) S-
wave map from 1 Hz Rayleigh wave tomography from Zhou et al. [64]. (c) A direct superposition
of the HR and LR models. These two models share some patterns in the low-velocity zones, but
there are many mismatched detailed patterns where the two models overlap, which results in
sharp and misaligned boundaries in those areas. PIPGM is applied to the mismatched boundary
areas between the two red bounding boxes; note that the pixels in this area belong to the effective
vertices set V .

Bayesian methods, Markov Random Fields (MRFs) constitute a popular and effective approach

for supervised structure learning tasks involving the mapping between complex geometric

structures [62]. MRFs provide an image restoration procedure, first suggested by Geman et

al. [8], which is based on Bayesian inference for a spatially stochastic model. In contrast to

convolution-based methods, the MRF procedure yields an optimal and mathematically tractable

result for image processing [9, 63].

Recently, many novel methodologies, within the category of physics-informed machine

learning [65] have gained much attention. These methods combine conventional machine

learning (primarily neural networks [66]) and weighting mechanisms. They adapt the behavior of

the learning models to the non-linear features of the solution and introduce physical information

as a guide, eventually improving the current limitations of learning models.

Combining the physics-informed mechanism and the MRF model, we propose a physics-

informed probabilistic graphical model (PIPGM) that captures the relations between subdomains

with multiple resolutions. The proposed method is inspired by the progress achieved in image
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Figure 3.2. A 6-cluster Gaussian Mixture model clustering is applied on the continuous velocity
map AAA (left), and this derives a 6-cluster discrete label map XXX (right). The pixels with similar
velocity information have been assigned the same label.

Figure 3.3. Each pixel has a continuous velocity value ai, j and a discrete label mask xi, j. The
object function designed for MAP estimation has two parts: (1) the data cost θ0 (0th-order
neighboring potential) that forces the pixels with the same label to follow the same Gaussian
distribution and (2) the smoothness cost θ1 (1st-order neighboring potential) that promotes
smoothness among neighboring pixels [7].
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super-resolution [67, 68] and image editing [44, 69], and is designed to fuse seismic velocity

models with probabilistic graphical models (PGMs). We focus on models with well-defined,

separate high-resolution (HR) and low-resolution (LR) areas, to enhance local HR structure and

simultaneously preserve global smoothness in the fused model. By transferring the information

from the HR subdomain, the details in the LR areas are enhanced by solving a maximum likeli-

hood problem with prior knowledge from the HR areas. Evaluation tests on both a checkerboard

and a fault zone model derived from the 2019 Ridgecrest, CA, earthquake are performed to

demonstrate its efficacy. Quantitatively, model efficacy is evaluated by the deviation between

observed and calculated travel times in fused models, relative to those from directly superim-

posed LR and HR models. Tests demonstrate that PIPGM is generally superior to widely used

conventional methods (see Experiments section).

The contributions of this article are two-fold: (1) we introduce a PIPGM fusion method

for combining velocity maps with various resolutions, and (2) we introduce physical information

as a guide for the graph learning process.

3.2 Theory

3.2.1 Fundamental Model Setup

The objective is to estimate the true velocity field AAA from AAALR (low-resolution) and

AAAHR (high-resolution) models, focusing on optimal merging of their borders (see Fig. 3.1). A

discrete class label map links the spatial velocity field together. It is initialized from a continuous

velocity map AAA and a 6-cluster discrete label map XXX . Each pixel, described by an (i, j) coordinate,

contains a label Xi, j and a velocity Ai, j, with velocities of the same label following the Gaussian

distribution N (µn,σ
2
n ). Thus, in a graph, velocities AAA are on top of labels XXX (Fig. 3.3). d

represents all possible labels of Xi, j (namely, d = {1,2,3,4,5,6} here), and DDD represents all

possible combinations of labels XXX for the entire map. The velocity map AAA is connected by class

labels XXX .
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3.2.2 Gaussian Mixture Model (GMM)

We use Gaussian mixture model (GMM) clustering to assign each continuous velocity

pixel Ai, j a discrete label Xi, j. We utilize these discrete labels to ensure the preservation of spatial

coherence and the integrity of class boundaries, both essential for accurate data interpretation and

model combining. GMM clustering is a widely used probabilistic clustering technique. In this

model, data points are assumed to be generated from a mixture of a finite number of Gaussian

distributions with unknown parameters [70]. Clustering aims at identifying these parameters,

thus segmenting the data into clusters, each represented by a Gaussian distribution. The GMM

clustering can be implemented using the Expectation-Maximization (EM) method. Here, the

continuous velocity pixel is denoted by Ai, j and the corresponding labels by Xi, j. The algorithm

is described as follows:

1. Initialization: Define N = 6 clusters (the selection of cluster number will be discussed

in Section 6.2) and initialize their means µn, variance σn, and mixing coefficients πn are

initialized either randomly or based on prior knowledge.

2. E-Step: Compute each data point’s responsibility p(xi), the probability that belongs to the

cluster n, using:

p(xi) =
πnN (Ai, j|µn,σn)

∑
N
n=1 πnN (Ai, j|µn,σn)

,

3. M-Step: Update parameters µn, σn, and πn to maximize observed data’s log-likelihood:

µ
new
n =

1
Nn

Ntotal

∑
i=1

P(Xi, j)Ai, j, (3.1)

σ
new
n =

1
Nn

Ntotal

∑
i=1

P(Xi, j)(Ai, j −µn)(Ai, j −µn)
T , (3.2)

π
new
n =

Nn

Ntotal
, (3.3)

4. Convergence: Stop if parameters or log-likelihood change is below a threshold or a
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maximum iteration count is reached. Assign Ai, j to the cluster maximizing P(Xi, j).

3.2.3 Markov Random Fields

Bayesian estimation framework

Given the prior probabilities P(XXX) of label XXX and the likelihood densities P(AAA | XXX) of the

observed velocity AAA, the posterior probability is computed using the Bayes rule:

P(XXX | AAA) =
P(AAA | XXX)P(XXX)

P(AAA)
∝ P(AAA | XXX)P(XXX). (3.4)

Here, P(AAA), the probability density function (PDF) of AAA, is a fixed probability distribution (for

given AAA) and does not affect the maximum a posteriori (MAP) estimation solution. The Bayesian

labeling problem requires finding the MAP configuration. The MAP of labeling for observation

AAA is given by:

XXX∗ = argmax
XXX∈D

P(XXX | AAA), (3.5)

where D denotes a set of possible candidates of the discrete labels XXX , and AAA represents the

observation of the continuous velocities.

We need the prior probabilities and likelihood functions to derive the MAP solution. The

likelihood function P(AAA | XXX) depends on the noise statistics and the underlying transformation

from truth to observation.

Neighborhood System in MRF

The MRF, a model that analyzes spatial relations, uses a neighborhood system [11],

defined as N = {Ni, j | ∀(i, j) ∈ V } (shown in Fig. 3.4), where V contains all pixel indices and

Ni, j includes neighboring pixels. The neighboring system of the given pixel with index (i, j) can

be decomposed as the union of 0th-, 1st-order, · · · neighboring systems as

Ni, j = N 0
i, j ∪N 1

i, j ∪·· · , (3.6)
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Figure 3.4. The neighborhood system Ni, j (marked in gray/black) of the given center node (i, j)
(marked in black). The 1st-, 2nd-, and 3rd-order neighborhood systems of node (i, j) are marked
with numbers ’1’, ’2’, ’3’, and they can be represented as N 1

i, j, N 2
i, j, and N 3

i, j.
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and we define the n-th-order neighboring system of (i, j) as

N n
i, j = {(i′, j′) | |i− i′|+ | j− j′|= n}, (3.7)

which means (i′, j′) and (i, j) have a Manhattan distance [71] of n. The pair (V ,N ) constitutes

a graph, and the neighboring system N for the pixel (i, j) consists of the center node (0th-order

neighboring system) N 0
i, j = {(i, j)} and a pair of neighboring pixels N 1

i, j = {(i′, j′)}. To avoid

artifacts at the boundary, we expand the image’s boundaries by one pixel in all directions, where

the values of the outermost pixels are directly replicated.

The MRF is on D with respect to N if (1) P(Xi, j)> 0,∀Xi, j ∈ d,∀(i, j) ∈ V (positivity)

and (2) P(Xi, j | Xi′, j′,(i′, j′) ∈ V ) = P(Xi, j | Xi′, j′,(i′, j′) ∈ Ni, j). Satisfying condition (1) above

guarantees the model to be a random field. Condition (2) is the Markov local property. Consider-

ing that the label variable XXX depends on velocity AAA and is unobservable, it is assumed that the

distribution of P(XXX |AAA) follows exponential distributions, using Bayes’ rule and the conjugate

distribution property [72].

MRF Prior and Posterior Energy

A model can be considered a valid MRF if and only if the probability distribution P(XXX)

of the configurations is an exponential distribution with normalization, defined as the following

form

P(XXX) =
1
Z1

e−Uprior(XXX), (3.8)

where Z1 is a normalizing constant, and Uprior(XXX) is the prior energy (Section 4.2 in [7]).

The prior energy Uprior(XXX) can be expressed as the summation of neighboring potentials

Uprior(XXX) = ∑
n∈N

θn(XXX) = ∑
{(i, j)}∈N 0

i, j

θ0
(
Xi, j
)
+ ∑

{(i′, j′)}∈N 1
i, j

θ1
(
Xi, j,Xi′, j′

)
+ · · · , (3.9)

where N is the set of all the possible neighboring systems, and N 0
i, j and N 1

i, j denotes the 0th-
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and 1st-order neighboring systems, with θ0 and θ1 representing the respective potentials. The

0th-order neighboring system consists of the ensemble of all feasible indices (i, j), identified

as the central pixel. This study focuses exclusively on the neighboring potentials of 0th and 1st

order while truncating higher order potentials as delineated in Equation (3.9).

Because we assume that the velocities AAA with given labels XXX follow Gaussian distributions,

the likelihood function can be expressed in an exponential format

P(AAA | XXX) =
1
Z2

e−Ulike(AAA|XXX), (3.10)

where Ulike(AAA | XXX) is called the likelihood energy. According to the Bayes rule Eq. (3.4), the

posterior probability must be an exponential distribution

P(XXX | AAA) =
1
Z3

e−Upost(XXX |AAA), (3.11)

where Z2 and Z3 are normalization constants. Taking the negative logarithm in Eqs. (3.10)–(3.11)

gives the posterior energy

Upost(XXX | AAA) =Uprior(XXX)+Ulike(AAA | XXX)+C, (3.12)

where C is a constant related to the normalization constants Z1, Z2, and Z3. Hence, given a fixed

AAA,X is also an MRF on d with respect to N . The MAP solution is equivalently found by

XXX∗ = arg min
XXX∈D

Upost(XXX | AAA), (3.13)

which minimizes the negative log-likelihood problem of Eq. (3.11).

In summary, the MRF modeling process consists of the following steps: Defining

a neighborhood system N , defining the prior potentials θ0, deriving the likelihood energy

Ulike(AAA|XXX), and deriving the posterior energy E(XXX) (which can be expressed as the summation
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Figure 3.5. (a) LR CVM around the Ridgecrest area. (b) HR S-wave map from 1 Hz Rayleigh
wave tomography. (c) and (d) corresponding gradient maps of (a) and (b). In the gradient maps,
brighter (darker) areas indicate that velocities change sharply (slightly).

of neighboring potential functions). Eqs. (3.10)–(3.13) show that we can express the posterior

probability P(XXX |AAA) into the prior energy Uprior(XXX) (which can be measured by multiple potentials)

and the likelihood function energy Ulike(AAA|XXX), and this gives a good reason for using MRF priors,

which means that we can measure conditional probabilities P(XXX |AAA) without knowing its specific

expression.

3.3 PIPGM

3.3.1 Physics-Informed Mechanism

PIPGM follows a first-order MRF setting (Fig. 3.4) where each random variable has four

neighbors on which it is conditionally dependent. The full conditional probability of the discrete

random variable Xi, j ∈ {1, . . . ,6} is the exponential of the sum of potentials (four 1st-order

neighboring potentials θ1 between cluster labels and one 0th-order center data potential θ0
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between cluster label and velocity) in conventional MRF settings. In image process problems,

optimizing the entire map can be broken down into several suboptimization problems that

iteratively optimize each pixel [73]. Inserting Eq. (3.9) into Eq. (3.12), we have

− log p(Xi, j | Ai, j) =Upost(Xi, j | Ai, j)

∝ θ0(Xi, j,Ai, j)+ ∑
(i′, j′)∈Ni, j

θ1(Xi, j,Xi′, j′)+C, (3.14)

where C is a constant related to normalization factors Z1, Z2, and Z3 (see Eqs. (3.8), (3.10),

(3.11)), and

θ0
(
Xi, j,Ai, j

)
=

(Ai, j −µn)
2

σ2
n

(3.15)

is the 0th-order neighboring potential [74] (also known as the data cost function) that relates Xi, j

with the observed velocity data Ai, j. µn and σ2
n are the mean and variance of all pixels with the

same cluster label n = Xi, j. It promotes that continuous velocity values AAA sharing pixels with the

same discrete label XXX follow the same Gaussian distribution.

θ1
(
Xi, j,Xi′, j′

)
= 1−δ (Xi, j,Xi′, j′) (3.16)

is the 1st-order neighboring potential [74] (also known as the smoothness cost function) that

relates Xi, j to the 1st-order neighboring variable Xi′, j′ (see Fig. 3.4). This function encourages the

neighboring pixels to share the same discrete label Xi, j, promoting the model’s local smoothness.

The effectiveness of conventional MRF approaches, or those based on potential func-

tions, may be constrained when applied to complex geological structures. Assigning different

neighboring pixels with various importance weights based on physical information (also known

as the physics-informed mechanism) can effectively remove the anisotropic features of the model

gradients. This approach can significantly improve inversion results, particularly in the context

of geological structure.

In seismic tomography, the coverage of the ray path varies, with the coverage of the
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densest ray path usually leading to more reliable estimations of velocities. Here, we introduce a

confidence score vRi, j based on the logarithmic format of the ray density for each pixel:

vRi, j = αR log(Di, j +1)+βR, (3.17)

where Di, j ∈ [0,315] is the number of ray paths through a given pixel. The logarithmic scaling

parameters αR and βR are empirically chosen as 0.08 and 0.90, respectively, resulting in vRi, j ∈

[0.9,1.1].

We combine the gradient information from both the LR and HR maps as the prior

estimation of the sharpness of the local patterns (as shown in Fig. 3.5). The gradient is calculated

by the Prewitt operator approximating the 1st-order derivatives of 2D images [75]. The operator

uses two 3× 3 kernels convolved with the original image to calculate approximations of the

derivatives - one for horizontal changes and one for vertical. The kernels for the Prewitt operator

can be represented as

Kx =


−1 0 1

−1 0 1

−1 0 1

 , Ky =


−1 −1 −1

0 0 0

1 1 1

 . (3.18)

The convolution of these kernels (KKKx and KKKy) with the original image yields two gradient images,

one for the x-direction (GGGx), and one for the y-direction (GGGy).

Once GGGx and GGGy have been determined, we can find the gradient magnitude Gi, j at the

pixel with index (i, j) as

Gi, j =
√

Gx
i, j

2 +Gy
i, j

2
. (3.19)

The resulting image GGG is a gradient image showing the intensity of the edge. We applied the

Perwitt operator on the LR and HR maps to generate the gradient images GGGLR and GGGHR. We

empirically choose the weighting parameter λ = 0.2 (0 ≤ λ ≤ 1) for balancing the LR and HR
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gradients:

G
′
i, j = (1−λ )GLR

i, j +λGHR
i, j . (3.20)

The overall range of the pixel values inside the gradient matrices GGGLR and GGGHR is [0.05,0.68].

The scaling parameters αG and βG are empirically set as 0.36 and 0.85, respectively, and this

guarantees vGi, j ∈ [0.9,1.1]:

vGi, j = αG(1−G
′
i, j)+βG. (3.21)

Generally, the larger the gradient weight term vGi, j , the lower the importance of the local

smoothness cost. The gradient weight term vGi, j is joined with the previous ray-density weight

vRi, j , defining a physics-informed weight ωi, j

ωi, j = vRi, jvGi, j . (3.22)

With the parameters chosen above, the range of the physics-informed weight is [0.81,1.21] with

a mean of around 1. The physics-informed weight ωi, j can adaptively assign a larger weight to

the trusted nodes based on existing physical information. We used ray-path density and gradient

information, both exhibiting pronounced anisotropic characteristics (as shown in Fig. 3.5 and

Fig. 3.8), thereby facilitating the model’s capability to explore more complex formations within

these regions. Assigning the physics-informed weight in Eq. (3.14), we obtain the posterior

probability function in the PIPGM

− log p(Xi, j | Ai, j) ∝ ωi, jθ0(Xi, j,Ai, j)+ ∑
(i′, j′)∈Ni, j

ωi′, j′θ1(Xi, j,Xi′, j′)+C, (3.23)

where C is a constant related with to normalization factors Z1, Z2, and Z3 (see Eqs. (3.8), (3.10),
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Algorithm 1 MCMC Method for MRF
1. Input: AAALR and AAAHR
2. Initialize the velocity model AAA by superimposing AAAHR over AAALR

Initialize XXX , µn and σn with Gaussian Mixture Model (GMM) clustering
3. for each EM iteration do
4. Construct PIPGM
5. for t = 1 to max iteration T do
6. (E-Step) Gibbs Sampling
7. for each pixel (i, j) = (1,1) to the maximum index (I,J) do

(updating all the discrete labels Xi, j)
8. X (t+1)

i, j ∼ P
(

Xi, j | X (t+1)
1,1 , . . . ,X (t+1)

i, j−1 ,A
(t)
i, j ,X

(t)
i, j+1, . . . ,X

(t)
i, j

)
9. end for
10. Update P(Xi, j = n) = Nn

Ntotal
, where Nn is number of pixels with label n

and Ntotal is number of pixels.
11. for each pixel (i, j) = (1,1) to the maximum index (I,J) do

(updating all the continuous velocities Ai, j)
12. Ai, j ∼ ∑

6
n=1 P(Xi, j = n)N(µn,σ

2
n )

13. end for
14. (M-Step) Update Gaussian parameters µn and σ2

n with the sample mean

µn =
1

Nn
∑Xi, j=n Ai, j and sample variances σ2

n =
∑Xi, j=n(Ai, j−µn)

2

Nn
15. end for
16. end for
17. return XXX ,AAA (for each pixel)

(3.11)). The objective function of the MAP problem of Xi, j becomes

X∗
i, j = argmax

XXX i, j
p(Xi, j | Ai, j) (3.24)

= argmin
XXX i, j

ωi, jθ0(Xi, j,Ai, j)+ ∑
(i′, j′)∈Ni, j

ωi′, j′θ1(Xi, j,Xi′, j′)+C.

3.3.2 Markov Chain Monte Carlo (MCMC) and Gibbs Sampling

MCMC is a statistical method used to sample probability distributions [76, 77]. Gibbs

sampling is a specific MCMC algorithm that iteratively samples a multivariate probability

distribution from the conditional distributions of each variable given the current values of the

other variables [78]. Combining MCMC with Gibbs sampling enables estimating complex

probability distributions without explicit knowledge of the distribution.

We employ the MCMC method with Gibbs sampling to solve Eq. (3.13). The algorithm
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Start 

Stop 

Input: High-resolution Model 𝑨𝑯𝑹 

           Low-resolution Model 𝑨𝑳𝑹 

Superimpose 𝑨𝑯𝑹 over 𝑨𝑳𝑹 to get 𝑨 

Update Discrete Labels 𝑿 

Update Continuous Velocities 𝑨 

Updating Gaussian Parameters 𝝁𝒅 and 𝝈𝒅 

Stop Criterion 

Output: Continuous Velocity 𝑨 

True 

False 

Figure 3.6. The pipeline of the iterative update policy for both pixel labels (discrete class labels)
and pixel values (continuous velocity values).
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assigns a discrete label to each pixel, creating a map-wide label distribution overview. This

enables calculating the discrete label probability P(Xi, j = n) by finding the frequency of each

label n in Step 10, giving the map’s label distribution. In Step 12, the continuous variable Ai, j is

sampled from a Gaussian mixture model (GMM), allowing velocities beyond a single label’s

distribution and considering neighboring clusters. In the MRF structure, the update is achieved by

calculating the probability for each of the possible labels n ∈ {1, · · · ,6} at (i, j) using Eq. (3.23)

and randomly selecting from this distribution, see Fig. 3.6.

The velocity map AAA is initialized with the superimposed HR and LR velocity maps, see

Fig. 3.8 (a1, b1), and the label map XXX is initialized with a Gaussian mixture model clustering

with the total cluster number N = 6 (will be discussed in Section 3.4.1), similar to Fig. 3.8

(a3, b3). All velocities with the label n follow the same Gaussian distribution N(µn,σ
2
n ). The

expectation–maximization (EM) algorithm [79], an iterative method to find MAP estimates of

parameters, updates Gaussian parameters µn and σ2
n . The termination criterion is either reaching

10,000 iterations or observing that the cumulative absolute difference across all pixels between

consecutive iterations falls below 0.1 km/s, whichever is achieved first. The algorithm has been

summarized in Algorithm 1.

3.4 Experiments

To evaluate the efficacy of the PGM fusion method, we employ both a checkerboard

model and the fault zone structure imaged from the 2019 Ridgecrest, CA, earthquake sequence.

The Ridgecrest fault zone image consists of a shallow (representing a depth of 0.5 km) high-

resolution Rayleigh wave model [64], from which the S-wave velocity is approximated by

dividing by 0.9.

Fig. 3.7 shows the smoothed results with different smoothing levels. The aggressive,

simple smoothing policy in Fig. 3.7(c) (7×7 average filter) removes the sharp boundaries while

the details are lost. Simple and mild smoothing in Fig. 3.7(d) (3×3 average filter) preserves the
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Figure 3.7. (a) LR model (Same as Fig 1a). (b) Same as Fig 1c. (c-d) Combined LR and HR
models, smoothed by (c) 7×7 and (d) 3×3 average filters. (e) Synthetic stations (red ’X’s) are
deployed on the boundaries between HR and LR models for evaluation.
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Figure 3.8. (top, ’a’ panels) Checkerboard and (bottom, ’b’ panels) Ridgecrest models. (1)
Superimposed HR and LR models. (2) Station location and ray density. (3) 6-class label mask
maps for HR models (pixels with the same label are learned together). (4) Smoothing results
with a 5×5 Gaussian filter (GF). (5) and (6) Fusion results with DL and with PIPGM.
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Figure 3.9. (a) Direct superposition of the HR 1 Hz Rayleigh wave tomographic velocity and
CVM LR models for the Ridgecrest area. (b-d) Combined LR and HR models, smoothed by (b)
3rd-order, (c) 2nd-order, and (d) 1st-order MRFs. Generally, the higher the order is, the larger
the range of neighboring pixels will be taken into consideration, and this leads to a model with
smoother local patterns.

details together with the artificial boundaries. It is essential to achieve a trade-off between the

two cases, this is the aim of PIPGM. To assess the balance between travel time among stations

and their residuals, 36 evaluation points (marked as red ’X’, with 10 situated along each edge)

are positioned at the boundary dividing the LR and HR zones. These residuals gauge the extent

of detailed information retained in the merged velocity model relative to the HR maps.

3.4.1 Graphical Structure Order Test

In an MRF, the variables are represented as nodes in the graph, and their dependencies

with the neighbors are decided by the truncation order in Eq. (3.6). We name the MRF with

the neighboring system truncated at nth order as ’n-th order MRF’ for brevity. A 1st-order
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neighboring system structure is a subset of nodes in which every two distinct nodes are directly

adjacent. Usually, the neighboring system’s order significantly affects the model’s smoothing

results. If an MRF model is based on a first-order neighboring system, it can account for

interactions between immediate neighbors. In the context of image smoothing, it results in the

enforcement of local smoothness, where each pixel is encouraged to be similar to its immediate

neighbors. When a model involves a higher-order neighboring system (the Manhattan distance of

the pixels in this set from the centering pixel may be greater than 1), it can capture more complex

relations and dependencies among variables. Higher-order MRFs can enforce smoothness over

larger regions, allowing the model to preserve the high-level structures (usually related to the

low-frequency patterns) and avoid sharp boundaries or noisy details.

Since information from a wider range of neighbors is considered, higher-order MRFs

can be computationally more intensive in one iteration and may reach the optimum with fewer

learning iterations. On the other hand, first-order MRFs are simple and efficient, and they can

sometimes preserve some noisy details. The choice between first-order and higher-order MRFs

depends on the specific requirements of the task and the trade-off between model complexity

and computational efficiency. In the velocity fusion problem, we demonstrate the fused models

with 1st-, 2nd-, and 3rd-order MRF structures in Fig. 3.9. Considering that the Ridgecrest

model measures the structure from a relatively limited region and that we prefer the rich detailed

structures from the HR model, we choose the 1st-order MRF neighboring structure in the

following comparison experiments.

3.4.2 Cluster Number Test

The number of GMM clusters influences the model complexity and interpretability of

the results. More clusters result in a more complex model, which can capture intricate data

structures better and lead to more detailed insights into the data. However, it increases the risk of

overfitting.

The optimal number of clusters is crucial in GMM and other clustering techniques. Sev-
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Figure 3.10. Fusion using cluster numbers n= 3, 5, 6, 7, and 9. (top row) fused velocity model
and (bottom row) cluster distribution. Generally, the larger the number of clusters, the more
detailed information is preserved in the HR models, and the larger the computation recourse it
needs. A trade-off is required to balance the cost and the performance.

eral methods help determine an appropriate number of clusters, such as the Akaike Information

Criterion (AIC), the Bayesian Information Criterion (BIC), and the silhouette score. These

methods balance the trade-off between the goodness-of-fit of the model and the complexity of

the model.

For this experiment, we tested and compared the cluster number sequences

N ∈ {3,4,5,6,7,9}, which is prevalent in practical uses of MRFs. Figure 3.10 shows that the

larger the number of clusters, the more detailed information is preserved in the HR models, and

the larger the computation recourse it needs. This implies that a trade-off between cost and

performance needs to be achieved. Figure 3.11 demonstrates the number of clusters against

RMSE error (left vertical axis) and computation time (right vertical axis) in the Ridgecrest test.

The RMSE error experiences a significant decrease while the cluster number grows from 3 to 6,

with limited decrease for larger cluster numbers, and there is a rapid growth in run time when the

cluster number exceeds 6. For these reasons, we empirically choose the cluster number to be 6

as a trade-off between model performance and computation complexity.
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Figure 3.11. The number of clusters versus RMSE error (left vertical axis, corresponding to the
blue solid line) and run time (right vertical axis, corresponding to the orange dashed line) on the
Ridgecrest model. Generally, the larger the cluster number is, the smaller the RMSE error and
the longer the running time is. We choose cluster number 6 to balance the model performance
and the computation complexity.

3.4.3 Comparison with Conventional Methods

To demonstrate the advantage of the proposed PIPGM, we compare its performance with

some commonly used conventional methods on both the synthetic checkerboard model and the

real-data Ridgecrest model with inter-station S-wave travel time deviations before and after the

merge. First, we briefly introduce several popular conventional fusion methods.

Gaussian Smoothing Filter (GF)

A GF is a data processing technique that reduces noise and smooths out signals or data

distributions. This method involves applying a Gaussian kernel function to the data, a bell-shaped

curve that weights the data points based on their distance from a central point. A smoothing

parameter defines the Gaussian kernel called the kernel window size or standard deviation, which

controls the amount of smoothing applied to the data. A larger window size leads to a wider,

smoother curve, while a lower bandwidth results in a narrower, more detailed curve. GFs are

commonly used in image and signal processing, and data analysis applications. It is a powerful

48



technique that can effectively remove noise and improve the clarity of data, but can also introduce

bias and distortions in the data if the smoothing parameter is not chosen carefully.

DL Smoothing

DL Smoothing [80] is a data processing technique used to de-noise and smooth mis-

aligned patterns in the signals or images. It involves representing the data as a sparse linear

combination of a set of basis vectors or atoms, which is learned from the data itself through an

iterative process. In this process, the algorithm attempts to identify an array of basis vectors

capable of representing the data with minimal error. Once the dictionary is learned, it can be

used to transform the data into a sparse representation, where most of the coefficients are zero.

This sparse framework is subsequently employed in the denoising and smoothing of the data,

achieved through the selective elimination or alteration of coefficients associated with noise or

extraneous features. DL smoothing has been applied to a wide range of data processing appli-

cations, including image processing, audio processing, and signal processing. It is a powerful

technique that effectively removes noise and preserves the underlying structure of the data, but it

requires a large amount of training data and can be computationally expensive.

3.4.4 Results

We show the fusion of HR and LR components for directly superimposed checkerboard

and Ridgecrest velocity models in Fig. 3.8 (a1, b1), which both have an HR region in the center,

surrounded by LR velocities in the surrounding areas. The checkerboard model has 40×40

pixels in the 100×100 km LR area and 40×40 pixels in the 40×40 km HR area. The fused

model has 100×100 pixels in the 100×100 km LR area. Similarly, the Ridgecrest model has

50×50 pixels in a 100×100 km LR area and 192×224 pixels in a 58×64 km HR area. The fused

model has 330×350 pixels in a 100×100 km area. Fig. 3.8 (a2, b2) shows the checkerboard and

Ridgecrest stations along with the ray-path density. For the checkerboard model, the stations are

evenly distributed, whereas the stations for the Ridgecrest model are highly irregular, reflecting
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Table 3.1. Evaluation results for Gaussian Filtering (GF), DL, classical PGM, and PIPGM for
both checkerboard and the Ridgecrest model. Evaluation metrics are travel time root-mean-
square error (RMSE), naturalness image quality evaluator (NIQE), peak signal-to-noise ratio
(PSNR), and Fréchet inception distance (FID). ↓ indicates smaller is better, and ↑ opposite.

RMSE/s↓ NIQE↓ PSNR/dB↑ FID↓
Checkerboard GF 1.65 7.68 14.58 45.75

” DL 1.18 5.44 15.70 33.85
” PGM 1.14 5.40 16.14 32.49
” PIPGM 1.06 5.41 16.14 32.46

Ridgecrest GF 3.52 12.41 21.80 61.39
” DL 2.61 7.29 22.36 54.25
” PGM 2.27 6.70 23.04 47.49
” PIPGM 2.17 6.59 23.16 47.18

the pattern used by Zhou et al. [64]. Fig. 3.8 (a3, b3) shows the label mask maps from the

last iteration of the PIPGMs. Pixels with the same label indicate that these areas potentially

share similar velocity patterns and are sampled from the same distribution. The smoothed fusion

results with the 5×5 GF, DL [80], and PIPGM are shown in Fig. 3.8 (a4-a6) and (b4-b6). The

results show that the learning methods (DL and PIPGM) preserve more detailed information

than direct Gaussian smoothing. This is because the learning methods adaptively find the fusion

parameters that optimize the accuracy of the representation, while Gaussian smoothing only

combines the neighboring pixels with a predefined kernel.

We use multiple metrics to evaluate the model fusion efficacy: travel time Root-Mean-

Squared-Error (RMSE, which measures information lost after model fusion [23]), Naturalness

Image Quality Evaluator (NIQE, a common-used measurement for image quality [81]), Peak

Signal-to-Noise Ratio (PSNR, measuring the sharpness of images [82]), and the Frechet inception

distance (FID, capturing similarities between the original and fusion models [83]) in Table 3.1.

In the checkerboard test, because the pattern is simple and the stations are evenly distributed, all

the learning methods achieve similar performance. For the realistic Ridgecrest model, however,

the PGMs outperform the DL model, as the latter is sensitive to the orientation of the patches

while the graphical models are rotationally invariant. We observe further improvements after the
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ray density information is informed in the PIPGM.

3.5 Conclusion

We developed an approach to fuse multiresolution seismic velocity maps with PGMs.

PIPGM achieves a velocity model by balancing smoothing the generally undesired sharp bound-

aries between LR and HR components and preserving the detailed information from the HR

models.

We tested the efficacy of the proposed fusion method using a checkerboard model and

a realistic, complex fault zone model around the 2019 M7.1 Ridgecrest earthquakes. The

tests for the checkerboard model, which is simple with evenly distributed stations, show that

PIPGM outperforms all the baseline methods. All the learning-based techniques used to combine

the maps (including the proposed PGM and PIPGM methods) significantly outperform the

conventional methods, since the parameters are adaptively learned from the pairwise data. For

Ridgecrest, the PIPGM methodology demonstrates a 38% reduction of travel time residuals

compared to Gaussian kernel smoothing. This result is likely due to the poor performance

of traditional techniques in handling the nonuniform-distributed data evenly, while PIPGM

adaptively chooses the weights according to the intricate structure of the Ridgecrest model.

The proposed PIPGM outperforms traditional techniques in integrating maps of varying

resolution, particularly when the map complexity escalates and the distribution of data points is

uneven. Prospective future work involves addressing the challenge of irregular resolution within

the HR domain, which is crucial for enhancing the fidelity and applicability of our models and

potentially improves the understanding and application of various real-world models. Finally,

we recommend testing PIPGM directly by comparison of synthetic and observed waveforms.
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Chapter 4

3D Multiresolution Velocity Model Fusion
With Probability Graphical Models

4.1 Introduction

The problem of combining multiscale models appears across various geophysical fields,

revealing the scale-dependent nature of anisotropy and introducing substantial implications for

understanding Earth’s structure [42]. The integration of velocity models with different resolutions

is important for refining community models, especially in applications such as ground motion

estimation or dynamic rupture modeling, where varying scales are imperative [e.g., 40, 84]. The

fusion of high-resolution (HR) and low-resolution (LR) models poses challenges due to the

potential emergence of sharp boundaries and misaligned patterns. Apart from being physically

unrealistic, such patterns can result in artifacts in ground motion simulations.

To address the velocity model fusion problem, several notable techniques have been

developed. The Gaussian kernel filter [85], widely used in image and signal processing, applies a

Gaussian kernel to data for smoothing, with the degree of smoothing determined by the kernel’s

bandwidth or standard deviation. This technique is effective in enhancing the clarity of the data

and requires precise parameter tuning to avoid data distortion. Cosine taper window interpolation

[41, 86] employs a cosine taper to reduce signal amplitude at the sequence ends, thereby merging

the two velocity models effectively while preserving their overall characteristics. However,

both Gaussian filtering and cosine tapering have difficulties when considering the spatial and
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directional dependency of the resolution, which might induce direction-oriented smoothing

[44]. On the other hand, dictionary learning smoothing, explored in studies [80, 32, 87], offers

an advanced approach for smoothing signals or images. This technique involves creating a

sparse representation of data through dictionary learning, enabling effective noise removal

while maintaining the data’s underlying structure, albeit with high computational demands and

extensive training data requirements.

Inspired by advancements in image super-resolution [67] and image editing [44, 69],

we propose to fuse seismic velocity models employing Probability Graphical Models (PGMs).

PGMs, capable of processing complex structures due to their ability to discern inherent relations

among images [50, 51], represent a promising tool for seismic analysis, including the study of

reflection and seismic attributes surrounding low-velocity zones. Expanding beyond standard

graphs, PGMs have been extended to higher-dimensional spaces, such as multilayer graphs [55]

and hypergraphs [56], and have been used in several seismic applications [59, 60, 61]. Within

all the PGMs, Markov Random Field (MRF) is a prevalent and highly effective approach for

tackling supervised structure learning tasks that encompass the intricate mapping of complex

geometric structures, as articulated by Murphy et al. [62]. MRFs have been instrumental in

the area of image restoration and editing, which was initially conceived by Geman et al. [8].

This approach is rooted in Bayesian inference principles, applied to a spatially stochastic model.

In contrast to convolution-based methods, the MRF procedure has been empirically validated

to yield optimal and mathematically tractable results in the context of image processing, as

substantiated in [9].

To combine realistic tomography velocity models with unevenly distributed patterns,

we propose a PGM that captures the relations between subdomains with different resolutions.

Our focus is on models that distinctly segregate high-resolution (HR) and low-resolution (LR)

areas. By learning information from the HR subdomain, we aim to enhance the details within the

LR regions. This enhancement is achieved through a maximum likelihood formulation, which

incorporates prior knowledge from the HR areas. Our proposed PGM fusion technique not only
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accentuates the local HR structure, but also safeguards global smoothness in the resulting model,

an important advance in addressing the complexities in 3D velocity model fusion. Due to the

inherent characteristics of graphical methods, our approach embodies the property of invariance

under rotations or angular transformations. Furthermore, it accommodates the extension of

larger neighboring patch sizes, facilitating the adaptation to varying volumes of training data and

allowing for the accommodation of varying data quantities during training. Our approach enables

more inclusive, adaptive, and precision-enhanced modeling of Earth’s subsurface structures,

showing promise for the PGM in the fusion of 3D models spanning varied resolutions.

Tests are performed on both a checkerboard and a fault zone model derived from the

2019 Ridgecrest, CA, region to demonstrate its efficacy. Generally, a lower travel time deviation

indicates a more accurate velocity model of the Earth’s subsurface, which in turn leads to more

precise ground motion simulations [88]. Our model is evaluated by the deviation between

observed and calculated travel times and demonstrates that our PGM has great potential in

combining velocity models with various resolutions (see Experiments Section).

4.2 Model Setup

For two partially observed velocity fields AAALR and AAAHR, the task is to estimate the true

velocity field AAA. Here, we let AAAHR represent a high-resolution velocity field on pixels inside the

low-resolution AAALR velocity field. In this paper, we focus on optimally merging borders between

AAALR and AAAHR, as illustrated in Fig 4.1 using an excerpt from the Statewide California Earthquake

Center (SCEC) Community Velocity Model (CVM) version S-4.26 as well as a HR fault zone

model from the Ridgecrest, CA, area. We illustrate our method using 6 labels, a choice that will

later be shown to be optimal in the trade-off between model complexity and computational cost

(see Section Experiments). In our graphical model, a discrete class label map helps tie the spatial

velocity field together. The label maps represent different geological structures, defined by their

association with certain velocity intervals. The label map is initialized from the continuous
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velocity map AAA (Fig. 4.2, left), where we define a 6-cluster discrete label map XXX (Fig. 4.2, right)

containing 6 velocity intervals (labeled 1–6), which is obtained from the continuous velocity

maps AAA.

In our 3D models, the pixels are described by (i, j,k) coordinates and contain both a

label Xi, j,k and a velocity Ai, j,k. The velocity Ai, j,k with the label Xi, j,k = n (n represents the

labels, an example is shown in Fig. 4.2, right) follows a Gaussian distribution N (µn,σ
2
n ) with

mean µn and variance σ2
n . Velocities at different pixels but with the same labels follow the

same distribution. Thus, in a graph, the velocities AAA are on top of the labels XXX (Fig. 4.3). d

denotes the set of all possible labels of Xi, j,k (here, n = {1, . . . ,6}), and D represents the set of

all possible combinations of labels XXX for the entire map. The whole map is tied together via

the class labels XXX that depend on the neighboring class labels indicated by the graphical grid

structure in Fig. 4.3. For each point (i, j,k) the neighboring class Ni, j,k is defined by its four

immediate points. Note that we use the points in specific regions V , i.e., at the border between

the low- and high-resolution maps.
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(a) (b) 

(c) (d) 

Figure 4.1. (a) Excerpt of S-wave velocities from the SCEC CVM version S-4.26 (hereafter
referred to as the low-resolution (LR) CVM) at 0.5 km depth around the Ridgecrest area. (b)
High-resolution (HR) S-wave map from 1 Hz Rayleigh wave tomography from [64]. (c) Direct
superposition of the HR and LR models. (d) Evaluation points (’X’) are located on the boundaries
between the HR and LR models. These two models share some patterns in the low-velocity
zones, but show many mismatched detailed patterns where the two models overlap, which results
in sharp and misaligned boundaries in those areas. Our PGM is applied to the mismatched
boundary areas between the two bounding boxes in (c). The pixels in this area belong to the
effective vertices set.
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  (a) 

(b) Cluster 
Label 

Figure 4.2. A 6-cluster Gaussian mixture model clustering is applied on the continuous velocity
map AAA in (a). Each pixel is clustered to be a 6-cluster discrete label map XXX in (b). Pixels with
similar velocity information have been assigned the same label.
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4.3 Markov Random Field Models (MRFs)

4.3.1 Bayesian Estimation

Given the prior probabilities P(XXX) of label XXX and the likelihood densities P(AAA | XXX) of the

observed velocity AAA, the posterior probability can be formulated through Bayes’ theorem as:

P(XXX | AAA) =
P(AAA | XXX)P(XXX)

P(AAA)
∝ P(AAA | XXX)P(XXX). (4.1)

Here, the probability density function (PDF) P(AAA) of AAA is a fixed probability distribution (for

given AAA) and does not affect the maximum a posteriori (MAP) estimation solution. The Bayesian

labeling problem requires finding the MAP configuration. The MAP of labeling for observation

AAA is given by:

XXX∗ = argmax
XXX∈D

P(XXX | AAA), (4.2)

where D denotes a set of possible candidates of the discrete labels XXX , and AAA represents the

observation of the continuous velocities [89]. To derive the MAP solution, both the prior

probability and the likelihood function are needed. The likelihood function P(AAA | XXX) captures the

conditional relation between the observation (refers to the continuous velocity in our research)

and the hidden states (the variable, which corresponds to the discrete labels, cannot be directly

observed here).

4.4 Probability Graphical Model (PGM)

Our PGM follows a first-order MRF setting (Fig. 4.4) where each random variable has

four neighbors on which it is conditionally dependent. The full conditional probability of the

discrete random variable Xi, j,k ∈ {1, . . . ,n} is the exponential of the sum of potentials (four 1st-

order neighboring potentials θ1 between cluster labels and one 0th-order center data potential θ0

between cluster label and velocity) in conventional MRF settings. In image processing problems,
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optimizing the entire map can be broken down into a group of suboptimization problems that

optimize each pixel iteratively [73]. Inserting (3.9) into (3.12), we have

− log p(Xi, j,k | Ai, j,k) =Upost(Xi, j,k | Ai, j,k)

∝ θ0(Xi, j,k,Ai, j,k)+ ∑
(i′, j′,k′)∈Ni, j,k

θ1(Xi, j,k,Xi′, j′,k′)+C, (4.3)

θ0
(
Xi, j,k,Ai, j,k

)
=

(Ai, j,k −µn)
2

σ2
n

, (4.4)

where θ0 is the 0th-order neighboring potential [74] (also known as the data cost function)

that relates Xi, j,k to the observed velocity data Ai, j,k. µn and σ2
n are the mean and variance,

respectively, of all pixels with the same cluster label n = Xi, j,k. It promotes that continuous

velocity values AAA sharing pixels with the same discrete label XXX follow the same Gaussian

distribution.

θ1
(
Xi, j,k,Xi′, j′,k′

)
= 1−δ (Xi, j,k,Xi′, j′,k′) =

 0 for Xi, j,k = Xi′, j′,k′

1 otherwise
(4.5)

is the 1st-order neighboring potential [74] (or the smoothness cost function), where δ is the

Dirac delta function, that relates Xi, j,k to the 1st-order neighboring variable Xi′, j′,k′ (see Fig. 4.4).

This function encourages the neighboring pixels to share the same discrete label Xi, j,k, promoting

the model’s local smoothness.

The performance of standard or potential function-based MRF schemes can be limited

when dealing with complex geological structures ([90]). Assigning different neighboring pixels

with various importance weights based on anisotropy patterns can effectively remove the non-

uniform direction-dependent features of the model gradients, leading to improved inversion

results, especially relevant for real, complex geological structures.
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The objective function for the MAP problem of Xi, j,k becomes

X∗
i, j,k =argmax

XXX i, j,k
p(Xi, j,k | Ai, j) = arg min

XXX i, j,k
ω

0
i, j,kθ0(Xi, j,k,Ai, j,k)

+ ∑
(i′, j′,k′)∈Ni, j,k

ω
1
i′, j′,k′θ1(Xi, j,k,Xi′, j′,k′)+C, (4.6)

where ωi, j,k and ωi′, j′,k′ are the weights which balance the anisotropic characteristics. These

weights are typically set to uniform default values, given by the number of pixels in the local

neighborhood, here ω0
i, j,k = 1/1 and ω1

i′, j′,k′ = 1/6. This implies an equal contribution from each

neighboring pixel.
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(b)  

(a)  

Figure 4.3. (a) In a 2D graphical model, each pixel has a continuous velocity Ai, j and a discrete
label mask Xi, j. The objective function has two parts: (1) the data cost θ0 (0th-order neighboring
potential) that forces a pixel to have a Ai, j specified by the Gaussian distribution of its label
Xi, j, and (2) the smoothness cost θ1 (1st-order neighboring potential) that promotes smoothness
among neighboring labels [7]. (b) For a 3D graphical model, the framework closely aligns with
2D (a). The 3D model encompasses 6 adjacent nodes (while in 2D, it has 4 nodes).
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     (a)   

     (b)   

Figure 4.4. (a) Neighborhood system Ni, j (marked in gray/black) of the given center node (i, j)
(marked in black) in a 2D graphical model. The 1st- and 2nd- neighborhood systems of node
(i, j), marked with numbers 1 and 2, are represented as N 1

i, j and N 2
i, j, respectively. Number 0

denotes the center pixel. (b) 3D graphical model similar to (a), where 0, 1, and 2 denote the
center pixel and the 1st-, and 2nd- neighborhood systems, respectively.
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4.4.1 MCMC and Gibbs Sampling

Markov Chain Monte Carlo (MCMC) is a statistical method used to sample probability

distributions [76, 77]. Gibbs sampling is a specific MCMC algorithm that can be used to

iteratively sample a multivariate probability distribution from the conditional distributions of

each variable given the current values of the other variables [78]. Combining MCMC with Gibbs

sampling enables estimating complex probability distributions without explicit knowledge of the

distribution.

We employ the MCMC method with Gibbs sampling to solve Eq. (3.13). Gibbs sampling

generates a new sample of Xi, j,k directly from its distribution conditioned on the labels of its

neighbors Xi′, j′,k′ and Ai, j,k. In the MRF structure, the update is achieved by calculating the

probability for each of the possible labels (here, n ∈ {1, · · · ,6}) at (i, j,k) using Eq. (4.6) and

randomly selecting from this distribution (refer to Fig. 4.5).

The velocity map AAA is initialized with the superimposed HR and LR velocity maps, see

Fig. 4.1 (a) and (b), and the label map XXX is initialized with a Gaussian mixture model clustering

with the total cluster number N (here, 6), similar to Fig. 4.7 (a2, b2). All velocities with the label

n follow the same Gaussian distribution N(µn,σ
2
n ). We then apply the expectation–maximization

(EM) algorithm [79], an iterative method to find the MAP estimates of the parameters, which

updates the Gaussian parameters µn and σ2
n . The termination criterion is either reaching a

predefined maximum number of iterations (here 10,000) or observing that the cumulative

absolute difference across all pixels between consecutive iterations falls below an error threshold,

whichever is achieved first. The algorithm is summarized in Table 4.1.

Summarizing the algorithm from an intuitive perspective, our PGM adjusts each point

in the grid-based method, not only on the point itself as in many conventional approaches, but

also on the values of the surrounding points. The model processes each pixel, adjusting its

values to align more closely with its neighbors, resulting in smoother and more consistent results.

Our approach is analogous to a diffusion process, similar to introducing ink into clear water,
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where the resulting patterns gradually spread throughout the entire system. In the context of

image processing, the algorithm methodically traverses each pixel, recalibrating its coloration to

achieve harmonious alignment with nearby pixels. This paradigm enhances overall smoothness

and significantly reduces aberrations, thereby increasing the consistency of the entire model.

Table 4.1. Algorithm for 3D multiresolution velocity model fusion.

Algorithm 1 MCMC Method for MRF

1. Input: AAALR and AAAHR

2. Initialize velocity AAA by superimposing AAAHR over AAALR

Initialize XXX , µn and σn with GMM clustering
3. for each EM iteration do
4. Construct PGM
5. for t = 1 to max iteration T do
6. (E-Step) Gibbs Sampling
7. for pixel (i, j,k) = (1,1,1) to the max index (I,J,K) do
8. X (t+1)

i, j,k ∼ P
(
Xi, j,k |X

(t+1)
1,1,1 , . . . ,X (t+1)

i, j,k−1,A
(t)
i, j,k,X

(t)
i, j,k+1, . . . ,X

(t)
I,J,K

)
9. end for
10. for pixel (i, j,k) = (1,1,1) to the max index (I,J,K) do
11. Ai, j,k ∼ ∑

6
n=1 P(Xi, j,k = n)N(µn,σ

2
n )

12. end for
13. (M-Step) Update Gaussian parameters µn and σ2

n

with sample means and variances of AAA(t+1).
14. end for
15. end for
15. return XXX ,AAA (for each pixel)

Table 4.2. Model Coverage Range and Dimensions. Range indicates the physical coverage of
the models, and Dimension denotes the number of pixels used for computation. ‘LR’, ‘HR’, and
‘Fused’ denote the low-resolution, high-resolution, and fused models, respectively.

LR HR Fused
Range (km) Dimension Range (km) Dimension Range (km) Dimension

2D Checkerboard 100×100 40×40 40×40 40×40 100×100 100×100
2D Ridgecrest 100×100 50×50 58×64 192×224 100×100 330×350
3D Ridgecrest 100×100×5 50×50×11 54×60×5 108×120×21 100×100×5 200×200×21
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Figure 4.5. Pipeline of the iterative update policy for both pixel labels (discrete class labels) and
pixel values (continuous velocity values).
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4.5 Experiments

An aggressive smoothing policy removes sharp boundaries, while potentially important

details are lost. On the other hand, gentle smoothing preserves details but leaves behind artificial

boundaries between the LR and HR models. It is essential to achieve a trade-off between the two

cases, this is the aim of PGM. To quantify this trade-off between presenting detailed information

and minimizing artifacts we use the travel time between the stations and their residuals at 36

synthetic sensors (red Xs, 10 on each edge, see Fig. 1d on the border between the LR and HR

areas). These residuals are then used to evaluate how much detailed information is preserved in

the fused velocity model, compared to the HR maps.

4.5.1 Checkerboard Model

We used a 2D square checkerboard model with 100x100 pixels, each with 10 small

squares along each edge, and each small square measuring 10x10 pixels in size. The pattern on

the board alternates circular high- and low-velocity pixels in each small square.

4.5.2 Ridgecrest Fault Zone Model

To demonstrate the efficacy of the proposed PGM, we compare its performance with

commonly used conventional methods (e.g., Gaussian filter and cosine taper window) on both

the synthetic checkerboard model and the real-data Ridgecrest model. We have selected the

high-resolution model of the Ridgecrest, CA, region obtained by ambient noise tomography to

test the efficacy of our proposed PGM. The Ridgecrest fault zone image consists of a shallow

(representing a depth of approximately 0.5 km) high-resolution Rayleigh wave model (Zhou et

al., 2022), from which the S-wave velocity is roughly approximated by dividing by 0.9. This

model reveals a 3D flower-shaped low-velocity zone surrounding the M7.1 and M6.4 earthquakes

that ruptured in the 2019 Ridgecrest sequence. Te-Yang et al. [40] showed that including the

fault zone model into the SCEC CVM-S V4.26M01 significantly improves the fit of simulations
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to strong motion data from the M7.1 Ridgecrest earthquake, including at stations more than 200

km away in Los Angeles. The improvement in the fit to the data resulted from generating Love

waves more accurately at the boundaries of the low-velocity zone around the faults, compared

to the low-resolution model that lacked the fault zone model. Inspired by [40], who used the

cosine-window taper fusion method by Ajala et al. [41], we compare the efficacy of our proposed

PGM with other existing methods.

4.5.3 Comparison Methods

To evaluate the efficacy, a comparative evaluation was conducted, encompassing an array

of smoothing techniques — Gaussian Smoothing Filter (GF) and Cosine Taper Smoothing (CT)

— with machine learning-based approaches, Dictionary Learning (DL) and the newly proposed

Probability Graphical Model (PGM). The GF and CT methods rely on predetermined parameters

fixing the smoothing kernels, whereas DL and PGM feature adaptable parameters that optimize

based on the data, suggesting a potential for enhanced adaptability.

The GF is a technique for noise reduction and data smoothing, utilizing a Gaussian kernel

to weight data points by their distance from a central point [85]. The kernel size and standard

deviation of the kernel control the level of smoothness, affecting the width and resolution of the

curve. Specifically, the 1D GF kernel function is expressed as follows:

wg(i) = exp

(
−
|i− L

2 |
2

2σ2

)
, (4.7)

where i and L denote the indices of the current position and the length of the kernel size,

respectively, and σ represents the kernel’s shape parameter, influencing the kernel’s steepness.

CT smoothing reduces sharp patterns by applying a windowing function that reduces

the amplitude in the boundary area, preserving the central portion [41, 86]. The cosine function

shapes this taper, enhancing signal-to-noise ratio and retaining the characteristics of the original
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models. A conventional 1D L-point CT window is defined by:

wc(i) =



1
2

{
1+ cos

(2π

r [ i
L −

r
2 ]
)}

, 0 ≤ i
L < r

2

1, r
2 ≤ i

L < 1− r
2

1
2

{
1+ cos

(2π

r [ i
L −1+ r

2 ]
)}

, 1− r
2 ≤ i

L ≤ 1

(4.8)

where i denotes the index within an L-point vector, and r signifies the fraction of the total window

length occupied by the CT section, where r ranges from 0–1.

The combined velocity model AAA can be calculated as

AAA(i) = wc(i)AAAHR(i)+(1−wc(i))AAALR(i), (4.9)

where AAAHR and AAALR denote the high- and low-resolution velocity models. In the integration of

methodologies employing fixed kernels, such as GF and CT, it is feasible to construct 2D and

3D kernels through the convolution of 1D kernels oriented in various directions. This process

is accompanied by a normalization step, ensuring that the sum of all elements within the new

kernel is equivalent to 1.

Dictionary learning eliminates Unaligned motifs and smooths the boundary areas by

representing data as a sparse combination of learned basis vectors, or atoms, from the data

itself. This iterative process, known as dictionary learning, aims to minimize the representation

error [48, Eq. (12)]. The technique transforms data into a sparse format, which helps eliminate

misaligned patterns while retaining essential features.

4.5.4 Optimal Parameter Selection

The number of clusters in Gaussian mixture model (GMM) clustering significantly

impacts the results. Generally, the number of clusters can influence the complexity of the model

and the interpretability of the results. More clusters result in a more complex model, which can
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better capture intricate data structures and lead to more detailed insights into the data. However,

it also increases the risk of overfitting.

Selecting the optimal number of clusters is crucial in GMM and other clustering tech-

niques. Several methods can help determine an appropriate number of clusters, such as the

Bayesian Information Criterion (BIC), and the silhouette score [91]. These methods balance the

trade-off between the goodness of fit and the complexity of the model. In this experiment, we

tested and compared the cluster number sequences N = 3,5,6,7,9, which are commonly used

in practical applications of MRFs. Figure 4.6 (a) shows that the larger the number of clusters,

the more detailed information is preserved in the HR models, and the larger the computation

is required, implying a trade-off between computational cost and performance. Figure 4.6(b)

demonstrates the number of clusters versus RMSE (root mean square error), which is defined as

RMSE =

√
∑

Nt
i=1(ti − t̂i)

Nt
, (4.10)

where Nt is the total number of ray paths, and ti and t̂i are the posterior and prior travel times (left

vertical axis). The right vertical axis shows the computation time for the Ridgecrest test. RMSE

decreases when the cluster number increases from 3–6, with a small decrease for larger clusters,

and there is a rapid growth in run time for cluster numbers exceeding 6. For these reasons, we

choose the cluster number as 6.

4.5.5 2D Performance

We demonstrate the fusion for the checkerboard and Ridgecrest velocity models described

above, in both cases with directly superimposed HR and LR components, in Fig. 4.7 (a1, b1),

both with an HR region in the center, surrounded by LR velocities. The dimensions of the models

are summarized in Table 4.2.

Figure 4.7 (a2, b2) shows the checkerboard and Ridgecrest model station settings along

with the ray-path density. For the checkerboard model, the stations are evenly distributed,
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whereas the stations for the Ridgecrest model are highly irregular, reflecting the pattern used by

Zhou et al. [64]. Fig. 4.7 (a3, b3) shows the label mask maps generated in the final iteration of

the PGMs. In these maps, pixels sharing the same label suggest that the corresponding areas

may exhibit comparable velocity patterns, implying that they are likely sampled from a similar

distribution. In 2D experiments, we empirically selected the Gaussian filter kernel size as (5,5)

for south-north and west-east directions and the σ value as 1.5 [92, Chapter 6.9]. As for cosine-

taper smoothing, we designed two 1D cosine-taper windows with parameters L and r (in Eq. 4.8)

for analyzing south-north and west-east directions set to (40,40) and (0.5,0.5), respectively,

in a checkerboard pattern, and (50,50) and (0.75,0.75), respectively, for the 2D Ridgecrest

model. This design involved convolving two 1D windows to formulate a 2D Cosine-Taper

window. The selection of the cosine-taper ratio parameter r was based on achieving the lowest

RMSE among all tested combinations {(0.25,0.25),(0.5,0.5),(0.75,0.75)}. The setting of the

dictionary learning adheres closely to the methodology described by Yang et al. [80], with the

only modification being the adjustment of the kernel size to 7×7. The smoothed fusion results

are summarized in Fig. 4.7 (a4-a6) and (b4-b6).

The outcomes suggest that the learning-based methods, e.g. DL and PGM, demonstrate

the capacity to retain detailed information in comparison to the application of the direct Gaussian

filter and cosine-taper smoothing. This enhanced performance is attributed to the adaptive

nature of these learning methods in determining the optimal fusion parameters for accurate data

representation. Conversely, Gaussian smoothing and cosine taper use a fixed kernel to blend

neighboring pixels, which does not allow for such adaptive optimization and may lead to a less

detailed final output.

We evaluate the efficacy of our model fusion with multiple metrics: travel time (RMSE,

which measures the travel time deviations [23], calculated based on the observations from actual

seismic stations in Fig. 4.7), naturalness image quality evaluator, NIQE, a commonly-used

measurement for image quality [81], peak signal-to-noise ratio, PSNR, measuring the sharpness

of images [82], and the Fréchet inception distance, FID, capturing similarities between the
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original and fused models [83]) in Table 4.3. In the checkerboard test, due to the simplicity of

the pattern and the uniform distribution of stations, all learning methods exhibit a comparable

performance. In contrast, for the more complex and realistic Ridgecrest model, the PGMs

outperform the DL model, as the latter is sensitive to the orientation of the patches while the

graphical models are rotationally invariant.

Geological formations are often anisotropic, meaning that their properties vary depending

on the direction in which they are measured, e.g., laterally continuous and vertically stratified.

Standard Markov random field (MRF) schemes, which assume homogeneous properties (same

properties in all directions), can lead to errors when applied to such formations. PGMs, on

the other hand, consider the anisotropic nature of geological formations, generally leading to

more accurate results. Seismic inversion is an ill-posed problem, meaning that it does not have

a unique solution, and small changes in the input can lead to large changes in the output. In

such cases, regularization is a technique used to stabilize the solution. Our PGM provides an

edge-preserving regularization based on the information from neighboring pixels, effectively

reconstructing subsurface models.
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Figure 4.6. (a) Comparison of the fusion results using cluster numbers n= 3, 5, 6, 7, and 9.
(left) fused velocity model and (right) cluster distribution. (b) The number of clusters versus
RMSE error (left vertical axis, corresponding to the solid line) and run time (right vertical axis,
corresponding to the dashed line) for the Ridgecrest model. Generally, the larger the cluster
number, the smaller the RMSE error with a longer run time.
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(b) 

Figure 4.6. (a) Comparison of the fusion results using cluster numbers n= 3, 5, 6, 7, and 9.
(left) fused velocity model and (right) cluster distribution. (b) The number of clusters versus
RMSE error (left vertical axis, corresponding to the solid line) and run time (right vertical axis,
corresponding to the dashed line) for the Ridgecrest model. Generally, the larger the cluster
number, the smaller the RMSE error with a longer run time (Continued).
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Figure 4.7. (top 2 rows) Checkerboard and (bottom 2 rows) Ridgecrest models. (1) Superimposed
HR and LR models. (2) Station location and ray density. (3) 6-class label mask maps for HR
models (pixels with the same label are learned together). (4) Smoothing results with a 5×5
Gaussian filter (GF). (5) and (6) Fusion results with dictionary learning (DL) and with our PGM,
respectively.
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4.5.6 3D Ridgecrest Model Fusion Comparison

To assess the proficiency of the PGM fusion approach, we have expanded our method-

ological framework to the integration of 3D models. Analogous to the 2D fusion experiments,

the S-wave velocity model was extracted from the top 5 km around the 2019 Ridgecrest, CA,

earthquake sequence, from the SCEC CVM-S4.26, serving as the LR model, while the 3D

S-wave velocity model derived from surface wave dispersion inversion by [64] represents the

HR model. Both LR and HR models were interpolated into horizontal slices with 100× 100

pixels for each specified depth and resampled to a depth resolution of 250 meters.

In Fig. 4.8, the LR CVM-S4.26 model centered on the Ridgecrest domain is shown in

panel (a), while panel (b) depicts the model obtained by directly incorporating the HR model

(from surface wave dispersion inversion in [64]) into the LR matrix. We employ the cosine-taper

smoothing technique and 3D dictionary learning (with kernel size 7× 7× 5) as benchmark

methodologies. Similar to the 2D experiments, we define three 1D cosine-taper windows (see

Eq. (4.8)) with lengths L (108,120,21) along south-north, west-east, and depth, respectively,

and convolved the three 1D windows to generate a 3D cosine-taper window. The lowest RMSE

was found for cosine ratios r of 0.75 along south-north (from test values 0.25, 0.5, and 0.75),

0.75 along west-east (from test values 0.25, 0.5, and 0.75), and 0.9 along depth (from test values

0.1, 0.3, 0.5, 0.7, and 0.9), respectively. The resultant fusion models via benchmark methods

and PGM are shown in Fig. 4.8 panels (c)-(e), respectively. The cosine taper functions operate

exclusively in the regions that overlap in the HR and LR data. For this reason, when there is a

significant mismatch in the boundary areas, the cosine-taper smoothing may not fully correct

misaligned patterns (Fig. 4.8(c)). However, the machine learning-based methods (dictionary

learning and PGM) operate both at overlapping regions and areas with only LR information,

which enhances their effectiveness in successfully aligning unmatched patterns from both sides.

Note that the 3D PGM retains enhanced details from the HR models compared to the 3D

dictionary learning procedure.
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To quantify the performance in 3D, evaluation points were defined between the LR and

HR models at each depth level (similar to 4.1d in the 2D case), where the travel times were

computed before and after the fusion methodologies were applied on the HR and LR directly-

superimposed model. Using the travel time preceding the fusion as a reference, we calculated

the RMSEs corresponding to the post-fusion travel time deviation. The calculated RMSEs of

travel time deviation for cosine taper smoothing, 3D dictionary learning fusion, and our 3D PGM

for depths from the surface to 5 km are listed in Table 4.4 (with the evaluation points shown in

Fig. 4.1). For the 2D fusion case, the RMSE from dictionary learning and PGM surpass those

obtained through cosine taper smoothing. Our 3D PGM approach yields the best improvement,

with an average 44% reduction in travel-time deviation relative to conventional cosine-taper

methods. This indicates a minimal distortion of information from the HR model, as the 3D PGM

preserves data well.

Six dense sensor arrays were deployed across the faults ruptured in the 2019 Ridgecrest

earthquake sequence (see Fig. 4.9, left panel, A1, A2, B1 through B4). Owing to these densely

distributed arrays, we computed surface wave dispersion inversion profiles for station pairs.

Subsequently, we aggregated them to derive HR 2D vertical S-wave velocity models [64], as

illustrated in Fig. 4.9 (top right). These derived models are compared with vertical cross-sections

extracted from 3D models and combined with the LR background model (from the SCEC

CVM-4.26) through various fusion methodologies. For instance, the B2 and B4 array panels

(Fig. 4.9c, d) depict the 2D cross-sections extracted from the 3D DL fusion model and the 3D

PGM. The performance of our 3D PGM approach is evident in its ability to define and preserve

the accuracy of the boundary of the low-velocity zone more precisely. This improved accuracy

can be attributed to the PGM’s strategy of assigning differential weights to edges, which are

oriented in various directions. In contrast, the efficacy of 3D DL is somewhat limited due to its

inherent rotational invariance and the constraints imposed by a fixed patch dimension.
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Table 4.3. 2D Evaluation Results. Evaluation metrics are root-mean-square error (RMSE)
of the travel time deviation (with unit s), naturalness image quality evaluator (NIQE), peak
signal-to-noise ratio (PSNR), and Fréchet inception distance (FID). ↓ indicates smaller is better,
and ↑ opposite. GF: Gaussian filtering; CT: cosine tapering; DL: dictionary learning; PGM:
probability graph model.

RMSE/s↓ NIQE↓ PSNR/dB↑ FID↓
Checkerboard GF 1.65 7.68 14.58 45.75

” CT 1.32 5.87 15.27 36.49
” DL 1.18 5.44 15.70 33.85
” PGM 1.14 5.40 16.14 32.49

Ridgecrest GF 3.52 12.41 21.80 61.39
” CT 3.14 8.73 22.07 56.97
” DL 2.61 7.29 22.36 54.25
” PGM 2.27 6.70 23.04 47.49

Table 4.4. 3D Evaluation Results. Evaluation metric is the root-mean-square error (RMSE)
of the travel time deviations (with unit s). CT: cosine taper; DL: dictionary learning; PGM:
probability graph method.

Depth CT DL PGM
0 km 1.67 1.57 0.86
1 km 1.52 1.39 0.73
2 km 1.73 1.38 1.04
3 km 1.58 1.53 0.96
4 km 1.57 1.62 1.13
5 km 1.79 1.43 1.04
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Depth (a) (b) (c) (d) (e) 

Figure 4.8. (a) The LR model extracted from CVM-S4.26 around the Ridgecrest area. (b) Direct
superposition of the 3D HR surface wave dispersion inversion model and CVM LR models for
the Ridgecrest area. (c-e) Combined LR and HR models, smoothed by (c) cosine-taper function,
(d) dictionary learning, and (e) PGM.
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Figure 4.9. (a) Station locations (triangles) and main faults (lines) surrounding the Ridgecrest
area. There are six dense sensor arrays across the main faults (A1-2 and B1-4). (b) Vertical
cross-sections of the shear wave velocity along the B1-4 station arrays from (top) surface wave
dispersion inversion, (center) the 3D fusion model from dictionary learning, and (bottom) the
PGM.
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4.6 Conclusions

We present a method for combining multiresolution seismic velocity maps usingPGMs.

The performance of the PGM algorithm is evaluated through experiments, using both a checker-

board model and a complex fault zone model around the 2019 Ridgecrest earthquake sequence.

The checkerboard model is characterized by inherent simplicity and uniform station distribution,

the evaluation demonstrates that the PGM approach outperforms all tested established baseline

techniques. The PGM outperformed traditional methods, potentially as a result of adaptive

parameter learning. In the context of the Ridgecrest model, the PGM technique produces a

44% reduction in the computed travel-time residuals versus the conventional Gaussian and

cosine-taper smoothing methods in 3D exploration models. This is due to the limitations of tradi-

tional methods in addressing anisotropic patterns, in contrast to the PGM which learns weights

consistent with the complex structure of the Ridgecrest model. In summary, the PGM approach

effectively minimizes the undesired sharp discontinuities often observed between LR and HR

models, while preserving detailed information inherent in the HR models. A prospective area

of investigation in future work involves addressing the challenge of irregular model resolution

within the HR domain, which is crucial for enhancing the fidelity and applicability of our models

and potentially improves the understanding and application in various real-world models. Finally,

we recommend that the efficacy of the PGM be tested directly through a comparison of synthetic

and observed waveforms.
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Chapter 5

Mixture of Expert Models for Enhanced
Predictive Analytics in Fiber Health Moni-
toring

5.1 Introduction

Monitoring blood pressure, an indicator of cardiovascular health, is crucial for managing

hypertension and enhancing healthcare efficiency. Traditional methods often rely on cumbersome

inflatable cuffs and electronic monitors, which, while widespread, can be influenced by the

cuff’s presence [93]. Innovations in medical IoT, such as cuffless measurement techniques using

wearable sensors like e-skin [94], electrocardiography (ECG) [95], and photoplethysmography

(PPG) [96, 97], offer more seamless solutions. However, these technologies face challenges

including susceptibility to electromagnetic interference, high power demands, and sensitivity to

individual differences (e.g., skin conditions and body shapes), which can limit their effectiveness

in complex scenarios [98].

Traditional monitoring techniques depend on single predictive models, which might not

capture the complex behaviors and failure mechanisms. Mixture of Experts (MoE) models offers

a solution by integrating multiple specialized expert systems. These models utilize a gating

mechanism to dynamically select the most relevant expert based on input features, enhancing

the understanding and prediction of different failure modes [99, 100]. We apply MoE models
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to fiber health monitoring, potentially improving the accuracy and robustness of predictions

compared to traditional methods, and offering a more comprehensive analysis of the health status

of fiber-reinforced composites, thereby enhancing predictive performance and adaptability [101].

The in-fiber modal interferometer-based sensor was recently enhanced by a fiber optic

micro-cavity sensor with increased sensitivity and compactness, enabling continuous blood

pressure monitoring [102, 103]. We have developed a system that uses a flexible fiber optic

sensor with a micro-open cavity Mach-Zehnder interferometer (MZI) [104] to capture the pulse

waveform from the radial artery at the wrist accurately. This system is paired with a cloud-

deployed machine learning model that processes denoised pulse features and wave signals,

considering the user’s physical characteristics to provide accurate blood pressure readings and

real-time feedback. Combining with MoE learning models, our IoT system offers an accurate

and adaptable solution for continuous blood pressure monitoring.
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Figure 5.1. (a) Schematic of the IoT blood pressure monitoring system, and (b) dynamic blood
pressure measurement data of one participant, demonstrating a calm–active–recovery–calm
cycle.

5.2 Data Collection and Feature Extraction

Fig. 5.1(a) shows the architecture of our IoT-based blood pressure monitoring system.

At the heart of the system lies the tw-MOC fiber optic sensor, which is optically linked to a

control source. This control source, powered by an Espressif Systems ESP32 microcontroller

[18], integrates a laser diode for signal emission, a photodetection module for signal reception,

and a WiFi module for wireless communication. The WiFi module is essential for the seamless

transmission of data to the cloud, where a sophisticated machine-learning model processes the

incoming signals for blood pressure estimation. The processed results are transmitted back to a

local display terminal, enabling continuous real-time monitoring and analysis of the patient’s

cardiovascular health.

To validate the effectiveness, we extended its application to assess dynamic blood pressure

in active scenarios, including exercise. A total of 17 healthy volunteers were monitored through

phases of rest, three minutes of stationary cycling, and recovery, with results segmented into calm,
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active, recovery, and calm phases (Fig. 5.1(b)). The sensor maintained accurate pulse waveform

readings without distortion throughout the test, showcasing its effectiveness for real-time blood

pressure monitoring under varying usage scenarios. A dataset of approximately 60,000 real

samples is used to train and evaluate our blood pressure prediction model.

The raw pulse data captured by the sensor undergoes conversion via a photo-predictor

and is transmitted to the cloud through WiFi, where it is preprocessed and features are extracted

before entering the blood pressure estimation model. Signal preprocessing includes using a

wavelet transform (5-level decomposition with the Symlet-7 wavelet function [105]) to eliminate

baseline drift (affected by temperature and the movement of the wearable device) and high-

frequency noise above 15 Hz [106], effectively isolating the signal’s main characteristics and

normalizing it (Fig. 5.2(b)). The processed wave signal is then subjected to feature extraction to

obtain some commonly used features for blood pressure prediction [107] (Fig. 5.2(c)). These

three features are concatenated and input into the blood pressure estimation model (Fig. 5.3).
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5.3 MoE Methodology

We proposed the methodology employed in integrating Mixture of Experts (MoE) models

for enhanced predictive analytics in fiber health monitoring. We specifically focus on the dense

[108] and sparse [109] MoE configurations to leverage their distinct capabilities in managing

complex data characteristics associated with fiber composites.

5.3.1 Dense MoE Models

Given an input signal x, our model consists a set of MMM predictors { f1, . . . , fM} and a linear

gating network h. Denote the parameters of the gating network as ΘΘΘ = [θθθ 111, . . . ,θθθ MMM] ∈ Rd×M,

the output of the gating network is h(xxx;ΘΘΘ), where d is the dimension of the embedded features

of x [15]. Denote the output of the m-th predictor as fm(xxx;WWW ) with input x and parameter WWW .

The route gate value for mth predictor is:

πm(xxx;ΘΘΘ) =
exp(hm(xxx;ΘΘΘ))

∑
M
m′=1 exp(hm′(xxx;ΘΘΘ))

,∀m ∈ [M], (5.1)

and the output of MoE is given by:

F(xxx;ΘΘΘ,WWW ) = ∑m∈M πm(xxx;ΘΘΘ) fm(xxx;WWW ). (5.2)

This methodology ensures each aspect of the input data is thoroughly analyzed by every

expert, making dense MoE models effective in scenarios where comprehensive data integration

is crucial for accurate predictions [108].

5.3.2 Sparse MoE Models

Conversely, sparse MoE models activate only a subset of experts based on the input

characteristics, significantly reducing computational overhead while still maintaining robust

prediction capabilities [110]. The sparse MoE layer selects the top-k experts for activation,
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defined as:

π(x;Θ)i = softmax(TopK(g(x;Θ)+Rnoise,k))i, (5.3)

where the TopK operation retains only the top-k gating values, setting others to −∞, which after

softmax, effectively zeroes them. The noise term Rnoise is introduced to promote diversity and

stability within the training process.

Integration of sparse MoE into predictive analytics for fiber health monitoring allows

for efficient resource allocation, focusing computational efforts on the most relevant experts per

input instance. This approach is particularly beneficial in real-time monitoring scenarios, where

computational efficiency is as critical as predictive accuracy.

5.3.3 Model Implementation

To develop a method adapted to different predictors, we adopt a two-stage training

strategy. First, we train predictors separately on each corpus. For the m-th predictor, the

corresponding loss is

lm =−
C

∑
c=1

log
exp( fm,c(x;W))

∑
C
c′=1 exp( fm,c′(x;W))

yn,c,

Lm =
1
N

N

∑
n=1

lm,

(5.4)

where C denotes the maximum number of variables that need to be predicted, N denotes the

number of samples, and yn,c denotes the target value of n-th sample on c-th variable. In this

stage, the parameters ΘΘΘ of the gating network are frozen.

Both dense and sparse MoE models are integrated into a unified framework as shown in

Fig. 5.3 (b). This framework includes the dynamic selection parameter W, which assesses the

reliability of each expert model based on the complexity of the input data and the performance of

each expert. This hybrid method optimizes performance across various expert models, enhancing

the adaptability and robustness of the system for diverse data types in fiber health monitoring.
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5.4 Experiments

The complexity of physiological factors and the multidimensional nature of pulse wave-

forms often challenge the efficacy of traditional linear methods in accurately predicting blood

pressure – systolic blood pressure (SBP) and diastolic blood pressure (DBP) [111]. In response,

we have developed a deep learning approach that models input features more effectively, accom-

modating individual variances and enhancing prediction accuracy. Our advanced hybrid model

combines Convolutional Neural Networks (CNNs) [112], Long Short-Term Memory (LSTM)

networks [113], and MoE Gating Networks. This integration allows for the processing of a

diverse array of inputs, including normalized pulse signal, personal characteristics (PC) (e.g.,

age, height, body mass index (BMI), and sleep duration), and detailed pulse waveform features.

We aimed to evaluate how MoE models can adaptively assign weights, reflecting the

confidence in each expert model. We selected 10,000 samples from participants aged 18-22,

whose pulse signal patterns are simpler and clearer, and followed the conventional approach

(Fig. 5.3 (b)), testing both dense and sparse MoE configurations. We found that the dense

MoE model, which adaptively combines features from models with one to five CNN blocks,

outperforms any single-branch CNN-block model. We selected a sparsity factor k = 4 using

5-fold cross-validation. The sparse MoE model assigned a weight of zero to the branch with five

CNN blocks, aligning with the findings from conventional model selection, and demonstrating

the best prediction errors and standard deviation.

We then fixed the weight for the CNN blocks 1 to 2 branch model, which was pre-trained

on data from young individuals, and integrated a model [114] pre-trained on mid-aged samples.

Additionally, we considered conventional PPG+ECG methods in our comparative experiments.

All models were evaluated using 60,000 samples collected from participants aged 18 to 45. The

results, presented in Table 2, indicate that models trained solely on young or mid-aged samples

performed poorly as they lacked information across all age groups. The conventional methods

demonstrated some robustness. Overall, our MoE-based method was able to adaptively assign
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Table 5.1. Performance Comparison: Baseline vs. Proposed MoE Method [Mean Error (ME) ±
Standard Deviation (STD)].

The number of
CNN blocks

SBP(mmHg) DBP(mmHg)
ME±STD ME±STD

1 1.84±2.01 −1.37±1.69
2 0.28±1.97 −0.06±1.45
3 1.07±2.26 −1.95±1.74
4 −1.38±2.51 −0.54±1.85
5 −2.72±2.83 −2.96±2.33

Dense MoE 1–5 0.25±1.81 0.05±1.37
Sparse MoE 1–5 0.23±1.74 0.05±1.32

Table 5.2. Performance Comparison: Baseline vs. Proposed MoE Method [Mean Error (ME) ±
Standard Deviation (STD)].

Prediction Models SBP(mmHg) DBP(mmHg)
ME±STD ME±STD

PPG and ECG 1.75±3.64 −1.93±3.69
CNN Blocks 1-2 3.48±4.16 −4.69±3.52

Pre-trained CNN (PTCNN) [114] −3.75±5.49 4.14±4.68
Dense MoE 1–5 + PTCNN 0.74±2.81 0.95±2.37
Sparse MoE 1–5 + PTCNN 0.87±1.84 0.76±2.13
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weights to different models and achieve superior overall performance.

5.5 Conclusions

This paper presents a robust medical IoT system for human blood pressure monitoring,

featuring a novel, highly flexible fiber optic sensor designed for precision and durability. Located

in the cloud, our CNN-LSTM-MoE-based model processes multimodal pulse data to deliver

accurate blood pressure readings, minimizing computational load on wearable devices. This

system effectively handles simultaneous real-time monitoring of multiple subjects, demonstrating

significant potential for advanced healthcare applications.
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Figure 5.2. (a) A flowchart depicting the process of data processing and feature extraction.
The normalized pulse wave signals are concatenated with pulse wave features and personal
characteristic features. (b) Real data processing scenario using a segment of actual signals as an
example; (c) Typical pulse wave features extracted from the normalized signals.
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Figure 5.3. (a) The conventional approach to determining the optimal number of CNN blocks in
the CNN-LSTM module involves using only wave signals as inputs to the hybrid mode. Each
CNN-LSTM module operates independently and its performance is evaluated manually. (b)
MoE gating networks are introduced to automatically assign a weight (confidence score) to each
module, culminating in a single prediction. Here,

⊗
represents multiplication, and

⊕
indicates

the summing operation.
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Chapter 6

Conclusion

In this dissertation, our studies collectively represent significant advancements in the

fields of seismic velocity modeling, fault zone imaging, and data fusion. Each contributes

unique insights and methodologies aimed at improving our understanding and modeling of

Earth’s subsurface, with applications that extend from seismic hazard assessment to broader

geophysical analyses. Together, they highlight the importance of integrating high-resolution data

with large-scale models, addressing challenges such as irregular spatial resolutions, anisotropy,

and the need for computationally efficient approaches.

The first study focuses on high-resolution imaging of fault zones, particularly the Ridge-

crest fault system, revealing detailed low-velocity zones and their spatial characteristics. By

integrating advanced imaging techniques, it not only improves the understanding of fault damage

zones but also underscores the need to study their long-term evolution and implications for

seismic hazards. The findings pave the way for future research to validate these models through

ground motion simulations and extend the methodology to other fault systems worldwide.

The second and third papers emphasize the critical need for effective data fusion tech-

niques to combine multiresolution seismic velocity models. The proposed Probability Graphical

Models (PGMs) and graph-learning approaches offer powerful tools to address the challenges of

integrating high-resolution (HR) and low-resolution (LR) data, reducing sharp discontinuities

and preserving essential details. These methods have demonstrated substantial improvements
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in travel-time residuals and have shown potential for broader applications, including real-time

model updates and extension to diverse geophysical data types. Future work will focus on

refining these models further, improving their computational efficiency, and validating them with

observed seismic data.

In conclusion, these studies collectively advance the state of the art in geophysical

modeling by addressing key challenges in resolution, data fusion, and computational efficiency.

Their findings underscore the importance of adaptive methodologies that preserve critical details

while ensuring smooth transitions in multiresolution data. By integrating high-resolution models

with larger-scale frameworks, these approaches offer valuable insights into the structure and

dynamics of Earth’s subsurface. Continued research in this direction, including the validation and

application of these models to diverse geological settings, promises to enhance our understanding

of fault zones, seismic hazards, and broader geophysical phenomena.

We summarize the three papers within this dissertation and discuss our future work as

below.

6.1 ANT with Locally Sparse Control Improves the Detailed
Features

This study employs ambient noise tomography (ANT) enhanced with locally sparse

tomography (LST) to provide detailed imaging of low-velocity zones (LVZs) surrounding the

faults of the 2019 Ridgecrest earthquake sequence. The research reveals flower-shaped LVZs up

to 5 km wide and a 40% velocity contrast with the surrounding host rock. These findings strongly

suggest that the LVZs represent fault damage zones resulting from the Ridgecrest earthquakes.

Furthermore, the study identifies LVZs associated with faults that have not experienced

recent activity, indicating the potential for long-lasting damage zones that may persist for

thousands of years. This insight is supported by comparisons to other seismic zones such as

the San Jacinto Fault and Calico Fault. The LST methodology offers improved resolution and
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uncertainty quantification over conventional tomography, highlighting its potential for broader

seismic imaging applications. These results advance the understanding of fault zone structures

and their evolution, which is essential for seismic hazard assessment and improving models of

fault dynamics.

6.2 PGM with Physical Informed Information for 2D and
3D models

Our study presents a novel Probabilistic Graphical Model (PGM) for fusing multiresolu-

tion seismic velocity maps. The approach balances the need to preserve detailed information

in high-resolution (HR) regions while smoothing undesired sharp boundaries between HR and

low-resolution (LR) areas. Tests using both synthetic and real-world data, including a Ridgecrest

fault zone model, demonstrate that PIPGM outperforms conventional methods like Gaussian

kernel smoothing and dictionary learning in reducing travel time residuals and maintaining model

fidelity. By adapting weights based on physical parameters such as ray-path density and gradient

information, the physics-informed PGM achieves a 38% reduction in residuals compared to

Gaussian smoothing in 2D model fusion. The PGM method significantly reduces travel-time

residuals compared to conventional methods like Gaussian smoothing and cosine-taper in 3D

exploration models. Our proposed PGM achieves a 44% reduction in travel-time residuals. The

results highlight the model’s ability to adapt to geological complexities, making it a robust tool

for seismic velocity model integration.

The methodology offers a significant advancement in integrating seismic velocity models

of varying resolutions, paving the way for improved seismic hazard analysis and more accurate

ground motion simulations. Future work includes addressing challenges related to irregular

resolutions in HR domains and validating the approach through comparisons of synthetic and

observed waveforms.
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6.3 Future Work

Future work will be focused on advancing seismic velocity modeling, fault zone imaging,

and data fusion techniques. One major area of focus is enhancing the resolution and adaptability

of models. This includes addressing irregularities in high-resolution domains, developing

methods to improve the spatial resolution of low-velocity zones, and refining the ability to model

anisotropic features in complex geological settings. These advancements would not only improve

the fidelity of seismic models but also ensure their applicability across diverse fault zones and

geological structures globally.

Another significant direction involves validation and integration. Future studies aim

to validate the developed models through comparisons with observed seismic waveforms and

ground motion data, enabling a deeper understanding of the impact of fault damage zones on

seismic wave propagation. Integrating these models with real-time data for dynamic updates

could also provide critical insights for seismic hazard assessment and early warning systems.

Expanding the methodology to broader geophysical contexts, such as gravity or electromagnetic

surveys, could further enhance its utility.

Finally, computational efficiency and scalability present important challenges and op-

portunities. Improving the performance of advanced techniques like Probability Graphical

Models (PGMs) and graph-learning approaches for large-scale 3D models is essential for their

widespread adoption. Additionally, exploring new physics-informed constraints and innovative

regularization methods could help balance detail preservation and smoothness in fused models.

Together, these efforts will advance the field of geophysical modeling, contributing to more

accurate and actionable insights into subsurface structures and seismic hazards.
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