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ABSTRACT OF THE DISSERTATION

Exploring the critical phenomenon

in the QCD phase diagram

at STAR

by

Roli Esha

Doctor of Philosophy in Physics

University of California, Los Angeles, 2019

Professor Huan Z. Huang, Chair

The main goal of high-energy heavy-ion collisions has been to understand Quantum Chromo

Dynamics (QCD) under extreme temperature and baryon densities. At ordinary temper-

atures, the quarks and gluons are confined within hadrons, but at very high temperatures

and densities, we have a deconfined phase of quarks and gluons, the Quark Gluon Plasma

(QGP). Over the past years, evidence for the distinct phases of QGP and hadron gas has

been established experimentally.

Fluctuations and correlations have been considered as sensitive observables to explore the

phases of the strongly interacting QCD matter, namely the QGP phase and the Hadron Gas

phase, as they can provide essential information about the effective degrees of freedom. The

main goal of this thesis is exploring the critical phenomenon in QCD phase diagram. In this

thesis, we have studied two main aspects of the QCD phase diagram, namely, the crossover

at small baryon chemical potential and signatures of local parton density fluctuation near

the critical point within the framework of the STAR experiment at the Relativistic Heavy

Ion Collider (RHIC).

Phase transitions and/or critical phenomena are known to lead to local density fluctua-

tions. In the coalescence mechanism of particle production, the baryon formation probability

can be influenced by these local parton density fluctuations, thereby leading to clusters and

voids in the phase-space distribution of hadrons. In order to probe the density fluctuation
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in heavy-ion collisions, we studied the distribution of the ratio of particles in a given angular

region to the total number of particles produced. We expect the shape of this distribution

to be sensitive to clustering in phase space. For the first part, we measured the cumulants

of this self-normalized distribution using the data from Au+Au collisions from the STAR

Beam Energy Scan program to probe baryon density fluctuations.

Lattice QCD is a well-established non-perturbative approach to solve the theory of quarks

and gluons exactly from first principles. However, these calculations are exact only at zero

baryon chemical potential (µB). In order to explore the phenomenon at finite µB, these

calculations are extended using Taylor expansion about µB = 0. A constraint on the equation

of state from Lattice QCD can be achieved by using the ratio of the sixth-order to the

second-order baryon susceptibilities. In addition, Lattice QCD also predicts that the ratio of

the sixth-order to second-order cumulants of baryon number remains negative at the chiral

transition temperature. For the second part, we measured of the sixth-order cumulant for the

net-proton (proxy for net-baryon) multiplicity distribution for Au+Au collisions at
√
sNN =

200 GeV (which corresponds to µB ∼ 20 MeV) for the high statistics run in the year 2014.

Unfortunately, the higher-order cumulants are very sensitive to experimental artifacts

that one has to deal with in the analysis of heavy-ion collision data. The factorial mo-

ment method, which is used to account for the effect of detector efficiency, assumes the

underlying detector response function to be a Binomial distribution. In order to account

for non-Binomial detector responses and multiplicity-dependent efficiency, we developed an

unfolding approach to measure efficiency-corrected higher-order cumulants of event-by-event

distribution of physical variables.
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CHAPTER 1

Introduction

With the advent of BEVELAC experiment at the Lawrence Berkeley National Laboratory in

Berkeley, where nuclei were first accelerated to relativistic speeds successfully in 1984, to the

collider experiments, Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National

Laboratory and the Large Hadron Collider (LHC) at CERN, the main goal of high-energy

heavy-ion collisions has been to understand Quantum Chromo Dynamics (QCD) under ex-

treme temperature and baryon densities. The most important characteristic of relativistic

nucleus-nucleus collisions is the large amount of energy deposited in a very small region of

space for a very short duration of time. In the collision of gold nuclei at RHIC, where the

collider is designed to accelerate the nuclei to an energy of about 100 GeV per nucleon,

the center-of-mass energy is about 2 × 100 × 197 GeV, or 39.4 TeV. During central inelas-

tic collision at such large center-of-mass energy, energy densities of few GeV/fm3 may be

achieved near the center-of-mass at mid-rapidity. The most relevant quantity is the amount

of thermal energy density locally, which is the essence of the Björken formula. The collision

energy for proton-proton collisions can be as large as 500 GeV at RHIC [1].

The nucleons inside the nucleus are made up of elementary particles, the quarks and

gluons. At ordinary temperatures, the quarks and gluons are confined within hadrons, but

at such high temperatures and densities, they form a deconfined state of matter where quarks

and gluons are strongly coupled. This state, called the Quark Gluon Plasma (QGP), can be

created in interactions of relativistic heavy-ions at the colliders such as RHIC [2]. Although

the matter in the QGP state lasts for only one-billionth of a second after the collision, this is

where scientists can master and expand our knowledge about QCD. For now, the properties

of this extremely interesting but elusive state of the matter still remain a subject of intensive
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experimental and theoretical investigations.

1.1 The Standard Model of particle physics

Figure 1.1: (Color online) The contents of the Standard Model of particle physics.

The Standard Model of particle physics describes our understanding of the phenomenol-

ogy of particle physics. It is a theory describing three of the four known fundamental forces

in nature, namely the strong, weak and electromagnetic forces. The first step towards the

Standard Model was the unifications of the electromagnetic and weak interactions by Shel-

don Glashow in 1961 [3]. In 1967, Steven Weinberg and Abdus Salam incorporated the

Higgs mechanism into Glashow’s electroweak interaction, giving it its modern form [4] [5].

The main ingredients of the Standard Model are shown in Figure 1.1. The particles involved

are described by their spin, mass and charge and the quantum numbers determining their
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interactions. The fermions, comprising of the quarks and leptons, are organized in three

families. The quarks are charged under strong and electromagnetic interactions. The heav-

ier quarks decay into lighter ones, which makes most of the ordinary matter. The quarks

which are positively charged under strong interactions, namely, up (u), charm (c) and top

(t) quarks carry electromagnetic charge of +2/3, while the down (d), strange (s) and bottom

(b) quarks are negatively charged under strong interactions and carry −1/3 electromagnetic

charge. The leptons, electron (e), muons (µ) and tau (τ), carry −1 electromagnetic charge

and are neutral under strong interactions. The neutrinos (νe, νµ and ντ ) are neutral under

both electromagnetic and strong interactions. The neutrinos interact through weak interac-

tions. The masses of the fermions span a range going from the sub-eV neutrino masses to

the 1.7× 102 GeV top mass.

The interactions in the Standard Model are mediated through exchange of the four vector

bosons. The photons (γ) are associated with electromagnetic interactions, the gluons with

strong interactions, and the W and Z bosons with weak interactions. The photon and the

gluons are massless, while the Z and the W are massive, which is the reason why weak

interactions are weak at low energy. The distinctive signatures of weak interactions are

violations of parity (P), charge conjugation (C), their combination (CP), time-reversal (T),

and family number, which all are symmetries of the electromagnetic and strong interactions.

In particular, the decay of heavier into lighter families is due to weak interactions.

The Standard Model predicted the existence of the scalar Higgs boson (H) in 1976 [6] [7] [8].

It is responsible for the masses of various fermions and the massive gauge bosons through the

interactions with the Higgs field that permeated space-time. This particle was discovered

recently at LHC in 2012 [9] [10].

1.2 Basics of Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory that most accurately describes the physics

of strong interactions. It is based on an SU(3) gauge theory with quark in the fundamental

and gluons in the adjoint representation of the gauge group. There is an internal degree of
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Figure 1.2: (Color online) Various measurements of the strong coupling constant, αS, as a

function of energy scale, Q. The curves are theoretical predictions.

freedom, the color degree of freedom, which provides for the arena of interaction amongst

these particles. The quarks come in six flavors, namely, up, down, strange, charm, bottom

and top in increasing order of their masses. These are fermions with spin 1/2. Three quarks

come together in a color neutral state to form baryons, while a quark and an anti-quark

together form colorless meson. Baryons and mesons are together called hadrons. All visible

matter around us is made of hadrons. There are 8 massless, flavorless, colored gluons with

spin 1. These are the force carriers of QCD.

QCD is characterized by its two key features, namely, confinement and asymptotic free-

dom. The coupling constant reflects the interaction strength among various constituents.
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For QCD interactions, the coupling, αS, is given by

αS =
12π

(11n− 2f) ln(|Q2|/Λ2)
, (1.1)

where n is the number of colors, f is the number of flavors, Q2 is the amount of momentum

transferred and Λ is the scale parameter with a value in the range of 100 MeV to 500

MeV. Figure 1.2 shows the values of αS as extracted from different experiments and their

comparisons with results from perturbative QCD (pQCD) [11].

Experimentally, a single quark described by color triplet state has never been isolated.

The absence suggests that the interaction between quarks and gluons is very strong on

large distance scales. This is what we mean by confinement. This idea was pioneered by

Ken Wilson [12], within the backdrop of the ”bag model”, which is an effective picture

of hadronic structure [13] [14]. On the other hand, the effective strength of the interaction

between quarks and gluons on short distance scales becomes arbitrarily small. This is known

as asymptotic freedom and was discovered by David Gross, Frank Wilczek and David Politzer

in 1973 [15] [16] [17].

Figure 1.3: (Color online) Lattice QCD calculations for energy density as a function of

temperature.
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1.3 The Quark-Gluon Plasma

Based on the intriguing nature of strong interactions, in 1974, T. D. Lee proposed the creation

of a dense state of nuclear matter at very high energies containing asymptotically free quarks

and gluons [18]. This deconfined state of nuclear matter is called Quark Gluon Plasma (QGP)

and is believed to have existed a few microseconds after the Big Bang [2]. Experimentally,

QGP is defined as a (locally) thermally equilibrated state of matter in which quarks and

gluons are deconfined from hadrons. The color degree of freedom becomes manifest over the

nuclear volume.

Figure 1.4: (Color online) Schematic QCD phase diagram for nuclear matter.

Lattice QCD aims to calculate QCD quantities non-perturbatively and from first principle

using lattice gauge techniques on discretized space-time. These calculations predict a phase

transition from confined hadronic matter to a deconfined phase of quarks and gluons around

a critical temperature (Tc) of 154 MeV [19] and an energy density (ε) of 1 GeV/fm3 [20].

Figure 1.3 shows the variation of energy density as a function of temperature for zero chemical
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potential. The active number of degrees of freedom, indicated by ε/T 4, increases rapidly,

thereby, indicating the formation of a new state of matter. SB stands for the approximation

in the Stefan-Boltzmann limit where the constituents are non-interacting and massless [20].

The study of QGP within the perspective of QCD phase diagram gives an insight into

the thermal properties of strongly interacting matter. The QCD phase diagram, as shown

in Figure 1.4, is spanned by baryon chemical potential (µB) and temperature (T ) [21]. It

has several distinct phase structures. Some of which are: (a) high temperature high density

phase of deconfined quarks and gluons (QGP), (b) low temperature low density phase of

hadrons, (c) nature of quark-hadron transition, and (d) end point of the first order phase

transition line is a second order point, called the critical point (CP). Lattice QCD predicts

the phase transition from QGP to hadron gas phase for small baryon chemical potential to

be a cross-over transition [22] [23]1. Theoretical calculations predict this transition to be a

first-order phase transition for large baryon chemical potential that ends in a second-order

critical point [24]. QCD calculations suggest that at low T and very large µB, quarks form

a color superconducting phase [25].

1.4 Relativistic heavy-ion collisions

The name heavy-ion is used for heavy atomic nuclei whereas relativistic (high-energy) denotes

kinetic energies much greater than the rest mass energy. Relativistic heavy-ion collisions are

a key to explore the hydrodynamic properties like viscosity, conductivity, diffusion coefficient

etc. of bulk quarks and gluons and to map the phase diagram of strong interactions.

The first heavy-ion collisions at the Bevalac accelerator in Lawrence Berkeley National

Laboratory with a top collision energy of 2.1 GeV pioneered for experimental programs to

continue at the Heavy Ion Synchrotron (SIS) at Helmholtzzentrum fur Schwerionenforschung

(GSI), Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL)

and the Super Proton Synchrotron (SPS) at European Organization for Nuclear Research

1Lattice QCD calculations are exact only for µB = 0
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(CERN). These fixed-target experiments limited to few tens of GeV in the center-of-collision

energy. The collider experiments at the Relativistic Heavy Ion Collider (RHIC) at BNL

and the subsequent Large Hadron Collider at CERN pushed the collision energy to the TeV

scale.

1.4.1 Space-time evolution

Figure 1.5: (Color online) Diagram showing space-time evolution of different stages in rela-

tivistic heavy-ion collisions.

In high-energy heavy-ion collisions, nuclei are accelerated to relativistic speeds. These

appear as pancakes due to Lorentz contraction along the beam direction. Figure 1.5 shows

a cartoon of the theoretically motivated space-time evolution of heavy-ion collisions at rel-

ativistic energies. At time t = 0, inelastic interactions develop in the overlapping region of

the colliding nuclei. This loss in kinetic energy leads to creation of matter in the vicinity of

the collision, often called the fireball. If the collision energy is large enough, QGP will be
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formed. Due to pressure gradient, the fireball expands, and hence cools. This QGP medium

expands rapidly with falling energy density until the temperature decreases to the critical

temperature, Tc, when the medium evolves into a mixed phase where partonic and hadronic

matter may coexist. Chemical freeze-out temperature, Tch, describes the point where in-

elastic processes that convert one kind of hadronic species into a different one cease and

the hadron abundances stops changing. After further expansion, elastic collisions ceases.

This is known as kinetic freeze-out temperature, Tfo, and the momenta of the particles stop

changing.

1.4.2 Kinematics

Usually, the coordinate system in collider is defined such that the beam axis is parallel to

the Z-axis. The point of collision of the two nuclei is called the primary vertex.

1.4.2.1 Transverse momentum

The total momentum of a particle can be divided into two components – longitudinal, which is

its component along the beam direction, or transverse, which is the component perpendicular

to the beam direction. In heavy-ion collisions, the beam direction is usually along the Z-axis.

Hence, the transverse momentum, pT is given by

pT =
√
p2
x + p2

y (1.2)

where px and py are components of total momentum along the X and Y direction. Transverse

momentum is a Lorentz invariant quantity.

1.4.2.2 Rapidity

Rapidity, y, is a dimensionless quantity defined in terms of the energy, E, and longitudinal

momentum, pz, of the particle.

y =
1

2
ln
E + pz
E − pz

(1.3)
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It is related to the ratio of forward to backward light cone momentum. Rapidity is a frame

dependent quantity and in two Lorentz frames, it is related by an additive constant.

1.4.2.3 Pseudorapidity

To characterize the rapidity of a particle, we need to measure its energy and longitudinal

momentum, which means that the particle has to be identified. In many experiments, it is

only possible to measure the angle of the detected particle with respect to the beam axis. In

such situations, pseudorapidity, η, is used. It is a measure of the spatial coordinate described

in terms of the angle of the particle relative to the beam axis.

η = − ln

[
tan

(
θ

2

)]
(1.4)

where θ is the angle between particle momentum and the beam-axis. For massless particles

or for particles with very high momentum, rapidity and pseudorapidity coincide.

1.4.2.4 Multiplicity

Multiplicity is defined as the total number of particles produced in a collision. Since most

of the detectors measure charged particles, multiplicity is often synonymous with charged

particle multiplicity.

Figure 1.6: (Color online) A geometric view of relativistic heavy-ion collisions.
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1.4.2.5 Collision centrality

Theoretically, centrality is characterized by the impact parameter which is the distance

between the centers of two colliding heavy ions in a plane transverse to the beam direction

as shown in Figure 1.6. Small impact parameter collisions are central collisions while large

impact parameter collisions are peripheral collisions. Experimentally, the collision centrality

is inferred from the measured particle multiplicities if it is assumed that this multiplicity

is a monotonic function of impact parameter. When the total integral of the multiplicity

distribution is known, centrality classes are defined by binning the distribution based upon

the fraction of the total integral. The details of centrality determination technique using

charged particle multiplicity will be discussed in Chapter 4.

1.4.2.6 Units and conversion factors

Table 1.1: Conversion from SI to natural units

Quantity Conversion

Mass 1 kg = 5.61 × 1026 GeV

Length 1 m = 5.07 × 1015 GeV−1

Time 1 s = 1.52 × 1024 GeV−1

In heavy-ion collisions, all quantities are expressed in natural units i.e. velocity of light,

c = 1 and Plank’s constant h̄ = 1. Regular physical units can be converted into natural

units using the conversion formula, h̄c = 197 MeV-fm. Table 1.1 gives the values of mass,

length and time in natural units.

1.5 Experimental Observables

The elusive hot and dense medium created in relativistic heavy-ion collisions lasts for a very

short time (∼ 5–10 fm). In heavy-ion experiments, particles from final state of the evolution

are detected. Various measurements on these particles provide an insight into the different

11



stages of evolution and the properties of QGP.

Figure 1.7: Comparison of particle yields with a thermal statistical model fit for Au+Au

collisions at
√
sNN = 200 GeV.

One of the important features of high-energy heavy-ion collisions is that the particles

in the final state corresponding to different momentum regime may come from different

production mechanisms. Most of the particles with transverse momentum below 2 GeV/c at

RHIC (often referred to as the soft sector) are dominated by thermal production from the

QGP medium. The particles with large transverse momentum (pT > 6 GeV/c at RHIC) are

mainly produced by perturbative processes and constitute the hard sector. The intermediate

transverse momentum regime is dominated by the coalescence mechanism.

In the following subsections, some of the signatures of QGP formation and the associated

characteristics of the medium is discussed.
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1.5.1 Hadron yields

The measurement of particle yield provides information about the system at chemical freeze-

out as it marks the end of inelastic collisions, thereby, fixing chemical abundances. The

particles produced in the soft sector exhibit features of thermal statistics. Figure 1.7 shows

a thermal statistical model fit to the measured yields of various particles in Au+Au collisions

at
√
sNN = 200 GeV [26]. The horizontal lines are the statistical model fit to particle yields.

In the regime of the model, three parameters are used, namely, chemical freezeout temper-

ature, Tch = 164 ± 4 MeV, baryon chemical potential, µB = 24 ± 4 MeV and strangeness

suppression factor, γs = 0.99± 0.07 [27]. The strangeness suppression factor is a measure of

how far the system is from chemical equilibrium. As the value of γs is consistent with unity,

it implies that the system formed at RHIC is in chemical equilibrium.

Figure 1.8: (Color online) The 1σ and 2σ contour for 〈βT 〉 and Tfo extracted from thermal

and radial flow fits to π, K and p spectra in 9 centrality bins for Au+Au and p+ p collisions

at
√
sNN = 200 GeV.
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With elastic interactions ceasing and the momentum distributions fixed, at kinetic freeze-

out, the measurement of particle spectra is an important observable. The particle spectra

are compared with blast-wave model, the fit parameters being kinetic freezeout temperature

(Tfo) and the mean collective expansion velocity, (〈βT 〉). The results obtained by simultane-

ous fitting of π, K and p spectra are shown in Figure 1.8 [27]. For most central collision, the

extracted 〈βT 〉 is highest while (Tfo) is lowest, indicating that the system created in central

collisions expands faster than peripheral collisions and freezes out at lower temperatures.

1.5.2 Collective Flow

Figure 1.9: (Color online) Cartoon for non-central nucleus-nucleus collision.

The system of heavy-ion collision is surrounded by vacuum. This gives rise to a pressure

gradient from the dense center to the boundary of the system. This pressure gradient is

radially symmetric for head-on heavy-ion collisions and gives a radially outward boost to all

particles that are formed in the system. This influences the transverse momentum spectra

of heavy particles. For non-central collisions, the shape of the interaction region depends

strongly on the impact parameter of the collision. Just after the collision, as shown in Fig-

ure 1.9, the reaction volume is elliptically shaped. This initial spatial anisotropy of collision

geometry and the interaction among particles produced lead to momentum anisotropy of pro-
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Figure 1.10: Non-central nucleus-nucleus collision with azimuthal angle, φ and reaction plane

angle, ψrp.

duced particles in high-energy heavy-ion collisions. The anisotropic flow leads to azimuthal

distribution of particles which is measured with respect to reaction plane. The particle

azimuthal distribution relative to reaction plane can be written in the form of Fourier series

dN

dφ
=

1

2π

(
1 +

∞∑
n=1

2vn cos [n(φ− ψrp)]

)
(1.5)

where ψrp is the reaction plane angle defined by the impact parameter vector in the transverse

plane as shown in Figure 1.10.

The coefficients vn are given by

vn = 〈cos [n(φi − ψrp)]〉 (1.6)

Here 〈.〉 denotes the average over all the particles produced for all events. The first two

coefficients v1 and v2 are called directed and elliptic flow respectively [28]. Measurements of

v1 and v2 of identified particles at the STAR experiment is shown in Figure 1.11 [29] [30] and
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Figure 1.12 [31] respectively. The mass ordering observed in Figure 1.12 is a characteristic

of hydrodynamic evolution of the QGP medium [32].

Figure 1.11: (Color online) The directed flow, v1 as a function of rapidity in 0-40% central

Au+Au collisions for identified particle.

1.5.3 Strangeness enhancement

Strangeness is the lightest unstable quark flavor that appears in pp collisions with an abun-

dance that is about a factor 2.5-3 below that of each light quark flavor, called the Wroblewski
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Figure 1.12: (Color online) The elliptic flow, v2(pT ) in 0-80% central Au+Au collisions for

identified particles (a) and anti-particles (b).

ratio [33]. However, in nucleus-nucleus collisions, it is found that the ratio of the number

of produced kaons to that of pions is higher by a factor of about two compared to that

in proton-proton reactions at the same energy [34] [35]. This strangeness enhancement is

possible if the nucleus-nucleus reactions proceeds through a de-confined stage [36].

Figure 1.13 shows the ratio of strange hadron yields normalized to 〈Npart〉 in nucleus-

nucleus collisions relative to corresponding yields from proton-proton collisions at 62.4 and

200 GeV [37]. Enhancement of φ(ss̄) production in Cu+Cu and Au+Au relative to p+p

collisions clearly indicates the formation of a dense partonic medium in these collisions.
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Figure 1.13: (Color online) Left panel: φ/K− ratio as a function number of participants.

Right panel: φ/K− ratio as a function of centre-of-mass energies.

1.5.4 Hard hadrons: jet quenching

With increasing center of collision energies, hard parton back-scattering occurs in nucleus-

nucleus collisions (as in pp collisions) at a rate described by perturbative QCD [38] [39].

Such hard partons are observed as back-to-back jets. These jets are created in the pri-

mordial medium at the initial time when the two colliding nuclei are passing each other.

Geometrically, if such a pair is produced near the edge of the colliding matter, then one

of the jet-partons can escape, while the balancing momentum of the immersed jet parton

traverses QGP that has evolved in the collision. The energy of such a parton can be partially

or completely dissipated. This phenomenon is called jet-quenching.

Dihadron azimuthal correlations can be used to observe jets in high energy collisions as

shown in Figure 1.14 [27]. The parton-pair created moves in opposite direction, thereby

giving rise to strong correlations between φ = 0 and φ = π, as seen in p + p and d+ Au

collisions. However, in Au+Au collisions one of the partons is scattered in the QCD medium

so it loses significant energy as well as the original direction, resulting in the quenching of

the peak on the away side.
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Figure 1.14: (Color online) Dihadron azimuthal correlation for different collision systems.

1.5.5 Fluctuations

Any physical system that appears homogenous actually consists of large microscopic fluctu-

ations. To see fluctuations in QGP medium, event-by-event measurements are performed.

The search is for large, non-statistical fluctuations that would signal competition between

two different phases of matter, a phase transition [40].

1.6 Thesis outline

One of the main goals of the RHIC Beam Energy Scan program is to search for the QCD

Critical Point (CP) and phase transition in heavy-ion collisions. Over the past years, evidence

for the distinct phases of Quark Gluon Plasma (QGP) and hadron gas has been established

experimentally. Lattice QCD predicts the transition from the QGP phase to the hadron

gas phase to be a crossover at zero baryon density [23], while QCD-inspired models predict

it to be a first-order phase transition for large baryon chemical potential and to end in a

second-order critical point [24]. Both theory and experiment have ruled out the existence of

a critical point below baryon chemical potential (µB) values of 154 MeV [41].
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In this thesis, we have studied two main aspects of the QCD phase diagram, namely, the

crossover at small baryon chemical potential and signatures of local parton density fluctuation

near the critical point with data from the STAR experiment at the Relativistic Heavy Ion

Collider (RHIC).

Phase transitions and/or critical phenomena are known to lead to local density fluctua-

tions. In the coalescence mechanism of particle production, the baryon formation probability

can be influenced by these local parton density fluctuations, thereby leading to clusters and

voids in the phase-space distribution of hadrons. In order to probe the density fluctuation

in heavy-ion collisions, we studied the distribution of the ratio of particles in a given angular

region to the total number of particles produced. We expect the shape of this distribution

to be sensitive to clustering in phase space. For the first part, we measured the cumulants

of this self-normalized distribution using the data from Au+Au collisions from the STAR

Beam Energy Scan program to probe baryon density fluctuations.

Fluctuations and correlations have been considered as sensitive observables to explore

the phases of the strongly interacting QCD matter as they can provide essential information

about the effective degrees of freedom. The magnitude of the fluctuation of conserved quan-

tities (baryon number, strangeness, and charge of the system) in a grand canonical ensemble

at finite temperature are distinctly different in the hadronic and the QGP phases and can

be related to the susceptibility of the system [42] [43] [44]. The susceptibility (χ), which is

defined as the derivative of free energy density or pressure (p) of a thermodynamic system

at a given temperature (T ) with respect to the chemical potential (µ). This can be related

to the cumulants (C) of the event-by-event distribution of the associated conserved quantity

by:

χ(n)
q =

∂n(p/T 4)

∂(µq/T )n
=

1

V T 3
× Cn,q, (1.7)

where V is the volume of the system, n is the order, and q is baryon number, strangeness

or charge of the system. The ratios of such cumulants as experimental observables cancel

the volume and temperature dependence and can be directly compared to the ratios of

susceptibilities from theoretical calculations.
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Figure 1.15: Variation of the cumulant ratios for net-charge, net-kaon and net-proton mul-

tiplicity distribution with beam energy from the STAR experiment for different centralities.

Constrained by statistics, upto fourth-order cumulants for net-proton multiplicity distri-

bution have been measured at the STAR experiment. Figure 4.16 shows the measurements

of the cumulant-ratios for net-charge (left panel), net-kaon (middle panel) and net-proton

(right panel) multiplicity distributions from Au+Au collisions at
√
sNN = 7.7, 11.5, 14.5,

19.6, 27, 39, 62.4 and 200 GeV from the STAR experiment [45] [46] [47] [48]. The black

circles are the measurements for 70-80%, green squares for 5-10% and red stars for 0-5%

central collisions. The corresponding dashed lines are the Poisson baselines. The blue band

is the result from 0-5% central collisions from the UrQMD model calculations. It should be

noted that the kinematic range for the measurements are different. Results for net-charge

include all charged particles within transverse momentum region of 0.2 to 2.0 GeV/c and

pseudorapidity ranging from -0.5 to 0.5. The spallation protons with transverse momen-

tum less than 0.4 GeV/c are excluded. For the cumulants of net-kaons, (anti-)kaons within

transverse momentum region of 0.2 to 1.2 GeV/c and rapidity ranging from -0.5 to 0.5 are

included. For the net-proton analysis, (anti-)protons within transverse momentum region of

0.4 to 2.0 GeV/c and rapidity ranging from -0.5 to 0.5 are included. Within large statistical
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error bars, we find a monotonic trend in the various cumulant ratios for net-charge and

net-kaon multiplicity distributions with the collision energy. However, higher cumulants of

net-proton multiplicity distributions show a non-monotonic trend for central collisions.

For the second part, we measured of the sixth-order cumulant for the net-proton (proxy

for net-baryon) multiplicity distribution for Au+Au collisions at
√
sNN = 200 GeV for the

high statistics run in the year 2014.

In order to precisely measure the event-by-event fluctuation of conserved quantities,

a series of analysis techniques are applied. As no detector is perfect, an important step

is particle detection efficiency correction. There could be noticeable consequences of the

multiplicity-dependent behavior of particle detection efficiency on the measured higher-order

cumulants [49]. In order to understand and overcome these issues, we have developed a data-

driven approach for efficiency correction. We use this method to investigate the multiplicity-

dependent detector response and efficiency variations. The effect for different efficiency

correction techniques on the measurement of the cumulants for net-proton multiplicity dis-

tribution for Au+Au collisions at
√
sNN = 200 GeV is discussed in the third part.

The plan of this thesis is as follows. In Chapter 2, the technical details of the STAR

experiment is discussed. Chapter 3 deals with the search for critical phenomenon using local

parton density fluctuations. In Chapter 4, the measurements for the sixth-order cumulant for

net-proton multiplicity distribution for Au+Au collisions at
√
sNN = 200 GeV is presented.

The unfolding method for efficiency correction is developed in Chapter 5. The summary and

future prospects are discussed in Chapter 6.
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CHAPTER 2

Experimental set-up

The Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory in

Upton, NY is world’s first accelerator facility that is capable of colliding heavy and light

ions, e.g. gold, copper and deutrons, and polarized protons at relativistic energies [50].

STAR, which stands for Solenoid Tracker at RHIC, is one of the four experiments housed

in the RHIC complex. It is a massive detector system with full azimuthal coverage and

excellent particle identification capabilities constructed to investigate the behavior of strongly

interacting matter formed in high-energy heavy-ion collisions and to search for the signatures

of Quark-Gluon Plasma.

Figure 2.1: (Color online) Summary of RHIC runs. The nucleon-pair luminosity is defined as

LNN = A1A2L, where L is the luminosity, and A1 and A2 are the number of nucleons of the

ions in the two beams respectively. The proton polarization is intensity and time averaged

over the whole run, as measured by the H-jet.
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2.1 Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider began its operation in the year 2000 and is one of

the two collider facilities (other being the Large Hadron Collider at CERN which started

in 2010) currently in operation. So far, it is the only spin-polarized proton collider. The

RHIC complex is a series of particle accelerators that enable acceleration and collision of

various particle species, ranging from polarized protons to heavy nuclei like gold, through a

wide range of center-of-mass energies [51] [52] [53]. Figure 4.4 gives a brief overview of the

luminosities and the running periods for the heavy-ion and the polarized p + p collisions at

RHIC [54]. Table 2.1 summarizes the particle species that are collided at RHIC with their

respective energies [54].

Table 2.1: Summary of RHIC operations

Particle species Total particle energy (GeV/nucleon)

Polarized p+ p 31.2 – 254.9

Polarized p + 27Au13+ 103.9 + 98.7

Polarized p + 197Au79+ 103.9 + 98.6

d + 197Au79+ 9.9 + 9.8 – 100.7 + 100.0

3He2+ + 197Au79+ 103.5 + 100.0

63Cu29+ + 63Cu29+ 11.2 – 100.0

63Cu29+ + 197Au79+ 99.9 + 100.0

96Zr40+ + 96Zr40+ 100.0

96Ru44+ + 96Ru44+ 100.0

197Au79+ + 197Au79+ 3.85 – 100.0

197Au79+ + 197Au (fixed target) 3.85 – 31.2

238U92+ + 238U92+ 96.4
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2.1.1 Stages of particle acceleration

A schematic drawing of the RHIC accelerator complex is shown in Figure 2.2 [1]. The

important subsystems, namely the Electron Beam Ion Source (EBIS) accelerator (1), the

Linac (2), the Boosters (3), the Alternating Gradient Synchrotron (4), the beamline (5) and

the RHIC rings (6) are numbered.

Figure 2.2: (Color online) A schematic drawing of the RHIC accelerator complex, with the

important subsystems namely the Electron Beam Ion Source (EBIS) accelerator (1), the

Linac (2), the Boosters (3), the Alternating Gradient Synchrotron (AGS) (4), the beamline

(5) and the RHIC rings (6) numbered.

The particles are passed through several stages [1] [55], which are discussed below, before

reaching the desired energy.

1. Electron Beam Ion Source (EBIS): EBIS is a pre-injector system for heavy-ion

acceleration where highly charged ion beams can be created from any element. These

ion beams are then accelerated by two small linear accelerators before being carried to

25



the Booster Synchrotron. For example, gold ions leaving EBIS have a charge of +32

and kinetic energy of 2 MeV per nucleon.

2. Linac: The starting point for proton beam is the 200 MeV Linac from where it is

transferred to the Booster Synchrotron.

3. Booster Synchrotron: A synchrotron is a circular accelerator with the accelerating

voltage adjusted to synchronize with the circulation period of the particles being accel-

erated. The Booster Synchrotron is used to pre-accelerate particles entering the AGS

ring. The superior vacuum at the Booster makes it possible to accelerate heavy ions

upto uranium. When exiting, gold ions are accelerated to 100 MeV per nucleon with

a charge of +77. The beam is then injected into the AGS ring.

4. Alternating Gradient Synchrotron (AGS) ring: The field gradient of the 240

magnets in the AGS ring are alternated inward and outward successively, thereby

focussing the particle beam both in the horizontal and vertical planes simultaneously.

When exiting the AGS ring into the AGS-to-RHIC beamline, gold ions are accelerated

to 8.86 GeV per nucleon and a charge of +77.

5. AGS-to-RHIC line: A foil at the beginning of the AGS-to-RHIC transfer line strips

the last two electrons of the gold ions. The switching magnets at the end of the line

are used to direct the bunches to either to the left in the the clockwise, or to the right

in the counter-clockwise RHIC ring.

6. RHIC ring: RHIC is a particle accelerator that doubles up as a storage ring. It

consists of two independent 2.4 mile long, quasi-circular rings where heavy-ions and/or

polarized protons are (de)accelerated to the final collision energy and circulated in

opposite directions for upto 10 hours, colliding at the intersection points. The six

intersection points, where the rings cross allowing the particles to collide, are identified

by clock positions, with the injection near 6 o’clock. Large super-conducting magnets

are used for focusing the particle beams [56]. The dipole magnets operate at 3.45 T.

Polarized protons, which are injected into the RHIC ring, are preserved in their state

26



with the help of Siberian snakes (chain of 4 helical dipole magnets) in the ring.

The collisions at RHIC were captured and studied by the four experimental detectors

around the ring. Out of these, only one continues to operate. The STAR experiment is

located at the 6 o’clock position and the PHENIX experiment (retired in 2016) at 8 o’clock.

The PHOBOS and BRAHMS experiments, which are already decommissioned in 2005 and

2006 respectively, were located at the 10 o’clock and 2 o’clock positions.

The STAR detector specializes in the tracking and identification of charged hadrons

covering a large solid angle at mid-rapidity in a conventionally generated solenoidal magnetic

field [57]. The PHENIX experiment was aimed at measuring the direct probes of the collision

using a partial coverage detector system in a super-conductively generated axial magnetic

field [58]. The PHOBOS detector had the largest pseudo-rapidity coverage and was tailored

to measure bulk particle multiplicities [59]. The BRAHMS experiment was designed to study

the small-x physics using momentum spectroscopy [60].

The flexibility of colliding species and energies at RHIC makes it ideal to explore the

properties of nuclear matter under extreme conditions.

2.2 Solenoid Tracker At RHIC (STAR)

STAR is one of the two large detector systems at RHIC. This massive detector system

weighs 1200 tons. STAR was constructed to search for the signatures of QGP and study

the properties of QGP formed in high-energy nucleus-nucleus collisions. The main feature

of such collisions is that a large number of particles, of the order of 1000 at mid-rapidity,

are produced. In addition, high momentum particles are also produced from hard-parton

scatterings. STAR is designed to measure hadron production across large solid angle. The

detectors sub-systems allow for high precision tracking, momentum analysis, and particle

identification at the center of mass rapidity. It is the only experiment at RHIC which can

measure the full azimuth and tracks particles from 100 MeV/c to 20 GeV/c [57]. This makes

STAR particularly well suited for event-by-event characterizations of heavy-ion collisions
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and for the detection of hadron jets.

Figure 2.3: (Color online) Three-dimensional view of the STAR detector.

The three-dimensional schematic layout of the STAR detector system, which was config-

ured for operation in the year 2014, is shown in Figure 2.3. At the heart of STAR is the

Time Projection Chamber (TPC). It is a cylindrical detector which enables particle tracking

and identification via track ionization energy loss [61]. The beam crossing point is at the

center of TPC and the direction of the beam is the Z-direction [62]. Between TPC and

the beam pipe, we have the Heavy Flavor Tracker (HFT), which is a silicon-based tracking

detector [63]. It helps in precise vertex measurements. Surrounding the TPC is the Time-of-

Flight (TOF) detector [64]. It extends particle identification capabilities at STAR to above 1

GeV/c. Beyond TOF is the STAR calorimeter system, consisting of the Barrel ElectroMag-

netic Calorimeter (BEMC) and the Barrel Shower Maximum Detector (BSMD) [65]. The

End-cap ElectroMagnetic Calorimeter (EEMC) on one side of STAR [66], with the BEMC

and BSMD allow for the measurement of transverse momentum of photons, electrons and

electro-magnetically decaying hadrons. The BEMC is surrounded by the STAR magnet coils
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and Iron York [67]. This room temperature solenoidal magnet provides a uniform magnetic

field of 0.5 T along the beam line. The outermost cylindrical layer is the Muon Telescope

Detector (MTD), which provides for an excellent muon trigger and identification capabilities

at mid-rapidity [68].

Apart from these, STAR houses several other sub-detectors for beam monitoring and

triggering. The Beam Beam Counters (BBC) are located 3.5 m away from the center of STAR

on either side and monitor event rates in p + p collisions [69] [70]. A pair of Zero Degree

Calorimeter (ZDC) detectors, located along the beam pipe on both sides, monitor small-

angle scattering of neutral particles such as spectator neutrons [69]. The Vertex Position

Detectors (VPD) are located at Z = ± 5.6 m on either side. These provide the start time of

the collisions, which is essential for time-of-flight measurements [64].

The various detector sub-systems are discussed in detail in the following subsections.

2.2.1 Heavy Flavor Tracker

Heavy Flavor Tracker (HFT) is a group of inner tracking detectors which are designed

to facilitate the reconstruction of displaced decay vertices of heavy flavor hadrons with

a pointing resolution of 50 µm [63]. It covers a pseudorapidity range of ±1 and 2π in

azimuth. This helps extend STAR’s capabilities by providing direct topological identification

of hadrons containing charm and bottom quarks. HFT consists of three sub-detectors, a

silicon pixel detector (PIXEL), the Intermediate Silicon Tracker (IST) and the Silicon Strip

Detector (SSD). The schematic of the configuration is shown in Figure 2.4.

The SSD lies at a radius of 22 cm with a length of 106 cm. It comprises of double-sided

silicon strip wafers with a pitch of 95 µm. Inside the SSD, lies IST at a radius of 14 cm. It is

a single-sided double metal silicon pad that is designed to match the high resolution of the

PIXEL detector with the coarser resolution of the SSD. With a 600 µm × 6 mm pitch, the

IST has a length of 50 cm. Two layers of low mass PIXEL detectors are built at a radius

of 2.8 cm and 8 cm, with a length of 20 cm and 20.7 µm pitch. Each ladder contains a row

of 10 monolithic Complementary Metal Oxide Semiconductor (CMOS) detector chips and
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Figure 2.4: (Color online) A schematic drawing of the Heavy Flavor Tracker.

has an active area of 19.2 cm × 1.92 cm [71]. A summary of technical details of the three

sub-detectors is given in Table 2.2.

2.2.2 Time Projection Chamber

The Time Projection Chamber (TPC) is the primary tracking device used to identify charged

particles through ionization energy loss as they traverse through the gas volume [61] [72].

The schematic diagram of TPC is shown in Figure 2.5 [61]. The TPC covers an acceptance

of ±1.8 units of pseudorapidity and 2π in the azimuthal angle. It is 4.2 m long, along the

beamline, and 4 m in diameter. The Outer Field Cage (OFC) and the Inner Field Cage (IFC)

has a radius of 200 cm and 50 cm respectively. The region enclosed by the OFC, IFC and

the end caps on both sides is filled with P-10 gas, which is a mixture of 90% argon and 10%

methane. The TPC is divided into two drift volumes, each of 210 cm, by a central membrane,

which serves as the cathode. The central membrane has a 28 kV negative potential applied
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Table 2.2: Technical details of HFT

Sub-detector r (cm) Resolution X/X0 (%)

R/φ – Z (µm)

PIXEL 2.8 12 – 12 0.4/layer

8 12 – 12 0.4/layer

IST 14 170 – 1800 < 1.5

SSD 22 20 – 740 1

to it. The end caps, at ground potential, serve as anode and host readout systems. The field

cages are segmented into a total of 182 conducting rings, biased by 2 MΩ resistors between

the rings. The field cage, central membrane and the end caps together provide a uniform

electric field of 133 V/m pointing towards the center (Z = 0) of the TPC from both the ends

(Z = ±210 cm). Under the influence of this electric field, the electrons from the ionization of

P10 gas by charged tracks drift towards the ends of the TPC with a velocity of 5.45 cm/µs,

translating to a maximum of about 40 µs of total drifting time.

The readout of the TPC endcap planes is based on Multi-Wire Proportional Chambers

(MWPC) [61]. The MWPC chambers are composed of three layers of wire planes and a pad

plane each. For each end cap, 12 readout modules, also called sectors, are arranged radially,

with a gap of 3 mm between them. Each sector is further divided into inner and outer

subsector. The inner subsector consists of smaller pads, distributed in 13 pad rows, in order

to optimize the position and two-track resolution in a region with high particle density. The

outer subsectors are packed into 32 rows per sector to maximize the measurement of energy

loss in a region with relatively lower particle density. One full sector of anode is shown in

Figure 2.6 [61]. A track in TPC can, therefore, be sampled by a maximum of 45 pad rows.

The central membrane cathode consists of 70 µm thick carbon-loaded Kapton film, which

has 36 aluminium stripes attached to each side. These are used as targets for the TPC laser

calibration system.

The main function of the TPC subsytem in STAR is track reconstruction and particle
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Figure 2.5: A schematic drawing of the Time Projection Chamber.

identification. Charged particles traversing the TPC follow a curved path due to the presence

of magnetic field. Along its track, it ionizes the P10 gas leaving behind clusters of electrons.

Assuming Gaussian response function for the pads, the X − Y position of the cluster is

determined by measuring the signal in adjacent pads and fitting to find the most likely

position. The drift time of the electron cluster from the point of origin to the end caps is

used to determine the Z position. The Time Projection Chamber Tracker algorithm is then

used to reconstruct the track using a helical trajectory fit. The Z position of the collision

vertex is determined by extrapolating the reconstructed trajectories to the origin. A track

is called a primary track if its distance of closest approach (DCA) from the reconstructed

vertex is within 3 cm, otherwise it is called a global track. The reconstruction efficiency for

primary tracks depends on the track quality cuts, particle type and track multiplicity. The

transverse momentum, pT , is determined using the following equation:

pT = 0.3B r q (2.1)
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Figure 2.6: A schematic drawing of a sector of the TPC anode plane indicating the inner

and outer subsectors and their respective padrows.

where B is the magnetic field strength, r is the radius of curvature of the reconstructed track

helix, and Q is the charge of the particle. The components of the three-momentum of the

primary track can then be calculated using the angle made by the track with respect to the

Z-axis of the TPC.

The ionization energy loss (dE/dx) of the charged particles due to interaction with the

medium inside TPC is used for particle identification. The value of dE/dx for the track is

extracted from the energy loss measured from the maximum of 45 pad rows. As the length

over which the particle energy loss is measured is short and the fluctuations are large, instead

of average dE/dx, the most probable energy loss is measured by calculating the truncated

mean of 70% of the of the clusters. Figure 2.7 shows a typical plot of measured dE/dx as

a function of track momentum. The solid lines are the prediction from the Bischel function

for different particle species [73]. The typical resolution of dE/dx in Au+Au collisions is ∼

8%, which makes separation of pions (π) and kaons (K) upto a momentum of 0.6 GeV/c
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Figure 2.7: (Color online) The energy loss distribution for charged particles from TPC as a

function of momentum.

and K and protons (p) upto 1.1 GeV/c.

2.2.3 Time of Flight detector

The Time of Flight (TOF) detector extends particle identification capabilities at STAR to

higher momentum [64] [74] [75]. TOF is segmented into 120 trays and surrounds the TPC

cylindrically. Each tray is 2.4 m long, 21.3 cm wide, 8.5 m deep and covers an azimuthal

angle of 6 degrees around the TPC. It consists of 32 Multigap Resistive Plate Chamber

(MRPC) [76] modules along the Z direction, which are a stack of resistive plates arranged

in parallel, creating a series of gas gaps. The dimensions of a module are 94 mm × 212

mm × 12 mm with an active area of 61 mm × 200 mm. A cross-section view of the MRPC

module is shown in Figure 2.8(a). A strong electric field is generated in each subgaps by the

external electrodes. These are made of graphite tapes and applied to the outer surfaces of
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Figure 2.8: (a) A schematic drawing of a cross-section of the MRPC module for TOF. (b)

Top view of the printed circuit board with the readout pads array.

the two outer plates. The outer and inner glass plates are kept parallel using a 220 µm nylon

fishing line. The plates, being resistive, are transparent to the signal induced by avalanches

generated by the traversing charged particles. The signal read out with a 1 × 6 array of

copper pickup pad is the sum of the signals from all the gas gaps. Figure 2.8(b) shows the

readout pad array [75].

The TOF trays, in conjunction with the Vertex Position Detectors (VPD), form the TOF

detector subsystem [64]. The VPD provides the common start time of the event, while the

TOF trays provide the stop time for each track. The difference between the two times gives

the time of flight (τ) of the associated track. The time resolution for TOF is 80 to 100 ps.
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Figure 2.9: (Color online) 1/β as a function of track momentum from TOF.

Using τ , the relative velocity of associated track (β) can be estimated using the following

equation:

β = L/ c τ (2.2)

where L is the length of the track traversed by the particle and c is the speed of the light.

The mass (m) of the particle associated with the corresponding track is then given by the

following relation:

m = p / γ β c (2.3)

where γ = 1/
√

1− β2. The track momentum, p is measured by the TPC. Figure 2.9 shows

1/β as a function of momentum for different tracks. Using TOF, π/K and K/p can be

distinguished upto 1.6 and 3.0 GeV/c respectively.
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Figure 2.10: A schematic drawing of the side (end) view of a BEMC module in the upper

(lower) plot.

2.2.4 Electromagnetic calorimeters

The Barrel ElectroMagnetic Calorimeter (BEMC), with the Endcap ElectroMagnetic Calorime-

ter (EEMC) and the Barrel Shower Maximum Detector (BSMD) constitute the electromag-

netic calorimeter subsystem in the STAR detector system. The BEMC [65] is cylindrical in

shape with an inner radius of 223.5 cm and an outer radius of 263 cm. It consists of 120

modules, two halves each of 60 modules. One module covers a pseudorapidity range of 1 unit

and and azimuthal angle of 6 degrees. Figure 2.10 shows a BEMC module, which is a stack
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of 21 layers of plastic scintillators with 20 layers of lead sandwiched between them [65]. At

mid-rapidity, it forms a total depth of approximately 20 radiation lengths. Each module is

further segmented into 40 towers. One photomultiplier tube is used to read out the sum of

light output from 21 layers of plastic scintillators for each tower.

Figure 2.11: A schematic drawing of the BSMD at STAR.

The BSMD [65] is located between the fifth layer of lead and sixth layer of scintillator

inside the BEMC. Each module of BSMD, shown in Figure 2.11, is a wire proportional

counter sandwiched between two layers of strip readout. There are 150 strips on each of the

two planes of the BSMD module. The front plane maps out the shower profile along η with

a very fine resolution, while the ones on the back provide fine granularity in the φ direction.

The EEMC [66] is a lead-scintillator sampling calorimeter, with 60 azimuthal and 12

radial segments. It allows for measurements in the forward direction, 1 < η < 2, with

the full azimuth. The schematic diagram of a part of EEMC is shown in Figure 2.12. A

scintillator strip SMD with high position resolution is located after the fifth radiator plate.
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Figure 2.12: A schematic drawing of the EEMC at STAR.

Light from the towers and SMD is carried on optical fibers outside the STAR magnet, to

photomultiplier tubes mounted on the rear of the poletip. The EEMC is supported from

a strong stainless steel backplate, which attaches to the poletip, and a terraced, conical

stainless steel hub at the inner radius, to which the radiator sheets are attached.

2.2.5 Muon Telescope Detector

The Muon Telescope Detector (MTD) [68], the outermost detector subsystem at STAR, is

located behind the iron return bars of the STAR magnet. It covers 45% of the full azimuth at

midrapidity −0.5 < η < 0.5. The MTD is based on the Multi-gap Resistive Plate Chambers

(MRPC) technology [76], which is similar to that of TOF, but much larger in size and have

long double-ended read-out strips. MTD consists of a total of 118 modules with 1416 readout

strips and 2832 readout channels. The length of each strip is 87 cm. The spatial resolution
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Figure 2.13: A schematic drawing of the side view of a MRPC module for MTD.

is about 1 cm and the intrinsic timing resolution is less than 100 ps. Figure 2.13 shows a

the end view of a long MRPC module. The gas mixture used is a mixture of 95% Freon

R-134a and 5% isobutane. The MTD allows the measurement of the Υ and J/ψ mesons,

over a broad transverse momentum range through di-muon decays.

2.2.6 Trigger detectors

The Zero Degree Calorimeters (ZDC), the Beam Beam counters (BBC), the Vertex Position

Detectors (VPD) and the ElectroMagnetic Calorimeters (EMC) are the main trigger detec-

tors at STAR. As the various detector subsystems have different readout speeds, these fast

detectors forms Level-0 trigger that initiates the data acquisition (DAQ) sequence.

Located at the distance of ± 18.25 m from the center of TPC along the beam axis, the

two ZDC detectors [69] are hadronic calorimeters designed to measure the energy deposited

by the spectator neutrons in a small angle near zero degrees (θ < 2 mrad). A coincidence

between the two ZDC, with summed signal greater than 40% of a single neutron signal, is

required for minimum bias trigger.

The BBC [69] [70] is located on each side of the TPC, covering full azimuthal angle, and

2.1 < |η| < 5.0. This hexagonal scintillator array structure is mounted around the beam

pipe at a distance of 3.7 m from the center of TPC along the beam direction. A coincidence

between the two counters is required for the minimum bias trigger. This coincidence is also

used to reject beam gas events. The timing difference between the BBC is used to obtain

information about the position of the collision vertex. In addition, the small tiles of BBC
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can also be used to reconstruct the first order event plane for flow measurements.

The VPD [64] [74] consists of 19 lead converters plus plastic scintillators with photomul-

tiplier tube readout. These are located at 5.7 m on either side of the interaction point and

cover the pseudorapidity range of 4.24 < |η| < 5.1. Like BBC, a coincidence in the east and

west VPD is used for the selection of minimum bias events. It also provides information

about the Z-component of the collision vertex, with a better timing resolution than BBC.

The EMC is used to trigger events with rare probes with high electromagnetic energy

deposition in the EMC tower or patch, arising from high energy photons and neutral pions,

or electrons from J/ψ decays.

The results presented in this thesis are based on the data collected for Au+Au collisions

by the STAR detector in the years 2010, 2011 and 2014. The information from TPC and

TOF is used for particle identification and trigger from VPD is used to select minimum bias

events.
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CHAPTER 3

Study of local parton density fluctuations through

baryon clustering

3.1 Introduction

Local density fluctuations have been a defining feature among the first-order phase transi-

tions observed around us, for example the condensation of water vapor, transformation from

paramagnetic to ferromagnetic material, etc. In the QCD phase diagram, model calculations

predict the transition from the Quark-Gluon Plasma phase to the Hadron Gas phase to be

a first-order phase transition for large baryon chemical potential that ends in a second-order

critical point [24]. Hence, probing for signatures of local parton density fluctuations would

provide an insight into the proposed critical phenomenon in QCD.

Fragmentation and recombination have been successful models in explaining particle pro-

ductions in heavy-ion collisions [77] [78] [79]. In the fragmentation picture, perturbative QCD

is used to describe the formation of hadrons from a single parton that fragments into a shower

of particles. The produced hadrons will only have a fraction of momentum of the fragment-

ing parton. Alternatively, in the recombination framework, or the coalescence mechanism of

particle production, a hadron is formed when the constituent partons in the Quark-Gluon

Plasma come sufficiently close both in space and in momentum space. In this case, the

momentum of the hadron is the sum of its constituents. The Number of Constituent Quark

(NCQ) [27] scaling observed from the elliptic flow measurements in heavy-ion collisions hint

at coalescence being a dominant mode of particle production at low momentum. Within the

coalescence picture, the baryon formation probability can be influenced by these local parton

density fluctuations, thereby leading to clusters and voids in the phase-space distribution of
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hadrons.

In order to probe the local parton density fluctuations in heavy-ion collisions, we propose

to study the distribution of the ratio of the multiplicity of particles produced in an azimuthal

region to the total number of particles produced in the event. We expect the shape of this

self-normalized distribution to be sensitive to clustering in the local phase space.

In this chapter, the qualitative sensitivity of the proposed observable is studied using

a simple Monte-Carlo model. The measurements of the cumulants of the distribution of

the aforementioned ratio for protons using the data from Au+Au collisions from the STAR

Beam Energy Scan program is presented. The observations are compared with various

baselines, like mixed event, and Poisson distribution of produced particles, to demonstrate

the sensitivity of our approach to possible clustering and parton density fluctuations in

heavy-ion collisions.

3.2 The observable

Figure 3.1: Event-by-event distribution of the simulated particles assuming Poisson distri-

bution with mean 10.

In order to probe baryon density fluctuations in relativistic heavy ion collisions, the
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azimuthal plane is divided into different angular regions and the distribution of the ratio of

protons in a region to the total number of protons in the event is studied. The parameter of

interest is the ratio R, is given by

R =
Ni

N1 +N2 + · · ·+Nm

(3.1)

where Ni is the number of protons in the angular region i and m is the total number of

divisions of the azimuthal plane. The shape of this self-normalized distribution is expected

to carry possible clustering information. Hence, the cumulants of the event-by-event distri-

bution of R is defined as our observable.

Figure 3.2: Event-by-event distribution of the ratio R for different probability of clustering

in the event. The simulated particle distribution is Poisson distribution with mean 10 and

the number of azimuthal divisions is 3. Around 10% of the total particles cluster an event.

If an event does not cluster, all particles are distributed randomly.

Through a Monte-Carlo model, the variation of the cumulants of the distribution of R

with the elements of the model, enumerated below, is studied.

1. The probability of clustering in an event

2. The percentage of protons that will cluster, given there is clustering in an event
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3. The total number of angular divisions of the azimuthal plane

For these studies, 100,000 events are simulated, assuming a Poisson distribution, with

mean 10, as event-by-event distribution of the particle of interest. Clustering is implemented

by assigning a certain percentage of total particles to a randomly selected azimuthal division;

all other particles are distributed randomly across the azimuth. If an event does not cluster,

all particles are distributed randomly. Figure 3.1 shows the event-by-event distribution of

the particles.

Figure 3.3: Variation of cumulants with probability of clustering. The simulated particle

distribution is Poisson distribution with mean 10 and the number of azimuthal divisions is 3.

Around 10% of the total particles cluster an event. If an event does not cluster, all particles

are distributed randomly.
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Effect of probability of clustering

The probability of clustering gives whether or not clustering will occur in an event. In

order to study the effect on the observable, the number of azimuthal divisions is fixed to

be 3 and the percentage of particles that cluster in an event to 10%. Figure 3.2 shows the

distribution of the parameter of interest, R, for different probabilities of clustering, ranging

from 0% to 40%. Figure 3.3 shows the variation of the cumulants of the distribution of the

self-normalized ratio, R, with the probability of clustering.

Figure 3.4: Event-by-event distribution of the ratio R for different probability of clustering

in the event, that is whether or not particles in the event cluster. The simulated particle

distribution is Poisson distribution with mean 10 and the number of azimuthal divisions is 3.

Around 10% of the total particles cluster an event. If an event does not cluster, all particles

are distributed randomly.

The percentage of particles that cluster

In order to simulate the percentage of particles that cluster, a randomly selected azimuthal

bin is assigned to the determined fraction of particles. The remaining particles are distributed

randomly across the azimuth. The sensitivity of the observable on the percentage of particles
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that cluster in an event is studied with the number of azimuthal divisions being 3 and the

probability of clustering in an event being 40%. Figure 3.4 shows the distribution of the

parameter of interest, R, for different percentages of particles clustering, ranging from 0%

to 25%. Figure 3.5 shows the variation of the cumulants of the distribution of the self-

normalized ratio, R, with the percentage of particles clustering.

The total number of angular divisions of the azimuthal plane

The total number of divisions across the azimuth will provide insights into angular correlation

lengths. With the probability of clustering in an event being 40% and percentage of particles

clustering being 10%, the distribution and variation of the cumulants of the ratio, R, for

different number of azimuthal divisions is shown in Figure 3.6 and Figure 3.7 respectively.

3.3 Data Analysis

Beam Energy Scan data taken by the STAR Experiment in the year 2010 and 2011 for

Au+Au collisions at
√
sNN = 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV are analyzed.

3.3.1 Data sets

Minimum bias events, which are given by coincidence between the Vertex Position Detector

and the Zero Degree Calorimeter, are used. Table 3.1 summarizes the energy, triggers and

the total number of events that are used for analysis.

3.3.2 Event selection and centrality determination

A run at STAR refers to a group of around 2 million events. StRefmultCorr class within the

STAR framework is a repository for the bad runs and centrality definitions for the different

collision species and energies. Bad runs are eliminated using the StRefmultCorr class. In

addition, runs with mean Z-vertex, mean reference multiplicity, mean transverse momentum,

mean distance of closest approach, mean pseudorapidity, mean azimuthal angle beyond 3
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Table 3.1: Triggers with corresponding number of minimum bias events

Energy Year Trigger number Number of events

7.7 2010 290004 1.2 M

11.5 2011 310004, 310014 4.6 M

19.6 2011 340001, 340011, 340021 13.1 M

27 2011 360001 16.7 M

39 2010 280001 16.7 M

62.4 2010 270001, 270011, 270021 10.1 M

sigma of the average of all the runs for a particular collision energy are also removed. List

of all the bad runs are given in Appendix 1.

Event selection cuts are applied on the primary vertex. It is required that the Z-vertex

position reconstructed based on tracks from Time Projection Chamber (TPC) is within 50

cm of the STAR detector for Au+Au collisions at
√
sNN = 7.7 GeV and 30 cm for the

others. Also, the radial distance of the primary vertex, which is
√
V 2
x + V 2

y , is within 2 cm

of the beam axis. The absolute difference between the vertices reconstructed from the Vertex

Position Detector and the TPC should lie within 3 cm for collision energies above 27 GeV.

Charged primary tracks are used to determine the centrality of the collision. Atleast

10 hits in the TPC is required. The distance of closest approach from the primary vertex

should be less than 3 cm. In order to avoid auto-correlations, tracks are selected for the

pseudorapidity range of 0.5 < |η| < 1.0 from the center of TPC. The multiplicity distribution

thus obtained is compared with Glauber Monte-Carlo simulations to get the centrality of

the event. These selection criteria correspond to RefMult2 centrality definition within the

StRefmultCorr class. More discussions on the process of obtaining the centrality definition

is given in Chapter 4.
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3.3.3 Particle identification

The information from both TPC and Time of Flight (TOF) detectors are used to identify

the protons. A minimum of 15 hits are required in the TPC for reconstruction of the track.

Also, the ratio of the number of hits in TPC to the maximum number of hits possible

should be greater than 0.52 and less than 1.05. Alteast 10 hits in the TPC is required

for the measurement of energy loss of the particle. The distance of closest approach from

the primary vertex is required to be less than 1 cm. The charge of the track is required

to be ±1. The phase space of measurement is defined to be within the pseudorapidity of

0.5 from the center of TPC. Energy loss information from TPC is used for identification

of protons within 0.4 and 0.8 GeV/c. The absolute value of nσproton, which compares the

energy loss measured for the track to Bethe-Block calculations, is required to be less than

2. The mass-squared information from TOF in conjunction with energy loss in TPC is

used for transverse momentum between 0.8 and 2.0 GeV/c and is chosen to lie between

0.8 < m2 < 1.0. Figure 3.8 and Figure 3.9 shows the particle identification capabilities at

the STAR experiment.

3.4 Results and discussions

With the protons identified, their angular distribution is studied for Au+Au collisions at

energies from the STAR Beam Energy Scan program. Figure 3.10 shows the event-by-event

distribution of protons for 0-5% central Au+Au collisions for the different collision energies.

Figure 3.11 shows the event-by-event distribution of the ratio of protons in one azimuthal

region to the total number of protons in the event for 0-5% central Au+Au collisions for

the different collision energies, assuming 6 divisions across the azimuth. The results from

the experiment is compared with model expectations assuming the proton distribution to be

Poisson or Binomial, with the mean as in data, being distributed uniformly in the azimuthal

direction. Figure 3.12 shows the first four cumulants of the above distribution. The first-

cumulant, or mean, is 1/6 by construction. We find that as we go higher in the order of the
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cumulant, the difference between the model expectations and the experimental observations

increase, implying higher-order cumulants to be increasingly sensitive.

In order to reliably account for detector efficiency, mixed event technique is employed.

Within the framework of mixed events, several events with similar characteristics like central-

ity, event plane orientation and the position of collision vertex are superimposed. From this,

the number of protons in the true event are sampled randomly. By using the mixed event

technique, the effects of local parton density fluctuations are washed out, while preserving

detection and reconstruction effects. For the purpose of further discussions, 100 events are

superimposed to create the mixed event sample.

Figure 5.8 shows the variation of cumulants of the event-by-event distribution of the ratio

of protons in one azimuthal region to the total number of protons in the event as a function

of beam energy in Au+Au collisions for different centralities. The number of azimuthal

divisions range from 3 to 6. We find that the cumulants are monotonic with beam energy.

The differences in trends arising due to number of azimuthal divisions are prominent for

higher-order cumulants. We find that the concavity of the curves for kurtosis change when

we go from central to peripheral collisions for finer azimuthal divisions.

Figure 3.14 shows the variation of cumulants from the mixed event sample for the dis-

tribution of the ratio of protons in one azimuthal region to the total number of protons in

the event as a function of beam energy in Au+Au collisions for different centralities. The

number of azimuthal divisions range from 3 to 6. We find that the cumulants are again

monotonic with beam energy. We find that the concavity of the curves for kurtosis remain

the same when we go from central to peripheral collisions for finer azimuthal divisions. In

addition, the values of cumulants remain similar for different centralities.

Figure 3.15 and Figure 3.16 shows the variation of the ratio of the cumulants as measured

from data to those from mixed event samples with beam energy for different centralities.

Figure 3.15 shows the comparison for azimuthal divisions ranging from 4 to 6. We find the

trends and magnitudes of the ratio of the cumulants from data to mixed events to be similar

for lower-order cumulants. The difference is considerable for kurtosis measurements. The
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trends remain monotonic. The deviation from 1 hints at local partonic density fluctuation.

The comparison between data and mixed event samples for three azimuthal divisions is shown

in Figure 3.16. It is found that the ratio of the first-, second- and third-order cumulants

remain monotonic, while that of the fourth-order cumulant follows a non-monotonic trend.

3.5 Conclusion

In order to explore and understand critical phenomenon associated with the QCD phase

diagram, in this chapter, an observable that may be sensitive to local parton density fluctu-

ations is introduced. The sensitivity of the observable to density fluctuations is established

using a toy Monte-Carlo model.

Within the framework of coalescence mechanism of particle production, the baryon for-

mation probabilities are expected to be affected by local parton density fluctuations. This, in

turn, would affect the azimuthal distribution of baryons. Hence, the introduced observable

is studied in detail in the context of protons. The cumulants of the event-by-event distri-

bution of the ratio of the number of protons in one azimuthal division to the total number

of protons produced in an event is studied for Au+Au collisions for beam energies ranging

from 7.7 GeV to 62.4 GeV for different collision centralities.

In the absence of a dynamical model including phase transition, not much can be ex-

tracted in regards to the magnitudes and trends observed. However, comparisons with mixed

events measurements may be considered as a realistic baseline. The differences between the

magnitudes and trends of the cumulants as obtained from data and mixed event sample hint

at observation of local parton density fluctuations in relativistic heavy-ion collisions.
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Figure 3.5: Variation of cumulants with probability of clustering. The simulated particle

distribution is Poisson distribution with mean 10 and the number of azimuthal divisions is 3.

Around 10% of the total particles cluster an event. If an event does not cluster, all particles

are distributed randomly.
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Figure 3.6: Event-by-event distribution of the ratio R for different number of azimuthal

divisions. The simulated particle distribution is Poisson distribution with mean 10 and the

probability of clustering in the event is 40%. Around 10% particles cluster an event.
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Figure 3.7: Variation of cumulants with number of azimuthal divisions. The simulated

particle distribution is Poisson distribution with mean 10 and the probability of clustering

in the event is 40%. Around 10% particles cluster an event.
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Figure 3.8: (Color online) Energy loss, dE/dx, as measured by TPC as a function transverse

momentum. The yellow bands correspond to the selected proton tracks.
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Figure 3.9: (Color online) Mass-squared, m2, as measured by TPC as a function transverse

momentum. The yellow bands correspond to the selected proton tracks.
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Figure 3.10: Event-by-event distribution of protons for 0-5% central Au+Au collisions for

the different collision energies.
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Figure 3.11: (Color online) Event-by-event distribution of the ratio of protons in one az-

imuthal region to the total number of protons in the event for 0-5% central Au+Au col-

lisions for the different collision energies. The measurements are compared with baselines

from Poisson and Binomial expectations.
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Figure 3.12: (Color online) Cumulants of the event-by-event distribution of the ratio of

protons in one azimuthal region to the total number of protons in the event for 0-5% central

Au+Au collisions for the different collision energies. The measurements are compared with

baselines from Poisson and Binomial expectations, assuming uniform distribution across the

azimuth.
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Figure 3.13: (Color online) Event-by-event distribution of the ratio of protons in one az-

imuthal region to the total number of protons in the event for Au+Au collisions as a function

of collision energies for different centralities. The number of azimuthal divisions are given

by black circles for 3, red squares for 4, green triangles for 5 and blue diamonds for 6.
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Figure 3.14: (Color online) Event-by-event distribution of the ratio of protons in one az-

imuthal region to the total number of protons in the event for mixed events sample Au+Au

collisions as a function of collision energies for different centralities. The number of azimuthal

divisions are varied from 3 to 6.
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Figure 3.15: (Color online) The ratio of cumulants from data to those from mixed events for

the event-by-event distribution of the ratio of protons in one azimuthal region to the total

number of protons in the event for Au+Au collisions as a function of collision energies for

different centralities. The number of azimuthal divisions are varied from 4 to 6.
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Figure 3.16: (Color online) The ratio of cumulants from data to those from mixed events for

the event-by-event distribution of the ratio of protons in one azimuthal region to the total

number of protons in the event for Au+Au collisions as a function of collision energies for

different centralities. The number of azimuthal divisions is 3.
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CHAPTER 4

The sixth-cumulant of net-proton multiplicity

distribution

4.1 Introduction

Fluctuations and correlations have been considered as sensitive observables to explore the

bulk properties of QCD such as phase transition, QCD critical point and thermalization of

the matter created in high-energy heavy-ion collisions as they have a well-defined physical

interpretation for a system in thermal equilibrium and can provide essential information

about the effective degrees of freedom. The magnitude of fluctuations in conserved quantities

(baryon number, strangeness, and charge of the system) in a grand canonical ensemble at

finite temperature are distinctly different in the hadronic and the QGP phases. Event-by-

event fluctuation and correlation of the conserved quantities is one of the observables to study

the properties of the QCD medium created in relativistic heavy-ion collisions [42] [43] [44].

The equation of state in QCD is given by

P

T 4
=

∞∑
i,j,k=0

1

i!j!k!
χBQSi,j,k (T )

(µB
T

)i (µQ
T

)j (µS
T

)k
(4.1)

where T is the temperature and P is the pressure. BQS stands for the conserved charges,

which are baryon number, charge and strangeness, associated with their corresponding chem-

ical potential (µ). The susceptibility (χ), which is defined as the derivative of free energy

density or pressure of a thermodynamic system at a given temperature with respect to the

chemical potential, can be related to the cumulants of the event-by-event distribution of the
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associated conserved quantity in the following way

χ(n)
q =

∂n(P/T 4)

∂(µq/T )n
=

1

V T 3
× Cn,q, (4.2)

where V is the volume and q denotes the conserved quantity, that is, charge, baryon number

or strangeness. The ratios of such cumulants as experimental observables cancel the volume

and temperature dependence and can be directly compared to the ratios of susceptibilities

from theoretical calculations.

Lattice QCD is a well-established non-perturbative approach to solve the theory of quarks

and gluons exactly from first principles, without any assumptions. It can be used to study

the thermodynamic properties of a strongly interacting system in thermal equilibrium. Most

importantly, Lattice QCD provides a framework for investigation of non-perturbative phe-

nomena which are difficult to deal by means of analytic field theories. However, these

calculations can be performed exactly at zero chemical potentials only [22] [23]. To ex-

plore phenomenon at finite baryon chemical potentials, next to leading order calculations

are performed using the current best approach, which is Taylor expansion about µB = 0 [80].

p(T, µB)− p(T, 0)

T 4
=

1

2
χ2(T )

(µB
T

)2

×
[
1 +

1

4

χ4(T )

χ2(T )

(µB
T

)2

+
1

360

χ6(T )

χ2(T )

(µB
T

)4
]

+O(µ8
B)

(4.3)

The correction to current measurements is estimated to be ∼ 1
720

χ6(T )
χ2(T )

(
µB
T

)6
.

Constrained by statistics, up to fourth-order cumulants has been experimentally deter-

mined at the STAR experiment [46]. These results differ from Lattice calculations and

Hadron Resonance Gas results considerably for higher collision energy or smaller baryon

chemical potential [80]. It is expected from Lattice calculations that the sixth order cu-

mulant of baryon number remain negative at the chiral transition temperature which is

strikingly different from Hadron Resonance Gas model, which predicts it to be positive [81].

In addition, the determination of the ratio of the sixth-order cumulant to the second-order

cumulant will provide a characteristic signature for the location of the freeze-out temperature

relative to the QCD phase transition temperature.
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4.2 Analysis technique

We apply the following techniques to allow for precise event-by-event fluctuation measure-

ments and background suppression:

1. Centrality determination: The definition of collision centrality is not unique. It is

usually determined by comparing experimentally measured particle multiplicity with

Monte-Carlo Glauber simulations. In order to suppress auto-correlations, which is a

background effect and can reduce the magnitude of the signal in fluctuation analy-

ses, we exclude the corresponding protons and anti-protons from the centrality defini-

tion [82].

2. Centrality Bin Width Correction: The centrality bin width effect is caused by

variation of volume within a wide centrality range. This results in an artificial centrality

dependence for the fluctuation observable. In order to suppress volume fluctuations

over wide centrality bins, the cumulants are weighted and then averaged to get the

value for the given centrality [83].

3. Statistical error estimation: Statistical errors on the cumulant of order r (Cr)

depend on the number of events (N) and the width of the distribution (σ) as :

Error (Cr) ∝
σr√
N
. (4.4)

These are estimated either by the Bootstrap technique [84], which is based on the

method of resampling, or using the Delta Theorem [85], which is an analytical tech-

nique. We find that these methods give similar results.

4. Detection efficiency correction: The observed event-by-event particle multiplicity

distribution is a convolution of the original distribution and the efficiency response

function. Efficiency correction includes the net effect of tracking efficiency, detector

acceptance, decays and interaction losses. In order to correct the cumulants for effi-

ciency, the principal idea is to express them in terms of the factorial moments [85] [86]
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or factorial cumulants [87], which can be efficiency corrected assuming a Binomial

response function.

The cumulants of net-proton multiplicity distribution, which is the event-by-event differ-

ence of the number of protons and anti-protons, are measured in this report. The efficiency-

corrected cumulants will be obtained using bivariate factorial moments assuming Binomial

efficiency for protons and anti-protons and the statistical errors will be estimated using Delta

theorem.

The factorial moments (fij) are defined as

fij(np, np̄) =

〈
np!

(np − i)!
np̄!

(np̄ − j)!

〉
, (4.5)

where np and np̄ are the measured number of protons and anti-protons in every event re-

spectively. The efficiency-corrected factorial moments (Fij) are given by

Fij(Np, Np̄) =
fij(np, np̄)

εipε
j
p̄

, (4.6)

where Np and Np̄ are the true number of protons and anti-protons in every event and εp and

εp̄ are the efficiencies of protons and anti-protons respectively. The n-th order moments (µn)

can then be expressed as

µn(Np −Np̄) =
n∑
i=0

n−i∑
r1=0

i∑
r2=0

(−1)i
(
n

i

)
s2(n− i, r1)s2(i, r2)Fr1,r2(Np, Np̄), (4.7)

where s2(n, i) is the Sterling number of second kind1. Finally, the efficiency-corrected cu-

mulants (Cn) of are obtained from the efficiency-corrected moments (µn) using the following

recursion relation:

Cn(Np −Np̄) = µn(Np −Np̄)−
n−1∑
s=1

(
n− 1

s− 1

)
Cs(Np −Np̄)µn−s(Np −Np̄) (4.8)

The ratio of the sixth-order to the second order cumulant is defined as

1s2(n, i) = s2(n− 1, i− 1) + i× s2(n− 1, i) with s2(n, i)|n<i = 0, s2(n, i)|n=i = 1, s2(n, 0)|n>0 = 0
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C6

C2

=
1

µ2 − µ2
1

(
µ6 − 6µ5µ1 − 15µ4µ2 + 30µ4µ

2
1−

10µ2
3 + 120µ3µ2µ1 − 120µ3µ

3
1+

30µ3
2 − 270µ2

2µ
2
1 + 360µ2µ

4
1 − 120µ6

1

) (4.9)

in terms of other cumulants. The statistical error, based on Delta theorem, can be

estimated as

δ

(
C6

C2

)2

=
σ8

N

(
m12 + 10575− 30m10 + 18300m2

3 + 2600m4
3−

225(−3 +m4)2 − 7440m3m5 − 520m3
3m5−

2160m6 − 200m2
5m6 + 52m3m5m6 + 33m2

6+

(−3 +m4)
[
10
(
405− 390m2

3 + 10m4
3 + 24m3m5

)
− 20m6

(
6 +m2

3

)
+m2

6

]
+

840m3m7 − 12m5m7 + 345m8 + 20m2
3m8 − 40m3m9

)
(4.10)

where mr = µr/σ
r. µ is the mean of the N entries and σ is its standard deviation.
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Figure 4.1: Distribution of mean reference multiplicity (refmult3), mean Z-vertex position

(Vz), mean transverse momentum (pT ), mean distance of closest approach (DCA), mean

azimuthal angle (φ) and mean pseudorapidity (η) with run number
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4.3 Data Analysis

The large statistics data taken by the STAR experiment in the year 2014 for Au+Au collisions

at
√
sNN = 200 GeV by the STAR experiment are analyzed.

4.3.1 Data sets

A series of selection procedures are implemented to ensure high quality data is used for

analysis.

4.3.1.1 Triggers

In the year 2014, around 1.4 billion events are collected at STAR for Au+Au collisions at
√
sNN = 200 GeV over a period of 4 months. Of these, around 900 million were minimum

bias events, which are given by coincidence between the Vertex Position Detector and the

Zero Degree Calorimeter. For this dataset, minimum bias events are identified from the

st-physics and st-physics-adc streams by the triggers 450050 and 450060.

4.3.1.2 Run selection

At STAR, data is collected for periods of half an hour at a stretch, called a run, and consti-

tute an average of 2 million events. For the year 2014, around 13, 600 runs were recorded

for Au+Au collisions at
√
sNN = 200 GeV. Apart from the runs marked bad by the crew,

the ones with either of mean reference multiplicity, mean Z-vertex position, mean transverse

momentum, mean distance of closest approach, mean azimuthal angle, or mean pseudora-

pidity more than 3 standard deviation away from the average over the entire period are also

removed from analysis. The quality assurance plots are given in Figure 4.1. List of bad runs

is given in Appendix A.
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Figure 4.2: Event-by-event distribution of the Z-vertex position of the reconstructed tracks.

4.3.1.3 Event selection

Event selection cuts are applied on the primary vertex position. It is required that the Z-

vertex position reconstructed based on tracks from Time Projection Chamber is within 5 cm

of the center of the STAR detector. The event-by-event distribution of the Z-vertex position

of the selected tracks is shown in Figure 4.2. Also, the radial distance of the primary vertex

is within 2 cm of the beam axis. The absolute difference between the vertices reconstructed

from the Vertex Position Detector and the Time Projection Chamber should lie within 3 cm.

In order to reduce contributions from pile-up, every event is required to have at least two

tracks within pseudorapidity of ±0.5 with Time of Flight information and at least one track

within pseudorapidity of ±1.0 has β > 0.1.
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Figure 4.3: (Color online) Event-by-event distribution of the raw charged particle multiplic-

ity.
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Figure 4.4: (Color online) The RefMult3 distribution as a function of ZDC coincidence rate

before and after luminosity correction.
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Figure 4.5: (Color online) A sample fit of the tail of the RefMult3 distribution with Gaussian

Error fit function to obtain parameter H (same as p2 in the plot) for −1 < Vz < 1 cm..

4.3.2 Centrality determination

Primary tracks are used for determination of event centrality. Track selection criteria ensure

properly reconstructed tracks are used for centrality determination. The distance of closest

approach from the primary vertex is required to be less than 3 cm. There should be a

minimum of 10 hits in the Time Projection Chamber. The minimum transverse momentum

for track reconstruction is 0.15 GeV/c. In order to reduce the effect of auto-correlation,

protons and anti-protons are removed. The reconstructed mass from the Time of Flight, if

available, is less that 0.4 GeV/c2 and nσproton < −3.0. The total number of tracks satisfying

the above criteria in an event is called RefMult3. Raw RefMult3 distribution is shown in

Figure 4.3. The RefMult3 distribution, thus obtained, is corrected for luminosity and Z-

vertex dependence. For luminosity correction, the fit function used is p0+p1(x−25), where p0

and p1 are the fit parameters. The correction factor, hence obtained, is 1/[1+(p1/p0)(x−25)].

The RefMult3 distribution as a function of ZDC coincidence rate before and after correction

is shown in Figure 4.4. For the Z-vertex correction, the parameter H (which is the same as
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parameter p2 in the Figure 4.5) is obtained by fitting the tail of the RefMult3 distribution

with the Gaussian Error fit function

y = p0 + p1 ∗ Erf(−σ(x−H)) (4.11)

as shown in Figure 4.5 for −1 < Vz < 1 cm. Similar fits were performed for different

intervals of Z-vertex. The values of the parameter H, before and after correction is shown

in Figure 4.6. Sixth-order polynomial is used to get the correction factor.

The corrected RefMult3 distribution thus obtained is compared with Glauber Monte-

Carlo calculations, as shown in Figure 4.7 to obtain the centrality definition. Re-weighting

is required for peripheral collisions.
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Figure 4.6: (Color online) The value of the parameter H before and after Vz correction for

different Z-vertex intervals.

73



Refmult3
0 100 200 300 400 500 600 700

C
ou

nt
s

-110

1

10

210

310

410
Model

Data

Refmult3
0 100 200 300 400 500 600 700

da
ta

/M
C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4.7: Comparison of corrected RefMult3 distribution with Glauber Monte Carlo cal-

culations to get the centrality definition.
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Figure 4.8: Distribution of the distance-of-closest approach (DCA) of the selected tracks.
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Figure 4.9: nσproton distribution of the selected tracks.
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4.3.2.1 (Anti-)Proton identification
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Figure 4.10: (Color online) Energy loss of reconstructed tracks as measured in the Time

Projection Chamber. Blue tracks are the selected (anti-)proton tracks.

Primary tracks are used for the identification of proton and anti-protons. The ratio of

number of hits used for track reconstruction to the maximum number of hits possibles should

lie between 0.52 and 1.02. Atleast 20 hits are used for track reconstruction. It is ensured

that a minimum of 5 hits are used in track energy loss calculation. The distance-of-closest

approach from the primary vertex is less than 1 cm as shown in Figure 4.8. The rapidity of

the track is within±0.5. The nσproton is required to be less than 2.0. The nσproton distribution

of the selected tracks is shown in Figure 4.9. For the low transverse momentum regime, that

is, transverse momentum between 0.4 to 0.8 GeV/c, track energy loss as measured in the

Time Projection Chamber is used to identify (anti-)protons. The selected tracks are shown

in Figure 4.10. The reconstructed mass from the Time of Flight, for transverse momentum

between 0.8 to 2.0 GeV/c, should lie between 0.8 and 1.0 GeV/c2. The selected tracks are

shown in Figure 4.11.
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Figure 4.11: (Color online) Mass of reconstructed tracks as measured in the Time of Flight

detector. Blue tracks are the selected (anti-)proton tracks.

4.4 Results and discussions

Figure 4.12 shows the measured net-proton multiplicity distribution for the Au+Au collision

data at
√
sNN = 200 GeV taken in the year 2014.

In order to account for detector inefficiencies, information from embedding is used to

obtain the efficiency of protons and anti-protons. In embedding, Monte-Carlo tracks are em-

bedded in real event and passed through the entire reconstruction framework. Comparing

the input Monte-Carlo tracks to those reconstructed, imposing the same selection criteria

as that in real data, would give us an estimate of the particle detection efficiencies. The

embedding framework at STAR includes correction for the track reconstruction in the Time

Projection Chamber. In the year 2014, the Heavy Flavor Tracker detector subsystem was in-

troduced inside the Time Projection Chamber. In order to account for the losses in the Heavy

Flavor Tracker, the technique of DCA-smearing is used. The distance-of-closest approach

is then evaluated for the reconstructed track using the StDcaGeometry class. Figure 4.13
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Figure 4.12: (Color online) Measured net-proton multiplicity distribution for the Au+Au

collision at
√
sNN = 200 GeV.

and Figure 4.14 shows the detection efficiency of protons and anti-protons respectively for

different collision centralities. The pT -integrated efficiency as a function of RefMult3 is given

in Figure 4.15.
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Figure 4.13: (Color online) Reconstruction efficiency of protons for different centralities as

a function of transverse momentum.
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Figure 4.14: (Color online) Reconstruction efficiency of anti-protons for different centralities

as a function of transverse momentum.
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Figure 4.15: (Color online) pT -integrated reconstruction efficiency of protons (top) and an-

ti-protons (bottom) as a function of charged particle multiplicity. The linear fit function is

used to correct the cumulants for each reference multiplicity.

With the ingredients in place, the efficiency-corrected sixth-order cumulant and the ratio

of sixth-order to the second-order cumulant of the net-proton multiplicity distribution for

Au+Au collisions at
√
sNN = 200 GeV is measured using the data from the year 2014 and
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shown in Figure 4.16. The measurements are done for (anti-)protons within |y| < 0.5 and

0.4 < pT < 0.8 GeV/c. We find that the sixth-order cumulant is systematically negative for

central collisions. In all, around 750 million good events were analyzed for 0-80% central

collisions.

Figure 4.16: Sixth-order cumulant and the ratio of sixth-order to the second-order cumulant

of the net-proton multiplicity distribution for Au+Au collisions at
√
sNN = 200 GeV within

|y| < 0.5 and 0.4 < pT < 0.8 GeV/c.
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4.4.1 Comparison to Lattice QCD

The ratio of the sixth-order cumulant to the second-order cumulant for net-proton multi-

plicity distribution for Au+Au collision at
√
sNN = 200 GeV is compared with calculations

of the ratio of sixth-order to the second-order baryon susceptibility from Lattice QCD in

Figure 4.17. The left panel is the measurement from data, while the right panel is the

calculations from Lattice QCD [41].

Figure 4.17: (Color online) Comparison between calculations from Lattice QCD and exper-

imental data.

However, there are a few caveats that needs to be noted when comparing Lattice QCD

calculations with experimental measurements. Lattice QCD calculations are performed for

net-baryons over the entire phase space. In experimental measurements, net-protons are

used as a proxy for net-baryons. In addition, the analysis is performed over the phase space

restricted by detector characteristics in transverse momentum and rapidity. Lattice QCD

calculations are exact for µB = 0 and Taylor expansion is used for larger baryon chemical

potentials. In Au+Au collisions at
√
sNN = 200 GeV, µB ∼ 20 MeV.

Considering these, cautious comparisons can be made between 0-5% central Au+Au

collisions at
√
sNN = 200 GeV with Lattice QCD calculations around T ∼ 160 MeV. We

find the cumulant (susceptibility) ratio to be negative, within large statistical uncertainties.
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4.5 Conclusion

Using a Binomial approximation to efficiency estimation, the results for the sixth-order cu-

mulant and the ratio of sixth-order to the second-order cumulants for net-proton multiplicity

distribution for Au+Au collisions at
√
sNN = 200 GeV is discussed. We find the results to be

negative for central collisions within large statistical uncertainties. We have also compared

our results with estimates from Lattice QCD calculations.

However, recent studies have shown that even a slight deviation (at the level of 10−3) of

efficiency from Binomial approximation may lead to large deviations in the magnitudes of the

cumulants. In the light of this, we proposed an unfolding approach to efficiency correction,

which is discussed in detail in the next chapter.
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CHAPTER 5

The unfolding approach to measurement of cumulants

5.1 Introduction

The measurement of higher-order cumulants is sensitive to experimental artifacts. Efficiency

correction is one of the most important ingredients in order to reliably calculate the higher-

order cumulants. The observed event-by-event particle multiplicity distribution is a convo-

lution of the original distribution and the efficiency response function. Efficiency correction

includes the net effect of tracking efficiency, detector acceptance, decays and interaction

losses.

Figure 5.1: The ratio of n-th order cumulant to the second order cumulant (Kn/K2) as a

function of the slope of multiplicity-dependence of the efficiency.

Previous measurements of the cumulants of multiplicity distributions are based on the

assumption that the efficiency response function follows a Binomial distribution [46] [47] [48].

However, recent studies show that there could be noticeable consequences of the multiplicity-
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dependent behavior of the detection efficiency on the measured higher-order cumulants [49].

Figure 5.1 shows the variation of the ratio of n-th order cumulant to the second order

cumulant (Kn/K2), n = 4, 5, 6 as a function of ε′ when corrected using average, multiplicity

independent, efficiency, ε0, where in reality efficiency depends on the number of produced

protons, ε(N) = ε0 + ε′(N − 〈N〉). In this calculation, ε0 = 0.65 and 〈N〉 = 40 [49]. The

effect on higher-order cumulants is large.

Figure 5.2: (Color online) pT -integrated reconstruction efficiency of protons (left) and an-

ti-protons (right) as a function of charged particle multiplicity. The linear fit function is

used to correct the cumulants for each reference multiplicity.

Figure 5.2 shows the efficiency of protons (left) and anti-protons (right) integrated over

transverse momentum as a function of charged particle multiplicity (excluding protons and

anti-protons) in Au+Au collisions at
√
sNN = 200 GeV. The measurements are for transverse

momentum between 0.4 to 0.8 GeV/c and 1 unit in rapidity at mid-rapidity. We find that

the detection efficiency decreases with particle multiplicity with the slope of the order of

10−3.

In order to deal with such multiplicity-dependent efficiency, we have explored a data-

driven approach to measure the cumulants of the distributions of physical variables. Com-

paring different methods would enable us to better understand the cumulants of these mul-

tiplicity distributions.
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5.2 Methodology

The measured distribution is a convolution of the original produced particle distribution and

the detector response function. The detector response function is used to extract the original

produced particle distribution. The detector response function is obtained with embedding,

where a few Monte Carlo tracks are embedded within a real experimental event and passed

through the entire reconstruction chain. By studying the response of the reconstruction

framework on these embedded Monte Carlo tracks, we can obtain the estimate of the detector

response function.

The ingredients for the implementation of the data-driven technique are the correlation

histogram and the response matrix. The correlation histogram contains the number corre-

lation between the measured protons and anti-protons event-by-event. We can obtain the

response matrix using the information from the embedded Monte Carlo tracks, which gives

the distribution of the number of produced particles, for every given number of measured

particles.

In order to obtain the cumulants of the multiplicity distributions, the event is sampled

from the correlation histogram, that is, the number of measured protons and anti-protons

in event is obtained. The number of protons and anti-protons is then corrected using the

respective response matrices to get the produced number of protons and anti-protons in the

event. This sampling is done for the total number of events in the true distribution. The

above step is repeated M number of times. The cumulants are then evaluated for each of

these M copies. The mean will be the value of the cumulant, while the width will be the

corresponding uncertainty. Centrality bin width correction is not used in this approach.

5.3 Simulation results

For the simulations, 10 million events are used and 1000 copies are created to evaluate

the cumulants and their respective errors. Three scenarios are analyzed using this data-

driven method and the factorial moment method to understand the implications of various
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correction approaches towards a reliable measurement of the cumulants.

1. Poisson distribution for protons and anti-protons with Binomial efficiency

We assumed that the event-by-event distribution of protons is given by a Poisson

distribution with mean 10 and anti-protons with mean 9. The efficiency for protons

and anti-protons is assumed to follow Binomial distribution with detection probability

being 0.8 and 0.7 respectively. We compare the results in Table 5.1. We find that the

results from both the data-driven method and the factorial moment method agree with

the analytic values.

Table 5.1: Comparison of cumulants of net-proton multiplicity distribution, assuming a

Poisson distribution for protons and anti-protons with Binomial efficiency

Cumulants for net-proton Skellam Efficiency corrected Efficiency corrected

distribution (analytically) (data-driven method) (Factorial moment method)

C1 1 0.9996 ± 0.0005 1.001 ± 0.0006

C2 19 18.990 ± 0.003 18.990 ± 0.004

C3 1 1.03 ± 0.02 1.04 ± 0.03

C4 19 19.3 ± 0.4 18.7 ± 0.3

2. Poisson distribution for protons and anti-protons with multiplicity-dependent

efficiency

We assumed that the event-by-event distribution of protons is given by a Poisson dis-

tribution with mean 10 and anti-protons with mean 9. The efficiency for protons is

assumed to be 0.8 – 0.0003 Nproton, while for anti-protons, it is 0.7 – 0.0003 Nanti−proton

respectively. We compare the results in Table 5.2. We find that the results from the

data-driven method agree well with the analytic values, while the corrected cumulants

obtained from the factorial moment method starts to deviate from the analytic values

for higher-order cumulants. Thus, we confirmed that seemingly small non-Binomial

effects could have noticeable consequences on higher-order cumulants as pointed out

by.
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Table 5.2: Comparison of cumulants of net-proton multiplicity distribution, assuming a

Poisson distribution for protons and anti-protons with multiplicity-dependent efficiency

Cumulants for net-proton Skellam Efficiency corrected Efficiency corrected

distribution (analytically) (data-driven method) (Factorial moment method)

C1 1 1.000 ± 0.0004 0.998 ± 0.0006

C2 19 19.000 ± 0.004 18.780 ± 0.004

C3 1 1.02 ± 0.02 1.07 ± 0.03

C4 19 19.1 ± 0.3 17.0 ± 0.3

3. The AMPT model with multiplicity-dependent efficiency for 0 – 5% central

Au+Au collisions at
√
sNN = 200 GeV

We assumed that the event-by-event distribution of protons and anti-protons are

given by the AMPT model [88]. The efficiency for protons is assumed to be 0.8

– 0.0003 Ncharge − Nproton − Nanti−proton, while for anti-protons, it is 0.7 – 0.0003

Ncharge−Nproton−Nanti−proton respectively. The coefficient 0.0003 is the expected order

of magnitude of the multiplicity dependence of efficiency in real data. We compare the

results in Table 5.3. We find that the results from the data-driven method agree well

with the cumulants of the true distribution. In the 2-D response matrix situation, both

protons and anti-protons are corrected simultaneously, that is, the response matrix is

a two-dimensional histogram containing the information for produced number of both

protons and anti-protons for every measured number of protons and anti-protons. In

the 1-D response matrix approach, protons and anti-protons are corrected separately,

that is, the response matrix is two one-dimensional matrices; one for protons and the

other for anti-protons. The corrected cumulants obtained from the factorial moment

method, however, deviate from the true values considerably. This is because the fac-

torial moment method assumes binomial efficiency correction. Centrality bin width

correction is applied to the factorial moment method.
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Table 5.3: Comparison of cumulants of net-proton multiplicity distribution using AMPT

model with multiplicity-dependent efficiency for 0 – 5% central Au+Au collisions at
√
sNN

= 200 GeV

Cumulants for True Efficiency corrected Efficiency corrected Efficiency corrected

net-proton distribution (2-D response (1-D response (Factorial moment

distribution matrix) matrix) method)

C1 2.799 ± 0.002 2.799 ± 0.002 2.800 ± 0.002 2.550 ± 0.001

C2 31.44 ± 0.01 31.43 ± 0.01 49.78 ± 0.02 12.63 ± 0.01

C3 8.4 ± 0.2 8.4 ± 0.1 9.3 ± 0.2 2.58 ± 0.04

C4 91 ± 1 91 ± 2 89 ± 3 12.5 ± 0.3

5.4 STAR Embedding Framework

STAR embedding involves introduction of Monte-Carlo tracks into the real data. These

Monte-Carlo tracks with the real data are passed through the entire reconstruction frame-

work. The relations between the input Monte-Carlo tracks and the reconstructed tracks

provides an insight into the efficiency of particle identification. Till date, only the Time

Projection Chamber (TPC) has been entirely implemented within this framework.

5.4.1 Inputs for the embedding procedure

Within the current set-up at STAR, a maximum of 5% of the total particles in the event can

be embedded reliably. In order to account for this, protons and anti-protons are embedded

separately. Around 500, 000 events are processed with the details given in Table 5.4. The

phase space for embedding is kept larger than that for data analysis to avoid edge effects.

The (anti-)proton distribution is assumed to be a uniform distribution between 1 and 30.
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Table 5.4: Details of embedding request for Au+Au collision at
√
sNN = 200 GeV data taken

in year 2014.

Variable Range

Centrality 0 – 20%

Triggers 450050, 450060

Production chain P16id + NoPxlIT, NoIstIT, NoSstIT

Library SL16d

Z- vertex distribution, Vz (-6, 6) cm

Radial vertex distribution, Vr (0, 2) cm

Azimuthal angle, φ (0, 6.29) radians, flat

Rapidity, y (-0.6, 0.6), flat

Transverse momentum, pT (0.3, 2.2) GeV/c, exponential with slope 350 MeV

5.4.2 Efficiency from embedding

Certain checks are performed in order to establish whether the efficiency of (anti-)proton

identification using TPC follows the Binomial distribution. For this, protons and anti-

protons from the embedding data for 0-5% central collisions within 0.4 < pT < 2.0 GeV/c and

|y| < 0.5 is used. Protons and anti-protons are sampled according to Poisson distribution.

The distribution of rapidity, transverse momentum and multiplicity of input Monte-Carlo and

reconstructed protons and anti-protons is shown in Figure 5.3. The left column corresponds

to protons and the right column is for anti-protons.
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Figure 5.3: (Color online) Distribution of rapidity (top), transverse momentum (middle)

and multiplicity (bottom) of input Monte-Carlo and reconstructed protons (left column)

and anti-protons (right column) as obtained from the embedding data.

Efficiency is defined as the ratio of reconstructed particles to the input particles. The

average efficiency for protons and anti-protons as a function of input number of particles is
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shown in Figure 5.4. The red square corresponds to the overall average efficiency.

Figure 5.4: (Color online) Average efficiency of protons (left) and anti-protons (right) as

obtained from the embedding data.

It is known that a linear combination of Binomial distributions with different means does

not yield a Binomial distribution. A comparison with the Binomial function for efficiency

with mean as the average for the particular number of input particles, as shown in Figure 5.5,

establishes that the efficiency of (anti-)proton identification from the TPC deviates from

Binomial.
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Figure 5.5: (Color online) The ratio of reconstruction efficiency to Binomial efficiency for

protons (left) and anti-protons (right) as obtained from the embedding data.

The deviation from Binomial assumption is found up to a level of 10%, which may
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lead to significant impact on the values of the efficiency-corrected cumulants of multiplicity

distributions.

5.5 Results and discussions

The data from Au+Au collisions at
√
sNN = 200 GeV taken in the year 2014 is used to

compare cumulants of net-proton-multiplicity distribution from the factorial moment method

(that assumes Binomial efficiency) and the unfolding approach. The event and track selection

criteria and the centrality determination algorithm have been discussed in great details in

Chapter 4.

Figure 5.6: (Color online) Event-by-event correlation between the measured number of pro-

tons and anti-protons for 0-5% central collisions.

Figure 5.6 shows the correlation between event-by-event distribution of the measured

protons and anti-protons. The phase space of the measurement is given by 0.4 < pT < 0.8

GeV/c and |y| < 0.5 for 0-5% central collisions. The response histograms are obtained by

sampling a Poisson distribution for the protons and anti-protons using the embedding data,

with mean as obtained from the factorial moment method for the given collision centrality.
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A typical response histogram under the same phase space as data is given in Figure 5.7.

The figure shows the distribution of input Monte-Carlo tracks in the embedding framework

for a fixed number of reconstructed tracks. The solid lines correspond to protons, while the

dashed lines are for anti-protons.
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Figure 5.7: (Color online) Distribution of Monte-Carlo tracks for a fixed number of recon-

structed tracks as obtained from embedding.

In order to estimate the cumulants and their respective errors, 100 copies are used.

Figure 5.8 shows the first- to fourth-order efficiency-corrected cumulants of proton, anti-

proton and net-proton multiplicity distributions for three centralities for Au+Au collisions

at
√
sNN = 200 GeV data taken in the year 2014. A comparison between the cumulants

obtained from unfolding and the factorial moment method is also shown. We observe that

the first-order cumulant is the same for both the methods. The difference between the

higher-order cumulants increases with the order of the cumulant.
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Figure 5.8: (Color online) Comparison between efficiency-corrected cumulants as obtained

from unfolding and factorial moment methods.

5.6 Conclusion

Through Monte-Carlo simulations using the AMPT model, we demonstrated a data-driven

efficiency correction method for the cumulants of multiplicity distributions to account for

the possible experimental artifacts, like multiplicity-dependent efficiency.

The embedding framework at STAR is used in order to correct the particle multiplicity

distributions as the observed multiplicity distribution is believed to be a convolution of

produced multiplicity distribution and efficiency function.

The comparison of the measurements of the first four cumulants of proton, anti-proton
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and net-proton multiplicity distributions using the unfolding and the factorial moment meth-

ods indicated a noticeable difference in the final higher-order cumulant values. Non-binomial

effects in the efficiency calculation should be taken into account in the correction for cumulant

measurements.
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CHAPTER 6

Summary and Outlook

The objective of this dissertation is to develop analysis methods to explore the phase diagram

of strong interactions. From the theoretical perspective, the phase transition from the Quark-

Gluon Plasma phase to the Hadron Gas phase is a first order phase transition for large baryon

chemical potential that ends in a second order critical point. For small baryon chemical

potential, the transition is predicted to be a cross-over.

Phase transitions are characterized by local density fluctuations. In the first part of the

dissertation, we defined an observable, which is expected to be sensitive to local parton den-

sity fluctuations, based on the azimuthal distribution of produced particles. We established

the sensitivity of the observable using a toy Monte-Carlo model. Within the coalescence

mechanism of particle production, we expect the baryon distribution to be more sensitive to

local parton density fluctuations. We studied the energy and centrality dependence of the

cumulants of the event-by-event distribution of the aforementioned observable for protons

with the STAR Beam Energy Scan data taken for Au+Au collisions for
√
sNN = 7.7 – 62.4

GeV for different number of azimuthal divisions. We find certain non-monotonic trends in

the higher-order cumulants with variation of collision energy for most central collisions. In

the absence of a dynamical model that include phase transition, it is too early to associate

these signatures to critical phenomenon or phase transitions. However, with more data com-

ing in Beam Energy Scan II in 2019–2020, a detailed study of this new observable, would

complement other studies of critical phenomenon in the QCD phase diagram.

The main focus of the second part of the dissertation shifts to the study of the cross-

over transition for small baryon chemical potential. Lattice QCD calculations, which solves

the QCD equation of state from first principles, is exact only for zero baryon chemical
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potential. In order to extend the calculations to finite baryon chemical potentials, the current

best approach is Taylor expansion about zero baryon chemical potential. Constrained by

statistics, up to fourth-order cumulants of net-proton (which is a proxy for net-baryon)

multiplicity distribution have been well studied at STAR for Au+Au collision at
√
sNN = 200

GeV. In order to further constrain the QCD equation of state, we measured the sixth-order

cumulant of net-proton multiplicity distribution for the large statistics run taken in the year

2014. It is also predicted that the the sixth-order cumulant of net-baryon distribution remains

negative beyond chiral transition temperature. We found that the sixth-order cumulant of

net-proton multiplicity distribution remains negative for central collisions.

Appropriate corrections for detection efficiency is of utmost importance when performing

any measurement. The previous measurements used efficiency correction for the cumulants

of multiplicity distributions which are based on an analytical formula derived assuming a

Binomial distribution for detector efficiency. Recent studies have shown that even a slight

deviation from the Binomial assumption could have noticeable consequences on the measure-

ment of the higher-order cumulants of multiplicity distributions. From detailed experimental

analysis, we found that the detector efficiency depends on the collision centrality. Also, we

know that a linear combination of two (or more) Binomial distributions is not a Binomial

distributions. Unfortunately, the analytical formula cannot account for such slight efficiency

variations. In order to account for these multiplicity-dependent variations, we developed an

unfolding algorithm for precise measurements of the higher-order cumulants of multiplicity

distributions. The algorithm is based on the inputs from the embedding framework at STAR.

We used transport model calculations to establish the applicability of the proposed unfolding

approach. We also measured the first few cumulants of net-proton multiplicity distribution

for Au+Au collisions at
√
sNN = 200 GeV for the data taken in the year 2014 and com-

pared the results from tradition (Binomial) efficiency correction methods and the unfolding

approach. With more precise measurements of the higher-order cumulants of multiplicity

distributions of produced particles expected from Beam Energy Scan II in order to study

phase transitions in the QCD phase diagram, such comparisons will be extremely insightful.

The methods developed as a part of this thesis will be useful tools for the understand-
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ing of experimental observations pertaining to the QCD phase diagram from the precision

measurements expected to come out of Beam Energy Scan II at STAR, with larger statistics

and advanced detector sub-systems.
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APPENDIX A

List of bad runs

List of bad runs

Au+Au at
√
sNN = 7.7GeV

11114085, 11114089, 11114095, 11115005, 11115042, 11115064, 11115080, 11116027, 11116028,

11116060, 11116068, 11116070, 11117044, 11117075, 11117088, 11117090, 11117098, 11118007,

11118008, 11118015, 11119024, 11119062, 11120040, 11120042, 11121044, 11121054, 11122037,

11122049, 11122050, 11122073, 11123028, 11123051, 11123053, 11123054, 11123055, 11123056,

11123057, 11123058, 11123059, 11123060, 11123076, 11123095, 11123102, 11124041, 11124046,

11124047, 11124048, 11124050, 11124062, 11128056, 11129028, 11133006, 11136005, 11136012,

11136013, 11142117, 11147006

Au+Au at
√
sNN = 11.5GeV

11148001, 11148045, 11149015, 11149017, 11149018, 11149047, 11150025, 11150029, 11151050,

11151057, 11152016, 11152036, 11152078, 11153032, 11154026, 11156009, 11156036, 11156043,

11156044, 11156045, 11157050, 11158011, 11158012, 11158015, 11158016, 11158017, 11158019,

11158020, 11158021, 11158022, 11158024
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Au+Au at
√
sNN = 14.5GeV

15046096, 15046106, 15046107, 15046108, 15046110, 15046111, 15047004, 15047015, 15047019,

15047021, 15047023, 15047027, 15047028, 15047029, 15047030, 15047039, 15047041, 15047044,

15047050, 15047056, 15047057, 15047061, 15047062, 15047064, 15047068, 15047069, 15047071,

15047074, 15047075, 15047082, 15047093, 15051131, 15051132, 15053052, 15053053, 15053054,

15053055

Au+Au at
√
sNN = 19.6GeV

12113091, 12114007, 12115014, 12115015, 12115016, 12115018, 12115019, 12115020, 12115022,

12115023, 12115026, 12115073, 12116012, 12116015, 12116016, 12120026, 12121017, 12121022,

12121034, 12122019

Au+Au at
√
sNN = 27GeV

12172050, 12172051, 12172055, 12173009, 12173030, 12173031, 12173032, 12173033, 12173034,

12174077, 12174085, 12174096, 12175062, 12175087, 12175113, 12175114, 12175115, 12176054,

12176067, 12176069, 12177092, 12177099, 12177101, 12177106, 12177107, 12177108, 12178003,

12178004, 12178005, 12178006, 12178051, 12178099, 12178123, 12179068

Au+Au at
√
sNN = 39GeV

11099124, 11100034, 11100045, 11101046, 11101104, 11102012, 11102098, 11103008, 11103009,

11103046, 11103058, 11103062, 11103065, 11105011, 11105018, 11105029, 11106026, 11106027,

11106028, 11106029, 11106030, 11106040, 11106041, 11107061
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Au+Au at
√
sNN = 62.4GeV

11108101, 11109013, 11109088, 11109090, 11109092, 11109097, 11109098, 11109100, 11109101,

11109102, 11109103, 11109104, 11109105, 11110041, 11110073

Au+Au at
√
sNN = 200GeV

15167014, 15078075, 15078110, 15078111, 15079042, 15079046, 15079047, 15079048, 15079050,

15079052, 15080029, 15080053, 15080054, 15080055, 15080056, 15080059, 15081001, 15081003,

15081015, 15082016, 15082023, 15082030, 15084009, 15084030, 15084053, 15084061, 15086060,

15086076, 15088004, 15088005, 15088006, 15089033, 15097059, 15098042, 15099001, 15102021,

15102024, 15102059, 15103030, 15104016, 15104018, 15108017, 15108018, 15108019, 15108020,

15109039, 15109040, 15118063, 15121062, 15121063, 15121065, 15121066, 15121067, 15121068,

15122045, 15125003, 15125067, 15126021, 15129006, 15131052, 15131053, 15135013, 15141009,

15144004, 15145012, 15145021, 15146017, 15150031, 15151005, 15151041, 15151042, 15152051,

15153022, 15156008, 15157048, 15161010, 15161051, 15163061, 15164034, 15165033, 15166014,

15166015, 15166016, 15166017
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[45] J. Thäder, “Higher Moments of Net-Particle Multiplicity Distributions,” Nucl. Phys.,
vol. A956, pp. 320–323, 2016.

[46] M. M. Aggarwal et al., “Higher Moments of Net-proton Multiplicity Distributions at
RHIC,” Phys. Rev. Lett., vol. 105, p. 022302, 2010.

[47] L. Adamczyk et al., “Beam energy dependence of moments of the net-charge multiplicity
distributions in Au+Au collisions at RHIC,” Phys. Rev. Lett., vol. 113, p. 092301, 2014.

[48] L. Adamczyk et al., “Collision Energy Dependence of Moments of Net-Kaon Multiplicity
Distributions at RHIC,” Phys. Lett., vol. B785, pp. 551–560, 2018.

106



[49] A. Bzdak, R. Holzmann, and V. Koch, “Multiplicity dependent and non-binomial ef-
ficiency corrections for particle number cumulantsMultiplicity-dependent and nonbino-
mial efficiency corrections for particle number cumulants,” Phys. Rev., vol. C94, no. 6,
p. 064907, 2016.

[50] M. Harrison, S. G. Peggs, and T. Roser, “The RHIC accelerator,” Ann. Rev. Nucl. Part.
Sci., vol. 52, pp. 425–469, 2002.

[51] G. Bunce, N. Saito, J. Soffer, and W. Vogelsang, “Prospects for spin physics at RHIC,”
Ann. Rev. Nucl. Part. Sci., vol. 50, pp. 525–575, 2000.

[52] W. Vogelsang, “QCD spin physics: Status, and prospects for RHIC,” Pramana, vol. 63,
p. 1251, 2004.

[53] L. C. Bland, “Spin physics at RHIC,” AIP Conf. Proc., vol. 675, no. 1, pp. 98–111,
2003.

[54] “http://www.agsrhichome.bnl.gov/RHIC/Runs/index.html.”

[55] M. Harrison, T. Ludlam, and S. Ozaki, “RHIC project overview,” Nucl. Instrum. Meth.,
vol. A499, pp. 235–244, 2003.

[56] M. Anerella et al., “The RHIC magnet system,” Nucl. Instrum. Meth., vol. A499,
pp. 280–315, 2003.

[57] K. H. Ackermann et al., “STAR detector overview,” Nucl. Instrum. Meth., vol. A499,
pp. 624–632, 2003.

[58] K. Adcox et al., “PHENIX detector overview,” Nucl. Instrum. Meth., vol. A499,
pp. 469–479, 2003.

[59] B. B. Back et al., “The PHOBOS detector at RHIC,” Nucl. Instrum. Meth., vol. A499,
pp. 603–623, 2003.

[60] M. Adamczyk et al., “The BRAHMS experiment at RHIC,” Nucl. Instrum. Meth.,
vol. A499, pp. 437–468, 2003.

[61] M. Anderson et al., “The Star time projection chamber: A Unique tool for studying
high multiplicity events at RHIC,” Nucl. Instrum. Meth., vol. A499, pp. 659–678, 2003.

[62] “https://drupal.star.bnl.gov/STAR/starnotes/public/csn0121.”

[63] “https://drupal.star.bnl.gov/star/ starnotes/public/sn0600..”

[64] W. J. Llope et al., “The TOFp / pVPD time-of-flight system for STAR,” Nucl. Instrum.
Meth., vol. A522, pp. 252–273, 2004.

[65] M. Beddo et al., “The STAR barrel electromagnetic calorimeter,” Nucl. Instrum. Meth.,
vol. A499, pp. 725–739, 2003.

107



[66] C. E. Allgower et al., “The STAR endcap electromagnetic calorimeter,” Nucl. Instrum.
Meth., vol. A499, pp. 740–750, 2003.

[67] F. Bergsma et al., “The STAR detector magnet subsystem,” Nucl. Instrum. Meth.,
vol. A499, pp. 633–639, 2003.

[68] L. Ruan et al., “Perspectives of a Midrapidity Dimuon Program at RHIC: A Novel and
Compact Muon Telescope Detector,” J. Phys., vol. G36, p. 095001, 2009.

[69] C. Adler et al., “The STAR level-3 trigger system,” Nucl. Instrum. Meth., vol. A499,
pp. 778–791, 2003.

[70] J. Kiryluk, “Local polarimetry for proton beams with the STAR beam beam counters,”
in Spin physics. Polarized electron sources and polarimeters. Proceedings, 16th Inter-
national Symposium, SPIN 2004, Trieste, Italy, October 10-16, 2004, and Workshop,
PESP 2004, Mainz, Germany, October 7-9, 2004, pp. 718–721, 2005.

[71] G. Contin et al., “The STAR MAPS-based PiXeL detector,” Nucl. Instrum. Meth.,
vol. A907, pp. 60–80, 2018.

[72] J. H. Thomas, “A TPC for measuring high multiplicity events at RHIC,” Nucl. Instrum.
Meth., vol. A478, pp. 166–169, 2002.

[73] H. Bichsel, “A method to improve tracking and particle identification in TPCs and
silicon detectors,” Nucl. Instrum. Meth., vol. A562, pp. 154–197, 2006.

[74] M. Shao, L. J. Ruan, H. F. Chen, J. Wu, C. Li, Z. Z. Xu, X. L. Wang, S. L. Huang,
Z. M. Wang, and Z. P. Zhang, “Beam test results of two kinds of multi-gap resistive
plate chambers,” Nucl. Instrum. Meth., vol. A492, pp. 344–350, 2002.

[75] B. Bonner, H. Chen, G. Eppley, F. Geurts, J. Lamas Valverde, C. Li, W. J. Llope,
T. Nussbaum, E. Platner, and J. Roberts, “A single Time-of-Flight tray based on multi-
gap resistive plate chambers for the STAR experiment at RHIC,” Nucl. Instrum. Meth.,
vol. A508, pp. 181–184, 2003.

[76] E. Cerron Zeballos, I. Crotty, D. Hatzifotiadou, J. Lamas Valverde, S. Neupane, M. C. S.
Williams, and A. Zichichi, “A New type of resistive plate chamber: The Multigap RPC,”
Nucl. Instrum. Meth., vol. A374, pp. 132–136, 1996.

[77] R. J. Fries, B. Muller, C. Nonaka, and S. A. Bass, “Hadronization in heavy ion collisions:
Recombination and fragmentation of partons,” Phys. Rev. Lett., vol. 90, p. 202303, 2003.

[78] R. J. Fries, V. Greco, and P. Sorensen, “Coalescence Models For Hadron Formation
From Quark Gluon Plasma,” Ann. Rev. Nucl. Part. Sci., vol. 58, pp. 177–205, 2008.

[79] S. A. Bass, “Review of parton recombination models,” J. Phys. Conf. Ser., vol. 50,
pp. 279–288, 2006.

[80] F. Karsch and K. Redlich, “Probing freeze-out conditions in heavy ion collisions with
moments of charge fluctuations,” Phys. Lett., vol. B695, pp. 136–142, 2011.

108



[81] B. Friman, F. Karsch, K. Redlich, and V. Skokov, “Fluctuations as probe of the QCD
phase transition and freeze-out in heavy ion collisions at LHC and RHIC,” Eur. Phys.
J., vol. C71, p. 1694, 2011.

[82] X. Luo and N. Xu, “Search for the QCD Critical Point with Fluctuations of Conserved
Quantities in Relativistic Heavy-Ion Collisions at RHIC : An Overview,” Nucl. Sci.
Tech., vol. 28, no. 8, p. 112, 2017.

[83] X. Luo, J. Xu, B. Mohanty, and N. Xu, “Volume fluctuation and auto-correlation effects
in the moment analysis of net-proton multiplicity distributions in heavy-ion collisions,”
J. Phys., vol. G40, p. 105104, 2013.

[84] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap. No. 57 in Mono-
graphs on Statistics and Applied Probability, Boca Raton, Florida, USA: Chapman &
Hall/CRC, 1993.

[85] X. Luo, “Unified description of efficiency correction and error estimation for moments
of conserved quantities in heavy-ion collisions,” Phys. Rev., vol. C91, no. 3, p. 034907,
2015. [Erratum: Phys. Rev.C94,no.5,059901(2016)].

[86] A. Bzdak and V. Koch, “Local Efficiency Corrections to Higher Order Cumulants,”
Phys. Rev., vol. C91, no. 2, p. 027901, 2015.

[87] T. Nonaka, M. Kitazawa, and S. Esumi, “More efficient formulas for efficiency correc-
tion of cumulants and effect of using averaged efficiency,” Phys. Rev., vol. C95, no. 6,
p. 064912, 2017.

[88] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, “A Multi-phase transport model
for relativistic heavy ion collisions,” Phys. Rev., vol. C72, p. 064901, 2005.

109




