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ABSTRACT
The microfluidic-based, label-free image-guided cell sorter offers a low-cost, high information content, and disposable solution that over-
comes many limitations in conventional cell sorters. However, flow confinement for most microfluidic devices is generally only one-
dimensional using sheath flow. As a result, the equilibrium distribution of cells spreads beyond the focal plane of commonly used Gaussian
laser excitation beams, resulting in a large number of blurred images that hinder subsequent cell sorting based on cell image features. To
address this issue, we present a Bessel–Gaussian beam image-guided cell sorter with an ultra-long depth of focus, enabling focused images
of >85% of passing cells. This system features label-free sorting capabilities based on features extracted from the output temporal waveform
of a photomultiplier tube (PMT) detector. For the sorting of polystyrene beads, SKNO1 leukemia cells, and Scenedesmus green algae, our
results indicate a sorting purity of 97%, 97%, and 98%, respectively, showing that the temporal waveforms from the PMT outputs have strong
correlations with cell image features. These correlations are also confirmed by off-line reconstructed cell images from a temporal–spatial
transformation algorithm tailored to the scanning Bessel–Gaussian beam.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0051354

I. INTRODUCTION

Characterization, classification, and isolation of cell types
among a heterogeneous population based on their stain-free mor-
phological characteristics can yield significant biological insights,
especially when coupled with phenotype–genotype correlations.
Cell classification processes often require both the multiparamet-
ric spatial information of intracellular structures and high data
volume analysis. In recent years, genome sequencing and popula-
tion genomic analysis have had a profound impact in biological
research by enabling high-volume comparative analysis, enabling
new cell type discovery, and uncovering previously unknown cel-
lular heterogeneities.1 This has significantly increased the need for

methods capable of isolating cells of interest in a label-free envi-
ronment to simplify the process flow, reduce cost, minimize cell
disruptions by labeling, and overcome limitations of biomarker
availability and specificity. Conventional methods of cell sort-
ing include optical microscopy,2 deterministic lateral displace-
ment,3 density gradient methods,4 and fluorescence and magnetic-
activated cell sorting (FACS/MACS).5–8 However, these techniques
suffer from some of the following aspects, including lack of
specificity, low throughput, high cell loss, population-based sort-
ing without single cell resolution, and the need for biochemical
labeling.

A significant development in the field of label-free cell sort-
ing is in the invention of an imaging flow cytometer/cell sorter.
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This microfluidic-based technology enables the highly informative
morphological and spatial characterization of intracellular struc-
tures and subsequent sorting of cells of interest at a throughput of
over 200 cells/s.9 Various possible configurations exist, each with
unique characteristics and applications ranging from inexpensive,
custom laboratory tools to precise clinical instruments. Examples of
compatible on-chip cell sorting techniques include surface acoustic
waves (SAWs),10 magnetic forces,11 and dielectrophoretic forces.12

Machine learning,9 artificial intelligence,13 and coupling with down-
stream microarray based systems14 are a natural progression of the
field and have been applied.

Previously, our group developed an image-guided cell sorter
using a fast scanning laser as the excitation source.15 In a sim-
ple microfluidic device suitable for low-cost, disposable applications
that minimizes cross contamination,16 one-dimensional flow focus-
ing confines the procession of cells into the center of the microflu-
idic channel only in one axis perpendicular to the flow direction.
In the other perpendicular axis, however, the cell positions are not
confined. As a result, particles in the flow channel tend to have a
wide distribution in their positions affected by their size, stiffness,
shape, and morphology. To extract image related features of high
fidelity, keeping the cells at the focal spot of the interrogating beam
is essential. Cells positioned outside the focal depth of the inter-
rogating beam will give rise to blurred images. Furthermore, given
the typical 10–15 μm cell size, even for the cells located in the focal
plane, a significant portion of the cell features can be out of focus.
As a result, today’s image-guided flow cytometer cell sorters using
a tightly focused Gaussian beam from a high numerical aperture
(NA) objective face two major challenges: (a) to keep cells of dif-
ferent properties in the flow channel all in focus and (b) to keep all
parts of the cells across their thickness along the optical axis in focus.
Inability to meet the former requirement gives rise to a large number
of out-of-focus cells, resulting in low throughput and biased analysis
since some cell subpopulations tend to be in focus more than others.
Failure to meet the latter requirement increases the risk of mislead-
ing the gating criteria for sorting since the apparent crisp cell image
represents only the feature of one cross section of the cell, leav-
ing features outside the focal plane blurry or not detectable. In this
paper, we demonstrate a scanning Bessel beam system with extended
focal depth to overcome the above limits and develop innovative
approaches to perform image-guided cell sorting in a disposable
microfluidic cartridge. The sorting criteria were directly determined
from the image-encoded temporal waveform without image restora-
tion. The system is simple to set up and can operate in a label-free
manner.

Although not used in a flow cytometer system before, Bessel
beam-based illumination microscopy methods have previously been
leveraged to increase the depth of focus in biological specimens
with near-isotropic spatial resolution, achieving significant merit
in light-sheet microscopy, illumination microscopy, and electron
microscopy.17–19 A Bessel beam is a diffraction-free mode solu-
tion of the Helmholtz equation and possesses a number of unique
properties, which make it useful for imaging applications, including
non-diffractive behavior and the ability to self-heal when partially
obstructed.20 A mathematically ideal Bessel beam cannot exist as it is
unbounded and carries an infinite amount of energy. An experimen-
tally achievable approximation is to modulate the Bessel beam by a
broad width Gaussian function, which is called a Bessel–Gaussian

beam. The most used method of generating the Bessel–Gaussian
beam is by illuminating a conically shaped element called an axicon
with a Gaussian beam.21

Here, we demonstrate an imaging flow cytometer and cell sorter
with an ultra-long depth of focus, accomplished by a scanning
Bessel–Gaussian laser beam. The two-dimensional cell images can
be reconstructed from one-dimensional waveform information col-
lected from a photomultiplier tube (PMT). From this waveform, a
number of cellular morphological features are quantified, and these
values can be used to create appropriate gates for cell sorting. Sort-
ing is accomplished via an integrated piezoelectric (PZT) actuator as
previously described.15,16,22 The PZT-integrated microfluidic device
is made of a cyclo-olefin copolymer (COC) material integrated with
a cartridge that contains microfluidic channels and interfaces with
the fluidic pumps. Both the microfluidic chip and the cartridge are
injection molded and can be disposed to eliminate concerns of cross
contamination.

Experiments were conducted to evaluate the sorting per-
formance of the system for multiple sizes of polystyrene beads,
label-free identification and sorting of acute myeloid leukemia
(AML) cells from white blood cells, and the label-free sorting of
Scenedesmus sp., a green alga, from field-collected micro-organisms.
Our results indicate a sorting accuracy of 97%, 97%, and 98%,
respectively. We also demonstrate an increased percentage of in-
focus cell images from 30% to 40% for a Gaussian beam system to
>85% by using a Bessel–Gaussian beam, effectively increasing the
throughput by about three folds to around 300 cells/s, limited by the
response of the on-chip piezoelectric actuator and the presence of
cell doublets.

II. PRINCIPLE AND METHODS
A. Design of the imaging system

The optical system design is shown in Fig. 1(a). The Gaussian
beam output from a 488 nm diode laser illuminates on an axicon
(AX1025-A, Thorlabs) with an angle of 0.5○. A Bessel–Gaussian
beam is formed by the superposition of two sets of plane waves
propagating with a cone angle. The Bessel–Gaussian beam is then
modulated by using an acousto-optic deflector (OAD948, Isomet).
The acoustic transducer deflects the beam to different angles along
the y (scanning) direction [Fig. 1(a)] at a frequency of 200 kHz. Lens
1 performs a Fourier transform of the zero order Bessel–Gaussian
beam to create an annulus-shaped beam at its focal plane. This
annulus-shaped beam is then magnified by lens 2 before reach-
ing the exit pupil of a 10× illumination objective lens (378-803-3,
Mitutoyo). The illumination objective lens transforms the annulus-
shaped beam back to a Bessel–Gaussian beam onto the cells in the
microfluidic channel. The position of the AOD is conjugated with
the back focal plane of the objective lens. This schematic creates a
fan scan of the laser beam at the front focal plane. The microfluidic
chip, which is made of a cyclic olefin copolymer (COC) as shown in
Fig. 1(b), is put at the front focal plane.

Our design uses a single PMT detector and an AOD-scanned
CW laser to encode the 2D cell transmission profile into a tempo-
ral signal, which can be used as the gating criteria for cell sorting
and classification. A spatial mask [mask 2 in Fig. 1(a)] with one 500
× 15 μm2 slit is put at the image plane of the 488 nm laser channel,
which creates a 50 × 1.5 μm2 transparent area at the focal plane. The
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FIG. 1. (a) Optical imaging system design. AOD, acousto-optic deflector; DM, dichroic mirror; IL, 10×/0.28 illumination objective lens; DL, 10×/0.28 detection objective lens;
PMTs, photomultiplier tubes; and SM: spatial filter. The spatial masks for cell speed detection and transmission imaging are shown on the bottom left. (b) Microfluidic chip
design. The chip is made of a cyclic olefin copolymer (COC) by injection molding.

slit is aligned to the center of the Bessel–Gaussian beam. As a result,
the sidelobes of the Bessel–Gaussian beam along the flow direction
are blocked while the sidelobes along the scanning direction can pass
the slit.

Since the cell speed in the microfluidic channel is position
dependent and the speed information is required to correctly relate
the temporal waveform to the cell image, we use a 455 nm LED,
a PMT, and a spatial mask [mask 1 in Fig. 1(a)] to detect the
speed of each individual cell.15 The spatial mask contains two
1 × 10 μm2 slits separated in the cell flow (z) direction, placed at
the image plane of a 455 nm LED channel. The speed of each cell
is obtained by dividing the slit distance with the magnification fac-
tor (10× in our case) and the time difference between the minima
in the LED transmission signal. In our experiment, cell speeds are
typically between 10 and 25 cm/s with an average speed of around
20 cm/s.

The microfluidic sorting chip was made of COC (Cyclic Olefin
Copolymer) by injection molding. COC was chosen due to its high
transparency in the visible wavelength, low autofluorescence, and
low fabrication cost. The piezoelectric actuator was attached to the
top of the COC microchip via a thin layer of double-sided PSA (pres-
sure sensitive adhesive). The sample stream is focused by the sheath
flow hydrodynamically. When a target cell is detected, the piezo-
actuator is triggered to push or pull the target cell to sorting outlet 1
or 2 and eventually into either the collection tubes or specific wells
in a 384-well plate. Cells that are not of interest travel through the
center channel to the waste outlet.

B. Simulation of the Bessel–Gaussian beam
transmission signal

To gain insight into the transmission of a Bessel–Gaussian
beam through an object, we use the COMSOL Multiphysics
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simulation software to show how a 7 μm bead (n = 1.6) changes
the optical intensity distribution of a Bessel–Gaussian beam (Fig. 2).
Since our system measures the far field of the transmitted light, we
simulate the electric field distribution 400 μm away from the bead
to satisfy the Fraunhofer far-field condition. When there is no object
in the interrogation zone, the laser light transmits through the slit
and generates a constant DC background. When the laser beam
intersects the bead, the light will be partially reflected and partially
diffracted. If the diffraction angle θ is greater than the collection
angle of the detection objective lens, the light intensity on the PMT
decreases, resulting in a dark region in the transmission image of
the 7 μm bead due to the combined effects of reflection and diffrac-
tion assuming the effect of light absorption is negligible. According
to the simulation, when the Bessel–Gaussian beam hits the center
of the 7 μm bead, the calculated diffraction angle θ is around 2○,
much smaller than the collection angle of the detection objective
(10×, NA = 0.28). Thus, the small angle diffraction beam can pass
the slit and reach the PMT, producing a “bright spot” at the center
of the image of the bead. This explains why we observe a bright spot
at the center of the restored bead image from the transmitted signal
[Fig. 2(b)]. As a general rule, areas of large optical density and large
angle scattering give rise to dark regions; areas of low optical density
and small angle scattering give rise to bright regions in the restored
transmission images.

C. Depth of focus comparison
As discussed previously, the main motive of using a

Bessel–Gaussian beam to replace a Gaussian beam is to extend the
focal depth such that objects in different positions in a microfluidic
channel and different cross sections of the cell can all be focused to
generate high fidelity 2D cell image information. Figure 3 shows the
intensity profile and focal depth of the Bessel–Gaussian beam mea-
sured by a camera. Figures 3(a) and 3(b) show the intensity profile of
the Bessel–Gaussian beam at the image plane. The full width at half
maximum (FWHM) of the center lobe is between 1 and 1.5 μm. As
expected, a significant amount of energy is in the sidelobes, which
excite areas outside the central spot and complicate the waveform
analysis when we use a single PMT for detection to keep the system
simple and at low cost. A mathematical algorithm to be discussed in

Sec. II D is required to deconvolve the signal when we reconstruct
the transmission image. To measure the focal depth, beam profiles
at different depths are recorded by moving the detection objective
lens along the beam propagation (x) direction. Both the maximum
intensity and FWHM of the center lobe have relatively small changes
within a distance of 160 μm, as shown in Fig. 3(c). In contrast, a
Gaussian beam produced by the same objective lens has a much
shorter focal depth of about 7.37 μm.

To assess how the extended focal depth of a Bessel–Gaussian
beam can improve the detection yield compared to a Gaussian beam,
we ran a mixture of cells and beads, including 15 μm beads, 7 μm
beads, HEK 293T cells, MCF7 cells, and Hela cells, in both Gaus-
sian beam and Bessel–Gaussian beam image-guided cell sorters. The
results are summarized in Table I. In the Gaussian beam system, the
short focal depth cannot keep the majority of objects in focus due
to the wide distribution of the objects along the microfluidic chan-
nel. Except for 15 μm beads that tend to take a stable position in the
channel, only 30%–40% 7 μm beads, and only 40%–60% cells are in
focus. In sharp contrast, >90% of 7 μm beads, 98% of 15 μm beads,
and 85% of the cells of all kinds are in focus in the Bessel–Gaussian
beam system.

Figure 4 shows example in-focus and out-of-focus 15 μm bead
and 7 μm bead images generated by the Gaussian beam system. In
sharp contrast, the vast majority of both 15 and 7 μm diameter beads
are well focused for the Bessel–Gaussian beam system.

D. Image reconstruction algorithm
In this section, we describe the mathematical algorithm to

reconstruct images from the label-free, transmission signal by a
Bessel–Gaussian beam. It is noted that because of the correlation
between the PMT temporal signal and the image features, we do not
need to use the restored cell images as gates to sort cells. Instead,
we sort cells directly from the features in the waveform, thus sav-
ing time and resources for real time signal processing. Therefore,
image reconstruction can be performed off-line for validation of the
results and improved human–machine interface when users would
like to observe image differences between sorted and unsorted cells
and visualize image related features, such as size, shape, granularity,
and contrast.

FIG. 2. (a) COMSOL simulation of the electric field when a Bessel–Gaussian beam illuminates on the center of a 7 μm bead. (b) Example transmission image of a 7 μm
bead generated by the image-guided cell sorter using a scanning Bessel–Gaussian beam. The image was reconstructed using the mathematical algorithm discussed in
Sec. II D. Scale bar: 5 μm.

APL Photon. 6, 076101 (2021); doi: 10.1063/5.0051354 6, 076101-4

© Author(s) 2021

https://scitation.org/journal/app


APL Photonics ARTICLE scitation.org/journal/app

FIG. 3. Bessel–Gaussian beam profile. (a) Camera measured beam profile at the image plane. (b) Normalized intensity from the center of the Bessel–Gaussian beam. (c)
Full-width-at-half-maximum and normalized light intensity of the main lobe of the Bessel–Gaussian beam.

The electric field of a Bessel–Gaussian beam can be written as

EBG(r, x) = E0J0(krr) w0

w(x) e
−

r2

w2
0 ⋅ e−ikxxe−i∅, (1)

where r =
√

y2 + z2 is the distance from the center of the
Bessel–Gaussian beam. E0 is a field amplitude constant. kr is the
wavevector in the transverse plane and k2

r + k2
x = k2. w0 is the waist

TABLE I. Comparison of the ratio of in-focus objects between the scanning Gaussian
beam system and the scanning Bessel–Gaussian beam system.

Gaussian system Bessel–Gaussian system

7 μm beads 30%–40% 90%–95%
15 μm beads ∼98% ∼98%
Cell mixture 40%–60% 85%–90%

width of the Gaussian amplitude. ∅ = tan−1 x
x0

. x0 is the Rayleigh
length of the Gaussian beam.

We use n(x, y, z) to denote the cell or bead index profile
n(x, y, z) = no + Δn(x, y, z). We assume no is the index of water
and Δn > 0 since the index of cells and beads is greater than the
index of water. Assume the cell or bead thickness is within xc.
For the 2D imaging system, we cannot resolve the index change
along the beam propagation direction, so we make the following
approximation:

∫
xc

0
Δn(x, y, z)dx = Δn̄(y, z)xc. (2)

Adding a slit in parallel with the laser scanning (y) direction on the
image plane and assuming the slit is narrow enough to be approx-
imated by a 1D delta function in its transmission characteristic,
the transmitted field focused by a lens and after the slit can be
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FIG. 4. Examples of in-focus (first row) and out-of-focus (second row) images for
15 and 7 μm beads, generated by a scanning Gaussian beam image-guided cell
sorter. In comparison, nearly all images from the scanning Bessel–Gaussian beam
system are well in focus (see Fig. 5). Scale bar: 5 μm.

approximated by (3),

Et(y′, z′) = E′0e−ikoxe−i∅ w0

w(x)∫y
∫

z
δ(z − z′)

× (2
√

no(no + Δn̄(y, z)
2no + Δn̄(y, z) )

× J0[kr
√
(y′ − y)2 + (z′ − z)2]e

−
(y′−y)2

+(z′−z)2

w2
0

× e−ikoΔn̄(y,z)xc dydz. (3)

The term ( 2
√

no(no+Δn̄(y,z)
2no+Δn̄(y,z) ) in Eq. (3) is the approximate transmis-

sion coefficient assuming there is no absorption. Here, (y, z) refers
to the transverse coordinate in the object plane, and (y′, z′) refers to
the transverse coordinate in the image (detection) plane. For sim-
plicity, we have transformed the actual position (Y ′, Z′) in the image
plane into (y′, z′) by defining y′ = Y′

M and z′ = Z′
M with M being the

magnification of the detection optics.

Also note that (y′, z′) is related to the time by the following
relations:

y′ = FOVy

T
t, (4a)

z′ = v f lowt, (4b)

where FOVy is the field-of-view in the y (scanning) direction, T is
the time for each AOD scan (5 μs in our system), and vflow is the
flow speed of the object (around 20 cm/s in our system). For a 40 μm
field-of-view in the scanning direction and an AOD scanning period
of 5 μs, the scanning speed is 8 m/s, which is 40 times faster than the
average cell travel speed. This allows us to treat the scanning along
the y axis as if the cell is nearly still in the z axis.

From the relations in (4), we can relate a signal in the time
domain to the space domain, thus reconstructing the image from
a temporal waveform.

To analyze the detected cell transmission signal behind the slit
when the center of the scanning Bessel–Gaussian beam is at a given
position in the flow (z′) direction, we can represent the transmitted
field in (5) under a given position z′,

Et(y′)∣z′ ∝ ∫
y
(2
√

no(no + Δn̄(y)∣z′
2no + Δn̄(y)∣z′

)J0[kr
√
(y′ − y)2]

× e
−
(y′−y)2

w2
0 e−ikoΔn̄(y)∣z′ xc dy. (5)

Equation (5) shows that Et(y′)∣z′ is the convolution of the index
function ( 2

√

no(no+Δn̄(y)∣z′
2no+Δn̄(y)∣z′

)e−ikoΔn̄(y)∣z′ xc and the Bessel–Gaussian

function J0[kry]e
−

y2

w2
0 along the scanning (y) direction. To save com-

putational power for image reconstruction, we approximate the
Bessel function J0[kry] by a series of delta functions at its maxima
and minima,

Jo(u) ∼∑
m

cmax,mδ(u − umax,m) +∑
n

cmin,nδ(u − umin,n). (6)

umax,m: positions of the mth maximum of Jo(u). Jo(umax,m) > 0;
m = 0,±1,±2,±3, . . ..

umin,n: positions of the nth minimum of Jo(u). Jo(umin,n) < 0;
n = ±1,±2,±3, . . ..

The coefficients for each delta function are defined as

cmax,m = J0(umax,m) m = 0, ±1, ±2, ±3, . . . ,

cmin,n = J0(umin,n) n = ±1, ±2, ±3, . . . .

Substituting (6) into (5) and dropping the parameter z′ for simplic-
ity, we obtain the following approximate expression of the transmit-
ted E-field behind the slit:

Et(y′)∣z′ ∼

⎡⎢⎢⎢⎢⎢⎢⎣
∑mCmax,m exp[− u2

max,m

(krwo)2 ]
⎛
⎜⎜⎜
⎝

2
√

no(no + Δn̄(y′ − umax,m
kr
)∣z′

2no + Δn̄(y′ − umax,m
kr
)∣z′

⎞
⎟⎟⎟
⎠

e−ikoΔn̄(y′− umax,m
kr
)∣z′ xc

⎤⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎣
∑nCmin,n exp[− u2

min,n

(krwo)2 ]
⎛
⎜⎜⎜
⎝

2
√

no(no + Δn̄(y′ − umin,n
kr
)∣z′

2no + Δn̄(y′ − umin,n
kr
)∣z′

⎞
⎟⎟⎟
⎠

e−ikoΔn̄(y′− umin,n
kr
)∣z′ xc

⎤⎥⎥⎥⎥⎥⎥⎦

. (7)
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Representing Et(y′) ∼ A − B in brief form, we can write the transmitted power through the slit as

Jt(y′)∣z′ ∝ E∗t (y′)∣z′Et(y′)∣z′ ∝ AA∗ + BB∗ − AB∗ − BA∗. (8)

It can be shown that (8) can be approximated as

Jt(y′, x) ∼
4no(no + Δn̄(y′)∣z′
(2no + Δn̄(y′)∣z′)2 +

⎡⎢⎢⎢⎢⎢⎣
∑
m≠0

C2
max,m exp[− 2u2

max,m

(krwo)2 ]
4no(no + Δn̄(y′ − umax,m

kr
)∣z′

(2no + Δn̄(y′ − umax,m
kr
)∣z′)

2

⎤⎥⎥⎥⎥⎥⎦

+
⎡⎢⎢⎢⎢⎢⎣
∑

n
C2

min,n exp[− 2u2
min,n

(krwo)2 ]
4no(no + Δn̄(y′ − umin,n

kr
)∣z′

(2no + Δn̄(y′ − umin,n
kr
)∣z′)

2

⎤⎥⎥⎥⎥⎥⎦
. (9)

FIG. 5. Transmission PMT signals for 15 and 7 μm beads and reconstructed images. Scale bar: 5 μm. (i) The overall signals. Each “∗” represents the peak of each scan.
The product of the bead speed vbead and the width of the overall envelope T1 produces the bead dimension along the flow direction. (ii) Detailed waveforms for a single
5 μs AOD scan. At each specific z position, the dimension of the bead along the scanning direction is T2

∗vscan, where vscan = 8 m/s is the beam scanning speed. (iii)
Reconstructed transmission images of a 15 and 7 μm bead. The relations between the temporal waveforms and the image features are also indicated in the figures.
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To obtain (9), we have ignored summations of terms
with a random phase φmn, such as ∑m,ne−iφmn , where
φm,n = koxc[Δn̄(y′ − umax,m

kr
)∣z′ − Δn̄(y′ − umin,n

kr
)∣z′]. In other words,

we have only kept the phase-matched terms with φmn = 0.
According to (9), when the beam center hits a high index spot,

4no(no+Δn̄(y′)
(2no+Δn̄(y′))2 ∣z′ < 1, the light intensity through the slit would yield
a lower than 100% transmission. When the beam center hits a low
index position (e.g., water only), the first term in (9) is maximum,
but the values in the second and third terms depend on the index
values Δn̄(y′ − umax,m

kr
)∣z′ and Δn̄(y′ − umin,n

kr
)∣z′ relative to the max-

ima and minima of the sidelobes. In order to reconstruct the image
from the measured PMT signal, we need to solve Δn̄(y)∣z or simply
Δn̄(y, z). Next, we describe the algorithm to obtain Δn̄(y, z) from
Eq. (9).

Define f (y, z) = 4no(no+Δn̄(y)
(2no+Δn̄(y))2 ∣z . By solving f (y, z), we can know

the index profile of the object Δn̄(y, z).
Equation (9) can be represented in the matrix form as

Jt[y′1, y′2, . . . , y′N ; z′j ] = [T]∗ f [y′1, y′2, . . . , y′N ; z′j ], (10)

where j denotes the z position of the cell in the flow direction after j
times of AOD scans. The T-matrix is a 251 × 251 matrix. The dimen-
sion of the matrix is determined as follows: at a sampling rate of
25 MS/s and for a single scan of 5 μs, we produce 125 data points cor-
responding to the center positions of the Bessel–Gaussian beam over
the 40 μm scanning range. However, the Bessel–Gaussian beam has
sidelobes. Assuming that the sidelobes on each side of the beam cen-
ter span 20 μm, we have the scanning Bessel–Gaussian beam cover
a total range of 80 μm, thus producing a total of 251 points in the
transfer matrix in (10). The elements of the T-matrix are defined as
follows:

Tij = 1, i f i = j, −65 ⩽ i, j ⩽ 185.

Tij = C2
l exp[− 2u2

l
(krwo)

2 ] ≡ a2
l , where ul is the lth min or max for J0(u)

if y′i − ul
kr
= y′j ,

Tij = 0, otherwise. (11)

Then, Δn̄(y, z) can be obtained from Eq. (12),

f [y′1, y′2, . . . , y′N ; z′j ] = [T]−1∗Jt[y′1, y′2, . . . , y′N ; z′j ]. (12)

From Eq. (12), we can reconstruct the transmission image of the
object from the PMT signal. More detailed analyses can be found
in the supplementary material.

E. Waveform-based real-time sorting
The mathematical algorithm in Sec. II D can recover the object

image from the PMT signal. However, the computation of 251 × 251
matrix multiplication is time-consuming and can limit the through-
put. On the other hand, because most cell features, including size,
spottiness, and granularity, are encoded in the PMT output wave-
form, we can extract many image features that differentiate cell types
directly from the temporal waveform without reconstructing the 2D
cell images. This saves tremendous computation time and resources,
and the method is suitable for cell sorting by image features. For all
sorting experiments reported in this paper, we define gating based

on the characteristics of the temporal waveform, which are closely
correlated with specific image features. We then use the mathemat-
ical algorithm discussed in Sec. II D to reconstruct the cell trans-
mission images off-line for verification purposes. To quantify the
sorting accuracy, we also apply additional methods, such as stain-
ing and microscopy, to verify the performance of waveform-based
image-guided cell sorting.

Figure 5 shows an example of how the temporal waveform car-
ries features about particle size and how we can use the waveform
features to distinguish 15 and 7 μm diameter beads. When there is
no object in the microfluidic channel, the scanning Bessel–Gaussian
beam transmits through the slit and the PMT shows a periodic back-
ground signal, caused by any imperfections or dust particles in the
COC microfluidic chip intersected by the laser beam. Since these
features are still, they appear to be periodic in each scan and can
be subtracted by software. When a cell or bead travels through the
optical interrogation area, it creates an instantaneous change in the
PMT output signal on top of the background. The PMT waveforms
in Figs. 5(a-i) and 5(b-i) show an envelope with a series of spikes.
Each spike represents a single scan spanning a duration of 5 μs, and
the width of the spike is proportional to the size of the bead along the

FIG. 6. Images and histograms of polystyrene beads generated by the
Bessel–Gaussian beam image-guided cell sorter. (a) Transmission images of
polystyrene beads with 7 μm (left) and 10 μm (right) diameter. Scale bar: 5 μm. (b)
Histogram of (T1

∗ vbead) ∗ (T2
∗ vscan) for 7, 10, and 15 μm beads.
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scanning (y) direction. On the other hand, the width of the overall
signal envelope is proportional to the dimension of the bead in the
flow direction after correction of the effect of the flow speed. Based
on this argument, we develop the following sorting criterion that is
equivalent to the particle size.

We find the time interval between the first negative peak and
the last negative peak T1, which corresponds to the duration when
the bead crosses the optical interrogation zone defined by the width
of the slit in the spatial mask. The bead length L along the flow direc-
tion equals T1

∗vbead, where vbead is the bead traveling speed. We then
analyze the detailed waveform of each 5 μs scan (labeled by “∗” in
the envelope waveform) to find the bead dimension in the scanning
direction. Figures 5(a-ii) and 5(b-ii) show the detailed waveform of
each 5 μs scan at a given z position. By slicing the object into N sec-
tions along the z position, the object width at the nth section can
be represented as Tn

2∗vscan with n being the index of the z position
and vscan is the beam scanning speed (vscan = 8 m/s). Figure 5(a-ii)
shows two (10th and 16th) of such scans for a 15 μm bead. The
tenth scan gives the largest value of Tn

2∗vscan, indicating the widest
part (i.e., diameter) of the bead. Similar characteristics can be found
in the waveform of 7 μm beads. The above example demonstrates
how one can relate the temporal waveform features to the geomet-
ric features of a traveling object, such as size, shape, and aspect
ratio.

III. EXPERIMENTAL RESULTS
A. Sorting of 10 and 15 μm beads

To validate the sorting algorithm described above, a sorting
experiment was done using 7, 10, and 15 μm beads. The histogram of
(T1 ∗ vbead) ∗ (T2 ∗ vscan) is shown in Fig. 6(b). To evaluate the sort-
ing performance, we sorted 10 μm beads from a 1:1 mixture of 7 and
10 μm beads, as well as 15 μm beads from a 1:1 mixture of 7 and
15 μm beads. The sorted beads were imaged using a microscope
to verify the sorting accuracy. The first experiment demonstrated a
sorting purity of 97%, verified by 233 microscope images; the sec-
ond experiment demonstrated 100% sorting purity, verified by 173
microscope images.

B. Label-free sorting of leukemia cells
Blood cancers, such as acute myeloid leukemia (AML), are esti-

mated to account for 9.9% of the 1.8 × 106 new cancer cases diag-
nosed in 2020.23 Leukemia, lymphoma, and myeloma are expected
to account for 9.4% of all cancer deaths in 2020.24

Acute myeloid leukemia is derived from the myeloid line of
blood cells and is characterized by its rapid and unchecked growth
of abnormal cells in the bone marrow that interferes with nor-
mal blood cell production. Diagnosis usually occurs via bone mar-
row aspiration or antibody-specific blood tests.25 However, these

FIG. 7. (a) Transmission PMT signals and images for SKNO-1 and WBC generated by the Bessel–Gaussian beam image-guided cell sorter. Scale bar: 5 μm. (b) Distribution
plots using these two parameters: T1

∗vcell and N∗vcell , where N is the number of positive peaks in the PMT waveform. Multiplication of cell speed to both parameters
removes feature distortions due to cell speed variations.
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require costly panels and tedious procedures. An image-guided cell
sorter enables the identification and subsequent sorting of AML cells
without any antibody or fluorescent labeling, aiding early detection
and eliminating the need for costly reagents and tedious laboratory
procedures.

In a proof-of-concept experiment, patient-derived SKNO1
acute myeloid leukemia (AML) cells were cultured in cell culture
media (90% RPMI + 8% FBS + 1% penicillin + 1% streptomycin) at
37 ○C with 5% CO2. The SKNO1 cells were spiked into white blood
cells from healthy donors (San Diego Blood Bank, 3636 Gateway

FIG. 8. (a) Transmission channel waveforms and reconstructed images of Scenedesmus and micro-organisms in Miramar Lake water. Scale bar: 5 μm. (b) Optical
microscope images of Scenedesmus being sorted on membrane filter. (c) Histogram of T1

∗valgae for Scenedesmus and other micro-organisms in lake water.
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Center Ave. Suite 100, San Diego). A number of feature parame-
ters were extracted from the transmission waveform of these cells,
which are intuitively related to cell area, perimeter, granularity,
roughness, contrast, and texture. The most distinguishing features
between SKNO1 cells and white blood cells were determined to be
T1
∗vcell and the number of positive peaks of the waveform. The

former is related to the cell size and the latter to the intracellular
granularity. To demonstrate image-guided label-free cell sorting, a
2D plot of these parameters was generated and the appropriate gat-
ing parameters were chosen to sort SKNO1 cells from healthy white
blood cells in a ratio of 1:50 (Figs. 7). To evaluate the cell sort-
ing, Wright–Giemsa staining was performed. The full details for the
staining procedure can be found in the supplementary material. The
sorted cells were collected in a tube and deposited on a polyester
transparent membrane filter (1300019, Sterlitech). Wright–Giemsa
staining was performed, and the stained cells were imaged using
bright-field microscopy. A total of 124 SKNO1 cells were imaged
from a total of 128 cells found on the membrane, giving rise to a
sorting purity of 97%. Given the initial population of 2% SKNO1
cells, the sorting has enriched the sample by 1600 times.

C. Label-free sorting of Scenedesmus sp.
Algae are a group of photosynthetic, eukaryotic organisms

that can be found in oceans, waterways, lakes, and soils all over
the world. Algae are commonly used to monitor environmen-
tal changes and have a number of industrial uses, including the
production of biodiesel, ceramic products, and glass products, in
wastewater and oil spill cleanup, and in the biotechnology field as
anticoagulant, antiviral, and antitumor agents.26–29 Despite their
usefulness, little is known regarding the majority of these algae,
with the estimated number of microalgae species exceeding
1× 106.30 In comparison, the best algae culture collections often con-
tain only a few thousand species.31 Isolation of microalgae species
from the environment is a useful and necessary approach to under-
standing these organisms and uncovering potential technological
solutions. Traditionally, these organisms are isolated by hand using
micropipettes or capillary tubes, or by fluorescence-activated cell
sorting, and are subsequently cultured.32 However, the through-
put and usefulness of these approaches are limited, as microalgae
and other micro-organisms experience complex relationships with
surrounding organisms that affect algae phenotype.

Scenedesmus sp. is one of the most common freshwater green
algae. These colonial, non-motile algae have been researched for
their high biomass productivity and efficiency at capturing CO2.33

Scenedesmus is capable of producing many types of biofuels and has
been most extensively studied for biodiesel production. As there are
over 70 taxonomically accepted species of Scenedesmus, including
some with unique properties that only exist in local populations,
the high-throughput identification and sorting of these algae from
field-collected samples could unlock new opportunities.33

As a proof-of-concept sorting experiment, Scenedesmus (Car-
olina Biological Supply, 152510) were spiked into field-collected
micro-organisms (Miramar Lake, San Diego, CA) in a ratio of 1:5.
The sample was run through a 35 μm filter to remove clumps and
large particles. The distinguishing feature of Scenedesmus from the
other micro-organisms was T1 ∗ valgae, which is intuitively related
to size. A histogram with these parameters was generated, and the

appropriate portion was gated (Figs. 8). The sorted samples were
collected into tubes and visualized using bright-field microscopy.
From a total of 253 sorted cells verified by a microscope, 248 of them
were Scenedesmus and 5 were other micro-organisms, resulting in a
sorting purity of 98%.

IV. DISCUSSION AND CONCLUSION
Leveraging the unique properties of Bessel beam illumination,

we present a microfluidic, label-free image-guided cell sorter with
an ultra-long depth of focus, resulting in a threefold increase in the
number of in-focus cells compared with Gaussian beam systems.
Proof-of-concept experiments were demonstrated with high sorting
purity using the label-free transmission waveform features as sorting
criteria. For the sorting of polystyrene beads, SKNO1 leukemia cells,
and Scenedesmus green algae, our results indicate a sorting purity of
97%, 97%, and 98%, respectively. Because of the sidelobes inherent
to the Bessel beam, a significant amount of computation is required
to restore the cell image from the measured temporal signal, and
this computation time can limit the throughput. The current system
keeps refreshing the cell images for data visualization with a pro-
cessing time of ∼3 ms using an FPGA processor (Xilinx Kintex-7
XC7K410T). It is estimated that the image processing time can be
reduced to less than 500 μs by using a more powerful FPGA, such as
Xilinx Virtex XCVU440.

By approximating the zero-order Bessel function by a series
of delta functions at its maxima and minima, we have developed
an effective mathematical algorithm to restore the cell image from
the waveform. The restored images have shown sufficient quality to
allow users to visualize the object that is being analyzed and sorted.
More importantly, we have demonstrated the method of using the
waveform features as gating criteria to sort cells with superior sort-
ing purity, utilizing the close relations between the waveform fea-
tures and the image features. The successful demonstration of this
approach eliminates the need for real-time image reconstruction,
greatly reducing the computation resource and time delay. On the
other hand, the ability to restore the cell images from the wave-
form in an off-line process facilitates the human–machine interface,
enhancing the operability and user-friendliness of the system.

SUPPLEMENTARY MATERIAL

See the supplementary material for the illustration of the
detailed algorithms for image reconstruction and protocols for sam-
ple preparation.
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