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ABSTRACT OF THE DISSERTATION

Learning to Align Multimodal Data for Static and Dynamic Tasks

by

Sudipta Paul

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2022

Dr. Amit K. Roy-Chowdhury, Chairperson

Our experience of the world is multimodal - we see objects, hear sounds, and

read texts to perceive information. In order for Artificial Intelligence to make progress

in understanding the world around us, it needs to be able to interpret such multimodal

signals together. The heterogeneity of the data brings unique challenges while working

with multimodal signals. One such challenge is to identify and understand the alignment

between two different modalities. In this dissertation, we focus on learning to align vision

and language modalities in static and dynamic tasks in different scenarios.

In the first dimension, we address the task of text-based video moment localization.

Existing approaches assume that the relevant video is already known/given and attempt

to localize the moment based on text query on that given video only. We relax this strong

assumption and address the task of localizing moments in a corpus of videos for a text

query. This task poses a unique challenge as the system is required to perform retrieval of

the relevant/correct video and temporal localization of the moment in the detected video

based on the text query simultaneously. Our proposed approach learns to distinguish subtle
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differences between intra-video moments as well as distinguish inter-video global semantic

concepts based on text queries.

We also consider text-based temporal localization task where both the video mo-

ments and text queries are not observed/available during training. Conventional approaches

are trained and evaluated relying on the assumption that the localization system, during

testing, will only encounter events that are available in the training set. As a result, these

models are unlikely to generalize to the practical requirement of localizing a wider range

of events, some of which may be unseen. Towards solving this problem, we formulate the

inference task of text-based localization of moments as a relational prediction problem,

hypothesizing a conceptual relation between semantically relevant moments. The likelihood

of a candidate moment being the correct one based on an unseen text query will depend on

its relevance to the moment corresponding to the semantically most relevant seen query.

Continuing in the direction of learning to align multimodal data, we extend it to

the dynamic task of Audio-Visual-Language embodied navigation in 3D environments. The

goal of our embodied agent is to localize an audio event via navigating the 3D visual world;

however, the agent may also seek help from a human (oracle), where the assistance is provided

in free-form natural language. We propose a multimodal hierarchical reinforcement learning

backbone that learns: (a) high-level policies to choose either audio cues for navigation or

to query the oracle and (b) lower-level policies to select navigation actions based on its

audio-visual or audio-visual-language inputs. The policies are trained via rewarding for the

success of the navigation task while minimizing the number of queries to the oracle.
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Chapter 1

Introduction

Our experience of the world is multimodal - we see objects, hear sounds, and

read texts to perceive information. In order for Artificial Intelligence to make progress in

understanding the world around us, it needs to be able to interpret such multimodal signals

together [8]. Multimodal machine learning aims to design systems that can understand

and reason on multiple communicative modalities. It is a prominent research field that

requires bridging knowledge from different disciplines (e.g., vision, language, speech, audio).

Although multimodal machine learning encompasses a broader range of modality information,

we narrow down our focus to vision and language modality. There is a wide range of

application domains that involve both vision and language modalities, e.g., image/video-text

retrieval [37, 153, 193, 78, 24, 74, 102, 21, 142, 32, 48], image/video captioning [7, 150, 191,

39, 171, 61], text-to-image/video generation [79, 52, 121, 107, 44, 96], referring image/video

segmentation [158, 40, 170], visual question answering [168, 130, 46, 9], and vision-language

navigation [4, 59, 64, 85, 97, 94, 95, 196]. Working with multiple modalities together requires
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addressing challenges that arise due to the heterogeneity of data, which is unique compared

to independent research of vision or language modality. One such challenge is to identify and

understand the alignment between two different modalities. In this dissertation, we focus

on learning to align vision and language modalities in static and dynamic tasks in different

scenarios.

We define an alignment problem as finding and understanding correspondence

between instances of two different modalities. For example, video moment retrieval based

on the text query requires a system that has an understanding of what text query matches

with which segment of the video. While the main focus of the alignment challenge is to

learn the relationship between two modalities, understanding when a model fails to relate

two modalities or is uncertain of the alignment is also of significant importance. In this

dissertation, we consider learning and understanding the alignment of different multimodal

scenarios; specifically focusing on vision and language modality. We first consider text-based

temporal localization moment in video corpus [114]. With full supervision available at hand,

our task is to align a text query with a particular segment of a video from a collection of videos.

This is achieved by considering the intra-video subtle differences in context and inter-video

global semantic differences. Then we consider text-based temporal localization of novel events

where the system needs to perform well on unseen events or queries [115]. Since we don’t

have supervision for novel/unseen events, a conventional contrastive learning approach with

available seen data is guaranteed to fail. As a result, we formulate the alignment inference

as a relational reasoning problem to solve the task. Finally, we consider a dynamic task of

audio-visual-language navigation [116]. Understanding when to interact with and how to
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utilize natural language feedback from the interaction is of great importance for AI. Our work

develops a system that can identify when to interact based on the alignment uncertainty

of audio-visual modality and vision-language modality. If the audio-visual alignment is

uncertain then the system queries for help and receives language feedback to assist its

navigation. Along with the three above mentioned works that mainly focus on learning

and understanding the alignment of multimodal data, we have worked and collaborated on

several other projects [117, 124, 113, 76] that have strengthened our understanding in the

field of multimodal learning.

In Chapter 2, we discuss the task of text-based temporal localization of video

moments in a collection of videos [114]. Prior works on text-based video moment localiza-

tion [102, 21, 142, 32, 48] focus on temporally grounding the textual query in an untrimmed

video. These works assume that the relevant video is already known and attempt to localize

the moment on that relevant video only. Different from such works, we relax this assumption

and address the task of localizing moments in a corpus of videos for a given sentence query.

This task poses a unique challenge as the system is required to perform: (i) retrieval of the

relevant video where only a segment of the video corresponds with the queried sentence,

and (ii) temporal localization of moment in the relevant video based on sentence query.

Towards overcoming this challenge, we propose Hierarchical Moment Alignment Network

(HMAN) which learns an effective joint embedding space for moments and sentences. In

addition to learning subtle differences between intra-video moments, HMAN focuses on

distinguishing inter-video global semantic concepts based on sentence queries. We validate

our approach quantitatively and qualitatively on three benchmark text-based video moment
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retrieval datasets.

In Chapter 3, we consider the task of text-based temporal localization of novel

events [115]. Recent works on text-based localization of moments [102, 21, 142, 32, 48] have

shown high accuracy on several benchmark datasets. However, these approaches are trained

and evaluated relying on the assumption that the localization system, during testing, will

only encounter events that are available in the training set (i.e., seen events). As a result,

these models are optimized for a fixed set of seen events and they are unlikely to generalize

to the practical requirement of localizing a wider range of events, some of which may be

unseen. Moreover, acquiring videos and text comprising all possible scenarios for training

is not practical. In this regard, our goal is to temporally localize video moments based on

text queries, where both the video moments and text queries are not observed/available

during training. Towards solving this problem, we formulate the inference task of text-based

localization of moments as a relational prediction problem, hypothesizing a conceptual relation

between semantically relevant moments, e.g., a temporally relevant moment corresponding to

an unseen text query and a moment corresponding to a seen text query may contain shared

concepts. The likelihood of a candidate moment being the correct one based on an unseen

text query will depend on its relevance to the moment corresponding to the semantically most

relevant seen query. Empirical results on two reorganized text-based moment localization

datasets show that our proposed approach can reach up to 15% absolute improvement in

performance compared to existing localization approaches.

In Chapter 4, we look into the dynamic task of audio-visual-language navigation.

Recent years have seen embodied visual navigation advance in two distinct directions: (i)
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in equipping the AI agent to follow natural language instructions, and (ii) in making the

navigable world multimodal, e.g., audio-visual navigation. However, the real world is not only

multimodal, but also often complex, and thus in spite of these advances, agents still need to

understand the uncertainty in their actions and seek instructions to navigate. To this end,

we present AVLEN – an interactive agent for Audio-Visual-Language Embodied Navigation

[116]. Similar to audio-visual navigation tasks, the goal of our embodied agent is to localize

an audio event via navigating the 3D visual world; however, the agent may also seek help from

a human (oracle), where the assistance is provided in free-form natural language. To realize

these abilities, AVLEN uses a multimodal hierarchical reinforcement learning backbone that

learns: (a) high-level policies to choose either audio-cues for navigation or to query the oracle,

and (b) lower-level policies to select navigation actions based on its audio-visual and language

inputs. The policies are trained via rewarding for the success on the navigation task while

minimizing the number of queries to the oracle. To empirically evaluate AVLEN, we present

experiments on the SoundSpaces [16] framework for semantic audio-visual navigation tasks.

Our results show that equipping the agent to ask for help leads to a clear improvement in

performance, especially in challenging cases, e.g., when the sound is unheard during training

or in the presence of distractor sounds.

Organization of the Dissertation. In Chapters 2 and 3, we consider the static

task of text-based temporal localization of moments and in Chapter 4, we consider the

dynamic task of audio-visual-language navigation. In chapter 2, we discuss the task of

text-based temporal localization of video moments in a collection of videos. In Chapter 3,

we consider the task of text-based temporal localization of novel events. In Chapter 4, we
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look into the dynamic task of audio-visual-language navigation. In each of the chapters,

we discuss the problem setting, motivation, proposed approach and experimental results.

Finally, we conclude the dissertation in Chapter 5 with some interesting future directions of

works in multimodal learning for static and dynamic tasks.

6



Chapter 2

Moment Localization from Video

Corpus

2.1 Introduction

Localizing activity moments in long and untrimmed videos is a prominent video

analysis problem. Early works on moment localization were mostly limited by the use of

a predefined set of labels to describe an activity [73, 14, 133, 81]. However, due to the

nature of the complexity of real-life activities, natural language sentences would be the

appropriate choice to describe an activity rather than a predefined set of labels. Recently,

there are several works [47, 5, 156, 89, 20, 49, 162, 182, 177, 83] that utilize sentence queries

to temporally localize moments in untrimmed videos. All these approaches build upon an

underlying assumption that the correspondence between sentences and videos is known. As

a result, these approaches attempt to localize moments only in the related video. We argue
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Figure 2.1: Example illustration of our proposed task. We consider localizing moments
in a corpus of videos given a text query. Here, for the queried text: ‘Person puts clothes
into a washing machine’, the system is required to identify the relevant video-(b) from the
illustrated corpus of videos (video-(a), video-(b), and video-(c)) and temporally localize the
pertinent moment (ground truth moment marked by the green dashed box) in that relevant
video.

that such an assumption of knowing relevant videos a priori may not be plausible for most

practical scenarios. It is more likely that a user would need to retrieve a moment from a

large corpus of videos given a sentence query.

In this work, we relax the assumption of specified video-sentence correspondence of

the prior works on temporal moment localization and address the more challenging task of

localizing moments in a corpus of videos. For example in Figure 2.1, the moment marked

by the green dashed box in video-(b) corresponds to the text query: ‘Person puts clothes

into a washing machine’. Prior works on temporal moment localization only attempt to

detect the temporal endpoints in the given video-(b) by learning to identify subtle changes in

dynamics of the activity. However, the task of localizing the correct moment in the illustrated

collection of videos (i.e., (a), (b), and (c) in Figure 2.1) imposes the additional requirement

to distinguish moments from different videos and identify the correct video (video-(b)) based
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on the differences of putting and pulling activities as well as the presence of washing machine

and clothes.

To address this problem, a trivial approach would be to use an off-the-shelf video-text

retrieval module to retrieve the relevant video and then localize the moment in that retrieved

video. Most of the video-text retrieval approaches [181, 99, 129, 155, 34, 119, 157, 41] are

designed for cases where videos and text queries have a one-to-one correspondence, i.e., a

query sentence reflects a trimmed and short video or a query paragraph represents a long

and untrimmed video. However, in our addressed task, the query sentence reflects a segment

of a long and untrimmed video, and different segments of a video can be associated with

different language annotations, resulting in one-to-many video-text correspondence. Hence,

the existing video-text retrieval approaches are likely to fall short on our target task. Another

trivial approach would be to scale up the temporal localization of moments approaches, i.e.,

instead of searching over a given video, it searches over the corpus of videos. However, these

approaches are only designed to discern intra-video moments based on sentence semantics

and fail to distinguish moments from different videos and identify the correct video.

In this work, based on the text query, we focus on discerning moments from different

videos as well as understand the nuances of activities simultaneously to localize the correct

moment in the relevant video. Our objective is to learn a joint embedding space that will

align representations of corresponding video moments and sentences. For this, we propose

Hierarchical Moment Alignment Network (HMAN), a novel neural network framework that

effectively learns a joint embedding space to align corresponding video moments and sentences.

Learning joint embedding space for retrieval or localization tasks has been addressed by
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several other methods [5, 36, 41, 110, 173, 172]. Among them, [5] and [36] are closely related

to our work as they try to align corresponding moment and sentence representations in the

joint embedding space. However, our approach is significantly different from these works.

In contrast to these works, HMAN utilizes temporal convolutional layers in a hierarchical

structure to represent candidate video moments. It allows the model to generate all candidate

moment representations of a video in a single pass, which is more efficient than sliding based

approaches like [5, 36]. Our learning objective is also different from [5, 36], where they only

try to distinguish between intra-video moments and inter-video moments. In our proposed

approach, in addition to distinguishing intra-video moments, we propose a novel learning

objective that utilizes text-guided global semantics to distinguish different videos. Global

semantics of a video refers to the semantics that is common across most of the moments of

that video. As the global semantics vary across videos, by distinguishing videos, we learn to

distinguish inter-video moments. We demonstrate the advantage of our proposed approach

over other baseline approaches and contemporary works on three benchmark datasets.

2.1.1 Contributions

The main contributions of the proposed work are as follows:

• We explore an important, yet under-explored, problem of text query-based localization of

moments in a video corpus.

• We propose a novel framework, HMAN, that uses stacked temporal convolutional layers

in a hierarchical structure to represent video moments and texts jointly in an embedding

space. Combined with the proposed learning objective, the model is able to align moment
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Figure 2.2: A brief illustration of the proposed Hierarchical Moment Alignment Network for
the moment localization task in a video corpus. The framework uses the feature extraction
unit to extract clip and sentence features. Hierarchical moment encoder module and sentence
encoder module projects moment representations and sentence representations in the joint
embedding space respectively. The network learns to align moment-sentence pairs in the
joint embedding space by explicitly focusing on distinguishing intra-video moments and
inter-video global semantic differences. (Details of the learning procedure in section 2.3.6)

and sentence representations by distinguishing both local subtle differences of the moments

as well as global semantics of the videos simultaneously.

• Towards solving the problem, we propose a novel learning objective that utilizes text-guided

global semantics of the videos to distinguish moments from different videos.

• We empirically show the efficacy of our proposed approach on DiDeMo, Charades-STA,

and ActivityNet Captions dataset and study the significance of our proposed learning

objective.

2.2 Related Works

Video-Text Retrieval. Among the cross-modal retrieval tasks [72, 88, 30, 33, 100],

video-text retrieval has gained much attention recently. Emergence of datasets like the
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Microsoft Research Video to Text (MSR-VTT) [163], the MPII movie description dataset as

part of the Large Scale Movie Description Challenge (LSMDC) dataset [125], and Microsoft

Video Description Dataset (MSVD) [18] have boosted video-text retrieval task. These datasets

contain short video clips with accompanying natural language. Initial approaches for the

video-text retrieval task were based on concept classification [98, 69, 145]. Recent approaches

focus on directly encoding video and text in a common space and retrieving relevant instances

based on some similarity measure in the common space [33, 100, 165, 175, 77, 25]. These

works used Convolutional Neural Network (CNN) [175] or Long Short-Term Memory Network

(LSTM) [176] for video encoding. To encode text representations, Recurrent Neural Network

(RNN) [165], bidirectional LSTM [175] and GRU [99] were commonly used. Mithun et

al. [99] employed multimodal cues such as image, motion, and audio for video encoding.

In [34], multi-level encodings for video and text were used and both videos and sentences

were encoded in a similar manner. Liu et al. [91] proposed collaborative experts model to

aggregate information effectively from different pre-trained experts. Yu et al. [175] proposed

a Joint Sequence Fusion model for sequential interaction of videos and texts. Song et al. [136]

introduced Polysemous Instance Embedding Networks that compute multiple and diverse

representations of an instance. Among the recent works, Wray et al. [155] enriched the

embedding learning by disentangling parts-of-speech of captions. Chen et al. [23] used

Hierarchical Graph Reasoning to improve fine-grained video-text retrieval. Another line

of work considers video-paragraph retrieval. For example, Zhang et al. [181] proposed

hierarchical modeling of videos, and paragraphs and Shao et al. [129] utilized top-level

and part-level association for the task of video-paragraph retrieval. However, all of these
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approaches have an underlying assumption that videos and text queries have one-to-one

correspondence. As a result, they are not adaptable for our addressed task, where the

video-text pairs have one-to-many correspondence.

Temporal Localization of Moments. The task of localizing a moment/activity in a

given long and untrimmed video via text query was introduced in [47, 5]. After that, there

have been a lot of works [156, 89, 20, 49, 162, 182, 177, 63, 90, 189, 101, 50, 178, 190, 188,

53, 51, 56, 84, 123] that addressed this task. All of these works on temporal localization of

moments can be divided into two categories: i) two stage approaches that sample segments

of videos in the first step and then try to find a semantic alignment between sentences and

those segments of videos in the second step [47, 5, 156, 89, 20, 49, 162], and ii) single stage

approaches that predict the association of sentences with multi-scale visual representation

units as well as predict temporal boundary for each visual representation unit in a single

pass [182, 177]. Among all the approaches, Gao et al. [47] developed Cross-modal Temporal

Regression Localizer that jointly models text queries and video clips. A common embedding

space for video temporal context features and language features was learnt in [5]. Some of the

works focused on vision-language fusion techniques to improve localization performance. For

example, Multimodal Circulant Fusion was incorporated in [156]. Liu et al. [89] incorporated

a memory attention mechanism to emphasize the visual features mentioned in the query and

simultaneously use their context. Ge et al. [49] mined activity concepts from both video

and language modalities to improve the regression performance. Chen et al. [20] proposed

Temporal GroundNet which captures evolving fine-grained frame-by-word interactions. Xu

et al. [162] used early integration of vision and language for proposal generation and query
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sentence modulation using visual features. Among the single shot approaches, candidate

moment encoding and temporal structural reasoning were unified in a single shot framework

in [182]. Semantic Conditioned Dynamic Modulation (SCDM) was proposed in [177] for

correlating sentence and related video contents. These approaches on moment localization in

a given video show promise, but fall short on realizing the requirement of identifying the

correct video to address the task of moment localization in a corpus of videos.

There has been one concurrent work [36] that addressed the task of temporal

localization of moments in a video corpus. They adopted the approach of Moment Context

Network [5]. However, instead of directly learning moment-sentence alignment as in [5],

they tried to learn clip-sentence alignment for scalability issues where a moment consists

of multiple clips. Even so, a referring event is likely to consist of multiple clips, and a

single clip can not reflect the complete dynamics of an event. Hence, consecutive clips with

different content need to be aligned with the same sentence which results in suboptimal

representation for both the clips and the sentence. We later empirically show that our

approach is significantly more effective than [36] in the addressed task.

2.3 Methodology

In this section, we present our framework for the task of text-based temporal

localization of moments in a corpus of untrimmed and unsegmented videos. First, we define

the problem and provide an overview of the HMAN framework. Then, we present how

clip-level video representations and word-level sentence representations are extracted. Then,

we describe the framework in detail along with the hierarchical temporal convolutional
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Figure 2.3: A conceptual representation of our proposed learning objective. For a text
query s with relevant moment m11 in a set of videos {v1, v2} with set of moments
{m11,m12,m21,m22}, we learn the joint embedding space using- (a) intra-video moments:
increasing similarity for relevant pair (m11, s) and decreasing similarity for non-relevant
pair (m12, s) from the same video, (b) global semantics of video: increasing video-sentence
relevance for relevant pair (v1, s) and decreasing for non-relevant pair (v2, s), where the
video-sentence relevance is computed in terms of moment-sentence similarity. This is also
illustrated in (c), where the arrows indicate which pairs are learning to increase their similar-
ity (moving close in the embedding space) and which pairs are learning to decrease their
similarity (moving further away in the embedding space). Details can be found in section
2.3.6

network to generate moment embeddings and sentence embeddings. Finally, we describe how

we learn to encode moment and sentence representations in the joint embedding space for

effective retrieval of the moment based on a text query.

2.3.1 Problem Statement

Consider that we have a set of N long and untrimmed videos V = {vi}Ni=1, where a

video v is associated with mv temporal sentence annotations T = {(sj , τ sj , τ ej )}
mv
j=1. Here, sj

is the sentence annotation and τ sj , τ
e
j are the starting time and ending time of the moment in
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the video that corresponds with the sentence annotation sj . The set of all temporal sentence

annotations is S = {Ti}Ni=1. Given a natural language query s, our task is to predict a set

sdet = {v, τ s, τ e} where, v is the video that contains the relevant moment and τ s, τ e are the

temporal information of that moment.

2.3.2 Framework Overview

Our goal is to learn representations for candidate moments and sentences in such

a way that the related moment-sentence pairs are aligned in the joint embedding space.

Towards this goal, we propose HMAN, which is illustrated in Figure 2.2. First, we employ

a feature extraction unit to extract clip level features {ci}li=1 from a video and sentence

features ŝ from a sentence. Clip representations and sentence representations are used to

learn the semantic alignment between sentences and candidate moments. To project the

moment representations and sentence representations in the joint embedding space, we use

a hierarchical moment encoder module and a sentence encoder module respectively. The

moment encoder module is inspired by single shot temporal action detection approach [81]

where temporal convolutional layers are stacked in a hierarchical structure to obtain multi-

scale moment features representing video segments of different duration. For the sentence

encoder module, we use a two-layer feedforward neural network. Based on text queries, we

derive the learning objective to explicitly focus on distinguishing intra-video moments and

inter-video global semantics. We adopted sum-margin based triplet loss [43] and max-margin

based triplet loss [43] separately in two different settings to train the model in an end-to-end

fashion. In the inference stage, for a query sentence, the candidate moment with the most

similar representation is retrieved from the corpus of videos.
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2.3.3 Feature Extraction Unit

To work with data from different modalities, we extract feature representations

using modality specific pretrained models.

Video Feature Extraction. We extract high level video features using a deep convo-

lutional neural network. Each video v is divided into a set of l non-overlapping clips and

we extract features for each clip. As a result, the video is represented by a set of features

{ci}li=1, where ci is the feature representation of the ith clip. To generate representations for

all the candidate moments of a video in a single shot approach [81], we keep the input video

length, i.e., number of clips, l, fixed. A video longer than the fixed length is truncated and a

video shorter than the fixed length is padded with zeros.

Sentence Feature Extraction. To represent sentences, we use GloVe word embedding

[118] for each word in a sentence. Then these word embedding sequences are encoded using

a Bi-directional Gated Recurrent Unit (GRU) [28] with 512 hidden states. Here, words in a

sentence are represented by a 512-dimensional vector, corresponding to their GRU hidden

states. So, we can have a set of word-by-word representations of a sentence S = {hi}ni=1, where

n is the number of words present in the sentence. The average of the word representations is

used as the sentence representation ŝ.

2.3.4 Moment Encoder Module

Existing approaches for moment localization based on learning joint visual-semantic

embedding space either use a temporal sliding window with multiple scales [5] or optimize

over a predefined set of consecutive clips based on clip-sentence similarity [36] to generate
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candidate segments. However, sliding over a video with different scales or optimizing

for all possible combinations of clips is computationally heavy. Again, in both cases,

extracted candidate moments or predefined clips are projected in the joint embedding space

independent of neighboring or overlapping moments/clips of the same video. Consequently,

while learning the moment-sentence or clip-sentence semantic alignment, representations for

neighboring or overlapping moments are not constrained to be well clustered to preserve the

semantic similarity. Therefore, instead of projecting representations for candidate moments

independently and inefficiently in the joint embedding space, inspired by the single shot

activity detection [81], we use temporal convolutional layers [71] in a hierarchical setup

to project representations for all candidate moments of a video simultaneously. We use

a stack of 1D convolutional layers where the convolution operation can be denoted as

Conv(σk, σs, d). Here, σk, σs, and d indicate the kernel size, stride size, and filter numbers,

respectively. The set of moment representations generated for K layers of hierarchical

structure is {{mk
i }

Tk
i=1}Kk=1. Here, Tk is the temporal dimension of the kth layer, which

decreases in the following layers. mk
i ∈ Rd is the ith moment representation of the kth layer

and kth layer generates Tk moment representations. Feature representations in the top layers

of the hierarchy correspond to moments with shorter temporal duration, while the feature

representations in the bottom layers correspond to moments with longer duration in a video.

We keep the feature dimension of each moment representation fixed to d for all the layers of

the temporal convolutional network.
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Algorithm 1 Learning optimized HMAN (max-margin case)
Input: Untrimmed video set V, Temporal sentence annotation set S, Initialized HMAN
weights θ
for t = 1 to maxIter do

step 1: Construct minibatch of video-sentence pairs
step 2: Extract video and sentence feature
step 3: Project candidate moment and sentence
representations in the joint embedding space
step 4: Construct triplets
step 5: Compute Lintra

max and Lvideo
max using Eqn. 2.5 & 2.10

step 6: Optimize θ by minimizing total loss
end for
Output: Optimized HMAN weights θ

2.3.5 Sentence Encoder Module

We learn to project the textual representations in the joint embedding space keeping

the inputs from different modalities with similar semantics close to each other. We use two

layers of feedforward neural network with learnable parameters W s
1, W

s
2, b

s
1, and bs2 to

project the sentence representation ŝ in the joint embedding space, which can be defined as,

s = W s
2

(
BN

(
ReLU(W s

1ŝ+ bs1)
))

+ bs2 (2.1)

Here, the dimension of the projected sentence representation s is kept consistent with the

projected moment representation m (m, s ∈ Rd).

2.3.6 Learning Joint Embedding Space

Projected representations in the joint embedding space from different modalities

need to be close to each other if they are semantically related. Training procedures to learn

projected representations in the joint embedding space mostly adopts two common loss
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functions: sum-margin based triplet ranking loss [43] and max-margin based triplet ranking

loss [37]. We consider both of these loss functions separately. As illustrated in Figure 2.3,

we focus on distinguishing intra-video moments and inter-video global semantic concepts.

In this section, we discuss our approach to learn projecting representations from different

modalities in the joint embedding space for multimodal data.

Similarity Measure. We use the cosine similarity of projected representations from

two modalities in the joint embedding space to infer their semantic relatedness. So, the

similarity between a candidate moment m and a sentence s is,

S(m, s) =
mTs

∥m∥∥s∥
(2.2)

where m and s are the projected moment representation and sentence representation in the

joint embedding space.

Learning for Intra-video Moments. To localize a sentence query in a video, the

model needs to identify the subtle differences of the candidate moments from the same

video and distinguish them. Among the candidate segments of a video, one or few of the

moments can be considered related to the query sentence based on some IoU threshold.

While training the network, we consider related moments with the queried sentence as the

positive pairs and non-corresponding moments with the queried sentence as the negative pairs.

Suppose, for a pair of video-sentence (v, s), we consider the set of positive moment-sentence

pairs {(m, s)} and the set of negative moment-sentence pairs {(m−, s)}. We compute the

intra-video ranking loss for all video-sentence pairs {(v, s)}. Using the sum-margin setup,

the intra-video triplet loss is:
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Lintra
sum =

∑
{(v,s)}

∑
{(m,s)}

∑
{(m−,s)}

[
αintra − S(m, s) + S(m−, s)

]
+

(2.3)

Similarly, using the max-margin setup, we calculate the intra-video triplet loss by,

m̂ = argmax
m−

S(m−, s) (2.4)

Lintra
max =

∑
{(v,s)}

∑
{(m,s)}

[
αintra − S(m, s) + S(m̂, s)

]
+

(2.5)

Here, [f ]+ = max(0, f) and αintra is the ranking loss margin for intra-video moments.

Learning for Inter-video Moments. Learning to distinguish intra-video moments

only allows the model to learn subtle changes in the video. It does not allow the model to

distinguish moments from different videos. However, learning to differentiate moments from

different videos is important as we need to localize the correct moment in the video corpus.

Hence, we also learn to distinguish moments from different videos by capitalizing on the

text-guided global semantics of videos. As the global semantics varies across videos we try

to distinguish videos based on these global semantics. To do so, we learn to maximize the

relevance of correct video-sentence pairs. Video-sentence relevance is computed in terms

of moment-sentence relevance. As a result, learning to align video-sentence pairs enforces

constraints on the representation of moments from different videos to be dissimilar. Inspired

by the work of [72], we compute the relevance of a video and a sentence by,

R(v, s) = log
(∑

{m}

exp
(
βS(m, s)

))1/β
, (2.6)
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where β is a factor that determines how much to magnify the importance of the most relevant

moment-sentence pair and {m} is the set of all the moments in video v. As β → ∞, R(v, s)

approximates maxmi∈v S(mi, s). This is necessary because all the segments of the video do

not correspond to the sentence.

For each positive video-sentence pair (v, s) where the sentence s relates to a segment

of the video v, we can consider two sets of negative pairs {(v−, s)} and {(v, s−)}. Using

the sum-margin setup, we calculate the triplet loss for video-sentence alignment of all the

positive video-sentence pairs {(v, s)} by,

Lvideo
sum =

∑
{(v,s)}

∑
{(v−,s)}

[
αvideo −R(v, s) +R(v−, s)

]
+

+
∑

{(v,s)}

∑
{(v,s−)}

[
αvideo −R(v, s) +R(v, s−)

]
+

(2.7)

Similarly, using the max-margin setup, we compute the triplet loss for video-sentence

alignment by,

v̂ = argmax
v−

R(v−, s) (2.8)

ŝ = argmax
s−

R(v, s−) (2.9)

Lvideo
max =

∑
{(v,s)}

[
αvideo −R(v, s) +R(v̂, s)

]
+

+
∑

{(v,s)}

[
αvideo −R(v, s) +R(v, ŝ)

]
+

(2.10)

Here, αvideo is the ranking loss margin for learning inter-video global semantic concepts.
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Table 2.1: Tabulated summary of the details of dataset contents

Number of videos Moment-sentence
Dataset Total Train/Val/Test pairs

DiDeMo 10464 8395 / 1065 / 1004 26892
Charades-STA 6670 5336 / - / 1334 16128
ActivityNet Captions 20k 10009 / 4917 / - 71942

Overall Learning Objective. We combine the calculated loss for intra-video case

and video-sentence alignment case and try to minimize it as our final objective. For the

sum-margin setup, the final objective is,

min
θ

Lintra
sum + λ1Lvideo

sum + α∥W∥2F (2.11)

Similarly, for the max-margin setup, the final objective is,

min
θ

Lintra
max + λ1Lvideo

max + α∥W∥2F (2.12)

Here, θ represents the network weights and all the learnable weights are lumped

together in W. λ1 balances the contribution between learning to distinguish intra-video

moments and learning to distinguish videos based on a text query. α is the weight on the

regularization loss. Our objective is to optimize θ to generate a proper representation for

candidate moments and sentences to minimize these combined losses. During training, these

losses are computed for a mini-batch where the mini-batches are sampled randomly from the

entire training set. This stochastic approach yields the advantage of reducing the probability

of selecting instances with high semantic relation as the negative samples.
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Table 2.2: Tabulated summary of the implementation details regarding video processing for
three datasets

Video # of candidate Per Unit Temporal dimension
Dataset length moments duration of layers

DiDeMo 12 21 2.5s {6,5,4,3,2,1}
Charades-STA 64 61 1s {31,16,8,4,2,1}
ActivityNet Captions 512 1023 1s {512, 256, 128, 64, 32,

16, 8, 4 ,2, 1}

Table 2.3: Comparison of performance for the task of temporally localizing moments in a
video corpus on DiDeMo dataset. († reported from [36]) (↓ indicates the performance is better if the score is
low)

DiDeMo
Feature used IoU = 0.50 IoU = 0.70

R@10 R@100 MR↓ R@10 R@100 MR↓

Moment Prior† [36] - 0.22 2.34 2527 0.17 1.99 3234
MCN† [5] RGB (ResNet-152) 2.15 12.47 1057 1.55 9.03 1423
SCDM [177] RGB (ResNet-152) + Flow (TSN) 0.57 4.43 - 0.22 1.42 -
VSE++ [37] + SCDM [177] RGB (ResNet-152) + Flow (TSN) 0.70 4.16 - 0.30 2.81 -
CAL† [36] RGB (ResNet-152) 3.90 16.51 831 2.81 12.79 1148

HMAN (sum-margin, Eqn. 2.11) RGB (ResNet-152) 5.63 26.49 412 4.51 20.82 546

HMAN (TripSiam [35]) RGB (ResNet-152) + Flow (TSN) 2.34 17.82 509 1.59 13.92 637
HMAN (DSLT [92]) RGB (ResNet-152) + Flow (TSN) 5.95 25.45 313 4.66 20.04 447
HMAN (sum-margin, Eqn. 2.11) RGB (ResNet-152) + Flow (TSN) 6.25 28.39 302 4.98 22.51 416
HMAN (max-margin, Eqn. 2.12) RGB (ResNet-152) + Flow (TSN) 5.47 20.82 618 3.86 16.28 905

Inference. In the inference step, for a query sentence, we compute the similarity of

candidate moment representations with the query sentence representation using Eqn. 2.2.

We retrieve the candidate moment from the video corpus that results in the highest similarity.

2.4 Experiments

In this section, we first discuss the datasets we use and the implementation details of

the experiments. Then we report and analyze the results both quantitatively and qualitatively.
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Table 2.4: Comparison of performance for the task of temporally localizing moments in a
video corpus on Charades-STA dataset. († reported from [36]) (↓ indicates the performance is better if the
score is low)

Charades-STA
Feature used IoU = 0.50 IoU = 0.70

R@10 R@100 MR↓ R@10 R@100 MR↓

Moment Prior† [36] - 0.17 1.63 4906 0.05 0.56 11699
MCN† [5] RGB (ResNet-152) 0.52 2.96 6540 0.31 1.75 10262
SCDM [177] RGB (I3D) 0.73 6.41 - 0.56 4.23 -
VSE++ [37] + SCDM [177] RGB (I3D) 1.02 5.06 - 0.70 3.37 -
CAL† [36] RGB (ResNet-152) 0.75 4.39 5486 0.42 2.78 8627

HMAN (TripSiam [35]) RGB (I3D) 1.27 7.60 2821 0.70 4.49 5766
HMAN (DSLT [92]) RGB (I3D) 1.05 7.27 2390 0.54 4.61 5496
HMAN (sum-margin, Eqn. 2.11) RGB (I3D) 1.29 7.73 2418 0.83 4.12 6395
HMAN (max-margin, Eqn. 2.12) RGB (I3D) 1.40 7.79 2183 1.05 4.69 5812

2.4.1 Datasets

We conduct experiments and evaluate the performance on three benchmark text-

based video moment retrieval datasets, namely DiDeMo [5], Charades-STA [47], and Activi-

tyNet Captions [67]. All of these datasets contain unsegmented and untrimmed videos with

natural language sentence annotations with temporal information. Table 2.1 summarizes the

details of the contents of three datasets.

DiDeMo. The Distinct Describable Moments (DiDeMo) dataset [5] is one of the

most diverse datasets for the temporal localization of moments in videos given natural

language descriptions. The videos are collected from Flickr and each video is trimmed to a

maximum of 30 seconds. The videos in the dataset are divided into 5-second segments to

reduce the complexity of annotation. The dataset is split into training, validation, and test

sets containing 8,395, 1,065, and 1,004 videos respectively. The dataset contains a total of

26,892 moment-sentence pairs and each natural language description is temporally grounded

by multiple annotators.
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Charades-STA. Charades-STA dataset is introduced in [47] to address the task of

temporal localization of moments in untrimmed videos. The dataset contains a total of 6,670

videos with 16,128 moment-sentence pairs. We have used the published split of videos during

training and testing (train-5,336, test-1,334). As a result, the training set and the testing set

contain 12,408 and 3,720 moment-sentence pairs respectively. This dataset is originally built

on the Charades [131] activity dataset with temporal activity annotation and video-level

description. Authors in [47] adopted a keyword matching strategy to generate clip-level

sentence annotation.

ActivityNet Captions. ActivityNet Captions [67] dataset, which is proposed for

dense video captioning task, is built on the ActivityNet dataset [55]. It consists of YouTube

video footage where each video contains at least two ground truth segments and each segment

is paired with one ground truth caption [162]. This dataset contains around 20k videos which

are split into training, validation, and testing set. We use the published splits over videos

(train set – 10,009 videos, validation set – 4,917 videos), where the evaluation is done on

the validation set. Videos are typically longer in length than DiDeMo and Charades-STA

datasets.

2.4.2 Evaluation Metric

We use the standard evaluation criteria adopted by various previous temporal

moment localization works [47, 177, 182]. These works use R@k, IoU=m metric, which

reports the percentage of cases where at least one of the top-k results have Intersection-over-

Union (IoU) larger than m [47]. For a sentence query, R@k, IoU=m reflects if one of the

top-k retrieved moments has Intersection-over-Union with the ground truth moment larger
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Table 2.5: Comparison of performance for the task of temporally localizing moments in a
video corpus on ActivityNet Captions dataset. († reported from [36])

ActivityNet Captions
Feature IoU = 0.50 IoU = 0.70

used R@10 R@100 R@10 R@100
Moment Prior† - 0.05 0.47 0.03 0.26
MCN† [5] RGB (ResNet-152) 0.18 1.26 0.09 0.70
CAL† [36] RGB (ResNet-152) 0.21 1.58 0.10 0.90

HMAN (sum) RGB (C3D) 0.43 2.84 0.22 1.48
HMAN (max) RGB (C3D) 0.66 4.75 0.32 2.27

Table 2.6: Comparison of the performance of HMAN with/without the Hierarchical moment
Encoder Module. The experiments are done for DiDeMo and Charades-STA datasets. (†
reported from [36]) (↓ indicates the performance is better if the score is low)

DiDeMo Charades-STA
IoU = 0.50 IoU = 0.70 IoU = 0.50 IoU = 0.70

R@10 R@100 MR↓ R@10 R@100 MR↓ R@10 R@100 MR↓ R@10 R@100 MR↓

HMAN (sum, w/o TCN) 3.44 14.14 1168 2.14 9.91 1636 1.13 6.12 4170 0.43 4.09 8295
HMAN (sum, w/ TCN) 6.25 28.39 302 4.98 22.51 416 1.29 7.73 2418 0.83 4.12 6395

HMAN (max, w/o TCN) 3.41 12.13 1603 1.99 8.96 2214 0.70 4.71 5800 0.46 3.13 10907
HMAN (max, w/ TCN) 5.47 20.82 618 3.86 16.28 905 1.40 7.79 2183 1.05 4.69 5812

than the specified threshold m. So, for each query sentence, R@k, IoU=m is either 1 or

0. As this metric is associated with a queried sentence, we compute it for all the sentence

queries in the testing set (DiDeMo, Charades-STA) or in the validation set (ActivityNet

Captions) and report the average results. We report R@k, IoU=m over all queried sentences

for k ∈ {10, 100} and m ∈ {0.50, 0.70}. We also use median retrieval rank (MR) as an

evaluation metric. MR computes the median of the rank of the correct moment for each query.

Lower values of MR indicate good performance. We compute MR for IoU ∈ {0.50, 0.70}.

Note that DiDeMo dataset provides multiple temporal annotations for each sentence. We

consider a detection is correct if it overlaps with a minimum of two temporal annotations

with a specified IoU .
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Table 2.7: Ablation study for the effectiveness of learning embedding space utilizing different
loss components as described in 2.3.6 for DiDeMo dataset using sum-margin set up.

IoU = 0.50 IoU = 0.70
R@10 R@100 R@10 R@100

HMAN (intra) 0.57 6.00 0.52 4.71
HMAN (video) 1.77 10.03 0.30 2.34
HMAN (proposed) 6.25 28.39 4.98 22.51

2.4.3 Implementation Details

For DiDeMo dataset, we use ResNet-152 features [54], where pool5 features are

extracted at 5 fps over the video frames. Then the features are max-pooled over 2.5s clips.

Also, we extract optical flow features from the penultimate layer from a competitive activity

recognition model [149]. We use Kinetics pretrained I3D network [11] to extract per second

clip features for the Charades-STA dataset. For ActivityNet Captions dataset, we use

extracted C3D features [144]. We set the number of input clips of a video, l = 12 for DiDeMo

dataset, l = 64 for Charades-STA dataset, and l = 512 for ActivityNet Captions dataset.

Here, per unit length of input video represents non-overlapping clip of 2.5s duration for

DiDeMo and non-overlapping clip of 1s duration for both Charades-STA and ActivityNet

Captions dataset. For DiDeMo dataset, we use a fully connected layer followed by max-

pool to generate representations with temporal dimension 6 for each video. Then we use

6 temporal convolutional layers to generate representations with temporal dimensions of

{6, 5, 4, 3, 2, 1} resulting in representations for 21 candidate moments. Similarly for Charades-

STA, we use a fully connected layer followed by max-pool to generate representations

with temporal dimension 32 for each video. Then we use 6 temporal convolutional layers

with the temporal dimension of {32, 16, 8, 4, 2, 1} where we use the 31 candidate moment
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Table 2.8: Performance comparison for the task of retrieving correct video based on sentence
query on DiDeMo and Charades-STA dataset.

DiDeMo Charades-STA
R@10 R@100 R@200 R@10 R@100 R@200

VSE++ [37] 2.49 16.81 29.53 1.89 13.31 24.43
HMAN (max) 12.43 42.43 58.22 2.26 15.87 27.26
HMAN (sum) 15.36 55.23 69.12 2.45 18.51 30.52

Table 2.9: Comparison of the performance of proposed LogSumExp pooling and average
pooling. We compare the performance for the task of temporal localization of moments in
video corpus for DiDeMo and Charades-STA dataset.

DiDeMo Charades-STA
IoU = 0.50 IoU = 0.70 IoU = 0.50 IoU = 0.70

R@10 R@100 R@10 R@100 R@10 R@100 R@10 R@100

HMAN (sum, ave) 5.63 26.05 4.43 20.82 1.10 7.19 0.62 4.47
HMAN (sum, log) 6.25 28.39 4.98 22.51 1.29 7.73 0.83 4.12

HMAN (max, ave) 5.27 17.65 4.01 13.60 0.75 7.00 0.51 4.53
HMAN (max, log) 5.47 20.82 3.86 16.28 1.40 7.79 1.05 4.69

representations from the last 5 layers. Additionally, we use a branch temporal convolutional

layer to generate representations of 30 overlapping candidate moments, each with 6s duration

and 2s stride. Combining these, we consider 61 candidate moments for each video of

Charades-STA dataset. For ActivityNet Captions dataset, we use a feedforward network

followed by 10 convolutional layers to generate representations with temporal dimension

of {512, 256, 128, 64, 32, 16, 8, 4, 2, 1}, resulting in 1023 candidate moment representations.

Table 2.2 illustrates the implementation details for video processing for all three datasets. we

consider sentences with maximum of 15 words in length. If a sentence contains more than 15

words, the tailing words are truncated.

The proposed network is implemented in TensorFlow and trained using a single RTX
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Table 2.10: Ablation Study of the performance of HMAN (sum-margin) for Different Visual
Features for DiDeMo dataset.

IoU = 0.50 IoU = 0.70
R@10 R@100 R@10 R@100

VGGNet 2.61 16.36 1.79 12.82
VGGNet + Flow 3.98 21.29 3.14 16.76
ResNet 5.63 26.49 4.51 20.82
ResNet + Flow 6.25 28.39 4.98 22.51

2080 GPU. To train the HMAN network, we use mini-batches containing 64 video-sentence

pairs for DiDeMo and Charades-STA and 32 video-sentence pairs for ActivityNet Captions.

We use the learning rate with exponential decay initializing from 10−3 for all three datasets.

ADAM optimizer is used to train the network. We use 0.9 as the exponential decay rate for

the first moment estimates and 0.999 as the exponential decay rate for the second-moment

estimates. We set αintra and αvideo to 0.05 and 0.20, respectively for all three datasets. λ1 is

empirically set to 5, 1, and 1.5, respectively for DiDeMo, Charades-STA, and ActivityNet

Captions. α is set to 5× 10−5 for all three datasets.

2.4.4 Analysis of Results

We conduct the following experiments to evaluate the performance of our proposed

method:

• Comparison of the performance of proposed HMAN for the task of temporal localization

of moments in video corpus with different baseline approaches and a concurrent work.

• Evaluation of the effectiveness of utilizing hierarchical moment encoder module.

• Investigation of the impact of learning joint embedding space by utilizing different com-
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ponents of the loss function (learning for intra-video moments (Lintra) and learning for

videos (Lvideo).

• Evaluation of the effectiveness of utilizing global semantics to identify the correct video.

• Analyzing the effectiveness of video relevance computation (Eqn. 2.6) for the task of

temporal localization of moments in a video corpus.

• Studying the performance of proposed HMAN for different visual features.

• Performance comparison of HMAN with decreasing number of test set moment-sentence

pairs.

• Evaluation of the run time efficiency.

• Analysis of the λ1 parameter sensitivity.

Temporal Localization of Moments in Video Corpus. Table 2.3, Table 2.4, and Ta-

ble 2.5 illustrate the quantitative performance of our framework for the task of temporal lo-

calization of moments in the video corpus. The evaluation setup considers IoU ∈ {0.50, 0.70}

and for each IoU threshold, we report R@10, R@100 and MR. For a query sentence, the task

requires to search over all the videos and retrieve the relevant moment. For example, in the

DiDeMo dataset, the test set consists of 1,004 videos totaling 4,016 moment-sentence pairs.

Again, we consider 21 candidate moments for each video. So, for each query sentence, we

need to search over 21× 1,004 = 21,084 moment instances and retrieve the correct moment.

This is itself a difficult task and the addition of ambiguity of similar kinds of activities in

different videos makes the problem even harder. We compare the proposed method with the

following baselines:
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Table 2.11: Ablation study of the performance of HMAN (sum-margin) on DiDeMo when
the number of test set data is decreased.

IoU = 0.50 IoU = 0.70
R@10 R@100 MR↓ R@10 R@100 MR↓

HMAN (100%) 6.25 28.39 302 4.98 22.51 416
HMAN (50%) 6.90 30.15 268 5.68 23.73 372
HMAN (25%) 8.74 34.93 193 7.06 27.62 269
HMAN (10%) 13.35 45.60 102 10.30 36.65 142

• Moment Frequency Prior: We use Moment Frequency Prior baseline from [5], which

selects moments that correspond to gifs most frequently described by the annotators.

• MCN: The Moment Context Network [5] for temporal localization of moments in a given

video is scaled up to search moment from the entire video corpus.

• SCDM: The state-of-the-art Semantic Conditioned Dynamic Modulation (SCDM) network

[177] for temporal localization of moments in a video is scaled up to search over the entire

video corpus.

• VSE++ + SCDM: We use joint embedding based retrieval approach (VSE++ [37])

combined with SCDM as a baseline. In this setup, the framework first retrieves a few

relevant videos (top 5%) and then localize moments on those retrieved videos using SCDM

approach.

• CAL: We compare with Clip Alignment of Language [36]. It is a concurrent work that

addresses the task of localizing moments in a video corpus by aligning clip representation

with language representation in the embedding space.
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Note that we do not compare with baselines that utilize temporal endpoint fea-

tures from [5], as these directly correspond to dataset priors and do not reflect a model’s

capability [84].

We observe that MCN and CAL perform better than the state-of-the-art SCDM

approach in DiDeMo dataset but perform poorly compared to the SCDM approach in

Charades-STA dataset. This is due to the fact that the video contents and language queries

differ a lot among different datasets [182]. MCN and CAL learn to distinguish both intra-

video moments and inter-video moments locally while SCDM only learns to distinguish

intra-video moments. As DiDeMo dataset contains diverse videos of different concepts and

relatively less number of candidate moments, learning to differentiate inter-video moments

locally improves performance significantly. However, learning to differentiate inter-video

moments locally does not have much impact on Charades-STA dataset. This also indicates

the importance of distinguishing moments from different videos based on global semantics

for a diverse set of video datasets. We also observe that in some of the cases, VSE++ +

SCDM scores drop compared to the SCDM approach. Since the performance of VSE++ +

SCDM depends on retrieving correct video, the localization performance drops if the retrieval

approach fails to retrieve correct videos with higher accuracy.

For HMAN, we report the performance for both sum-margin and max-margin based

triplet loss setups. Additionally, for DiDeMo and Charades-STA dataset, we report the

performance of HMAN for two different loss calculation setups: TripSiam [35] and DSLT [92].

In Table 2.3, Compared to baseline approaches, the performance of our proposed approach

is better for all metrics and outperforms other approaches with a maximum of 11.88%
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Table 2.12: Per epoch training and inference time for Charades-STA dataset.

Approach Training time Inference time

Sliding-based 35.05 s 90.46 s
HMAN 21.18 s 83.91 s

absolute improvement in DiDeMo dataset. We observe that the sum-margin based triplet

loss setup outperforms the max-margin setup, while both of these setups perform better than

other baselines in DiDeMo dataset. For a fair comparison with CAL and MCN, we report

the performance of HMAN with the ResNet-152 feature computed from RGB frames only.

This setup also outperforms CAL and MCN. We also conduct experiment incorporating

temporal end point feature in HMAN for DiDeMo dataset. It results in ∼ 0.5% − 1%

improvement over HMAN (sum-margin) in R@k metrics. It indicates the bias in the dataset

where different types of events are correlated with different time frames of the video. In

Table 2.4, for the Charades-STA dataset, the performance of HMAN is better for all metrics

and the max-margin based triplet loss setup outperforms other baseline approaches with a

maximum of 3.4% absolute improvement. In Table 2.5, for ActivityNet Captions dataset, the

HMAN max-margin setup outperforms other baselines with a maximum of 3.17% absolute

improvement. We do not compute SCDM and VSE++ + SCDM baselines for ActivityNet

Captions dataset. Moment representations in SCDM and VSE++ + SCDM approaches

are conditioned on sentence queries. For each query sentence, we need to compute moment

representations from all the videos, resulting in O(n2) complexity. So testing on a set of

34,160 query sentences and 4,917× 1,023 = 5,030,091 moment representations is impractical

using these approaches.
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TripSiam [35] and DSLT [92] are two different variants of triplet loss which are

used in object tracking. TripSiam defines a matching probability for each triplet to measure

the possibility of assigning the positive instance to exemplar compared with the negative

instance and tries to maximize the joint probability among all triplets during training. DSLT

[92] utilizes modulating function to minimize the contribution of easy samples in the total

loss. While both setups perform better than baseline approaches, we observe that there is a

significant improvement in median retrieval rank (MR). This indicates that even if TripSiam

and DSLT can not retrieve the correct moment, they are robust in terms of the semantic

association between moments and sentences.

Effectiveness of Hierarchical Moment Encoder. HMAN utilizes stacked temporal

convolutional layers in a hierarchical structure to represent video moments. We conduct

experiments to analyze the effects of using the hierarchical moment encoder module in our

proposed model. We consider two setups, i) w/ TCN: the hierarchical moment encoder

module built using temporal convolutional network is present in the model and ii) w/o TCN:

the hierarchical moment encoder module is replaced with a simple feedforward network to

project the candidate moment representations in the joint embedding space. We consider

both sum-margin based and max-margin based triplet loss to train the networks. Table 2.6

illustrates the effect of utilizing hierarchical moment encoder module. We observe that for

both the learning approaches and for both datasets, there is a significant improvement in

performance when the hierarchical moment encoder module is used. For example, in DiDeMo

dataset, we observe ∼ 14% (sum-margin) and ∼ 8% (max-margin) absolute improvement in

performance for R@100, IoU = 0.50.

35



Ablation Study of Learning Joint Embedding Space. We conduct experiments to an-

alyze the impact of different components of the loss function to learn the joint embedding

space for our targeted task in DiDeMo dataset and reported the results in Table 2.7. We use

three setups to learn the joint embedding space:

• HMAN (intra): Only uses Lintra. So the network only learns to distinguish intra-video

moments.

• HMAN (video): Only uses Lvideo. So the network only learns to disntinguish moments

from different videos based on global semantics.

• HMAN (proposed): Our proposed approach, combination of Lintra and Lvideo.

In Table 2.7, we observe that the performance of HMAN is poor for both the

case of HMAN (intra) and HMAN (video). Performance of HMAN (intra) is better com-

pared to HMAN (video) in Table 2.7 when higher IoU threshold requirement is considered

(R@k, IoU = 0.7). This indicates that HMAN (intra) learns to better identify temporal

boundaries in a video compared to HMAN (video), while HMAN (video) is better at dis-

tinguishing moments from different videos compared to HMAN (intra). However, when we

combine both of these criteria, there is a significant performance boost as the model is able

to effectively learn to identify both the correct video and the temporal boundary. All the

results in Table 2.7 are reported for sum-margin based triplet loss setup.

Effectiveness of Utilizing Global Semantics. Our proposed learning objective uti-

lizes global semantics to distinguish moments from different videos. To do so, we learn to

align corresponding video-sentence pairs, where the video-sentence relevance R(v, s) in the

36



Figure 2.4: Illustration of λ1 sensitivity on the HMAN performance. We observe that for the
set of values {3, 4, 5, 6, 7}, performance of HMAN is stable.

embedding space is computed in terms of moment-sentence similarity S(m, s). So we use

this video-sentence relevance score R(v, s) to analyse the models performance to identify or

retrieve the correct video given a text query and report the results in Table 2.8. We use

the standard evaluation criteria R@k for video retrieval task and report R@10, R@100, and

R@200 scores for DiDeMo and Charades-STA dataset. Here, R@K calculates the percentage

of query sentences for which the correct video is found in the top-K retrieved videos to the

query sentence. In DiDeMo test set, there are 1,004 videos with 4,016 moment-sentence pairs

(∼ 4 sentences per video) and in Charades-STA testset, there are 1,334 videos with 3,720

moment-sentence pairs (∼ 2.8 sentences per video). Due to the one-to-many correspondences,

we consider 4,016 and 3,720 video-sentence pairs respectively for DiDeMo and Charades-STA

datasets for the video retrieval task, where a single video can pair up with multiple sentences.
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Table 2.8 shows that both sum-margin (HMAN (sum)) and max-margin (HMAN (max))

based triplet loss setups of our proposed approach outperforms standard Visual Semantic

Embedding based retrieval approach (VSE++) for the task of retrieving the correct video.

Along with the consistent improvement of performance in all metrics for both datasets, We

observe ∼ 40% absolute improvement of retrieval performance for the metric R@200 for

DiDeMo dataset. As the video-sentence relevance is computed in terms of moment-sentence

similarity, this experiment validates the models capability to distinguish videos as well as

moments from different videos utilizing global semantics.

Analysis of Video Relevance Computation Approach. In an untrimmed video with

temporal language annotation, the segment/portion of the video mostly matches with the

sentence semantics. So to compute the video-sentence relevance, it needs to focus on the

moments that have higher similarity with the query sentence semantics. To tackle this issue,

we compute the video-sentence relevance using LogSumExp pooling (Eqn. 2.6) of the moment-

sentence similarity. In Table 2.9, we analyze the significance of the LogSumExp pooling

compared to average pooling for both sum-margin and max margin based triplet loss setups.

In Table 2.9, ‘ave’ and ‘log’ indicates average and LogSumExp pooling respectively, while

‘sum’ and ‘max’ indicates sum-margin based and max-margin based triplet loss respectively.

For both DiDeMo and Charades-STA datasets, we observe that LogSumExp pooling performs

better than average pooling for the target task of temporal localization of moments in video

corpus in both sum-margin based and max-margin based triplet loss setups.

Ablation Study of Different Visual Features. We conduct experiments to study the

performance of HMAN for different visual features for DiDeMo dataset and reported the
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Figure 2.5: t-SNE visualization of text query representation and candidate moment repre-
sentations. Different color represents different video. The color of the text representation
is the same as the corresponding video. We use different markers for the representation of
incorrect candidate moments, correct candidate moments and text. Here, representations
of the text query and the correct candidate moment coincide. Also, the representations of
candidate moments from the same video are clustered together.

results in Table 2.10. We use extracted features from VGGNet [132], ResNet-152 [54] for RGB

frames and optical flow features from [149]. In Table 2.10, we observe that a combination of

RGB and optical flow features perform better than using only an RGB stream. It indicates

the models increased capacity due to the increase in the number of learnable weights. As a

result, HMAN is suitable to work with multiple encodings of the same data together compared

to the shallow embedding networks [5, 36]. We have reported the results for sum-margin

based triplet loss setup.
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Performance of HMAN on Decreased Number of Moment-sentence Pairs. Since HMAN

searches for the correct candidate moment across all the videos in the test set during inference,

the temporal localization performance of HMAN is expected to improve by decreasing the

number of moment-sentence pairs in the test set. We conduct experiments on DiDeMo

dataset to evaluate the performance of HMAN (learned using sum-margin based triplet loss)

on the decreased number of moment-sentence pairs in the test phase. We consider four

setups: HMAN (100%): Model searches over the full test set during inference, HMAN

(50%): Model searches over each 50% of the test set separately and take the average of the

scores, HMAN (25%): Model searches over each 25% of test set separately and take the

average of the scores, HMAN (10%): Model searches over each 10% of test set separately

and take the average of the scores. Table 2.11 illustrates the performance for all four setups.

We observe that with decreased number of test set moment-sentence pairs, the performance

of HMAN improves.

Evaluation of Run Time Efficiency. We conduct experiments on the Charades-STA

dataset to compare the run time of HMAN with the sliding window-based approaches.

The differences in the sliding-based approach compared to the setup of HMAN is that: i)

the moment encoder module with temporal convolutional network of HMAN is replaced

by a simple single layer feedforward network, ii) instead of generating candidate moment

representations directly from the video, we slide over the video to extract features of different

temporal durations, then use extracted features to generate candidate moment representations.

Table 2.12 illustrates that for both training case and inference case, the sliding-based approach

takes longer than HMAN per epoch, even though the network is much smaller in the sliding-
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Figure 2.6: Example illustration of the performance of HMAN for the task of localization
of moments in a corpus of videos. For each query sentence, we display the top-3 retrieved
moments. The retrieved moments are surrounded by gold boxes and the ground truth
moments are indicated by green lines. We observe that for each of the queries, the top-
3 retrieved moments are semantically related to the sentence proving the efficacy of our
approach.
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based approach compared to HMAN. For a fair comparison, we keep the number of candidate

moments the same, and similar computations (apart from hierarchical moment encoder

module replaced by single layer feed forward network) are done for both the approaches.

We have computed the run time for five epochs and reported the average results. Here,

the inference time is higher due to the added requirement of computing the cosine distance

between each text query and all the candidate moment representations.

λ1 Parameter Sensitivity Analysis. In our framework, λ1 balances the contribution

of Lintra and Lvideo for both sum-margin and max-margin case. We choose the value of λ1

empirically. We conduct an experiment to check the sensitivity of HMAN performance based

on a set of values for λ1 in the DiDeMo dataset where λ1 ∈ {3, 4, 5, 6, 7}. In Figure 2.4 shows

that for this set of values of λ1, the performance is stable.

2.4.5 Qualitative Results

t-SNE Visualization. We provide t-SNE visualization of embedding representations

of text query and candidate moments in Figure 2.5. For a text query, we consider embedding

representation of the text query, representations of candidate moments from the correct video,

and representations of candidate moments from randomly picked 9 other videos and visualize

the distribution of representations. In Figure 2.5, different color represents different videos.

Each video has 21 candidate moments. We keep the color of the text query representation

the same as the color of candidate moments representation from the correct video and use

separate markers for correct candidate moment and text query representation. We observe

that representations of the text query and the correct candidate moment coincide. Also, the

representations of candidate moments from the same video are clustered together.

42



Example Illustration. In Figure 2.6, we illustrate some qualitative results for our

proposed approach. The two examples in the top row are for the DiDeMo dataset and the

two examples in the bottom row are for the Charades-STA dataset. For each query sentence,

we demonstrate the examples where the network is able to retrieve the correct moment as

the rank-1 from the test set videos. We also display rank-2 and rank-3 moments retrieved

by the model for each query sentence. Figure 2.6(a) shows that for the query ‘The baby

falls down’, the model was able to retrieve the correct moment with the highest matching.

However, the interesting fact lies in the retrieved rank-2 and rank-3 moments. For the query

‘The baby falls down’, the retrieved rank-2 and rank-3 moments also contain activity of a

baby, including a baby falling down. Similar results are observed for other examples for both

datasets. For example, in Figure 2.6(b), for the query sentence ‘A person opens the door’,

the model was able to retrieve the correct moment with the highest matching. However, all

top-3 ranked moments contain activity related to a door. In the rank-2 moment, a person

is opening a door and in the rank-3 moment, a person is fixing a door. Similarly, the top

retrieved moments for a query of a dog running and hiding contain activities of a dog (Figure

2.6(b)) and top retrieved moments for a query of a person standing and sneezing contain

standing activity and sneezing activity (Figure 2.6(d)). These results indicate the model’s

capability of retrieving moments with similar semantic concepts from the corpus of videos.

2.5 Conclusion

In this work, we explore an important and under-explored task of localizing mo-

ments in a video corpus based on text query. We adapt existing temporal localization of
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moments approaches and video retrieval approaches for the proposed task and identified

the shortcomings of those approaches. Towards addressing the challenging task, we propose

Hierarchical Moment Alignment Network (HMAN), a novel neural network that effectively

learns a joint embedding space for video moments and sentences to retrieve the matching

moment based on semantic closeness in the embedding space. Our proposed learning objective

allows the model to identify subtle changes of intra-video moments as well as distinguish

inter-video moments utilizing text-guided global semantic concepts of videos. We adopt

both sum-margin based and max-margin based triplet loss setups separately and achieve

performance improvement over other baseline approaches in both setups. We experimentally

validate the effectiveness of our proposed approach on three standard benchmark datasets.
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Chapter 3

Temporal Localization of Novel Events

3.1 Introduction

Event localization in a long and untrimmed video is an important video analysis

problem. Recently, there has been a surge of works that address the task of temporal

grounding of text/sentence in untrimmed videos [47, 5, 177, 83, 180, 102]. Most of these

works utilize a set of fully supervised training data containing videos, text descriptions, and

temporal boundary annotations. These works try to optimize over a fixed set of events

and queries (which we call seen events and seen queries) that are available during training.

However, in a real-world dynamic environment, a system is expected to encounter previously

unseen events and queries, as shown in Figure 3.1, and is required to localize corresponding

moments based on unseen text queries in the videos. As a result, a system optimized over a

fixed set of events is unlikely to generalize and perform well for unseen events. Moreover,

as textual annotations are expensive and time consuming [101], it is impossible to collect

videos of all possible events and textual descriptions and learn models with the collected data.
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𝑊௦ ∩ 𝑊௎ =  ∅
Nonoverlapping set of training 

and testing text queries 

Training Set 

Set of ‘Seen’ 
verbs and nouns

Do, Run, 
Door, Strat,

Smile,
…

𝑊௦

Query: They are doing karate moves on the floor

Query: Person running to the door

Query: The person starts smiling

Testing Set

Punch, 
Walk,

Doorway,
… 

𝑊௎

Set of ‘Unseen’ 
verbs and 

nouns

Query: They punch and kick at each other

Query: Person walking through the doorway

Figure 3.1: Example illustration of our proposed task. We consider the task of localizing
novel moments for unseen queries. The set of verbs and nouns present in the testing set is
absent in the training set, e.g., training data does not have any text with verb ‘walk’ or noun
‘doorway’. Hence, the system is required to learn transferable knowledge from the training
data to perform localization for novel events based on unseen queries.

Hence, the applicability of current text-based temporal localization systems are severely

limited to a small set of events and the problem of localizing novel/unseen events based on

unseen text queries remains unaddressed in the current literature.

In this work, our goal is to temporally localize video moments based on text

queries, where both the video moments and text queries are not observed/available during

training. Towards this goal, we learn transferable knowledge from seen events and queries and

utilize it to localize novel/unseen events. We hypothesize that temporally relevant moments

corresponding to unseen text queries and those corresponding to seen text queries are likely

to contain shared concepts, if the unseen query and the seen query are semantically relevant.

For instance, in Figure 3.1, moment corresponding to the unseen text query ‘They punch

and kick at each other’ from the testing set has similarities to the moment corresponding to

seen text query ‘They are doing karate moves on the floor’ from the training set. Therefore,

46



instead of localizing moments only based on its encoded representation, we formulate the

inference task of localization as a relational prediction problem. The likelihood of a candidate

moment to be the correct one based on an unseen text query depends on its relevance to the

moment corresponding to the semantically most relevant seen query. We term this moment

corresponding to the semantically most relevant seen query as the support moment. To learn

a proper relational system that can localize novel events, we simulate the support moment

based relational inference on the available training data during training. As a result, the

system learns to localize moments based on relational reasoning, instead of directly localizing

based on observed moment representations. Our motivation behind the approach is that a

relational system learned on seen events/queries is transferable to the unseen events/queries

[137]. We term our approach as Temporal Localization using Relational Reasoning (TLRR).

Our problem is related to the zero-shot paradigm (where the objective is to adapt

models to perform different tasks on the unseen or unobserved classes) as we utilize seen

moment-text pairs to infer on the unseen events [160, 197, 185, 75, 108]. However, those zero-

shot approaches are not directly applicable to our problem setup. For example, [186] assumes

unseen classes are known in advance and uses the information to mine common semantics for

seen classes and unseen classes for zero-shot temporal activity detection. However, text-based

annotations of events are not limited to a fixed set of classes and the unseen queries are not

known beforehand. Again, [80, 166, 26] perform retrieval across multiple modality data in

the zero-shot setting. These works consider images with specific classes, and utilize the word

embedding space to transfer knowledge between seen classes and unseen classes. However,

in a video, textual descriptions refer to multiple entities, interactions of multiple entities,
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and different activities in a combined manner that is not expressible by a single class. As

a result, directly utilizing label embeddings is not enough to transfer knowledge from seen

events/queries to unseen events/queries. We will demonstrate the advantage of our proposed

TLRR approach over zero-shot approaches and other recent temporal localization approaches

on two benchmark datasets. The following are the main contributions of our work.

• We address a novel and practical problem of temporal localization of video moments based

on unseen text queries.

• We hypothesize a conceptual relation between semantically relevant moments and propose

a relational reasoning based temporal localization approach, TLRR, which can learn

transferable knowledge from seen events and localize novel events based on unseen text

queries.

• We reorganize two existing text-based temporal localization datasets (Charades-STA [47]

and ActivityNet Captions [67]) for our proposed novel problem setting. Empirical results

on these two text-based video moment localization datasets show that our proposed

approach can reach up to 15% absolute improvement in performance compared to existing

localization approaches.

3.2 Related Works

Temporal Localization of Moments. Temporal localization of moments in a

video based on text query was introduced by [47, 5]. Recently, there are many works that

address the problem both in presence of strong supervision (temporal endpoints are known for
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each query) [156, 89, 20, 49, 162, 182, 177, 63, 90, 189, 50, 178, 190, 188, 53, 51, 56, 84, 123,

180, 102, 21, 147, 87, 184, 164, 183, 62, 104, 142, 32, 187, 192, 148, 195, 86, 161, 135, 48, 114]

and weak supervision (only video-text correspondence is known) [101, 82, 140, 169, 22, 152,

141]. Among the recent works on temporal localization of moments in the fully supervised

setting, [177] performs semantic conditioned dynamic modulation, [180] relies on dense

regression based approach, [102] utilizes both local and global interaction for video grounding.

Recently, [103] proposed text-based temporal localization without query annotation. Unlike

our setting, they have access to videos of all types of events and can optimize their model for

such events in a weakly supervised manner. Hence, none of these works address the problem

of localizing novel events based on unseen text queries.

Zero-shot Learning (ZSL). ZSL aims to do inference task on classes whose instances

may not have been seen during training [160, 197, 185, 75, 108]. Initial works on ZSL were

attribute-based [68, 111]. However, attribute-based ZSL has poor scalability and semantic

embedding of labels are a good alternative for attributes [167]. Most of the works that

utilize semantic embedding based learning focus on the association of visual and semantic

information by linear compatibility [43, 1, 2, 126], non-linear compatibility [134, 159] or in

a hybrid way [109]. To the best of our knowledge, only [186] works on activity detection

in ZSL setup. However, [186] is limited to work on activity labels and can not be adapted

directly for moment localization of unseen text queries.

Zero-shot Cross Modal Retrieval (ZS-CMR). Conventional cross modal retrieval work

[34] considers similar type of events are present in both training set and testing set. However,

ZS-CMR aims to perform retrieval across multiple modality data in the zero-shot setting.
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They train the retrieval model with limited categories to support cross-modal retrieval on

new categories [80]. There are few works that consider retrieval between visual and textual

modality with ZS-CMR setting [80, 166, 26]. However, these works are limited by the use of

specific class information of the images to transfer knowledge between seen classes to unseen

classes.

Relational Reasoning. Relational reasoning concept has been applied to different vision

applications, i.e., visual question answering [127, 122], deep reinforcement learning [179],

few-shot learning [137], self supervised learning [112], activity recognition [194, 117]. [137]

is the closest to the proposed TLRR and uses relational reasoning for zero-shot learning.

However, our work differs in several ways: (i) we do not work with a fixed set of labels, (ii)

our relational module learns to identify relations between visual information rather than

learning to identify relations between visual and semantic information, and (iii) our proposed

problem setup requires the model to identify intra-video subtle differences between moments,

whereas [137] learns to differentiate classes.

3.3 Methodology

3.3.1 Problem Statement

Let Str = {(v, q, (τs, τe))|v ∈ Vtr, q ∈ Qtr, τs, τe ∈ [0, T ]} be the training set of

video-sentence pairs for seen queries where Vtr is the set of all training videos with maximum

duration T , Qtr is the set of seen queries, (τs, τe) are the ground truth temporal endpoints

for a query. For a given test-set Ste = {(v, q)|v ∈ Vte, q ∈ Qte} with video-sentence pairs, our

task is to predict the set of temporal endpoints {(τs, τe)}. We consider that Qtr ∩Qte = ∅,
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i.e., queries in test-set are not seen during training. As a result, Vte contains events that are

not present in Vtr. Additionally, we consider that Str is available during inference.

3.3.2 Localization Inference Schema

Existing temporal localization approaches [177, 102, 188] learn to encode fused

moment-text representations. They either follow candidate moment sampling and encoding

process to predict overlap scores (Figure 3.2 (a)) [177, 188] or summarize the whole video based

on query encoding and segment level encoding of video to regress temporal endpoints (Figure

3.2 (b)) [102]. In both cases, moment representations are directly optimized for available seen

events. As a result, the models get tuned to the available events in the training set and do

not necessarily learn to generalize for unseen events. Since, our objective is to localize events

which are not available during training, we deviate from the conventional approaches and

propose a novel approach on how to address the text-based temporal localization task. For

our proposed TLRR, we hypothesize that the correct moment corresponding to the unseen

text query and the moments corresponding to the semantically relevant seen queries will

contain shared concepts or similarities. Therefore, to identify the correct moment in a video

based on an unseen text query, instead of directly predicting based on the moment-text

representation, we utilize semantically relevant seen events. In that regard, we formulate the

localization inference as a relational reasoning problem between two semantically relevant

moments.

For a given video and an unseen text query, semantically relevant moments can be

identified based on the semantics of the text query. Recent advances in Natural Language
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Figure 3.2: A brief illustration of our novel text-based temporal localization approach. While
existing works learn to encode video segments to identify the correct moment ((a) and (b)),
we consider relational reasoning between two semantically relevant moment for localization
purpose (c).

Processing (NLP) unfold many sentence encoder models which are trained on large corpus

of text data in self-supervised or unsupervised manner. These models are able to capture

wide range of sentence semantics and can be transferred to other NLP tasks. Our idea is to

use these sentence encoders to find semantically relevant moments. In our work, we utilize

universal sentence encoder [12], which is also able to capture sentence semantics, to find

semantically relevant moments. Figure 3.2 (c) clearly illustrates our localization inference

scheme. Given the unseen query, instead of directly inferring overlap scores from moment-text

fused representation, we first identify semantically relevant query and its corresponding

moment using universal sentence encoder. We utilize this semantically relevant moment as

the support moment and consider relational reasoning between the support moment and the

candidate moments to identify the correct moment. Our motivation behind this approach is

that this relational inference system can be learned using available training data and the

learned relational model is transferable to unseen cases [137]. Our framework consists of

candidate moment encoder, fusion network, support moment encoder and relational reasoning

module.
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Figure 3.3: Overview of the framework and the training of the relational reasoning based
temporal localization approach. Candidate moment and support moment representations
are aggregated to form positive pairs (positive candidate, positive support) and negative
pairs (negative candidate, positive support)/( positive candidate, negative support). The
relational module is trained to estimate the relational scores based on the pairs.

3.3.3 Framework

As illustrated in Figure 3.3, our framework consists of a candidate moment encoder

that generates a text-fused representation of candidate moments, a support moment encoder

that encodes the support moment, and a relational prediction module to infer based on the

relational reasoning between candidate moment and support moment. To learn the relational

reasoning system utilizing available training samples, we mimic the relational inference task

during training. At train-time, for seen queries in training set, we infer the overlap scores

based on the relation between candidate moment and support moment, where the ground

truth moment is used as the positive support moment. All the modules and the learning

procedure are described in the following sections.

Visual Feature Extraction. We perform fixed interval sampling over the frames of the

videos and sample l non-overlapping clips per video. For each clip, we extract 2D/3D

convolutional feature, resulting in a set of l clip features {ci}li=1. Here, ci is the feature

representation of the ith clip.
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Text Feature Extraction. We use GloVe word embedding [118] and Bi-directional LSTM

network [57] for representing text queries. For each word s of the query sentence q, we use

Glove word embeddings to obtain its initial embedding vectors, which are fed sequentially

into a three-layer bidirectional LSTM network. The last hidden state q̂ is used as the feature

representation of the input sentence.

Candidate Moment Encoding and Modality Fusion. Clip representations {ci}li=1,

sampled from each video is used to construct candidate moment representations. For each

candidate moment, we max-pool the corresponding clip features across the specific time

span. For example, moment corresponding to ith to (i+ n)th clips will be represented by

f i:i+n = MaxPool(ci, . . . , ci+n), where f ∈ Rdf (df is the feature dimension). Moment

encodings and text encodings are projected in the same subspace and their dot product

is taken as the fused moment-text representation by e = (W qq̂).(W ff). Here, W q and

W f are the learnable parameters. We stack all moment-text representations of a video as

a 2D feature map, similar to [188], and use L convolutional layers to further encode the

representations. As a result, we obtain a set of candidate moment representations {mi}Ni=0,

where N is the total number of candidate moments from a video and mi ∈ Rdm , where dm

is the feature dimension of the candidate moment representations.

Support Moment Encoder. We use a feed-forward network as the support moment

encoder. For a support moment consisting of n consecutive clips {ci}ni=1, where ci ∈ Rdm , we

first average pool the n clip representations to a single representation s′ ∈ Rdm . If we have

multiple support moments, then we average pool all the support moment representations

into a single representation. Then we use a feed-forward network to obtain the final support
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representation s by

s = ReLU(W ss′ + bs). (3.1)

Here, W s and bs are the learnable parameters and s ∈ Rdm . We keep the feature dimension

of support moment same as the candidate moment feature dimension dm. The input to the

support moment encoder varies in the training stage and inference stage. In the training

stage, the correct candidate moment is used as the support moment. In the inference/testing

stage, based on the unseen test query, most semantically relevant moments from the training

set are used as the support moments. These moments work as the helper to find the correct

moment from the video.

3.3.4 Relational Prediction

The relational module is a function Zθ(·) parameterized by learnable weights θ and

modeled by a feed forward neural network. Input to the relational module is a pair of two

representations xi and xj , where one element represents the selected support moment s and

the other element represents a candidate moment mi from the set of candidate moment

representations {mi}Ni=1. We use concatenation as the aggregation function to get aggregated

representation of xi and xj as acat(xi,xj). For a pair of support moment representation s

and ith candidate moment representation mi, the relational module outputs a overlap score

ϕi by

ϕi = Zθ(acat(s,mi)). (3.2)

To confirm that the relational reasoning module Zθ predicts based on the relation

between pair of representations and not based on a single representation, Zθ requires to
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maintain the commutative property, i.e., Zθ(acat(s,mi)) = Zθ(acat(mi, s)). However, the

concatenation operation acat(·, ·) is not commutative. Therefore, to enforce the commutative

property of the relational module, we compute the overlap score for the pair of elements s

and mi by

ϕi =
1

2

[
Zθ(acat(mi, s)) + Zθ(acat(s,mi))

]
. (3.3)

3.3.5 Learning Relational Inference

In our learning setup, a training sample consists of a video v, a text query q, and

temporal ground truth information for the query (τs, τe). Instead of learning to directly

predict the overlap score for each candidate moment, we learn to infer the overlap scores

based on the relation with most relevant support moments. To train this relational inference

system, we sample two types of support moment: i) positive support moment and ii) negative

support moment. For each query in a video, we extract the ground truth segment of the

video and use it as the positive support moment s+. Again, for each query in a video, we

select semantically unrelated query in the trainset and use its corresponding moment as the

negative support moment s−. Our objective is to distinguish intra-video candidate moments

based on the support moment. To do so, we compute overlap prediction loss Lintra for a set of

pairs X 1={(mi, s
+)}, which consists of pairs of all candidate moments and positive support

moment in a video. To guide the learning of distinguishing intra-video candidate moments

through relational inference system, we use scaled tIoU (temporal Intersection-over-Union)
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value with ground-truth segment as the supervision signal. We compute the scaled tIoU by

yi =



0 gi ≤ tmin,

gi−tmin

tmax−tmin
tmin < gi < tmax,

1 gi > tmax.

(3.4)

Here, gi is the ground truth tIoU for the ith candidate moment and tmin, tmax are

two thresholds to compute yi. For a video with N candidate moments, Lintra is realized by

binary cross entropy loss as

Lintra = − 1

N

∑
X 1

[
yi log(ϕi) + (1− yi) log(1− ϕi)

]
. (3.5)

Here, ϕi is the overlap score computed using Eqn. 3.3. To ensure that the model predicts

the overlap score based on the relationship between the candidate moment and the support

moment, we use the sampled negative support moments s− to train the model. In each video,

candidate moments with tIoU > tmin are considered as positive candidate moment m+. For

each video with P positive candidate moments, we formulate a set of pairs X 2={(m+
i , s

−)}

and compute negative relational loss Lneg by

Lneg = − 1

P

∑
X 2

log(1− ϕi). (3.6)

The two losses are jointly considered for training our relational inference model,
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with λ balancing contributions as in

Ltotal = Lintra + λLneg. (3.7)

We compute Ltotal for all seen video-text query pairs in the training set and optimize

the relational inference model by minimizing the total loss.

3.3.6 Inference for Unseen Queries

During inference, given a video and an unseen text query, we are required to localize

the correct moment. We use the universal sentence encoder [12] to find semantically relevant

queries from the training set. Then the corresponding moment to the relevant query is

used as a support moment. Based on the video, support moments, and the unseen query,

the learned relational model predicts overlap score ϕ for different temporal granularities in

one forward pass. All the predicted segments are ranked and refined with non-maximum

suppression (NMS) according to the predicted ϕ. Afterwards, the final temporal grounding

result is obtained.

3.4 Experiments

3.4.1 Reorganized Datasets

Existing benchmark temporal moment localization dataset splits are not designed

for the task of temporal localization of novel events based on unseen text queries. Instead,

training set (trainset for short) and testing set (testset for short) data are sampled from the
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same distribution, and text queries in the testset overlap with text queries in the trainset.

We reorganize two of the benchmark datasets namely Charades-STA [47] and ActivityNet

Captions [67] to create splits according to our problem setting. For both datasets, we create

splits based on the verbs and nouns present in the text queries. First, we combine all the

annotations of the trainset and testset videos of the dataset. To create the splits, we consider

a set of nV verbs and nN nouns present in the combined annotation. We consider it the set of

seen verbs and seen nouns. Then, we identify videos that contain at least a single query that

has a verb or noun not present in the mentioned set. In the selected videos, queries which do

not have verbs or nouns from the mentioned set are collected as unseen testset split and,

queries which have verbs or nouns from the mentioned set are collected as seen testset split.

The training set is created from the rest of the videos, with queries that contain either verb

or noun present in the mentioned set. We exclude queries which contains verb or noun from

both seen set and unseen set. We use spaCy [60] to parse verbs and nouns from text queries.

These reorganized datasets reflect a realistic setting as datasets are usually composed of

recurring events of limited concepts. However, a localization system may encounter varied

types of events in real-world applications. Excluding queries which contains verb or noun

from both seen set and unseen set results in reduced number of moment-sentence pairs in the

reorganized dataset. However, the size of the dataset doesn’t have impact on the significance

of our proposed problem setup.

Charades-STA Unseen. Charades-STA dataset contains a total of 6,670 videos where

5,336 and 1,334 are the number of training and testing videos. Textual annotations in

Charades-STA has direct temporal correspondence with activity annotation of the Charades
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Table 3.1: Tabulated summery of number of moment-text pairs in Charades-STA Unseen
and ActivityNet Captions Unseen dataset.

Dataset Training Unseen Testing Seen Testing
Charades-STA Unseen 5525 1665 867
ActivityNet Captions Unseen 5669 2553 710

dataset [131]. We combine training and testing set annotations and consider nV = 20 and

nN = 40 (excluding ‘person’ noun) for creating Charades-STA Unseen dataset. In this way,

we have Charades-STA Unseen dataset with 5525, 1665, and 867 training, unseen testing,

and seen testing moment-sentence pairs respectively.

ActivityNet Captions Unseen. ActivityNet Captions [67] dataset is proposed for dense

video captioning task. Each video contains at least two ground truth segments and each

segment is paired with one ground truth caption [162]. This dataset contains around 20k

videos which are split into training, validation, and testing set with 50%, 25%, and 25%

ratio respectively. Textual description for only the training and validation set is given.

We combine training and validation set and consider nV = 70 and nN = 250 for creating

ActivityNet Captions Unseen dataset. In this way, we have ActivityNet Captions Unseen

dataset with 5669, 2553, and 710 training, unseen testing, and seen testing moment-sentence

pairs respectively.

Table 3.1 reports the number of moment-text pairs for training, unseen testing, and

seen testing splits of both datasets. Table 3.2 reports the number of videos in each split of

both datasets. Table 3.3 reports the number of verbs and nouns used to create the splits of

both datasets. The list of verbs and nouns used for Charades-STA unseen and ActivityNet
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Table 3.2: Tabulated summery of number of videos in the reorganized Charades-STA
Unseen and ActivityNet Captions Unseen dataset.

Dataset Training Unseen Testing Seen Testing
Charades-STA Unseen 3366 1271 486
ActivityNet Captions Unseen 3939 1993 513

Table 3.3: Number of verbs and nouns used to create train/test splits of Charades-STA
Unseen and ActivityNet Captions Unseen dataset.

Dataset Number of Verbs Number of Nouns
Charades-STA Unseen 20 40
ActivityNet Captions Unseen 70 250

Figure 3.4: List of selected verbs and nouns for Charades-STA Unseen.

Charades-STA Unseen
Selected Verbs Selected Nouns

put, begin, play, start, pour, watch, 
take, sneeze, awaken, hold, sit, 
open, tidy, smile, cook, run, closet, 
see, drink, eat

book, shelf, phone, glass, water, 
television, cup, fridge, mirror, 
camera, front, computer, notebook, 
bag, door, shoe, wardrobe, 
entryway, stove, coffee, table, 
room, man, sofa, couch, hallway, 
closet, bed, laptop, dish, 
medicine, guy, chair, refrigerator, 
clothe, sandwich, food, blanket, 
light, knob

Captions unseen are given in Figure 3.4 and Figure 3.5 respectively.

3.4.2 Evaluation Metric

We use “R@k, IoU@m”, which reports the percentage of at least one of the top-

k results having Intersection-over-Union (IoU) larger than m [47]. For a text query,

“R@k, IoU@m” reflects if one of the top-k retrieved moments has IoU with the ground
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Figure 3.5: List of selected verbs and nouns for ActivityNet Captions Unseen.

ActivityNet Captions Unseen

Selected Verbs Selected Nouns

see, stand, lead, dance, capture, 
continue, end, lay, start, demonstrate, 
point, do, begin, move, perform, 
sit, wax, walk, film, turn, go, watch, play, 
hold, pose, pierce, follow, rub, show, 
ride, lean, cover, mop, set, kneel, 
speak, mix, measure, cut, look, twist, 
bend, grab, place, pick, hit, throw, 
attempt, picture, lie, be, flash, wear, 
talk, wrap, tape, block, climb, wave, 
jump, zoom, slide, land, hang, smile, 
cross, get, pop, make, put

woman, room, dancing, girl, camera, movement, floor, video, title, logo, 
sequence, man, living, exercise, ground, area, body, sit, up, people, kitchen, 
task, ski, hallway, dog, sock, lady, sidewalk, playing, music, people, boy, ball, 
picture, front, chair, person, ear, lotion, piercing, camel, pyramid, hand, lens, 
harness, child, house, mop, family, member, bedroom, ingredient, plaster, 
tile, piece, line, side, road, field, object, baseball, game, penalty, player, goal, 
head, screen, word, end, overall, wrapping, paper, toy, suit, desk, grass,
uniform, set, monkey, bar, way, pan, snowboard, mountain, hill, playroom, 
slide, time, back, couch, sport, jersey, wall, middle, clipboard, smooth, top, 
leg, clip, part, city, soccer, sand, play, president, crowd, speech, other, beer, 
kid, beach, right, castle, circle, water, work, midway, float, pile, leave, shot,
blower, machine, distance, basketball, basket, transition, stool, color, frame, 
speed, bagpipe, canoe, angle, group, blackjack, table, place, card, costume, 
tug, rope, slope, course, filmer, waif, platform, triangular, obstacle, crash, 
railing, bowl, noodle, broth, pair, shoe, office, close, bike, wheel, tire,
tool, liquid, tip, glass, sugar, plate, mixer, mixture, drink, corner, building, 
bow, move, bowing, cartwheel, flip, flute, fingering, octave, note, salad, dish, 
information, trip, canopy, food, market, customer, purchase, money, seller, 
thumb, chef, counter, hulte, bite, size, cilantro, product, credit, dancer,
dance, river, row, tree, bunch, intertube, tuber, fall, stunt, terrain, range, 
sweat, dirt, sort, acrobatic, action, variety, stun, landscape, track, run, mat, 
lime, board, blender, juice, jar, straw, wedge, rim, sink, brush, faucet, nozzle, 
dealer, chip, equipment, number, pace, seam, point, cheer, background,
harmonica, detail, regard, feature, coat

truth moment larger than the specified threshold m. So, “R@k, IoU@m” is either 1 or 0 for

each text query. We compute it for all the text queries in the testing sets and report the

average results for k ∈ {1, 5} and m ∈ {0.50, 0.70}. We also compute mIoU where mIoU is

the average IoU over all testing samples.

3.4.3 Implementation Details

We use VGG feature [132] for Charades-STA Unseen dataset. For ActivityNet

Captions Unseen dataset, we use extracted C3D features [144]. The number of frames in

a clip is set to 4 for Charades-STA Unseen, and 16 for ActivityNet Captions Unseen and
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Table 3.4: This table reports unseen text query based temporal moment localization
performance of TLRR, compared against several approaches, on Charades-STA Unseen
dataset.

Method R@1, R@1, R@5, R@5, mIoUIoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7
DeViSE [43] 29.98 11.29 71.42 39.81 -
ESZSL [126] 23.90 10.13 60.50 34.53 -
SCDM [177] 28.22 11.89 54.25 32.95 28.63
LGI [102] 29.01 12.85 - - 29.62
2D-TAN [188] 31.05 13.33 70.75 36.94 29.88
TLRR 33.15 16.22 77.66 42.40 31.29

we use non-overlapping clips for both datasets. The number of sampled clips N is set to 16

for Charades-STA Unseen, 64 for ActivityNet Captions Unseen. For the candidate moment

encoder, we adopt a 4-layer convolution network with a kernel size of 5 for Charades-STA

Unseen and a 4-layer convolution network with a kernel size of 9 for ActivityNet Captions

Unseen. For both datasets, the support moment encoder is a single-layer feed-forward network

and the relational prediction network is a two-layer feed-forward network. The proposed

network is implemented in TensorFlow and trained using a single RTX 2080 GPU. We use

mini-batches containing 32 video-sentence pairs and use Adam [65] optimizer with a learning

rate of 0.0001. The dimension of both candidate moment representation dm and support

moment representation ds is set to 512 for both datasets. We set λ=3 empirically in Eqn 3.7

for both datasets. The scaling thresholds tmin and tmax of Eqn. 3.4 are set to 0.5 and 1.0

respectively for both datasets. Non-maximum suppression (NMS) with a threshold of 0.5 is

applied during the inference. We train TLRR for 50 epochs. We select the checkpoint which

has the best average performance across metrics for seen queries.
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Table 3.5: This table reports unseen text query based temporal moment localization
performance of TLRR, compared against several approaches, on ActivityNet Captions
Unseen dataset.

Method R@1, R@1, R@5, R@5 mIoUIoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7
DeViSE [43] 5.07 2.00 10.46 4.05 -
ESZSL [126] 4.72 1.85 11.83 4.48 -
SCDM [177] 19.22 8.22 46.38 23.58 23.97
2D-TAN [188] 19.15 10.26 38.78 24.01 21.70
VSLNet [184] 19.23 9.99 - - 25.32
TLRR 23.19 13.24 53.31 36.66 26.35

3.4.4 Result Analysis

Temporal Localization Performance of Novel/Unseen Events. Since ours is the first

work on temporal localization of novel events, there are no existing approaches to directly

compare with. As our problem setup is closely related to zero-shot settings, we adapt two

zero-shot learning approaches namely DeViSE [43] and ESZSL [126] for this problem setup.

We also compare with some of the state-of-the-art temporal localization approaches with

publicly available codes, e.g., 2D-TAN [188], SCDM [177], LGI [102], and VSLNet [184],

by training those models using our reorganized training splits.

Table 3.4 and Table 3.5 illustrate the TLRRs’ performance for temporal localization

of novel event based on unseen text query and compare it with other approaches for Charades-

STA Unseen and ActivityNet Captions Unseen dataset respectively. For the Charades-STA

Unseen dataset, the performance of different baseline approaches are comparable among them.

However, TLRR provides 2%− 7% absolute improvement over the best scores of compared

approaches over all the reported metrics. In Table 3.5, baseline zero-shot approaches (DeViSE,

ESZSL) are performing poorly for ActivityNet Captions Unseen dataset. This is because
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the text queries are complex compared to Charades-STA Unseen and it requires fine-grained

analysis of longer videos in ActivityNet Caption Unseen. We observe 3% − 15% absolute

improvement over best scores of compared approaches in the ActivityNet Captions Unseen

dataset.

Relational Reasoning Performance Analysis. Since TLRR’s performance is dependent

on its ability to reason on the relationship of two different moments, in Table 3.6, we analyze

the competence of our relational reasoning module Zθ for Charades-STA Unseen dataset.

We consider three scenarios: i) Irrelevant: based on the unseen text query, retrieve the

seen query from the semantic embedding space that are furthest away or most irrelevant

and use the corresponding moment as the support information, ii) Random: retrieve

random seen query from the training set and use the corresponding moment as the support

information, and iii) Relevant: retrieve the nearest/most relevant seen query from the

semantic embedding space and use the corresponding moment as the support information

(i.e., our proposed TLRR). We observe that when irrelevant queries are retrieved and their

corresponding moment is used as the support, the performance goes down. Since the moment

corresponding to a irrelevant query does not contain shared concept/ similarities with the

correct moment, the relational module expectedly fails to identify the correct moment. When

random seen queries are selected, the performance is better compared to the irrelevant case.

We obtain the best performance when the closest seen query is selected from the semantic

embedding space.

Temporal Localization Performance of Seen Events. We further report the performance

of different approaches when evaluated on the testing split of seen queries in both the datasets
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Table 3.6: This table reports unseen text query based novel event localization performance
using different types of support moments to analyze TLRR for Charades-STA Unseen dataset.

Support Moment R@1, R@1, R@5, R@5, mIoU
IoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7

Irrelevant 20.30 11.05 62.58 33.93 22.48
Random 28.71 14.47 73.57 40.24 28.40
Relevant 33.15 16.22 77.66 42.40 31.29

on Table 3.7 and Table 3.8. Although the main focus of this work is temporal localization

of unseen events, this experiment is presented to evaluate how the performance of different

methods changes for seen events compared to localization of unseen events (Table 3.4

and Table 3.5). We expect any method to work slightly better on localizing the seen

events compared to the unseen ones; however, a drastic/large change would indicate poor

generalization ability of the model.

For the compared methods and baselines, we observe that there is a significant

difference in performance when the same model is evaluated in the testing split of seen queries

and testing split of unseen queries for both datasets comparing Table 3.4 and Table 3.5

with Table 3.7 and Table 3.8 respectively. Not surprisingly, both the conventional temporal

localization approaches (i.e., SCDM and 2D-TAN) show a drastic change in performance

across metrics in both datasets. The average difference in performance is reported by ∆avg

in Table 3.7 and Table 3.8. SCDM shows 19.80% average difference in Charades-STA and

13.24% average difference across metrics in ActivityNet in localization performance of seen

queries compared to localization performance of unseen queries. Similarly, 2D-TAN shows

average difference (across metrics) of 5.89% in Charades-STA and 16.18% in ActivityNet

in localizing seen queries compared to unseen. Though the zero-shot based approaches

(DeViSE and ESZSL) show small gap in performance between seen and unseen events, which
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is expected due to the approaches generalization ability, they are unable to maintain a

proper level of localization performance compared to other methods. However, the proposed

TLRR approach shows a significantly lower change in performance, e.g., 3.37% average in

Charades-STA and 7.13% average in ActivityNet Captions.

This indicates the significance of the problem setup and generalization ability of

TLRR. Unlike the conventional temporal localization approaches, TLRR is not designed to

specifically focus on the seen events. In Table 3.7 and Table 3.8, we observe that model

optimized to do localization inference directly based on the candidate moment representation

overall performs better compared to TLRR for types of events that are already seen in

training. However, direct localization limits these models’ capacity to a small set of events

which is evident by the significant gap between performances for seen and unseen events.

Instead, our proposed TLRR approach is able to retain a competitive performance for

the seen queries and boost the performance for unseen queries resulting in reducing the

performance gap between seen and unseen events. Also, our proposed TLRR is able to show

comparable performance on the original temporal localization dataset, even though TLRR is

not optimized for seen events and have a relatively simple base architecture.

Effect of Lneg in learning TLRR. TLRR uses Lintra and Lneg to learn relational local-

ization system. Effectiveness of these two loss components for distinguishing intra-video

moments by relational prediction is evident from Table 3.4, Table 3.5, and Table 3.6. We

consider two setups, i) TLRR trained with Lintra and ii) TLRR trained with Lintra + λLneg.

We observe that when only Lintra is used to train TLRR, there is almost no difference in

performance (difference within 1%) for using relevant or irrelevant moments as input to the
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Table 3.7: This table reports seen text query based temporal moment localization perfor-
mance of TLRR on Charades-STA Unseen dataset. Here, ∆avg refers to average performance
difference for seen events and unseen events (Table 3.4) for a specific method. From the lower
value of ∆avg, it is evident that TLRR generalizes significantly better than other temporal
localization approaches.

Method R@1, R@1, R@5, R@5,
∆avg ↓IoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7

DeViSE [43] 36.34 15.86 77.66 44.10 5.36
ESZSL [126] 37.50 18.40 72.34 42.13 10.34
SCDM [177] 50.46 28.00 73.49 54.86 19.80
2D-TAN [188] 37.95 18.45 76.70 42.56 5.89
TLRR 34.83 20.76 78.78 48.56 3.37

Table 3.8: This table reports seen text query based temporal moment localization perfor-
mance of TLRR on ActivityNet Captions Unseen dataset. ∆avg refers to average performance
difference for seen events and unseen events (Table 3.5) for a specific method. From the lower
value of ∆avg, it is evident that TLRR generalizes significantly better than other temporal
localization approaches.

Method R@1, R@1, R@5, R@5,
∆avg ↓IoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7

DeViSE [43] 12.07 5.40 18.18 8.52 5.64
ESZSL [126] 12.64 5.40 19.74 8.66 5.89
SCDM [177] 34.66 20.74 59.51 35.37 13.24
2D-TAN [188] 34.65 22.39 57.18 42.68 16.18
TLRR 27.46 17.61 60.42 49.44 7.13

support encoder. However, there is 5%− 15% difference in Charades-STA Unseen dataset for

using relevant or irrelevant moments as input to the support encoder when Lintra + λLneg is

used to train TLRR. So, Lneg enforces the model to predict based on the relation.

Qualitative Results. In Figure 3.6, 3.7, and 3.8, we illustrate some example cases of our

system’s success. Given the query ‘The person laughs’ and the corresponding video, Figure

3.6 shows: (a) the ground truth segment of the video which corresponds to the text query,

(b) predicted moment by 2D-TAN, (c) predicted moment when the irrelevant moment is

used as support, and (d) predicted moment using retrieved relevant support moment. Person
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(a)

Query: The person laughs

Seen query: The person starts smiling

Seen query: Person putting books 
on a shelf in the hallway

(b)

(d)

(a) Ground truth (b) 2D-TAN prediction

(c)

(c) Prediction using irrelevant support (d) TLRR

Retrieved relevant 
support moment for TLRR (d)

Sampled irrelevant 
support moment for (c)

Figure 3.6: Given the query ‘The person laughs’ and the corresponding video, this figure
shows: (a) ground truth segment of the video which corresponds to the text query, (b)
predicted moment by 2D-TAN, (c) predicted moment when irrelevant moment is used as
support, and (d) predicted moment using retrieved relevant support moment (TLRR). While
(b) and (c) result in failure, TLRR is able to detect the correct moment using relational
reasoning.

laughing is a difficult event to detect as it encompasses a small region of the frame and

results in a small temporal variation in the feature. Without any notion/previous knowledge

of how the activity/event is, it becomes even harder, which is reflected by the failure case of

(b) and (c). However, TLRR is able to detect the correct moment using relational reasoning.

Figure 3.7 shows an example from the ActivityNet Captions Unseen dataset. Given the

unseen text query ‘An older blonde newswomen is reading a story’ and the corresponding

video, our approach retrieves the semantically most relevant query and its corresponding

moment as the support moment. Then based on reasoning with the support moment, our

approach identifies the correct moment in the given video. Figure 3.8 shows an example from

the Charades-STA Unseen dataset. It also illustrates that our approach is able to identify

correct moments based on relational reasoning for unseen text queries.
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GT

Prediction

0s
23.03s

18.94s0s

Seen query: A blonde woman is talking in a room

Query: An older blonde newswomen is 
reading a story

Support momentIdentifying relevant 
seen text query

Figure 3.7: Example illustration from ActivityNet Captions Unseen, where splits are created
based on activity annotation. Given the text query, ‘An older blonde newswomen is reading
a story’ and the corresponding video, our proposed approach retrieves the moment corre-
sponding to the semantically relevant query ‘A blonde woman is talking in a room’ from the
train set, reason on that and identifies the correct moment in the video. GT indicates the
ground truth timestamps and Prediction indicates the predicted temporal endpoints of our
approach.

Seen query: Person running to the door

Query: Person walking through
the doorway

GT

Prediction

23.2s 30.3 s

Support moment
Identifying relevant 

seen text query

20.8s 30.3 s

Figure 3.8: Given the text query ‘Person walking through the doorway’ and the corresponding
video, our proposed approach retrieves the moment corresponding to the semantically relevant
query ‘Person running to the door’ from the train set, reason on that, and identifies the
correct moment in the video. GT indicates the ground truth timestamps and Prediction
indicates the predicted temporal endpoints of our approach.

Significance of the Problem Setting. Figure 3.9 illustrates the significance of our

problem setting. We evaluate the performance of a trained text-based temporal localization

model for both seen events/queries and unseen events/queries. For Charades-STA Unseen,

we consider SCDM [177], which predicts the overlap score and temporal offset directly based
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on candidate moment representation. For ActivityNet Captions Unseen dataset, we consider

2D-TAN [188], which also predicts overlap scores based on candidate moment representation

directly. We observe that there is a significant difference of performance between seen

events/queries and unseen events/queries for both datasets. It demonstrates the requirement

of a system that can retain the performance for seen queries and improve the performance

for unseen queries.
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Figure 3.9: This figure illustrates the performance of SCDM [177] for Charades-STA Unseen
and 2D-TAN [188] for ActivityNet Captions Unseen dataset for seen events and unseen
events. For both datasets, performance of the trained model drops significantly for unseen
events.

Efficiency of TLRR. We compare the run-time of our proposed TLRR with

conventional temporal localization approaches SCDM and 2D-TAN. It is expected that

TLRR would require more inference time due to the extra steps of computation of relevant

moments and relational reasoning. We observe from Table 3.9 that compared to 2D-TAN

and SCDM, proposed TLRR takes slightly more time in inference (i.e., 1.76s for proposed

vs., 1.30s for 2D-TAN and 1.23s for SCDM).

Performance of TLRR in Original Charades-STA. We conduct an experiment

on the original Charades-STA dataset which is reported in Table 3.10. Our proposed TLRR

is able to show comparable performance on the original temporal localization dataset, even
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Table 3.9: Per batch inference time of TLRR
compared to SCDM and 2D-TAN in Activi-
tyNet Captions Unseen dataset.

Method Inference Time
SCDM [177] 1.23 s
2D-TAN [188] 1.30 s
TLRR 1.76 s

though TLRR is not optimized for seen events (since similar events are available in the

trainset, all events in the testset can be considered as seen events) and have a relatively

simple base architecture.

Table 3.10: This table reports text query based temporal moment localization performance
of TLRR on the original Charades-STA dataset.

Method R@1, R@1, R@5, R@5,
IoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7

CTRL [47] 23.63 8.89 58.92 29.52
2D-TAN [188] 39.70 23.31 80.32 51.26
TLRR 37.63 21.48 82.61 49.27

3.5 Conclusion

In this work, we address the novel problem of temporal localization of unseen/novel

events based on unseen text queries. The problem of identifying novel events in video is

important and practical because not every kind of event can be expected to be within the

training set. This allows for generalization of temporal localization methods to novel scenarios.

We propose a relational reasoning based framework hypothesizing a conceptual relation

between moments corresponding to semantically relevant queries. Extensive experiments on

reorganized Charades-STA and ActivityNet Captions datasets demonstrate the effectiveness
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of the proposed framework compared to several baselines in localizing video moments from

text queries. Our code and dataset splits will be publicly available. Though support moment

based relational prediction can reduce the performance gap between seen and unseen events,

it is burdened with the extra computation of relevant moments, which is computationally

expensive. Future work can focus on this issue.
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Chapter 4

Audio-Visual-Language Navigation

4.1 Introduction

Building embodied robotic agents that can harmoniously co-habit and assist humans

has been one of the early dreams of AI. A recent incarnation of this dream has been in

designing agents that are capable of autonomously navigating realistic virtual worlds for

solving pre-defined tasks. For example, in vision-and-language navigation (VLN) tasks [4],

the goal is for the AI agent to either navigate to a goal location following the instructions

provided in natural language, or to explore the visual world seeking answers to a given

natural language question [29, 154, 174]. Typical VLN agents are assumed deaf; i.e., they

cannot hear any audio events in the scene – an unnatural restriction, especially when the

agent is expected to operate in the real world. To address this shortcoming, SoundSpaces [16]

reformulated the navigation task with the goal of localizing an audio source in the virtual

scene; however without any language instructions for the agent to follow.
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1
2

Agent: Query
Oracle: Go towards 
the dining table.

3

1 Start of Navigation,
agent’s Initial pose 

2
Agent queries and
oracle gives feedback 
in natural language.

3
Assisted by oracle
feedback, agent 
reaches sounding 
objects vicinity

Navigation 
Following Goal

Navigation Following 
oracle feedback

Figure 4.1: An illustration of our proposed AVLEN framework. The embodied agent starts
navigating from location denoted 1○ guided by the audio-visual event at 3○. At location 2○,
the learned policy for the agent decides to seek help from an oracle (e.g., because the audio
stopped). The oracle provides a short natural language instruction for the agent to follow.
The agent translates this instruction to produce a series of navigable steps to move towards
the goal 3○.

Real-world navigation is not only audio-visual, but also is often complex and

stochastic, so the agent must inevitably seek a synergy between the audio, visual, and

language modalities for successful navigation. Consider, for example, a robotic agent that

needs to find where the “thud of a falling person” or the “intermittent dripping sound of

water” is heard from. On the one hand, such a sound may not last long and may not be

continuously audible, and thus the agent must use semantic knowledge of the audio-visual

modality [15] to reach the goal. On the other hand, such events need to be catered to timely

and the agent should minimize the number of navigation mistakes it makes – a situation

that can be efficiently dealt with if the agent can seek human help when it is uncertain of

its navigation actions. Motivated by this insight, we present AVLEN – a first of its kind

embodied navigation agent for localizing an audio source in a realistic visual world. Our

agent not only learns to use the audio-visual cues to navigate to the audio source, but also
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learns to implicitly model its uncertainty in deciding the navigation steps and seeks help from

an oracle for navigation instructions, where the instructions are provided in short natural

language sentences. Figure 4.1 illustrates our task.

To implement AVLEN, we build on the realistic virtual navigation engine provided

by the Matterport 3D simulator [4] and enriched with audio events via the SoundSpaces

framework [16]. A key challenge in our setup is for the agent to decide when to query

the oracle, and when to follow the audio-visual cues to reach the audio goal. Note that

asking for help too many times may hurt agent autonomy (and is perhaps less preferred

if the oracle is a human), while asking too few questions may make the agent explore the

scene endlessly without reaching the goal. Further, note that we assume the navigation

instruction provided to the agent is in natural language, and thus is often abstract and

short (see Figure 4.1 above), making it difficult to be correctly translated to agent actions

(as seen in VLN tasks [4]). Thus, the agent needs to learn the stochasticity involved in

the guidance provided to it, as well as the uncertainty involved in the audio-visual cues,

before selecting which modality to choose. To address these challenges, we propose a novel

multimodal hierarchical options based deep reinforcement learning framework, consisting of

learning a high-level policy to select which modality to use for navigation, among (i) the

audio-visual cues, or (ii) natural language cues, and two lower-level policies that learn (i) to

select navigation actions using the audio-visual features, or (ii) learns to transform natural

language instructions to navigable actions conditioned on the audio-visual context. All the

policies are end-to-end trainable and is trained offline. During inference, the agent uses

its current state, the audio-visual cues, and the learned policies to decide if it needs oracle

76



help or can continue navigation using the learned audio goal navigation policies. Closely

related to our motivations, a few recent works [27, 105, 106, 198] propose tasks involving

interactions with an oracle for navigation. Specifically, in [27, 198] model uncertainty is

used to decide when to query the oracle, where the uncertainty is either quantified in terms

of the gap between the action prediction probabilities [27] to be less than a heuristically

chosen threshold, or use manually-derived conditions to decide when an agent is lost in its

navigation path [106]. In [105], the future actions of the policy of interest are required to be

fully observed to identify when the agent is making mistakes and uses this information to

decide when to query. Instead of resorting to heuristics, we propose a data-driven scheme to

learn policies to decide when to query the oracle, these policies thus automatically learning

the navigation uncertainty in the various modalities.

To empirically demonstrate the efficacy of our approach, we present extensive

experiments on the language-augmented semantic audio-visual navigation (SAVi) task within

the SoundSpaces framework for three very challenging scenarios, i.e., when: (i) the sound

source is sporadic, however familiar to the agent, (ii) sporadic but unheard of during training,

and (iii) unheard and ambiguous due to the presence of simultaneous distractor sounds. Our

results show clear benefits when the agent knows when to query and how to use the received

instruction for navigation, as substantiated by improvements in success rate by nearly 3%

when using the language instructions directly and by more than 10% when using the ground

truth navigation actions after the query, even when the agent is constrained to trigger help

only to a maximum of three times in a long navigation episode.
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Before proceeding to detail our framework, we summarize below the main contribu-

tions of this work.

• We are the first to unify and generalize audio-visual navigation with natural language

instructions towards building a complete audio-visual-language embodied AI navigation

interactive agent.

• We introduce a novel multimodal hierarchical reinforcement learning framework that

jointly learns policies for the agent to decide: (i) when to query the oracle, (ii) how to

navigate using audio-goal, and (iii) how to use the provided natural language instructions.

• Our approach shows state-of-the-art performances on the semantic audio-visual navigation

dataset [15] with 85 large-scale real-world environments with a variety of semantic objects

and their sounds, and under a variety of challenging acoustic settings.

4.2 Related Works

Audio-Visual Navigation. The SoundSpaces simulator, introduced in [16] to

render realistic audio in 3D visual environments, pioneered research into the realm of audio-

visual embodied navigation. The AudioGoal task in [16] consists of two sub-tasks, namely to

localize an object: i) that sounds continuously throughout the navigation episode [16, 17]

and ii) that sounds sporadically or can go mute at any time [15]. In this work, we go beyond

this audio-visual setting, proposing a new task that equips the agent with the ability to use

natural language – a setup that is realistic and practically useful.

Instruction-Following Navigation. There are recent works that attempt to

solve the problem of navigation following instructions [4, 59, 64, 85, 97]. The instruction
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can be of many forms; e.g., structured commands [106], natural language sentences [4], goal

images [93], or a combination of different modalities [105]). The task in vision-and-language

navigation (VLN) for example is to execute free-form natural language instructions to reach a

target location. To embody this task, several simulators have been used [4, 16, 128] to render

real or photo-realistic images and perform agent navigation through a discrete graph [4, 19]

or continuous environment [66]. One important aspect of vision and language navigation is

to learn the correspondence between visual and textual information. To achieve this, [151]

uses cross-modal attention to focus on the relevant parts of both the modalities. In [94]

and [95], an additional module is used to estimate the progress, which is then used as a

regularizer. In [42] and [139], augmented instruction-trajectory pairs is used to improve the

VLN performance. In [196], long instructions are learned to be decomposed into shorter

ones, executing them sequentially (via e.g., navigation). Recently, there are works using

Transformer-based architectures for VLN [59, 97]. In [59], the BERT [31] architecture is

used in a recurrent manner maintaining cross-modal state information. These works only

consider the language-based navigation task. Different from these works, our proposed

AVLEN framework solves vision-and-language navigation as a sub-task within the original

semantic audio-visual navigation task [16].

Interactive Navigation. Recently, there have been works where an agent is

allowed to interact with an oracle or a different agent, receiving feedback, and utilizing this

information for navigation [27, 105, 106, 143]. The oracle instructions in these works are

limited to either ground truth actions [27] or a direct mapping of a specific number of actions

to consecutive phrases [106] is needed. Though [105] uses a fixed set of natural language
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instructions as the oracle feedback, it is coupled with the target image that the agent will

face after completion of the sub-goal task. In Nguyen et al. [105], the agent needs to reach a

specific location to query, which may be infeasible practically or sub-optimal if these locations

are not chosen properly. Our approach differs fundamentally from these previous works in

that we consider free-form natural language instructions and the agent can query the oracle

from any navigable point in the environment, making our setup very natural and flexible.

4.3 Proposed Method

In this section, we will first formally define our task and our objective. This will be

followed by details of our multimodal hierarchical reinforcement learning framework and our

training setup.

4.3.1 Problem Setup

Consider an agent in a previously unseen 3D world navigable along a densely-

sampled finite grid. At each vertex of this grid, the agent could potentially take one of

a subset of actions from an action set A = {stop,move_forward, turn_right, turn_left}.

Further, the agent is assumed to be equipped with sensors for audio-visual perception via a

binaural microphone and an ego-centric RGBD camera. The task of the agent in AVLEN

is to navigate the grid from its starting location to find the location of an object that

produces a sound (AudioGoal), where the sound is assumed to be produced by a static

object and is semantically unique, however can be unfamiliar, sporadic, or ambiguous (due

to distractors). We assume the agent calls the stop action only at the AudioGoal that
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terminates the episode. In contrast to the task in SoundSpaces, an AVLEN agent is also

equipped with a language interface to invoke a query to an oracle under a budget (e.g.,

a limit on the maximum number of such queries). The oracle responds to the query of

the agent via providing a natural language short navigation instruction; this instruction

describing (in natural language) an initial segment along the shortest path trajectory from

the current location of the agent to the goal. For example, for a navigation trajectory

given by the actions ⟨move_forward, turn_right, turn_right,move_forward, turn_left⟩, the

corresponding language instruction provided by the oracle to the agent could be “go around

the sofa and turn to the door”. As is clear, to use this instruction to produce navigable

actions, the agent must learn to associate the language constructs with objects in the scene

and their spatial relations, as well as their connection with the nodes in the navigation grid.

Further, given the limited budget to make queries, the agent must learn to balance between

when to invoke the query and when to navigate using its audio-visual cues. In the following,

we present a multimodal hierarchical options approach to solve these challenges in a deep

reinforcement learning framework.

4.3.2 Problem Formulation

We formulate the AVLEN task as a partially-observable Markov decision process

(POMDP) characterized by the tuple (S,A, T,R,O, P,V, γ), where S represents the set of

agent states, A = A∪{query} with the navigation actions A defined above combined with an

action to query the oracle, T (s′|s, a) is the transition probability for mapping a state-action

pair (s, a) to a state s′, R(s, a) is the immediate reward for the state-action pair, O represents

a set of environment observations o, P (o|s′, a) captures the probability of observing o ∈ O
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in a new state s′ after taking action a, and γ ∈ [0, 1] is the reward discount factor for

long-horizon trajectories. Our POMDP also incorporates a language vocabulary V consisting

of a dictionary of words that the oracle uses to produce the natural language instruction. As

our environment is only partially-observable, the agent may not have information regarding

its exact state, instead maintains a belief distribution b over S as an estimate of its current

state. Using this belief distribution, the expected reward for taking an action a at belief

state b can be written as R′(b, a) =
∑

s∈S b(s)R(s, a). With this notation, the objective of

the agent in this work is to learn a policy π : R|S| ×A → [0, 1] that maximizes the expected

return defined by the value function V π, while minimizing the number of queries made to

the oracle; i.e.,

argmax
π

V π(b0) where V π(b) = E

 ∞∑
i=0

γi
(
R′(bt+i, at+i)− ζ(t+ i)I(at+i = query)

)
|bt = b, π

 ,

(4.1)

where I denotes the indicator function, and the updated belief bt+1 = update(ot+1, bt, at)

defined for state s′ as bt+1(s
′) = ηP (ot+1|s′, at)

∑
s∈S bt(s)T (s

′|s, at) for a normalization

factor η > 0. The function ζ : R+ → R produces a score balancing between the frequency of

queries and the expected return from navigation.

At any time step t, the agent (in belief state bt) receives an observation ot+1 ∈

O from the environment and selects an action at according to a learned policy π; this

action transitioning the agent to the new belief state bt+1 as per the transition function

T ′(bt+1|at, bt) =
∑

o∈O I(bt+1 = update(o, bt, at))P (o|st, at) while receiving an immediate

reward R′(bt, at). As the navigation state space S of our agent is enormous, keeping a belief

distribution on all states might be computationally infeasible. Instead, similar to [15], we
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keep a history of past K observations in a memory module M , where an observation ot at

time step t is encoded via the tuple eot = (F V
t , FB

t , FA
t−1, pt) comprising neural embeddings

of egocentric visual observation (RGB and depth) represented by F V
t , the binaural audio

waveform of the AudioGoal heard by the agent represented as a two channel spectrogram

FB
t , and the previous action taken FA

t−1, alongside the pose of the agent pt with respect to

its starting pose (consisting of the 3 spatial coordinates and the yaw angle). The memory

M is initialized to an empty set at the beginning of an episode, and at a time step t, is

updated as M = {eoi : i = max{0, t−K}, . . . , t}. Apart from these embeddings, AVLEN also

incorporates a goal estimation network fg characterized by a convolutional neural network

that produces a step-wise estimate ĝt = fg(F
B
t ) of the sounding AudioGoal; ĝt consisting of:

(i) the (x, y) goal location estimate Lt from the current pose of the agent, and (ii) the goal

category estimate ct ∈ RC for C semantic sounding object classes. The agent updates the

current goal estimate combining the previous estimates as gt = λĝt + (1− λ)fp(gt−1,∆pt)

where fp is a linear transformation of gt−1 using the pose change ∆pt. We use λ = 0.5, unless

the sound is inaudible in which case it is set to zero. We will use g ∈ G ⊂ RC+2 to denote

the space of goal estimates.

4.3.3 Multimodal Hierarchical Deep Reinforcement Learning

As is clear, the diverse input modalities used in AVLEN have distinctly varied levels

of semantic granularity, and thus a single monolithic end-to-end RL policy for navigation

might be sub-optimal. For example, the natural language navigation instructions received

from the oracle might comprise rich details for navigating the scene that the agent need not
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Figure 4.2: Architecture of our AVLEN pipeline. We show the two-level hierarchical RL
policies that the model learns (offline), as well as the various input modalities and the control
flow.

have to resort to any of the audio-visual inputs for say ν > 1 steps. However, there is a

budget on such queries and thus the agent must know when the query needs to be initiated

(e.g., when the agent repeats sub-trajectories). Further, from a practical sense, each modality

might involve different neural network architectures for processing, can have their own

strategies for (pre-)training, involve distinct inductive baises, or incorporate heterogeneous

navigation uncertainties.

All the above challenges naturally suggest to abstract the policy learning in the

context of hierarchical options semi-Markov framework [6, 70, 138] consisting of low-level

options corresponding to the navigation using either the AudioGoal or the language model,

and a high-level policy to select among the options. More formally, an option is a triplet

consisting of a respective policy ξ, a termination condition, and a set of belief states in

which the option is valid. In our context, we assume a multi-time option policy for language-
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based navigation spanning ν navigation steps1 and a primitive policy [138] for AudioGoal.

We also assume these options may be invoked independent of the agent state. Suppose

πq : R|S|×|M | × G × {query} → [0, 1] represent the high-level policy deciding whether to

query the oracle or not, using the current belief, the history M , and the goal estimate

g. Further, let the two lower-level policies be: (i) πg : R|S|×|M | × G × A → [0, 1], that is

tasked with choosing the navigation actions based on the audio-visual features, and (ii)

πℓ : R|S|×ν × VN ×G × A → [0, 1], that navigates based on the received natural language

instruction formed using N words from the vocabulary V, assuming ν steps are taken after

each such query. Let R′
g and R′

ℓ denote the rewards (as defined in (4.1)) corresponding to the

πg and πℓ options, respectively, where we have the multi-time discounted cumulative reward

(with penalty ζ) for R′
ℓ(bt, at) = E

(∑t+ν−1
i=t γi−tR′(bi, ai)|πq = πℓ, ai ∈ A

)
− ζ(t), while R′

g

is, being a primitive option, as in (4.1) except that the actions are constrained to A. Then,

we have the Bellman equation for using the options given by:

V π(b) = πq(ξg|b)

R′
g +

∑
o′∈O

P ′(o′|b, ξg)V π(b′)

+πq(ξℓ|b)

R′
ℓ+

∑
o′∈O

P (o′|b, ξℓ)V π(b′)

,
(4.2)

where ξg and ξℓ are shorthands for ξ = πg and ξ = πℓ, respectively, and π =
{
πq, πg, πℓ

}
. Fur-

ther, P ′ is the multi-time transition function given by: P ′(o′|b, ξ) =
∑∞

j=1

∑
s′
∑

s γ
jP (s′, o′, j|s, ξ)b(s),

where with a slight abuse of notation, we assume P (s′, o′, j) is the probability to observe o′ in

j steps using option ξ [138]. Our objective is to find the policies π that maximizes the value

function in (4.2) for V π(b0). Figure 4.2 shows a block diagram of the interplay between the
1Otherwise terminated if the stop action is called before the option policy is completed.
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various policies and architectural components. Note that by using such a two-stage policy, we

assume that the top-level policy πq implicitly learns the uncertainty in the audio-visual and

language inputs as well as the predictive uncertainty in the respective low-level options πg

and πℓ for reaching the goal state. In the next subsections, we detail the neural architectures

for each of these options policies.

4.3.4 Navigation Using Audio Goal Policy, πg.

Our policy network for πg follows an architecture similar to [15], consisting of a

Transformer encoder-decoder model [146] as shown in Figure 4.3. The encoder sub-module

takes in the embedded features eo from the current observation as well as such features

from history stored in the memory M , while the decoder module takes in the output of

the encoder concatenated with the goal descriptor g to produce a fixed dimensional feature

vector, characterizing the current belief state b. An actor-critic network (consisting of a linear

layer) then predicts an action distribution πg(b, .) and the value of this state. The agent

then takes an action a ∼ πg(b, .), takes a step, and receives a new observation. The goal

descriptor network fg outputs the object category c and the relative goal location estimation

L. Following SAVi [15], we use off-policy category-level predictions and an on-policy location

estimator.

4.3.5 Navigation Using Language Policy, πℓ

When an agent queries, it receives natural language instruction instr ∈ VN from the

oracle. Using instr and the current observation eot = (F V
t , FB

t , FA
t−1, pt), our language-based
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navigation policy performs a sequence of actions ⟨at, at+1, . . . , at+ν⟩ as per πℓ option, where

each ai ∈ A. Specifically, for any step τ ∈ ⟨t, . . . , t+ ν − 1⟩, πℓ first encodes {eoτ , gτ} using a

Transformer encoder-decoder network T1
2, the output of this Transformer is then concatenated

with CLIP [120] embeddings of the instruction, and fused using a fully-connected layer FC1.

The output of this layer is then concatenated with previous belief embeddings using a second

multi-layer Transformer encoder-decoder T2 to produce the new belief state bτ , i.e.,

bτ = T2

(
FC1

(
T1(e

o
τ , gτ ),CLIP(instr)

)
,
{
b′τ : t < τ ′ < τ

})
and πℓ(bτ , .) = softmax(FC2(bτ )).

(4.3)

Figure 4.4 illustrates the language-based navigation policy architecture.
2This is different Transformer from the one used for πg, however taking gτ as input to the decoder.
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4.3.6 Learning When-to-Query Policy, πq

As alluded to above, the πq policy decides when to query, i.e., when to use πℓ. Instead

of directly utilizing model uncertainty [27], we use the reinforcement learning framework to

be train this policy in an end-to-end manner, guided by the rewards ζ.

4.3.7 Reward Design

For the πg policy, we assign a reward of +1 to reduce the geodesic distance towards

the goal, a +10 reward to complete an episode successfully, i.e., calling the stop action

near the AudioGoal, and a penalty of -0.01 per time step to encourage efficiency. As for

the πℓ policy, we set a negative reward each time the agent queries the oracle, denoted ζq,

as well as when the query is made within τ steps from previous query, denoted ζf . If the

(softly)-allowed number of queries is K, then our combined negative reward function is given

88



by ζq + ζf , where

ζq(k) =


k×(rneg+exp(−ν))

ν k < K

rneg + exp(−k) k ≥ K,

and ζf (j) =


rf
j 0 < j < τ

0 otherwise,

(4.4)

where rneg is set to -1.2, and rf is set to -0.5. As a result, the agent learns when to interact

with the oracle directly based on its current observation and history information. In the

RL framework, the actor-critic model also predicts the value function of each state. Policy

training is done using decentralized distributed proximal policy optimization (DD-PPO).

4.3.8 Policy Training

Learning πg uses a two-stage training; in the first stage, the memory M is not used,

while in the second stage, observation encoders are frozen, and the policy network is trained

using both the current observation and the history in M . The training loss consists of (i)

the value-function loss, (ii) policy network loss to estimate the actions correctly, and (iii) an

entropy loss to encourage exploration. Our language-based navigation policy πℓ follows a

two stage training as well. The first stage consists of an off-policy training. We re-purpose

the fine-grained instructions provided by [58] to learn the language-based navigation policy

πℓ. The second stage consists of on-policy training. During roll outs in our hierarchical

framework, as the agent interacts with the oracle and receives language instructions, we

use these instructions with the shortest path trajectory towards the goal to finetune πℓ.

In both cases, it is trained with an imitation learning objective. Specifically, we allow the

agent to navigate on the ground-truth trajectory by following teacher actions and calculate a
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cross-entropy loss for each action in each step by, given by −
∑

t at∗ log(πℓ(bt, at) where a∗ is

the ground truth action and πℓ(bt, at) is the action probability predicted by πℓ.

4.3.9 Generating Oracle Navigation Instructions

The publicly available datasets for vision-and-language tasks contain a fixed number

of route-and-instruction pairs at handpicked locations in the navigation grid. However, in our

setup, a navigating agent can query an oracle at any point in the grid. To this end, we assume

the oracle knows the shortest path trajectory s_path from the current agent location to the

AudioGoal, and from which the oracle selects a segment consisting of n observation-action

pairs (we use n = 4 in our experiments), i.e., s_path =
〈
(o0, a0), (o1, a1), . . . , (on−1, an−1)

〉
.

With this assumption, we propose to mimic the oracle by a speaker model [42], which

can generate a distribution of words PS(w| s_path)3. The observation and action pairs are

sequentially encoded using an LSTM encoder,
〈
FS
0 , F

S
1 , . . . , F

S
n

〉
= SpeakerEncoder(s_path)

and decoded by another LSTM predicting the next word in the instruction by: wt =

SpeakerDecoder(wt−1,
〈
FS
0 , F

S
1 , . . . , F

S
n

〉
). The instruction generation model is trained using

the available (instruction, trajectory) pairs from the VLN dataset [4]. We use cross entropy

loss and teacher forcing during training.
3s_path is approximated in the discrete Room-to-Room [4] environment and then used to generate

instruction.
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Table 4.1: Comparison of performances against state of the art in heard and unheard sound
settings.

Heard Sound Unheard Sound
Feedback Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑ Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑

Random Nav. ✗ 1.4 3.5 1.2 17.0 1.4 1.4 3.5 1.2 17.0 1.4
ObjectGoal RL ✗ 1.5 0.8 0.6 16.7 1.1 1.5 0.8 0.6 16.7 1.1
Gan et al. [45] ✗ 29.3 23.7 23.0 11.3 14.4 15.9 12.3 11.6 12.7 8.0
Chen et al. [16] ✗ 21.6 15.1 12.1 11.2 10.7 18.0 13.4 12.9 12.9 6.9
AV-WaN [17] ✗ 20.9 16.8 16.2 10.3 8.3 17.2 13.2 12.7 11.0 6.9
SMT[38]+Audio ✗ 22.0 16.8 16.0 12.4 8.7 16.7 11.9 10.0 12.1 8.5
SAVi [15] ✗ 33.9 24.0 18.3 8.8 21.5 24.8 17.2 13.2 9.9 14.7
AVLEN Language 36.1 24.6 19.7 8.5 23.1 26.2 17.6 14.2 9.2 15.8
AVLEN GT Actions 48.2 34.3 26.7 7.5 36.0 36.7 24.1 18.7 8.3 26.6

Table 4.2: Comparisons in heard and unheard sound settings against varied query-triggering
methods.

Heard Sound Unheard Sound
Feedback Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑ Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑

Random Language 32.5 21.1 16.1 8.93 21.8 23.5 14.8 11.5 9.9 14.3
Uniform Language 33.2 22.4 17.8 9.1 22.0 22.1 14.6 11.5 9.8 13.3
Model Uncertainty Language 34.2 24.0 19.5 8.7 20.5 24.9 16.1 13.5 9.3 15.2
AVLEN Language 36.1 24.6 19.7 8.5 23.1 26.2 17.6 14.2 9.2 15.8

4.4 Experiments and Results

4.4.1 Dataset

We use the SoundSpaces platform [16] for simulating the world in which our AVLEN

agent conducts the navigation tasks. Powered by Matterport3D scans [13], SoundSpaces

facilitates a realistic simulation of a potentially-complex 3D space navigable by the agent

along a densely sampled grid with 1m grid-cell sides. The platform also provides access to

panoramic ego-centric views of the scene in front of the agent both as RGB and as depth

images, while also allowing the agent to hear realistic binaural audio of acoustic events in

the 3D space. To benchmark our experiments, we use the semantic audio-visual navigation

dataset from Chen et al. [15] built over SoundSpaces. This dataset consists of sounds from

21 semantic categories of objects that are visually present in the Matterport3D scans. The

object-specific sounds are generated at the location of the Matterport3D objects. In each
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Table 4.3: Comparisons against varied query-triggering methods with ground truth action as
feedback.

Heard Sound Unheard Sound
Feedback Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑ Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑

Random GT Actions 39.8 30.0 24.5 7.6 23.3 29.6 22.1 18.4 8.2 16.3
Uniform GT Actions 38.8 29.9 25.5 7.4 20.3 28.6 21.3 18.0 7.8 14.8
Model Uncertainty GT Actions 41.3 30.6 24.8 7.3 26.3 31.4 22.7 18.4 8.2 19.3
AVLEN GT Actions 48.2 34.3 26.7 7.5 36.0 36.7 24.1 18.7 8.3 26.6

navigation episode, the duration of the sounds are variable and is normal-distributed with a

mean 15s and deviation 9s, clipped for a minimum 5s and maximum 500s [15]. There are

0.5M/500/1000 episodes available in this dataset for train/val/test splits respectively from

85 Matterport3D scans.

4.4.2 Evaluation Metrics

Similar to [15], we use the following standard metrics for evaluating our navigation

performances on this dataset: i) success rate for reaching the AudioGoal, ii) success weighted

by inverse path length (SPL) [3], iii) success weighted by inverse number of actions (SNA) [17],

iv) average distance to goal (DTG), and v) success when silent (SWS). SWS refers to the

fraction of successful episodes when the agent reaches the goal after the end of the acoustic

event.

4.4.3 Implementation Details

Similar to prior works, we use RGB and depth images, center-cropped to 64× 64.

The agent receives binaural audio clip as 65 × 26 spectrograms. The memory size for πg

and πq is 150 and for πℓ is 3. All the experiments consider maximum K = 3 allowed queries

(unless otherwise specified). For each query, the agent will take ν = 3 navigation steps in the
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Table 4.4: Comparison of AVLEN performances against baselines and when-to-query ap-
proaches in the presence of distractor sound

Feedback Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑
Chen et al. [16] ✗ 4.0 2.4 2.0 14.7 2.3
AV-WaN [17] ✗ 3.0 2.0 1.8 14.0 1.6
SMT[38]+Audio ✗ 4.2 2.9 2.1 14.9 2.8
SAVi [15] ✗ 11.8 7.4 5.0 13.1 8.4
Random Language 11.6 6.6 4.8 12.9 7.8
Uniform Language 11.6 6.8 5.1 13.3 7.7
Model Uncertainty Language 12.4 6.7 5.0 12.8 8.4
AVLEN Language 14.0 8.4 5.9 12.8 11.1
AVLEN GT Actions 24.4 15.3 11.3 11.3 21.5

environment using the natural language instruction. We use a vocabulary with 1621 words.

Training uses ADAM [65] with learning rate 2.5 × 10−4. Refer to the Appendix for more

details.

4.4.4 Experimental Results and Analysis

The main objective of our AVLEN agent in the semantic audio-visual navigation

task is to navigate towards a sounding object in an unmapped 3D environment when the

sound is sporadic. Since we are the first to integrate oracle interactions (in natural language)

within this problem setting, we compare with existing state-of-the-art semantic audio-visual

navigation approaches, namely Gan et al. [45], Chen et al. [16], AV-WaN [17], SMT [38] +

Audio, and SAVi [15]. Following the protocol used in [15] and [16], we evaluate performance

of the same trained model on two different sound settings: i) heard sound, in which the

sounds used during test are heard by the agent during training, and ii) unheard sound, in

which the train and test sets use distinct sounds. In both experimental settings, the test
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Figure 4.5: Performance (SPL) comparison against varying the number of allowed queries.

environments are unseen.

Table 4.1 provides the results of our experiments using heard and unheard sounds.

The table shows that AVLEN (language) – which is our full model based on language feedback

– shows a +2.2% and +1.6% absolute gain in success rate and success-when-silent (SWS)

respectively, compared to the best performing baseline SAVi [15] for heard sound. Moreover,

we obtain 1.4% and 1.1% absolute gain in success rate and SWS respectively for unheard

sound compared to the next best method, SAVi. Our results clearly demonstrate that

the agent is indeed able to use the short natural language instructions for improving the

navigation.

A natural question to ask in this setting is: Why are the improvements not so

dramatic, given the agent is receiving guidance from an oracle? Generally, navigation based on

language instructions is a challenging task in itself ( [4, 97]) since language incorporates strong
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Figure 4.6: Distribution of queries triggered against the time steps in episodes.

Feedback Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑
SAVi ✗ 33.9 24.0 18.3 8.8 21.5
AVLEN (Glove + GRU) Language 36.1 24.6 19.5 8.5 23.3
AVLEN (Glove + Transformer) Language 36.2 25.4 20.0 8.4 23.8
AVLEN (CLIP+Transformer) Language 36.1 24.6 19.7 8.5 23.1
AVLEN (CLIP + GRU) Language 37.7 25.5 19.9 8.5 25.1

Table 4.5: Comparisons in performance for different architectural choices for language-based
policy πℓ in heard sound setting.

inductive biases and usually spans large vocabularies; as a result the action predictions can

be extremely noisy, imprecise, and misguiding. However, the key for improved performance

is to identify when to query. Our experiments show that AVLEN is able to identify when to

query correctly (also see Table 4.2) and thus improve performance. To further substantiate

this insight, we designed an experiment in which the agent is provided the ground truth (GT)

navigation actions as feedback (instead of providing the corresponding language instruction)

whenever a query is triggered. The results of this experiment – marked AVLEN (GT Actions)
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Agent Start Location Target Location Shortest path Agent path Agent path using feedback Occupied area

Target object 
(picture)

Oracle Feedback: Walk down the hallway

Oracle Feedback: Walk forward and turn right

Target object 
(cushion)

1 2 3

1 2 3

Figure 4.7: Two qualitative results from AVLEN’s navigation trajectories. We show egocentric
views and top down maps for three different viewpoints in agent’s trajectory. The agent
starts from 1○, receives oracle help in 2○, navigates to the goal in 3○. In the top episode,
agent receives directional information (‘Walk forward and turn right’), whereas in the bottom
episode, agent receives language instruction more grounded on the scene (‘Walk down the
hallway’).

in Table 4.1 – clearly show an improvement in success rate by nearly +15% for heard sounds

and +12% for unheard sounds, suggesting future work to consider improving language-based

navigation policy πℓ.

Navigation Under Distractor Sounds. Next, we consider the presence of

distractor sounds while navigating towards an “unheard” sound source as provided in SAVi

[15]. In this setting, the agent must know which sound its target is. Thus, a one hot encoding

of the target is also provided as an input to the agent, if there are multiple sounds in

the environment. The presence of distractor sounds makes the navigation task even more

challenging, and intuitively, the agent’s ability to interact with the oracle could come useful.

This insight is clearly reflected in Figure 4.4, where AVLEN shows 2.2% and 2.7% higher

success rate and SWS respectively compared to baseline approaches. Figure 4.4 shows that
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AVLEN outperforms other query procedures as well and the performance difference is more

significant compared to when there is no distractor sound.

Analyzing When-to-Query. To evaluate if AVLEN is able to query at the

appropriate moments, we designed potential baselines that one could consider for deciding

when-to-query and compare their performances in Table 4.2. Specifically, the considered

baselines are: i) Uniform: queries after every 15 steps, ii) Random: queries randomly

within the first 50 steps of each episode, and iii) Model Uncertainty (MU) based on [27]:

queries when the softmax action probabilities of the top two action predictions of πg have an

absolute difference are less than a predefined threshold (≤ 0.1). Table 4.2 shows our results.

Unsurprisingly, we see that Random and Uniform perform poorly, however using MU happen

to be a strong baseline. However, MU is a computationally expensive baseline as it requires a

forward pass on the πg model to decide when to query. Even so, we observe that compared to

all the baselines, AVLEN shows better performance in all metrics. To further understand this,

in Figure 4.6 we plot the distribution of the episode time step when the query is triggered for

the unheard sound setting. As is clear, MU is more likely to query in the early stages of the

episode, exhausting the budget, while AVLEN learns to distribute the queries throughout

the steps, suggesting our hierarchical policy πq is learning to be conservative, and judicial in

its task. Interestingly we also find reasonable overlap between the peaks of the two curves,

suggesting that πq is considering the predictive uncertainty of πg implicitly.

Is the AVLEN reward strategy effective to train the model to query appropriately?

To answer this question, we analyzed the effectiveness of our training reward strategy

(i.e., to make the agent learn when to query) by comparing the performances of AVLEN
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with the other baseline querying methods (i.e.,Random, Uniform, and Model Uncertainty)

when the oracle feedback provides the ground truth navigation actions, instead of language

instructions. The results are provided in Table 4.3 and clearly show the superior performances

of AVLEN against the alternatives suggesting that the proposed reward signal is effective for

appropriately biasing the query selection policy.

Are the improvements in performance from better Transformer and CLIP models?

To understand the architectural design choices (e.g., modules used in πℓ) versus learning

the appropriate policy to query (learning of πq), we conducted an ablation study replacing

the sub-modules in πℓ neural network with close alternatives. Specifically, we consider

four architectural variants for πℓ for comparisons, namely: (i) AVLEN (Glove + GRU),

(ii) AVLEN (Glove + Transformer), (iii) AVLEN (CLIP + GRU), and (iv) AVLEN (CLIP

+ Transformer). We compare the performances in Table 4.5. Our results show that the

improvements when using AVLEN is not due to CLIP context or Transformer representations

alone, instead it is from our querying framework, that consistently performs better than the

baseline SAVi model, irrespective of the various ablations.

Sensitivity to Allowed Number of Queries, ν. To check the sensitivity AVLEN

for different number of allowed queries (and thus the number of natural language instructions

received), we consider ν ∈ {0, 1, 2, 3, 4, 5} and evaluate the performances. Figure 4.5 shows

the SPL scores this experiment in the unheard sound setting. As is expected, increasing the

number of queries leads to an increase in SPL for AVLEN, while alternatives e.g., Random

drops quickly; the surprising behaviour of the latter is perhaps a mix of querying at times

when the πg model is confident and the πℓ instructions being noisy.
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Sensitivity to Allowed Number of Queries. To check the sensitivity of AVLEN

for a different number of allowed queries, we consider a set of allowed query numbers

ν = {0, 1, 2, 3, 4, 5} and evaluate performance. Figure 4.8 shows the success rate, SNA and

SWS metric for allowed queries ∈ {0, 1, 2, 3, 4, 5} in presence of unheard sound. For the

metrics, AVLEN retains an advantage over other approaches.

(a) Query sensitivity (SR) (b) Query sensitivity (SNA) (c) Query sensitivity (SWS)

Figure 4.8: Sensitivity to the number of queries ν to the oracle that AVLEN can make. The
results are for the unheard sound sceneario. Please see the main paper for plots on the
success rate.

Robustness to Silence Duration. Figure 4.9 shows the cumulative success of

different approaches. The x axis represents the silent ratio (ratio of the minimum number

of actions required to reach the goal to the duration of audio). A point (x, y) on this plot

means the fraction of successful episodes with ratios up to x among all episodes is y. When

this ratio is greater than 1, no agent can reach the goal before the audio stops. The greater

this ratio is, the longer the fraction of silence, and hence the harder the episode. We observe

that AVLEN results in higher cumulative success when sound is silent for longer period.

Vision-Language Navigation Performance. In our setting, an agent receives

natural language instruction when it queries. It needs to “comprehend” this instruction
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(a) Heard sound (b) Unheard sound (c) Distractor sound

Figure 4.9: Robustness to silence duration analysis

properly and should take navigation steps grounded on this instruction. To analyze if πℓ (the

language policy) takes navigation steps well-grounded on the instruction, we created a VLN

test-set of 7, 031 short instruction-trajectory pairs. These short trajectories aligns/overlaps

with segments of test-set trajectories from semantic audio-visual navigation dataset. We

analyzed the performance of VLN-b: trained on repurposed fine-grained instruction from

[58], VLN-f : fine-tuned πℓ with collected trajectory-instruction pairs in AVLEN training,

and VLN-b (w/o instruction) (language instruction masked) in the VLN test-set. In

Table 4.6, evaluation metric step−n reflects the percentage of episodes that took n sequential

steps correctly. Table 4.6 shows that there is a significant drop in performance if the language

is masked out (removed), which indicates πℓ predictions are grounded on the instruction.

Also, fine-tuning πℓ policy with collected trajectory-instruction pairs in an online manner

helps improve the performance.

Step− 1 Step− 2 Step− 3

VLN-b (w/o instruction) 51.3 22.2 17.0
VLN-b 62.8 47.3 37.8
VLN-f 65.9 55.5 45.3

Table 4.6: Vision-language navigation performance.
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Qualitative Results. Figure 4.7 provides snapshots from two example episodes

of semantic audio-visual navigation using AVLEN. The sounding object is a ‘cushion’ in

the first episode (first row) and a ‘picture’ in the second episode (second row). 2○ of both

episodes shows the viewpoint where agent queries and receive natural language instructions.

In the first row, agent receives directional information: ‘Walk forward and turn right’, while

in the second row episode, the agent receives language instruction ground in the scene: ‘Walk

down the hallway’. In both cases, the agent uses the instruction to assist its navigation task

and reach around the vicinity of target object 3○.

4.5 Conclusions

The ability to interact with oracle/human using natural language instructions to

solve difficult tasks is of great importance from a human-machine interaction standpoint.

In this work, we considered such a task in the context of audio-visual-language embodied

navigation in a realistic virtual world, enabled by the SoundSpaces simulator. The agent,

visualy navigating the scene to localize an audio goal, is also equipped with the possibility

of asking an oracle for help. We modeled the problem as one of learning a multimodal

hierarchical reinforcement learning policy, with a two-level policy model: higher-level policy to

decide when to ask questions, and lower-level policies to either navigate using the audio-goal

or follow the oracle instructions. We presented experiments using our proposed framework;

our results show that using the proposed policy allows the agent achieve higher success rates

on the semantic audio-visual navigation task, especially in cases when the navigation task is

more difficult in presence of distractor sounds.
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Chapter 5

Conclusions

5.1 Dissertation Summary

Even with the significant strides toward multimodal learning in recent times, there

are many challenges in the multimodal domain that require rigorous investigation and the

development of newer appropriate approaches. One such challenge is to understand and learn

the alignment of multimodal information together. In this dissertation, our focus was to

learn and understand the alignment of multiple modality information for static and dynamic

tasks. By alignment, we refer to the problem of finding and understanding correspondence

between instances of two different modalities. It also includes the realization of uncertainty

when a model fails to relate two modalities. We address the alignment issue for two static

tasks and one dynamic task.

In Chapter 2, we discussed the task of text-based temporal localization of video

moments in a collection of videos. This task poses a unique challenge as the system is required

to perform: (i) retrieval of the relevant video where only a segment of the video corresponds
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with the queried sentence, and (ii) temporal localization of moment in the relevant video

based on sentence query. We proposed a Hierarchical Moment Alignment Network (HMAN)

which learns an effective joint embedding space for moments and sentences. In addition to

learning subtle differences between intra-video moments, HMAN focuses on distinguishing

inter-video global semantic concepts based on sentence queries.

In Chapter 3, we considered the task of text-based temporal localization of novel

events. Models optimized for a fixed set of seen events are unlikely to generalize to the

practical requirement of localizing a wider range of events, some of which may be unseen.

In this regard, we formulated the inference task of text-based localization of moments as

a relational prediction problem, hypothesizing a conceptual relation between semantically

relevant moments, e.g., a temporally relevant moment corresponding to an unseen text

query and a moment corresponding to a seen text query may contain shared concepts. The

likelihood of a candidate moment being the correct one based on an unseen text query will

depend on its relevance to the moment corresponding to the semantically most relevant seen

query.

In Chapter 4, we looked into the dynamic task of audio-visual-language navigation.

The real world is not only multimodal, but also often complex. Thus agents need to

understand the uncertainty in their actions and seek instructions to navigate. To this end,

we have presented AVLEN – an interactive agent for Audio-Visual-Language Embodied

Navigation. The goal of our embodied agent is to localize an audio event via navigating the

3D visual world; however, the agent may also seek help from a human (oracle), where the

assistance is provided in free-form natural language. To realize these abilities, AVLEN uses a
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multimodal hierarchical reinforcement learning backbone that learns: (a) high-level policies

to choose either audio-cues for navigation or to query the oracle, and (b) lower-level policies

to select navigation actions based on its audio-visual and language inputs. The policies are

trained via rewarding for the success on the navigation task while minimizing the number of

queries to the oracle.

5.2 Future Research Directions

Continuing in the line of the aforementioned works, we discuss some interesting

research directions for future works.

5.2.1 Webly Supervised/Knowledge Transfer

Continuing our work on text-based temporal localization for novel events where

data available in the training set is used as the support information, we can improve it

further utilizing a vast amount of web information. How to utilize the knowledge available

on the web would be an important future direction of work.

5.2.2 Bi-directional Interaction of Navigating Agent

In our considered audio-visual-language navigation task, the agent was only able

to query for help. However, a more natural scenario would be where the agent can ask

questions and be able to have bi-directional interaction with an oracle for navigation purposes.

This would be an interesting and challenging task to solve considering the requirement of

bridging efforts from conversation AI, uncertainty estimation, and multimodal machine
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learning knowledge.

5.2.3 Discrete Alignment vs Continuous Alignment

Contrary to matching discrete elements across modalities, adversarial training can

be used to warp the representation of one modality into another modality. This is likely to

be an important research direction if the task at hand considers domain shifts in data.

5.2.4 Few-shot Capability

Large language model [10] shows few-shot capability, where it can achieve strong

performance using a few examples of a task provided to the model. Utilizing the abundance

of data on the web, vision-language models can be pretrained to show few-shot ability.

5.2.5 Learning with Noisy Annotation

Human annotations are expensive and tedious effort is required to collect clean

annotations. On the other hand, web-crawled data can be an unlimited source of annotated

information. However, web annotation is noisy and systems are required to be robust to the

noise. Again, every vision-language task is unique and requires independent investigation of

how to learn in presence of noisy annotation.

5.2.6 Scalable Vision-language Model

While it is shown that cross-modal interaction results in better representation

learning, a model dependent on cross-modal interaction might not be scalable for different

tasks (e.g., text-based moment retrieval from video collection). In that case, an important
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research direction would be how to utilize a powerful cross-modal model for representation

learning and then distill the information to smaller modality-specific models.

5.2.7 Task Adaptation

Recently vision-language pretraining (VLP) has gained a lot of interest. These

models are trained for representation learning where the learned representation can be utilized

for different tasks. These VLP models are further augmented with more network weights for

different tasks. These augmentations are task-dependent and vary from one task to another.

As a result, an important research direction would be how to adapt networks specifically

designed for a particular task to other tasks without modifying the network. In that manner,

same model can be used for different tasks.

5.2.8 Enforcing Sparsity on Transformer

Transformer architecture utilizes an attention mechanism where each input is

connected to other inputs using self-attention. However, these densely connected graphs

might be overkill for many applications and easily overfit if the amount of data is low. In

that sense, how to develop a Transformer architecture with sparse connections which can be

trained with a limited amount of data would be an interesting research direction to explore.
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