UC Merced

UC Merced Undergraduate Research Journal

Title
Standard & Poor’s 500 Index: A Trading Forecasting Analysis through Generative
Artificial Intelligence

Permalink
https://escholarship.org/uc/item/5wd3d8kK

Journal
UC Merced Undergraduate Research Journal, 17(1)

Authors
Vagish, Adhya
Rao, Aditya

Publication Date
2024

DOI
10.5070/M417164617

Copyright Information

Copyright 2024 by the author(s).This work is made available under the terms of a Creative
Commons Attribution-NonCommercial-NoDerivatives License, available at
https://creativecommons.org/licenses/by-nc-nd/4.0}

Peer reviewed|Undergraduate

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5wd3d8kk
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

)

UNDERGRADUATE
RESEARCH JOURNAL

Issue 17, Volume 1 December 2024

Standard & Poor’s 500 Index: A Trading
Forecasting Analysis through Generative
Artificial Intelligence

Adhya Vagish and Aditya Rao

ACKNOWLEDGEMENTS

This paper was written for WRI 010 with Phillip Lovas, originally submitted on November 28,
2023.

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

Standard & Poor’s 500 Index: A Trading Forecasting Analysis through

Generative Artificial Intelligence

Aditya Rao and Adhya Vagish
University of California, Merced
Writing 010
Phillip Lovas

November 28th, 2023

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 2

Abstract

In November 2022, the world of artificial intelligence, programming, and efficiency changed
forever, as OpenAl created the first-ever publicly accessible large language generative chatbot:
Generative Pre-trained Transformed (GPT)-3.5 (Open Al, 2022). The bot passed several
Advanced Placement course exams, which are tests high school students can take to obtain
college credit. It passed graduate-level exams such as the GRE, and even the BAR exam required
to become a professional lawyer (Open Al, 2023). With all of GPT’s success, the specific issue
with OpenAl’s model, GPT-3.5, is that it cannot access the internet or fetch real-time data (Open
Al, 2022). The challenge we undertook was to use the GPT chatbot to create a stock-prediction
trading algorithm, guiding the model to provide a conclusive output, and limiting our influence
on the model—outside of errors—as much as possible. From November 2 to November 17 of
2023, we manually compared GPT’s predictions to the actual results of ten stocks within a
trading day (6:30 AM PST — 1:00 PM PST). It has been widely concluded in the past that GPT
models are unable to make daily stock predictions accurately. Past researchers suggest, “It is too
soon to claim Al can beat the stock markets” (Mokhtari, 2021) as they perform better in the long
term, which is why we are testing their short-term and long-term capabilities. From the tests we
ran to evaluate GPT’s capabilities, we conclude there is great value in incorporating artificial
intelligence into current trading models. However, generative Al models like GPT cannot be
solely relied upon for accurate predictions. Models built with Al can help advise full-time stock
traders, casual investors, and large trading firms about the effectiveness of Al models in their
technical analysis before investing in a stock.

Keywords: Artificial Intelligence, stock prediction, GPT (Generative Pre-trained Model),

quantitative analysis

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 3

Standard & Poor’s 500 Index: A Trading Forecasting Analysis Through
Generative Artificial Intelligence

Imagine if doctors could detect brain tumors by looking at hundreds of scans. That idea
seems far-fetched for humans, but not so much for Artificial Intelligence (AI). Al is an emerging
industry in technology, taking the modern world by storm with its ability to perform mundane
and complex tasks arguably more efficiently than humans. It can be used for home improvement,
programming assistance, text classification, image generation, disease prevention—tasks of all
sorts. What if it could be somewhat accurate in providing financial stock predictions? Our
research aims to delve deeper into the relationship between the stock market and LLMs (Large
Language Models), a form of Al, identifying the places it succeeds and struggles in.

The stock market is a platform where buyers and sellers exchange stocks with one
another for a monetary value (Bae, 2017). This monetary value shifts up and down based on a
variety of conditions that impact the market. Some examples of these conditions are the news,
public opinion, and supply/demand. To the average person and business, the stock market is a
way to make money, either passively or actively. This is where trading models can be utilized, to
give individuals and companies the ability to predict the stocks to a certain degree by considering
various conditions that affect the market, such as the news and public opinion. This can be
accomplished through the Yahoo Finance library, which can be implemented into Python code.

Trading models made without Al tools generally rely on traditional methods (looking at
financial statements, earning reports, price chart patterns, economic indicators, market news, and
statistical analysis) with barely any room for uniqueness because of traditions in the business
space (Wu, 2023). The same financial metrics are being used by all professional traders, making

it more challenging to grow as a trader without immense competition. The introduction of

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 4

ChatGPT disregards these business practices because of the amount of information at their
disposal and the computational power in handling the data (Chandanshive, 2023). The amount of
information traders know pales in comparison to the amount of information some Al models can
store and analyze in their training data. These models can process and analyze millions of data
points within a few seconds. The use of prompts also gives users the ability to easily test and
experiment with new ideas they might have when developing a model. For instance, they can
prompt the bot to add a specific metric when creating a model or show parts of their current
model to receive suggestions on what other factors to implement and change. This gives way to
fascinating combinations that would be challenging for humans to come up with themselves
(Chandanshive, 2023). Due to this, Al has been proven to be useful from an educational
standpoint, by seeing trends in grades to make shifts in lesson plans. However, what we aim to
accomplish with this research is to determine the usefulness of LLMs in the application of a
complex test case and creating predictive trading models for short-term and long-term stock
options like Dr. Geoff Warren (2014) researched, except with limited human interference.

The volatile nature of stocks causes day trading to be a risky endeavor for most investors,
and long-term investments are considered a safer bet. Past research with GPT-3.5 models has
appeared to be successful in both long-term and short-term investments, as the researchers Mr.
Glasserman and Mr. Lin found, “long-short trading strategies implemented using the original
scraped and original TR headlines as input and GPT-3.5’s output substantially outperform market
returns over the out-of-sample period [seeing how the model works with data the model has not
seen or been trained on]” (Glasserman, 2023). Within our research parameters, we will test if a
trading model, generated solely by artificial intelligence, echoes this sentiment about long-term

trading by comparing it with the results of short-term trading. This will be done by comparing

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 5

long-term (week-to-week) and short-term trading (day-to-day) within the bounds of Open AI’s
Chat GPT-4’s model. The accuracy of their ability to effectively read and filter unbiased
historical stock data, fundamental data, technical data, and news and events (with the
YahooFinance API) will be tested through the comparison of its output to the market for that
selected period. Historical stock data consists of stock prices, trading volume, and other financial
metrics. Fundamental data consists of revenue, earnings, and debt levels. Technical data consists
of moving averages, Bollinger Bands, and Moving Average Convergence/Divergence (refer to
Concepts and Equations for further information) (Mancini, 2023). Finally, news and events will
be found through using the Yahoo Finance API, which will check psychological indicators, only
if GPT-4 deems it is appropriate. These psychological indicators might consist of various
measures such as politics and public opinion (Jankova, 2019). It might succeed primarily using
historical data or any other method it comes up with. Through our research, we plan to use
ChatGPT to create a trading model using Python to determine whether or not large language
model technology can be trusted in investing. Because Artificial Intelligence has not been widely
implemented into current trading models, the research we performed can help inform the public
whether or not Al models are beneficial for stock analysis, and if beneficial, whether their
reliability is practical in use.
Methods

Long-term predictions will take place over seven days, not limited to trading days
(Monday—Friday). Short-term predictions will take place daily, not like day trading. Day trading
is where buyers purchase and sell stocks on the same trading day to capitalize on small

movements or momentum. Short-term is where a prediction will be made before a trading day

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 6

starts and then be compared to the actual results of the stock market at the end of the trading day
(1 PM PST).

Unlike past research, we are giving the generative Al GPT-4 significantly more control
and decisiveness in how it wants to formulate its predictions. GPT-4 is the most advanced model
offered by Open-Al as of November 2023. Numerous other companies are working with OpenAl
to integrate GPT-4 into their operations/products. Our test will truly push the limitations
previously thought to be imposed on generative artificial intelligence models. To
comprehensively test its stock-related prediction capabilities, we tested how well the model’s
stock predictions would do with daily trading and weekly trading. The short-term prediction
would lead the bot to only analyze stocks from the Standard & Poor’s 500 Index (commonly
referred to as the S&P 500 Index). A complication we encountered constantly is updating the
S&P 500 index with the most recent stocks since the index changes regularly. To have a
consistent set of data, we created a CSV file with all the stocks in the index present on March
16th, 2023 (Xela, 2023). Since stock indexes are constantly being updated, a few stocks such as
Signature Bank (SBNY') have been removed, and others have been added. Working with a
consistent set of stocks would help the model with the following: a) limit overfitting the model,
which means the model takes in too much information from newly added and removed stocks
and b) being able to visualize and analyze the data more effectively because of the same stocks
being analyzed each time.

With the constant changing of the S&P 500, one might wonder: What comprises this
index? The answer is the most publicly traded stocks on the market. When developing the idea
for this project, our research team decided to approach utilizing Al from a different perspective:

maximizing its control to limit bias as much as possible. Ethically, it made sense to have the

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 7

model dictate the majority of the stock analysis and prediction means and not us, because any
influence would not provide authentic results (Mancini, 2023). Our goal was to find out the
bigger picture of generative artificial intelligence models like GPT, and if they can create these
prediction algorithms that are somewhat accurate, on their own, without any assistance.

Initially, we used the free, publicly available version of GPT-3.5 that was released in
November of 2022 by OpenAl. The model had severe difficulties when producing the model and
was unable to take our instructions or use our follow-up questions to help itself. The prompt we
developed, after careful consideration, is depicted in Figure A1l.

In Figure A1, we prompted the model with specific instructions to make a detailed stock
prediction model program. There is a stock list called “500 stock list.csv.” The “.csv” refers to a
comma-separated format, similar to a spreadsheet. This file has around 500 stocks that are
formatted for YahooFinance searching, allowing them to be individually analyzed (Xela, 2023).
The prompt in Figure A1, is answered by GPT-4, to output the code in Figure BI-G1.

The issue with this code in Figure B1-G1, however, was that there were mismatches in
the number of data features. The process called StandardScalar expected five features but did not
receive them because it was not provided with columns. To fix this issue, we asked the GPT-4
model to diagnose the problem with the code and fix itself in Figure A2, and the code was fixed
in Figure B2.

After this, we combined the changes the bot made and then finally got a program (turn
code into successfully executing something, regardless of the output). Next, in Figure A3—C3,
we manually asked GPT to add the current prices of the stock to understand the prediction better,
and to calculate the final percent change in a separate, prediction-evaluation program, detailed in

a later step (Figure A10—E10). The code in Figure A3—C3 was generated by GPT-3.5, but it

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 8

merely edited the print statements and format in the data, not influencing the prediction section
of the code whatsoever.

After modifying the code, it fixed the error, as shown in Figure A4-D4. The model
started giving predictions of actual stocks. There were still ways to go in accuracy and realness,
but the output needed to be easier to read and analyze. As a result, we prompted the bot to print
the current prices along with the prediction and percent change, in a neat format, to be used for
data visualization later (Figure 5). This way, the user can understand the price and percent
deviations from the actual market values.

After testing the program, the outputs were given, and they were highly unrealistic. Most
stocks in the S&P 500 do not usually exceed 55% changes, and the predictions were given 4-5
stocks like this. If we continued like this, the model would be highly inaccurate for all the trials
we performed; to limit our bias and improve the model, we asked GPT-4 how it is making its
predictions to understand its process, and then how to make the prediction model more accurate
(Figure A6-B6). Following this, in Figure A7-C7, GPT-4 used the steps it provided to update the
code, and provided a brief explanation as to what was updated. The final part of the prediction
program was created to ensure the program was thoroughly complete and working, so we asked
GPT-4 to give the entire working prediction model (Open Al 2023), along with the extended
functions it suggested to improve the accuracy (Figure A8—GS).

To see how the predictions performed, we created a prediction-evaluation program, to
compare how the predictions from the model performed compared to the actual market. The
steps detailed in Figure A9—E9 shows how this evaluation program was created and then
optimized for readability and analysis. This was done in GPT-3.5, but since it was an evaluation

program that drew from real-time data, it did not affect the prediction model whatsoever.

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 9

Finally, we added a less-guided weekly prediction model from GPT-4, using a similar prompt to
the day-to-day predictions (Figure B11-D11). This model merely uses the Linear Regression
model, detailed in section C of the Concepts and Equations Section. The proof of code
generation from GPT-4 can be found in the References section (Stock Prediction Model in
Colab).

Figure B11

Prepares the 500 stocks for data analysis.

Read the stock symbols from the provided CSV file.

Fatch historical stock data for each symbaol.

Build and train a machine learning model on this data.
Predict the stock prices for the specified time frame,
Calculate the percent change and identify the top 10 gainers.

Output the results in a formatted way.

For the stock data, we can use the “yvEinance " library, which allows us to fetch
histarical market data from Yahoo Finance. We'll use a simple machine learning modal,
such as a linear regressor, due to its ease of use and speed, although more complex
models might yield more accurate results.

i

Here is the complete script:

pandas pd
yIinance yT
sklearn.linear_model LinearRegression

sklearn.model_selection train_test_split

datetime datetime, timedelta

numpy np

(symbol, start_date, end_date):
stock_data = yf.download{symbol, start=start_date, end=end_date)
stock_datal 1

ck_datal:
ck_data.reset_index()
s - 1 = stock_data.index
X = stock_datall 11
y = stock_datal]

train_test_split(X, y, test_size=0 7, random_state=0)

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure C11
Splits the model into testing and training datasets, and uses the linear regression model

mentioned in Concepts and Equations section G.

{model, future_day):
model . predict{np.aray{[[futura_day111}

ep300 stocks = pd.read cevi . header=
symbols = sphD_stocks[0]. talist()

and_date datetima.now b
gtart _date = end_date - timedelta{days=)]
predict_date = end_date + timedelta(days=7)

predictions = {}
EYmbol symbals:

stock_data = fetch :k_data{symbol, start_date, end_date}

X_train, X_test, y_train, y_test = prepare_data{stock

made]l = LinearRegressiong)y

model.fit{¥_traim, y_traim)

future price = predict future price(model, len(_data) + 7)
last_pri _data.ilocl-1]
percent _changs ({future_price - last_price) S/ last_pricel *

predictions[symbol] = {(future price((], percent_chamgel[0])
Exception (-}

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 11

Figure D11

Prints each of the stocks in the weekly predictions.

top_gainers = sorted(predictions.items(), key= x: x[11[1], Tevers

)
symbol, (predicted_price, percent_chamgel top_gainers:
printi

Instructions for Google Colab:

Copy the script into a new Google Colab notebook,

Upload your "S00_steck_Liszt.ssv file to the Colab environment,

Ingtall the required libraries (ike "yeinanee’) by running " !pip install yfinance .

Rumn the script.

Motes:

* The script uses a linear regression maodel for simplicity and demenstration purposes,
This is not typically used for accurate stock prediction in real-world scenarios.

* Stock market predictions are inherently uncertain and should be approached with
CALIGM,

* The madel does not consider external factors like market news, global events, ar
company-specific developments, which can significantly impact stock prices.

* The prediction is made for a week ahead, but keep in mind that stock markets are
influenced by many unpredictable factors, 0 the accuracy of such predictions can be

limitad
Concepts and Equations
The steps A—F are the equations and theory ChatGPT used when developing its
prediction model.
A. Relative Strength Index (RSI):
RSI =100 — (100/1+RS)

RS (relative strength) = (average gain of up periods during specified time/average loss of

down periods during specified time)

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 12

The rate and variation of price movements are measured by the RSI as a number
between 0 and 100.
B. Moving Average Convergence Divergence (MACD):
MACD = (EMA refers to the Exponential Moving Average)
Signal Line = EMA(short) — EMA(long) (EMA refers to the Exponential Moving
Average)

The link between two moving averages of a stock’s price is displayed by the
trend-following momentum indicator known as the MACD. The 26-period EMA is
subtracted from the 12-period EMA to get the MACD. The MACD line is the outcome of
the equation. Plotting the “signal line,” which is the nine-day EMA of the MACD, is then
done on top of the MACD line.

C. Simple Moving Average (SMA):
SMA = (Sum of closing prices over ‘n’ periods/n)

SMA determines the average of a chosen range of closing prices by dividing it by
the total number of periods in the range.

D. Random Forest Regressor:

A Random Forest Regressor operates by constructing decision trees at running
time and outputting the mean prediction of the individual trees for regression tasks.
Through the code ChatGPT provided we can point out places where regression tasks are
occurring:

1. Predicting Stock Price Changes in the form of Delta:

e Predicting the change in stock prices, as indicated by the “Change”

column in the data set, is the main objective of this regression task. The

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 13

difference in closing prices between two consecutive days is used to
construct this column. The Random Forest Regressor model predicts the
numerical value of this change, which is a continuous variable.

i1. Independent Variables Regression:

e To calculate the stock price change there are independent variables
such as the opening price of the day, highest price of the day, Relative
Strength Index (RSI), Moving Average Convergence and Divergence
(MACD), etc. which are calculated. The Random Forest Regressor model
learns from these variables to predict the stock price change.

E. Standard Scaler:

Standard Scaler preprocesses data and conforms it to standardization by
subtracting the mean and scaling it to unit variance by dividing the values by the standard
deviation.

F. Grid Search Cross-Validation (GridSearchCV):

The GridSearchCV looks for the best combinations of hyperparameters for a
given model (in our case the RandomForestRegressor model) by performing
cross-validation. Cross-validation is needed to evaluate each combination of the
parameters ensuring that the model can be trained with the correct hyperparameters.
Hyperparameters are specific configurations needed to structure the model and are
important to its performance.

G. Linear Regression:
Linear Regression is more statistical in nature than other training models such as the

Random Forest Regressor because it assumes a linear relationship between dependent

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al 14

and independent variables. Linear Regression is more effective in long-term cases
because it is hard to create other models such as the Random Forest Regressor without
more variables being taken into account. These variables are difficult to obtain because
they are always changing.
Code Explanations
Here are the two new functions GPT-4 used, as a result of implementing the steps it
suggested to improve itself in Figure A6:
Figure A10

The function, “compute rsi,” is given by GPT-4 to improve the accuracy of the model.

(data, window):
delta = data.diff()
gain = delta.where(delta > O, 0)
loss = -delta.where(delta < O,)

avg_gain = gain.rolling(window=window, min_periods=1).mean()

avg_loss = loss.rolling(window=window, min_periods=1).mean()
rs = avg_gain / avg_loss
rsi = - (/ (1 + 1s))

rsi

Here ChatGPT is defining a function called “compute rsi,” which takes in two
variables/parameters: data and window, to compute the RSI (refer to Concepts and Equations
section A). In this function, we are defining a delta variable which equals the difference of
comparing an element in the data with another element in the data. The gain and loss variables
are dependent on the delta variable, when the delta (the change) is below 0 it defines the loss,
and above 0 defines the gain. The initialization of the “avg gain” and “avg loss” variables
needed for the RS calculation are defined with the “rolling()”” and “mean()” functions. The

“rolling()” function used takes in 2 parameters, window (the amount of numbers it takes in when

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 15

calculating) which is defined as “window” (the function parameter GPT defined in

“compute rsi”’), and “min_period” (the minimum number of observations needed to perform a
calculation) which is defined as 1. The “rolling()” function then uses the “mean()” function to
calculate the mean of the results. The RSI is then calculated when the RS is given in the RSI
equation. The “compute rsi” function ultimately stores the RSI.

Figure B10

The “computer macd” function given by GPT-4 to improve the accuracy of the model.

(data, short_window, long_window):
emal?2 = data.ewm(span=short_window, adjust=False).mean()
ema26 = data.ewm(span=long_window, adjust=f) .mean()

macd = emal2 - ema26

signal = macd.ewm(span=2, adjust=False).mean()

1 macd - signal

In this code snippet, ChatGPT is defining a function called “compute _macd,” which takes
in three variables/parameters: data, “short window” and “long_window,” to compute the MACD
(refer to Concepts and Equations section B). The emal?2 variable in the function is defined with
the “ewm()” function (Exponentially Weighted Moving) and the “mean()” function to calculate
the EMA (Exponential Moving Average) or EWMA (Exponentially Weighted Moving Average).
These terms, EMA and EWMA, are often used interchangeably. The “ewm()” function takes in
two parameters, span (a higher span number means that older observations keep their influence
for a longer period) which is defined as “short window” (the function parameter GPT-4 defined
in “compute_macd”), and adjust (True means the weighted averages are calculated with the
assumption that weights are applied to a fully observed time series and False means that the
calculation is done cumulatively without any assumption) which is defined as False. The

“ema26” variable is defined similarly but instead of the parameter span being “short window” it

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al 16

is “long_window” (another function parameter GPT-4 defined in compute macd) instead. The
MACD equation then calculates the MACD variable. After that, the signal variable is calculated
by the Signal Line logic (in Concepts and Equations section B), and finally, stored in the
“compute_macd” function is the MACD variable — signal variable.

The figure below depicts the section of the model that uses training and testing features to predict
stocks.

Figure 11

symbol stock _symbols:
data = yf.download({symbol, periods s lntervals

datal data(Y. diff()

datal datal J.zolling(window=1C).mean(}
datal datal). relling(window="0) .mean()
datal] = compute_tai(datal 1, window=1:)
datal] = compute_macd(data[1. . }
data.dropnalinplace= }

X = data[[

X_trmin, X_test, y_twain, y._test = tradn_test_split(X, y, test_size=0.I,

scaler = StandardScalex()

X_train_scaled = scaler.fit_transform({X_train)

param_grid = {

moda]l = RandomForestRegressor(random_states_)
grid_ssarch = GridSearchCV(model, paras_grid, ev=[)
grid_search.fit(X_train_scalsd, y_tEain)

best_model = grid_search.best_estimater_

latest_features = X.iloc[-1:]).values

latest features _scaled = scaler.transfors(latest features)

predicted_change = best_model.predict(latest_featuzes_scaled)[C]

current_price = dataf l:iloee[-11

predicted_price = current_price + predicted_change

predicted_change _percent = (predicted_change [current_price) *

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 17

There are six steps to this model: 1) Data collection, 2) Feature engineering, 3) Data splitting, 4)
Compatibility, 5) RandomForestRegressor model and GridSearchCV, 6) Predictions.

1. Data collection: The data must be collected somehow. In this case, we utilized the
“yfinance” library, which stands for Yahoo Finance. Yahoo Finance has the historical data
of all the stocks, which is key for calculating technical metrics and analyzing advanced
data (Jankova 2019). This finance library takes the past 180 days of stock data.

2. Feature Engineering: There are five important feature engineering functions present:
“Change,” “SMA_10,” “SMA _15,” “RSI,” and “MACD.” Change measures the
difference between a stock’s opening price (price at 6:30 AM PST on a trading day) and
closing price (price at 1:00 PM on a trading day). The SMA functions to find the moving
averages over 10 and 50 days respectively. Moving averages are simply averages over a
specific amount of time. The RSI measures how fast price movements occur: the MACD
also does the same, but it finds convergence and divergences in the price charts.

3. Data splitting: In machine learning models, 80% of the data is used to train the model,
and 20% is used to test the model, which is what the accuracy represents. This is standard
across most machine learning disciplines.

4. Compatibility: Due to the errors encountered earlier with the StandardScalar, the
regression model has to take a certain amount of features (in this case five), in order to
standardize it with the linear regression model which utilizes the StandardScalar’s data as
an input.

5. RandomForestRegressor model and GridSearchCV: Tuning the RandomForestRegressor
model is finding out what combinations work best for the training data, by using decision

trees, to make itself function at a high standard instead of relying on randomness (). The

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 18

RandomForest model uses the training data, past stock data, and the individual variable
functions to learn and calculate data through regression tasks. GridSearchCV takes in the
parameter grid and model and then trains the model by cross-validating multiple
combinations of the parameters. While doing this GridSearchCV also checks the model’s
performance to make sure it yields the best results.

Predictions: In the last section of the code, the latest features are selected and scaled so it
can be fed into the training model function (“best model.predict()”’) as a parameter and
saved in the variable “predicted change” as a prediction. The current price of the stock is
then found at the closing time and is defined as “current price” which is added to the
“predicted change” to define the “predicted price variable.” At the end, we can finally
get the predicted change percent in a “predicted change percent” variable by setting it

equal to the (predicted_change/current_price) * 100.

Results and Discussion

Initially, we tried using the GPT-3.5 model to create our prediction model. Even though

GPT-3.5 is significantly faster at generating responses, it did not have the updated training data

and added capabilities the Open Al team added to the GPT-4 model. When we tried using the

same prompt detailed in Figure A1 for the GPT-3.5 version:

L.

The bot refused to generate the prediction model and instead gave functions with
comments that read “to be implemented.”

The bot created a prediction model but had compilation errors. When asked to fix its
errors either logical errors appeared, or more compilation errors occurred.

The bot did not provide any pseudocode (a simplified programming outline), and instead

gave written instructions on how to go about building a stock prediction model.

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 19

We purchased the monthly GPT-4 subscription advertised by OpenAl because of the limitations
and difficulties of using GPT-3.5. As of November 2023, the GPT-4 plan can be purchased for
$20 a month, which is more accurate and has more features compared to GPT-3.5.
Disclaimer

All the conversations and outputs from ChatGPT can be verified by visiting the
References section (Final and Stock Prediction Model in Colab). We turned on the
Advanced-data analysis feature for GPT-4 from the drop-down section; however, we would like
to disclaim that GPT-4 did not create the entirety of the prediction model. In the middle of the
research, the model resorted back to GPT-3.5 when fixing the timing, though that was solely to
fix the time issue. In the appendix, where the prompts are listed, the statements that end with
“The previous model used in this conversation is unavailable. We’ve switched you to the latest
default model” are all created by GPT-3.5; all the other statements (including the prediction
model and feature engineering) were by the GPT-4 Advanced Data Analysis feature. GPT-3.5
was mainly to do with fixing the timing of the predictions and had nothing to do with fixing
historical data. It did not influence the calculations of the predictions. The above statements can
be verified by clicking the link to the chat log. We have decided to use all these images to not
omit information from the reader, so they can understand the full process we went through.
Visualization

In total, there were 12 day-to-day predictions made, and 1 weekly prediction made. A
day-to-day prediction involved running the stock at 9 PM PST, the day before an open trading
day. All of the daily predictions with their comparison can be viewed in the Appendix, in Table

Al-Table A12.

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 20

To gain an understanding of how the model performed over time, we created a line graph
with a trendline using linear regression. The metric we used to show the accuracy of the days
over time is the Mean Absolute Error (MAE), which is the average difference between the
predicted values and the actual values in the data tables. Since there are 10 predictions made per
trading day, the subtraction involving the difference in the actual percent change and the
predicted percent change was performed for each stock’s comparison and then averaged to form
the MAE.

The lower the MAE is, the more accurate the predictions are. Individual MAE points are
labeled over each one, though one concept is clear: the MAE reduces over time in this case.
This is a line graph with a trendline of the 12 day-to-day stock predictions:

Figure 12

Date vs. Mean Absolute Error for day-to-day predictions

Mean Absolute Error of Predicted vs Actual Percent Change

12 27 12.38

—8— MAE
== Trendline

12

10 -

Mean Absolute Error (MAE)

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 21

Figure 13
Actual Percent Changes vs. Predicted Percent Changes for weekly predictions

Actual vs Predicted Percentage Changes

60 157 74 —&— Predicted Change (%)
Actual Change (3&)

40 4
=
& 20
=
[
=
(o]
L5
{=21
=
=
w
=
[T
a o

-12.78 -12.59
823
—20 21.34 -
23.6Q,_ —
-26.36 -26.67 -
31.50 . -31.13 - 29.52%
a 2 4 (5] 8

Stock Index

One interesting point to note is the predictions appeared widely inaccurate in the first few
days; however, the last 6 predictions were very accurate with the exception of one of the days.
Because the model was given the same stocks over and over, it was able to cut down on
compiling time. The increase in accuracy might be explained by the increase in data for a stock
over time. The more data available, the more accurate the predictions became, and that can be
partially attributed to the technical metric functions used in Figure A10, Figure B10, and Figure
11. In Figure 13, the model was highly inaccurate. This was because the stock predictions over
the long term are difficult to calculate since much can change with stock over a week compared
to a day. There is more potential for stock breakouts, and breaking news, such as earning reports
that drastically change a stock’s value. This suggests that the daily prediction model was handled
significantly better than the longer-term predictions. There were possibly not enough trials run

on the weekly prediction, and perhaps more functions instead could have been used to assist the

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 22

linear regression model; however, we expected the model to be somewhat accurate with a few
positive predictions with little assistance because long-term predictions are safer for investors
and net more positive returns. It was quite surprising to see all the predictions do so poorly, that
not even one of the predicted ones did well.

The last point about this section involves the legality of implementing Al. Can artificial
intelligence-generated code be defined as intellectual property? Currently, there are no concrete
laws defining this because Al is a new space. With plagiarism detectors growing, it is easier to
detect Al-generated content that copies what has been said elsewhere. Algorithmic plagiarism
with the stock prediction programs can be much different, however. Since the algorithms are
intricate and use specific code, it is easy to define them as intellectual property and copyright.
These boundaries are undefined in some regions and still have ways to go to develop legally.
Using artificial intelligence chatbots like GPT can benefit society if used ethically and with
respect to each other’s work.

Conclusion

When developing the process for this research problem, we considered the rise of
Artificial Intelligence in society as of 2023. Large-language models like ChatGPT, one of the
first large-language models accessible to the public, are one of the reasons for this Al boom.
Artificial Intelligence and chatbots are useful for automated tasks like customer support and data
entry; and on a much larger scale, we tested if Artificial Intelligence can be accurate with limited
human intervention and guidance to predict stocks.

From our results, it is evident that the prediction models have a long way to go on their
own to give accurate predictions. Perhaps the data it is trained on could be expanded, which

spells the trade-off of efficiency versus accuracy. If the prediction model takes several hours, and

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 23

cannot compute before a trading day opens, it becomes less useful. This issue could potentially
be resolved with a more powerful system.

Overall, day-to-day trading led to higher yields in results than long-term trading. One
interesting thing to note is the improvement of the model over time; the predictions became more
accurate as the predicted change percent deviated from the actual percent changes. Our research
aims to help further innovation in prompting and stock prediction with Al at this moment by
promoting the integration of functions with Al to save time, manual calculation, and human

resources to perform these processes more effectively.

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 24

References
Bae, K., and Kang, J. (2017). Does the Stock Market Benefit the Economy? European Financial
Management Association.

https://www.efmaefm.org/OEFMSYMPOSIUM/2017/papers/Does%20the%20Stock%20

Market%20Benefit%20the%20Economy%20-%20updated.pdf

Chandanshive, G., and Ansurkar, G. (2023). A Comparative Study of Artificial Intelligence (AI)
Techniques for Stock Market Prediction, International Journal of Scientific Research in
Science and Technology, 842—851. https://doi.org//10.32628/IJSRST523102122

Glasserman, P., and Lin, C.(2023). Assessing Look-Ahead Bias in Stock Return Predictions
Generated By GPT Sentiment Analysis. https://doi.org/10.48550/arxiv.2309.17322

Jankova, Z., and Dostal, P. (2019). Utilization of Artificial Intelligence for Sensitivity Analysis
in the Stock Market, Acta Universitatis Agriculturae et Silviculturae Mendelianae
Brunensis, 67(5), 1269—1283. https://doi.org/10.11118/actaun201967051269

Lim, C., Bourke, L. Fouracre, K., Pallaras, L., and Barbaro, A. (2023, April 14). ChatGPT and
the Importance of AI Governance. Lexology.

http://www.lexology.com/library/detail.aspx?g=014{36ad-dcd8-4135-a045-1986a9631241

Mancini, J. (2023, April 25). ChatGPT can predict stock market moves? New study shows
ChatGPT surprisingly accurate in predicting stock moves and could even replace
investment analysts. Yahoo!Finance.
https://finance.yahoo.com/news/chatgpt-predict-stock-market-moves-185307674.html

Mokhtari, S., Yen, K. K., and Liu, J. (2021). “Effectiveness of Artificial Intelligence in Stock

Market Prediction based on Machine Learning,” International Journal of Computer

Applications, 183(7), 1-8. https:/doi.org/10.5120/ijca2021921347

https://www.efmaefm.org/0EFMSYMPOSIUM/2017/papers/Does%20the%20Stock%20Market%20Benefit%20the%20Economy%20-%20updated.pdf
https://www.efmaefm.org/0EFMSYMPOSIUM/2017/papers/Does%20the%20Stock%20Market%20Benefit%20the%20Economy%20-%20updated.pdf
https://doi.org/10.48550/arxiv.2309.17322
https://doi.org/10.11118/actaun201967051269
http://www.lexology.com/library/detail.aspx?g=014f36ad-dcd8-4135-a045-1986a963f241
https://finance.yahoo.com/news/chatgpt-predict-stock-market-moves-185307674.html
https://doi.org/10.5120/ijca2021921347

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 25

ChatGPT. (2022). ChatGPT. https://chat.openai.com/

OpenAl. (2023). GPT-4 Technical Report. OpenAl. https://cdn.openai.com/papers/gpt-4.pdf

OpenAl. (2023). Final. https://bit.ly/4A9WdmWq

OpenAl. (2023). Stock Prediction Model in Colab. https://bit.ly/3SWhn75

Warren, Geoffrey J., Long-Term Investing: What Determines Investment Horizon? (October 21,
2014). CIFR Paper No. 39, Available at SSRN: https://ssrn.com/abstract=2513088 or

http://dx.doi.org/10.2139/ssrn.2513088

Wu, B. (2023). Is GPT4 a Good Trader? arXiv. https://doi.org/10.48550/arxiv.2309.10982

Xela, A. (2023, March 16). S&P 500 Companies. Kaggle.

https://www.kaggle.com/datasets/alexanderxela/sp-500-companies

https://chat.openai.com/
https://cdn.openai.com/papers/gpt-4.pdf
https://bit.ly/49WdmWq
https://bit.ly/3SWhn75
https://ssrn.com/abstract=2513088
https://dx.doi.org/10.2139/ssrn.2513088
https://doi.org/10.48550/arxiv.2309.10982
https://www.kaggle.com/datasets/alexanderxela/sp-500-companies

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 26

Appendix A
Prompts and Results

Figure Al

Initial prompt to create a prediction model in Python.

o You

Create a machine learning model using any programming language that can be run in google
colab. The program should take all of the individual stocks in the S&P 500, which are listed is in
the first column of this csv path: /content/500_stock_List.csv

Keep in mind that the stocks are just listed and there is NO column heading with the word
"symbol"

Predict the top 10 stock gainers for the following trading day. For example, if the program runs
after the trading day starts on Monday, predict the stock prices and percent changes for the end
of the day on Tuesday. Keep in mind that if the program is run after Friday's trading time starts, you
should predict the stock prices for the end of the day on Monday. Trading days start at 6:30 AM
PST and end at 1:00 PM PST.

Print out the top 10 stocks' predictions in a neat format, along with their predicted percent
changes. Do not assume any code will be finished or written later. Make sure the program is as
accurate as possible. Only respond to me with the coding programs | can run that accomplish
these tasks, do not give me an outline or unusable code.

Figure B1
GPT-4 explaining its thought process.

©) chatGpT
Creating a machine learning model to predict the stock market accurately Is quite complex and
generally not reliable due to the random nature of the markets. Stock prices are influenced by
countless factors that can't be accurately captured by historical price data alone. However, for the sake
of demonstration, | will create a simple model using Python, TensorFlow, and Keras which you can run
in Google Colab.

Keep In mind that this Is Just a simplified example for educatlonal purposes, and It's not Intended to be

used as financlal advice or a real trading strategy.

Here's a script that you can use:

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure C1

Setting the trading day to a day of the week.

Ipip install yfinance

nort yfinance as yf
pandas as pd
port numpy as np
sklearn.model_selection) train_test_split
1 sklearn.preprocessing irport StandardScaler
sklearn.ensemble ¢ RandomForestRegressor
T datetime

B

(today):

if today.weekday() == &: & Friday

next_trading_day = today + datetime.timedelta(days=:)
=1if today.weekday() == S5: # Saturda:

next_trading_day = today + datetime.timedelta(days=)

next_trading_day = today + datetime.timedelta(days=1)

next_trading_day

27

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al 28

Figure D1

Downloading the stocks, using feature analysis for predictions; storing the predictions.

(stock_symbol, model, scaler, days=30):
vistorical data from Yahoo
data = yf.download(stock_symbol, period= , interval=

f data.empty:

)

¥_scaled = scaler.transform(X)

predicted_price = model.predict(X_scaled[-1].reshape(l, -1))
predicted_change_percent = (predicted_price - X[-1]) / X[-1] *

predicted_price[0], predicted_change_percent[O]

the st of S&P 500

df_stocks = pd.read_csv(¥ - , header=tonz)
stock_symbols = df_stocks . ilec[:, J].wvaluas

Initialize list

predictions = []

change_percents = []

today = datetime.datetime.now()

next_trading_day = get_next_trading_day(today)

model = RandomForestRegressor()

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure E1

Splitting into training and testing data for further analysis.

scaler = StandardScaler()

stock_data = yf. download(symbol, period= , interval=

stock_datal = stock_datal]1.dif£()

stock_data.dropna(inplace=Trus)
X stock _data.drop([], axis=i}
y = stock_data[

Split

_train, X_test, y_train, y_test = train_test_split(X, vy, test_size=

H Sfa |
¥_train_scaled = scaler.fit_transform{X_train)

X_test_scaled = scaler.transform{X_test)

modael fit(X_train_scaled, v_train)

the price change for the ne)

predicted _price, predicted_change_percent = predict_stock{symbol, model, sca

29

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 30

Figure F1

Error checking and print statements

if predicted price and predicted_change_percent:

predictions.append((symbol, predicted_price, predicted_change_percent))
ot Exception as
t(

predictions.sort(key=1 x: x[2], reverse=True)

print(

r i, prediction in re(predictions[:

print(

Figure G1

GPT-4 program notes and disclaimers

Please note the following points regarding this script:

The predictions made by this script are based on historical price changes and don't take into account
other critical market factors,

The model uses the Random Forest algorithm which Is not necessarily the best algorithm for time-
series predictions like stock prices.

The script does not include any feature engineering which is crucial for improving the model's
predictions.

Real stock trading algorithms use much more sophisticated methods and data sources to predict
stock prices.

It's recommended to have a good understanding of financial markets and machine learning before

attempting to trade based on algorithmic predictions.

Make sure you have the file " fcontent/500_stock_List.csv’ with the correct format available in your

Google Colak environment before running this script.

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al 31

Figure A2

Sending a compiler error that occurs back into GPT-4 for fixation.

°‘|’uu

ﬂ**ﬂﬂﬂomﬁ'*w!*ﬁfﬂi*ﬂﬂ*ﬂﬂi’] 1 nf1 camﬂlmd
An error occurred for DV X has 1features, but StandardScaler is expecting 5 features as input.
Jusrflocal/libfpython3 10/dist-packages/sklearn/base. py:439: Userwarning: X does not have valid
feature names, but StandardScaler was fitted with feature names

wamings.warn(
[Qg e of 1completed
[Q0 g g T e 1of 1 completed
An error occurred for DXC: X has 1features, but StandardScaler is expecting 5 features as input.
Jusrflocalflib/python3d 10/dist-packages/sklearn/base. py:439: Userwarning: X does not have valid
feature names, but StandardScaler was fitted with feature names

warmingswarn(
[FreeEi e O O R g et 1 of 1 completed
[remwemm QO s] of 1 comipleted
An error occurred for DXCM: X has 1features, but StandardScaler is expecting 5 features as input.
Jusrflocal/libf/python3.10/dist-packages/skiearn/base. py:439: UserWarning: X does not have valid
feature names, but StandardScaler was fitted with feature names

warnings.warn{

ChatGPT

@ The error you are encountering suggests that there's a mismatch in the number of features between
the training phase and the prediction phase, The "StandardScaler’ 15 expecting 5 features, which
means during tralning it was fit on data with 5 features, but during predictien, enly 1 feature |s being
provided.

The error arises because when predicting, we are anly using the ‘Close’ prices ('X =
datal'Close"].values.reshape(-1, 1)), which Isasingle feature, whereas the model was
trained with more features. To fix this, we need to ensure that the prediction phase uses the same
features as the tralning phase.

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

Figure B2

GPT-4 fixes the error

Here is the corrected version of the prediction part of the seript:

[<Copycode

data = yf.download(stock_symbel, period= , interwval=

if data.cmpty:

datal] = datal 1.diff{})
features = data.drop([.], axis=1)

latest_features = features.iloc[-.].values.reshape{l, -1}

latest_features_scaled = scaler.transform(latest_features)

predicted_change = model.predict(latest_features _scaled)
predicted_price = datal l.iloc[-1] + predicted_change[C]
predicted_change_percent = (predicted_change / datal].iloe[-1]) *

curn predicted_price, predicted_change_percent[(]

Make sure to adjust this function in the main loop where you are calling the “predict_stock”

function.

Also, ensure that you save and reuse the scaler that was fitted during training. Each stock symbel
will have its own scaler, so you may nesd to save each scaler and retrieve the correct one for the
corresponding stock when making predictions. The script provided does not do this and would

need to be madified to accommodate saving and retrieving scalers for each stock.

Lastly, this is still a very simplistic approach to stock prediction and is likely to not perform well,
Real-world stock prediction is much mere complex and often not reliably accurate. It's highly
recommended to sesk proper financial advice and perform rigorous backtesting before using any

kind of automated system for trading.

32

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al 33

Figure A3

Adding categories to the table for prediction evaluation later.

Anonymous
good. Now when the program is run get the current stock prices and also print the predicted
percent changes, not just the predicted price. print it in a neat stylistic format

y ChatGPT
Understood. To achieve this, we will modify the function to fetch the current stock prices for the day
and calculate the pradicted percent changes relative to those prices. We will also enhance the output

formatting to maks it more readabls and well-presentsd.
Below is the complete revised code:

python
lpip install yfinance

yEinance vE

pandas pd
sklearn.model _selection train_test_split
sklearn.ensemble RandomForestRegressor
skleaxn.preprocessing StandardScaler

datetime

TRADING_START _HOUR =
TRADING_END_HOUR =

()
now = datetime.datetime.now()
trading_day_end = datetime.time{hour=TRADING_END_HOUR, minute=[)
now.time{) > trading_day_end

(}:
today = datetime.datetime.now()

(today.weekday(]) == is_after_trading_hours(}) or today.weekday()} >
next_trading_day today + datetime.timedelta({days=(7 - today.weekday(]}})

next_trading_day = today is_after_trading_hours({) =I today + dateti
next_trading_day.date()

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure B3
Prints entire working prediction program.
(stock_sywmbols):
predictions = []

symbol in stock_sywbols:

data = yf.download{symbol, period= y interval=

datal 1 = data[1.diff()
data.dropna(inplace=

X = data.drop([1, axis=1)
y = data[

¥_train, X_test, y_train, y_test = train_test_split(X, y, test_size=

scaler = StandardScaler()

X_train_scaled = sealer.fit_transform(X_train)

model = RandomForestRegressor(random_state=0)
model . £it(X_train_scaled, y_train)

latest_features_scaled = scaler.transform(X.iloc[-1:].values)
predicted_change = model.predict(latest_features_scaled)[”]
current_price = datal J.iloc[-11]

predicted_price = current_price + predicted_change

predicted_change_percent = {predicted_change / current_pzrice) *

predictions.append({
: symbol,
+ current_price,
: predicted_price,

: predicted_change_percent

Exception

print(

34

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure C3

Prints the entire working prediction program.

1, reverse=

predictions .sozt{key=

predictions[:10]

df _stocks = pd.read_cswvi{
stock_symbols = df _stocks.iloc[:, 0].walues

next_trading_day = get_next_trading_day()

predictions = predict_stock_prices(stock_symbals)

prediction predictiona:

print(

This code will:

Cheek if the current time is after trading hours.
Adjust the prediction day to the next trading day accordingly:
Fetch the last close price of the stock.

Predict the price change and the next day’s prics.

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

Figure A4

Logic error occurs with the trading times; GPT-4 attempts to fix this issue.

0 You

| believe something is off with the timing. When | ran the program at 9 PM PST on November 1st, it
gave me the predictions for november 3rd end of the day. | want predictions for november 2nd end
of the trading day.

essentially, If i run the program after the trading day ends on monday, it should give predictions for
end of the trading day (1 PM PST) on Tuesday.

ChatGPT

| see what you mean. To predict the stock prices for the end of the trading day on Tuesday when
running the program after Monday's trading day ends, you should consider a different approach to
calculate the prediction date. You can use the current time and adjust it to the next trading day if

needed. Here's the modified code:

Figure B4

Fixed time error in the code.

ort yfinance as yf
rt pandas as pd

OTT NUmMpY 25 NR
sklearn._model_selection 1 rt trainm_test_split
sklearn.ensemble import RandemForestRegressor
sklearn.praprocessing StandardScaler

import datetime

():
now = datetime.datetime.now()
trading_day_end = datetime.time(

return now.time() >= trading_day_end

0:
today = datetime.date.today()
£ today.weekday() == 4: # Tf today is Friday, move to Monda
next_trading_day = today + datetime.timedelta(days=3)
next_trading_day = today + datetime.timedelta(days=1)
N next_trading_day

{stock_symbols)

predictions = []

36

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure C4
Prints the rest of the program.

for symbol in stock_symbols:

data = yf.download{symbol, pericd= y interval=

Prepare the data for the model
datal 1 = datal 1.dif£()}
data.dropna{inplace=

X = data.drop([1, axis=1)
v = datal

scaler = StandardScaler()

¥_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

omForest model

RandomForestRegressor()

fit(¥_train_scaled, y_train]

B PIL1GE Change IoT LIM1e EXLT LIAOL da

latest_features = X_test scaled[-1].reshape(l, -1)

predicted_change = model. predict{latest_features)

predicted _price = datal].ilecl[-1] + predicted_change[7]

37

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure D4

Prints the rest of the program.

predictions. sort(key=1: ®[1], reverse=Truc

1 predictions

df _stocks = pd.read_csv(

, headez=lonz)
stock_symbols = df_stocks.iloc[:, C].wvalues

is_after trading_day_end():

next_irading_day = get_next_trading_day()

next_trading_day = datetime.date.today()

predictions = predict_stock_prices{stock_symbols)

int(

- i, prediction in = (predictions[:101):

This code will give you predictions for the end of the trading day on November 2nd when you run it after
the trading day ends on Movember 1st. It checks the current time to determine if it's after the trading
day's end and adjusts the prediction date accordingly.

Figure 5

More format and neatly formatted print statement.

print(

prediction in predictions:

print(

This code will:

Check if the current time is after trading hours.

Adjust the prediction day to the next trading day accordingly.
Fetch the last close price of the stock,

Predict the price change and the next day's price.

Calculate the predicted percent change

38

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figu

re A6

GPT-4 suggests ways to improve the accuracy of its predictions.

Q You

@

]

(]

I

=r]

Good. Mow tell me in words what else can be done to make the initial prediction model maore
accurate,

ChatGPT
To make the initial stock price prediction model more accurate, you can consider the following
strategles and techniques:

. More Feature Engineering:

* Explore additional features like technical indicators (9. moving averages, RSI, MACD),
fundamental data (e.g., P/E ratio, market capitalization), and news sentiment analysis 1o
ncorporate more information into the model.

. Longer Historical Data:

* Use a longer historical dataset, beyond the 60 days, to capture more long-term trends and

patterns that can affect stock prices.
. Better Feature Selection:

* kdentily the most relevant features for prediction and remove nolse from the data. Use

technigues like feature importance analysis to select the most informative features.
. Hyperparameter Tuning:

* Fine-tune the hyperparameters of the machine learning model, For the Randgom Forest
Regressor, you can adjust parameters like the number of trees, depth of trees, and the
minimum number of samples required to split a node.

. Cross-Validation:

* Implement cross-validation technigques like k-fold cross-validation 1o assess the model's

performance and identify potential overfitting,
. Ensemble Methods:

* Consider ensemble methods like stacking or blending multiple machine leaming models to

combine their predictions for improved accuracy.
. Feature Scaling and Normallzation:

* Experiment with different scaling and normalization technigues to preprocess the data.

Ensure that the chosen method is appropriate for the features and the model,

39

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Fig

ure B6

GPT-4 suggests ways to improve the accuracy of its predictions.

a

11.

12

14

17

18,

. Handling Imbalanced Data:
* Address any class imbalance issues in the dataset. if the dataset has significantly more
examples of one class, it can lead to biased predictions.
. News and Event Data:
* Integrate real-time news and event data that can influsnce stock prices. This can help the
model react to breaking news and events in real-time.
. Sentiment Analysis:

* Incorporate sentiment analysis of financial news and social media data to gawge market

sentiment, as market sentiment can strongly impact stock prices.
Data Preprocessing:

* Clean and preprocess the data more thoroughly, handling missing values, outliers, and

anomalies in a way that best suits the dataset.
Time Series Analysis:

* Consider using time series analysis technigues, such as auteregressive integrated moving
average (ARIMA) or Prophet, for medeling and predicting time-dependent stock price
patterns.

. Additional Data Sources:

* Explore aothér data sources, such as économic indicators, séctor-specific data, or global

market data, which can provide valuable insights into the stock market,
Advanced Models:

* Experiment with mare advanced machine learning models, such as recurrent nesural networks
(RNNs) and long short-term mémaory natworks (LSTMs), which aré well-suited for séquential
data like time serles.

5. Risk Managemant:

* Implement risk management strategies, such as stop-loss orders and position sizing, to
mitigate lasses when trading based on predictions.
. Contlnuous Model Updating:
* Regularly retrain and update the model with new data to adapt to changing market conditions.
Backtesting:
* Conduct extensive backtesting to evaluate the model's historical performance and identify
areas for improvemnent.
Expert Advice:
= Seek guidance from financial experts or data scientists with domain knowledge in finance to
refine the model.

40

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al 41

Figure A7

GPT uses its own words to make the model more accurate, displaying our limitation of human

intervention. Here it adds the RSI function to improve accuracy.

‘:' You

Using what you have just told me, make the initial prediction model more accurate

) ChatGPT

Improving the accuracy of a stock price prediction model is a complex task that requires a combination
of strategies and fine-tuning. While | can provide general guidance, it's important to understand that
stock price prediction remains a challenging and uncertain endeavor. Here's an extended version of the

initial prediction model with some enhancements:

python lfj Copy code

datetime 1 timedelta
pandas_datareader data

fix_yahoo_finance ¥t

data = yf.download(symbol, period= interval=

datal 1 datal J.rolling(window=10) . mean()
datal[1 data[J].rolling(window=50) _mean()

data(1 = compute_rsi(datal 1, window=14)

data[l 1 = compute_macd(datal 1, ')

(data, window):
delta = data.diff()
gain = delta.where(delta > 0, U)
loss = -delta.where(delta < 0,)
avg_gain = gain.rolling(window=window, min_periods=1).mean()
avg_loss = loss.rolling(window=window, min_periods=1).mean()
s = avg_gain / avg_loss

rsi = - q /(1 + 18))

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure B7

GPT-4 adds the MACD function and implements cross-validation to improve accuracy.

{dlala, shorl_window, long wimndow):

emal? = data.cwm An=short window, adjus 1.meant

emalf - dala.ows =long_window, adjusi- Jomezan()

macd — emal? - emal
signal = macd.ewm{span=", adjust=) .mean()
macd - =ilgnal

X = datall
y = datal

param_grid = [

Im bl RanebomFo
skleamn.moedel_selection Gri

mexdel - RanchomFor
ﬂ'l:'l d search = Gridsearchi¥{mode
grid_scarch. Tiv{X, v}

best_model = grid_search.best_sstimator_

current data = pdr.get_data_yahoo!{symbol, end-datetime.now(})
current Teatu = current data.iloc] nr

Teatu 1L B Bl
predicted_change — best_model.predict{current_features)
Current _pr = purrent_datal J.iloc[-1]
predicted_price - current_price 1 predicted_change[]

42

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 43

Figure C7

GPT-4 explains what it changed to improve accuracy, in five steps.

current_price

price change = (cutrent price - predicted price) § predicted price *
wrint(

nt{

In this extendad maodsel

Extended Historical Data: We've increaased the historical gata to 180 days to capture more long-term
trends

Feature Engineering: Additional features like Simple Moving Averages (SMA), Relative Strength Index
{51y, and Moving Average Convergence Divergence (MACD) are computed, providing mare
infarmation to the madel.

Hyperparameter Tuning: The madel's hyperparameatars are optimized using GridSearchCy. Yau can
fine-tune other parameters such as "min_samples_split’, ‘min_samples_leaf , and mors.
Cross-Validation: Cross-validation iz applied to assess the model's performance and reduce
awerfitting.

Real-Time Data: We use "pandas_datareader’ to fatch real-tims data, and the mogel pregicts the

change inthe current trading seszion. The comparison with the predicted and actual prices is printed.

Thess enhancements aim ta provice a mare comprehensive and accurate pradiction. However, it's
crucial to remember that even with these improvements, stock price pradiction remains inherently
uncertain due to the dynamic and unpredictable nature of financial marksts. The model's predictions

should be used in conjunction with thorough risk management and diversified investment strategies.

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure A8

Prompted to give a working program.

‘. You
e give me the antire working initial prediction program, with the changes in the previous
response (extended model). hers is the intial trading modek
‘pip install yfinance

impaort yfinance as yf

import pandas as pd

from skiearn.mogel_selection import train_test_spit
from sidearnensemble import RendomFPorestRegressor
from skiearn.preprocessing import StandardScaler
import datetime

Define constants for the trading hours.
TRADING_START HOUR =6 # 630 AM PST
TRADING_END_HOUR =13 #1:00 PM PST

Function to check if the current time iz after the trading day's end

def |s_after_trading_hours():
now = datetimedatetime nowl)
trading_day_end = datetime timefhour=TRADING _END_HOUR, minute=0)
return nowtimel) > trading_day_end

Funetion te get the next trading day's date
daf gat_next_trading_day(k
today = datelime.datetime.now()
It it's Friday after tradling hours, or it's Saturday or Sunday, skip to Monday
it (todayweekday() == 4 and is_ster_trading_hours(l) or todayweskday(> 3
next_trading_day = today + datetime timadaitaidayse(T - todayweekday(l)
gloa
naxt_trading_day = today if not iz_after_trading_hours() elze today +
datetirme time deltaldays=T)
return nect_trading day.datel)

Pradict the stock pricas and percent changes for the next trading day
def pradict_stock prices(steck_symbalsk

Initialize lists to store predictions

pradictions =[]

for symbial in stock_symbaols:
oy
W Fetch historical data from Yahoo Finance
data = yf downloadisymbol, periods™B0d, intervals™id")

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure B8
Prompted to give the entire working program.

® Prepare the data for the model
data[Change] = data[Close)it
data dropnafinplace=Trus)

X = datadrop([Close’, Change], axiz=T1)
¥ = data['Change]

Spiit the dataset into the train set and the test set
X _trasm, X _test y _train, y_test = train test splitl y, test_size=02 random _state=0)

Initialize and fit the StandardScaler
scaler = StandardScaler()
X tran scaled = gealerfit transfarmX_train)

initialize and fit the RandomFarest model
rmodel = RandamForestRegressar(randam_state=0)
rgdel fd_train_scaled, y_train)

Predict the price change for the next trading day

latest features_scaled = scabertransformiloci-tivalues)
predicted_change = model predict{latest_features_scaled){0]
current_price = datal'Clase) iloc]-1)

predicted_price = current_price + predicted_change

pradicted _change_parcent = (predicted change [current_prica) * 100

Store the results
predictions.appendl{

“syrbal™: symbal,

“gurrent_price”: current, price,

“predicted _price™ predicted_price,

“predicted _change_percent™ predicted_change_percent
]

except Exception as &
printiFAn error occurred fior {symboll {8}

Sort the predictions by the predicted percent change
predictions sort(keyslambda x; x["predicted_change_percent™), reversesTrug)

return predictions(:10] & Return only the top 10 predictions
¥ Read the list of SEP 500 stock symbols from a CSV file

df_stocks = pd.read_cav(/content/S00_stock_Listcsy', header=None)
stock_symbols = df stocks.ilocl, Olvalues

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

Figure C8

Prompted to give the entire working program.

&

Get the next trading day
next_trading_day = get_next_trading_day()

Predict stock prices and percent changes for the next trading day
predictions = predict_stock_prices(stock_symbols)

MNeatly print the predictions
print(f"Top 10 Stock Predictions for {next_trading_day.stritime(%Y-%m-%d"} (End of Day)")

e R L ")
print(f"{'Symbol:<10} | {Current Price">17} | {Predicted Price':>17} | {'Change (%):>11}7)
PHAL("=msmsmenmemememenee e en e me e me e s e s n e e e ")

for prediction in predictions:
print{f"{prediction['symbol7<10} | "
f'${pradiction[current_price'l:.4f} | "
f'${pradiction[pradicted_price']-4f}|"
f'{prediction['predicted_change_percent'].4f}%")

ChatGPT
Here's the entire initial prediction program with the enhancements mentioned in the previous

response. This includes feature engineering, hyperparameter tuning, and cross-validation. The code

expects the stock symbel data to be read from a CSV file, but you would need to provide the actual path

to that CSV file, or otherwise adapt the code to fetch the symbols from another source.

python [<o py code:

!pip install yfinance

'pip install pandas dalareader

yI
pandas pd
sklearn.model _selection train_test_split, GridSearchCV
ensemble RandomForestRegressor
prep ssing StandardScaler
datetime
pandas_datareader data pdx
Tix_yahoo_finance vyt

46

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al 47

Figure D8

GPT-4 gives the entire updated program.

TRADTHG_START _HOUR =
TRADING _END_HOUR =

(1
now - datetime.datetime._now()

trading day_end datetime. time({hour=TRADING END HOUR, minute=0)
now.time()} > trading day_end

():
today = datetime.datetime.now()

(today .weakday() == is_atter_trading_hours{)) today . weekday() =

next _trading day - today + datetime.timedelta(days-(7 - today.weekday())})

next_trading_day today is_after_trading_hours() today + dateti
next trading day.date()

{data, window):
delta = data.diff()}
gain = delta.where(delta = 0, U}
loss = -della.where{delta < 0,)
avg_gain = gain.rolling{window=window, min_pericds=1).mean()
avg_loss = loss, rolling{window=window, min_pericds=1).mean()
TS = avg_pgain Jf avg_loss
red - f (1l + 1s))

rsi

(data, short window, long window):
emal? = data.ewm{span=short_window, adjust= J.mean()
cma26 = data.ewm{span=long window, adjust=Falsc).mean()
macd = emal2 ema26
signal = macd.ewm({span=-, adjust=l }.mean()

macd - signal

(stock_symbols):

redictions = []

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure E8

GPT-4 gives the entire updated program.

Figure F8

symbol stock_symbols:

data = yf.download(symbol, period= , interval=

datal] = datal 1.diff()

datal 1 datal 1.rolling(window=10) mean()
datal 1 = datal 1.rolling(window="0) .mean()
datal 1 = compute_rsi(datal 1, window=1:}
datal 1 = compute_macd(datal 1, ')

data.dropna(inplace=)

X = data[[
y = data[

X_train, X_test, y_lrain, y_testl = Lrain_test_split(X, y, lesl_size=

scaler = StandardScaler()

X_train scaled = scaler.fit transform(X_train)

param_grid = {

model = RandomForestRegressor(random_state=0)
grid_search = GridSearchCV(model, param_grid, cv=2)
grid search.fit(X_train scaled, y_Lrain)

besl _model = grid search.best _eslimalor

latest_features X.iloc[-1:].values

latest_features_scaled = scaler.transform({latest_features)
predicted_change = best_model.predict(latest_features_scaled}[(]
current_price = datal 1.1loc[-1]

predicted price = current price + predicted change

predicted_change percent = (predicted_change / current _price) *

48

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al 49

GPT-4 gives the entire updated program.

predictions . append (£
= mymbol,
;ocurrent_price,
: predicted_price,

: predicted_change _percent

Lxception
print

predictions.sort{key= ®: X 1, reverse=

predictions[: 0]

header=

df_stocks = pd.rcad_csv(

stock_symbols = df _stocks.iloc[:, O].values

next_trading_day = get_next_trading_day({)

predictions predict stock prices{stock symbols)

ﬁ You

continue

(5 ChatGPT

Certainly, here is the continuation and completion of the code block to neatly print the predictions:

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

Figure G8

GPT-4 gives the entire updated program.

python [*) Copy code

primt{
print(
prediction predictions:

print{

Make sure you change " 'path_to_your_csv/500_stock_List.ecsv'’ tothe actual path where the S5V

containing the stock symbals is located on your machine.

n this program, the pradiction of stock prices has been done using historical stock data, The madelis a
RandomForestRegressor, and we've used a GridSearchCV for hyperparametar tuning. Feature

anginearing has been applied ta include 2 simple maving average, the relativa strength index (RS1), and
the moving avarage convergence divergence (MACD) as additional features for the model, which could

patentially imprave the predistions.

The final output will list the top 10 stocks, sorted by the predicted percent change in price, in a neatly

formatted table with current and pradicted prices as well as the percent change, The prices and

percent changes are displayved up to four decimal places, as requested,

50

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

Figure A9

GPT-4 creates the evaluation program, to see how accurate the predictions are.

a Wou

Mow ereate anather program that takes the steck predictans and praces from e srogram yoau
gave mae, and comaare them to the actusl stock prices ab the end of the trading day that was
predicted. Hens i an example of the output from the ather program. Assume there is no csv file
Lize the yhndnce library 1 g&t the Surmdnt 216K prsted

Top 10 Stock Pradictions fiar 2023-1-02 (End of Day)

2y mbg Lument Price | Predicted Frice | Change ()
FRCE S0.0300 | S00337 | 123333

GMRC | S9E1300 | 51020088 | TIS5TH

AIZ 664800 | STE 3050 BeinG

L0 | $213.5000 | $225.6086 | 5TI36%

AMD $I080400 | $1149.03508 | 55496

GRMN | 5135300 1 5m=uB055 | 55T
AMET 1529008400 | 52215104 | 0605
DO L4100 | 9T IHT | 345457
MLM | 54330700 | 34535540 | 33664
STX | STL2400| $T25934 | 3.3035%

() ChatGPT
To compare the predicted stock prices and changes with the actual stock prices at the end of the
trading day, you can create a program that retches the curment SIoCck prces using the “yilnance
library and companes them with the predictions. from the previous orogram Herg's a P'_.-l'!t:1 program

that coes just thak

Te<] GATA

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure B9
GPT-4 prints several categories: current price, predicted price, actual price, predicted percent

change, and actual percent change.

(prodicted data)
current_prices L1
entry predicred data:

symbal = entryl 1

data = yf.Ticker(sysbol)
current _price data.history{pericd
entiy| 1 curfmésnl _ price
Exception
entry|
{

h_current price odicted data)

antry prodicted_data

symbol entryl 1
predicted price entryl

curreant prilcé ent Ty . ety

current price

price changs {current _price predicted price) / predicted price *

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

Figure 9C

Prompting GPT-4 to compare predictions to prices at I PM PST of trading day (end of trading
day).

@ vYou

adjust the comparison madel from the prevous response to compare the end of the trading day (1
PM PSTh stack prices. Kesp this part so | knaw that | can keep these stock inputs:
ar result in comparison_results:

{"symbol” "FRCE", "predicted _price™: Q0337

{"symbol™ "GMRC", "predicted_price™ 103.0088]},

{"symbol-"AlZ", "predicted _price™ 17830507,

{"symbol™ "TT", "predicted_price" 2256984},

{"zymbal” "AMD", "predicted _price”; 1140358},

{"symboel "GRMN', "predicted_price” N2.8055]

¥ price™ 2215104},

{"symbl™ "WMLM®, "predicted_price”: 4532540},

{"symbal™= "S5TX", "predicted _price™ TE.5334}
Alzo make =sure the user can manually enter the date to check the stock prices atthe end of the
day.

La0D

() ChatGPT
To adjust the comparisen program to compare the end of the trading day (1 PM PST) stock prices and

allew the user ta manually enter the date, you can madify the code as follows:
python [Copycoca
yiinance vt

pandas pd
datetime

{predictions, target_date):

comparison_results = []

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure 9D

Prediction program printed.

prediction predictions:

gymbol — predictionl

start_date — target_dete.replacel(hour—-1-, minute—1, second—_)
end_date = target_dat place{hour=17, minute=_, second=_} + datetime. t
actual_data - yf.download{symbol, start-start_date, end-end_date)

actual_close_price — ectual_datal J.1locl-1] 1 actual_date.emnp

antual
change percent acioal - {Ecioal ol price
comparissn_raesults pend({

: symbal ,

1)
Exception

print(

comparison_Teaults

predictions - [

- T

54

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure E9

Prediction program given by GPT-4, with an explanation on how to input the evaluation date.

target_date_str = input(

Larget _date = datetime.datetime.strptime({targel_date_str,

ValucError:
print(

comparison_results = compare_predicted_actual(predictions, target_date)

ntq
nt(
inti
T
result comparison results:
print(

This adjusted code allows the user to enter the target date in YYYY-MMM-DD format and then fetches
the actual closing prices for the specified date (end of the trading day, 1FM F5T) to compare therm with
the predicted prices. The comparison results ars printed in a formatted table. You can replace the
sample predictions with your actual predictions.

Figure A10

Explained in the Code Explanations section.

Figure B10

Explained in the Code Explanations section.

55

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al

Figure A1l

Weekly prediction program prompt.

9 Anonymous
Create a machine learning model using any programming language that can be run in

google colab. The program should take all of the individual stocks in the S&P 500,
which are listed is in the first column of this csv path: fcontent/500_stock_List.csv
Keep in mind that the stocks are just listed and there is NO column heading with the
word "symbol”

Predict the top 10 stock gainers for the start and end date given, which is suppose to
be a weekly time frame. For example, if the program runs after the trading day starts on
Monday, predict the stock prices and percent changes for the end of the day on the
next week's Monday. Keep in mind that the stock market is not open for trading on the
weekends. Trading days start at 6:30 AM PST and end at 1:00 PM PST.

Print out the top 10 stocks’ predictions in a neat format, along with their predicted
percent changes. Do not assume any code will be finished or written later. Make sure
the program is as accurate as possible. Only respond to me with the coding programs |
can run that accomplish these tasks, do not give me an outline or unusable code.

Make your predictions as accurate as possible, use anything you need.

change the csv file content path to this:
Jcontent/500_stock_List.csv

also print the predicted price and predicted percent change.

@ Data Analysis
To create a machine learning model for predicting the top 10 stock gainers from the

S&P 500, we'll need to follow several steps. Since we're aiming to run this in Google
Colab, I'll provide you with a Python script that you can directly use there. The script

will:

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

Figure B11
Instructions on the program’s function, along with the code output are given.

R=ad the stock symbaols from the provided C5Y file.

Feteh historical stock data for each s

Buld and traim a machine learmmng medal an this data.

Pradict the stock pnices lar the specihed Limea i

Calculate the percent change and identify the top 10 gainers.

Output the results in a formatted way

For the stock data, we can use the “yEfinanee’ library, which allows us to fetch
historical market data from Yahoo Finance, We'll use a simple machine learning model,

guch as a lingar regrassor, due to ks ease of use and spead, although mare cormplex

Hare 15 the complabe scriph:

pandas
yrinanoe
sklearn.linear model Linearhs:
earn.model selection train_test_split
datetine datetime, timedelta

numpy np

{symbnl, start date, =nd_date):

rl_date, end=end_d:

stock_data
datal
stock_datal[

y = stock_datal

train_test_split(¥, ¥, test_size= » Iandom_state=0)

57

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al 58

Figure C11
Program finishes printing. This is less advanced but uses the Linear Regression model, which is

explained in the Concepts and Equations section.

{model, future_dav):
model . predict{np.array{ [[future_day]1})

= pd.read_cev(, header=
tocks[0].tolist()

end date = datetime. nowi)
sltart _d; = gawd_daita Limeda]ta{days= }

predict_date = end_dalte + Cimedelta(days=7)
predictions = {}
symbia] synbdl G

stock_data = fetch_stock data(symbol, start_date, end_date)

¥_traim, ¥_test, y_train, y_test = prepare_dataistock_datal

madel = Linearfegressiony)

model, fit{¥_traim, y_Lrain)

futurs price = predict futurs price{madel, lsnistock data) + ¥
lacst price = stock data.lloc[-1]

peroent _change = ((fulure_pr last _price) f last_price) *

predictionsleymbol] = (future_pricelU], percent_changall])
Exception as e:

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 59

Figure D11

Prints top gainers.

top_gainers = sorted(predictions.items(), key= x: x[11[(1], Tevers

print{)
symbol, (predicted_price, percent_change) top_gainers:
print(

Instructions for Google Colab:

Copy the script into a new Google Colab noteboolk.
Upload your “500_stock_List.csv file to the Colab environment.
Install the required libraries (like “yfinance™) by running “!pip install yfinance’.

Run the script.

Motes:

The script uses a inear regraession model for simplicity and demonstration purposes.
This is not typically used for accurate stock prediction in real-world scenarios.

Stock market predictions are inherently uncertain and should be approached with
caution.

The model does not consider external factors like market news, global events, or
company-specific developments, which can significantly impact stock prices.

The prediction is made for a week ahead, but keep in mind that stock markets are
influenced by many unpredictable factors, so the aceuracy of such predictions can be

limited.

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

Table A1

Appendix B

Tables for Day-to-day Predictions

Comparison of Predicted and Actual Prices for 2023-11-02 (End of Day 1)

Symbol Current Price Predicted Price Actual Price Pred. Change Act. Change
FRCB $0.030 $0.0337 $0.020 12.3333% -33.3333%
GNRC $96.130 $103.0088 $99.360 7.1557% 3.3600%
AlZ $166.480 $176.3050 $163.790 5.9016% -1.6158%
TT $213.500 $225.6986 $213.110 5.7136% -0.1827%
AMD $108.040 $114.0358 $107.830 5.5496% -0.1944%
GRMN $113.530 $119.8055 $114.450 5.5276% 0.8104%
ANET $210.840 $221.5104 $211.680 5.0609% 0.3984%
DXCM $94.130 $97.3817 $93.670 3.4545% -0.4887%
MLM $439.170 $453.9540 $440.740 3.3664% 0.3575%
STX $71.240 $73.5934 $71.810 3.3035% 0.8001%
Table A2.
Comparison of Predicted and Actual Prices for 2023-11-03(End of Day 2)
Symbol Current Price Predicted Price Actual Price Pred. Change Act. Change

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

SBNY $0.020 $0.0319 $0.015 59.3167% -25.0000%
SBUX $101.290 $108.0368 $102.650 6.6609% 1.3427%
TFX $207.125 $220.5410 $211.030 6.4773% 1.8853%
TYL $409.160 $435.4585 $416.250 6.4274% 1.7328%
WBD $10.960 $11.6270 $11.770 6.0857% 7.3905%
PH $404.156 $426.3609 $401.190 5.4942% -0.7338%
GNRC $101.840 $107.3458 $104.920 5.4063% 3.0244%
SEE $33.110 $34.8812 $34.620 5.3496% 4.5606%
CDAY $66.790 $70.1806 $65.200 5.0765% -2.3806%
Table A3.
Comparison of Predicted and Actual Prices for 2023-11-06 (End of Day 3)
Symbol Current Price Predicted Price Actual Price Pred. Change Act. Change
EXPE $112.910 $125.9099 $111.5900 11.5135% -1.1691%
PARA $13.745 $15.1147 $12.6900 9.9651% -7.6755%
IT $387.280 $419.2664 $392.5400 8.2592% 1.3582%
SBNY $0.014 $0.0151 $0.0200 8.2000% 42.8571%
MRNA $78.065 $82.9687 $72.0700 6.2816% -7.6795%
CZR $44.402 $47.1506 $43.9000 6.1894% -1.1315%

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

62

WBD $11.775 $12.4021 $11.4500 5.3257% -2.7601%
AAP $57.150 $60.1575 $56.6300 5.2624% -0.9099%
AES $16.685 $17.5543 $16.3375 5.2098% -2.0827%
Table A4.
Comparison of Predicted and Actual Prices for 2023-11-07 (End of Day 4)
Symbol Current Price Predicted Price Actual Price Pred. Change Act. Change
SBNY $0.020 $0.0266 $0.020 33.2119% 0.0000%
LUMN $1.320 $1.4490 $1.300 9.7712% -1.5152%
CEG $124.730 $129.8805 $119.870 4.1293% -3.8964%
D $45.590 $47.0996 $45.580 3.3113% -0.0219%
LLY $595.190 $6114655 $599.930 2.7345% 0.7964%
VFC $15.950 $16.3374 $15.990 2.4290% 0.2508%
BKNG $2,971.430 $3,041.9767 $3,011.900 2.3742% 1.3620%
WYNN $95.140 $97.3478 $93.180 2.3206% -2.0601%
MOH $348.530 $356.4882 $349.460 2.2834% 0.2668%

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 63

Table AS.

Comparison of Predicted and Actual Prices for 2023-11-08 (End of Day 5)

Symbol Current Price Predicted Price Actual Price Pred. Change Act. Change

SBNY $0.020 $0.0224 $0.010 11.9867% -50.0000%
GEN $18.930 $19.9612 $19.320 5.4474% 2.0602%
EXPE $118.050 $122.8595 $116.560 4.0741% -1.2622%
WAT $260.670 $267.5762 $255.820 2.6494% -1.8606%
BIO $302.820 $310.4496 $305.140 2.5195% 0.7661%
CLX $132.520 $135.6595 $131.930 2.3691% -0.4452%
PAYC $167.840 $171.7249 $167.520 2.3147% -0.1907%
AAP $58.380 $59.7151 $57.640 2.2870% -1.2676%
MTCH $29.990 $30.6617 $29.840 2.2397% -0.5002%

A $110.540 $112.9669 $109.390 2.1955% -1.0403%

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 64

Table A6.

Comparison of Predicted and Actual Prices for 2023-11-09 (End of Day 6)

Symbol Current Price Predicted Price Actual Price Pred. Change Act. Change

FRCB $0.040 $0.0513 $0.020 28.1667% -50.0000%
EXR $118.530 $126.3878 $118.100 6.6294% -0.3628%
DVA $84.810 $88.1150 $84.310 3.8970% -0.5896%
TTWO $143.470 $148.4022 $146.320 3.4378% 1.9865%
LLY $619.130 $639.1039 $591.320 3.2261% -4.4918%
JKHY $149.940 $154.5998 $149.210 3.1078% -0.4869%
GEN $19.320 $19.9101 $19.000 3.0543% -1.6563%
WST $345.300 $355.6693 $336.040 3.0030% -2.6817%
FIS $53.000 $54.4687 $51.780 2.7711% -2.3019%

PWR $169.760 $173.8290 $169.570 2.3969% -0.1119%

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

Table A7.

Comparison of Predicted and Actual Prices for 2023-11-13 (End of Day 7)

65

Symbol Current Price Predicted Price Actual Price Pred. Change Act. Change
SBNY $0.014 $0.0205 $0.018 43.9162% 25.8741%
HOLX $72.130 $75.3526 $71.400 4.4677% -1.0121%
LRCX $685.430 $711.1783 $673.430 3.7565% -1.7507%
WBD $10.130 $10.5027 $9.890 3.6795% -2.3692%
MCHP $77.560 $80.3397 $76.620 3.5839% -1.2120%
AMAT $150.680 $155.6505 $149.740 3.2987% -0.6238%
KLAC $534.250 $551.7923 $528.250 3.2835% -1.1231%
AMD $118.590 $122.4451 $116.790 3.2508% -1.5178%
QRVO $91.660 $94.6063 $90.370 3.2144% -1.4074%
MPWR $504.580 $520.5932 $507.120 3.1736% 0.5034%

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 66

Table AS.

Comparison of Predicted and Actual Prices for 2023-11-14 (End of Day 8)

Symbol Current Price Predicted Price Actual Price Pred. Change Act. Change

SBNY $0.018 $0.0223 $0.017 24.0175% -5.5556%
DVA $88.380 $91.8750 $92.120 3.9545% 4.2317%
HSIC $67.500 $69.8445 $68.900 3.4733% 2.0741%
DXCM $98.350 $101.7618 $101.380 3.4691% 3.0808%
BSX $53.710 $55.2244 $54.020 2.8196% 0.5772%
BA $204.540 $210.3013 $207.470 2.8167% 1.4325%
TSLA $223.710 $228.4147 $237.410 2.1030% 6.1240%
RCL $97.810 $99.7475 $102.810 1.9809% 5.1119%
MOS $34.500 $35.1294 $35.910 1.8243% 4.0870%

SYK $281.840 $286.9014 $283.030 1.7959% 0.4222%

TRADING FORECASTING ANALYSIS THROUGH GENERATIVE Al 67
Table A9.
Comparison of Predicted and Actual Prices for 2023-11-15 (End of Day 9)
Symbol Current Price Predicted Price Actual Price Pred. Change Act. Change
ENPH $91.390 $99.3748 $92.810 8.7371% 1.5538%
LUMN $1.300 $1.4100 $1.380 8.4628% 6.1538%
SEDG $79.350 $85.1574 $80.040 7.3187% 0.8696%
BXP $56.690 $60.7847 $57.020 7.2230% 0.5821%
ARE $105.320 $112.8484 $105.710 7.1481% 0.3703%
EXR $129.550 $138.2878 $130.000 6.7447% 0.3474%
NWL $7.360 $7.8520 $7.660 6.6851% 4.0761%
FSLR $149.140 $158.6778 $152.420 6.3952% 2.1993%
CCL $13.890 $14.7294 $14.570 6.0432% 4.8956%
MHK $86.730 $91.8022 $86.330 5.8483% -0.4612%

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

Table A10.

Comparison of Predicted and Actual Prices for 2023-11-16 (End of Day 10)

Symbol Current Price Predicted Price Actual Price Pred. Change Act. Change
TGT $130.460 $144.1118 $129.890 10.4644% -0.4369%
VEC $17.770 $19.3428 $17.210 8.8509% -3.1514%
CTLT $39.560 $41.8922 $39.870 5.8953% 0.7836%
EXPE $130.330 $137.0379 $136.380 5.1469% 4.6421%
ETSY $71.740 $74.9120 $72.530 4.4215% 1.1012%
PARA $13.170 $13.7448 $13.190 4.3643% 0.1519%
CRL $187.570 $195.6387 $189.040 4.3017% 0.7837%
NWL $7.660 $7.9816 $7.550 4.1983% -1.4360%
CCL $14.570 $15.1677 $14.790 4.1023% 1.5100%
LUMN $1.380 $1.4356 $1.350 4.0290% -2.1739%

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al 69

Table A1l.

Comparison of Predicted and Actual Prices for 2023-11-17 (End of Day 11)

Symbol Current Price Predicted Price Actual Price Pred. Change Act. Change

SIVBQ $0.030 $0.0420 $0.020 39.9105% -33.3333%
INTC $43.350 $45.7277 $43.810 5.4848% 1.0611%
SBNY $0.017 $0.0178 $0.017 4.6286% 0.0000%
GEN $20.400 $20.9855 $20.660 2.8703% 1.2745%
ISRG $303.950 $312.1209 $305.280 2.6882% 0.4376%
DXCM $104.770 $107.3922 $104.970 2.5028% 0.1909%
TGT $129.940 $132.8336 $129.890 2.2269% -0.0385%
SHW $269.300 $275.0610 $270.280 2.1392% 0.3639%
GNRC $113.480 $115.6829 $114.120 1.9412% 0.5640%

ALL $134.859 $137.4563 $134.190 1.9260% -0.4961%

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

Table A12.

Comparison of Predicted and Actual Prices for 2023-11-20 (End of Day 12)

70

Symbol Current Price Predicted Price Actual Price Pred Change Act Change
SBNY $0.017 $0.0188 $0.016 10.6049% -5.8823%
ROST $128.820 $134.8374 $129.430 4.6712% 0.4735%
EXPE $136.380 $142.5671 $134.900 4.5366% -1.0852%
DISH $3.570 $3.7253 $3.650 4.3511% 2.2409%
ALB $127.390 $131.1294 $130.360 2.9354% 2.3314%
PARA $13.190 $13.5261 $13.930 2.5482% 5.6103%
MTCH $32.430 $33.1995 $32.590 2.3729% 0.4934%
VTRS $9.450 $9.6741 $9.470 2.3718% 0.2116%
ETSY $72.530 $74.2216 $72.070 2.3323% -0.6342%

SYF $29.880 $30.5237 $29.820 2.1543% -0.2008%

TRADING FORECASTING ANALY SIS THROUGH GENERATIVE Al

Table B1.

Appendix C

Table for Week-long Prediction

Comparison of Predicted and Actual Prices from 2023-11-17 to 2023-11-24

71

Symbol Predicted Price Actual Price Predicted Change Actual Change
ALGN $320.400 $219.4800 57.74% -31.5000%
SEDG $113.370 $78.0800 48.16% -31.1300%
PAYC $253.260 $178.4900 45.85% -29.5200%
ILMN $133.550 $98.3400 40.28% -26.3600%
ON $94.480 $69.2800 36.03% -26.6700%
OGN $14.870 $11.3600 35.84% -23.6000%
HAS $58.670 $46.1500 30.00% -21.3400%
FTINT $65.340 $53.4300 29.59% -18.2300%
XRAY $35.910 $31.3200 21.32% -12.7800%
ALB $147.430 $128.8700 20.26% -12.5900%

