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Abstract of the Dissertation

Wakes in Inertial Fusion Plasmas

by
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Doctor of Philosophy in Physics

University of California, Los Angeles, 2014

Professor Warren B. Mori, Chair

Plasma wave wakes, which are the collective oscillatory response near the plasma

frequency to the propagation of particles or electromagnetic waves through a

plasma, play a critical role in many plasma processes. New results from backwards

stimulated Raman scattering (BSRS), in which wakes with phase velocities much

less than the speed of light are induced by the beating of counter-propagating

light waves, and from electron beam stopping, in which the wakes are produced

by the motion of relativistically propagating electrons through the dense plasma,

are discussed. Both processes play important roles in Inertial Confinement Fusion

(ICF). In BSRS, laser light is scattered backwards out of the plasma, decreasing

the energy available to compress the ICF capsule and affecting the symmetry of

where the laser energy hits the hohlraum wall in indirect drive ICF. The plasma

wave wake can also generate superthermal electrons that can preheat the core

and/or the ablator. Electron beam stopping plays a critical role in the Fast Ig-

nition (FI) ICF concept, in which a beam of relativistic electrons is used to heat

the target core to ignition temperatures after the compression stage. The beam

stopping power determines the effectiveness of the heating process. This disser-

tation covers new discoveries on the importance of plasma wave wakes in both

BSRS and electron beam stopping.

In the SRS studies, 1D particle-in-cell (PIC) simulations using OSIRIS are per-

ii



formed, which model a short-duration (∼ 500ω−1
0 FWHM) counter-propagating

scattered light seed pulse in the presence of a constant pump laser with an in-

tensity far below the absolute instability threshold for plasma waves undergoing

Landau damping. The seed undergoes linear convective Raman amplification and

dominates over the amplification of fluctuations due to particle discreteness. The

simulation results are in good agreement with results from a coupled-mode solver

when special relativity and the effects of finite size PIC simulation particles are

accounted for. Linear gain spectra including both effects are discussed. Extend-

ing the PIC simulations past when the seed exits the simulation domain reveals

bursts of large-amplitude scattering in many cases, which do not occur in simu-

lations without the seed pulse. These bursts can have amplitudes several times

greater than the amplified seed pulse, and an examination of the orbits of par-

ticles trapped in the wake illustrates that the bursts are caused by a reduction

of Landau damping due to particle trapping. This large-amplitude scattering is

caused by the seed inducing a wake earlier in the simulation, thus modifying the

distribution function. Performing simulations with longer duration seeds leads to

parts of the seeds reaching amplitudes several times more than the steady-state

linear theory results, similarly caused by a reduction of Landau damping. Simu-

lations with continuous seeds demonstrate that the onset of inflation depends on

the seed wavelength and incident intensity, and oscillations in the reflectivity are

observed at a frequency equal to the difference between the seed frequency and

the frequency at which the inflationary SRS grows.

In the electron beam stopping studies, 3D PIC simulations are performed of

relativistic electrons with a momentum of 10mec propagating in a cold FI core

plasma. Some of the simulations use one simulation particle per real particle, and

particle sizes much smaller than the interparitcle spacing. The wake made by a

single electron is compared against that calculated using cold fluid theory assum-

ing the phase velocity of the wake is near the speed of light. The results agree for
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the first wavelength of the wake. However, the shape of the wake changes for suc-

ceeding wavelengths and depends on the background plasma temperature, with

the concavity pointing in the direction the electron is moving in cold plasmas and

in the opposite direction as the plasma temperature increases. In the warm plasma

the curvature is described by electrostatic Vlasov theory (for vparticle � vth) and

is due to the diffraction of the wave, while for cold plasmas the curvature is due

to nonlinear radial oscillations of background electrons. Beams with multiple

electrons exhibit correlation effects caused by electrons interacting through their

wakes. Non-divergent beams are simulated, and a significant time-dependent in-

crease in the stopping power is observed when the average electron spacing is

2c/ωpe or less. This increase is caused by beam-plasma-like instabilities including

self-focusing and/or filamentation and the beam-plasma-like instability. The stop-

ping power growth rate and peak value depend on the beam size and density. For

long beams with dimensions of 10c/ωpe × 10c/ωpe × 80c/ωpe and an inter-particle

separation of 0.25c/ωpe (nb/n0 ≈ 4×10−3), the peak stopping power averaged over

the electrons is (1± 3)× 103 times that of an uncorrelated electron. These results

indicate that an enhanced energy-independent or weakly dependent correlated

stopping may occur for Fast Ignition scenarios, even for interparticle spacings

when discreteness effects are important. The dependence of correlation effects on

beam electron separation in terms of c/ωpe also indicates that Fast Ignition may

be possible with core densities below those designed using single-electron stopping

powers. Target optimization to exploit correlated stopping in the target core may

be possible once the effects of angular spread and energy spread are understood.

Furthermore, this work begins to allow a connection from the discrete wakes effect

to collective instabilities [MF02] as the interparticle spacing is decreased relative

to the size of the wake due to the use of denser beams, lower plasma densities,

and the filamentation/self-focusing of the beam.
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CHAPTER 1

Introduction

In this dissertation, we study the importance of plasma wave wakes. Electron

plasma waves have been studied extensively since the work of Langmuir, Bohm,

and Gross. Much of the linear and nonlinear theory of plasma waves, including

kinetic treatments, make the traveling wave assumption and watch the evolution of

the wave in time. However, plasma waves are often excited by moving drivers and

evolve in space and time. Such plasma waves can be viewed as wakes left behind

by electromagnetic waves or charged particles in high energy density plasmas.

Electromagnetic waves commonly produce wakes in plasmas via three-wave decay

processes [Kru03, DKL74] such as stimulated Raman and [FKL75b, FKL75a],

the parametric decay instability [DG67, KD69, SW72], and two-plasmon decay

[LR76, YRL12]. Charged particles produce wakes as they move through a plasma

[Dec87, KT73]. The studies in this dissertation focus on how plasma wave wakes

affect stimulated Raman scattering and electron beam stopping [BD08, DF99,

SB08, ASD09], which play important roles in Inertial Confinement Fusion (ICF)

[AV09, LAB04].

The wakes that appear in our stimulated Raman scattering and electron beam

stopping research take the form of electron plasma waves (EPWs), which are

commonly referred to as Langmuir waves [Lan28, TL29]. No ion waves appear in

the studies at hand as the simulations use frozen ions or a smooth neutralizing

background to simplify the study and suppress processes such as the Langmuir

decay instability, in which an EPW decays into an ion acoustic wave and another
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EPW [DG67, Gol84, DFL00].

The work on Raman scattering focuses exclusively on backward stimulated Ra-

man scattering (BSRS), in which an incident light wave in a plasma decays into a

backward-propagating light wave and a forward-propagating plasma wave. BSRS

can be a significant source of drive energy loss in ICF because it scatters light

away from the target. It can also degrade the uniformity of the drive in indirect

drive if the energy loss is different between the inner and outer beams. Further-

more, the plasma waves can generate superthermal electrons, which can preheat

the core and/or the ablator. The study focuses on BSRS in ICF-relevant laser

and plasma conditions using OSIRIS [FST02] particle-in-cell (PIC) [Daw83, BL85]

simulations. The study has three distinct parts. The first part is a detailed com-

parison of the linear amplification of a well-defined seed pulse propagating counter

to the pump laser using coupled-mode theory and OSIRIS simulations. To com-

pare theory to OSIRIS simulations, finite-size particle corrections are included in

the theory. This part of the study demonstrates excellent agreement between the

coupled mode description and the OSIRIS simulations and demonstrates that spe-

cial relativity corrections affect the seed amplification for ICF parameters. The

second part explores how this seed pulse can trigger large reflectivities after it

leaves the simulated plasma. The seed creates an EPW in the plasma, which

the pump laser continues to drive and which traps electrons, reducing the Lan-

dau damping and leading to high laser reflectivites through a process known as

kinetic inflation [VDB01, VDB02, VDB07, SWL07]. The final part of the study

examines the onset of inflationary scattering and the bursty nature of BSRS using

continuous seeds. Non-resonant seeds, which have frequencies not at the peak of

the linear gain curve, require higher incident intensity to cause inflation. When

the seed frequency is non-resonant, the reflected light is modulated with a period

inversely proportional to the difference between the seed and resonant frequencies.

This three-part study provides many details about linear amplification via BSRS
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and the effects of seeds in BSRS overall.

The study of electron beam stopping is motivated by Fast Ignition (FI) [THG94,

AV09, ASB07, STL12]. In this ICF concept, the target is compressed to a dense

state, then a high-intensity short-pulse laser is fired at a point on the surface of

the target, generating a beam of electrons which travels to the core and heats it to

ignition temperatures. The heating of the core depends on the electron stopping

power. The stopping power of a single electron, in turn, depends in large part

on the plasma wave wake made by the electron. The wake contributes to the

stopping power since the energy left behind in the wake comes from the particle,

or equivalently, the electric field of the wake evaluated at the particle slows it

down. In addition, electrons propagating behind one electron can interact with

its wake and may also enhance it. We study this possible coherent enhance-

ment of wakes. We call electron beam stopping from the enhancement of wakes

“correlated stopping.” There is agreement on the single-electron stopping power

[ASD09, SB08, LP06, SD05], but correlation effects have been largely overlooked,

aside from Refs. [BD08, DF99, MF02]. This study demonstrates that correlation

effects usually lead to an increase in stopping power, and the stopping power of

the electron beam is likely much greater than previously thought.

Due to the importance of electron wakes in correlated stopping, the study be-

gins with a comparison of the wakes in PIC simulations with current models of

wakes. In the non-relativistic regime, the wake in electrostatic PIC simulations

agrees extremely well with a calculation using Vlasov theory. In the relativistic

regime, cold fluid theory agrees reasonably with the wavelength of the wake ob-

served in OSIRIS and QuickPIC [HDR06, ADM13] simulations, along with the

form of the wake during the first wavelength, but misses a transverse spreading

phenomenon which we attribute to the fact that the plasma electron oscillations

are preferentially in the radial direction. As shown by Dawson, such oscillations

have a frequency that depends on the ratio of the displacement to its initial radius.
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The agreement between the simulations and theories, and the physical explana-

tion for the differences, provide confidence that our simulation tools can be used

to study correlated stopping.

Various stopping power models are briefly discussed, including the Bohr and

Bethe models of classical and quantum mechanical stopping, and a model that

includes quantum electrodynamics. Comparisons are made with PIC and molec-

ular dynamics (MD) simulations. Stopping power for fast (v � vth) heavy ions

in ddcMD [RGC09, GBB12], which is an MD code that uses the particle-particle

particle-mesh (PPPM) method [HGE73], agrees very well with the Bohr formula.

Simulations of the stopping power in electrostatic PIC produces stopping power

below that from Bohr formula, but which agrees with calculations using Vlasov

theory taking into account finite-size particles and field smoothing. As the parti-

cle (cell size) is reduced, the PIC results gradually converge to the ddcMD results.

Simulations of fast electrons in both MD and electrostatic PIC exhibit a significant

spread in energy with time.

Stopping power of relativistic electrons does not simply depend on Coulomb

interactions. Therefore, neither electrostatic PIC nor ddcMD can be used. In-

stead, we resort to electromagnetic PIC. However, simulations of electrons with

momentum of 10mec in OSIRIS exhibit significant numerical Čerenkov radiation

at small cell widths, which overwhelms the stopping power due to the plasma,

though recent work suggests that a new solver eliminates this problem. Numer-

ical Čerenkov arises because the phase velocity of light on the grid is less than

the speed of light, allowing particles traveling near the speed of light to exceed

the phase velocity of light. The same simulations are performed with QuickPIC,

whose model is free of numerical Čerenkov radiation. They demonstrate good

agreement with a fluid model of stopping power using the cell-width as a cut-

off until the stopping power in the simulations saturates when a cell-width is a

quarter of the inter-particle spacing. These results demonstrate the benefits and
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limitations of various types of simulations when used to study stopping power.

Correlated stopping simulations of mono-energetic, mono-directional electron

beams with electron momentum of 10mec in a cold FI core plasma are performed.

These simulations use one simulation electron for each real electron and an electron

size equal to the plasma electron interparticle spacing but much less than the

beam interparticle spacing. All the simulations with beam interparticle spacings

of 2c/ωpe or less show an increase in stopping power over that of a single electron.

Time-dynamics of the beams plays a fundamental role because the beam-plasma-

like instability [DMO70, GR71] and self-focusing [RSC89, RSC90] increase the

stopping power with time. We say “like” because, for the parameters used here,

the interparticle spacing can be larger than the wavelength and width of the wake.

Three distinct varieties of beam stopping simulations are performed. First,

simulations with 125 beam electrons initialized in a cube are carried out, which

demonstrate that the stopping power gradually increases as the spacing, and hence

the beam size, decrease due to bunching of the beam electrons. Second, the stop-

ping power of various beam densities initialized in a cube with a volume of 1,000

(c/ωpe)
3 is examined, demonstrating that correlated stopping depends strongly on

beam density. In these simulations, the stopping power increases first via trans-

verse beam-plasma-like instabilities, such as filamentation and self-focusing, then

via the longitudinal beam-plasma-like instability. Finally, beams that are longer

in the propagation direction are studied using various beam densities. These final

beams have dimensions of 10c/ωpe × 10c/ωpe × 80c/ωpe. These simulations show

spatio-temporal growth (growth with propagation distance and growth from the

head to the tail of the beam) that is consistent with streaming instabilities. When

the beam electron separation is 0.25c/ωpe, the stopping of a typical beam electron

peaks at (1 ± 3) × 103 times that of an uncorrelated electron. These three vari-

eties of beam stopping simulations demonstrate that correlation effects increase

the stopping power–sometimes dramatically–under certain conditions and exhibit
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a complex time-dependence. Such increases imply that more beam energy might

be transferred into the core of an FI target than previously thought. However,

the beams simulated represent a very small volume of what is expected in Fast

Ignition and the beams have no energy spread or transverse divergence (emit-

tance). Therefore, this work also points to directions for future work such as

studying larger beams, beams with large transverse divergence (emittance) and

energy spreads, as well as plasmas with higher temperatures.

This dissertation addresses in detail two examples of the complex role that

wakes play in ICF plasmas. BSRS illustrates one of the many processes through

which wakes can be problematic and hinder progress towards ignition. Corre-

lated stopping points towards a relatively unexplored path along which wakes can

help achieve ignition. The results from both areas of research have important

implications for ICF.

6



CHAPTER 2

Convective Raman Amplification of Light Pulses

Causing Kinetic Inflation in Inertial Fusion

Plasmas

2.1 Introduction

Backward stimulated Raman scattering [DKL74, FKL75b, FKL75a] (BSRS) in

plasmas is a process in which an incident light wave in a plasma decays into a

backward-propagating light wave and a forward-propagating plasma wave. During

this process, the plasma wave is excited in a finite region of space and time. It

is a driven wave packet (wake) during the onset of the instability, and a freely

propagating wake after saturation. In this sense, SRS is relevant to the topic of

this dissertation.

BSRS has been a subject of much study, in large part because it scatters light

away from the target in inertial confinement fusion (ICF) [AV09, LAB04]. Early

research focused on relatively high intensities, where growth was in the weakly

damped convective and absolutely unstable regimes, and saturation occurred due

to wave-breaking and/or pump depletion [KA75, EKH89]. The competition be-

tween back-, forward-, and side-scatter was also investigated [EK83, KEL80]. As

laser and plasma parameters for ICF evolved, research in BSRS shifted to the

strongly damped regime. In modern experiments, SRS typically occurs at den-

sities and temperatures for which kλDe & 0.3, where Landau damping is signifi-
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cant. In this kinetic regime, the measured BSRS reflectivities can greatly exceed

the values from linear theory calculations, e.g. in the single-hot-spot experiments

of Reference [MCF02]. Although 3D paraxial-envelope simulations with linear

damping have correctly modeled the intensity threshold for SRS in experiments

with a smoothed, multi-speckle beam in a pre-formed uniform hohlraum plasma

[FDL09], such models do not include much nonlinear and kinetic physics. For

example, a process called kinetic inflation was proposed to explain the single-hot-

spot results [VDB01, VDB02, VDB07, SWL07]. In kinetic inflation, a small-

amplitude plasma wave excited in the strongly damped convectively unstable

regime can trap electrons, modifying the distribution function so that the ki-

netic damping of the plasma wave is greatly reduced or vanishes [ON65, MO72].

Therefore, for the same incident laser intensity, SRS can then transition to the

weakly damped or absolutely unstable regime [Win10]. There has also been recent

work on how BSRS in the kinetic regime can saturate due to nonlinear frequency

shifts [VDB01, VDB02, WFT10] or related trapped-particle instabilities [BV04]

caused by electron trapping. Recent research has demonstrated the importance of

the propagation and evolution of plasma wave packets, including how the reflected

light can occur in bursts spaced proportionally to the inverse of the nonlinear fre-

quency shift [WFT10]. Recently, it has been shown that hot electrons and back-

and side-scattered SRS produced by one speckle interact with neighboring speck-

les [Win12]. Very recently, simulations of many speckles have shown that SRS

can self-organize between speckles, producing coherent bursts of SRS [YAR12a].

These simulations are difficult to analyze and little work has explored in detail how

scattered light, plasma waves, or the resulting changes to the electron distribution

in one region of space or time enhancing SRS at different times or locations.

In this Chapter, we make a detailed comparison of the linear amplification

of a well defined counter-propagating seed pulse using coupled-mode theory and

OSIRIS PIC [FST02] simulations. We then explore how this seed pulse can trigger
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large reflectivities after it has left the plasma using OSIRIS simulations. We

consider situations in which no (little) BSRS occurs with only the pump (no

seed is used). The seed intensity and pulse length are varied. For short seed

pulses (∼ 500ω−1
0 FWHM), the seed pulse is linearly amplified as it transits the

box. This amplification agrees with linear theory when appropriately modified

to take into account special relativity and the use of finite-size particles in PIC

codes [Daw83, BL85], such as OSIRIS. We simulate ICF-relevant laser and plasma

conditions, and demonstrate that, even for plasma temperatures less than 5 keV,

special relativity increases the linear gain and shifts down the scattered light

wavelength. We find, for these short seed pulses, that kinetic inflation occurs

after the seed pulse leaves the box. The timing and amplitude of the first peak in

reflectivity depends on the duration and intensity of the seed pulse. We examine

the trajectories of trapped particles to verify that kinetic inflation is occurring

and that the bounce period is consistent with the amplitude of the Langmuir

wave (which we also call the plasma wave).

For longer seed pulses, the inflationary burst of scattered light overlaps with

the seed. Under these conditions, the measured gain of the seed can reach several

times the steady-state linear gain value when the seed wavelength is near the peak

of the gain spectrum. We also examine the onset of inflationary scattering and the

bursty nature of BSRS using continuous seeds. We also vary the seed frequency

and find that non-resonant seeds, which are not at the peak of the linear gain

curve, require higher incident intensity to cause inflation. We also observe that,

when the seed frequency is non-resonant, the reflected light is modulated with

a period inversely proportional to the difference between the seed and resonant

frequencies. (In this Chapter, we use the term “resonance,” where 1 + χr = 0

for electrostatic waves, and “peak gain” interchangeably.) After inflation sets in,

the measured gain of the seed decreases with incident seed intensity due to pump

depletion.
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Figure 2.1: The geometry of the OSIRIS simulations.

The Chapter is outlined as follows. We present the simulation geometry and

plasma conditions in Section 2.2, and discuss the linear theory of convective BSRS

gain and its relativistic and PIC modifications in Section 2.3. We describe in

Section 2.4 a subtraction technique that we use in our data analysis. In Section

2.5, we discuss the amplification of short-duration seed pulses in PIC simulations

and as calculated by a coupled-mode solver. Section 2.6 covers our observation of

kinetic inflation that occurs after the seed pulse passes, and Section 2.7 covers our

measurements of kinetic inflation using longer duration seeds. Finally, we discuss

the onset of inflation with continuous seeds in Section 2.8 and conclude in Section

2.9.

2.2 Geometry and Plasma Conditions

Throughout this Chapter, we use normalized units to describe the OSIRIS sim-

ulations. To make connection to parameters of interest for ICF, we assume that

the incident pump has a wavelength of λ0 =351nm. When we note quantities in

physical units, they correspond to this pump wavelength. Our formulas and other

quantities are given in CGS units while the temperature is often given in units of

eV.

Figure 2.1 depicts the usual simulation geometry. The pump laser (ω0, ~k0)
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is incident from the left with a normalized electric field amplitude eE0/mecω0 =

3.68×10−3 (in physical units, I0 = 1.5×1014 W/cm2). The seed (ω1, ~k1) enters the

simulation box from the right and beats with the pump, inducing an electrostatic

wave (ω2, ~k2) in the plasma, which travels to the right. Light from the pump

scatters off the plasma wave and amplifies the seed. For the simulation parameters,

this process is a convective instability [Str05].

We use a fixed ion neutralizing background and we do not add collisions. We

simulate densities and temperatures for which SRS is expected to occur for ignition

experiments at the National Ignition Facility (NIF) [MBR09]. The plasma has a

uniform density n = 0.12nc (≈ 1.1× 1021 cm−3 for λ0 = 351nm), where nc is the

critical density for the pump laser. The electron thermal speed is vth = 0.0699c

(Te = 2.5 keV). The box has length L = 1790c/ω0 (100 µm) and 8192 cells, giving

a cell width of 1.1λD, where λD is the Debye length. We use 16,384 particles per

cell and quadratic splines for the particle shape to reduce spurious grid heating

and noise due to aliasing. The particle boundary conditions are thermalizing for

particles and we use perfectly matched layers [JNG05, BHP08, Ber94] for the field

boundary conditions. The particle pusher is relativistically correct [BL85] in all

the simulations except where we state otherwise.

For ICF plasma conditions in thermodynamic equilibrium, the primary insti-

gator of BSRS is electromagnetic noise caused by Thomson scattering [SWH08].

The seed intensities we use in our simulations are far above the level of this back-

ground noise. For the plasma conditions used in our simulations and a typical NIF

quad (four laser beams arranged in a square) with effective F-number [MBR09]

of 8 as the pump, the effective Thomson scattering seed within the FWHM of the

peak relativistic gain (discussed below) is 1.6× 104 W/cm2 = 1.1× 10−10I0. SRS

growth from such noise is initially linear, and enhanced over plane-wave growth

by intense speckles in a phase-plate-smoothed beam. We note that it is not pos-

sible to directly measure the noise on NIF, and it may be higher than that from
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Thomson scattering. Convective amplification of the noise can create scattered

light amplitudes far above the thermal noise, and may transition to regimes where

kinetic effects are significant. We choose seed intensities to induce such effects.

2.3 Linear Theory of Convective BSRS Gain

2.3.1 Non-Relativistic Theory

Our PIC simulations never reach a steady state. However, linear theory states

that the reflectivity will quickly reach a steady state when we use a continuous

scattered light wave seed. In the convective steady state, the seed intensity is

amplified by a factor of eG by the time it exits the box. G is the linear intensity

gain exponent, commonly called “the gain,” and we present an equation for it

in the strong damping limit. Here, we summarize the results from a detailed

derivation for the steady-state gain from Reference [SWH08].

Given the pump (ω0, ~k0) and the seed (ω1, ~k1), we calculate the plasma wave

(ω2, ~k2) using the matching conditions,

ω0 = ω1 + ω2 (2.1a)

and

~k0 = ~k1 + ~k2. (2.1b)

We need ω2 and ~k2 for evaluating the plasma susceptibility when we calculate the

gain.

Let the seed intensity be denoted by I1(z), where z = (0, L) is the (left, right)

edge of the box. Then,

I1(z) = eGl(z)I1(L), (2.2)

where Gl(z) is the linear intensity gain exponent,

Gl(z) ≡
∫ L

z

Γ1(z′)I0(z′)dz′. (2.3)
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We neglect pump depletion and light wave damping, so I0 is constant, which leads

to

Γ1 ≡ ΓsIm
[χe
ε

(1 + χI)
]
, (2.4)

where the subscripts e and I denote the electron and ion species, respectively, χj

is the collisionless susceptibility for species j, ε(k2, ω2) = 1 +
∑

j χj(k2, ω2) is the

plasma dielectric function, and

Γs ≡
2πre
mec2

1

ω0

k2
2

k0|k1|
, (2.5)

where re ≡ e2/mec
2 is the classical electron radius. For a Maxwellian velocity

distribution, χj is given by

χj(k2, ω2) = − ω2
pj

2k2
2v

2
Tj

Z ′
(

ω2√
2k2vTj

)
, (2.6)

where ωpj is the plasma frequency of species j, vTj =
√
Tj/mj is the thermal

speed of species j, and Z ′(s) ≡ dZ/ds. Z ′(s) must be calculated numerically, and

is typically found by first computing Z(s), the plasma dispersion function [FC61].

It can be shown that Z ′(s) = −2sZ(s)− 2, with

Z(s) = i
√
πe−s

2

[1 + erf(is)]. (2.7)

χj → −(ωpj/ω2)2 as mj → ∞, so we can set χI → 0 everywhere (recall we use

fixed ions in the OSIRIS simulations). In particular, ε = 1 + χe and

Γ1 = ΓsIm
[χe
ε

]
. (2.8)

We further simplify Equation 2.3 since we are dealing with a uniform plasma.

Γ1 is constant, so the gain is given by

Gl(z) = Γ1I0(L− z). (2.9)

We also define an amplitude gain rate, g0, as

g0 =
Γ1I0

2
∝ χi

(1 + χr)2 + χ2
i

, (2.10)
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where χr and χi are the real and imaginary parts of χ, respectively. We plot the

theoretical gain spectrum for the conditions of interest in Figure 2.2 as dash-dotted

lines.

Equations 2.2-2.5 are valid in the strong damping limit. This limit applies

when |vg2∂a2/∂x| � |ν2a2|, where vg2 is the plasma wave group velocity, a2 is

the plasma wave action amplitude (defined in Section 2.5.2), and ν2 is the plasma

wave damping rate. For regimes of interest, nu2 is dominated by Landau damping

[Lan46]. In a homogeneous plasma in the convective steady-state, which is where

our gain calculation applies, this condition is g0 � ν2/vg2. Working at the peak of

the non-relativistic gain curve, we have a spatial gain rate of gnr0 = 3.28×10−4ω0/c

and ν2/vg2 = 0.0611ω0/c. Therefore, at NIF, we are in the strong damping limit.

2.3.2 Relativistic Modification

We now explore the impact of special relativity on linear gain. Estabrook and

Kruer [EK83] included an analysis of SRS for temperatures for which relativis-

tic corrections are important, and performed 1.5D PIC simulations of laser and

plasma conditions where the plasma wave is weakly damped. They found that

non-relativistic linear theory does not adequately describe the wavenumber of the

fastest growing mode in high-temperature (∼64 keV) plasmas, but taking into

account the effective (reduced) plasma frequency and corresponding density due

to special relativity brings theory and simulation into better agreement. More

recently, Bergman and Eliasson derived a fully relativistic expression for the un-

magnetized plasma dielectric function [BE01], and Bers et. al. derived approx-

imate expressions relevant to current and near-future deuterium-tritium fusion

plasmas [BSS09]. Palastro et. al. have also derived a fully relativistic description

of Thomson scattering [PRP10].

In this subsection, we simply make some heuristic changes to the formulas in
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the previous subsection to account for special relativity. We replace the suscep-

tibility in Equation 2.8 with the relativistic one of Bergman and Eliasson, which

is computed using a 3D Jüttner-Synge distribution, as opposed to a Maxwellian

distribution.

Given the 3D Jüttner-Synge distribution,

f(γ) =
n0µe

−µγ

4πm3
ec

3K2(µ)
, (2.11)

the electron susceptibility is given by

χe(κ2,Ω2) =
µ

κ2
2

[
1− µ

K2(µ)

∂2

∂µ2

P (µ, κ2/Ω2)

µ

]
, (2.12)

where γ is the relativistic Lorentz factor, µ ≡ mec
2/Te, K2(µ) is the modified

Bessel function of the second kind, Ω2 ≡ ω2/ωpe, and κ2 ≡ k2c/ωpe. P is given by

P (µ, κ2/Ω2) ≡
∫ ∞

1

e−µγ√
γ2 − 1

dγ

γ2(1− κ2
2/Ω

2
2) + κ2

2/Ω
2
2

− iπσ

2κ2/Ω2

e−µ(κ2/Ω2)/
√
κ22/Ω

2
2−1, (2.13)

where σ = 0 for Ω2
2 ≥ κ2

2 and σ = 1 for Ω2
2 < κ2

2.

We can also take into account relativistic effects in the electromagnetic dis-

persion relation, ω2 = ω2
pe + c2k2, by using a relativistic version of the plasma

frequency:

ω2
pe → ω2

pe

µ2

K2(µ)

∫ ∞

1

∂2

∂µ2

(
e−µγ

µ

) √
γ2 − 1

γ4
dγ (2.14)

≈ ω2
pe

(
1− 5

2µ

)
for µ� 1.

We use this relativistic plasma frequency when we calculate k0 and k1. The

decrease in the effective plasma frequency with temperature is due to relativistic

corrections to the internal energy of the plasma [TM98]. However, this change

only has a relatively small impact on the gain at the temperature we use in our

simulations. It is also possible to calculate k0 and k1 using the fully relativistic
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transverse dispersion relation from Reference [BE01], but we did not attempt to

do so.

The overall effect of special relativity on the gain curve is shown in Figure

2.2. Notice that the peak of the relativistic gain curve lies above the peak of the

non-relativistic gain curve, and the peak occurs at a shorter wavelength. This

difference occurs because there are less particles and a shallower slope at the

plasma wave’s phase velocity in the Jüttner distribution than in the Maxwellian

distribution, resulting in weaker Landau damping. At the peak of the analytic

non-relativistic gain curve (λ1 = 1.659λ0 = 582.37 nm), for which k2λDe = 0.289,

the non-relativistic damping rate is 3.24 × 10−3ω0, while the relativistic rate is

2.44×10−3ω0. The strong damping limit still applies at the peak of the relativistic

gain curve (λ1 = 1.655λ0 = 580.88 nm), for which the spatial gain rate is gr0 =

4.43× 10−4ω0/c and ν2/vg2 = 0.0465ω0/c.

We also performed some gain calculations using the approximate expression

of Bers et. al. for the relativistic longitudinal dispersion relation. Their expres-

sion shifts the gain curve down in wavelength significantly more than numerically

integrating the formula of Bergman and Eliasson.

2.3.3 PIC Modification

We can improve the agreement between simulation and theoretical results by

taking into account a few known aspects of finite-difference PIC codes: finite-size

particles, differencing operators, and field smoothing plus compensation [BL85].

The particles have a finite size because the charge and current are interpolated to

a grid via the “shape factor” S(~x):

qδ(~x)→ qS(~x). (2.15)
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To reduce the self-heating and spurious noise from aliasing, we often use second-

order B-splines. Transforming to Fourier space,

qS(~x)→ qS(~k), (2.16)

where

S(k) =

(
sin(k∆/2)

k∆/2

)3

(2.17)

for 1D simulations, with ∆ being the cell width.

In finite-difference codes, like OSIRIS, differencing operators modify the dis-

persion relation by changing the relationship between the charge density ρ, longi-

tudinal electric field E2, and electrostatic potential φ. The finite-difference repre-

sentation for the derivative is

φj+1/2 − phij − 1/2

∆
, (2.18)

which, in Fourier space, is

k2
sin(k2∆/2

k2∆/2
≡ K(k2) (2.19)

. Therefore, in Fourier space, Poisson’s equation becomes

4πρ(k2) = k2
2

(
sin(k2∆/2)

k2∆/2

)2

φ(k2)

= K2(k2)φ(k2) (2.20)

and

E2(k2) = −ik2
sin(k2∆)

k2∆
φ(k2)

= −iK(k2)φ(k2). (2.21)

We additionally smooth the fields in our simulations to further reduce the

effects of aliasing, and we compensate to reduce numerical modifications to the

dispersion relation for small ~k. Without the use of splines and smoothing, grid

heating instabilities occur for ∆ & 3λDe [BL85]. In OSIRIS, we use both splines
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and smoothing to eliminate grid heating. We perform the filtering (smoothing or

compensation) of some quantity φ on the grid by replacing

φj with
Wφj−1 + φj +Wφj+1

1 + 2W
, (2.22)

where j is the grid index and W is a weighting factor. Transforming into Fourier

space, this operator becomes

φf (k) =
1 + 2W cos(k∆)

1 + 2W
φ0(k)

= SMW (k∆)φ0(k). (2.23)

We use two types of filters in the simulations presented in this Chapter. The first

is a two-pass filter, which we use unless stated otherwise. The first pass has a

stencil of 1
4
(1,2,1) (W=1/2) and the second has a stencil of 1

4
(-1,6,-1) (W=-1/6).

Therefore,

SM(k) = SM1/2(k)SM−1/6(k)

=
1 + cos(k∆)

2

3− cos(k∆)

2
. (2.24)

The second filter has five passes, and we choose it because it causes less deviation

from the longitudinal dispersion relation without quadratic interpolation effects

than the 2-pass filter. The first four passes use a stencil of 1
4
(1,2,1) (W=1/2)

and the last pass uses a stencil of 1
4
(-5,14,-5) (W=-5/14). We note that compen-

sation for higher-order particle shapes can be obtained. We perform additional

simulations with this filter to observe the effect on the gain curve.

SM(k) = SM4
1/2(k)SM−5/14(k)

=

(
1 + cos(k∆)

2

)4
14− 10 cos(k∆)

4
. (2.25)

The particle shape factor, differencing operators, and field smoothing affect

the plasma frequency through the relationship

ω2
pe → ω2

pe

k2κ(k2)

K2(k2)
(L · S(k2))2SM(k2). (2.26)
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Figure 2.2: Several calculations of the linear convective BSRS gain spectra for a

box 1790c/ω0 (100 µm) long. The dash-dotted curves are analytic results, and

the (dashed, solid) ones take into account PIC effects with the (5,2)-pass filter.

We make this transformation everywhere ωpe appears in our gain formulas to

account for PIC (finite size particle and filtering) effects.

The effect of the shape factor, differencing operators, and both the 2-pass

and 5-pass filters on the relativistic and non-relativistic gain curves is shown in

Figure 2.2. Checking the strong damping limit condition for the 2-pass filter, in

the non-relativistic case, the peak gain rate drops to gnr0 = 2.75× 10−4ω0/c with

ν2/vg2 = 0.0636ω0/c, while for the relativistic case, it drops to gr0 = 3.70×10−4ω0/c

with ν2/vg2 = 0.0531ω0/c.
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2.4 Subtraction Technique

We use a subtraction technique [Dec87] in our data analysis to clearly see waves

with amplitudes below the background plasma fluctuation level. The technique

requires running two simulations, the first with a perturbation whose effects we

wish to examine, and the second without the perturbation, but with the same

random number generator seed. We then subtract the results of the second sim-

ulation from the results of the first. In our case, the first simulation has both a

backward propagating light seed pulse and a forward propagating pump, while

the second simulation has just the pump. We use the subtraction technique to

produce all the plots of transverse and longitudinal fields unless stated otherwise.

Figure 2.3 shows the electrostatic field induced by the beating of the pump

and the seed pulse. The seed pulse in this simulation has a Gaussian-like profile,

as described in section 2.5, with λ1 = 1.644λ0 (577nm) and I1s = 5 × 10−4I0.

The amplitude of the plasma wave is so small that we cannot distinguish it from

the background fluctuations without using the subtraction technique. In the sub-

tracted result, background fluctuations enter the simulation starting at the sides

of the box due to the thermalizing boundary conditions. Fluctuations will al-

ways re-enter the subtracted data as the two simulations become uncorrelated.

However, the thermalizing boundaries re-emit particles using a random number

generator, and a single generator is used for the all the particles on a given proces-

sor. Once the order of the particles reaching the boundary changes, fluctuations

rapidly enter the subtracted data.

Because we do not observe meaningful SRS without a seed, we also use the

subtraction technique as a means of separating the scattered light from the pump

light when pump depletion is not significant. When pump depletion is small,

the subtraction technique for the transverse electric field works well for finding

the scattered light at all positions in the box. However, when pump depletion
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Figure 2.3: The longitudinal electric field in a simulation with (a) and without

(b) a seed pulse. Subtracting the latter from the former reveals the plasma wave

(c,d).
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becomes significant, the subtraction technique does not produce good results by

itself anywhere except at the far left side of the box, where pump depletion does

not occur. Therefore, we can still use the subtraction technique to observe the

reflectivity at the left side of the box, but we need to filter out the pump in Fourier

space to observe the scattered light anywhere else in the box.

The number of particles per cell in the simulation affects the usefulness of

the subtraction technique. Fluctuations take longer to enter the simulation as

we increase the number of particles per cell. When we decrease the number of

particles per cell, low-intensity seed pulses become more difficult to distinguish

from the background fluctuations when we use the subtraction technique, until we

cannot distinguish the peak of a pulse with I1s = 5×10−4I0 from the fluctuations in

simulations with 512 particles per cell. However, changing the number of particles

per cell has no significant effect on the convective amplification of the seed pulse.

2.5 Convective Gain Simulations & Coupled-Mode Re-

sults

2.5.1 OSIRIS Convective Gain Simulations

We perform OSIRIS PIC simulations to observe seed amplification in the linear

regime and determine under what conditions SRS enters the nonlinear regime.

The simulations begin at t = 0 with the pump incident from the left. After the

pump has fully propagated across the plasma, 2, 000ω−1
0 , the seed enters from the

right. We use two different temporal profiles, or “shapes,” for the seed amplitude

and vary its wavelength and intensity. The first shape is approximately Gaussian,

and rises from zero to its peak amplitude in τ = 500ω−1
0 , then falls back to

zero over another 500ω−1
0 , for ∼ 500ω−1

0 FWHM. The second shape is a flat-top

pulse with a Gaussian-like rise and fall time of τ = 200ω−1
0 , and a constant peak

22



Gaussian-Like Pulse

F
ie
ld
A
m
p
lit
u
d
e
[m
c
ω
0
/e
]

1.0

0.5

0.0

-0.5

-1.0

t [1/ω0]

10008006004002000

Flat-Top Pulse

t [1/ω0 ]

10008006004002000

(a) (b)

Figure 2.4: The shapes of the seed pulses in the simulations. A Gaussian-like

pulse (a) with a 500ω−1
0 rise and fall time (∼ 500ω−1

0 FWHM), and a flat-top

pulse (b) with a 200ω−1
0 Gaussian-like rise and fall, and a steady amplitude for

600ω−1
0 in between.

amplitude for 600ω−1
0 in between. The two pulse shapes are plotted in Figure

2.4. We describe the seed pulse using the notation I1(z = L, t) = I1ss(t), so that

s(t) describes the pulse shape and I1s is the maximum incident intensity. In our

simulations using seed pulses, I1s ≥ 5× 10−4I0.

Figure 2.5 shows the scattered light and the plasma wave as a function of

position and time in an OSIRIS PIC simulation when we use a Gaussian-like seed

pulse with I1s = 5 × 10−4I0 and λ1 = 1.644λ0. We also include line-outs of the

scattered light amplitude vs. position at various times to show the evolution of

the seed pulse more clearly as it crosses the box from right to left. We use a

Hilbert transform to envelope the results, producing a smooth appearance.

We define the measured gain, gmeas, of a pulse as

gmeas ≡ ln

(
max(I1(z = 0, t))

I1s

)
. (2.27)

The plot at the top of Figure 2.6 shows the gain we measure in simulations when

we vary the seed wavelength while keeping I1s fixed at 5× 10−4I0. The linear rel-
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Figure 2.6: Measured gain in simulations with box length 1790c/ω0 (100 µm) vs.

seed wavelength (a) and seed intensity I1s (b). Plotted are the gains we measure

using a Gaussian-like pulse (green with square markers) and a flat-top pulse (blue

with circle markers), both with λ1 = 1.644λ0. (a) includes the gain from simu-

lations with a Gaussian-like pulse and the 5-pass filter (black with ‘x’ markers),

plus those without relativistic effects (brown with ‘+’ markers). Several theoreti-

cal gain curves taking into account PIC effects are included: 2-pass non-relativistic

is dash-dotted red, 2-pass relativistic is solid magenta, and 5-pass relativistic is

dashed purple.
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ativistic gain peaks near λ1 = 1.644λ0 (577nm) in simulations with a 2-pass filter

and near λ1 = 1.650λ0 (579nm) in simulations with a 5-pass filter. Our simulation

results agree with these predictions. We also plot a gain curve from simulations

using a non-relativistic particle pusher and a Maxwellian velocity distribution.

This non-relativistic curve lies below the relativistic one at most points, as we ex-

pect, and the location of its peak agrees with the gain curve from non-relativistic

theory with a 2-pass filter.

In the plot on the bottom of Figure 2.6, we see how the measured gain changes

as we vary I1s while keeping the seed wavelength fixed at λ1 = 1.644λ0. The mea-

sured gain of the Gaussian-like pulse remains relatively constant as we increase

the initial seed intensity, until the seed intensity reaches several times the pump

intensity. This behavior indicates that we are in the linear regime for even large

seed amplitudes. The deviation from linear theory at the highest amplitudes is

due to pump depletion. However, the measured gain of the flat-top pulse increases

with seed intensity before falling off. This slight increase in the gain is caused by

the onset of inflation where the higher amplitude seed pulse generates a larger am-

plitude plasma wave. Trapped particles execute several bounces, thus decreasing

the Landau damping rate while the seed is still present. We explain this effect in

more detail in the following sections. We note that if we had decreased (increased)

the seed pulse length, the deviation from linear behavior would occur at higher

(lower) seed intensity.

2.5.2 The Coupled-Mode Equations

The measured gain of a seed pulse can differ from the steady-state linear result

due to several linear and nonlinear effects. Linear effects include pulse shape,

with each frequency in a spectrum of incident frequencies being amplified at a

different rate. Nonlinear effects include pump depletion and nonlinear (kinetic)

and nonlocal reductions to the real part of the frequency and the damping rate of
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the plasma wave. In this section, we investigate the effect of the pulse shape on the

measured gain using the coupled-mode equations [BSW98, Str05]. A comparison

of the coupled-mode and OSIRIS results for NIF conditions, isolates linear from

truly nonlinear, kinetic physics, and provides confidence in the PIC method. We

note that Wang et. al. compared OSIRIS against reduced models for lower plasma

temperatures, which are of interest in Raman amplification experiments [WML09].

In the coupled-mode equations, we let (ωi, ~ki) of the carrier waves be real and

work with complex envelopes ai(~x, t). We assume that the envelopes vary slowly

with respect to the carriers, such that |∇ai| � |~kiai| and |∂ai/∂t| � |ωiai|. The

complex envelopes for the action amplitudes aj relate to the physical quantities

by

~Aj = −i
(

2π

ωj

)1/2

aj exp[i(~kj · ~x− ωjt)]k̂ + cc, j = 0, 1 (2.28)

for light waves, with Aj the vector potential, and by

n1 =
ik2

2

(
2nB
meω2

)1/2

a2 exp[i(~k2 · ~x− ω2t)] + cc, (2.29)

for the plasma wave. nB is the spatially varying background electron density, n1

is the perturbation on top of it, and cc denotes complex conjugate.

The couple mode equations are

(
∂

∂t
+ ~vg0 · ∇+ ν0 + iδ0

)
a0 = Ka1a2, (2.30)

(
∂

∂t
+ ~vg1 · ∇+ ν1 + iδ1

)
a1 = −Ka0a

∗
2, (2.31)

(
∂

∂t
+ ~vg2 · ∇+ ν2 + iδ2

)
a2 = −Ka0a

∗
1, (2.32)

where the coupling constant is

K ≡ k2√
ω0ω1ω2

ω2
pe√

8nBme

, (2.33)

νi is the damping rate of mode i, and, for light waves, δ0,1 ≡ (ω2
pe − ω2

0,1 +

c2k2
0,1)/(2ω0,1) is the detuning of the mode from its natural frequency. We neglect
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Figure 2.7: The BSRS reflected light using a flat-top seed with λ1 = 1.644λ0 (a)

and 1.650λ0 (b). The simulation results are plotted with solid magenta lines while

the coupled-mode results are plotted with dash-dotted black lines. The horizontal

dashed red line indicates the maximum seed amplitude with no gain.

inverse bremsstrahlung, which is negligible in the PIC simulations, so ν0 = ν1 = 0.

We assume nu2 is due to Landau damping, ν2 = εi/(∂εr/∂ω2), where εr = Re[ε],

εi = Im[ε], and ε is the kinetic dielectric function. We set the light-wave detuning,

δ0 = δ1 = 0. For the electrostatic mode, we find δ2 using the kinetic equation,

δ2 = −εr/(∂εr/∂ω2). The equations in Sections 2.3.2 and 2.3.3 allow us to take

into account special relativity and PIC effects when we calculate the coefficients.

We can directly compare the results from OSIRIS and the coupled-mode solver

by examining the reflected light. Figure 2.7 shows the reflected light from runs

with I1s = 5 × 10−4I0 using flat-top pulses with λ1 = 1.644λ0 and 1.650λ0. In

Figure 2.8, we compare the measured gain from PIC simulations and the coupled-

mode solver for various wavelengths. For these quasi-linear cases, the simulation

and coupled-mode results are in excellent agreement for both the Gaussian-like

and flat-top pulse runs.
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Figure 2.9: The longitudinal field vs. space at t = 4, 000ω−1
0 when using a flat-top

seed with λ1 = 1.644λ0 (a) and 1.650λ0 (b); the same runs as used in Figure 2.7.

The simulation results are plotted with solid magenta lines while the coupled-mode

results are plotted with dash-dotted black lines.

The agreement between simulation and coupled-mode results is not as good

when we examine the longitudinal field. Figure 2.9 shows the amplitude of the

longitudinal field at t = 4, 000ω−1
0 for the same runs as shown in Figure 2.7. The

disagreement occurs soon after the wave begins growing and is visible at about

x = 300c/ω0. We are not yet sure of the reason for this disagreement. The

disagreement becomes worse as background fluctuations begin to enter the PIC

results after x = 400c/ω0. The disagreement for large x may be due more to the

limitation of the subtraction technique than the physics.

2.6 Inflation After Seed Passage

For short seed pulses, we find significant reflectivity well after the seed propagates

out of the simulation box for pump intensities which do not produce BSRS on

their own. The pump now directly interacts with the Langmuir wave that is still
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present in the plasma after the seed leaves the box. Without trapped particles,

the Langmuir wave is described by its linear dispersion relation, BSRS remains

in the strongly-damped limit, and no observable growth of BSRS occurs for the

pump intensity and the plasma length of interest. However, a small amplitude

wave can evolve into a nonlinear, weakly damped wave after the trapped parti-

cles execute a few bounces [ON65, MO72]. The period for a bounce, or bounce

time, is τB ≡ 2π/ωB, where ωB =
√
eE2k/me is the bounce frequency for deeply

trapped electrons, E2 is the electric field amplitude, and k is the wavenumber of

the wave. As particles are trapped, the damping rate decreases below its linear

Landau damping value to a residual level which depends on details of the problem

[BMG12]. The ponderomotive beating of the pump and the scattered light will

drive the wave to increasing amplitudes. Such a situation will lead to noticeable

reflectivity later in the simulation. The seed pulse must be the cause of any such

reflectivity because, with the pump amplitude we use in our simulations, BSRS

is negligible without a seed. BSRS that occurs after the seed has left the box is

both useful for isolating the process of kinetic inflation [VDB01, VDB02] and is

potentially relevant to situations where BSRS in one region of space or time seeds

BSRS in another one, creating a plasma wave that triggers an inflationary burst

of BSRS.

Figure 2.10 shows the scattered light and plasma wave for times after the seed

leaves the box in a simulation using a Gaussian-like seed pulse with I1s = 8×10−3I0

and λ1 = 1.644λ0. We observe high reflectivity after t = 10, 000ω−1
0 , along with

a corresponding growth in the plasma wave. Figure 2.11 shows lineouts of the

scattered light and longitudinal field at x = 550c/ω0 along with a comparison

with the coupled-mode result. For the longitudinal field from the PIC simulation,

we filter out all modes except those in the range 1.4ω0/c ≤ k ≤ 1.5ω0/c. Notice

the dip in the plasma wave amplitude around t = 4, 500ω−1
0 in Figure Figure 2.11,

corresponding to the drop in the seed’s amplitude, before the plasma wave begins
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Figure 2.10: The scattered light (a) and the plasma wave (b) seen when we

extend the duration of the simulation using a Gaussian-like seed pulse with

I1s = 8× 10−3I0 and λ1 = 1.644λ0. The seed exits the box around t = 5, 000ω−1
0 .
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to grow again.

We verify that kinetic inflation is occurring by tracking particles traveling near

the plasma wave phase velocity and plotting their orbits in the frame of the wave,

as done in Figure 2.12 from t = 5, 000ω−1
0 to t = 7, 000ω−1

0 . The elliptic trajec-

tories are clear indicators of particle trapping. During this time, the distribution

function begins to nonlinearly flatten around the Langmuir wave phase velocity,

as seen in Figure 2.13, which is another indication of particle trapping and an

indication a nonlinear mode with a reduced damping rate. The tail is flattened

over a wider range of velocities, which extends predominately to higher velocities,

during the larger burst of SRS that grows after the seed leaves; for example, as

shown at t = 17, 000ω−1
0 . This larger tail in our simulations is either the popula-

tion of energetic electrons (commonly referred to as “hot electrons”) seen in recent

experiments [DTH10] or a source of electrons that can be further accelerated in

other plasma waves [WFT13]. The production of hot electron tails by SRS is an

active area of research [WFT13, YAR12b], but the small flattening early in time

is sufficient to affect the growth and further onset of SRS we are studying here.

Since particle trapping causes the inflationary scattering at late times, the

inflationary bursts will occur earlier if the seed drives a larger Langmuir wave with

a shorter τB, so that the trapped particles accumulate bounces faster. We can

increase the Langmuir wave amplitude by increasing the intensity, the duration,

or choosing a seed wavelength that produces a higher gain.

We first vary the initial amplitude of the seed. Figure 2.14 shows that the

first burst of reflected light has a maximum around t = 17, 000ω−1
0 when we

use a Gaussian-like seed pulse with I1s = 4 × 10−3I0 and λ1 = 1.644λ0. As we

increase I1s, the burst moves earlier, but the difference in amplitude between the

burst and final seed amplitude also decreases. As a clear demonstration of the

effect of the higher intensity seeds, in Table 2.1 we examine the plasma wave

amplitudes and particle bounce times for the simulations in Figure 2.14. We
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Jüttner distribution for a 2.5keV electron plasma (dash-dotted red). The mea-

sured distributions have a plateaus beginning around γβ = 0.26, indicating par-

ticle trapping.

36



I1s Avg. EPW Amp. Calc. τB Meas. τB

[I0] [E0] [ω−1
0 ] [ω−1

0 ]

4× 10−3 0.020 610 675

8× 10−3 0.033 480 550

0.016 0.049 390 415

0.032 0.071 320 350

Table 2.1: The bounce times of deeply trapped electrons measured in the simu-

lations of Figure 2.14, along with the bounce times calculated using the average

plasma wave field amplitude along the particle’s trajectory.

examine a selection of particles near the plasma wave phase velocity between

x = 350c/ω0 and x = 450c/ω0 at t = 5, 000ω−1
0 . We use the most deeply trapped

particle to determine the time it takes to complete one bounce. To calculate the

theoretical bounce time, we filter out all plasma wave modes except those in the

range 1.4ω0/c ≤ k ≤ 1.5ω0/c and average the field amplitude over the bounce

time along the particle’s track. We then substitute the measured values of the

amplitude and wavenumber (k = 1.44ω0/c) into the formula for the bounce time.

The results are in Table 2.1. The measured bounce times are slightly (∼ 10%)

longer than the simple expression. We believe this discrepancy is due to the fact

that the amplitude of the wave and its phase velocity is changing with time, and

because the calculation uses a linear approximation to the sinusoidal potential

well.

Besides lowering the kinetic damping rate, another well-known effect of particle

trapping is the nonlinear frequency down-shift of the plasma wave [MO72]. As

the plasma wave grows, it will shift downward in frequency because it will trap

more particles. According to the frequency matching condition in Equation 2.1a,

the down-shift in the frequency of the plasma wave should be accompanied by an

up-shift in the frequency of the scattered light. We examine this down-shift using
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Figure 2.14: The reflected light in extended duration simulations using a Gaus-
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a Wigner transform with a Choi filter [Mal99]. The Wigner transform takes a

function of time and computes its representation as a function of both frequency

and time. It maps f(t)→ f(ω, t).

The Wigner transform results for a run with a flat-top seed with I1s = 8 ×
10−3I0 and λ1 = 1.638λ0 are shown in Figure 2.15. The results for an identical

run, except with a different seed wavelength, λ1 = 1.627λ0, are shown in Figure

2.16. In both cases, the seed appears in the Wigner transform scattered light

plots around t = 4500ω−1
0 , when the seed reaches the left side of the box. The

scattered light frequency shifts up while the plasma wave frequency shifts down,

as expected due to trapping.

The inflationary bursts begin growing near the frequency with the highest gain

regardless of the seed’s central frequency, consistent with a harmonic oscillator

that is driven off-resonance. The initial growth is near the central frequency of

the seed in the case with λ1 = 1.638λ0, and in the seed’s lower-frequency tail in

the case with λ1 = 1.627λ0. This observation suggests that the ponderomotive

beating of the seed and the pump simply disturbs the plasma and provides an

initial level for growth, but the subsequent growth occurs at the most unstable

mode.

There are two inflationary bursts in the scattered light plot in Figure 2.15. Ac-

cording to Reference [WFT10], the separation of the bursts in time is ∼ 2π/∆ωNL,

where ∆ωNL is the nonlinear shift of the scattered light and plasma wave from their

non-inflationary resonant frequencies, where peak linear gain occurs. The bursts

result from the pump and nonlinearly shifted reflected light driving a plasma wave

off resonance in a region where the plasma is unperturbed. A harmonic oscilla-

tor driver off resonance drives a plasma wave at the average frequency, which

grows and decays with a period given by ∼ 2π/∆ω. Similar behavior is seen here.

However, we see the bursts occur at different frequencies. The first is roughly

on-resonance while the second has ∆ωNL ≈ 0.002ω0. Averaging the two, we have
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Figure 2.15: The scattered light (a) and plasma wave (b) in a simulation using

a flat-top seed pulse with I1s = 8 × 10−3I0 and λ1 = 1.638λ0. Below them are

the Wigner transforms of the reflected light at x = 0 (c), the plasma wave at

x = 500c/ω0 (d), and the plasma wave at x = 900c/ω0 (e).
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Figure 2.16: The scattered light (a) and plasma wave (b) in a simulation using

a flat-top seed pulse with I1s = 8 × 10−3I0 and λ1 = 1.627λ0. Below them are

the Wigner transforms of the reflected light at x = 0 (c) and the plasma wave at

x = 900c/ω0 (d).
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∆ωavgNL = 0.001ω0, or a separation of about 6, 000ω−1
0 , which is in good agreement

with the actual separation of the two bursts. Figures 2.15 and 2.16 show the seed

wavelength also affects the time required for inflation to set in. We explore this

effect in Sections 2.7 and 2.8.

Increasing the width of the seed drives the plasma wave longer, increasing

its amplitude and causing inflationary bursts to occur earlier. In Figure 2.17,

we vary the duration of a flat-top pulse while keeping the rise and fall time at

200ω−1
0 . The burst of high reflectivity moves earlier and, correspondingly, the

plasma wave reaches a high amplitude quicker as we increase the pulse duration

from 1, 000ω−1
0 to 3, 000ω−1

0 . However, this effect only occurs if we drive near

resonance. If we drive off resonance, then the the large bursts don’t occur, and

the reflectivity oscillates with a period of 2π/∆ωNR, where ∆ωNR is the difference

between the seed frequency and the resonant frequency, at which inflationary SRS

grows. This is completely explained from the response of a harmonic oscillator

driven off resonance, as described above.

2.7 Inflation of the Seed

When the seed pulse width becomes comparable to the bounce time, then the

seed itself can undergo inflation, illustrating the difference between the linear

and inflationary regimes. We perform simulations using a flat-top pulse with a

duration of 6, 000ω−1
0 with I1s = 8×10−3I0 at various wavelengths. The reflectivity

plot in Figure 2.18 demonstrates the variation of the scattered light with time in

the simulations as compared to the steady-state values from linear theory. The

reflectivities seen in the simulations can significantly exceed the linear theory

values, particularly for the seeds with λ1 = 1.638λ0 and 1.644λ0. The runs using

seeds with λ1 = 1.632λ0 and 1.650λ0 reach levels above the linear theory values,

but dip below linear values several times due to driving off resonance. In these four
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Figure 2.18: The reflected light seen in several simulations using a flat-top seed

of duration 6, 000ω−1
0 with I1s = 8× 10−3I0 for various wavelengths. The two top

curves are for seeds with λ1 = 1.638λ0 (solid red) and 1.644λ0 (dashed cyan). The

four lower curves are for seeds with λ1 = 1.627λ0 (dotted blue), 1.632λ0 (dashed
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the left side of the plot. The red vertical dash on the lower right side of the plot

indicates approximately when the seeds end.
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cases, inflationary scattering continues after the seed ends around ω0t = 10, 200.

When we use seeds with λ1 = 1.627λ0 and 1.658λ0, the reflectivity does not reach

significantly above the linear value and drops down when the seed ends, because

inflationary scattering does not occur easily when the seed is far from resonance.

We observe oscillations in the reflectivity in all the cases, except when we

use the seeds with λ1 = 1.638λ0 and 1.644λ0. These oscillations are due to the

scattered light seed driving SRS off resonance [WFT10]. The ponderomotive

beating of the pump and scattered light drives the plasma wave, so if the phase

of the beat drive leads the plasma wave by π/2, the plasma wave no longer grows.

The plasma wave density n1 ∝ − ∂
∂x
E2, while the beat drive Fp ∝ − ∂

∂x
E0E1. The

product,

Rp =

(
∂

∂x
E2

)(
∂

∂x
E0E1

)
, (2.34)

indicates the phase difference between the beat drive and the plasma wave [Win10].

We also note that the change in the pump energy density with time is given by

∂W0

∂t
= − e

8πmeω1k2

Rp. (2.35)

Therefore, if Rp is positive, the waves are in phase, the beat drive is resonantly

driving the plasma wave, and energy is transferred from the pump to the seed and

plasma wave. The inverse applies if Rp is negative.

Figure 2.19 shows the scattered light and the resonance plot for the seed with

λ1 = 1.644λ0. We smooth the result from the resonance diagnostic in x using a

6-point moving average. Notice the dip (valley) in the scattered light amplitude

around x = 1250c/ω0, t = 7, 000ω−1
0 , and the corresponding negative area on the

resonance plot around x = 1500c/ω0. When this drop occurs, the beat drive and

the plasma wave are out of phase, so energy flows from the scattered light wave

to the pump. This shift away from resonance is due to the nonlinear frequency

shift of the plasma wave, explained in Section 2.6. The non-resonant drive is also

responsible for the oscillations we see in the reflectivity plot of Figure 2.18.
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Figure 2.19: The scattered light (a), and the resonance product Rp from Equation

2.34 (b) for the flat-top seed of duration 6, 000ω−1
0 with λ1 = 1.644λ0.
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Figure 2.20 shows the same plots as Figure 2.19, except using a seed with

λ1 = 1.638λ0. This seed continuously drives the scattered light to its maximum

amplitude before dropping off, whereas the one with λ1 = 1.644λ0 drives a lower-

amplitude burst of scattered light before it produces a second burst at much higher

amplitude. Notice that the resonance plot in Figure 2.20 shows that the beat wave

and plasma wave are in resonance until the peak of the scattered light burst. This

resonant drive leads to a burst of scattered light at higher amplitude than in the

λ1 = 1.644λ0 case.

2.8 Inflation of Continuous Seeds

In this section, we extend the duration of the flat-top seed pulse so that it remains

on through the end of the simulation. Based on what we have observed in Sections

2.6 and 2.7, we expect the inflationary behavior we see in these simulations to

depend on the seed intensity and wavelength. We know that there must be an

intensity threshold below which the seed does not drive inflationary behavior in

the simulations (very long bounce times), because we see negligible scattering

without a seed. However, as we saw in Section 2.7, a seed that is intense enough

to drive inflation on resonance may not be intense enough to drive it off resonance.

Furthermore, the use of continuous seeds is related to past work by Winjum et.

al. on scattering off of plasma wave packets [WFT10]. Light scattering off a wave

packet that has undergone a nonlinear frequency shift acts as a seed for BSRS in

the unperturbed background plasma. However, the beat drive frequency is not

a natural mode of the background plasma. This non-resonant beat drive leads

to oscillations in the reflected light with a period 2π/∆ωNL, where ∆ωNL is the

nonlinear frequency shift of the plasma wave, much like the amplitude of a simple

harmonic oscillator varies when driven off resonance. In this section, we examine

the effect of resonant and non-resonant drive in more detail by using continuous

47



x [c/ω
0
]

t
[1
/ω
0
]

Scattered Light Amplitude [E
0
]

0 500 1000 1500
0

5000

10000

15000

20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

Rp [Arbitrary Units]

t
[1
/ω

0
]

10000

8000

6000

4000

2000

0

x [c/ω0]

150010005000

4 10
-9

2 10
-9

0

-2 10
-9

-4 10
-9

(b)

Figure 2.20: The scattered light (a), and the resonance product Rp from Equation

2.34 (b) for the flat-top seed of duration 6, 000ω−1
0 with λ1 = 1.638λ0.
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Figure 2.21: The time-average measured gain seen in simulations as we vary the
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(solid red). For comparison, we use horizontal dashes on the left side of the plot

to mark the steady-state gain from linear relativistic PIC theory.

seeds at different wavelengths and intensities, and examining the results using

plots of the reflected light.

Figure 2.21 shows the time-average measured gain for various seed intensities

with λ1 = 1.644λ0 and 1.658λ0. When we use a seed with λ1 = 1.644λ0, an

intensity of 1.25 × 10−4I0 (smallest value shown) is enough to cause inflation.

However, when we use a seed with λ1 = 1.658λ0, we do not see inflation until

the seed intensity reaches 8 × 10−3I0. The measured gain at both wavelengths

decreases with seed intensity due to pump depletion once inflation sets in.

In order to understand the results with a 1.658λ0 seed, we first discuss trapping
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effects on the SRS gain spectrum via Equation 2.10. Trapping nonlinearity leads

to a reduction in χi and thus Landau damping, as well as a down-shift in the

natural plasma wave frequency. This latter effect decreases the resonant scattered

wavelength, where 1+χr = 0. In electrostatic simulations with an external driver,

Fahlen showed behavior consistent with this picture [Fah10]. For k2λDe ∼ 0.3 and

a driver frequency above the natural frequency, the plasma response is even smaller

than the linear response. However, when the driver is below the natural frequency,

a larger response is obtained.

Trapping, therefore, makes the gain spectrum narrower and peaked at a smaller

wavelength. The gain increases for wavelengths near resonance. However, for

wavelengths far from resonance, the gain does not increase, and, in fact, it scales

as χi, so that it vanishes as χi → 0. We can see this effect clearly by examining

Equation 2.10. Since the seed is far from resonance, 1 +χr � χi, so g0 ∝ χi/(1 +

χr)
2. This vanishing gain is clear in Figure 2.22a, where the gain approaches

zero in steady state for the continuous 1.658λ0 seed with I1s/I0 = 4 × 10−3.

Thus, inflation is not possible at non-resonant wavelengths. For hot, low-density

plasmas, there is no resonant wavelength, and all phase-matched plasma waves

satisfy the loss of resonance condition k2λDe > 0.53 [RR01]. Inflation cannot

occur in such a plasma at any scattered wavelength.

The red curve in Figure 2.21 is for a seed wavelength that is non-resonant and

larger than the linear resonance. The reduction of χi due to trapping cannot lead

to inflation at this wavelength, and the nonlinear frequency shift will move the

resonance farther away. Both effects conspire to reduce the SRS gain below its

linear value, which is what we observe for the lowest seed intensities. The number

of bounce orbits completed by resonant electrons [SWL07, SWR12], based on the

plasma wave amplitude computed from linear theory, is > 4. It is thus consistent

for trapping nonlinearity to occur and reduce the SRS gain. The increase in gain

for I1s/I0 = 8× 10−3, as shown in Figure 2.22b, first develops at linear resonance,
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1.644λ0, not at the seed value of 1.658λ0, then shifts down in wavelength with

time to finish around 1.638λ0. This progression is similar to the one in Figure

2.16. We performed a similar run using a flat-top seed of duration 1, 000ω−1
0 with a

central wavelength of 1.658λ0 and I1s/I0 = 4×10−3 and observed inflation similar

to that in Figure 2.22b, but without the oscillations, which raises the possibility

that continuous seeds can suppress inflation.

There are oscillations in Figure 2.22b, which occur because the seed is driv-

ing SRS off resonance. As we discussed earlier, this non-resonant drive leads to

oscillations in the reflected light with a period of 2π/∆ωNR, where ∆ωNR is the

difference between the seed frequency and the resonant frequency, at which infla-

tionary SRS grows. Equivalently, the ∆ωNR is the difference between the seeded

beat drive frequency and the frequency of the plasma wave packet. When we use

a seed with I1s/I0 = 1.024, the oscillations are more prominent and faster, and we

see no amplification, as seen in Figure 2.22c. The increased oscillation frequency

is due to the higher amplitude plasma wave undergoing a greater frequency shift.

We also see a beat wave pattern covering many oscillations, which is caused by

the nonlinear frequency shift of the plasma wave packet, as described earlier in

this section.

Figure 2.23 shows the reflected light in simulations using a (low-, moderate-

, high-) intensity seed with I1s/I0 = (1.25 × 10−4, 8 × 10−3, 1.024), but λ1 =

1.644λ0. When we use the low-intensity seed, we see the reflected light increase

monotonically until it saturates near the end of the simulation. Unlike when we

used λ1 = 1.658λ0, this seed is near resonance, so 1 + χr << χi, and g0 ∝ 1/χi.

Therefore, particle trapping increases the gain, as explained earlier in the Chapter.

Oscillations begin to appear again in the simulation with the moderate-intensity

seed, which indicates that the seed is slightly off resonance, as we expect to occur

as the plasma wave undergoes a nonlinear frequency shift. These oscillations once

again become more prominent when we use the high-intensity seed, and we see a
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Figure 2.22: The reflected light in simulations using a continuous seed with

λ1 = 1.658λ0 (solid red in Figure 2.21). I1s/I0 = 4 × 10−3 (a), 8 × 10−3 (b),

and 1.024I0 (c). The horizontal dash-dotted line indicates the amplitude of the
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Figure 2.23: The reflected light in simulations using a continuous seed with

λ1 = 1.644λ0 (dashed blue in Figure 2.21). I1s/I0 = 1.25× 10−4 (a), 8× 10−3 (b),

and 1.024 (c). The horizontal dash-dotted line indicates the amplitude of the seed

(unamplified) reflected light.

beat wave pattern appear again.

2.9 Conclusions and Future Research

Using 1D OSIRIS PIC simulations, we have studied BSRS of a well-defined seed

pulse with variable shape, intensity, and wavelength. We found that backward

Raman amplification of a seed scattered light pulse can remain in the strongly

damped convective regime. That is, for a sufficiently weak seed, kinetic infla-

tion does not occur. Peak seed amplification occurs near the peak of the linear

gain spectrum when we take into account special relativity and PIC effects such
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as finite particle size, finite-difference operators, and field smoothing. Detailed

comparisons with linear coupled-mode predictions for envelope dynamics show

excellent agreement. If the seed pulse is intense enough, the driven plasma wave

traps particles, thereby lowering the Landau damping after a time on the order

of a bounce period. The plasma wave continues to scatter light and grows after

the seed leaves the system, leading to kinetic inflation later in the simulation.

When we extend the seed in time, kinetic inflation occurs while the seed is still

present, and we measure dynamic seed amplification, which significantly exceeds

the linear gain rate at times, and can also turn negative at other times (i.e., it

transfers energy into the pump). When we use a continuous seed, we find that the

onset of inflation depends strongly on the seed wavelength. When the continuous

seed wavelength is near the peak of the gain curve, we see kinetic inflation occur

with very low seed amplitudes, while higher seed amplitudes are necessary to drive

kinetic inflation using a non-resonant seed.

Connecting kinetic inflation with experiments involving lasers with many hot

spots or speckles is still at an early stage. Past research has demonstrated that

hot electrons, beam acoustic modes, and side-scattered light can couple hot-spots

transversely in 2D simulations, leading to higher BSRS from each hot spot than

one would see without coupling [BWL06, YAR12a]. Our results suggest that

we can expect to see inflationary scattering from the lower-intensity parts of the

beam interacting with flattened (non-Maxwellian) distributions or plasma waves

generated in more intense parts, or increased scattered light from a few speckles

triggering a “chain reaction” of downstream inflation. If this chain reaction occurs,

most of the Raman in underdense laser-produced plasmas, such as ICF targets,

will be inflationary. PIC codes can be used to model hundreds of speckles, but to

simulate large volumes across a hohlraum effectively requires the use of envelope

codes (such as pF3D), for which reduced models of kinetic nonlinearity are being

pursued by several groups [BSG09, YF09, LCW07].
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An important factor we have not explored is de-trapping mechanisms. All

of our simulations in this Chapter are 1D and “collisionless,” which means that

plasma waves easily trap electrons, and trapped electrons cannot leave sideways

or be scattered out of the plasma wave. Since particle trapping is necessary for

inflationary scattering, any de-trapping mechanisms make it less likely to occur

and impose a threshold amplitude for inflation (the threshold in the present work

is set by the finite amplitude and duration of the seed). In particular, collisions

can kick electrons out of a plasma wave’s potential well, and electrons can traverse

the plasma wave in less than one bounce period in higher dimensions [FWG11,

SWR12]. Future research in this area should explore the effect of these de-trapping

processes on inflation, and validate reduced descriptions.
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CHAPTER 3

Studies of Particle Wake Potentials in Plasmas

3.1 Introduction

The stopping power of an energetic electron in a plasma is the result of interactions

(collisions) between the moving electron and background plasma electrons. These

interactions can also lead to the excitation of coherent (Čerenkov) wakes. Colli-

sions affect the stopping power in a plasma when particles are closer than distances

smaller than v/ωpe where v is the test particles speed and ωpe is the plasma fre-

quency. To accurately model the collisions, interactions down to distances smaller

than the classical distance of closest approach or the de Broglie wavelength (which

ever is larger) need to be resolved. In the standard PIC method [Daw83, BL85],

the cell (particle) size is on the order of the Debye length. Therefore, the standard

PIC method cannot be used to model collisions from first principles. The particle-

particle particle-mesh (PPPM) method [HGE73] is useful for Coulomb (electro-

static) interactions. It models long range interactions using the standard PIC

method and interactions within the Debye length by summing up the Coulomb

forces from each particle for close encounters. If one simulation electron is used

per real electron, then the PPPM method can be used to study Coulomb collisions

from first principles. If interactions at scales less than the de Broglie wavelength

are important, then quantum mechanics needs to be included.

In the absence of quantum effects, the PIC method can also be used to study

collisions from first principles if the cell (particle) size is made sufficiently small
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and one simulation electron is used for each real electron. The cell (particle)

size can be gradually reduced to see if the results converge. While the PPPM

method may be more efficient that the PIC method (when the interactions with

very small impact parameters are important) for studying Coulomb collisions, it

has limitations for studying the stopping of relativistic electrons.

When an electron moves relativistically, its own self-fields are no longer de-

scribed by electrostatics, but are electromagnetic in character. However, if it is

moving towards a stationary electron it feels a purely electrostatic force (if the im-

pact parameter is large enough then the electron remains nearly stationary). For

the general case, where the background electrons are not stationary (the plasma

is hot) and where small impact parameters matter (so the background electrons

are significantly deflected), then one cannot use electrostatic fields to model the

interactions between these particles. In such cases, the PPPM method cannot

be used in its current electrostatic form. For relativistic interactions and small

impact parameters, quantum electrodynamic (QED) effects need to be included.

Later in this dissertation, we will investigate the use of electromagnetic (full

or what we call quasi-static) PIC codes with small cell (particle) sizes to study

the stopping of relativistic electrons in PIC codes. In this regime, the wakefield

generated by the relativistic electron is very important, and the wakefields of

two or more electrons can potentially interact coherently to greatly increase the

stopping power of a “beam” of relativistic electrons.

To set the stage for these studies, in this Chapter we will compare results from

standard PIC and PIC with small cell sizes with those from a PPPM code for

purely electrostatic interactions. We will examine the details of the wake using

the subtraction technique and compare the simulation results against theory.
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3.2 PIC & PPPM Methods

The PIC method [Daw83, BL85] is simple in concept. The point of the method is

to accurately model collective behavior of plasmas while achieving a speed-up over

the traditional molecular dynamics algorithm by smoothing out interactions that

occur inside a grid spacing (often a Debye length). We achieve this smoothing

and speed-up by solving for the fields on a spatial grid rather than solving for

the force on each particle from all the other particles directly. Since PIC uses a

grid, we often say that the particles have a finite size. The particle size and the

grid size can be viewed separately, which leads to the view that the mathematical

model for PIC is the interaction of finite-size particles. Typically, the grid spacing

is on the order of a Debye length, so interactions on smaller spatial scales are

unresolved. However, the grid spacing can be smaller [DMD94].

Each iteration in the PIC method contains four steps. First, given the positions

and velocities of the particles in the system, interpolate the charge and current

to the grid points. Second, solve for the electric and magnetic fields on the grid.

Third, interpolate to find the values of the electric and magnetic fields at the

particle positions. Finally, push the particles using the Lorentz force law. The

process is demonstrated visually in Figure 3.1. This process gives us an O(N)

algorithm, where N is the number of particles, as opposed to the O(N2) algorithm

of molecular dynamics.

The PPPM method [HGE73] is designed to maintain computational efficiency

and take into account pair-wise interactions between particles. It calculates the

smooth long-range forces using a grid and the PIC method for computational

efficiency. It then computes pair-wise interactions within a cut-off sphere specified

by the user. Computing the pair-wise interactions typically makes the PPPM

method more computationally intensive than “standard” PIC. The pair-wise forces

from the PIC method need to be subtracted first. We have again demonstrated
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Figure 3.1: The cycles used in the PIC the PPPM methods. Conceptually, the

two cycles are identical except for accounting for pair-wise interactions (red box)

in the PPPM method.

the steps visually in Figure 3.1. The PPPM method has the advantage over

PIC of more accurately simulating processes in which Coulomb collisions play an

important role. However, as noted earlier, the PPPM method has not yet been

extended to fully electromagnetic problems.

Collisions in plasmas are commonly described using a Fokker-Planck operator,

which implicitly assumes that large-angle scattering events are not important.

The velocity drag and diffusion coefficients are then calculated using the Landau-

Boltzmann or Leanard-Balescu approaches. The relationship between these two

approaches is well understood and it can be shown that the Landau-Boltzmann

can be recovered from the Leanard-Balescu under certain assumptions. In the

Leanard-Balescu approach, the “wakes” made by the test charge are central.

Therefore, it is important to perform a detailed study of the wakes made by

test charges for the PIC and PPPM methods.
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3.3 Collisionless Kinetic Theory of Particle Wakes

We derive the time-dependent potential of a particle in a plasma following Decyk

[Dec87]. The potential generated by a charge density ρ in a plasma (in CGS units)

is

φ(~k, ω) =
4πρ(~k, ω)

k2ε(~k, ω)
, (3.1)

where ε(~k, ω) is the collisionless plasma dielectric from Vlasov (henceforth col-

lisionless) kinetic theory. If we assume an electron plasma with a Maxwellian

velocity distribution and immobile ions, the dielectric is given by

ε(~k, ω) = 1− ω2
pe

2k2v2
th

Z ′
(

ω√
2kvth

)
, (3.2)

where vth =
√
Te/me is the electron thermal speed and Z ′(s) = dZ/ds. Z ′(s)

must be calculated numerically, and is typically found by first computing Z(s),

which is known as the plasma dispersion function. The two are related by the

differential equation, Z ′(s) + 2sZ(s) + 2 = 0. Z(s) is related to the error function

by

Z(s) = i
√
πe−s

2

[1 + erf(is)]. (3.3)

Suppose we insert a test particle with charge qt at ~x0 with velocity ~v at t = 0.

Then, the charge density takes the form,

ρ(~x, t) = qtδ(~x− ~x0 − ~vt), t > 0 (3.4)

in real space and, performing a Fourier transform in position and a Laplace trans-

form in time, we obtain the test charge in transform space,

ρ(~k, ω) =
qte
−i~k·~x0

i(~k · ~v − ω)
. (3.5)

Therefore,

φ(~k, ω) =
4πqte

−i~k·~x0

ik2(~k · ~v − ω)ε(~k, ω)
. (3.6)
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We need φ(~x, t), so we first invert the Laplace transform, which is defined as

φ(~k, t) =
4πqte

−i~k·~x0

k2

∫ ∞−ic

−∞−ic

dωe−iωt

2πi(~k · ~v − ω)ε(~k, ω)
, t > 0. (3.7)

The integrand has poles at ω = ~k · ~v and ω = ωj(~k), where ωj(~k) are the roots of

ε(~k, ω) = 0. Therefore, we can apply Cauchy’s residue theorem, which yields,

φ(~k, t) =
4πqte

−i~k·(~x0+~vt)

k2ε(~k,~k · ~v)
−
∑

j

4πqte
−i~k·~x0e−iωjt

k2(~k · ~v − ωj)∂ε(
~k,ω)
∂ω
|ω=ωj

, t > 0. (3.8)

We next apply the inverse Fourier transform and write φ(~x, t) = φD(~x, t)+φC(~x, t),

where

φD(~x, t) = 4πqt

∫ ∞

−∞

d~k

(2π)n
ei
~k·(~x−~x0−~vt)

k2ε(~k,~k · ~v)
, t > 0 (3.9)

and

φC(~x, t) = −4πqt
∑

j

∫ ∞

−∞

d~k

(2π)n
ei
~k·(~x−~x0)e−iωjt

k2(~k · ~v − ωj)∂ε(
~k,ω)
∂ω
|ω=ωj

, t > 0, (3.10)

where n is the spatial dimensionality. Decyk calls φD(~x, t) the Debye cloud term

and φC(~x, t) the Čerenkov term. The φD term is the wake while the φC term

ensures the correct initial and boundary conditions. We shall see that we usually

only need to keep the least damped root of ε(~k, ω), even though φ(~x, t) contains

a sum over all roots.

3.4 The Subtraction Technique

Fluctuations occur in real and simulated plasmas due to discreteness effects and

are not part of the smooth kinetic theory description. If the temperature of the

plasma is high enough, fluctuations can be large compared to the wake of a single

particle. Particle simulations such as PIC and PPPM include fluctuations, so we

must remove them from the data during analysis. In PIC simulations, despite

the use of finite-size particles, these fluctuations can be enhanced when a small

number of particles are used. The subtraction technique [Dec87] removes the
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Figure 3.2: The electrostatic potential (units e/λDe) from the BEPS simulation

of Section 3.5, with a test charge and an additional neutralizing charge (left),

one without the test charge and its neutralizing charge but otherwise identical

(center), and the difference of the two (right). The test charge is at ~x = (128λDe,

128λDe, 214λDe) at the time shown.

uncorrelated background through the use of two simulations. The first simulation

includes the small perturbation, such as a test charge, while the second does not.

The simulations are otherwise identical. Subtracting the second from the first

reveals the response to the perturbation, as shown in Figure 3.2. Decyk used this

method to show that, even when a few simulation particles are used, the wakes

initially created by charges in PIC codes agree with the collisionless kinetic theory

calculations.
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3.5 PIC Results and Comparison with Collisionless Ki-

netic Theory

We first study particle wakes by performing traditional PIC simulations using

the 3D periodic electrostatic code BEPS [DN04]. BEPS solves for the potential

and the electric fields in the plasma using FFTs, supports linear and quadratic

particle shapes, and offers a relativistic and non-relativistic particle pusher. We

use quadratic particle shapes and a non-relativistic particle pusher in all BEPS

simulations used in this Chapter.

BEPS uses a normalized set of units. Time is normalized to the plasma fre-

quency and distance is normalized to the cell width, which can be easily related to

the Debye length. Charge is normalized to the absolute value of the charge on an

electron and mass is normalized to the mass of an electron. Each simulation elec-

tron has the correct charge to mass ratio, e/me, but it typically has a charge and

mass that are much larger than a real electron. Therefore, each simulation corre-

sponds to a family of cases (different densities) in which collisionless phenomena

that only depend on q/m, qn0, and mn0, are important. However, collisional or

discrete particle effects that depend on q2/m or n0λ
3
D will vary within the family

of simulations. Since we are interested in both collisional and collisionless effects,

we give neλ
3
De and ∆/λDe for each simulation.

Figure 3.3 shows the results of the BEPS simulation. The box has dimensions

of 256×256×512 cells, where the width of a cell and the particle size are a Debye

length. We use 64 negatively-charged background particles per cell (neλ
3
De = 64),

each carrying an electron charge, which are neutralized by a smooth positive

background. The test particle also carries an electron charge and starts at ~x0 =

(128λDe, 128λDe, 64λDe) with fixed ~v = 3vthẑ. A neutralizing charge is placed at

~x1 = (254λDe, 254λDe, 510λDe) and held fixed. We can see the contribution of

the Čerenkov term centralized around ~x0, similar to the ripples on the surface of
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a pond spreading out from the point where a pebble enters the water. The waves

immediately following the test charge as it moves across the box come from the

Debye term. We can see the effect of the Debye term better in Figure 3.4, in

which we vary the speed of the test charge while keeping all other parameters the

same.

We calculate the theoretical potentials, φC and φD, on a mesh with the same

dimensions as the box. The test charge at its initial position, the test charge

at the current position, and the neutralizing charge are deposited to separate

meshes using second-order B-splines, just as charges are deposited to the mesh in

BEPS. We performed a Fast Fourier Transform on the deposited charge, which we

used in Equation 3.8. The roots of the plasma dielectric (3.2) were found using

the continuous fraction method of Derfler and Simonen [DS69]. As mentioned

earlier, we found that we only needed to keep the least damped root. Finally, we

transformed the potential to real space. Figure 3.5 shows the result along with

the result from the simulation.

The direct comparison of the simulation results with theory in Figure 3.5 yields

decent results, but we can do better if we take into account two known aspects of

PIC codes. The first effect is the finite size of the plasma particles.

qδ(~x)→ qS(~x), (3.11)

where S(~x) is known as the “shape factor.” The shape factor is also viewed as the

interpolating function, and needs to be included in the plasma dispersion relation

[BL85]. Transforming to Fourier space,

qS(~x)→ qS(~k), (3.12)

where, for second order B-splines,

S(~k) =
∏

i

(
sin(ki∆/2)

ki∆/2

)3

, (3.13)
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Figure 3.3: The evolution of the electrostatic potential (e/λDe) in a plane con-

taining the path of the test particle in the BEPS simulation of Section 3.5. The

z position of the test charge is 91λDe and 334λDe in the left and right plots,

respectively.
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Figure 3.4: The evolution of the electrostatic potential (e/λDe) in a plane con-

taining the path of the test particle in the BEPS simulation of Section 3.5 with

various test particle speeds. The test particle speed is 3vth and 10vth and its z

position is 154λDe and 364λDe in the left and right plots, respectively.
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with speed 3vth in the BEPS simulation of Section 3.5 (solid) and as predicted

by collisionless kinetic theory (dotted) at 20ω−1
pe . The vertical line indicates the

position of the test charge.
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where ∆ is the width of a cell and i = x, y, z. Second, the force on a particle

in a PIC code depends on both its distance from other particles and the grid.

The dependence of the force on a particle’s distance from the grid can lead to a

self-heating instability when the cell size is too large. PIC codes which solve for

the fields in Fourier space, such as BEPS, can mitigate this effect by filtering the

charge density and the force in Fourier space. We need to apply this filter function

after transforming the charge to Fourier space in the theoretical calculation. BEPS

uses a Gaussian filter,

F (~k) = e−(k∆a)2/2, (3.14)

where a = 0.866667 in our simulations. The filter and shape functions only affect

the plasma frequency in the dispersion relation, so that

ω2
pe → ω2

peS
2(~k)F 2(~k), (3.15)

where S(~k) and F (~k) are squared because they are applied to both the charge

density and the force. We note that S(~k)F (~k) can be viewed as an overall shape

function. After taking these two factors into account in the theoretical calculation,

the agreement with simulation becomes much better, as seen in Figure 3.6. At

late times, we start seeing ripples in the simulation result, which arise due to

discreteness effects.

3.6 PPPM Results and Comparison with Traditional PIC

The PPPM code ddcMD [GBB12, RGC09], like BEPS, is 3D, periodic, electro-

static, and non-relativistic. The code offers the choice of several different pseudo-

potentials, but we use a pure Coulomb potential in these simulations.

The PPPM method is much more computationally expensive than traditional

PIC because it requires much shorter time-steps because it also includes N2 cal-

culations to accurately resolve the pair-wise interactions that are unresolved in
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Figure 3.6: The electrostatic potential along the trajectory of the test particle

with speed 3vth at various times in the BEPS simulation of Section 3.5 (solid)

and as predicted by collisionless kinetic theory taking into account finite particle

size and Fourier space smoothing (dash-dotted). The vertical lines indicate the

position of the test charge.
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traditional PIC. Therefore, the ddcMD simulations are much smaller and much

shorter than the BEPS simulation in the previous section. The box is 3.85λDe on

each side and neλ
3
De = 36, 700, so the plasma is weakly coupled, and we should

expect PIC simulations to accurately describe the wake even for cell sizes ∼ λDe.

As in the BEPS simulation, the background electrons are neutralized by a smooth

positive background. The test particle is an electron starting at ~x0 = (1.925λDe,

1.925λDe, 0.105λDe) and again moving in the ẑ direction with a fixed speed of

3vth, but we do not include a neutralizing charge this time. In Section 3.5, the

neutralizing charge served to prevent an overall difference in potential between the

two simulations involved in the subtraction technique. However, by subtracting

the free-space potential of the test charge in this Section, as discussed below, we

account for this difference. We choose to use 250,000 time-steps per ω−1
pe to make

sure we are accurately resolving collisions with small impact parameters, b� λDe.

Figure 3.7 shows the evolution of the projectile wake with time. In addition to

subtracting out the background noise, we subtract the free-space potential of the

test particle, which would otherwise overwhelm any interesting features we wish to

observe on these small spatial and temporal scales. Notice what look like dipoles

appearing at later times, which we shall suggestively call “collisional bubbles.”

The collisional bubbles appear because, when two particles collide, a small change

in their initial positions can result in a large change in their final positions, as

illustrated in Figure 3.8. We are observing the effect of path differences using the

subtraction technique, and collisions are simply amplifying these path differences.

By t=1.1ω−1
pe , the path differences between the two runs are so great that we have

difficulty seeing the wake.

We now compare the results of a BEPS simulation with the ddcMD simulation.

The BEPS simulation has 128× 128× 128 cells and one background particle per

cell so that the number of particles in both simulations is the same. The charge

of the background particle is neutralized by a smooth positive background as in
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Figure 3.7: The evolution of the electrostatic potential (e/λDe) in a plane con-

taining the path of the test particle in a ddcMD simulation. The z position of

the test charge is 0.105λDe, 0.705λDe, 1.785λDe, and 3.405λDe in the top left, top

right, bottom left, and bottom right plots, respectively.
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Figure 3.8: Collisions involving two electrons each, illustrating that a small change

of the electron starting positions leads to a large change in their positions at later

times. The electrons in the collision shown by the solid lines start at (-10, 0.1)

and (10, -0.1) while those in the collision shown by the dotted lines start at (-10,

0.2) and (10, -0.2).
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Figure 3.9: The evolution of the electrostatic potential (e/λDe) in a plane contain-

ing the path of the test particle in a BEPS simulation using the same parameters

as the ddcMD simualtion in Figure 3.7. The z position of the test charge is

0.705λDe in the left plot and 3.405λDe in the right plot.

the previous BEPS simulation. The box has dimensions of 3.85λDe per side, like

the ddcMD simulation, and the test charge is placed at the same initial position

as in the ddcMD simulation, again with ~v = 3vthẑ. The time-step is 0.05ω−1
pe . The

result is in Figure 3.9, where we can see that the wake evolves almost identically to

the wake in the ddcMD simulation of Figure 3.7, except that the BEPS simulation

has no collisional bubbles.

3.7 Fine-Mesh PIC

Given a fine enough mesh and a small enough time-step, PIC should be able to

reproduce the results of PPPM simulations. The necessary mesh size depends

on the importance of impact parameters smaller than the particle (cell) size. We

begin with a basic attempt to resolve collisions in a BEPS simulation. Figure

3.10 shows the results of a BEPS simulation using 2048 cells and 10λDe per side

with neλ
3
De = 56, 623, yielding approximately 152 cells per particle. Test particle

starts at (5λDe, 5λDe, 2.5λDe) with ~v = 3vthẑ. A neutralizing charge is placed at
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Figure 3.10: The evolution of the electrostatic potential (e/λDe) in a plane con-

taining the path of the test particle in a BEPS simulation with approximately 152

cells per particle. The z position of the test charge is 3.94λDe in the left plot and

7.42λDe in the right plot.

(10λDe, 10λDe, 10λDe) and held fixed. The time-step is 10−4ω−1
pe . Once again, we

subtract the free-space potential of the test charge when analyzing the results. If

we look closely, we can see very small bubbles in the plots, but nothing as large as

we see in the ddcMD simulations. We might see better results with a finer mesh

and smaller time-step. We also note that we did not use a diagnostic in ddcMD to

verify that binary collisions rather than another effect was causing the collisional

bubbles. Such a diagnostic would determine the validity of our hypothesis that a

lack of resolution in our PIC simulations is causing the discrepancy between our

PIC and ddcMD results.

Figure 3.11 shows results of a BEPS simulation with parameters identical to

the ddcMD simulation of Section 3.6. We loaded the initial particle positions from

the ddcMD simulation into BEPS in an attempt to replicate the results. We now

use 1024 cells and 3.85λDe per side with neλ
3
De = 36, 700, giving us 512 cells per

particle, along with a time-step of 2 × 10−5ω−1
pe , and the test charge once again

starts at (1.925λDe, 1.925λDe, 0.105λDe) with ~v = 3vthẑ. Many more bubbles are
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Figure 3.11: The evolution of the electrostatic potential (e/λDe) in a plane contain-

ing the path of the test particle in a BEPS simulation with 512 cells per particle.

The z position of the test charge is 0.705λDe in the left plot and 3.405λDe in the

right plot.

now visible, but there are still none as large as we were seeing in the ddcMD

simulation. We may need yet a finer mesh.

3.8 Conclusions

We have shown that traditional electrostatic PIC simulations produce single parti-

cle wakes that agree with the theoretical predictions of collisionless kinetic theory

in three dimensions even when few particles are used. We have included finite

size particle effects into the theory, including k-space smoothing. The simulation

wakes are determined using the subtraction technique. We also found that the

details of the subtracted wake from PPPM and PIC with fine meshes (smaller

particles) differ from those from traditional PIC simulations. The subtracted

wake includes small bubbles which look like tiny dipoles, which are believed to

arise when the trajectory of plasma particles change due to a close encounter.

These differences do not necessarily affect the local electric field at the test par-

75



ticle, which is responsible for the stopping power; and this is studied in the next

Chapter.

Directions for future work include understanding in detail the trajectories of

particles for traditional PIC, fine cell PIC, and PPPM. It will also be interesting

to compare the wakes predicted by electrostatic interactions with those to be

described later for relativistic electrons including the full Maxwell equations. An

intermediate step would be to study the wakes using a Darwin field solver [KR71,

NL76, BL85]. This includes the magnetic fields of moving charges as well. The

Darwin fields do not include retarded time effects, so a PPPM type model could

be developed for the Darwin fields. Although we study the stopping power of

electrons in later Chapters, much can be learned by studying the single particle

wakes for different resolution using the PIC codes.

76



CHAPTER 4

Single-Particle Stopping Power

4.1 Introduction

There has been much discussion about the stopping power formulas for relativistic

electrons over the past several decades. The commonly accepted formula for

relativistic electron stopping power is one based on quantum electrodynamics

(QED). In this chapter, we cover several of the well-known formulas for both ion

and electron stopping power for fast particles, discuss how these are altered by

relativistic effects, and summarize how QED effects are included. We compare

the predictions of these expressions against simulations, which include some or all

of the physics in some cases.

4.2 Stopping Power Concepts

Stopping power is an N-body problem. A particle (test charge projectile) moving

through a plasma slows down by interacting with many particles in the plasma.

However, we do not have any analytic methods to directly calculate all these

interactions, so we simplify the problem by breaking it into two pieces. The

two contributing factors to the stopping power are the wake or plasma wave the

charge produces as it moves through the plasma, (dE/ds)p.w., and discrete binary

collisions as it encounters particles with smaller impact parameters, (dE/ds)c.

The test charge is stopped through an axial electric field at the location of the
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particle. One can calculate an electric field by using a moving point particle as

a source in the Vlasov-Poisson system of equations. The solution to the Vlasov-

Poisson system for a moving test charge with a speed, vt, much larger than vth is

a plasma wave wake with a phase velocity, vt. The wake is very weakly damped

and its amplitude on-axis diverges if the integral in k-space (see Equation 3.9) is

not cut off at large k. The cutoff at large k corresponds to limiting interactions

at very short distances or impact parameters. At such distances, the Vlasov

(“collisionless”) description is not appropriate and discreteness effects need to be

included. These effects are generally handled realizing that very small impact

parameters are not consistent with stopping power that is a differential, dE/ds,
since a particle can be stopped in one collision or it can be limited from quantum

considerations. Therefore, (dE/ds)p.w. comes from evaluating the electric field

from the wake at the location of the particle where the k-space integral is limited

to kmax.

Collisions contribute to the stopping power via the continuous exchange of

energy in binary interactions as the particle passes near background particles.

Therefore, (dE/ds)c is evaluated from binary collisions of impact parameters be-

tween bmax ∼ 1/kmax and bmin. To derive the correct answer, we assume that

both the wake and collisions contribute to the stopping power, and we add the

two together,
dE
ds

=

(
dE
ds

)

p.w.

+

(
dE
ds

)

c

. (4.1)

We note that the classical (dE/ds)p.w. needs to also be the same as form as (dE/ds)c
for impact parameters between a cutoff bc and bmax, where bc corresponds to the

range of the dressed potential of the moving test charge.

Conceptually, people sometimes find use in assuming that either the wake or

collisions alone contribute to the stopping power of energetic particles, and intro-

duce a minimum or maximum distance cut-off to produce a finite result. When

examining the wake contribution alone, we need a minimum distance cut-off. Dif-
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fering arguments have been made regarding the logarithmic divergence of the wake

on the axis, both at the location of the test particle and behind it. The value of

the wake at the test particle gives rise to the stopping power. Various arguments

for what limits the unphysical divergence on-axis have been proposed. Some are

based on classical physics, such as interparticle spacing and breakdown of linear

theory, while others are based on quantum physics, such as the uncertainty prin-

ciple. The collisional component is necessary to account for discrete interactions

with the background plasma particles at small distances, where the Vlasov wake

is questionable. The wake is the result of collective oscillations set up from the

deflection of plasma electrons by the test charge (collisions). These small-scale

interactions often require accounting for quantum mechanics, which lead to the

Bethe and QED formulas for stopping power. This collisional description does not

take into account the screening of intermediate particles, leading to the divergence

when we use it to account for collisions with plasma particles outside a screening

distance. In most derivations, the collisional and wake descriptions combine in

an elegant fashion, and eliminate the divergences, because both have logarithmic

divergences. The wake description accounts for the screening at large distances,

and the collisional description accounts for the discrete particle physics missing

from the wake description.

The question inevitably arises about the distance from the test charge at which

the transition between where the particle wake or the collisional stopping dom-

inates. We will see in Section 4.5 that we do not need to determine a precise

transition. We assume the transition exists, and it usually disappears when we

add the results of the two derivations together, because they both have logarithmic

divergences. We note that another way to study the relative contribution between

the Vlasov wake and collisions is to look behind the particle and see how energy

is left in the plasma. If the energy is in the form of collective or average drifts,

then the wake dominates. Or, if the energy is in the random thermal motion, then
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collisions have dominated.

The final stopping power formula for a test charge projectile qt in an electron

plasma typically takes the form

dE
ds

= −ω
2
peq

2
t

v2
t

ln

(
bmax
bmin

)
, (4.2)

with additional corrections in some formulations, such as QED. It is also conve-

nient at times to use the variable Ld, where the d means “drag,” such that

dE
ds

= −ω
2
peq

2
t

v2
t

Ld. (4.3)

The additional corrections can usually be included in Ld. The use of b in the loga-

rithm comes from an integration over impact parameter, as will be demonstrated

in Section 4.4. bmax and bmin are also associated with the screening distance and

with the large scattering angle the cut-offs (i.e. distance of closest approach with

a plasma particle).

Many textbooks [Che12, KT73] and the NRL Plasma Formulary [HNU11]

simply note that bmax must be a screening distance and use the Debye length.

The Debye length may suffice for an introduction to stopping power in plasmas.

However, for energetic (non-thermal) test charges, the Debye length is not ap-

propriate. As we saw in Chapter 3, the potential surrounding a charge moving

through a plasma with v > vth is much more complex than the Debye potential.

More detailed calculations, such as the one in Section 4.4, demonstrate that the

dynamic screening length, Lt = vt/ωpe, where vt is the projectile speed, is a more

accurate choice for bmax. We set bmax = Lt in all our stopping power formulas.

In the purely classical stopping power calculation, bmin becomes the classical

distance of closest approach,

dca =
2qte(mt +me)

v2
tmtme

, (4.4)

where mt is the mass of the test charge and me the mass of an electron. The final
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formula is,

Ld = ln

(
mtmev

3
t

2ωpeqte(mt +me)

)
. (4.5)

In the quantum case for non-relativistic energies, bmin is the de Broglie wave-

length, λdB = ~/2mtvt. The stopping power is

Ld = ln

(
2mtv

2
t

~ωpe

)
. (4.6)

This formula is known as the Bethe formula, and is a common basic formula for

calculating quantum mechanical stopping power. In this case, some people like to

say that plasmon emission is quantized since ~ωpe appears in the formula.

We can get the first term of the relativistic QED electron stopping formula to

be discussed in Section 4.6 by using the de Broglie wavelength in the center of

mass frame as bmin. λ∗dB = ~/mec
√

2(γ − 1) [SB08], where γ applies to the test

electron in the lab frame. Then,

Ld = ln

(√
2mev2

t E
~ωpe

)
, (4.7)

with E = (γ − 1)mec
2.

When particles are moving fast enough, vt ≈ c for a large range of energies.

Under this condition, we often focus our attention on a single plasma density, so

Ld varies with energy while the coefficient in front of it is constant. Under these

conditions, Ld is often called the “stopping number.”

4.3 Simple Relativistic Cold Fluid Wake Stopping Power

Useful formulas for the projectile wake and the associated stopping power of a rela-

tivistic test charge can be developed in real space using fluid theory. The formulas

are limited because the wake calculation is linear, leading to the logarithmic diver-

gence on-axis, as discussed in Section 4.2. However, if the test charge has a finite

size, as in PIC codes, then the result on-axis has a logarthimic term involving the
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size of the electron. Furthermore, the uncertainty principle gives the relativistic

electron a “finite size.” However, the relationship between PIC finite-size particle

potentials and quantum statistical potentials (which smooth out the Coulomb sin-

gularity) [JM07, GBB12] often used in MD simulations, is left for future research.

We will see how the wake formula breaks down in Section 5.3. However, the wake

formula provides a useful real-space conceptual picture along with scaling factors,

and the stopping power formula demonstrates the relationship between the wake

and stopping power. Furthermore, trailing electrons inside the wake can interact

with the wake, showing the interactions are not simply binary.

We ultimately want the electric field of the projectile wake in the direction of

motion, which we can use to calculate the stopping power directly. To calculate

the wake, we follow the derivation of Katsouleas in Reference [KWC87] and work

in cylindrical (r, z) coordinates.

Assume that the test projectile with charge qt is moving through a plasma

with velocity ~vt = vtẑ. Its charge density is

ρ(~x, t) = qtδ(~x− ~vtt) = qtδ(~r)δ(z − vtt), (4.8)

where δ(~r) = δ(r)/(2πr). We find the resulting plasma wave by using the lin-

earized fluid equations and Maxwell’s equations,

d~v

dt
= −e ~E/me (4.9)

∂n1

∂t
+ n0∇ · ~v = 0 (4.10)

∇ · ~E = −4πen1 + 4πρ (4.11)

∇× ~E = −1

c

∂ ~B

∂t
(4.12)

∇× ~B =
4π

c
~j +

1

c

∂ ~E

∂t
. (4.13)

Taking the derivative with respect to time of Equation 4.10 and substituting in
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Equation 4.9 yields
∂2n1

∂t2
+ n0∇ · (−e ~E/m) = 0. (4.14)

If we then replace ∇ · ~E with Equation 4.11, we get the driven wave equation.

∂2n1

∂t2
− en0/m(−4πen1 + 4πρ) = 0. (4.15)

Using Equation 4.8, the plasma frequency ω2
pe = 4πe2n0/me, and the fact that

δ(z − vtt) = δ(t− z/vt)/vt,

∂2n1

∂t2
+ ω2

pen1 = ω2
pe

qt
e
δ(~r)δ

(
t− z

vt

)
1

vt
. (4.16)

This formula is just a simple harmonic oscillator whose solution is a Green’s

function,

n1 = ωpe
qt
e

δ(~r)

vt
sin

[
ωpe

(
t− z

vt

)]
Θ

(
t− z

vt

)
, (4.17)

where Θ is the unit step function. Here, we will add the condition that Θ(0) = 1/2.

We now need to find ~E using n1. Taking the time derivative of Equation 4.13

and plugging it into the curl of Equation 4.12 produces a wave equation relating

~E to ~j,

∇×∇× ~E = −4π

c2

∂~j

∂t
− 1

c2

∂2 ~E

∂t2

∇(∇ · ~E)−∇2 ~E = −4π

c2

∂~j

∂t
− 1

c2

∂2 ~E

∂t2(
1

c2

∂2

∂t2
−∇2

)
~E = −4π

c2

∂~j

∂t
−∇(∇ · ~E). (4.18)

Combining Equation 4.9 and the fact that ~j = −n0e~v + ρ~vt,

∂~j

∂t
= −n0e

∂~v

∂t
+
∂ρ~vt
∂t

=
e2n0

me

~E +
∂ρ~vt
∂t

. (4.19)

Substituting Equations 4.19 and 4.11 into Equation 4.18 produces

(
1

c2

∂2

∂t2
−∇2

)
~E = −4πe2n0

mec2
~E − 4π

c2

∂ρ~vt
∂t
−∇(−4πen1 + 4πρ). (4.20)
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We now must assume that ~vt → cẑ. Then, we can use the fact that 1
c
∂
∂t

+ ∂
∂z

= 0

to get, (
1

c2

∂2

∂t2
−∇2 +

ω2
pe

c2

)
~E = ∇(4πen1). (4.21)

Substituting in for n1 using Equation 4.17,

(
1

c2

∂2

∂t2
−∇2 +

ω2
pe

c2

)
~E

= 4πqtωpe∇
(
δ(~r)

c
sin
[
ωpe

(
t− z

c

)]
Θ
(
t− z

c

))
.

(4.22)

Using the approximation that 1
c2

∂2

∂t2
≈ ∂2

∂z2
, breaking up the Laplacian as ∇2 =

∇2
⊥ + ∂2

∂z2
, and defining kpe ≡ ωpe/c, we can then write Equation 4.22 as

(
∇2
⊥ − k2

pe

)
~E = −4πqtkpe∇

(
δ(~r) sin

[
ωpe

(
t− z

c

)]
Θ
(
t− z

c

))
. (4.23)

Focusing on Ez, which is our primary interest, we can write,

(
∇2
⊥ − k2

pe

)
Ez = 4πqtkpeδ(~r)

∂

∂z

(
sin
[
ωpe

(
t− z

c

)]
Θ
(
t− z

c

))
. (4.24)

The solution for Ez can then be written as

Ez = GR(~r)4πqtk
2
pe cos

[
ωpe

(
t− z

c

)]
Θ
(
t− z

c

)
. (4.25)

GR(~r) is the Green’s function response to the Helmholtz equation,

(
∇2
⊥ − k2

pe

)
GR(~r) = δ(~r), (4.26)

with the solution

GR(~r) = − 1

2π
K0(kpe|~r|), (4.27)

where K0 is the zeroth-order modified Bessel function of the second kind. Finally,

we obtain the solution for Ez,

Ez = −2qtk
2
peK0(kpe|~r|) cos

[
ωpe

(
t− z

c

)]
Θ
(
t− z

c

)
, (4.28)

The wake therefore oscillates in t − z/c and falls off quickly in r. However, the

solution diverges as r → 0, which is clearly unphysical.
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The stopping power from this wake is simply the electric field (force) in the z

direction from the wake evaluated at the particle,

dE
dz

= qtEz

(
r → 0, t− z

c
= 0
)

= −2q2
t k

2
peK0(kper → 0)

1

2

≈ −q2
t k

2
pe ln

(
1

kper → 0

)

≈ −q
2
tω

2
pe

c2
ln

(
c

ωper → 0

)
. (4.29)

This expression, based solely on classical arguments, diverges. As noted earlier,

this divergence can be reconciled from either the breakdown of linear fluid theory,

using finite-size particles, as in PIC, or from quantum mechanical effects. In the

case of finite-size particles, we can integrate the charge over the Green’s function

to get the resulting wakefield. The result will depend on the specific particle

shape. However, since the particle size shows up inside the logarithm, we can

simply modify this part of the expression. Furthermore, to set the stage for our

use of PIC simulations, we use the cell size, ∆, for the particle size, leading to,

dE
dz
≈ −q

2
tω

2
pe

c2
ln

(
c

ωpe∆

)
. (4.30)

We will show in Section 4.7.3 that this formula agrees reasonably well with results

from QuickPIC simulations. Furthermore, for the conditions we simulate, we can

show that, as the particle size becomes significantly smaller than the interparticle

spacing, that the result saturates as ∆ is reduced. Specifically, when ∆ becomes

less that 1/4 of the interparticle spacing, the result stops diverging. This satura-

tion indicates that linear fluid theory may be breaking down before QED effects

need to be included.

4.4 Classical Bohr Stopping

The Bohr formula (which can be applied to ions and electrons) is one of the sim-

plest classical stopping power formulas for energetic particles with non-relativistic
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speeds. As we will see in Section 4.7.1, it works well in the classical regime for

vt � vth. There are many ways of deriving it, and we will cover two here, starting

with the derivation of Peter and Meyer-ter-Vehn [PV91].

As the charge slows down and vt → vth, corrections start to appear. Many

of these corrections can be accounted for by numerically performing the relevant

integrals. Simplifications of the corrections have been published, one of which

can be found in Reference [PV91]. The most accurate derivation of the correc-

tions can be found in Reference [BPJ05]. However, none of the stopping power

derivations account for the equilabration with the background plasma population,

which occurs via stochastic heating and prevents the test charge from stopping

completely.

4.4.1 Peter & Meyer-ter-Vehn Derivation

We begin with the wake formula from Equation 3.9,

φ(~x, t) = 4πqt

∫ ∞

−∞

d~k

(2π)n
ei
~k·(~x−~vtt)

k2ε(~k,~k · ~v)
, t > 0 (4.31)

where ε is defined in Equation 3.2 and we have set ~x0 = 0. Then, if we assume

that the test charge is moving in the x̂ direction, the stopping power is

− dE
dx

= −Fx = qt
∂φ

∂x

∣∣∣∣
~x=~vtt

. (4.32)

Now, we define X(s) = <Z ′(s) and Y (s) = =Z ′(s). In this case, s =
~k·~vt√
2kvth

=

vt cos(θ)√
2vth

, where θ is measured from the +x-axis. Then,

Ld = 4π2π
v2
t

ω2
pe

∫ ∞

0

k2dk

(2π)3

∫ 1

−1

d cos(θ)
ik cos(θ)

k2
(

1− ω2
pe

2k2v2th
(X(s) + iY (s))

) . (4.33)

We make a change of variables to simplify the calculation. Let K = kλDe, Vt =
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vt/vth, and µ = cos(θ). Now, s = Vtµ/
√

2. Also using the fact that vth/ωpe = λDe,

Ld = 4π2πV 2
t λ

2
de

∫ ∞

0

K2dK

λ3
De(2π)3

∫ Vt/
√

2

−Vt/
√

2

ds

√
2

Vt

i
(

K
λDe

)
s
√

2
Vt(

K
λDe

)2 (
1− 1

2K2 (X(s) + iY (s))
) .

(4.34)

Simplifying,

Ld =
1

π

∫ ∞

0

K3dK

∫ Vt/
√

2

−Vt/
√

2

ds
4is

2K2
(
1− 1

2K2 (X(s) + iY (s))
) . (4.35)

Distributing 2K2 in the denominator and multiplying the top and bottom by the

complex conjugate of the denominator,

Ld =
1

π

∫ ∞

0

K3dK

∫ Vt/
√

2

−Vt/
√

2

ds
4is (2K2 − (X(s)− iY (s)))

(2K2 −X(s))2 + Y 2(s)
. (4.36)

Given that Z ′(−s) = Z ′∗(s), the imaginary part of the integrand is odd as a

function of s, so it drops out. Therefore,

Ld =
4

π

∫ ∞

0

K3dK

∫ Vt/
√

2

−Vt/
√

2

ds
−sY (s)

(2K2 −X(s))2 + Y 2(s)
. (4.37)

We must cut off the K integral to avoid a logarithmic divergence. We set

Kmax = λDe/dca, where dca is the classical distance of closest approach with a

background electron. For an ion (mt � me) and Vt � 1 (where the Bohr limit

applies),

Kmax =
λDe
dca

=
2πNDV

2
t

|Zt|
, (4.38)

where Zt = qt/e and ND = n0λ
3
De. For an electron projectile, dca doubles because

we must use the reduced mass. Therefore,

Ld = − 4

π

∫ Kmax

0

K3dK

∫ Vt/
√

2

−Vt/
√

2

ds
sY (s)

(2K2 −X(s))2 + Y 2(s)
. (4.39)

We now break the calculation into two pieces, as explained in Section 4.2.

However, Peter and Meyer-ter-Vehn use the term “individual” rather than “col-

lisional” since there are no collisions in a purely dielectric formulation. In this
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calculation,

Ldindiv = − 4

π

∫ Kmax

1

K3dK

∫ Vt/
√

2

−Vt/
√

2

ds
sY (s)

(2K2 −X(s))2 + Y 2(s)
(4.40)

and

Ldp.w. = − 4

π

∫ 1

0

K3dK

∫ Vt/
√

2

−Vt/
√

2

ds
sY (s)

(2K2 −X(s))2 + Y 2(s)
, (4.41)

where splitting the integral for K > 1 and K < 1 is arbitrary.

To perform the integration for the plasma wave piece, we need to look at the

expansions for X and Y ,

X(s) =
1

s2
+

3

2

1

s4
+

15

4

1

s6
+ · · · (4.42)

and

Y (s) = −2
√
πse−s

2

. (4.43)

It is now somewhat apparent that, for Vt � 1, the integration along the real µ

axis comes close to a pole in the integrand. We use the fact that

lim
Y→0

Y g(s)

f 2(s) + Y 2
= πδ(s− s0)

sign(Y )g(s0)

|f ′(s0)| , (4.44)

where s0 is a zero of f . For sufficiently small K (we used K < 1 when we split

the overall integral into equations 4.40 and 4.41), f(s) = 2K2−X(s) ≈ 2K2− 1
s2

and s0 = ± 1√
2K

. Since |s| < Vt/
√

2, the path of integration only passes by the

pole when K > 1
Vt

. The physical meaning of this restriction is that there are no

interactions with particles farther away than the dynamic screening length, Lt. In

the end,

Ldp.w. ≈ −
4

π

∫ 1

1/Vt

K3dK2

∫ Vt/
√

2

0

dsπδ(s− s0)
−|s0|
|2/s3

0|
. (4.45)

Therefore,

Ldp.w. ≈
4

π

∫ 1

1/Vt

K3dK
π

4K4

≈
∫ 1

1/Vt

dK

K

≈ ln(Vt). (4.46)
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For the individual piece, we make the (rather bad) approximation that, for

K > 1 and Vt � 1,
sY (s)

(2K2 −X(s))2 + Y 2(s)
≈ sY (s)

4K4
. (4.47)

Then,

Ldindiv ≈ −
4

π

∫ Kmax

1

K3dK2

∫ Vt/
√

2

0

ds
sY (s)

4K4
. (4.48)

Since Vt � 1, we can safely extend the upper limit of integration on s, so that

Ldindiv ≈ −
4

π

∫ Kmax

1

K3dK2

∫ ∞

0

ds
s
(
−2
√
πse−s

2
)

4K4
. (4.49)

Performing the s integral,

Ldindiv ≈ − 4

π

q2
t

λ2
De

∫ Kmax

1

−πdK
4K

≈
∫ Kmax

1

dK

K

≈ ln(Kmax). (4.50)

We add the two stopping pieces, Equations 4.46 and 4.50, together to get

Ld ≈
∫ Kmax

1/Vt

dK

K

≈ ln(KmaxVt)

≈ ln

(
2πNDV

3
t

|Zt|

)
. (4.51)

Or, in non-normalized variables,

Ld ≈ ln

(
mev

3
t

2ωpeqte

)
, (4.52)

which is Equation 4.5 when mt � me. This formulation clearly shows that the

integration of 1/K is the source of the logarithmic dependence, and that the 1/Vt

cutoff is not arbitrarily imposed but derived, and occurs due to plasma screening.

It is also worth remembering (as is discussed further in the next section) that, for

large Kmax, Equation 4.31 makes no sense. It is derived under the straight-line

or differential approximation, which is clearly not reasonable for small impact

parameters, under which large angle scattering and large exchanges of energy

occur.
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4.4.2 Typical (Collisional) Derivation

We now follow the typical calculation for the collisional piece. Using the formula

for binary collision energy transfer [GPS01],

∆Ec
E =

1

1 +
(

2b
dca

)2

4mtme

(mt +me)2
, (4.53)

where dca is given in Equation 4.4. The use of Equation 4.53 is the Landau-

Boltzmann point of view, while the previous section is the Lenard-Bolescu point

of view.

Now, assume that the test charge is moving through the plasma in some di-

rection (we choose x̂). As the test charge moves a distance dx, we imagine that it

goes through collisions with particles in the transverse direction out to a maximum

distance bmax. In differential form, we write this energy transfer as

− dEc = dxdydzn0∆Ec. (4.54)

We note that this differential form makes no sense when ∆Ec ≈ E , as occurs for

b→ 0 and mt = me. Integrating over the transverse direction,

−
(
dE
dx

)

c

=

∫ ∫
dydzn0∆Ec. (4.55)

We make the change to cylindrical coordinates, so

−
(
dE
dx

)

c

=

∫ 2π

0

dφ

∫ bmax

bmin

bdb∆Ec, (4.56)
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or

−
(

1

E
dE
dx

)

c

= 2πn0

∫ bmax

bmin

bdb

1 +
(

2b
dca

)2

4mtme

(mt +me)2

= 2πn0d
2
ca

4mtme

(mt +me)2

∫ bmax

bmin

bdb

d2
ca + 4b2

= 2πn0
4q2
t e

2(mt +me)
2

v4
t (mtme)2

4mtme

(mt +me)2

∫ bmax

bmin

bdb

d2
ca + 4b2

= 8πn0
4q2
t e

2

v4
tmtme

∫ bmax

bmin

bdb

d2
ca + 4b2

= 4
q2
tω

2
pe

v2
t

2

mtv2
t

∫ bmax

bmin

bdb

d2
ca + 4b2

(4.57)

This integral converges as bmin → 0, but logarithmically diverges as bmax → ∞.

Performing the integral and writing the stopping power in terms of Ld,

Ldc =
1

2
ln

(
d2
ca + 4b2

max

d2
ca + 4b2

min

)
. (4.58)

If bmax � dca (a reasonable assumption) and bmin → 0,

Ldc ≈
1

2
ln

(
4b2
max

d2
ca

)

≈ ln

(
2bmax
dca

)
. (4.59)

Interestingly, the result is well-behaved as bmin → 0 even though the concept of a

dE/ds makes no sense.

For the plasma wave piece, we use Equation 4.39,

Ld = − 4

π

∫ Kmax

0

K3dK

∫ Vt/
√

2

−Vt/
√

2

ds
sY (s)

(2K2 −X(s))2 + Y 2(s)
. (4.60)

We follow a process similar to that for the plasma wave piece in Section 4.4.1,

except we do not split the integral at K = 1 and we set Kmax = λDe/bmax. Using

the approximation in Equation 4.44,

Ldp.w. ≈
4

π

∫ Kmax

1/Vt

K3dK
π

4K4

≈ ln(KmaxVt). (4.61)
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In non-normalized variables,

Ldp.w. ≈ ln

(
vt

bmaxωpe

)
. (4.62)

The final stopping power once again becomes

Ld = Ldp.w. + Ldc

≈ ln

(
vt

bmaxωpe

)
+ ln

(
2bmax
dca

)

≈ ln

(
2vt

dcaωpe

)

≈ ln

(
v3
tmtme

qte(mt +me)ωpe

)
. (4.63)

For ion stopping (mt � me), this formula reduces to the Equation 4.5, but differs

by a factor of two inside the logarithm. We find in our comparisons in Section

4.7.1 that this version of the Bohr formula agrees best with molecular dynamics

simulations.

4.5 Wake and Collision Contributions

Now that we have covered the detailed Bohr derivation, we can attempt to get

an idea about the collisional and wake contributions to the stopping power. Re-

writing Equation 4.46 in terms of impact parameter, converting to non-normalized

units, and using k = 1/b,

Ldp.w. ≈
∫ vt/ωpe

bmax

db

b
. (4.64)

Normalizing so that B = b/dca, the the wake portion is,

Ldp.w. ≈
∫ vt

ωpedca

Bmax

dB

B
(4.65)

and the collisional portion–from Equation 4.57–is,

Ldc ≈
∫ Bmax

Bmin

dB
4B

1 + 4B2
. (4.66)
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Figure 4.1: The integrands of the so-called wake (blue) and collisional (red) por-

tions of Bohr stopping power as a funciton of impact parameter. Starting around

b ∼ Lt, the full dielectric integrand includes collective screening, and will fall

below the collisional result, thereby removing the logarithmic large-b divergence.

We plot the integrands from the wake and collisional portions as a function

of impact parameter in Figure 4.1. The two diverge for b / 2dca but overlap for

b ' 2dca. The plot demonstrates that there is no clear transition point from one

formulation to the other. There is a regime where the two overlap and both apply.

4.6 The QED Stopping Formula

During the past decade, agreement has been reached concerning the stopping

and scattering of a single relativistic electron in a plasma. The calculation is

based upon QED and uses the Møller cross-section [LP06, SB08, ASD09]. A

modification to the cross-section for materials, which also applies to plasmas,
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was originally discussed in ICRU Report 37 [RM84], and was used in References

[SB08, ASD09]. The final version of the calculation, including scattering formulas

and without mistakes, was published by Atzeni et. al. [ASD09]. We cover the

detailed stopping power derivation in this Section.

The collision term is calculated using the Møller cross-section,

dσ

dW
=

2πe4

mec2β2

[
1

W 2
+

1

(E −W )2
+

(
γ − 1

γE

)2

− 2γ − 1

γ2W (E −W )

]
, (4.67)

where W is the energy transferred during a collision and E is the kinetic energy of

the incident electron. The first two terms in the brackets correspond to projectile

and target Rutherford scattering, respectively. The third term comes from elec-

tron spin. The last term takes into account exchange effects since the electrons

are indistinguishable.

The collisional stopping power is then given by

(
dE
ds

)

c

= −ne
∫ E/2

Wc

W (dσ/dW )dW, (4.68)

where Wc is the minimum energy transferred during a collision. The upper limit

of integration is E/2 due to symmetry, so the electron with the greater energy

after the collision is considered the projectile. Performing the integration,

(
dE
ds

)

c

= −ne
2πe4

mec2β2

{[
ln

(E/2
Wc

)]

+

[
2 + ln(E/2)− E

E −Wc

− ln(E −Wc)

]

+

[(
γ − 1

γE

)2
(E/2)2 −W 2

c

2

]

−
[

2γ − 1

γ2
(− ln(E/2) + ln(E −Wc))

]}
. (4.69)
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Now assume that E � Wc and write the stopping power in terms of Ld, so that

Ldc =
1

2

{[
ln

( E
Wc

)
− ln(2)

]

+ [2 + ln(E)− ln(2)− 1− ln(E)]

+

[(
γ − 1

γE

)2 E2

8

]

+

[
2γ − 1

γ2
(ln(E)− ln(2)− ln(E))

]}
. (4.70)

All that’s left is to bring the 1/2 inside the braces, perform the obvious cancella-

tions, and group like terms. Expanding everything out before the final grouping

gives,

Ldc =

{[
1

2
ln

( E
Wc

)
− ln(2)

2

]
+

[
1

2
− ln(2)

2

]

+

[
1

16
− 1

8γ
+

1

16γ2

]
−
[
ln(2)

(
1

γ
− 1

2γ2

)]}
. (4.71)

The final expression for the collisional component is then

Ldc =

[
1

2
ln

( E
WC

)
+

9

16
− ln 2 +

ln 2 + 1/8

2γ2
− ln 2 + 1/8

γ

]
. (4.72)

The dielectric component in this case has transverse (Bethe’s formula) and

longitudinal (density effect) pieces. The derivation is long and can be found in

many places. See, e.g. chapter 13 of Reference [Jac99]. Note, however, that the

derivation is in the cold plasma limit, which is identical to that in Section 4.3.

The result is

Ldp.w. =
1

2
ln

(
2mec

2β2Wc

~2ω2
pe

)
. (4.73)

Adding the dielectric component to the collisional component gives

Ld =

[
1

2
ln

(
2mec

2β2E
~2ω2

pe

)
+

9

16
− ln 2 +

ln 2 + 1/8

2γ2
− ln 2 + 1/8

γ

]
, (4.74)

which is often written as

Ld =

[
ln

(√
mec2β2E
~ωpe

)
+

9

16
− ln 2

2
+

ln 2 + 1/8

2γ2
− ln 2 + 1/8

γ

]
. (4.75)
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Formula 4.75 is currently considered the most accurate electron stopping power

formula for Fast Ignition, and is used in many simulations today. However, as we

demonstrate in Chapter 6, correlations between beam electrons can cause the

overall beam stopping power to be greater than the stopping power given by this

formula.

4.7 Comparison with Simulations

We compare the single-particle stopping powers with four different simulation

codes, the molecular dynamics (MD) code ddcMD, the electrostatic PIC code

BEPS, the fully electromagnetic finite-difference PIC code OSIRIS, and the quasi-

static PIC code QuickPIC. We simulate non-relativistic electron and ion stopping

powers using ddcMD and BEPS, and relativistic electron stopping powers using

OSIRIS and QuickPIC. The codes ddcMD and BEPS are used in Chapter 3,

and are described in detail there. We describe OSIRIS in this Section, and a

description of QuickPIC is in Appendix A.

We compare the results from all four codes with theories. The Bohr formula

from Equation 4.63 agrees well with results from ddcMD when the projectile

speed vt � vth. Computational requirements limited the cell width in BEPS,

with the smallest ∆ = 0.125λDe. The BEPS results do not agree with the Bohr

formula, but do agree with stopping powers we calculate using the wake script

described in Section 3.5. QuickPIC stopping powers for larger cell widths (∆s)

agree with the stopping power calculated using fluid theory to within a constant

factor (they should agree if the effect of finite size particles is calculated exactly),

but unlike fluid theory, they saturate once the cell width shrinks beyond a certain

point. OSIRIS has the most difficulty due to numerical Čerenkov, which causes the

projectiles to slow down significantly when passing through free space for small cell

widths. We note that new field solvers may eliminate this issue [LLT13, MTE14],
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Electrostatic Simulation Parameters

n0 1.03× 1020 cm−3

Te 10.8846 eV

λDe 24.2 Å

n0λ
3
De 1.45

Coupling Parameter, Γ 0.06

mp/me 1824

ddcMD Box Dimensions 267λDe × 267λDe × 267λDe

ddcMD dt 2.85× 10−5ω−1
pe

BEPS Box Dimensions 256λDe × 256λDe × 256λDe

BEPS dt (0.2, 0.05, 0.01, 0.01)ω−1
pe for ∆ = (1, 1/2, 1/4, 1/8)λDe

Table 4.1: The parameters for the electrostatic single-particle stopping power

simulations using ddcMD and BEPS.

pointing to directions for future work. These results are presented in detail in the

following subsections.

4.7.1 Comparisons with ddcMD and BEPS

As described in Chapter 3, ddcMD and BEPS are both periodic, electrostatic,

particle codes. The primary difference is that BEPS is a PIC code, in which

particles only interact via fields calculated on a mesh, while ddcMD uses the

particle-particle particle-mesh (PPPM) method to resolve nearest-neighbor inter-

actions. We compare results from both with the Bohr formula (Equations 4.5

and 4.63), and compare the BEPS results with stopping power calculated using

the wake script used in Section 3.5. Both BEPS and ddcMD use electrostatic

field solvers. We will study the stopping of relativistic electrons in the next two

chapters.

The BEPS and ddcMD stopping power simulations are performed using an
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electron plasma with parameters given in Table 4.1. Simulations from both codes

use a smooth neutralizing positive background. In the BEPS simulations, a single

PIC particle represents a single physical particle, which avoids the enhanced stop-

ping that sometimes occurs in PIC simulations [MTE14]. Note that the proton-

electron mass ratio is a legacy value from early ddcMD stopping power simulations,

and differs slightly from the correct physical value of 1836.15. This difference re-

sults in a very small change in the stopping power. The ddcMD simulations also

use a Langevin thermostat [DH09] with a decay time of 350.5ω−1
pe to prevent the

plasma from heating. We also use small values of n0λ
3
De. This makes the agree-

ment between BEPS and ddcMD greater (as expected). For larger but still small

values of n0λ
3
De, there should be better agreement, showing that BEPS can be

used to study collisions.

The simulations use 27 projectiles spaced maximally on a cubic lattice. The

projectiles are always negatively charged to avoid numerical problems with an

attractive Coulomb singularity. All the projectiles move in the direction v̂ =<

1,
√
ϕ, ϕ >, where ϕ = 1+

√
5

2
is the golden ratio. The direction is chosen to

minimize the chance of the projectiles traveling through each others’ wakes as

they loop around the periodic box.

Stopping powers from the simulations are calculated using linear regression of

the quantity 1
2
Etv

2
t with st for each projectile, where Et is the measured energy of

the projectile, vt its measured speed, and st the distance it has traveled since the

beginning of the simulation. This linear regression gives us (after some substitu-

tions involving Et and vt) v
2
t
dEt
dst

, which is the stopping power in the units we plot

in this section. We then use the stopping power from all 27 projectiles in each

simulation to calculate the average stopping power and the standard deviation.

The results of ddcMD simulations with anti-(zinc, neon, and hydrogen) nuclei

as projectiles, which have Z=(-30, -10, and -1), respectively, are in Figures 4.2 and

4.4. The projectiles start with a speed of V0 = 11.28vth. The projectile energies
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agree well with a calculation using the the Bohr stopping power in Equation 4.63,

which is plotted as a dashed-dotted black line in Figure 4.2. In particular, in the

anti-zinc case, Equation 4.63 produces a result inside the simulation error bars,

while Equation 4.5 does not. At various points in Figure 4.2 there are sudden drops

in the energy of the simulation projectiles, which are caused by close encounters

with plasma electrons and contribute to the stopping. As we will see next, these

drops do not occur in PIC simulations. For these simulations (with small n0λ
3
De)

large angle scattering events (in the rest mass frame) occur.

The results of BEPS simulations with anti-zinc nuclei and anti-protons as

projectiles are shown in Figures 4.3 and 4.4. Stopping powers for simulations

with anti-neon nuclei projectiles are also in Figure 4.4. The projectiles start with

a speed of V0 = 11.25vth, which does not quite match with the ddcMD simulations.

These BEPS simulations face the issue of wake build-up in the box because they

lack significant collisional damping (of the wake) and the code does not have a

Langevin thermostat. The wake build-up eventually affects the energy dissipation

of the projectiles, as seen by the wiggles in the curves for the anti-zinc nuclei in

Figure 4.3. We therefore neglect data after st = 80λDev0/vth when calculating the

stopping power in the BEPS simulations. Reducing the cell width increases the

collisionality, which increases the damping and reduces the wiggles.

During the time before the wake build-up affects the projectile energy in the

BEPS simulations, the projectile energies agree well with a calculation using a

constant stopping power from the wake script, which we plot as dashed-dotted

black lines in Figure 4.3. We use a box with dimensions 64λDe×64λDe×128λDe for

the wake script stopping power calculation. The projectile starts at ~x0 = (32λDe,

32λDe, 16λDe). We assign the projectile a velocity ~v = 11.25vthẑ and perform the

calculation at t = 5ω−1
pe , giving the projectile a final position ~x = (32λDe, 32λDe,

72.23λDe). We calculate the force on the projectile by interpolating the Ez field

to the particle’s position using the algorithm from BEPS.
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Figure 4.2: Energy vs. distance traveled in ddcMD simulations using as projec-

tiles anti-zinc nuclei (top), anti-neon nuclei (middle), and anti-protons (bottom).

The dashed-dotted black line is the energy cacluated using the Bohr forumula

(Equation 4.63), while the solid lines are the 27 simulation projectiles.
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Figure 4.3: Energy vs. distance traveled in BEPS simulations using as projectiles

anti-zinc nuclei in the top two plots and anti-protons in the bottom plot. The

cell-width is λDe in the top plot and λDe/8 in the bottom two plots. The dashed–

dotted black line is the stopping power calculated using the wake script while the

solid lines are the 27 simulation projectiles.
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As the cell width decreases in the the BEPS simulations, the stopping power

increases and approaches the Bohr stopping power, as shown in Figure 4.4. How-

ever, when we compare Figure 4.3 with Figure 4.2, we notice that the projectiles in

the BEPS simulations do not undergo the sudden drops in energy that the projec-

tiles in ddcMD do, suggesting that the PIC finite-size particles are still smoothing

collisional contributions to the stopping power for small impact parameters even

at the smallest cell widths. Stated another way, collisions with impact parameters

less than a cell width still occur. This hypothesis is also supported by the excellent

agreement between simulation and the wake script with cell widths of 0.125λDe.

Due to computing resource constraints, we are unable to study the effects of cell

widths below 0.125λDe, where we may begin seeing the stopping power in BEPS

diverge from that in the wake script and converge closer to ddcMD.

We examine the dependence of stopping power on speed in Figure 4.5 for anti-

zinc nuclei in both ddcMD and BEPS. The agreement between the Bohr formula

and ddcMD holds up well until the speed is below 6vth. The divergence is expected,

as the logarithm diverges as its argument approaches zero, which is unphysical.

The agreement between BEPS and the wake script, however, remains impressive

across the three test cases. Vlasov theory clearly describes what is occurring in

BEPS quite well down to relatively low speeds.

Because of their low mass, electrons behave differently to ions in the stopping

power simulations. As we show in Figure 4.6 for electrons with V0 = 11.28vth and

11.25vth in ddcMD and BEPS, respectively, the energies spread out much more

rapidly, which is a heating effect. The spread is much greater in ddcMD, likely

due to collisions, which are a means of energy transfer between the projectiles and

the plasma. This heating effect makes comparing with stopping power formulas

more difficult, since there is a significant spread in speed. When we calculate

the energy for plots using the Bohr formula, we use the average speed at each

step. For the wake script, we only use the initial stopping power due to the time
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Figure 4.4: The stopping powers measured in ddcMD (blue circles) and BEPS

(red circles) simulations for anti-protons (left), anti-neon nuclei (middle), and

anti-zinc nuclei (right). The ddcMD results are plotted with a cell width of zero for

convenience. Projectiles in ddcMD start with V0 = 11.28vth while those in BEPS

start with V0 = 11.25vth. Stopping powers calculated using the Bohr formula and

the wake script (red squares) are plotted for comparison with the ddcMD and

BEPS results, respectively. Bohr 1 (blue squares) uses Equation 4.63 while Bohr

2 (blue diamonds) uses Equation 4.5, with the term inside the logarithm in Bohr

1 being twice that of Bohr 2.
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required to perform the calculation. A more direct comparison of the stopping

powers, along with results for more BEPS cell widths, is in Figure 4.8.

The other factor we must consider in electron stopping is angular scattering.

We did not concern ourselves with angular scattering of ions since they are much

more massive than electrons, and their deflection in electron plasmas is negligible.

In Figure 4.7 we plot the deflection of electrons from their initial trajectories in the

ddcMD and BEPS simulations mentioned previously. The projectiles clearly un-

dergo more deflection in ddcMD, because it resolves collisions better than BEPS.

A more direct comparison of the angular deflections, along with results for more

BEPS cell widths, is also in Figure 4.8.

The comparisons in Figure 4.8 demonstrate that the angular scattering in

BEPS approaches that in ddcMD as we decrease the cell width, which is due

to the fact that we resolve collisions better as we decrease the BEPS cell width.

The stopping power does not demonstrate a similar trend, because heating of the

projectiles obscures the stopping. If we were able to further reduce the cell width,

a trend might manifest itself.

The agreement with theoretical stopping calculations is best when collisions do

not play a large role, minimizing heating effects. At the smallest BEPS cell width

and in ddcMD, the agreement is acceptable, but not very good. The story may

change with speed, and relativistic effects may help minimize heating, but we did

not have the opportunity to study heating in detail. These comparisons simply

demonstrate the complexity of the stopping power problem, and that thermal

effects must be considered before attempting to draw solid conclusions about

electron beam stopping.

The simulations and comparisons demonstrate that we understand classical ion

stopping power in an electron plasma in the electrostatic regime for fast projectiles

(vt � vth) very well, and that understanding is extended to slow projectiles in PIC.

In these situations, we can explain the basic Coulomb stopping power using the
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Figure 4.6: Energy vs. distance traveled for electrons in ddcMD and BEPS sim-

ulations are in the top and bottom plots, respectively. The electrons start with

V0 = 11.28vth and 11.25vth in ddcMD and BEPS, respectively. The BEPS simu-

lation uses a cell width of 0.125λDe. The dashed-dotted black line is the energy

calculated using the Bohr formula and the wake script for comparison with ddcMD

and BEPS, respectively.
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Figure 4.7: Perpendicular vs. parallel distance traveled for electrons in ddcMD

and BEPS are in the top and bottom plots, respectively, for electrons starting

with V0 = 11.28vth and 11.25vth, respectively. The BEPS simulation uses a cell

width of 0.125λDe. s|| is the distance traveled along the electron’s initial trajectory,

while s⊥ is the distance traveled perpendicular to it.
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Figure 4.8: Stopping power and angular displacement of electrons in ddcMD (blue

circles) and BEPS (red circles) simulations. The ddcMD results are plotted with a

cell width of zero for convenience. Projectiles in ddcMD start with V0 = 11.28vth

while those in BEPS start with V0 = 11.25vth. Stopping powers calculated using

the Bohr formula and the wake script (red squares) are plotted for comparison with

the ddcMD and BEPS results, respectively. Bohr 1 (blue squares) uses Equation

4.63 while Bohr 2 (blue diamonds) uses Equation 4.5, with the term inside the

logarithm in Bohr 1 being twice that of Bohr 2.
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Bohr stopping power formula and PIC stopping power using our wake script. As

the mass decreases and thermal effects become important, the situation becomes

more complicated, because the projectiles can thermalize with the background

plasma and angular scattering becomes important. We have not studied this

thermalization effect in detail, and are uncertain about its importance in the

relativistic regime. These thermalization effects should be studied in more detail

before drawing solid conclusions about electron beam stopping.

4.7.2 Comparison with OSIRIS

As mentioned earlier, OSIRIS is a finite-difference time-domain (FDTD) electro-

magnetic PIC code, and therefore suffers from numerical Čerenkov radiation. This

radiation is produced when particles approach the speed of light, as plotted in Fig-

ure 4.9. It is caused by particles exceeding the speed of electromagnetic wave on

the mesh (the mesh acts like a slow wave structure). The finite-difference opera-

tors modify the electromagnetic dispersion relation and cause light to propagate

slower than c for some frequencies in some directions. As the particle radiates, it

slows down due to conservation of energy. The problem becomes worse as the cell

with decreases, rendering OSIRIS largely useless as a tool for our stopping power

studies unless improved field solvers can be developed. Spectral electromagnetic

PIC codes, such as the electromagnetic version of BEPS, do not suffer from this

problem due to their high order of accuracy, and QuickPIC does not suffer from

it due to its quasi-static approximations.

Methods for mitigating numerical Čerenkov radiation include smoothing the

fields and using higher-order solvers. As we saw in Section 2.3.3, smoothing is used

to damp certain ~k modes, so we can take advantage of that fact. However, our

attempts to improve the smoother beyond the five-pass one described in Section

2.3.3 did not reduce the stopping power any further.
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OSIRIS Simulation Parameters

n0 1026 cm−3

Te 0 (cold)

Box Dimensions 20.7575 c
ωpe
× 15.568125 c

ωpe
× 15.568125 c

ωpe

Box Cells 512× 384× 384 for ∆0 = 0.0405 c
ωpe

dt (0.01, 0.01, 0.005)ω−1
pe for ∆ = (1, 1/2, 1/4)∆0

Table 4.2: The parameters for the OSIRIS stopping power simulations.

A much grater benefit comes from using a more accurate solver. We tested

the extended stencil described by Greenwood et. al. in Reference [GCL04] with

coefficients that produce a curl operator accurate to fourth order. For comparison,

the standard Yee solver is second-order accurate. The new solver reduces the free-

space stopping power by about a factor of seven, but that is not enough, as the

numerical Čerenkov radiation still dominates the stopping power in simulations

using smaller cell widths, as shown in Figure 4.10.

The parameters for the simulations we performed with OSIRIS are in Table

4.2. As in the BEPS simulations, a single PIC particle represents a single physical

particle. We perform simulations with cell widths ∆ = ∆0, ∆0/2, and ∆0/4,

where ∆0 = 0.0405 c
ωpe

is the plasma electron spacing at n0 = 1026cm−3. The

box has periodic boundary conditions in the transverse directions and a Galilean

moving window at c in the ẑ-direction. We smooth both the fields and the current

using the five-pass smoother mentioned above. The projectile is a single electron,

which starts at rest and is uniformly accelerated to pz = 10mec across one hundred

time-steps. Since the electric field is zero at t = 0, the projectile leaves behind a

fixed neutralizing charge as it moves away from its starting point.

Figure 4.10 shows the results of single-particle stopping power simulations

using ∆ = ∆0/4 with both the standard Yee solver and the fourth-order stencil

solver. To demonstrate the effect of the numerical Čerenkov radiation, we plot
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Figure 4.9: The Ez field of an electron’s wake at t = 20ω−1
pe in an OSIRIS simu-

lation with ∆ = ∆0/2 using the Yee solver. The slice is taken down the middle

of the box in y. Numerical Čerenkov radiation, caused by the electron exceeding

the propagation speed of light on the mesh, is radiated off to the sides.
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the stopping power from simulations with and without a background plasma. The

plots show stopping power vs. momentum, so the particle starts on the right of

the momentum axis. The sudden drop in stopping power at the beginning of the

simulation is a residual effect due to the acceleration of the projectile from rest

and its movement away from its neutralizing charge. After the stopping power

levels off, the numerical Čerenkov radiation clearly dominates for both solvers.

The fourth order stencil solver has an additional complication of inconsistent

stopping power. Notice the curvature in the plot, which is not present with the Yee

solver. The stopping power oscillates. At this time, we do not know the reason for

this oscillation. While it is problematic for our stopping power simulations, it is

likely unnoticeable in many applications which can derive a benefit from reduced

numerical Čerenkov radiation.

Due to the problem with numerical Čerenkov radiation, OSIRIS currently is

not suitable for our studies. Instead, we have elected to use QuickPIC, whose

quasi-static approximation does not allow for numerical Čerenkov radiation. Re-

cent work has demonstrated that a new solver mitigates the problem [LLT13],

which opens up opportunities to study correlated stopping in more detail, by tak-

ing into account beam divergence and angular scattering. For now, those effects

are left as areas for future research.

4.7.3 Comparison with QuickPIC

QuickPIC uses a quasi-static approximation, which assumes that the beam evolves

on a time-scale much slower than the time required for the beam to pass by a

plasma particle. The primary requirement is that the beam must be traveling

close to the speed of light (in practice, γ ' 5). Under these assumptions, we can

take advantage of the slow wake evolution to take much larger larger time-steps

than in typical PIC simulations. For more details about QuickPIC, see Appendix
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Figure 4.10: The stopping powers measured in OSIRIS simulations using

∆ = ∆0/4 with the traditional Yee solver and the fourth-order accurate extended

stencil. The red line is the stopping power in a simulation with a plasma, while

the blue line is from a simulation without a plasma.
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QuickPIC Simulation Parameters

n0 1026 cm−3

Te 0.0 eV

Box Dimensions 10.3787 c
ωpe
× 10.3787 c

ωpe
× 0.3243 c

ωpe

Box Cells 256× 256× 8 for ∆ = 0.0405 c
ωpe

dt ω−1
pe for all cell widths

Table 4.3: The parameters for the QuickPIC stopping power simulations.

A.

The parameters for the QuickPIC simulations are in Table 4.3. The box has a

moving window in the ẑ-direction, as in OSIRIS, but uses conducting boundary

conditions with specular reflection for particles in the transverse direction. The

electron projectile is initialized with pz = 10mec. Unlike in the OSIRIS simula-

tions, we do not need to worry about residual effects from the initialization due

to the nature of the quasi-static implementation in QuickPIC. We start with a

cell-width ∆0 = 0.0405 c
ωpe

and shrink it by a factor of two in each successive

simulation until the final simulation uses ∆ = 1
64

∆0.

As in OSIRIS and BEPS, we have chosen to have a PIC particle represent

a physical particle. However, this representation only applies in the transverse

direction. QuickPIC uses a 2D plasma slice that traverses the box during each

3D time-step and passes through every cell in z, as described in Appendix A.

Therefore, the concept of the number of cells per particle in z does not truly

apply to QuickPIC.

Figure 4.11 demonstrates that the single-particle stopping power in QuickPIC

agrees well with the fluid wake stopping power from Equation 4.30 until ∆ < ∆0/4,

differing only by a factor of two in the logarithm. The agreement may improve

by taking into account the particle shape and smoothing in more detail. We

also plot the Bethe, QED, and Bohr stopping formulas for comparison, which
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Figure 4.11: The stopping power in the QuickPIC simulations (blue with circles)

compared with the fluid wake stopping power from Equation 4.30 (black with

squares), the Bethe formula in Equation 4.6 (dashed green), the QED formula

in Equation 4.75 (dashed red), and the Bohr formula in Equation 4.63 (dashed

megenta).

are all far above the simulated QuickPIC stopping power. The Bohr formula

uses a relativistic modification of dca. Once the cell width in QuickPIC shrinks

below ∆0/4, the stopping power levels off. We did not see this behavior with the

Bohr stopping power in Section 4.7.1 for the electrostatic case and where n0λ
3
De

is small. The saturation of the stopping power as ∆/∆0 → 0 is worthy of future

investigation. If the saturation is real, then Vlasov theory breaks down at scales

before QED or small impact parameters become important.

As a final sanity check of the stopping power in QuickPIC, we increased the

charge of the projectile for the largest cell-width. Doubling the charge multiplies

the measured stopping power by a factor of four, and quadrupling the charge

multiplies it by a factor of 16. This quadratic scaling of the stopping power with

charge is what we expect based on the stopping power formulas, and demonstrates
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that the plasma is responding linearly. If we increase the charge enough, the

plasma will no longer respond linearly, and the scaling will no longer be quadratic.

However, we will not need to concern ourselves with non-linear stopping power

response except with the most densely packed electron beam configurations.

Since QuickPIC has proven to produce well-behaved stopping powers, it is

well-suited for our correlated stopping simulations. While it does not allow us to

study the effects of beam divergence and angular scattering, we can still study

basic correlations effects in detail. We use QuickPIC for all our correlated stopping

simulations in Chapter 6 except for one instance.

4.8 Conclusion

In this Chapter, we have investigated the single-particle stopping power of parti-

cles with speeds greatly in excess of the electron thermal velocity. This includes

the stopping power or relativistic electrons. Various derivations are reviewed and

compared, including the Bohr, Bethe, and QED expressions. We examine the

stopping power predicted from the wake of a particle moving through a plasma

represented by a Vlasov fluid and discuss how to include discrete particle or colli-

sional effects at small impact parameter or large k (in k-space integrals). We also

derive the wake and the stopping power associated with it for a relativistic elec-

tron moving in a cold plasma fluid. We use a derivation used in the plasma-based

accelerator community.

We then conduct electrostatic simulations using ddcMD and BEPS for plasmas

with very small plasma parameters (n0λ
3
De ∼ 1). For the BEPS (a PIC code)

simulations, we vary the particle size, including cases where it is much less than

a Debye length. For ions, the ddcMD cases agree with the Bohr formula, and

the BEPS results agree with the force from the wake on the particle for finite-size

particles (this eliminates divergences). The ddcMD simulations show large jumps
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in energy loss when close encounters occur. These jumps are not seen in BEPS,

since the cell size, although small compared to a Debye length, is too large for

collisions with large energy transfer. The BEPS results do converge to the ddcMD

results as the cell size is reduced.

For electrons, the agreement with theory is not as good, because the energy

transfer is very large from collisions with small impact parameters. These inter-

actions “heat” the test charges, complicating the statistics. Using test charges

that do not respond to the fields from the plasma could have yield cleaner re-

sults. For relativistic electrons, we need to use codes that have full EM fields and

relativistic pushers. We tried OSIRIS, but the finite-difference time-domain field

solvers support EM waves with phase velocities less than c on the grid, leading to

unphysical Čerenkov radiation. We therefore use QuickPIC, a quasi-static code

described in Appendix A. We find that QuickPIC provides stopping powers below

those of the QED, Bohr, and Bethe expressions (as expected). As the particle

size was reduced, the stopping power from QuickPIC (solely from the wake) satu-

rated at values below the other expressions. Further investigations are needed to

determine if this saturation is physical, i.e., whether discrete particle effects (not

from collisions) come into play before quantum effects are important.

Future work includes examining how the conclusions change regarding the

wake and collisional effects as the plasma parameter is increased. This work would

include studying how energy is left behind the particle. It would be interesting

to examine the relative amount of energy in collective or average motion versus

random motion. This may be a better way of comparing the effects of the wake

and collisions. It will also be of interest to use even smaller cells in QuickPIC as

well as using improved field solvers in OSIRIS. Another possibility would be to

use a spectral EM PIC code.
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CHAPTER 5

The Anatomy of Relativistic Wakes

5.1 Introduction

In Chapter 3, we examined non-relativistic electrostatic wakes using Vlasov theory

and particle codes. As a particle approaches the speed of light, electromagnetic

effects become important, which change the behavior of the wake. In this chap-

ter, we examine relativistic wakes (wakes with vphase ∼ c) through simulations,

including the magnetic field contribution, and make comparisons with the fluid

wake formula we derived in Section 4.3. We use the code QuickPIC, which is de-

scribed in Appendix A. We will see that there are significant differences between

relativistic wakes and electrostatic wakes, but magnetic fields are negligible for

wakes made by a single electron. We will find that fluid theory describes off-axis

behavior of the wake well for the first wavelength, but deviation from linear fluid

theory occurs very quickly.

5.2 Longitudinal and Focusing Fields

In Section 4.3, we derived the formula for the Ez field of the wake of a relativistic

point particle moving in the ẑ direction,

Ez = −2
qtω

2
pe

c2
K0

(ωpe
c
r
)

cos
[
ωpe

(
t− z

c

)]
Θ
(
t− z

c

)
. (5.1)
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The stopping power from one electron arises from Ez in Equation 5.1 evaluated

at the location of the electron. However, to set the stage for studying correlated

stopping, we now would like to know the focusing field on a particle moving in the

ẑ direction with a speed near c, and the evolution of both the accelerating and

focusing fields in the wake. Let W|| = Ez and W⊥ = Er − Bθ be the longitudinal

and focusing fields, respectively. Then, because the wake is a function of ct − z,

the Panofsky-Wenzel theorem [PW56] says that

∂W||
∂r

=
∂W⊥
∂z

. (5.2)

Stated another way, the Panofsky-Wenzel theorem says that W|| and W⊥ can be

obtained from a single potential,

ψ = −2
qtωpe
c

K0

(ωpe
c
r
)

sin
[
ωpe

(
t− z

c

)]
Θ
(
t− z

c

)
. (5.3)

Therefore,

W⊥ = −∂ψ
∂r

= −2
qtω

2
pe

c2
K1

(ωpe
c
r
)

sin
[
ωpe

(
t− z

c

)]
Θ
(
t− z

c

)
. (5.4)

Just like Ez, the focusing field diverges as r → 0, falls of quickly in r, and is

perfectly periodic in t− z/c behind the particle.

In PIC simulations, we do not use point particles. Rather, we use finite-size

particles. In most cases, a PIC particle represents many real particles, so they are

referred to as macro- or super-particles. Here, each simulation electron represents

a single real electron but has a finite size, as was the case in the simulations

in Section 4.7. To get the wake from an electron with a finite size, we need to

integrate Equation 5.1, 5.3, or 5.4 (the Green’s function) over the particle shape.

For example,

ψS(r, θ, ξ) = −2
qtωpe
c
×

∫ ξ

∞
dξ′
∫ ∞

0

r′dr′
∫ 2π

0

dθ′K0

(ωpe
c
|~r − ~r′|

)
sin
[ωpe
c

(ξ − ξ′)
]
S(r′, ξ′), (5.5)
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where ξ ≡ z − ct. If particle is much smaller than a skin depth, then the electric

field of a particle with a Gaussian shape on-axis scales as q
ω2
pe

c2
ln
(

1.12c
σωpe

)
, where σ

is the standard deviation or particle size [MTE14].

Our understanding of wake dynamics in a cold fluid agrees rather well with

QuickPIC simulations within the first wavelength of the wake. Figure 5.1 shows

this agreement in plots of Ez and the focusing field. This simulation uses the same

parameters as in Section 4.7.3, except the box has dimensions of 20.7575 c
ωpe
×

20.7575 c
ωpe
× 41.5150 c

ωpe
and 512× 512× 1024 cells, giving a cell width ∆ = ∆0 =

0.0405 c
ωpe

. The QuickPIC results will saturate as r approaches a cell width due to

the use of finite-size particles. However, as shown in Figure 4.11, the QuickPIC

result saturates as ∆/∆0 → 0. Therefore, physical effects can saturate the wake

on-axis before finite-size particle effects come into play.

For small amplitude wakes, the focusing field of an electron moving near the

speed of light is −∂ψ/∂r = Er − Bθ. However, Er and Bθ make very unequal

contributions to the focusing field. Figure 5.2 demonstrates that Bθ is over four

orders of magnitude less than Er, except for the slice at the particle’s position

in z. The self-fields of the particle, Er and Bθ, are very large in this slice, but

Er − Bθ ∼ 0, so the self-field on the particle nearly vanishes at all values of r.

These results suggest that the contribution of Bθ to the focusing field for particles

inside the wake is negligible. We also note that, although Bθ is large near the test

charge, it has no effect on cold plasma particles that start at rest. However, for a

10keV plasma, Bθ could have a non-negligible effect on the background plasma.

The large Er field of the test charge pushes out the plasma particles radially,

creating the wake. However, if one transformed to a center of mass frame where

the plasma electrons were drifting towards the test charge, then the magnetic

fields of both the test charge and plasma electrons would need to be considered.

For a plasma with finite temperature, full electromagnetic and not just Coulomb

interactions are therefore necessary to study collisions.
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Figure 5.1: The Ez field (left) and focusing field (right) of an electron wake in a

QuickPIC simulation. The top row shows 2D slices of the fields, and the green

dot represents the electron’s position. Lineouts are taken along the black lines

and plotted as red curves in the bottom row, whereas the fluid theory results are

also plotted as dashed blue curves.
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Figure 5.2: The focusing fields in the QuickPIC simulation. 2D slices of Er and

Bθ are on the left and right, respectively. The green dots represent the electron’s

position.

We have demonstrated that fluid theory accurately describes the wake, except

it deviates from QuickPIC near the axis due to the finite-size particle effects

and/or discrete particle effects. However, the agreement holds only for the first

wavelength after the particle. In the next section, we will see that the nice uniform

oscillation predicted by the linear fluid formulation quickly breaks down after the

first wavelength.

5.3 Curvature and Spreading

Contrary to the predictions of linear fluid theory, the relativistic wake in PIC sim-

ulations spreads out with increasing ξ (distance behind the particle) and acquires

an upward concavity in the longitudinal direction, as demonstrated in Figure

5.3. We might expect this transverse spreading because the electrostatic wakes in

Chapter 3 displayed it, but they also displayed a downward concavity in the lon-

gitudinal direction. This discrepancy is due to thermal effects. Here, we explore

why the upward curvature occurs and how thermal effects change it.

Understanding why the curvature occurs requires examining the trajectories
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Figure 5.3: 2D slices of Ez, the focusing field, and the density fluctuation on the

left, center, and right, respectively. The wake acquires an upward curvature as we

look farther behind the particle. The green dots represent the electron’s position.

of the plasma particles. We shift now to OSIRIS, which has the ability to track

plasma particles. The OSIRIS simulation has the same parameters as the Quick-

PIC simulation, but uses the fourth-order solver discussed in Section 4.7.2, and

a box that is 20.7575 c
ωpe

with 512 cells on all sides, giving a cell-width ∆0. The

OSIRIS and QuickPIC wakes agree well, as we can see in Figure 5.4. The wave-

length from fluid theory does not agree with the simulations along the axis, which

is likely due to nonlinearities we will discuss next. The wavelength agrees better

as one moves away from the axis. In addition, the amplitude on-axis agrees rea-

sonably well the the location of the particle, and the amplitude of the wake slowly

decreases behind the particle, in contrast with theory. Overall, the agreement be-

tween theory, QuickPIC, and OSIRIS is very good, allowing us to shift to OSIRIS

to study the wake wavefront curvature.

To get hints for the reasons for the discrepancies, we examine the particle

track from an OSIRIS simulation. The discrepancy is due to the breakdown of

linear fluid theory. So, either nonlinear of non-fluid-like effects associated with
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Figure 5.4: The Ez field of a wake in the OSIRIS simulation is on the left. The

blue spot at the front of the wake is the electron’s location. On the right is a

comparison of the Ez field lineouts of the wake from QuickPIC in dashed-dotted

green, from OSIRIS in dashed red, and from fluid theory in solid blue (for a

point particle but off-axis by ∆0/2). The lineouts are taken along the electron’s

trajectory.

discrete particles are at play. As we noted earlier, the amplitude of the wake at

the location of the particle saturates as ∆/∆0 → 0. Note that as ∆ is reduced, the

size of the background plasma electrons also gets smaller. Furthermore, in both

the OSIRIS and QuickPIC simulations, the ion background is a fixed but discrete

background. The plasma particle tracks from the OSIRIS simulation are plotted

in the z−ct frame of the beam in Figure 5.5. The plasma particles move very little

in z and move predominantly in x. Therefore, the variable z − ct can be viewed

as time. The plasma particles have an initial average separation of 0.0405 c
ωpe

and

their initial positions in x can be judged using the axis at the top of the plot, but

their displacements in x are ∼ 10−4 − 10−5 c
ωpe

. Therefore, we have shifted the

tracks close together for ease of viewing the tracks of so many particles at once,

and the scale for the displacement is on the bottom. The tracks show us that,

when the test electron passes through the plasma, it causes the nearest plasma

electrons to undergo a “nonlinear” oscillation. We put “nonlinear” in quotes to
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make it clear that we mean oscillations not at the linear wavelength but that may

not depend on the amplitude of the oscillation. The time for these particles to

restore to their original positions is greater than half a linear oscillation period

(they oscillate with a period > 2π/ωpe). Measuring the first half-wavelength of

the oscillation for the two center tracks in Figure 5.5 gives us ≈ 4.5 c
ωpe

. These

two tracks do not have the greatest oscillation amplitude because they are within

a cell width of the path of the beam electron. As we examine tracks further to

the right or left on the plot, the first half-wavelength of oscillation approaches

π c
ωpe

. This early nonlinear motion of the particles closest to the path of the beam

electron produces the extended density depletion right after the beam electron

in density fluctuation plot in Figure 5.3. Therefore, the early nonlinear motion

explains why the wake curvature starts. We will discuss and eliminate possible

causes for the nonlinear oscillations.

Looking at the motion of the particles during second and third wavelengths of

oscillation in Figure 5.5, we can see that the nonlinear motion begins to propagate

outward. During the second wavelength, the amplitude of oscillation of the tracks

out to the fourth track from the center die down. At the same time, the oscillations

of the fifth and sixth tracks from the center have gained amplitude, and their

peaks occur earlier than the peaks of tracks closer to the center, which were

delayed due to their nonlinear behavior during the first wavelength. During the

next oscillation, the amplitudes of the fifth and sixth tracks have died down, but

those of the eight and ninth have increased, and their peaks again occur earlier

than those further in. In this way, the energy of the original nonlinear motion

propagates outward, causing the wake spreading and curvature. However, the

outside tracks oscillate with the linear wavelength with a constant amplitude

One possibility is that the anharmonic motion is described by electron rings in

radial oscillations, as explained by Dawson in his classic 1959 paper [Daw59]. The

radial oscillation description is reasonable for the high phase velocity of the wake.
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Figure 5.5: Tracks of plasma particles in the wake in an OSIRIS simulation with

∆ = ∆0. The tracks are plotted in the frame of the moving window, and are in

the same plane as the slices in Figure 5.3. The tracks have been shifted close to

each other for ease of viewing. The x-axis is a the top of the box, to indicate

the initial x-positions of the pariticles before they are affected by the test charge.

The Displacement* axis at the bottom of the plot should be used as a scale for

measuring a particle’s displacement from its inital position at the top of the plot.
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We determine the applicability of Dawson’s solution through a direct comparison.

According to Dawson, radial oscillations are described by the equation

me
d2R

dt2
= −2πn0e

2

r0 +R
[(r0 +R)2 − r2

0], (5.6)

where r0 is the equilibrium radial position of the plasma electron and R is its

displacement from equilibrium. We compare with the second track from the right

of center of Figure 5.5. For that track, in Figure 5.3, we plot R/r0 as a function of

t and compare with a numerical result using Equation 5.6. The numerical result

starts at the first peak in the oscillation Figure 5.5, around z − ct = 16 c
ωpe

. This

comparison demonstrates that the Dawson description clearly does not describe

the nonlinear oscillations in the wake. Therefore, another explanation needs to

be found. Another possible explanation is related to discreteness effects. The

Dawson ring model asserts that electron rings do not cross and that the force on

any ring is due solely to the amount of ions crossed. Furthermore, the amount of

ion charge is calculated assuming the ions are a perfectly smooth fluid.

As the particle size ∆ gets smaller than the interparticle spacing and the dis-

placement is small, then force on inner electrons will deviate from the ring model

for fluid ions. This deviation is related to electron-electron and electron-ion col-

lisions. For the outer electrons, there are enough ions inside of them that they

still appear to be uniformly distributed and the uniform fluid description is still

reasonable. As we make ∆/∆0 → 0, we have observed that the inner oscillations

of the wake are at a higher frequency and the outer oscillations are at the linear

frequency (wavelength). Quantifying and explaining these observations are areas

for future work. To date, we have noticed that, as ∆/∆0 → 0, the curvature

gets smaller but the wavelength gets much shorter than the linear wavelength.

However, increasing the number of plasma particles per cell to one in the simu-

lations with the smallest cell-width, ∆ = ∆0/8, (while maintaining ωpe) returns

the wavelength to that calculated using fluid theory while still eliminating the

curvature. This result demonstrates that the upward wake curvature is a likely
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Figure 5.6: For the second track to the right of center in Figure 5.5, starting at

the peak of the oscillation around z − ct = 16 c
ωpe

, the simulation track is in blue,

while the numerical integration of Equation 5.6 is in red.

due to a discreteness effect.

We also believe that the curvature is due to the discreteness effects and the

initial amplitude of displacements as a function of radius. We are left with

the question of why we instead saw a downward (opposite) curvature in our

electrostatic PIC simulations in Chapter 3. The simple answer is plasma tem-

perature, which leads to temperature-dependent diffraction [Fah10]. In Figure

5.7, we see that the upward curvature disappears then turns downward as we

increase the initial background plasma temperature to 10eV, 100eV , and 1keV

(vth = 0.00442c, 0.0140c, and 0.0442c, respectively). The curvature is almost

completely gone when Te = 100eV , and has reversed when Te = 1keV .

We note that this wake curvature effect seen in Figure 5.3 may only occur in

cold, classical plasmas. In our simulations, the upward concavity disappears by

T = 100eV . In an electron plasma with n0 = 1026, the Fermi energy [Kar07]
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Figure 5.7: 2D slices of Ez of a wake in OSIRIS for 10eV, 100eV , and 1keV plasma

temperatures on the left, center, and right, respectively. The upward curvature

turns downward as the plasma heats up.

Ef = 790eV , where

Ef =
~2

2me

(3π2n0)3/2. (5.7)

By the time the plasma enters the classical regime, T � Ef , the concavity has

reversed. Studies of other densities, along with a quantum mechanical study are

necessary to determine if this effect will occur in other regimes.

To summarize, we have seen that the nonlinear or not linear motion of plasma

particles causes the upward concavity of the particle wake during the first oscilla-

tion. This nonlinear motion transfers radially outward during successive oscilla-

tions, causing the wake to spread. Increasing the plasma temperature, and thus

the group velocity, causes the curvature to disappear, and the curvature turns

downward, like we saw in Chapter 3, when the temperature is high enough. We

also believe the deviation from linear oscillations may be due to discreteness ef-

fects. As we make ∆/∆0 (particle size to interparticle spacing) very small, we see

the oscillations near the axis are much faster than linear oscillations seen for the

outer electrons. Understanding this behavior is an are for future work. In the

next chapter, we will finally see how the wake causes correlated stopping to differ

from single-particle stopping.
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CHAPTER 6

Correlated Electron Stopping in Fast Ignition

Plasmas

6.1 Introduction

Electron beam stopping power plays a critical role in Fast Ignition (FI) [THG94,

AV09, ASB07, STL12], and can be the determining factor in whether or not a

target ignites. In FI, lasers are used to compress a spherical pellet of deuterium

and tritium fuel, as in central hot-spot inertial confinement fusion. However, the

compression stage in FI only creates the densities required for ignition, and does

heat the core enough to start fusion burn. After compression, a high-intensity

short-pulse laser is fired at a point on the target (or into a gold cone), as in

Figure 6.1. The overdense laser-plasma interactions need to produce a beam of

energetic (3-5 MeV) electrons, which travel into the deuterium-tritium core of the

target. As these electrons slow down inside the dense core, they heat it, initiating

thermo-nuclear burn. Under the right conditions, once the fusion process starts,

it will lead to a self-propagating burn wave, which we call “ignition.” Assuming

a properly assembled and compressed target, the primary determining factor in

whether or not a target ignites is the energy that the electron beam deposits into

a local region of the core. Because the electron beam stopping power is a critical

factor in this energy deposition process, it is also a critical factor in the feasibility

of the FI concept.

Current calculations and fluid simulations of FI use the single-electron stopping
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Hot Spot 
r ~ 20µm	


Eig~10-100kJ 

Core 

450 g/cm3 

Laser MeV 
Electrons 

Figure 6.1: The Fast Ignition concept. After the compression stage, a high-inten-

sity short-pulse laser hits the pellet of the compressed fuel, creating a beam of

energetic electrons. As the electrons slow down in the core, they heat it, starting

the ignition process.

power given by the QED stopping formula, derived in Section 4.6, for each electron

in the beam. Such studies predict that 1-3 MeV electrons are required. However,

the lasers needed to generate the electron beam intensity required for ignition

also will have high intensity and will therefore produce electrons with energies in

the 10-30 MeV range. As we noted earlier, a part of the stopping power can be

viewed as the energy lost by the particle as it excites the wake, or equivalently, the

backward force on the electron from the electric field in the wake at the position

of the particle. These aforementioned simulations ignore the fact that electrons

can interact with the wakes made by earlier electrons. This interaction can affect

the stopping power of electrons later in the beam that are inside the wake. We

call this interaction and its effect on stopping power “correlated stopping.” The

effect has been studied extensively in the field of ion beam stopping [Ari78, BA95,

BA96, Ari00, MWS07], where it is known as the “vicinage effect,” but it has been
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largely ignored by those studying electron stopping, aside from References [BD08,

DF99], which ignore beam electron dynamics. Some groups have studied stopping

power enhancements in the Fast Ignition scenario due to fluid instabilities [MF02].

However, these studies are performed using a fluid description, which cannot be

applied to electron beams in the core of current Fast Ignition target designs due

to the “low” beam density. In this Chapter, we present results demonstrating

that processes similar to these fluid instabilities occur outside the regime where

a fluid description applies. We emphasize that, in our studies, the inter-particle

spacing of the beam electrons can be much larger or on the order of the wake

wavelength and spot size, i.e. ≥ 1c/ωpe. In this regime, the fluid description is

not accurate and the interaction between individual wakes is important. We show

that this correlation effect is significant even outside the fluid regime, and almost

always leads to an increase in stopping power in cold plasmas, with enhancements

in excess of 100 in some circumstances.

The increased stopping power is significant because the short-pulse laser en-

ergy required for ignition is inversely proportional to the square of the stopping

power under ideal circumstances [STL12]. This dependence can be seen by con-

sidering optimal parameters given by Atzeni et al. [ASB07]. While recent work

by Tonge et al. [TMM09] and May et al. [MTE14] shows that this calculation is

overly simplistic, the final formula does offer a guide to the relationship between

electron stopping power and other parameters, such as short-pulse laser energy

and intensity. The electrons are generated by a laser with pulse length topt and

are incident on a hot-spot with penetration depth ρδzopt and radius ropt. The laser

has a peak intensity I0L and the electron beam has an intensity I0f . We assume

that the electron beam is perfectly collimated and has a spectrum described by

ponderomotive scaling [WKT92], giving a temperature Tp = (
√

1 + a2
0 − 1)mec

2,

where a0 = eE0L

meω0c
is the normalized vector potential of the laser. The beam elec-

trons have an average energy 〈E〉 and lose EDT each as they pass through the
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hot-spot. Given these parameters, if the beam delivers Estop to the hot-spot, then

it must start out with

Efast =
E2
stop

αI0S

, (6.1)

where α = πr2
opttopt and I0S is a scaling factor given by

I0Sλ
2
0 = 13.7GW

[
I0f

I0L

EDT
mec2

Tp
〈E〉

]2

. (6.2)

Given that EDT appears in the denominator of Equation 6.1 and is directly pro-

portional to the electron stopping power, we can clearly see that the required

beam energy is inversely proportional to the square of the stopping power and

directly proportional to the square of the average energy of the beam electrons.

Stated another way, less energy is needed if the stopping power increases, and

more energy is needed if each electron has too much energy.

6.2 Simulation Codes, Parameters, and Simplifying As-

sumptions

We perform the correlated stopping simulations using QuickPIC, which is a PIC

code that uses a quasi-static approximation. The approximation assumes that the

beam evolves on a time-scale much slower than the time required for the beam to

pass by a plasma particle. The main requirement is that the beam particles all

move near the speed of light in the same direction. For details about QuickPIC

and the quasi-static approximation, see Appendix A.

QuickPIC proved to be the best code for our simulations because it has a

Galilean moving window at c and includes non-radiative electromagnetic fields,

but does not include radiative fields, so it is not subject to numerical Čerenkov

radiation. The moving window causes the box to move with the beam, allowing

for simulations of beam propagation over large time- and space-scales. The field

solver includes some retardation effects associated with causality. The fields in
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front of the relativistically moving test charge vanish. However, the field solver

does not include radiation effects. There are some similarities to non-radiative

Darwin solvers [KR71, NL76, BL85]. The ddcMD code used in Chapter 3 is not

appropriate because it is electrostatic and thus does not include field retardation

effects needed for causality (the fields extend in front of the particle). Finally,

numerical Čerenkov radiation, discussed in Section 4.7.2, prevented us from using

finite-difference EM PIC codes at the time. Numerical Čerenkov radiation was

the final impetus for moving to QuickPIC, which does not suffer from the effect.

Given these three requirements, QuickPIC proved to be the best tool available,

and we use it for all simulations in this chapter except for one instance, where we

use OSIRIS. We note that there has been much recent work on both controlling the

numerical Čerenkov instability as well as minimizing numerical Čerenkov radiation

of single electrons [LLT13]. Codes such as OSIRIS can now be used to extend the

results in this Chapter.

The assumption that the beam electrons are all moving in the same direction

is one of many simplifications we have made in our study. This uniform direc-

tion of travel is an important point because electron beams in FI usually have

a significant divergence [RTT06, SSA04]. Other simplifications include ignoring

all quantum mechanical effects, the effect of background plasma temperature, bi-

nary encounters with plasma particles on distances smaller than the cell size, and

beam temperature. We briefly touch on possible consequences of non-zero plasma

temperature in Section 6.3.

The baseline parameters for the correlated stopping simulations are in Table

6.1. The plasma electron density is chosen to match the density in the core of a

FI target with a core mass density of 450g/cm3. As in our earlier simulations, for

both the beam and plasma particles, a single particle in QuickPIC represents a

single physical particle, with the caveat that QuickPIC uses a 2D plasma slice. We

use these parameters in all correlated stopping simulations in this chapter unless
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QuickPIC Simulation Parameters

n0 1026 cm−3

Te 0 (cold)

Box Dimensions 41.5150 c
ωpe
× 41.5150 c

ωpe
× 83.03 c

ωpe

Box Cells 1024× 1024× 2048 for ∆0 = 0.0405 c
ωpe

dt 10ω−1
pe

Beam Electron ~P0 10mecẑ

Transverse Boundaries Conducting, Reflecting

Table 6.1: Baseline parameters for the QuickPIC correlated stopping simulations.

stated otherwise.

6.3 Betatron Motion

For relativistic electrons, the speed of each electron and the phase velocity of their

wakes are all near the speed of light. In addition, due to their large mass, the ions

do not move for many oscillations within each wake. As a result, we can use the

simulated single-electron wake at one instance in time to study the dynamics of

another electron inside the wake by assuming that the phase velocity of the wake

does not change.

To study the electron motion, we developed a MATLABr [MAT12] script

that uses the fields from a QuickPIC simulation to calculate the motion of a beam

of electrons inside a wake. This script allows us to study the trajectories of many

separate electrons without performing an equal number of QuickPIC simulations.

In this section, we use the QuickPIC wake from Section 5.2.

We compare the motion of a beam electron in the wake as calculated by Quick-

PIC and MATLAB in Figure 6.2. The tracks are plotted over the wake’s focusing

field. The beam electron under examination starts with ~P0 = 10mecẑ, and the sim-
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Figure 6.2: Betatron motion of an electron in a wake as calculated using QuickPIC

(yellow line) and a MATLAB script (black line). The electron starts at the blue

dot and its tracks are plotted over the focusing field.

ulations are run for 3500/ωpe. Curiously, the QuickPIC track has some “jumps”

in it, which we do not currently understand. While the agreement between the

script and QuickPIC is not perfect, it is good enough for rough studies of electron

motion. The discrepancy (excluding jumps) is due to the difference between the

y axis being z − ct or z − v0t, where v0 is the initial speed of the particle.

To observe the motion of beam electrons in different parts of the wake, we

perform five runs using the MATLAB script with a beam electron staring in a

different position each time. We also note that, in reality, the wake is also moving

relative to the particle, so the fields are not “static,” which is assumed when

calculating tracks using the MATLAB script. We again start each electron with

~P0 = 10mecẑ, and run the script for 20, 000/ωpe each time. The result, with the

tracks imposed over both the longitudinal and focusing fields, is plotted in Figure

6.3. As we expect based on examining the focusing field, some electrons move

into the wake (focused) and oscillate while others are pushed out of the wake

(defocused). Most interesting is the electron that starts lowest on the plot, which
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Figure 6.3: Betatron motion of five independent electrons in a QuickPIC wake as

calculated using the MATLAB script. The tracks are imposed over the longitu-

dinal field on the left and over the focusing field on the right. The bright green

dots near the top of the plots represent the position of the electron producing the

wake.

begins to move out of the wake, but is pushed up by Ez (a negative Ez accelerates

the electron), and then turns back in to the left, transitioning from a defocusing

phase to a focusing phase. The motion we see in these tracks is the reason why

we need to consider electron dynamics in our correlated stopping studies.

The electrons that become trapped in the wake oscillate both transversely and

longitudinally. The transverse oscillations are referred to as betatron oscillations

in particle accelerators. We use the MATLAB script to calculate the motion of

a beam electron trapped in the wake along with the change in Fz (δFz) due to

the trapping wake over an oscillation cycle, until it returns to near its relative

starting point in z. The results are plotted in Figure 6.4. While δFz due to the

wake is asymmetric about zero during the cycle, due to |min(δFz)| > |max(δFz)|,
δFz time-averages to zero. This fact must be true because the trapped electron

finishes the cycle very near to its starting position. This zero time-average force

results from the static nature of the wake, i.e., the total force on the particle in the
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Figure 6.4: The path of a beam electron during a complete oscillation cycle,

returning to its starting point, inside the wake produced by another beam electron,

is on the left. The change in Fz during the cycle experienced by the electron due

to its presence inside the wake is plotted on the right.

frame of the wake depends on a single conservative potential ψ. Therefore, any

increase in stopping power results from the non-static character of the wake of an

electron beam with multiple particles due to correlation effects, or the dynamical

change in the wake from a background plasma, or nonlinear frequency shifts.

Our study of betatron motion has used a cold plasma so far, so we briefly

consider the effects of background temperature on the motion. We know from our

studies in Chapter 3 that the amplitude of background fluctuations can exceed

the amplitude of the wake. Therefore, we can expect that, above a certain tem-

perature, the wake of a single beam electron will not be enough to trap another

beam electron.

We examine the effect of temperature on the transverse and longitudinal sep-

aration between two beam electrons, with one trapped in the wake of another,

using OSIRIS. The simulation parameters are the same as those we used in the

QuickPIC simulation, with the differences being a fourth-order finite-difference

field solver and dt = 0.02/ωpe. While unphysical numerical Čerenkov radiation

precludes a study of stopping power using this solver, as discussed in Section

138



4.7.2, it does not prevent a study of the wake behind the particle. The wakes we

see at t = 100/ωpe in the simulation with a 1keV background temperature are

shown in Figure 6.5 along with the background Ez field, where we have used the

subtraction technique described in Section 3.4 to view the wake. The transverse

and longitudinal separations between the two beam particles are plotted in Figure

6.6 for four different background temperatures. Clearly, the trailing beam elec-

tron is trapped when the plasma is cold. The wake has less of an effect as we

raise the temperature to just 10eV, and the trailing electron is almost completely

de-trapped at 100eV. At 1keV, we can see that the wake has no effect. If we

had decreased the initial transverse separation of the particles, we expect that

the lack of trapping would have occurred at a higher temperature. Oddly, the

longitudinal separation oscillates as we increase the temperature, which is likely

due to the longitudinal waves in the background Ez field, which are caused by

the particle boundary conditions of the moving window. Despite this issue, these

simulations clearly show that temperature plays an important role, and any corre-

lated stopping effects at higher temperatures will require the interaction of wakes

from several beam electrons. This will be an area for future work.

6.4 Beam Scaling Parameter

In the correlated stopping simulations, we will see that the electron beam density

is a determining factor in the effect of correlated stopping. Given the length scale

of the wake, c/ωpe, it is natural to similarly scale the beam density. We define

the number of beam electrons in a cubic skin depth, Nb = nb(c/ωpe)
3, where

nb is the beam density in unscaled units. Nb for a range of beam and plasma

densities is plotted in Figure 6.7, where, for understanding the results of Fast

Ignition scenarios, the densities are scaled to the laser critical density, nc, and

Nb is scaled to the number of plasma electrons in a cubic skin depth at the laser
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Figure 6.5: The Ez fields at t = 100/ωpe for the 1keV OSIRIS simulation used to

study beam electron motion in a thermal plasma. The subtracted field is on the

left, showing the wakes, with the blue dots at the start of the wakes representing

the beam electron positions. The unsubtracted field is on the right.
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Figure 6.6: The motion of one beam electron in another’s wake in OSIRIS simula-

tions with various background temperatures. The transverse separation vs. time

is on the left and the longitudinal separation on the right. The (blue, green, red,

black) line corresponds to a simulation with a background temperature of (0eV,

10eV, 100eV, 1keV).
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critical density, Nc.

6.5 Relativistic Fluid Streaming Instabilities in 1D

Although the fluid equations cannot accurately describe the physics in many of

our simulations, streaming instabilities derived from them do help explain two

trends we observe in Sections 6.8 and 6.9. In particular, we observe two distinct

stopping power growth rates at different times in some simulations, and we also

observe fluid-like instabilities occurring more rapidly with distance from the front

of the beam. The fluid description of streaming instabilities explains both of these

observations.
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We consider two fluid-type streaming instabilities. One is due to longitudinal

bunching and the other transverse focusing. We derive the longitudinal bunching

streaming instability in this Section and cover transverse focusing in Section 6.6.

We start with the linearlized fluid equations along with Poisson’s equation for the

beam and plasma electrons. The fluid equations for the plasma are

∂δvp
∂t

= −eEz
me

(6.3)

∂δnp
∂t

+ n0
∂δvp
∂z

= 0, (6.4)

where δnp and δvp are the plasma density and velocity perturbations, respectively.

The fluid equations for the beam must be written relativistically. The linearized

continuity equation for the beam requires no special treatment, and is

∂δnb
∂t

+ nb
∂δvb
∂z

+ c
∂δnb
∂z

= 0, (6.5)

where nb is the initial beam density, and δnb and δvb are the beam density and

velocity perturbations, respectively. The momentum equation must be calculated

relativistically before linearization. For the 1D instabilities where ~vb = vbẑ, we

have

∂pb
∂t

+ vb
∂pb
∂z

= −eEz
∂γbvb
∂t

+ vb
∂γbvb
∂z

= −eEz
me

γ3
b

(
∂vb
∂t

+ vb
∂vb
∂z

)
= −eEz

me(
∂vb
∂t

+ vb
∂vb
∂z

)
= − eEz

γ3
bme

, (6.6)

where pb is the beam momentum and γb is the beam Lorentz factor. Linearizing

and assuming that vb ≈ c results in

(
∂δvb
∂t

+ c
∂δvb
∂z

)
= − eEz

γ3
bme

. (6.7)

The evolution of the electric field is described by Ampere’s Law and Gauss’s Law.
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Assuming overall charge neutrality,

∂Ez
∂t

= −4πen0δvp + 4πenbδvb + 4πenbvb (6.8)

∂Ez
∂z

= −4πe(δnp + δnb). (6.9)

We can put the equations we have derived so far into a more useful form by

combining them. We take the convective derivative of Equation 6.5 and substitute

in Equation 6.7 followed by Equation 6.9.
(
∂

∂t
+ c

∂

∂z

)2

δnb = −nb
∂

∂z

(
∂

∂t
+ c

∂

∂z

)
δvb

(
∂

∂t
+ c

∂

∂z

)2

δnb =
nbe

γ3
bme

∂Ez
∂z

(
∂

∂t
+ c

∂

∂z

)2

δnb = −4πnbe
2

γ3
bme

(δnp + δnb)

(
∂

∂t
+ c

∂

∂z

)2

δnb +
ω2
pb

γ3
b

δnb = −
ω2
pb

γ3
b

δnp, (6.10)

where ωpb is the beam plasma frequency. We then take the time derivative of

Equation 6.4 and substitute in Equation 6.3 followed by Equation 6.9.

∂2δnp
∂t2

= −n0
∂

∂z

∂δvp
∂t

∂2δnp
∂t2

=
en0

me

∂Ez
∂z

∂2δnp
∂t2

= −4πe2n0

me

(δnp + δnb)

∂2δnp
∂t2

+ ω2
peδnp = −ω2

peδnb. (6.11)

We now make the same change of variables as we use in Sections A.2 and A.3

for the quasi-static approximation in QuickPIC. We define s ≡ z and ξ ≡ ct− z.

The derivative transforms are

∂

∂z
=

∂

∂s
− ∂

∂ξ
(6.12)

and
∂

∂t
= c

∂

∂ξ
. (6.13)
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Using this transformation, Equations 6.10 and 6.11 become
(
∂2

∂s2
+
k2
pb

γ3
b

)
δnb = −

k2
pb

γ3
b

δnp (6.14)

and (
∂2

∂ξ2
+ k2

pe

)
δnp = −k2

peδnb, (6.15)

respectively, where kpj ≡ ωpj/c. These are two coupled harmonic oscillator equa-

tions. The beam oscillates in s and the plasma in ξ.

Using these equations, we consider the evolution of the beam due to longitu-

dinal bunching under two conditions, the long-pulse, short propagation distance

limit, and the short-pulse, long propagation distance limit. Analogous equations

have been studied extensively in laser-plasma interactions [Mor97]. Under the

long-pulse limit, we assume that the fast variation occurs in ξ (the oscillations

in ξ remain resonant), so δn = n̄(ξ, s)eikpeξ. With this enveloping, Equation 6.15

becomes
(
∂2

∂ξ2
+ k2

pe

)
n̄pe

ikpeξ = −k2
pen̄be

ikpeξ

(
∂2n̄p
∂ξ2

+ 2ikpe
∂n̄p
∂ξ
− k2

pen̄p + k2
pen̄p

)
eikpeξ = −k2

pen̄be
ikpeξ

2ikpe
∂n̄p
∂ξ

≈ −k2
pen̄b, (6.16)

where we have assumed that |∂n̄p
∂ξ
| � kpen̄p. Equation 6.14 becomes

∂2n̄b
∂s2

= −
k2
pb

γ3
b

n̄p, (6.17)

where we have assumed that |∂n̄b
∂s
| � kpb

γ
3/2
b

n̄b (the oscillations in s are strongly

driven and non-resonant). Taking ∂2/∂s2 of Equation 6.16 and substituting in

Equation 6.17, our final differential equation becomes

∂2

∂s2

∂n̄p
∂ξ

= − i
2

kpek
2
pb

γ3
b

n̄p. (6.18)

Equation 6.18 does not have a closed form solution, but we can derive an

asymptotic solution. We first make a Fourier transform in ξ and define Γ =
kpek2pb
γ3b

,
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so that
∂2

∂s2
ikξñp = −iΓ

2
ñp. (6.19)

Equation 6.19 is just a simple harmonic oscillator. The solution is

ñp(s) = A exp

(
i

√
Γ

2kξ
s

)
+B exp

(
−i
√

Γ

2kξ
s

)
. (6.20)

We continue forward with the second term. Performing the inverse Fourier trans-

form,

n̄p ∼
∫ ∞

−∞
dkξ exp

(
−i
√

Γ

2kξ
s

)
exp (ikξξ) . (6.21)

To approximate this integral, we could use saddle point integration (method of

steepest descents) [AWH13, Mor97]. However, the leading term in the asymp-

totic expansion can be obtained quickly by using instead the stationary phase

approximation. Under this approximation, we Taylor expand the phase around

the stationary point, and pull the first term out of the out of the integral. Letting

φpha(kξ) = −
√

Γ
2kξ
s+ kξξ, the phase is stationary when

∂φpha(kξ)

∂kξ
= 0 =

1

2

√
Γ

2

s

k
3/2
ξ

+ ξ, (6.22)

or

1√
k0ξ

=

(
1

2
+ i

√
3

2

)(
2ξ

s

√
2

Γ

)1/3

k0ξ =

(
−1

2
+ i

√
3

2

)(
s

2ξ

√
Γ

2

)2/3

, (6.23)

Where we have taken the appropriate cube root of -1. Plugging Equations 6.23

into 6.21 to obtain the first term of the expansion yields

n̄p ∼ exp

[(√
3

4
− 3i

4

)
Γ1/3ξ1/3s2/3

]
. (6.24)

Plugging in for Γ, the non-enveloped δnp evolves asymptotically as

δnp ∼ exp



(√

3

4
− 3i

4

)
(kpeξ)

1/3

(
kpb

γ
3/2
b

s

)2/3

 eikpeξ. (6.25)
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Equation 6.25 clearly exhibits the exponential growth in time (s) and also demon-

strates that the instability growth rate increases with distance from the head of

the beam, as we observe with the long beams in Section 6.9.

We now consider the short-pulse, long propagation limit. In this limit, we

assume that the fast variation occurs in s (the s oscillations are resonant), so that

δn = n̄(ξ, s)eikpbs/γ
3/2
b . With this new enveloping, we see ξ and s switch places in

the derivation, along with kpe and kpb/γ
3/2
b . Equations 6.15 and 6.14 then become

∂2n̄p
∂ξ2

≈ −k2
pen̄b

2i
kpb

γ
3/2
b

∂n̄b
∂s

≈ −
k2
pb

γ3
b

n̄p, (6.26)

leading to the combined equation

∂2

∂ξ2

∂n̄p
∂s

= − i
2

k2
pekpb

γ
3/2
b

n̄p. (6.27)

The math is almost identical to before, leading to

δnp ∼ exp



(√

3

4
− 3i

4

)
(kpeξ)

2/3

(
kpb

γ
3/2
b

s

)1/3

 exp

(
i
kpb

γ
3/2
b

s

)
. (6.28)

This new equation exhibits the exponential growth that is present in the long

beam limit, and again the growth increases with distance from the front of the

beam. However, the exponents on kpeξ and
kpb

γ
3/2
b

s have flipped. The overall growth

rate for the beam is slower.

These two limits can be viewed as parts of a process that occurs for a single

beam. Early in time, the beam propagates a short distance relative to its own

length, with its evolution described by Equation 6.25. As the beam propagates

further into the plasma, the distance it has covered eventually becomes much

greater than the length of the beam, moving the beam into the short-pulse long

propagation distance limit, with its evolution described by the slower growth rate

of Equation 6.25. We see this transition occur in our simulations in Sections 6.8

and 6.9.
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6.6 Transverse Beam Self-Modulation

When we examine the evolution of long beams in Section 6.9, we will see that

the electrons in the focusing regions of the wake will bunch both transversely and

longitudinally with time, while the electrons in the defocusing regions spread out.

The time-evolution of the focusing and spreading leads to a spot-size modulational

instability, which has been studied extensively in plasma-based accelerators. We

use an analysis performed by Weiming An as part of his Ph.D. research [An13].

This analysis is for a single Gaussian beam. In FI, the beams are very wide, and

a wide beam breaks up into many Gaussian beams. We briefly cover the primary

results of his work in this Section.

We assume that the beam has a Gaussian transverse profile,

ρb =
qbΛb

R2
exp

(
−x

2 + y2

2R2

)
, (6.29)

where qb is the charge of a beam particle, Λb is the beam number density per

unit length, and R =
√
< x2 > =

√
< y2 > is the transverse spot size, where the

wedge brackets indicate an average over all of the beam particles. The evolution

of the spot-size is described by an envelope equation,

∂2R

∂s2
− qb < xWx >

γbmbc2R
− ε2N
γ2
bk

2
peR

3
= 0, (6.30)

where Wx is the transverse focusing field ∇⊥ψ, γb is the beam particle’s Lorentz

factor, and εN = γbkpe
√
< x2 >< x′2 > − < xx′ >2 is the normalized beam emit-

tance, where x′ = dx/ds.

The equation for ψ can be derived from Equation 4.24. Using the fact that

Ez = −∂ψ/∂z, we have

(∇2
⊥ − k2

pe)ψ = −4πeδnp. (6.31)

For wide beams, where ∇2
⊥ψ � k2

peψ, it follows that

δnp =
k2
pe

4πe
ψ. (6.32)
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Plugging this Equation into Equation 6.15 yields

(
∂2

∂ξ2
+ k2

pe

)
ψ = −4πρb. (6.33)

To find the evolution of the envelope, we work with wide beams and in the

long-beam limit, so that ψ will evolve adiabatically. Under this condition, we can

perturb the beam about an equilibrium state, Λb =
mbc

2ε2N
πq2bγb

. We let R = R0 + R1

and ψ = ψ0 +ψ1, where 0 indicates an equilibrium and 1 indicates a perturbation,

and R0 � R1 and |ψ0| � |ψ1|. Using Wx = −∂ψ1/∂x, then,

∂2R1

∂s2
+

2ε2N
γ2
bk

2
peR

3
0

R1

R0

= −qb < x∂ψ1/∂x >

γbmbc2R0

(6.34)

and
∂2 < x∂ψ1/∂x >

∂ξ2
+ k2

pe < x∂ψ1/∂x >= −2mbc
2ε2N

qbγb

R1

R3
0

. (6.35)

We define M1 =
qbγbk

2
peR

3
0<x∂ψ1/∂x>

2mbc2ε
2
N

and k2
S =

2ε2N
γ2b k

2
peR

4
0
, transforming Equations 6.34

and 6.35 into

∂2M1

∂ξ2
+ k2

peM1 = −k2
peR1

∂2R1

∂s2
+ k2

sR1 = −k2
sM1. (6.36)

These equations have the same form as those in Section 6.5 and also are essentially

the general form for streaming instabilities. We now assume that M1 takes the

form M1 = M̄1e
−ikpeξ + c.c., where c.c. denotes the complex conjugate. Similarly,

R1 = R̄1e
−ikpeξ+c.c. We assume that ∂M1/∂ξ � kpeM1 and that ∂R1/∂s� ksR1.

We can then write
∂

∂ξ

∂2R̄1

∂s2
=
i

2
k2
skpeR̄1. (6.37)

As in Section 6.5, we find an asymptotic solution to Equation 6.37 using the

method of stationary phase,

R1 = R̄1e
−ikpeξ ∼ exp

[(
3
√

3

4
+

3i

4

)
(kss)

2/3(kpeξ)
1/3

]
e−ikpeξ. (6.38)
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This Equation clearly tells us that the amplitude of the spot size modulations grow

as the beam moves forward through the plasma and that the growth increases from

head to tail, as we will see in Section 6.9.

6.7 A Beam of 125 Electrons with Various Densities

We next carry out QuickPIC simulations of correlated stopping. As a starting

point in our study of correlated stopping, we examine 125 beam electrons inside

a cubic space, all starting with ~P0 = 10mecẑ. We perform multiple simulations,

and vary Nb between 1/64 and 1,000. For reference, N0 ≡ n0(c/ωpe)
3 = 1.5× 104

at n0 = 1026cm−3. Therefore, for the largest Nb we use, nb/n0 = 4.3 × 10−3. If

nb = nc for 1µm light, then nb/n0 = 10−5 and Nb = 0.13. For each value of Nb, we

perform a single run where all 125 beam electrons are on a lattice, and 16 where

they are placed between zero and ±1/2 of the average electron separation from

their lattice centers in each Cartesian direction. In all the simulations, we see the

average stopping power increase with time except for the runs with Nb = 1/27

and 1/64. We also note that, because we only used 125 beam electrons, the initial

dimensions of the beam decrease from 20c/ωpe on each side when Nb = 1/64 to

0.5c/ωpe when Nb = 1, 000.

6.7.1 One Beam Electron Per Cubic Skin Depth

The simple case of 125 beam electrons with Nb = 1 offers significant insight into

electron beam dynamics. In particular, the simple lattice case illustrates both

longitudinal and transverse bunching. We note that their effects can occur in

the fluid limit, where they are commonly known as the beam-plasma instability

[DMO70, GR71] and self-focusing [RSC89, RSC90], respectively, the former of

which is related to the two-stream instability [Bun59, Sha63, OWM71], and the

latter of which is related to the filamentation instability [TRT06, DHH72, LL73].
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The filamentation instability operates through a mechanism similar to the Weibel

instability [Wei59], and the two names are sometimes (incorrectly) used inter-

changeably. Past work has suggested that density gradients in Fast Ignition tar-

gets can be arranged to exploit these instabilities and decelerate ultrarelativistic

electrons in the target core [MF02]. In our studies, particularly when Nb / 1, the

fluid description is inaccurate and discrete interactions with wakes are important.

However, we show that longitudinal and transverse bunching occur for Nb ' 1/8.

The simplest simulation we perform starts with the beam electrons on a 5×5×5

lattice, as plotted in Figure 6.8. The forces at that time are in Figure 6.9 along

with the Ez field, illustrating how the wakes interfere and affect the forces. The

plot of the forces shows that some beam electrons will be accelerated while others

are decelerated, bringing the electrons closer together longitudinally, which is the

mechanism of the beam-plasma instability. Some forces are also pointing inward,

and while these transverse forces oscillate due to betatron motion, they eventually

cause filamentation. These features are present in most other beams we examine,

although the beam self-focuses rather than filaments in these other simulations.

The evolution of the forces can be seen in Figure 6.10. By t =3,005/ωpe, some

of the longitudinal forces have greatly decreased or reversed, but filamenation

isn’t yet apparent. At t =6,895/ωpe, we can see that the electrons have bunched

together both longitudinally and transversely, resulting in much greater forces

in −ẑ, which corresponds to a much greater stopping power, averaged over all

electrons. The evolution of this stopping power is plotted in Figure 6.11, where

it starts out less than the single-electron stopping power and shows a steady

exponential growth with time.

The evolution of the stopping power changes when we randomly displace the

initial positions of the beam electrons from their lattice centers, as plotted in

Figure 6.12. The displacement in each Cartesian direction is a random number

generated from a uniform distribution with a range of [-1/2 1/2) times the inter-
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Figure 6.8: The 125 lattice beam electrons at t = 5/ωpe with Nb = 1.
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Figure 6.9: The relative forces on the 125 lattice beam electrons at t = 5/ωpe with

Nb = 1 are on the left. On the right, the forces are plotted over the Ez field in a

slice across the middle of the box in y.
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Figure 6.10: The relative forces on the 125 beam electrons for the lattice case

with Nb = 1 are plotted on the left and right at t =3,005/ωpe and 6,895/ωpe,

respectively.
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Figure 6.11: The stopping power for many different electron configurations, all

with Nb = 1, averaged over all the beam electrons and plotted as a multiple of

the single-electron stopping power. The horizontal dashed black line is the single–

electron stopping power. The dashed purple line is the lattice case, and all other

lines are for simulations where the electrons are initialized with random deviations

from their lattice centers. The shaded areas represent the standard deviation for

lines of the same color. On the right, there are 16 solid lines, corresponding to 16

different simulations.
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Figure 6.12: The electron beam configuration at t = 5/ωpe with the electrons

displaced random distances from their lattice centers.

particle spacing. We use the native PythonTM [Pyt12] random number generator,

which implements the Mersenne Twister algorithm [MN98] and is initialized with

the operating system’s randomness source. Using these random displacements,

we see in Figure 6.11 that the stopping power starts near that of a single elec-

tron and grows very quickly. In these simulations, the electrons rapidly bunch

transversely, and the initial growth in stopping power is faster than exponential.

As the simulations evolve further, transverse and longitudinal spreading and re-

bunching cause the stopping power to continue changing and to oscillate slightly.

Eventually, the bunches spread apart transversely, starting at the tail of the beam,

causing a steady decrease in stopping power.

A final factor worthy of investigation with this configuration is the cell width.

We saw in Section 4.7.3 that changing the cell width (particle size) changes the

stopping power for an individual electron. However, we do not expect the corre-

lated stopping to depend on the particle size if many electrons are involved. We
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Figure 6.13: A comparison of the correlated stopping power between ∆ = ∆0

and ∆0/2. with a decreased cell width. The stopping power is plotted as a

multiple of the single-electron stopping power when ∆ = ∆0/2. The (dashed

blue, dashed-dotted green) and (solid red, dotted magenta) lines are the lattice

and random placement cases for a cell width of (∆0, ∆0/2), respectively. The

shaded areas represent the standard deviation for lines of the same color. The

horizontal (dash-dotted gray, dashed black) line is the single-electron stopping

power for ∆ = (∆0, ∆0/2).

decrease the cell width by half to ∆0/2 and perform two simulations, one with the

lattice case and one with a random placement case. These beam electron config-

urations are the two we use in the left plot in Figure 6.11. As we see in Figure

6.13, the smaller cell width does make a slight difference, but given the chaotic

nature of the problem and the significant increase in computation requirements,

it is not worth using in the majority of our studies.

The results of changing the cell width also indicate that the correlation effects

are additive rather than multiplicative, i.e., it depends on NeNe/Nme ∼ Ne2/me.
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Therefore, the single-electron stopping power does not matter much when studying

correlated stopping. This result is not very surprising since correlated stopping

is a wake effect, and wakes are largely independent of cell width except within a

couple cell widths from r = 0, as we discussed in Section 5.2. We can also use this

fact to bound the multiplicative effect of correlated stopping relative to classical

stopping powers, which we do later.

The simulations with 125 beam electrons with Nb = 1 have demonstrated that

correlation effects increase stopping power via discrete particle-like beam-plasma

instabilities including filamentation or self-focusing and the beam-plasma-like in-

stability. The growth is much more rapid when the electrons are placed a random

distance from their lattice centers than in the lattice case. The faster growth is

due to a larger noise source for the instabilities to grow from. Decreasing the

cell width changes the evolution of the stopping power a little, but not enough to

justify using a smaller cell width as we move forward with more complex simu-

lations. This simple case has illustrated the mechanisms of correlated stopping,

and we will now see how correlated stopping affects stopping power as we vary

the density and size of the beam.

6.7.2 Various Beam Electron Densities

As we vary the beam electron density, we expect the stopping power to vary as

well. If we start the 125 electrons closer together, the tighter bunch will result

in more constructive interference of the wakes, and the natural longitudinal and

transverse bunching will further enhance the stopping power. In addition, if we

keep the number fixed but decrease the spacing such that Nb � 1, then all the

beam electrons will be in the same phase of the wake as the first beam electron. In

contrast, starting the electrons farther apart can prevent bunching from occurring

at all, preventing any correlation effects except in the lattice case. We now examine

simulations with various initial electron separations to observe the impact on
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Figure 6.14: For various initial electron beam densities using 125 electrons, the

average stopping power for the lattice cases is plotted on the left, and the stop-

ping power averaged across all 16 random placement runs is plotted on the right.

The (line style, Nb) pairs are (dash-dotted yellow, 1/64), (dashed black, 1/27),

(solid blue, 1/8), (dotted green, 1), (dash-dotted red, 8), (dashed cyan, 64), (solid

magenta, 1,000). The shaded areas represent the standard deviation for lines of

the same color.

stopping power, and see that the maximum stopping power increases to 90 ± 50

times the single-electron stopping power for Nb = 1, 000.

In Figure 6.14, for each initial beam electron separation, we plot the stopping

power of the lattice case and the stopping power averaged over all 16 random

placement cases. As the initial electron separation decreases, the stopping power

peaks at a higher value and occurs earlier in time. The early stopping powers

from the random placement and lattice cases also move into closer agreement.

This convergence occurs because, when all the electrons are placed in the same

phase of the wake, no noise source is needed before correlation effects are present.

One caveat is the transverse spreading of the beam, especially with the higher

values of Nb. For large Nb and fixed beam electron number, all the electrons reside
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in the decelerating part of the total wake, slowing down significant numbers in the

beam. These decelerated beam electrons then phase slip to the defocusing region,

causing the beam to blow apart. Some beam electrons hit the conducting wall

and bounce off it. This reflection leads to the rapid wiggles in the stopping power

of some of the lattice runs. In the next Section, we increase the number of beam

electrons as Nb increases to reduce the artificial seeding of correlation effects. This

change will prevent all of the electrons being bunched into the decelerating phase

of the wake when Nb is large.

We provide bounds for the effect of correlated stopping in Figure 6.15 using

the maximum measured stopping powers. We use the single-electron stopping

power from QuickPIC to provide the upper bound since it lies below the results

from all the stopping power formulas (we plot the ratio of stopping power to the

single-particle result). The Bohr formula provides a lower bound since it provides

the greatest single-electron stopping power.

We have observed that bunching of the beam electrons increases stopping

power, and starting the beam electrons closer together leads to higher peak stop-

ping power. The obvious question concerns how these effects translate to larger

beams, which we consider next.

6.8 Various Beam Densities Initially Inside a 1,000 (c/ωpe)
3

Cube

Similar to the increase in stopping power we observed by moving the 125 beam

electrons closer together, the stopping power increases when we maintain the

initial volume of the beam but increase the beam density. The effect is more

drastic in this new situation because there are more electrons that can bunch

together due to instabilities. In the simulations in this section, the initial electron

beam is a cube with 10c/ωpe on each side. We vary Nb from 1/8 to 64. We do
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Figure 6.15: For various initial electron beam densities using 125 electrons, the

average peak stopping power is plotted as a multiple of the single-electron stopping

power measured in QuickPIC for the lattice cases in dashed red and random

placement cases in solid blue. The modified multiple of the Bohr stopping power is

plotted for the lattice cases in dash-dotted magenta and for the random placement

cases in dotted black.
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not explore Nb = 1, 000 due to numerical difficulties. The peak stopping powers

jump significantly at the higher beam densities, going up to 400± 600 times the

single-electron stopping power for the Nb = 64 random placement cases.

Beginning with these simulations, we take into account the additional com-

plication of beam electrons leaving the box during the simulation. This factor

makes the stopping power calculation marginally more difficult. All electrons are

initially part of the calculation, but we explicitly discount them when they leave

the box.

We plot the average stopping power over the beam for the lattice cases and the

average over all 16 random placement cases for each beam density in Figure 6.16.

The bounds on the maximum stopping power using the QuickPIC single-electron

stopping power and the Bohr stopping power are presented in Figure 6.17. For

the higher beam densities, the stopping power peaks at much higher values than

when we only used 125 electrons, but it also falls off much faster late in time. The

increased number of beam electrons leads to the possibility of more constructive

interference between the wakes, and thus stronger fields overall.

The stopping powers in the cases of Nb = 64 and 8 exhibit rapid initial expo-

nential growth, then slower exponential growth, and the random placement cases

experience a plateau in between. This behavior is consistent with beam-plasma-

like instabilities evolving from early time to late time growth, as discussed in

Section 6.5. The first burst of growth is caused almost entirely by self-focusing

or spot size self-modulation. There is then a bit of a lull before the longitudi-

nal bunching beam-plasma-like instability takes over, causing the second burst of

growth. This order is the opposite of what we observed with the lattice case in

Section 6.7.1. The process is understandable, however, because the self-focusing

aligns the electrons transversely, which increases the Ez amplitude, allowing the

beam-plasma-like instability to take hold more easily.

To understand some simple scaling, we discuss purely temporal growth. The
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Figure 6.16: For various electron beam densities initially inside 1,000 (c/ωpe)
3, the

average stopping power for the lattice cases is plotted on the left, and the stopping

power averaged across all 16 random placement runs is plotted on the right. The

(line style, Nb) pairs are (solid blue, 1/8), (dotted green, 1), (dash-dotted red,

8), and (dashed cyan, 64). The shaded areas represent the standard deviation for

lines of the same color.
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Figure 6.17: For various electron beam densities initially inside 1,000 (c/ωpe)
3,

the average peak stopping power is plotted as a multiple of the single-electron

stopping power measured in QuickPIC for the lattice cases in dashed red and

random placement cases in solid blue. The modified multiple of the Bohr stopping

power is plotted for the lattice cases in dash-dotted magenta and for the random

placement cases in dotted black.
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temporal growth rate of the beam-plasma instability is

δBP
ωpe

=

√
3

24/3

(
nb
n0

)1/3
1

γb
. (6.39)

Later, we will compare the growth to the full spatio-temporal growth. Here, we

compare the temporal growth rate to the measured growth rate of the stopping

power (integrated over ξ) in the random placement simulations. We consider

the second period of growth, which we believe is due to longitudinal effects. For

Nb = 64, we measure δBP
ωpe

= 4.08 × 10−3 between t = 290/ωpe and 560/ωpe, less

than half the 0.011 given by the formula. Nb = 8 exhibits greater disagreement,

with a measured value of δBP
ωpe

= 1.32× 10−3 between t = 1200/ωpe and 1700/ωpe,

less than 1/5 of the formula’s 7.3×10−3. Unfortunately, the stopping power curve

for the Nb = 1 case exhibits a downward concavity after t ∼ 3000/ωpe, as seen in

Figure 6.16, about when the beam-plasma-like instability appears to take hold.

The instability is not apparent in the stopping power curve during the simulation

time for Nb = 1/8. An important reason for this increasing discrepancy between

simulation and theory as the beam density decreases is particle discreteness. As

the beam density decreases, there are fewer beam electrons inside an electron wake

wavelength and radius. While Nb = 64 is outside the fluid regime, the lower beam

densities are further outside it, increasing the disagreement with the fluid growth

rate. Other contributing factors include the small width of the beam and the fact

that the tail of the beam is spreading, as shown in Figure 6.18 and discussed later.

Figure 6.18 clearly demonstrates self-focusing and the beam-plasma-like insta-

bility occurring in one of the random placement simulations with Nb = 64. The

plots show electron positions and the beam density at t = 600/ωpe, the time of

peak stopping power. The instabilities have led to beam densities far exceeding

the initial density at a point where the electrons have bunched both longitudinally

and transversely. For comparison, the initial average beam density is 4× 10−3n0.

These high beam densities lead to the impressive stopping powers we observe.
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The Ez field and plasma return current (Jz) are plotted in Figure 6.19 at the

time of peak stopping power for the same simulation as in Figure 6.18. The upward

wake concavity that we discussed in Section 5.3 is present but not obvious. There

is also no observable damping of the wake or the current, which is expected. The

wake vphase ∼ c, so there are no resonant electrons, and hence no Landau damping

[Lan46]. The current has a slight negative bias, so that current neutrality is

maintained.

The phase space density as a function of z and Pz is plotted at t = 600/ωpe

in Figure 6.20 for the same simulation as in Figure 6.18. The distribution clearly

shows the result of the beam-plasma-like instability, with a curve starting at the

front of the beam with Pz = 10mec but decreasing further back in z. Then, after

z = 673c/ωpe, where we see the big bunch in the density plot, there is a spread in

momentum, with Pz > 10mec for many electrons. This distribution is the result

of electrons in the head of the bunch slowing down while those in its tail speed

up, causing the bunching.

The plots in Figure 6.18 show the beam exploding transversely in addition to

bunching. The larger initial beam densities lead to strong focusing and de-focusing

fields, so parts of the beam pinch rapidly, but other parts explode quickly. As more

of the beam spreads out, the stopping power falls off.

This spreading also means that electrons begin hitting the conducting wall

early in the simulation. At the time of peak stopping power, beam electrons have

already hit the conducting wall in the Nb = 64 case, as clearly seen in Figure 6.18.

However, when only a few electrons reach the wall, the average stopping power

is not significantly affected when thousands of electrons are in the beam. Once

the beam has diffused enough for the wall interaction to become important, the

simulation has progressed enough for the stopping power to have decreased far

below the peak.

The simulations of various beam densities initially inside a 1,000 (c/ωpe)
3 cube
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Figure 6.18: The electron positions are plotted on the left in 3D and the beam

density is plotted on the right for a 2D slice throught the middle of the box in y.

The plots are at t = 600/ωpe, and the run is one of the random electron placement

cases with Nb = 64 initially inside the 1,000 (c/ωpe)
3 cube.
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Figure 6.19: The Ez field and the ẑ component of the plasma current for a slice

through the middle of the box in y are plotted on the left and right, respectively,

at t = 600/ωpe for the simulation in Figure 6.18.
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Figure 6.20: The phase space density as a function of Pz and z at t = 600/ωpe for

the simulation in Figure 6.18.

have demonstrated that correlated stopping can increase the stopping power sev-

eral hundred times above the single-electron stopping power at higher beam den-

sities. They have also demonstrated that the growth in stopping power occurs

first through self-focusing then through the beam-plasma-like instability. While

useful, the beams are still small compared to a true electron beam. In the next

Section, we extend the length of the beam, which further increases the stopping

power.

6.9 Box-Length Beams

Electron beams in Fast Ignition can stretch for hundreds of microns to centimeters,

and therefore exceed thousands of box lengths for our simulation parameters.

In a move towards this limit, we examine the evolution of beams that stretch

along the entire length of the box. We would also prefer the beam to cover the

box transversely, but refrain from expanding it to minimize interactions with the

conducting boundaries. Instead, we again use beam dimensions of 10c/ωpe in x

and y.
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Peak Stopping Powers and Time-Steps

Nb dt [ω−1
pe ] Max dE/dx [single-electron dE/dx]

1/8 5 2± 2

1 2 6± 15

8 2 100± 300

64 2 (1± 3)× 103

Table 6.2: The peak stopping powers of a typical electron in box-length beams

averaged over the eight random placement simulations for each value of Nb, along

with the time-steps used in those simulations.

We again vary Nb between 1/8 and 64. Due to the stronger fields from the

longer beams, we use smaller time-steps for these simulations, which are in Table

6.2 along with the peak stopping powers averaged over the eight random placement

simulations. The stopping powers for the higher beam densities are significantly

higher than those in Section 6.8. In contrast, the stopping power for Nb = 1/8

hardly changes (but may be limited by the relatively small transverse beam size).

We plot the average stopping power for the lattice cases and the average over

all eight random placement cases for each electron beam density in Figure 6.21.

The bounds on the maximum stopping power using the QuickPIC single-electron

stopping power and the Bohr stopping power are in Figure 6.22. Extending the

beam causes the stopping power to grow more rapidly and peak earlier in the

simulation. The stopping power growth is again exponential and occurs in two

phases, self-focusing followed by the beam-plasma-like instability, with the former

having a faster growth rate.

We again compare the theoretical temporal growth rate of the beam-plasma

instability with the second observed growth rate (of the stopping power) in the

random placement simulations. We consider the second period of growth, which

we believe is due to longitudinal effects. For Nb = 64, we measure δBP
ωpe

= 0.035
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between t = 80/ωpe and 110/ωpe, over three times the formula’s value of 0.011. For

Nb = 8 we measure δBP
ωpe

= 5.6 × 10−3 between t = 200/ωpe and 400/ωpe, slightly

less than the formula’s 7.3× 10−3. As in Section 6.8, we are unable to find good

time ranges to measure the growth rate of the beam-plasma-like instability for

Nb = 1 and 1/8. These measurements are a stark contrast to those in Section 6.8,

where the measured temporal growth rates for Nb = 64 and 8 were significantly

below the theoretical ones. The growth rate increases with distance from the front

of the beam, causing the greatly increased temporal growth measured here. We

discussed the theory of this spatio-temporal growth in Section 6.5 and explore it

in the simulations in this Section.

There are secondary maximum in the stopping power curves, which occur at

values of t when the peaks occurred for the shorter beams in Section 6.8. These

secondaries suggest that, while tail of the beam is diffusing transversely after

bunching, the beam-plasma-like instabilities are still taking place at the head of

the beam. However, these secondary peaks are not as high as the peaks of the

shorter beams, likely due to electrons further back in the beam experiencing a

relatively lower stopping power. Examining Ez provides support for this hypoth-

esis. Figure 6.23 shows the transverse average of Ez and the lineout down the

middle of the box along z at the times when the stopping power peaks occur for

a run with randomly placed beam electrons and Nb = 64. The first peak occurs

at t = 140/ωpe and the second at t = 600/ωpe. During the first peak, the field

amplitude increases from the head of the beam to the tail. During the second

peak, the Ez amplitude increases in the front half of the beam when compared

to the field during the first peak, and decreases in the trailing half. The change

is most dramatic near the center of the box in the transverse directions, where

the field amplitude changes from increasing from head to tail to being relatively

constant.

We examine the timings of the peaks in stopping power in Table 6.3. Let
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Figure 6.21: For various electron beam densities in the box-length beams, the

average stopping power for the lattice cases is plotted on the left, and the stopping

power averaged across all eight random placement runs is plotted on the right.

The (line style, Nb) pairs are (solid blue, 1/8), (dotted green, 1), (dash-dotted red,

8), and (dashed cyan, 64). The shaded areas represent the standard deviation for

lines of the same color.
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Figure 6.22: For various electron beam densities inside box-length beams, the

average peak stopping power is plotted as a multiple of the single-electron stopping

power measured in QuickPIC for the lattice cases in dashed red and random

placement cases in solid blue. The modified multiple of the Bohr stopping power is

plotted for the lattice cases in dash-dotted magenta and for the random placement

cases in dotted black.
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Figure 6.23: The transverse average of Ez and the lineout down the middle of the

box along z at the times when peak average stopping power occurs. The beam

electrons are randomly placed and Nb = 64.
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Times of Peaks

Nb Beam electron spacing [c/ωpe] Peak 1 [ω−1
pe ] Peak 2 [ω−1

pe ]

1/8 2 1200 No Data

1 1 1150 No Data

8 0.5 460 2000

64 0.25 140 600

Table 6.3: The peak timing for the average stopping power from the random place-

ment runs at each Nb. The secondary peaks to not appear during the simulations

for Nb = 1 and 1/8.

tp1−Nb be the time of the first peak for a given Nb. Then, tp1−1-tp1−8 = 690/ωpe

and tp1−8-tp1−64 = 320/ωpe. The first difference is roughly twice the second. This

doubling suggests that the timing of the first peaks depends inversely on the beam

inter-particle spacing when Nb ≥ 1, which is also the scaling of the beam-plasma

instability growth rate. Unfortunately, we lack the data to examine the density

dependence of the second peak timing.

The electron positions and density at the time of peak stopping power are

in Figure 6.24 for the simulation examined in Figure 6.23. These plots show

clear pinching and longitudinal bunching of the beam, which are evidence of self-

focusing and the beam-plasma-like instability, respectively. The peaks in beam

density occur relatively far back in the beam compared to the peak in Section

6.8, as expected in a spatio-temporally growing instability like that discussed

in Section 6.5. The beam is also expanding radially, again with an increasing

rate farther back in the beam, as expected from the transverse self-modulation

discussed in Section 6.6.

The Ez field and plasma return current (Jz) are plotted in Figure 6.25 at the

time of peak stopping power for the same simulation as in Figure 6.23. As we saw

in Figure 6.23, the Ez amplitude increases from the head to the tail of the beam.
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Figure 6.24: The electron positions are plotted on the left in 3D and the beam

density is plotted on the right for a 2D slice through the middle of the box in y.

The plots are at t = 140/ωpe for the same run as in Figure 6.23.

The current amplitude also increases from the head to the tail of the beam. The

beam electrons are clearly moving in the +ẑ direction, so the plasma electrons

are moving in the −ẑ direction. The plasma electrons provide a return current to

compensate for the incoming current.

There is clear evidence of the beam-plasma-like instability in the phase-space

distribution in Figure 6.26, given the significant spread in momentum. The distri-

bution is plotted at the time of peak stopping power for the simulation in Figure

6.23. The spread increases from the head of the beam to the tail, indicating that

the instability grows from the head to the rear of the beam (it depends on ξ).

This fact, combined with the conical transverse spreading of the beam in real

space and the secondary peak in stopping power discussed earlier, suggest that

the instabilities grow from the head to the tail and that the growth in ξ increases

with s, as predicted by the spatio-temporal theory discussed in Section 6.5. For

a beam several microns in length, the instability would rapidly saturate. Effects

such as wave-breaking [KM88, AP56] and Langmuir wave collapse [Zak72, Ber98]

may come into play. It may also be affected by a confinement mechanisms, such

as strong magnetic fields, or a larger transverse size. Furthermore, the beams
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Figure 6.25: The Ez field and the plasma z current in a slice through the middle

of the box through y are plotted on the left and right, respectively, at t = 140/ωpe

for the same simulation as in Figure 6.23.

in FI are many microns wide. Therefore, filamentation rather than whole-beam

self-focusing will be dominant.

We have demonstrated that beams covering the length of the box show a

greatly increased stopping power compared to the shorter ones in Section 6.8.

These longer beams have shown that the self-focusing and beam-plasma-like in-

stability start strongest and peak first at the rear of the beam and move forward.

The detailed operation of these instabilities in larger and longer beams, as well as

beams with realistic and longitudinal momentum spreads, remains unclear, and

is an area for future research.

6.10 Conclusion and Future Work

Our simulations clearly demonstrate that correlation effects on relativistic electron

beam stopping should be considered. In the simulations of box-length beams, we

observed the average stopping power increase to 1,000 times the single-electron

stopping power for the beam with initial Nb = 64. The causes of this increase are

discrete particle-like self-focusing and the beam-plasma instability. For Nb ' 64,
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Figure 6.26: The phase space density as a function of Pz and z at t = 140/ωpe for

the same simulation as in Figure 6.24.

fluid-like descriptions for the beam-plasma interactions are reasonable. While such

a beam density may be extreme for the core of an FI target, all our simulations

indicate that there is an increase in stopping power for Nb ≥ 1/8. Clearly, ignoring

the coherent interactions of discrete particle wakes and the related self-focusing,

filamentation, and beam-plasma-like instability leaves out important factors in

the stopping power. In particular, because correlated stopping depends on Nb,

stopping power may be great enough for FI to be feasible using cores with densities

lower than 450g/cm3. This work indicates that understanding better the transition

from the coherent interaction of discrete wakes to fluid-like streaming instabilities

needs to be undertaken, including revisiting ideas such as those of Malkin and

Fisch [MF02].

Clearly, these effects need further research. We have left out many factors, in-

cluding background temperature, beam divergence, angular scattering, and energy

spread, all of which will change the results. Necessary work that is straight-forward

includes studying wider beams and adding a beam temperature (in all directions).

A further improvement would be to use a periodic box, which would allow us to
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expand the beam to fill the box transversely without concerns about the conduct-

ing boundary conditions. In addition, recent improvements in field solvers may

soon permit using OSIRIS or other full PIC codes. These codes would allow for

studies of beams with energies from a few MeV to 10s of MeV and large transverse

momentum spreads.
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CHAPTER 7

Conclusions and Future Work

PIC simulations have been used to study two processes involving wakes in plasmas,

backward stimulated Raman scattering (BSRS) and electron beam stopping. In

SRS, the beating of the pump and scatter light induces a plasma wave wake in

the plasma which, in turn, scatters more light from the pump. In electron beam

stopping, each electron produces a wake which contributes to its own stopping

power, and the wakes of electrons earlier in the beam alter the stopping power

of electrons later in the beam in a process dubbed “correlated stopping.” The

studies produced many new and interesting results with important implications

for Inertial Confinement Fusion (ICF).

The BSRS studies of Chapter 2 demonstrated that the convective amplification

of a scattered light seed pulse in 1D OSIRIS simulations does agree with linear gain

calculations. For the first time, special relativity was accounted for in the linear

gain calculations, producing excellent agreement with the OSIRIS simulations

when a relativistic particle pusher was used. The relativistic gain rates exceed the

non-relativistic rates and peak at shorter wavelengths. This result has important

implications for envelope codes such as pF3D, as it implies that they produce

results with the wrong wavelength and amplitude in the linear regime.

However, the method used in this dissertation to account for special relativity

in the gain calculation involves numerically integrating the Jüttner-Synge distri-

bution over all values of the Lorentz factor for each point on the gain curve. The

tested approximations to the relativistic dielectric produced unacceptable results.
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While the integration method proved acceptably fast for calculating a single gain

curve, a much better algorithm will be needed to account for relativistic gain in

envelope codes used for hohlraum simulations.

After the seed exits the box in the BSRS simulations, the wake induced in

the plasma by the seed and the pump continues to grow and traps particles,

leading to a reduction in Landau damping and causing kinetic inflation with its

accompanying large reflectivites later in the simulation. Kinetic inflation does not

occur without a seed. This result suggests a process by which kinetic inflation

may occur outside of laser speckles. Scattered light or a plasma wave produced

via BSRS involving a hot-spot are the most obvious potential instigators. If the

scattered light or plasma waves travel outside the speckle or remain after the

speckle passes, they can initiate kinetic inflation in lower-intensity parts of the

beam. These kinetic inflation results should be studied in more detail outside of

1D collisionless PIC simulations, as discussed in Section 2.9.

Extending the duration of the seed in the BSRS simulations resulted in kinetic

inflation while the seed is still present as well as negative amplification of the seed

when the nonlinear phase shift between the wake and scatter light is sufficiently

large. For seeds far from resonance, the reflectivity amplitude oscillates with a

frequency equal to the difference between the seed and resonant frequencies.

The studies of plasma wakes left behind by individual particles in Chapters

3, 4, and 5 demonstrate excellent agreement between the electrostatic wake in

3D BEPS and Vlasov theory. In relativistic simulations, the cold fluid theory

accurately describes the wavelength and the general shape of the wake within the

first wavelength, but misses the transverse spreading and upward concavity of

the wake. These deviations from fluid theory are likely due to discrete particle

effects rather than nonlinear physics. This concavity requires further study, as

the simulations were classical, while a quantum mechanical description is more

appropriate for a cold plasma with densities of 1026cm−3. The upward concavity
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also disappears and turns downward as the plasma temperature increases, and

identifying the reason for this change is left for future study.

In Chapter 6, 3D PIC simulations demonstrated for the first time that corre-

lation effects have a significant impact on electron beam stopping power in Fast

Ignition (FI) plasmas. Filamentation and two-stream instabilities (in both discrete

particle and fluid-like regimes) dynamically increase the stopping power depend-

ing on the size and density of the beam. When beam electrons are initialized with

random placement, filamentation occurs first, follow by the two-stream instabil-

ity, resulting in the stopping power growing at two visibly distinct rates. In long

electron beams, with dimensions 10c/ωpe × 10c/ωpe × 80c/ωpe, the time-scale of

the instabilities depends on the distance from the front of the beam, so that they

occur most rapidly at the tail of the beam. The beam eventually spreads out

transversely, leading the stopping power to drop off. For a long beam with and an

inter-particle separation of 0.25c/ωpe, the peak stopping power of a typical beam

electron is (1± 3)× 103 times that of an uncorrelated electron.

The correlated electron stopping results are a starting point for further re-

search. The simplest studies that should be performed in the future involve in-

creasing the beam size and studying the effects of beam temperature. The effects

of background temperature, angular scattering, and beam divergence all need to

be examined. Studies of the propagation of realistic FI beam distributions must

be performed. Once a better understanding of correlated stopping is developed,

applying the work of Malkin and Fisch [MF02] to exploit the instabilities may be

possible.

This dissertation improves the understanding of the complex role that wakes

play in plasmas, and in ICF in particular. The BSRS results have an impor-

tant impact on the understanding of laser back-scatter in ICF plasmas, where

the decrease in energy reaching the target hinders progress towards ignition. In

contrast, wakes play a beneficial role in correlated electron stopping, which is a
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largely unexplored path towards ignition via the FI concept. Both sets of results

assist progress towards ignition in ICF.
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APPENDIX A

QuickPIC

A.1 Introduction

QuickPIC [HDR06, ADM13] is a particle-in-cell (PIC) code specifically designed

to simulate the evolution of ultra-relativistic charged particle beams in plasmas.

It uses a quasi-static approximation, allowing it to take time-steps that are orders

of magnitude larger than those of ordinary electromagnetic PIC codes. This ap-

proximation assumes that the time for the beam evolution is much greater than

the time required for a beam particle to pass a plasma particle. Under this as-

sumption, the time-step only needs to be small enough to resolve the evolution

of the beam. In this Appendix, we review aspects of the quasi-static approxima-

tion and some details about the QuickPIC implementation without going into the

details of the numerical implementation.

A.2 Basic Setup and Implementation Details

The key insight of the quasi-static approximation is that it decouples the beam

push, i.e., advance from the calculation of the plasma response. We start with

a 3D beam moving in the z-direction with a speed near c. At the beginning of

a time-step, we deposit the beam charge and calculate the fields from it. Next,

we calculate the plasma response using a 2D sheet of plasma particles. The sheet

starts at the right side of the box, in front of the beam, and streams across the box

to the left. As the sheet streams across the box, at each cell, we self-consistently
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calculate the response of a plasma particle to the beam and other plasma particles

in the sheet using a 2D solver. This plasma response gives us the wake, which we

then use to push the beam forward. Another key point is that the charge on each

plasma particle changes to account for plasma particles moving in the ẑ direction.

To make the quasi-static approximation, we change variables from the standard

Cartesian coordinates (x, y, z, t) to (x, y, s, ξ), where s ≡ z and ξ ≡ ct − z. We

can view the beam as evolving in s and the plasma as evolving in ξ. In the

implementation, plasma particles move “forward” in ξ as they move across the

box, as illustrated in Figure A.1 along with the corresponding plasma response. If

a plasma particle has a very small value of Vz compared to c, then, in the “frame”

of a beam moving at approximately c, the variable ξ ≈ ct. Therefore, the variable

ξ is time-like for the plasma particles. Conversely, the beam moves forward at c so

ξ does not change much. However, s ≈ ct for the beam particles. This relationship

allows us to move the box forward at the speed of light, commonly called a “moving

window,” and treat s as a time-like variable for the beam. Whenever the beam

takes a time-step, the box takes an s-step. Within each s-step, each ξ-step is like

a 2D time-step for the plasma particles within a sheet as it crosses the box. The

complete 3D cycle with the 2D cycle embedded inside it is shown in Figure A.2.

A.3 The Quasi-Static Approximation

With the information about the variables and implementation from Section A.2,

we can understand what is happening as we examine the mathematical founda-

tion behind the quasi-static approximation. We follow the work of Huang et al.

[HDR06] and add some conceptual details.

As we have mentioned several times, the basic assumption behind the quasi-

static approximation is that the beam evolves very slowly compared to the time

it takes for the beam to pass a plasma particle. We can state this assumption
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Figure A.1: A schematic of a 2D plasma sheet moving across the box in QuickPIC.

As it crosses the box, it responds to the beam, producing the wake. The green

dots are the beam electrons.
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Figure A.2: The 3D flow chart of QuickPIC with the 2D flow chart embedded

inside it. The 3D flow chart is repeated for each s-step. During each s-step, the

2D routine is called, and the 2D cycle repeats for each ξ-step as the 2D plasma

sheet crosses the box.
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mathematically using the variables s and ξ that we introduced in Section A.2. We

can then write the assumption as

∂

∂s
� ∂

∂ξ
. (A.1)

A more physical interpretation of the math is that the scale of the variation of

quantities at a given part of the beam or wake (at a value of ξ) in s is much

smaller than the wavelength of the wake.

Applying the chain rule and our assumptions, we can derive a couple of useful

relationships between (s, ξ) and (z, t).

∂

∂z
=

∂

∂s
− ∂

∂ξ
(A.2)

and
∂

∂t
= c

∂

∂ξ
. (A.3)

A.4 The Quantity ψ

At this point, it is useful to introduce the quantity ψ, which is commonly used in

plasma accelerator physics. This single quantity relates the longitudinal field Ez

and the focusing field W⊥ = Er −Bθ. This potential can be written as

ψ ≡ φ− Az, (A.4)

where Az is the z component of the vector magnetic potential. ψ takes this form

in any gauge. We find Ez by using Equations A.2 and A.3.

Ez = −∂φ
∂z
− 1

c

∂Az
∂t

= −∂φ
∂s

+
∂φ

∂ξ
− ∂Az

∂ξ

=
∂ψ

∂ξ
− ∂φ

∂s

≈ ∂ψ

∂ξ
(A.5)
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We can now use a more general version of the Panofsky-Wenzel theorem from

Equation 5.2,

∇⊥Ez =
∂
−→
W⊥

∂ξ
. (A.6)

This theorem allows us to find the focusing field by taking the perpendicular

gradient of ψ,
−→
W⊥ = −∇⊥ψ = −∇⊥φ+∇⊥Az. (A.7)

It is also straight-forward to derive Equation A.7 from the Lorentz force equation

by substituting for ~E and ~B in terms of the derivatives of the potentials and then

using Equations A.2 and A.3. ψ appears regularly in the equations we derive in

this Appendix.

A.5 Equations of Motion

Since the beam “moves” in s and the plasma particles “move” in ξ, we write

separate equations of motion for the beam and plasma particles. We assume that

the beam particles move at approximately c, which allows us the write s ≈ ct

and dt ≈ ds/c. For the beam’s transverse motion, we use Equation A.7 for the

focusing field, which allows us to write,

d~Pb⊥
ds

= −qb
c
∇⊥ψ. (A.8)

For the position,
d~xb⊥
ds

=
~Vb⊥
c

=
~Pb⊥
γbmec

. (A.9)

Similarly, using Equation A.5 for the longitudinal field,

d~Pbz
ds

=
qb
c

∂ψ

∂ξ
. (A.10)

The evolution of the ξ positions of the beam particles in the box are given by

∂ξb
∂s

=
1

c

d

dt
(ct− z) = 1− 1

c

dz

dt
= 1− Pbz

γbmec
. (A.11)
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For the plasma particles, we hold s constant as we calculate the motion. The

evolution of a particle’s transverse momentum as it crosses the box in ξ is given

by

d~Pp⊥
dξ

=
dt

dξ
qp

[
~E⊥ +

(
~Vp
c
× ~B

)

⊥

]
=

qp
c− Vpz

[
~E⊥ +

(
~Vp
c
× ~B

)

⊥

]
. (A.12)

The evolution for the transverse positions of the particles is described by

d~xp⊥
dξ

=
dt

dξ

d~xp⊥
dt

=
~Vp⊥

c− Vpz
=

~Pp⊥
γpme(c− Vpz)

. (A.13)

The longitudinal momentum of the plasma particles is found from the constant

of motion [MA97],

γp −
Ppz
mec

= 1− qpψ

mec2
. (A.14)

If we use γ2
p = 1 +

~P 2
p

m2c2
, then, after some algebra,

Ppz
mec

=
1 +

~P 2
p⊥

m2
ec

2 −
(

1− qpψ

mec2

)2

2
(

1− qpψ

mec2

) . (A.15)

In principle, a plasma particle has some slight s dependence, which is easily

found by inverting Equation A.11 and modifying the notation appropriately,

dsp
dξ

=
1

1− Ppz
γpmec

=
1

1− Vpz
c

. (A.16)

We assume that this s dependence is negligible in the equations of motion and

don’t integrate this equation. However, we do take it into account in the plasma

charge and current deposition.

The implementation in QuickPIC casts the equations of motion into a “non-

relativistic” form and uses a Boris pusher [Bor71]. This transformation involves

modifying the fields and the charge. We only modify the transverse equations

of motion, A.12 and A.13. We rewrite the momentum equation in terms of the

quantity ~up ≡ γp~Vp, which leads to

d~up⊥
dξ

=
qeff
mec

[
γp ~E⊥ +

(
~up
c
× ~B

)

⊥

]
, (A.17)
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where the effective charge is defined as

qeff ≡
qp

γp

(
1− Vpz

c

) =
qp(

γp − Ppz
mec

) =
qp

1− qpψ

mec2

. (A.18)

For the transverse position, we rewrite the denominator in the same way as we

just did for qeff ,
d~xp⊥
dξ

=
~up⊥

γp(c− Vpz)
=

~up⊥

c
(

1− qpψ

mec2

) . (A.19)

An observant reader may notice an interesting dilemma with the plasma parti-

cle equations of motion. We have regularly stated that QuickPIC self-consistently

calculates the response of the plasma to the beam. However, the equations of mo-

tion for the plasma particles depend on the fields, and when the plasma particles

start streaming across the box, the only fields we have are from the beam. The

response of the plasma to the beam fields will create new fields. The plasma’s

response should include those fields as well. When we say that the plasma re-

sponse is found self-consistently, we mean that we have taken into account its

own fields and those from the beam. QuickPIC resolves this problem by using a

predictor-corrector method to calculate the plasma response, which it iterates for

accuracy.

While the longitudinal momentum equation is not modified in the same manner

as the transverse momentum equation, we re-write it to directly yield upz and γp.

upz immediately follows from Equation A.15,

upz
c

=
1 +

~u2p⊥
c2
−
(

1− qpψ

mec2

)2

2
(

1− qpψ

mec2

) . (A.20)

Plugging Equation A.15 into A.14 immediately yields γp,

γp =
1 +

~u2p⊥
m2
ec

2 +
(

1− qpψ

mec2

)2

2
(

1− qpψ

mec2

) . (A.21)
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We now have the complete set of equations that describe the motion. We are

missing the equations for the fields necessary to calculate the motion, which we

derive next.

A.6 Field Equations

Like all PIC codes, QuickPIC deposits the charge and current, then uses them

to solve for the fields. QuickPIC neglects the transverse beam current since it is

small compared to the longitudinal beam current and unnecessary to for satisfying

the quasi-static continuity equation.

The charge and current from the beam are deposited directly. However, since

the plasma particles move in ξ rather than s, we must take this fact into account

when depositing their charge and current. In Cartesian space, the charge density

in a volume ∆Vol is given by

ρ =
1

∆Vol

∑

i

qi, (A.22)

where
1

∆Vol
=

1

∆x∆y∆s
. (A.23)

When we deposit the plasma particles, we change from ∆s to ∆ξ by using Equa-

tion A.16 and making the approximation

1

∆Volp
=

1

∆x∆y∆ξ
=

1

∆x∆y∆s

∆sp
∆ξ
≈ 1

∆Vol

1

1− Vpz
c

(A.24)

Therefore, the plasma charge and current densities are given by,

ρp =
1

∆Vol

∑

i

qpi

1− Vpz
c

=
1

Volume

∑

i

γpiqeff (A.25)

and

~Jp =
1

∆Vol

∑

i

qpi~Vpi

1− Vpz
c

=
1

∆Vol

∑

i

~upiqeff , (A.26)

where we have used ~up, γp, and qeff from the end of Section A.5.

187



We mentioned in Section A.4 that ψ is used heavily is plasma accelerator

physics, and we saw it appear frequently in the equations of motion. Therefore,

our first step is to find the potentials so we can calculate it. We begin with the

wave equations for the electrostatic potential φ and vector magnetic potential ~A,

(
1

c2

∂2

∂t2
−∇2

)
φ(x, y, z, t) = 4πρ(x, y, z, t), (A.27)

and (
1

c2

∂2

∂t2
−∇2

)
~A(x, y, z, t) =

4π

c
~J(x, y, z, t), (A.28)

where ρ and ~J are the charge and current densities, respectively. Directly applying

Equations A.2 and A.3, the wave equations become

−∇2
⊥φ(x, y, z, t) = 4πρ(x, y, z, t) (A.29)

and

−∇2
⊥
~A(x, y, z, t) =

4π

c
~J(x, y, z, t). (A.30)

Armed with φ and ~A, we can calculate ψ via Equation A.4. We can also relate ψ

to ~A⊥ via the Lorentz gauge condition,

∇ · ~A+
1

c

∂φ

∂t
= 0

∇⊥ · ~A⊥ = −1

c

∂φ

∂t
− ∂Az

∂z

∇⊥ · ~A⊥ = −∂φ
∂ξ

+
∂Az
∂ξ

∇⊥ · ~A⊥(x, y, s, ξ) = −∂ψ(x, y, s, ξ)

∂ξ
. (A.31)

ψ gives us Ez and W⊥, but as explained in Section 5.2, W⊥ only applies to the

beam particles. The electric fields are given by

Ez =
∂ψ

∂ξ
(A.32)

and

~E⊥ = −∇⊥φ−
1

c

∂ ~A⊥
∂t

= −∇⊥φ−
∂ ~A⊥
∂ξ

. (A.33)

188



For the magnetic fields, we simply use the formula ~B = ∇× ~A and transform the

z derivative using Equation A.2.

Bz = [∇⊥ · ( ~A⊥ × ẑ)]ẑ (A.34)

and

~B⊥ =

(
∇⊥Az −

∂ ~A⊥
∂z

)
× ẑ =

(
∇⊥Az +

∂ ~A⊥
∂ξ

)
× ẑ. (A.35)

An equation for ∂ ~A⊥
∂ξ

can be found by taking the ξ derivative of A.30,

−∇2
⊥
∂ ~A⊥
∂ξ

=
4π

c

∂ ~J⊥
∂ξ

. (A.36)

Equation A.36 combined with A.17 helps clarify the issue of self-consistently

finding the plasma response to the beam. The two equations together directly

demonstrate the inter-dependence of the fields and the plasma particle motion.

As we mentioned in Section A.5, QuickPIC resolves this issue by using a predictor-

corrector method. Further details can be found in References [HDR06, ADM13].

A.7 Conclusion

By making the approximations we covered in this Appendix, QuickPIC is an ex-

cellent code for studying the evolution of ultra-relativistic electron beams. It can

perform simulations using orders of magnitude less CPU time than fully electro-

magnetic PIC codes. However, it does have restrictions. We mentioned that it

assumes that the beam is traveling in the ẑ direction, which means it is not useful

for studying beam divergence and will have limited usefulness in studies of angular

scattering.

In this dissertation, we use QuickPIC to examine the wake made by a single

relativistic electron, i.e., the “beam” is one electron. We examine how the wake

changes as the electron size is reduced and the spacing of the plasma electrons
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increases. We also use it to study how a “beam” of discrete electrons interacts

through the mutual interaction of their wakes.

Despite its limitations, QuickPIC has proved extremely useful in our studies

due to its efficiency and because it resolves the issue with numerical Čerenkov ra-

diation we discussed in Section 4.7.2. It has allowed us to perform the simulations

in Chapter 6 within a very short time-span. These benefits led us to use it as our

main tool to study correlated stopping.
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