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Artificial Intelligence in Gastrointestinal Endoscopy

Alexander P. Abadir1, Mohammed Fahad Ali1, William Karnes2 and Jason B. Samarasena2

1Department of Medicine, University of California Irvine, Orange, CA, 2Division of Gastroenterology & Hepatology, Department of Medicine,  
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Artificial intelligence (AI) is rapidly integrating into modern technology and clinical practice. Although in its nascency, AI has become 
a hot topic of investigation for applications in clinical practice. Multiple fields of medicine have embraced the possibility of a future with 
AI assisting in diagnosis and pathology applications. 
In the field of gastroenterology, AI has been studied as a tool to assist in risk stratification, diagnosis, and pathologic identification. 
Specifically, AI has become of great interest in endoscopy as a technology with substantial potential to revolutionize the practice of 
a modern gastroenterologist. From cancer screening to automated report generation, AI has touched upon all aspects of modern 
endoscopy.
Here, we review landmark AI developments in endoscopy. Starting with broad definitions to develop understanding, we will summarize 
the current state of AI research and its potential applications. With innovation developing rapidly, this article touches upon the 
remarkable advances in AI-assisted endoscopy since its initial evaluation at the turn of the millennium, and the potential impact these 
AI models may have on the modern clinical practice. As with any discussion of new technology, its limitations must also be understood 
to apply clinical AI tools successfully.  Clin Endosc  2020;53:132-141
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Introduction

Artificial Intelligence (AI) is becoming rapidly integrated 
into modern technology in various specialties and industries, 
including gaming, physics, weather, and social networking.1,2 
In medicine, AI is already being used to distinguish malignant 
melanomas from benign nevi and to identify diabetic retinop-
athy and diabetic macular edema from retinal fundus photo-
graphs.3-5 In gastroenterology, AI is being tailored to address 
clinical questions and assist in medical decision making. It has 
utility in a broad spectrum of digestive diseases, with AI being 

developed for all subspecialties of gastroenterology. With the 
rapid expansion of diagnostic imaging and treatments avail-
able to gastroenterologists, the field is primed to reap the ben-
efits of AI implementation. The following is an overview of AI 
as it applies to a critical aspect of the field—endoscopy.

Development of Machine 
Learning

Machine learning is a subset of AI. A computer can contin-
ue to learn based on information or experiences it has already 
learned. This provides the machine with an opportunity to 
improve its ability to perform a task over time without hav-
ing been explicitly programmed for such a task. Hence, with 
machine learning, more complex functions and tasks can be 
learned, such as algorithms for self-driving cars and flying of 
drones.6

A common area of interest in AI development is facial rec-
ognition. DeepFace is a continually developing neural network 
used to identify faces in images. Trained by millions of social 
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media images, it reaches an accuracy of 97.35% on unclassi-
fied images and is bridging the gap between automated and 
human facial recognition.7 DeepFace has been implemented in 
social media to identify faces and provide recommendations 
for users of the platform. This exact technology can be applied 
to endoscopic images where lesions are identified, differen-
tiated, and classified similar to faces of various individuals 
through the use of convolutional neural networks (CNNs).

Convolutional Neural Network

Advanced machine learning models such as CNNs are 
highly effective at image classification tasks. A CNN is de-
signed to think similarly to the human brain, using large im-
age datasets to learn patterns in correlating images. It achieves 
this with a construction similar to how biological neurons are 
interconnected. By connecting inputs through pattern recog-
nition, a CNN can “learn” the process of classification much 
like a person. These models are trained with datasets contain-
ing images that have an element of interest versus datasets that 
do not. Typically, a dataset is randomly partitioned to reserve 
subsets for cross-validation.8 This allows the developing mod-
el to experience new information and ensure that the model 

does not “overfit” on previously seen data. Over time, CNNs 
learn how to detect the element of interest more accurately. 
A CNN makes inferences and predictions as if it believes that 
the element of interest is present within any given image, even 
if it has never seen that specific image before (Fig. 1).

The use of CNN is ideal for training an algorithm to detect 
and localize a lesion in endoscopy, such as detecting the pres-
ence of a polyp on colonoscopy screening. Using the images 
labeled by an observer, the algorithm has learned what an 
adenoma looks like on colonoscopy imaging. Subsequently, 
CNN is tested on images it had not previously seen to validate 
that the resulting model can identify previously unseen ade-
nomas. The result is an algorithm that will place a bounding 
box around what it believes is likely to be an adenoma in a 
real-time colonoscopy video feed. Such a technology might 
significantly improve an endoscopist’s adenoma detection rate 
(ADR), as we will discuss later.5

Applications of AI in Colonoscopy

Colon polyp detection
Colorectal cancer remains the second most common cause 

of cancer-related deaths within the United States. The Amer-

Fig. 1. Convolutional neural network (CNN) identification of a polyp. The CNN identifies the edges of a polyp via color and contour patterns. It further expands its rec-
ognition, going through multiple pathways to expand the identification area. The CNN identifies a pattern that it suspects as a polyp, tracing the borders of the lesion. 
Finally, the CNN reports the lesion to the endoscopist via a rectangular box around the polyp on the colonoscope output feed.

Layer 1 Layer 2 Layer 3 Layer 4 Output
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ican Cancer Society estimated there were 51,020 colorectal 
cancer deaths in the United States in 2019.9 However, effective 
colorectal cancer screening has been shown to detect precan-
cerous polyps early. With every increase in 1% of a gastroen-
terologist’s ADR, the risk of an interval cancer decreases by 3% 
to 6%.10,11 However, ADRs vary greatly between colonoscopists 
(from 7% to 53%).10

With the health risks of colon cancer, AI-assisted colon 
polyp detection has been an area of great interest. Multiple 
AI algorithms have been developed to run real-time during 
colonoscopy and will alert an endoscopist of the presence of 
polyps with either a visual cue or a sound. Karnes et al. devel-
oped an adenoma detection model that can effectively identi-
fy premalignant lesions.12,13 Using images from 8,641 screening 
colonoscopies, a CNN was developed with 96.4% accuracy 
at a maximum rate of 170 images/s.12,13 This CNN was shown 
to aid polyp detection, even for high-performing colonosco-
pists. Nine colonoscopy videos were reviewed by three expert 
colonoscopists (ADR ≥50%). One senior expert (ADR ≥50% 
and >20,000 colonoscopies) then reviewed all polyps found 
by the original colonoscopist, expert panel, and by the ma-
chine learning model and labeled each polyp as either low- or 
high-confidence for the presence of a polyp. In these videos, 
28 polyps were initially identified by the original colonosco-
pists, which were removed. However, the expert review group 
identified a total of 36 polyps, while the CNN identified a 
total of 45 polyps without missing any unique polyps. On 
review, the CNN’s additional 9 polyps were split between  
3 high-confidence and 6 low-confidence polyp candidates. 
Machine learning vs. expert review of machine-overlaid vid-
eos had a sensitivity and specificity of 0.98 and 0.93, respec-
tively (Chi-Square p<0.00001). By identifying 9 additional pol-
yps compared with an expert panel, this CNN demonstrates 
the ability to assist even high-ADR colonoscopists during live 
colonoscopy.5,14 

Additional research groups have studied polyp detection. 
Tajbakhsh et al. developed a computer-assisted diagnosis 
(CAD) system to detect polyps in real-time.15 A hybrid context 
shape approach was used, in which non-polyp structures were 
first removed from a given image followed by localization 
of polyps by focusing on areas with curvy boundaries. This 
group reported an 88% sensitivity in real-time polyp detec-
tion.15 Fernández-Esparrach et al. developed a CAD system to 
detect polyps by evaluating polyp boundaries and generating 
energy maps that corresponded to the presence of a polyp.16 In 
that study, 24 videos containing 31 different polyps were in-
cluded. The sensitivity and specificity for the detection of pol-
yps were 70.4% and 72.4%, respectively.16 Each study demon-
strates a different approach to improving the effectiveness of 
colonoscopy screenings for identifying lesions of interest.

Colon polyp optical pathology
It has been shown that routine post-polypectomy pathology 

diagnosis and real-time endoscopic optical diagnosis are com-
parable amongst small colorectal polyps. Optical diagnosis 
may be more cost-effective and time-efficient compared with 
traditional post-polypectomy pathology diagnosis, as polyps 
do not need to be acknowledged or reviewed by a pathologist. 
For this reason, optical pathology has gained more acceptance. 
Multiple groups have worked toward developing CAD sys-
tems, in which computational analysis is used to predict polyp 
histology.17

Min et al. created a CAD system to predict adenomatous 
polyp vs. non-adenomatous polyp histology using linked color 
imaging.18 This system achieved an accuracy of 78.4%, which 
is comparable to the accuracy of expert colonoscopists. The 
system had a sensitivity of 83.3%, specificity of 70.1%, positive 
predictive value (PPV) of 82.6%, and negative predictive value 
(NPV) of 71.2% in determining an adenomatous vs. non-ad-
enomatous polyp.18 With narrow-band imaging (NBI) mag-
nification, Kominami et al. developed a CAD that achieved 
an accuracy of 93.2%, a sensitivity of 93.0%, a specificity of 
93.3%, PPV of 93.0%, and NPV of 93.3% between colorectal 
polyps’ histologic findings and real-time image recognition.19 
Aihara et al. developed a CAD model based on “real-time” 
color analysis of colorectal lesions using autofluorescence 
endoscopy.20 The model had a sensitivity of 94.2%, specificity 
of 88.9%, PPV of 95.6%, and NPV of 85.2% in distinguish-
ing neoplastic and non-neoplastic lesions during screening 
colonoscopies.20 Renner et al. developed a CAD system to 
distinguish neoplastic vs. non-neoplastic polyps using unmag-
nified endoscopic images.21 Optical pathology was compared 
with histopathological diagnoses. The optical pathology CAD 
system achieved an accuracy of 78%, sensitivity of 92.3%, and 
NPV of 88.2% compared with histopathological diagnoses.21

Zachariah et al. recently released the findings of a colon 
polyp AI with high optical pathology predictions.22 Proposed 
in 2011 by the American Society of Gastrointestinal Endosco-
py’s “Preservation and Incorporation of Valuable Endoscopic 
Innovations”, the goal is to achieve an accuracy of >90% and 
an NPV of >90% for optical pathology compared with tradi-
tional histopathology. These thresholds may allow the “resect 
and discard” strategy for accuracy and “diagnose and leave” 
for NPV of diminutive polyps of ≤5 mm. These small polyps 
typically dictate surveillance colonoscopy intervals in the cur-
rent guidelines and are, therefore, of high interest for cancer 
prevention despite having 0.3% high-grade dysplasia. Using a 
large dataset of over 180,000 polyps, Zachariah et al. selected 
5,278 high-quality images from typical white-light and NBI 
imaging systems of individual unique diminutive polyps with 
known pathology.22 Of these images, 3,310 were adenomatous 
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polyps (tubular, tubulovillous, villous, and flat adenomas) 
versus 1,968 serrated polyps (hyperplastic and sessile serrat-
ed polyps) and were partitioned into 5 subsamples (80% for 
training and 20% for validation with cross-fold validation). 
With a focus on comparing with histopathology as the gold 
standard, the overall accuracy of optical pathology with CNN 
was 93.6%, with an NPV of 92.6%, PPV of 94.1%, sensitivity 
of 95.7%, and specificity of 89.9%. Both white-light and NBI 
were tested without significant difference in their perfor-
mance. As overall accuracy was >90% and NPV was >90%  
(Fig. 2), this study demonstrated that optical pathology diag-
nosis of colorectal polyps using a CNN is feasible and may 
achieve more strict goals, which eliminates the need for a 
histopathological diagnosis by pathologists. Even more im-
pressive, this CNN could run in real-time and did not require 
specialized imaging systems or light sources beyond what is 
commonly available in the gastrointestinal suite.22 

Endocytoscopy (EC), using specialized endocytoscopes that 
have a forward-facing microscope capable of real-time mag-
nification of over ×1,000, compared with the typical ×50 avail-
able with a traditional endoscope, EC has opened an entirely 
new imaging technique in gastroenterology, promising a diag-
nosis without resection. Several research groups have started 
to combine EC with CAD systems to generate advanced AI 
assistants, which have achieved in-procedure pathologic di-
agnosis. Mori et al. in 2015 developed the EC-CAD system, 
which used stained feature extraction to predict neoplastic 
polyps in 152 patients.23 Polyps less than 10 mm were analyzed 
by EC in real-time for neoplastic changes. The CAD achieved 

a sensitivity of 92.0% and specificity of 79.5%, with an accura-
cy of 89.2% for identifying neoplastic changes, comparable to 
those of expert endoscopists.23 Removing the need for stain-
ing, Misawa et al. further refined the EC model using NBI to 
achieve more impressive results with the overall sensitivity of 
84.5%, specificity of 97.6%, and accuracy of 90.0% using the 
existing training images.24 When the resulting probability of 
diagnosis was >90%, the result was considered a “high-con-
fidence” diagnosis. These diagnoses carried an overall sensi-
tivity of 97.6%, specificity of 95.8%, and accuracy of 96.9%, 
surpassing the proposed cutoffs for a “diagnose-and-leave” 
system rather than universal resection with histopathologic 
diagnosis.24

Automated endoscopy report 
writing 

There has been great interest amongst our research group in 
the concept of report “auto-documentation” using AI. Com-
puter vision AI algorithms can be used to “observe” the tech-
nical aspects of the procedure and then document the activity. 
The following is a summary of the work conducted to date for 
colonoscopy report writing. 

Automated cecum detection
Karnes et al. developed a CNN to identify the cecum to de-

velop automated cecal intubation and withdrawal time docu-
mentation.25 Here, 6,487 colonic images throughout the entire 

Fig. 2. Optical pathology algorithm of colon polyps showing an adenoma prediction (A) and serrated polyp prediction (B).

A B
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colon were annotated and labeled with anatomic landmarks, 
lesions, and preparation quality by two experienced colonos-
copists. With both white-light and NBI images, a binary clas-
sification model was used to differentiate the cecum versus 
other colonic areas, with 80% of the images used for training 
and the remaining 20% for validation. In preliminary results 
for a smaller subset (1,000 images), the model achieved 98% 
accuracy and 0.996 area under the receiver operator charac-
teristic curve. When the entire dataset was used, the accuracy 
decreased to 88%, which may have been due to more visually 
challenging images in the dataset. Further improvements in 
accuracy and validation of this model may help lead automa-
tion in the documentation of cecal intubation and calculation 
of total withdrawal time.25

 
Automated device recognition

Working toward automated recognition of endoscopic 
tools, Samarasena et al. developed a CNN to detect devices 
during endoscopy and colonoscopy.26 Images of snares, for-
ceps, argon plasma coagulation catheters, endoscopic assist 
devices, dissection caps, clips, dilation balloons, loops, injec-
tion needles, and rothnets were all studied by the CNN. A to-
tal of 180,000 images (56,000 of which had had at least one of 
these devices) were used to create the model. Further, 80% of 
the images were used to train the model and 20% were used 
for validation. The CNN had an accuracy of 0.97, area under 
the curve of 0.96, sensitivity was 0.95, and specificity was 0.97 
for detecting these devices. Moreover, the system processed 
each frame within 4 ms. The algorithm has accurately detect-
ed these devices in a still image.26

 
Automated bowel preparation score management

Because of a strong correlation between the quality of 
colonoscopy preparation and ADR, bowel preparation score 
is another metric that should be automatically assessed with 
AI. The Boston bowel preparation scale (BBPS) is commonly 
used to assess bowel preparation quality but has a significant 
interoperator variability. To minimize interoperator variabili-
ty, Karnes et al. developed a CNN to score bowel preparation 
quality.27 A total of 3,843 colonic images were reviewed by two 
expert colonoscopists, who scored each bowel preparation 
image on a BBPS of 0–4. Then, 80% of these images were used 
to train the model and 20% were used to validate the model. 
The model had an accuracy of 97% when identifying a single 
frame as adequate (BBPS, 0–1) or inadequate (BBPS, 2–3) bowel 
preparation. The model processed each frame within 10 ms.27

 
Automated polyp size measurement

Accurate polyp size measurement is important for deter-
mining an appropriate timing of surveillance colonoscopy 

screening. However, there is an inconsistency in accurately 
determining polyp size despite using rulers or biopsy forceps. 
Requa et al. developed a CNN to estimate polyp size during 
live colonoscopy.28 A total of 8,257 images of polyps were 
included and labeled into three different size groups—dimin-
utive (≤5 mm), small (6–9 mm), and large (≥10 mm)—by a 
single expert colonoscopist who has performed over 30,000 
colonoscopies with an overall ADR of 50%. The resulting 
model had an accuracy of 0.97, 0.97, and 0.98 for polyps  
≤5 mm, 6–9 mm, and ≥10 mm, respectively, and processed 
100 fps, capable of being run during live colonoscopy. The 
ability to accurately categorize polyps into three different size 
groups in real-time colonoscopy may help endoscopists more 
accurately and consistently determine an appropriate timing 
of surveillance colonoscopy and additionally document polyp 
sizes during live colonoscopy.28

Artificial intelligence in 
inflammatory bowel disease

AI has already been applied to assisting in diagnosis of 
inflammatory bowel disease (IBD). Mossotto et al. describe 
using machine learning to develop new models for pediatric 
IBD classification.29 They developed a model that incorporated 
both endoscopic and histologic data to separate pediatric IBD 
into Crohn’s disease or ulcerative colitis with 82.7% accuracy, 
with the presence of ileal disease, the single most important 
factor for disease classification.29 Maeda et al. used EC to ex-
amine histologic inflammation in ulcerative colitis.30 With EC, 
they developed an AI model that identified persistent histo-
logic inflammation with 74% sensitivity and 97% specificity. It 
accurately detected histologic inflammation in 90% of cases. 
The identification of inflammation had 100% interobserver 
reproducibility with the EC system.30 

Historically, endoscopic scoring of IBD has been a challenge 
regarding inter and intra-observer agreement. Commonly 
used scores such as the endoscopic subscore or the Mayo 
Score have been challenged by a lack of clinical validation and 
a disagreement on repeated observations. Alternative scoring 
systems have been developed to correlate to clinical status or 
pathology findings yet rely on calculations and measurements 
that are more time-consuming.31 “Central readers”, clinically 
blinded endoscopic scorers who received specialized training, 
are an alternative approach to improve interobserver agree-
ment in clinical trials.32 AI scoring is an alternative to these 
models. The Mayo endoscopic subscore was used as the basis 
to develop a CNN scorer for ulcerative colitis. Abadir et al. 
have demonstrated that it is possible to create a CNN capable 
of strongly differentiating between mild and severe endoscop-
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ic disease.33 Bossuyt et al. proposed that rather than strictly fo-
cusing on white-light endoscopy, newer imaging technologies 
may be combined with CNNs to develop clinically valid com-
putational scoring systems.34 AI models in IBD scoring lead 
to the possibility of CNNs increasing interobserver agreement 
in IBD disease scores without additional physicians or more 
complicated scoring systems. 

Early Gastric Cancer Detection

Gastric cancer is the third leading cause of cancer-related 
death worldwide. Gastric cancer can easily be missed on rou-
tine imaging and endoscopy, especially in countries with a 
low incidence of the disease and where training is limited. The 
5-year survival rate of gastric cancer highly correlates with 
the stage of gastric cancer at the time of diagnosis. Therefore, 
it is paramount to improve our detection rates of early gastric 
cancer. Many groups have already started integrating AI into 
their routine practice to improve their overall detection rates 
of gastric cancer.35 For endoscopists, gastric cancer has many 
visual features that are challenging to describe. To identify these 
subtle findings, Hirasawa and colleagues used 2,296 images 
(714 with confirmed gastric cancer) to develop a CNN with 
an overall sensitivity of 92.2% to detect gastric cancer via im-
aging alone.35 

To localize blind spots during an esophagogastroduodenos-
copy (EGD) that may have otherwise been missed, Wu et al. 
produced the WISENSE system, a real-time CNN to detect 
blind spots.36 These blind spots of gastric mucosa, such as 
the lesser curvature of the antrum and the fundus, are areas 
that may occur depending on the endoscopist’s abilities and 
may hide lesions. Trained on 34,513 images for gastric sites 
agreed on by at least four endoscopists, WISENSE detected 
blind spots with an accuracy of 90.02% by identifying these 
anatomic landmarks in EGD. In a single-center randomized 
control trial, 153 patients had their blind spots detected by 
WISENSE vs. 150 for the control group with unaided EGD. In 
the WISENSE group, the rate of blind spots was 5.86% versus 
22.46% for the control group, a significant difference. This 
may be in part due to longer inspection times of an average 
5.03 min in the WISENSE group vs. 4.24 min for the control 
group; the time could be longer in part because the AI has 
reminded the endoscopist to check the blind spots. WISENSE 
had the added benefit of providing more complete endoscopy 
imaging reporting than the control-group endoscopists.36

Magnified NBI (M-NBI) has been shown to have higher 
detection rates of early gastric cancer. However, many endos-
copists are not trained to confidently use M-NBI. To address 
this, Kanesaka and colleagues developed a CAD to help di-

agnose early gastric cancer using only M-NBI images. The 
system that identifies gastric cancer using M-NBI achieved 
an accuracy of 96.3%, PPV of 98.3%, sensitivity of 96.7%, and 
specificity of 95%. Their CAD processed each image in 0.41 s.37 

Helicobacter pylori is associated with an increased risk of 
gastric cancer but can be difficult to identify endoscopically. 
Therefore, an early detection has been an area of interest for 
the reduction in gastric cancer. Itoh and colleagues trained a 
CNN to detect the subtle endoscopic features caused by H. py-
lori. Their CNN achieved a sensitivity and specificity of 86.7% 
to detect H. pylori via a single endoscopic image.38 Shichijo et 
al. developed a similar CNN to detect H. pylori within a single 
endoscopic image with a sensitivity, specificity, accuracy, and 
diagnostic processing time of 81.9%, 83.4%, 83.1%, and 198 s, 
respectively.39 These findings are comparable to the detection 
rates of H. pylori by an endoscopist with the added benefit of 
identifying H. pylori much faster via computer assistance.39 

Determining the depth of gastric cancer invasion is critical 
for prognosis. However, gastric cancer depth can be difficult 
to determine with endoscopy alone. Kubota et al. developed a 
computer-aided system to determine the depth of wall inva-
sion from an endoscopic image.40 The overall accuracy of the 
correct depth of invasion was 64.7%. The accuracy based on 
gastric wall invasion was 77.2%, 49.1%, 51.0%, and 55.3% for 
T1, T2, T3, and T4 staging, respectively. This computer-aided 
system demonstrates a novel approach to determine the depth 
of gastric cancer wall invasion via endoscopy.40 

Regarding diagnosis, it is vital to have an accurate and con-
sistent histological interpretation of a prepared gastric cancer 
slide. To minimize the intra- and interobserver variability in 
interpreting a gastric biopsy, Sharma and colleagues devel-
oped a CNN. Their CNN was trained to interpret histological 
images of gastric cancer, achieving an accuracy of 69.9% for 
gastric cancer identification and 81.4% for necrosis detection. 
Further development of a similar CNN can lead to a more 
standardized, consistent, and accurate diagnosis of gastric 
cancer.41 

Esophageal Neoplasia Detection

Barrett’s esophagus is a topic of intensive investigation for 
AI development. Traditionally difficult to detect with imaging, 
serial biopsies have been the gold standard for the identifica-
tion of this esophageal pathology. However, with the subtle 
visual changes present in Barrett’s esophagus with dysplasia, 
there is a considerable risk of missing a diagnosis of dysplasia 
on endoscopy. Among expert and community endoscopists, 
the rates of dysplasia detection (both with lesions that could 
be visually identified or not) remain highly variable.42 This 
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provides an opportunity for AI systems to improve patient 
care and early diagnosis of esophageal precancerous lesions. 
Van der Sommen et al. worked toward developing a CAD 
from high-definition images to detect dysplastic lesions in 
Barrett’s esophagus.43 This system was constructed with 100 
annotated endoscopic images and compared with expert scor-
ers. During the final analysis, the expert scorers demonstrated 
consistently superior sensitivity and specificity (greater than 
95% sensitivity and 65%–91% specificity) compared with the 
CAD systems tested, and the system demonstrated per-image 
sensitivity and specificity of 83% for dysplastic lesions. While 
not compared with nonexperts, this early feasibility study 
demonstrated that, with sufficient training, a CAD system 
may eventually reach the American Society of Gastrointes-
tinal Endoscopy’s target of per-patient sensitivity of 90% or 
higher for an optical imaging technology.43

De Groof et al. continued work on CAD development 
for Barrett’s esophagus detection.44 Prospective collection of 
white-light imaging from 40 Barrett’s and 20 non-dysplastic 
patients were delineated by six experts for suspected areas of 
Barrett’s. Areas with >50% overlap by the experts were the 
“sweet spot” and with one expert identifying dysplasia the 
“soft spot” used to train the CAD. Per-image, an accuracy of 
91.7%, sensitivity of 95%, and specificity 85% was achieved by 
the CAD. Localization was successful in 100% of the soft spots 
and 97.4% of the sweet spots, indicating substantial agreement 
with the experts. Finally, “red flags” indicating CAD-identified 
dysplasia were placed within 89.5% of soft spots and 76.3% of 
sweet spots. With a mean time of 1.051 s/image, the algorithm 
rapidly identified Barrett’s esophagus in white-light imaging.44 

Our research group described the development of a 
high-functioning CNN to identify early neoplasia within 
Barrett’s esophagus. Trained on 916 images of early esophageal 

neoplasia or T1 adenocarcinoma confirmed by biopsy from 
65 patients, this image set was combined with an equal num-
ber of Barrett’s esophagus without high-grade dysplasia to 
create a training set of images, with 458 images separated for 
validation. The CNN correctly identified neoplasia in Barrett’s 
esophagus with a sensitivity of 96.4%, specificity of 94.2%, 
and accuracy of 95.4% (Fig. 3). Localization of the dysplasia 
was also highly accurate. Furthermore, the speed at which 
predictions were made was well above 70 fps. Hence, it is pos-
sible to develop a CNN system for dysplasia detection during 
real-time endoscopy.45 

For esophageal cancer detection, Horie et al. used 8,420 im-
ages of esophageal cancer from 384 patients to develop a CNN 
based on the single-shot multibox detector framework.46 Us-
ing images from white-light and NBI, the constructed CNN 
identified all lesions over 10 mm with an overall sensitivity 
for esophageal cancer detection of 98%. The system analyzed  
30 images/s.46 

Cai et al. also developed a system to identify early esoph-
ageal squamous cell carcinoma.47 Using 2,428 standard EGD 
white-light images from 746 patients, 1,332 showed abnormal 
endoscopic tissue. Endoscopic submucosal dissection was 
performed on all cases with abnormal visual findings to verify 
pathology, while 3 experienced endoscopists annotated the 
images for pathology based on NBI images and pathology 
results (2 classifying with 1 verifying). A validation set of 
187 images, reviewed by blinded endoscopists separated by 
seniority, was used to compare the results with the 8-layer 
CNN. The CNN had a sensitivity, specificity, accuracy, PPV, 
and NPV of 97.8%, 85.4%, 91.4%, 86.4%, and 97.6% with an 
AUC of 0.96 for early esophageal squamous cell carcinoma. 
When compared with the blinded endoscopists, the CNN 
had a greater sensitivity, accuracy, and NPV than any of the 
endoscopists. However, all groups demonstrated improvement 
in metrics when referring to the CNN results, demonstrating 
that the CNN may assist the endoscopists in diagnosis.47 

Capsule Endoscopy

AI use in capsule endoscopy is a growing research field. 
Capsule endoscopies are often multiple hours long with a sig-
nificant time burden for the reader. Moreover, the same study 
may occasionally miss a pathology, as confirmed by a review 
of a second reader.48 There have been programs developed to 
improve the speed at which a reader can assess a complete 
capsule study, but they have been shown to occasionally miss 
a significant pathology.49 With large amounts of video data, 
capsule studies are an ideal target of AI development to aid 
gastroenterologists in identifying distinct landmarks and areas 

Fig. 3. Optical pathology algorithm predicting an area of dysplasia within a 
segment of Barrett’s esophagus. 
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of interest. As newer generations of high-definition capsules 
emerge, richer data are available for training a CNN to detect 
masses or source of occult bleeding. Leenhardt et al. devel-
oped a CNN to detect gastrointestinal angioectasias in the 
small bowel.50 This model is proved to have 100% sensitivity 
for detecting angioectasias, with a specificity of 96%. This al-
gorithm assesses a full-length study in 39 min, with 46.8 s/still 
frame.50

Recently, Lui et al. presented data acquired from 439 capsule 
videos used to create a CNN that identified multiple types of 
lesions and their lumen locations.51 With an accuracy of 97%, 
the model identified arteriovenous malformations, erythema, 
varices, bulges, masses, ulcerations, erosions, blood, red villi, 
diverticula, polyps, and xanthomas on capsule endoscopy im-
ages. It achieved 98% accuracy for location identification, and 
both models processed an entire capsule study in 10–15 min 
at 500 fps.51

Ding et al. published results on a small bowel capsule CNN, 
which was developed using data from 77 medical centers sup-
plying 113 million images from 6,970 patients.52 Normal small 
bowel images were distinguished from lesions of interest in 
the initial 1,970 patients to develop the CNN with the other 
5,000 patients used for validation. CNN predictions were 
compared with conventional capsule analysis by trained gas-
troenterologists to confirm or reject CNN categorization. The 
resulting 4,206 lesions of interest were identified by the CNN 
with 99.88% sensitivity in a per-patient analysis, compared 
with 74.57% sensitivity by gastroenterologists. Mean reading 
time by the CNN was 5.9 min compared with 96.6 min by the 
traditional method, demonstrating the impressive efficiency 
of CNNs in capsule endoscopy.52 

Prospective trials are necessary for verifying the promising 
results of CNNs in capsule endoscopy.53 However, when such 
CNNs are ready for clinical prime-time, they are expected to 
revolutionize the practice of capsule endoscopy through dras-
tically improved detection rates and efficiency. 

Limitations of AI Use

AI has not yet been used in large-scale clinical applications 
or patient care outside of limited clinical research studies. 
Likewise, as of now, there are no AI algorithms approved for 
use in clinical gastroenterology by governmental organizations 
for standard patient care. The difficulty for AI integration into 
common practice is multifactorial, with major obstacles prior 
to large-scale implementation. 

First, the development of AI requires a human diagnosis or 
image label to train the AI. This builds an inherent bias into 
the system from the start, as the AI is “learning” from en-

doscopists who may have personal thresholds for classifying 
findings. The worst example of this is an AI developed with 
the input of a single, nonblinded endoscopist, while studies 
have attempted to avoid this bias by blinding or having find-
ings go through multiple endoscopists to classify them, with 
additional endoscopists acting as “tie breakers” when there is 
discordance amongst classifications. 

As most CAD or CNN systems have been developed in 
single centers, there may be overarching institutional diagnos-
tic or selection bias, which may complicate more widespread 
implementation. As each institution services a unique patient 
population, having AI development in single centers raises 
the concern of spectrum bias, when the AI is taken out of the 
original clinical context. Its behavior may be unpredictable 
and it may not maintain the same diagnostic accuracy as 
before. To adopt any of the current-generation AIs into com-
mon practice, it will have to be shown that they consistently 
perform in a variety of clinical locations and scenarios (such 
as different endoscopists, endoscopy equipment, clinical soft-
ware, and other ancillary staff that may play a role in endos-
copy). This will require substantial external clinical validation 
beyond the original clinical centers of development for each 
AI prior to more widespread adoption, which current AI de-
velopers have not attempted yet.

On the topic of validation, it is difficult to perform clinical 
trials, especially blinded randomized-control trials, with AI. 
These types of trials are the most robust and the “gold stan-
dard” in medical science. While prospective trials have been 
performed, this difficulty with initiating more robust studies 
has resulted in most AI systems for endoscopy being devel-
oped retrospectively, nonrandomized, with limited blinding 
by the clinicians.54 This limits practical adoption of AI by 
clinicians and professional organizations due to the overall 
weaker body of data supporting each AI endoscopy system. 

When AI systems are developed, current AI interfaces are 
research-focused and not adapted to everyday use. Some, such 
as those using EC, require additional equipment. However, 
there are research groups attempting to create easy-to-use 
technologies that may be implemented with more common 
endoscopes and software systems.22 However, the implemen-
tation and use of AI require additional training of endosco-
pists and the support staff. This includes an understanding 
of the false positives that CNNs often identify on endoscopy, 
particularly when there are visual hurdles, such as poor bowel 
preparation or excessive bubbles in imaging. While several AIs 
are being developed for automatic report writing, they will 
still need to communicate effectively with electronic record 
systems to ensure efficient documentation. 

As current-generation AIs are numerous but proprietary, 
the cost may be a restrictive factor for widespread implemen-
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tation. The final hurdle will be the acceptance and approval 
of AI by governmental and professional organizations. To au-
thorize specific systems for regular patient care, the previously 
described limitations should be mitigated prior to approval 
by health ministries and other regulatory authorities. The 
professional organizations and the general public will have 
their concerns regarding the implementation of such a novel 
technology into the endoscopic diagnosis, which may replace 
more traditional diagnostic techniques. For each country, any 
legal question regarding the use of AI in endoscopy (such 
as AI misdiagnosis) will have to be addressed prior to wide-
spread implementation. Then, usage guidelines must be estab-
lished by gastroenterological organizations to ensure that spe-
cific AIs are being used in appropriate situations. While this is 
a long process toward clinical use of AI-assisted endoscopy, it 
has already begun in many countries where AI development 
is ongoing. 

Conclusions

AI has made a dramatic entrance into the field of gastro-
enterology. AI models are being developed constantly by 
academic and industry research groups to provide objective 
diagnostic support to endoscopists. As in medicine as a whole, 
AI is creating a future in gastroenterology where the pro-
vider relies upon trained AI tools for diagnosis and feature 
identification, reducing the occurrence of missed diagnoses 
and lesions, which may impact patient care. With automated 
report-writing, CNNs may provide dramatically improved 
efficiency and accuracy to procedural documentation. 

A unique feature of CNNs and other models is their ability 
to improve themselves continually as more data are provided. 
Hence, a future is possible in which researchers and manu-
facturers would use the provider’s data to improve models 
continuously through regular upgrades. However, this feature 
will not remove the intrinsic limitations of CNNs and other 
AI models; therefore, practitioners will have to remain aware 
of these limitations during the AI usage. 

Supervised clinical implementation of AI models will be 
necessary to assess their real-world use in a large-scale setting. 
Prospective randomized control trials would be beneficial 
in verifying the largely retrospective studies used for model 
creation. However, as AI further permeates the medical spe-
cialties, it is expected that AI will gain wider acceptance as a 
clinical tool in everyday practice. While it remains to be seen 
how exactly and to what extent AI will be implemented in gas-
troenterology subspecialties, it is predicted to be a monumen-
tal shift in practice that will substantially elevate patient care. 
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