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Abstract

Increasing salt production and use is shifting the natural balances of salt ions across Earth
systems, causing interrelated effects across biophysical systems collectively known as freshwater
salinization syndrome. In this Review, we conceptualize the natural salt cycle and synthesize
increasing global trends of salt production and riverine salt concentrations and fluxes. The natural
salt cycle is primarily driven by relatively slow geologic and hydrologic processes that bring
different salts to the surface of the Earth. Anthropogenic activities have accelerated the processes,
timescales and magnitudes of salt fluxes and altered their directionality, creating an anthropogenic
salt cycle. Global salt production has increased rapidly over the past century for different salts,
with approximately 300 Mt of NaCl produced per year. A salt budget for the USA suggests that
salt fluxes in rivers can be within similar orders of magnitude as anthropogenic salt fluxes, and
there can be substantial accumulation of salt in watersheds. Excess salt propagates along the
anthropogenic salt cycle, causing freshwater salinization syndrome to extend beyond freshwater
supplies and affect food and energy production, air quality, human health and infrastructure. There
is a need to identify environmental limits and thresholds for salt ions and reduce salinization
before planetary boundaries are exceeded, causing serious or irreversible damage across Earth
systems.
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Introduction

Salt, which makes up the major ions dissolved in the ground and surface waters of the Earth,
is essential for regulating a variety of biological, geological and chemical processes across
natural and engineered systems. However, human activities have dramatically altered the
amounts and compositions of different salt ions in terrestrial and aquatic environments. In
the USA, well over 36 Mt of rock salt (NaCl) has been mined per yearl. Approximately

20 Mt of NaCl is currently used for road salt in the USAZ3 (Box 1). On a global scale,
approximately 39.55 Mt of K+- rich potash is extracted annually for use as agricultural
fertilizer®. At present rates of consumption without changes in lifestyles or management, an
average newborn infant will require a supply of 13.6 t of salt throughout their lifetime®.

Starting in the twentieth century, an increase in anthropogenic salt inputs exceeding
biological, geochemical and engineering demands has driven long-term increases in the
pools, residence times and fluxes of different salt ions®. Salinization of water, soil and
air has increased because of irrigation8, the application of road deicers and fertilizers,
wastewater discharges, mining, resource extraction, human-accelerated weathering’ and
saltwater intrusion®. Salinization has the potential to extract and co-mobilize many other
contaminants from soils and sediments, including nutrients, metals, radionuclides and
organics1O. These so-called chemical cocktails of dissolved salts and other contaminants
can have shared sources, flowpaths or biogeochemical reaction pathways®11, which are
influenced by factors such as climate, geology, land use, human activities and time’. The
suites of biological, physical and chemical impacts that commonly occur together are known
as freshwater salinization syndrome (FSS)8-10.12,

Inland waters are a key conduit for salts, but the magnitude and extent of FSS are now
expanding beyond only a freshwater issue. Dissolved salt ions and evaporites impact land,
air and infrastructure through soil salinization, erosion rates, decreased crop growth; the
mobilization of dust and air pollution’; impacting pathogen survivall3; the corrosion and
scaling of metal pipes; changing potability and taste of drinking water; and the mobilization
of metals in soils and groundwater including radionuclides8. Across land, air and water,
there are myriad human health impacts associated with inhaling, drinking and consuming
excess salt and its chemical cocktails such as hypertensive disorders, cancers and respiratory
diseases8. Therefore, there is a need to understand the sources, fate and transport of salt
across land, air and water as a holistic biogeochemical cycle that accounts for natural and
anthropogenic processes.

In this Review, we conceptualize the natural salt cycle and its major processes. We compare
how the natural salt cycle has been disturbed by human activities and identify major
sources, transport and transformations of salt ions along the anthropogenic salt cycle from
watershed to global scales. We examine how salt concentrations and fluxes are exceeding
biological demands (or limits within which ecological systems can handle salt ions) owing
to increasing societal demands for salt; this occurrence is illustrated by a national salt
budget for the USA and by examining global effects across the hydrosphere, pedosphere,
lithosphere, biosphere and atmosphere. Finally, we discuss emerging research directions and
impacts.
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The Natural Salt Cycle

Salt cycle occurs naturally on land in the lithosphere, pedosphere and biosphere.
However, the global salt cycle remains poorly conceptualized; instead, diverse disciplines
(geology413, soil science, ecology, hydrology and oceanography) have considered how
specific salt ions (mostly NaCl) impact particular components of the Earth such as its
crust, soils, biota, freshwaters or oceans. For example, soil salinization is often considered
independently of freshwater salinization, despite an obvious relationship between the two
occurrences. Similarly, natural patterns of concentrations and fluxes of major ions in some
of the major rivers of the world have been characterized8, but interactions and transport
across soils, the atmosphere and deeper groundwater are not detailed. However, a baseline
set of natural salt-related processes (referred to here as the natural salt cycle) must be
established to understand anthropogenic disturbances (Fig. 1).

Salts on Earth

Salts are ionic compounds with cations and anions such that the product is neutral. Salts can
be basic, acidic or neutral and each salt can have different solubility in water and subsequent
ability to conduct electricity. The component ions can be inorganic (such as Cl-) or organic
(such as CH3COO-), monoatomic (such as F-) or polyatomic (such as NO3-). Different
salt ions have different affinities to form complexes with metals such as Cu and Pb, which
have environmental and human health implications owing to toxicity. Abundant major salt
ions such as Ca2+, Mg2+, K+, SO42- and dissolved inorganic carbon (DIC) are found in
the ground and surface waters of the Earth. Here, the term salt is used to represent all of
these major ions (concentrations typically >1 mg I-1 in Earth’s water).

Geologic and terrestrial processes

Salts are released to the surface of Earth by the weathering of sedimentary rocks (including
evaporites), igneous rocks and metamorphic rocks that are exposed at the surface of the
Earth (Fig. 1). Evaporitescan be dissolved when exposed to water, including groundwater!’~
22 releasing salt ions. Additionally, some rock units include salt layers, which often uplift in
unique ways to form diapirs or salt domes?3. Salt diapirs are mobile masses that intrude into
overlying harder rocks owing to the buoyancy of salt relative to other sediments and rocks.

Physical, chemical and biological weathering and erosion of rocks release salt ions to
surface waters, soils and air. Salts in soils primarily come from the weathering of rocks and
minerals, including carbonates and feldspars242°, Plants26:27, fungi28 and other organisms
take up salt ions, depending on their nutrient needs and salt stress26-32, Evaporation and
plant transpiration pull soil water in the rooting zone, and water and salt ions move toward
the surface via capillary action. Salts in soils accumulate once the water at the surface is
evaporated to the atmosphere2425:33.34_|n arid environments, this can lead to the formation
of caliche or soil layers of calcium carbonates33:3°. Salt ions also accumulate in biomass and
certain elemental combinations accumulate in soils through biogeochemical transformations
(such as chloride interactions with organic matter forming organochlorines in forest soils).
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Salt ions are released from soils via ion exchange and dissolution. Once dissolved in soil
water or groundwater, salt ions can be transported via diffusion, advection and dispersion
and enriched during freeze—thaw cycles (including brine rejection, which can occur when
salty water freezes and salt ions do not fit within the crystal structure of ice and are expelled
into surrounding water). From the soil, salt ions can enter aquatic systems or the atmosphere,
where they undergo additional transport and physicochemical processes.

Salt ions are eventually precipitated, buried and lithified as sedimentary rocks and/or
percolated to deeper groundwater or ocean subduction zones, in which their elemental
constituents can undergo igneous and metamorphic reactions to form minerals in rocks. Salts
can also be reincorporated into the lithosphere through the formation of evaporites through
desiccation.

Processes in water

The natural salt cycle of the Earth is intimately connected to sources, fluxes and storage

of water. Natural weathering fluxes of salts from land to water depend on climate
(temperature and precipitation), rock type or geology, location or flowpath, biologic factors
and time”-36:37, The hydrological cycle is a major transporter of salt ions, and one of

the largest salt fluxes is from rivers to oceans®:38, with additional transport in soil water
and groundwater340 (Table 1). For example, connate fluid, salty water that is trapped
within rock during formation, can migrate and naturally lead to salinized groundwater41-4°,
There are also natural salt fluxes from marine environments to freshwaters, owing to tidal
fluctuations, long-term climate change or marine transgression?42%46 incidental flooding*®
and salt aerosol inputs through rain®’.

In marine environments, salt cycling is driven by evaporation, biogeochemical
transformations, ice formation (resulting in brines) and saltwater intrusion. Reverse
weathering controls major ion ratios and alkalinity in seawater through the deposition of
silicate minerals involving divalent cations, primarily forming clays#8-50. Salt is precipitated
from seawater, whereby carbonate deposits first at low salinities (most modern calcium
carbonate is formed through biological processes®1), then gypsum, and finally sodium
chloride deposits last at high salinities?32. In locations of high heat flow, such as rift
valleys and subduction zones, the water in seawater is vaporized leaving salt ions, increasing
brine salinity until salt precipitates*>:5354,

Processes in the atmosphere

Salt cycle also occurs naturally within the atmosphere of the Earth. Sea spray is also a
primary source of aerosolized atmospheric salts®® therefore, most deposition occurs over
oceans or in coastal areas®®. Dry deposition typically exceeds wet deposition, and fluxes
depend on wind speed, size of source area, proximity to source area, residence time and
concentration of salts in the atmosphere, and contributions of wet and dry deposition®>-
58 Natural salt in dust, including Na+ and Ca2+, comes from arid soils, dried lake

beds, and salt flats3359-61, Atmospheric deposition of salt ions can accelerate melting of
snowpacks on nearby mountains, as is occurring in arid regions, which impacts regional
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water supplies®2. Dust deposition rates vary with climate conditions and can range from
0.004 to 0.34 g m-2 year—1 during glacial cycles, which is 2 to 20 times higher than during
interglacial cycles®’:63,

Disturbing the natural salt cycle

The natural salt cycle has been disturbed by the extraction of salt for anthropogenic uses,
such as agriculture, road deicers, food preparation, industry, construction, and water and
wastewater treatment. For example, salts are used heavily in the built environment —
aggregate minerals in construction materials contain salt ions (CaSO42—- and CaCQO3).
There are salt compounds and organic salts (including monosodium glutamate) in food
additives, cosmetics, cleaning supplies, solvents and printing, which can contribute salt ions
(including Na+, K+, Ca2+ and Mg2+) to the environment. There are also hydrated salts in
household products (including bleaching powder (Ca(Cl0O)2), anti-caking agents (potassium
ferrocyanide (K4[Fe(CN)6])(*xH20)), reagents in manufacturing, borax (Na2[B4O5(0H)4]
-8H20) and washing soda (Na2C0O3+10H20)), but the major ions of Na+, Ca2+, Mg2+, K+,
Cl-, HCO3 - and SO42- are the primary focus here84:65,

Global production and distribution of NaCl and many other salt ions such as K+, SO42-,
Ca2+, Mg2+ and carbonates are rapidly increasing. There has been a corresponding increase
in calcium carbonate, gypsum and halite production on a global scale (Fig. 2a). In the

USA, for instance, overall salt consumption is now greater than salt production, which
demonstrates the importance and reliance on imports (Fig. 2b). Salt production in China
overtook US production in 2015; the 2013-2017 average production (68.7 Gt) is 1.6 times
greater than US production (42.3 Gt)66. Increasing salt use is a global issue and is probably
because of various causes such as increased impervious surfaces (roadways and parking
lots), increasing needs for road safety and traffic in colder climates, changes in human diet,
agriculture and industry.

The anthropogenic salt cycle

Human disturbances of baseline processes drive an anthropogenic salt cycle (Fig. 1). Earth
processes that influence the salt cycle naturally occur over long geologic periods (typically
centuries to millions of years) but humans have dramatically accelerated this cycle by
altering the forms, fluxes and fates of salts in the global cycle (Fig. 1). Land use change,
agricultural practices, mining and urbanization have accelerated extraction, weathering
and transport of salts from the lithosphere and pedosphere, diverting vast quantities of
previously stored or geologically locked-up salts into the natural cycles of the Earth (Fig.
1). Furthermore, human-induced changes in the hydrological cycle and processes that
increase salinization of freshwater are interacting to increase salt ion concentrations. As

a result, there are rapidly increasing trends in salt ion concentrations in rivers over the
past century810.67 |n this section, salt cycling under current anthropogenic influences is
described and conceptualized.
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Natural waters

Human activities have altered salt fluxes in freshwater ecosystems. Based on historical data
from world river inputs to oceans, global fluxes from the major rivers of the world in 1970
were estimated as 4.04 Ca2+, 1.01 Mg2+, 1.88 Na+, 0.60 K+, 2.0 Cl-, 2.87 SO42- and
16.54 HCO3—(in g m-2 year—1)16 (Table 1). The estimated anthropogenic salt inputs to the
ocean were 47 Ca2+, 10.5 Mg2+, 78 Na+, 5 K+, 93 Cl-, 124 SO42- and 100 HCO3- (in
106 t year—1)16. Over the past 50 years, all of these ions have increased in streams and
rivers on continental and global scales810:67.68 (Fig. 3), coinciding with a global increase

in the consumption and production of saltsl0. For example, there are widespread increasing
trends in electrical conductivity, chloride, sodium and other ions in freshwaters in North
America®6%70, There have been increasing trends in DIC concentrations and fluxes in some
rivers88.71.72 DIC (primarily HCO3-) fluxes range from 55 x 109 to 2,450 x 109 mol
year—1 in the 25 largest rivers in the world3, and there are perturbations of DIC transport
from land to sea’. Rising salt concentrations suggest that the capacity of watersheds for
diluting and attenuating salt ions to steady-state conditions, or salt assimilative capacity, can
be exceeded® (Fig. 4).

Increasing salt trends in freshwaters are caused by diverse drivers such as human-accelerated
weathering”®, salt pollution from nonpoint and point sources, resource extraction’8 and
groundwater pumping. Salt is concentrated in runoff enriched with road salts, agricultural
fertilizers and lime, mine drainage, and ions from weathering of impervious surfaces. Salt
ions in road runoff can be transported both rapidly to streams through conduits, subsurface
piping and preferential flowpaths and more slowly through soil water and groundwater

as salt plumes’”:78, DIC can be increased from agricultural liming, urban impervious
surfaces, changes in atmospheric deposition and human-accelerated weathering®8.79.80, Salt
is also added to groundwater as a result of pumping, injection of industrial and wastewater
discharges, brines from fracking and gas and oil production81:82, accumulation of road salts
and fertilizers in groundwater, and saltwater intrusion in coastal regions®3,

Variations in salinization and in relationships between Na+ and Cl- reflect variations in the
sources, transport and transformation of salt ions across climate, geology, human activities,
flowpaths and time’ (Fig. 4). For example, rivers draining semiarid and arid regions in
South Africa can show enrichment in Na+ concentrations relative to Cl- concentrations
whereas rivers draining humid regions can show enrichment in Cl- concentrations relative
to Na+ owing to road salt and other pollution sources (Fig. 4). Retention of Na+ and CI- in
groundwater can occur because of incomplete flushing of soils in the vadose zone, uptake
by microbes and plants and ion exchange of Na+ on soil exchange sites84:85. Overall, the
attenuation effects of soil ion exchange, biological uptake and dilution effects of downstream
water accumulation and/or precipitation events no longer drive salt concentrations below
water quality limits.

The anthropogenic salt cycle can also be altered in marine waters through evaporative
concentration from warming sea surface temperatures, sea level rise and saltwater intrusion.
Saltwater intrusion impacts at least 501 cities worldwide, 108 of which support populations
of more than 1 million8®. In the continental USA alone, coastal aquifers supply potable
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water to 95 million people, and many are considered vulnerable to seawater intrusion
because they lie below sea level; 15% of West Coast, 22.6% of Gulf Coast and 34.7%
of East Coast groundwater well elevations within 10 km of the coast are below sea
level8”. At present, landward hydraulic gradients are evident along at least 15% of the
US coastline, suggesting that a large fraction of the coastal USA may be vulnerable to
freshwater salinization8”. Only 2-3% seawater is needed to make a coastal groundwater
aquifer unsuitable for drinking87:88,

Engineered water systems

Although often overlooked, the engineered water cycle (including wastewaters) contributes
to acceleration of the anthropogenic salt cycle. Salts originating from seawater and rocks are
taken up by humans through consumption of food and beverages and released into domestic
wastewater. An average person in the USA can consume 3,400-4,000 mg day-1 of Na+ and
excrete 3,414-3,803 mg day-1 of Na+ (refs. 89,90). Wastewater loads from selected studies
around the world show that households can discharge 90,629 mg of Na+ per person per
week and 18,713 mg of K+ per person per week, and 38,768 mg of Cl- per week and 11,236
mg of Ca2+ per week can be released into wastewater from an Australian household®!
(Table 2).

Home products are a major contributor to salt loads, especially in effluent-dominated
streams, which are a major and increasing fraction of the streams in the USA, for

example. Chemical analysis of home products ranging from toothpaste to dishwashing soap
suggests that salt ions such as Cl- are prevalent across products and are especially high

in soaps, deodorants, in-cistern toilet fresheners and powdered laundry detergents (mean
concentrations of 89, 67, 53 and 27 g kg—1 product, respectively12,64,65,91. Of these
products, powdered detergents are expected to contribute most to overall salt mass loading,
with estimates of Cl- loading ranging from 21 g person—1 week-1 to 86 g person—1 week—-1
(ref. 64). Individual in-home products (and the wastewater streams they contribute to)
contain unique chemical cocktails that are part of the anthropogenic salt cycle. For instance,
although laundry and dishwasher powder have elevated concentrations of fluoride, chloride
and, in some countries, phosphorus92 and low concentrations of cobalt, antimony and
selenium, shower and bath products (such as shampoos and conditioners) are the opposite.
Therefore, wastewater salt profiles, and their contribution to the anthropogenic salt cycle, are
a signature of the products that societies use54.

Engineered systems also contribute to salinization through the addition of salts used in the
treatment of drinking water and wastewater. As the population of the world continues to
increase, water management, reuse and treatment will all increase. Adoption of treatment
upgrades, such as reverse osmosis systems, to remove salts is one possible solution, but also
raises concerns, including the energy and carbon footprint and the potential environmental
impacts of brine disposal®12. Salt ions are added at almost every step along engineered
water systems, and thus, the ways water is used, reused and recycled for urban and
agricultural uses can impact inland freshwater salinization.

Nat Rev Earth Environ. Author manuscript; available in PMC 2024 October 31.
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Although salts naturally occur in soils, approximately 1 billion ha of soils are impacted by
anthropogenic salinization, primarily owing to irrigation, fertilization and liming®? (Fig. 3a).
Between 1970 and 1980, approximately 6.5% of the soils of the world capable of growing
crops were either saline or sodic®4, and over 50% of the croplands of the world could be
impacted by salinization by the end of the twenty-first century®>9. These estimates have
some inaccuracies — remote sensing-based techniques probably overestimate the spatial
extent of soil salinization in Mexico and underestimate impacts in Australia®® (Fig. 3a) —
but the spatial extent of soil salinization at the global scale is unequivocally growing93:6.

The anthropogenic salt cycle on land is enhanced through increased evaporation rates®’,
vegetation disturbance, anthropogenic inputs of salt ions and human-accelerated weathering.
Evaporation of saline lakes causes precipitation of salts such as mirabilite, halite, thenardite
and gypsum®8. Vegetation disturbance, deforestation and colonization by shallow-rooted
plants can influence evaporation rates and concentrate salt ions in upper soil horizons
through capillary action.

Anthropogenic inputs include potash, which is enriched in K+ and mined or concentrated
through evaporation of lakes and subsurface brines®®. In agricultural watersheds with rising
chloride trends, chloride from potash fertilizers can be the dominant input (approximately 49
kg ha—1 year—1) and even exceed road salt sources (7.2-23.2 kg ha—1 year-1)100. Cation
exchange dictates how salts are stored and transported in soils and migrate vertically in the
soil profile owing to leaching and capillary action. There can be substantial accumulation of
anthropogenic salts in soils owing to retention of Cl- because of incomplete water flushing,
uptake by microbes and plants, chlorination of organic matter, and ion exchange of Na+ at
soil exchange sites84:85,

The built environment impacts the salt cycle through weathering and the mining of

materials for construction (including sand and gravel extracted from open pits and quarries;
bedrock that is drilled, blasted, and mined to produce crushed stone; and limestone and
dolomite produced from underground mines)101. A key example is the widespread extraction
of salt ions to make concrete, dry wall and other construction materials. The rates of

mineral weathering of this concrete and ‘urban karst’’® can be faster than those of other
types of sedimentary rocks accelerating the release of salt ions. Eventually, chemical and
physical weathering of rock aggregates in the built environment degrade surfaces and cause
dissolution, honeycomb weathering, weathered rims and rinds, spalling and salt corrosions
on stone192 contributing to salt ion pollution to surface waters’®.

Atmosphere

Human activities have altered sources and fluxes of salt in the atmosphere. In arid regions,
the drying of the Aral Sea and other drying lake beds around the world (owing to diversions,
irrigations, climate change and other factors) have increased mobilization of saline dust and
particulate pollutants across vast regions03:104, Desertification and increased dry lake beds
can have total suspended particulate concentrations of approximately 230-290 pug m-3 of
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air, with soluble salts comprising 3-20% of the total suspended particulates'%4. Drought and
catchment scale disturbances resulting from human activities such as farming, water use and
urban development alter atmospheric fluxes of salts105106, For example, salts can be added
to atmospheric deposition through dust from erosion of rangelands!® and desertification

in other locations worldwidel03. In the Western USA, dust loads have increased by 500%
compared with the late Holocene owing to livestock grazingl9®.

In colder regions, aerosolization of road salts (Na+ and Cl-) in PM 2.5 particles can increase
during winter months107. Road salt can be an important CINO2 source and influence
atmospheric composition and air quality in the urban wintertime environment!%8, There
have been long-term increasing trends in atmospheric deposition of Na+ and Cl- in some
areas of the Northeastern USA probably owing to road salting®. Industrial activities, coal
and biomass burning, traffic emissions, wear of asphalt, agricultural operations and wildfires
can also increase mineral dust containing salt ions (for example, concentrations within urban
dust are 2.4% Ca2+, 1.5% K+, 1.2% Na+ and 0.9% Mg2+)109,

Cascading Impacts

Salinization has cascading impacts, which have already been documented in groundwater
systems?10 and ecological food webs111-113, These impacts arise from the mobilization

of metals, nutrients and organic matter by salt ions, through cation exchange, chemical
complexation, changes in pH, solubility and biogeochemical reactions®-11. As a result,
metals and radionuclides in soils are mobilized and enter waterways, salt ions and metals
from drying lake beds are lofted into the atmosphere, and drinking water pipes are corroded
by salt ions.

Water cycling is also impacted by salinization, as it alters water density, freezing
temperature and evaporation rates. For example, salt-rich dust from drying lakebeds has the
potential to accelerate regional snow melt, which can be a problem for many communities
on snowpack for water supply52, such as in the Western USA. Warming sea surface
temperatures could increase evaporation and aerosolization of salts in droplets in air and
cloud albedo14; aerosols scatter solar radiation and serve as seed particles for cloud drops,
which could in turn affect precipitation. This section discusses cascading impacts across the
Earth system.

Land and aquatic ecosystems

FSS refers to the suites of chemical, physical and biological impacts of salt ions on

natural, built and social systems, but some ecosystem consequences are still complex to
diagnose and connect comprehensively as interrelated symptoms of FSS. For example,
salinization impacts on the physical and chemical properties of soils and waters lead to
many overwhelming and coinciding changes in biological and human health impacts at

the ecosystem scale. Atmospheric mobilization and deposition of salt ions can impact soil
fertility, air quality, eutrophication and human health in distant locations!1°. Increasing

soil salinization impacts aggregate structure, erosion, hydraulic conductivity and infiltration
rates, contaminant mobilization in soils, and crop growth%:116, Salinization can also lead
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to losses in sensitive species of animals and plants and decreases in soil biodiversity17.
Overall, the impacts of FSS are broad and extensive, and some impacts are probably still yet
to be discovered.

Similarly, salinization has led to reductions in survival, growth and reproduction among
multiple freshwater organisms and over a wide range of salt concentrations and types!18:119,
As a few examples, increasing salt concentrations impacts organisms by changing

osmotic pressures, desiccating plant roots, impacting development, survival, mortality and
parasitism of amphibians and other organisms, and increasing the invasion of salt-tolerant
organisms%6:120_ |n freshwater ecosystems, increased salinization can also lead to declines in
zooplankton, which leads to increased phytoplankton growth and potentially harmful algal
blooms118, Impacts of algal blooms on water quality can be compounded by salinization
impacts on density stratification and the vertical mixing of lakesS. Salinization can also
enhance pathogen survivall3 and alter microbial communities in both terrestrial soils and
aquatic sediments2L, Overall, increased salinization in terrestrial and aquatic systems can
cause ecological community shifts with wide-ranging ecosystem impacts.

Human health and infrastructure

There are cascading direct and indirect human health impacts associated with
salinization8122, There are direct impacts on respiratory illnesses, mosquito-borne diseases
and mental health from salinization-related environmental degradation!23. For example,
sodium in drinking water impacts hypertension124 and hypertensive disorders in mothers
before birth125. Atmospheric deposition of urban dust enriched with salt ions can increase
risk of pulmonary toxicity, cancers via inhalation, ingestion and dermal contact, and impacts
on biodiversity11%:126-128 Road salts can contribute to atmospheric deposition, but little is
known about the health impacts of road salt aerosols and dust inhalation.

Increased salinization also has indirect effects on human health by mobilizing contaminants,
metals and radionuclides in the environment, such as radium (Ra), radon (Rn), thorium

(Th) and uranium (U)10.129.130 For example, salinization increases water—rock interactions,
which cause the release of trace elements, including radionuclides, into the aquifer!3l,

The abundance of Na+ ions causes increased competitive adsorption of radium with other
cations and forms soluble radium complexes with Cl- (refs. 130,132). Uranium is released
by dissolution from minerals, desorption from mineral surfaces, formation of uranium
complexes and precipitation!29. In drinking water, excess radionuclides can cause a variety
of health issues, including cancers and nephrotoxicity12°,

Infrastructure and urban environments, like roads, bridges, stormwater management,
vehicles, road safety and metal infrastructure, are also impacted by salinization!3. For
example, salts in pipes cause corrosion and metal leaching, impacting safe drinking

water and human health122.129.133 galinization also affects boiling points of water, energy
production using steam and build-up of mineral scaling in piped infrastructure.

In the USA, for example, SO42- concentrations have decreased in freshwaters because of
air pollution regulations and decreases in SO2 emissions from power plantsl34, whereas Cl-
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concentrations have simultaneously increased in streams of this same region owing to lack
of road salt regulations69. Increased Cl-:SO42- mass ratios increase corrosion potential and
leaching of metals such as Pb and Cu from drinking water pipes33.

Biogeochemical cycles

The anthropogenic salt cycle has the potential to influence biogeochemical cascades.
Salinization can influence episodic acidification®’ and long-term alkalinization of rivers8.
For example, coupled relationships between DIC and Ca2+ and Mg2+ influence alkalinity
and pH, microbial processes such as nitrification and denitrification35, desorption of P
from sediments2, toxicity of metals and the ability of rivers to neutralize coastal ocean
acidification58, Long-term increases in pH and alkalinity can further influence the solubility
of certain fractions of organic matter and quality of dissolved organic carbon transported

in rivers (which can then affect transport of metals bound to organic matter and other
biogeochemical cycles)!3. In addition, emissions of CO2 from streams and rivers are
strongly influenced by pH, and river alkalinization from carbonate salts.

The magnitude and scope of FSS have expanded well beyond only a freshwater issue.
Salinization impacts can extend along an increasingly saltier hydrologic cycle across air,
land and water. Different salt ions are added along each step of the hydrologic cycle in
response to compounded human impacts via polluted runoff, increased evaporation rates
through impoundments, irrigation, and climate change, addition of salts during water and
wastewater treatment and wastewater discharges, mobilization of saline dust from drying
lakes, saltwater intrusion, and other processes. However, the anthropogenic salt cycle is
also driven by human alteration of geological and atmospheric processes. Thus, the impacts
of the anthropogenic salt cycle transcend past the apparent boundaries of freshwaters and
extend into terrestrial and atmospheric systems. Ultimately, salt is an increasing agent of
global change with cascading impacts across air, land and water similar to greenhouse gases
and nutrients.

Summary and future perspectives

Humans have redistributed salts among the terrestrial and aquatic ecosystems of the Earth,
disturbing the natural salt cycle by driving rising salt concentrations and fluxes in many
pools across Earth’s systems. The rates of change in these fluxes vary but are much more
rapid than natural background rates and timescales (Table 2). There are consequences for
natural and engineered environments, including FSS, soil salinization and infrastructure
corrosion, which propagate impacts across the Earth system (Supplementary Table 1).

Many questions remain regarding constraining the global salt cycle and understanding

its cascading impacts. Most fundamentally, the global extent of salinization of soils and
freshwaters needs to be more accurately measured. There are important spatial gaps in our
knowledge, particularly regarding the magnitude and scope of salinization of freshwaters in
South America, Asia and Africa (Fig. 2). These gaps can be addressed through international
collaborations with researchers, citizen science and standardized measurements and data
sets. There is also a need to estimate historical baselines of freshwater salinity across
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different geographic regions to understand disturbances to the natural salt cycle. This could
be investigated through modelling or palaeoecological studies of diatoms or other salinity
proxies.

Anthropogenic impacts on the salt cycle need to be better understood to manage impacts

on the salt cycle. Quantifying and constraining salt budgets from watersheds to continental
and global scales can help researchers and policymakers to better understand the storage and
retention of salts in soils and groundwater. An understanding of social dimensions of salt
use could also aid the management of salt budgets at local watershed scales. Beyond direct
inputs of anthropogenic salts to the environment, there are also many anthropogenically
enhanced processes contributing to salinization (Fig. 1). Land use change, hydrologic
alterations and dredging of channels promoting saltwater intrusion, for example, impact

salt cycling, but the mechanisms and magnitude of these impacts are poorly documented.
Similarly, consequences probably arise from extreme events (droughts, saltwater intrusion
events and road salting during blizzards) that cause rapid changes in salt ion concentrations,
but have been poorly characterized. Targeted monitoring of extreme events using sensors and
proxies such as electrical conductivity for salt ions and associated chemical cocktails could
yield new insights and enable better environmental planning.

FSS could become an existential threat to our freshwater supplies and generate a freshwater
crisis. The research community must address strategies for managing FSS, such as analysing
the potential for releasing water from reservoirs and tributaries to dilute salinity or
conservation, restoration and stormwater management strategies. Upstream approaches are
also needed to prevent FSS, but options are currently fraught. Adoption of treatment
upgrades, such as reverse osmosis systems, to remove salts increases the carbon footprint

of water treatment and creates additional issues such as brine disposal and loss of water
production capacity5-12. Reverse osmosis is also very expensive (both for installation and
maintenance), and there are many regions of the world that cannot afford it. Salt ions are
added at almost every step of engineered water management, and the ways water is reused
and recycled for urban agricultural uses can further contribute to salinization of freshwater
along the water cycle. Improving our understanding of the anthropogenic acceleration of the
salt cycle is critical to generate measures to protect human health and the environment and to
avoid shortfalls in high-demand salt resources.

A systems-level approach is now needed for studying, quantifying and constraining the
anthropogenic salt cycle and can illuminate improved empirical and modelling studies

and improve management approaches in the future. Human activities are increasing the
production and consumption of multiple salt ions and accelerating the salt cycle. More
work is necessary to identify when environmental limits are being exceeded for human
health and ecosystem processes and services'3”. Given that water, land and air are now
impacted by increasing salinization across Earth systems, there needs to be a planetary
boundary for safe and sustainable salt use similar to other biogeochemical flows of nitrogen,
phosphorus and carbon dioxide!38. A new understanding of the anthropogenic salt cycle
and constraining global, regional and watershed salt budgets are important for reducing salt
consumption to decrease impacts on societies, ecosystems and infrastructure. More work

is needed to understand how ecological communities change in response to salinization.
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If environmental limits are exceeded, impacts along the anthropogenic salt cycle could
cause harm to ecosystems, drinking water, human health, infrastructure and earth system
processes, which can be difficult or nearly impossible to reverse over timescales relevant to
human life spans.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure5 (Box 1).
A salt budget for the continental United States illustrating major natural and

anthropogenic fluxes. The annual average NaCl production, consumption, imports,
exports, and atmospheric deposition between 2013 and 2017, as well as riverine outputs
of total dissolved solids (TDS) indicated by * in the continental United States, reported

in million metric tons (Mt)2. Data on production, consumption, imports, and exports were
obtained from the United State Geological Survey (USGS) Annual Minerals Yearbook82.
Atmospheric deposition values were interpolated and estimated from Kaushal et al.
(2021) 28,

In the continental USA, anthropogenic salt fluxes are within similar orders of magnitude
as salt fluxes from atmospheric deposition and riverine transport? (see the figure), based
on values reported in the US Geological Survey (USGS) annual Minerals Yearbook5.
Atmospheric deposition values were interpolated and estimated from Anning and Flynn2
and Kaushal et al.8.

Increased salt use in the USA impacts salt fluxes in streams and rivers. Approximately
271.9 Mt of total dissolved solids are transported to streams within the USA, with 71.4%
originating from geologic sources, 13.9% originating from road deicers, 6.7% originating
from pastures, 5.1% originating from urban areas and 2.9% originating from cultivated
lands2. Road salt use increased rapidly after 1990 in the USA, as road deicers began
replacing sand use, and road salt use has increased with increasing impervious surface
cover over timel82. Road salting is now a major use of salt in colder climates, accounting
for approximately 44% of salt use in the USA between 2013 and 2017 (ref. 66).
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Salt for chemical use increased rapidly until the 1970s in the USA, when there were
plateaus and declines in manufacturing and certain industrial activities®®. In addition,
environmental regulations such as US Federal Clean Air, Clean Water, and Safe Drinking
Water Acts were passed in the 1970s, leading to fundamental shifts in the uses and
disposal of industrial chemicals across the USA183.184 \\astewater is also an important
(and overlooked) source of salinization missing from previous estimates and budgets;
chemicals used in wastewater and water treatment (for pH adjustment, chlorination,
dechlorination and odour control) can account for almost 8% of the Na+ entering a
drinking water reservoir whereas the contribution of wastewater effluent to total Na+
mass loading entering that same drinking water reservoir can be approximately 60-80%
during dry weather2,

The relative importance of riverine salt fluxes and anthropogenic salt consumption in
the USA is estimated and compared here. Assuming similar concentrations to global
averages for unpolluted freshwaters8%, NaCl is approximately 7.2% of the majority of
total dissolved solids (6.71/93.71 mg 1-1)185, suggesting a flux of 19.59 Mt (based

on a total dissolved solid flux of 272 Mt). From 2013 to 2017, average US NaCl
consumption and use (agriculture, industry and road salt, for example) is 49.8 Mt;
therefore, riverine fluxes are equivalent to approximately 39% of NaCl consumption and
use in the USA. While acknowledging uncertainties, these values conservatively suggest
that NaCl transport in rivers can be within the same order of magnitude as anthropogenic
salt use in the USA. As salts are stored in the subsurface (for example, as legacy
pollution), riverine exports of non-geologic salts could be less than all inputs in some
cases.

However, river outputs could be over or underestimated, and this example is missing
inputs from natural geologic sources and internal sources from vertical groundwater
transport. Irrigation is also not shown, which is a major driver of salinization in

some river basins in the USA such as the Colorado River. Ultimately, quantifying the
anthropogenic salt cycle in biogeochemical budgets is a difficult but urgent problem?86.
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THE NATURAL SALT CYCLE: SOURCES, TRANSPORT, AND STORAGE

THE ANTHROPOGENIC SALT CYCLE: SOURCES AND SALINIZATION PROCESSES

Chemical Weathering Atmospheric Salt Deposition
Acid Rain Increased Salt Deposition

|

Airborne Salt Dust

Damming

Figure 1.
a, The natural salt cycle is characterized by a balance in uplift of salts to the surface of the

Earth and weathering and transport of salts to the oceans. Salinization is a natural process
in many dryland environments (inset). b, The anthropogenic salt cycle is characterized by
accelerated transport of salts to the surface of the Earth by mining and resource extraction,
increased fluxes of salt to the atmosphere from saline dust, and increased soil salinity and
evaporite formation owing to desiccation (inset). Anthropogenic sources of salts exceed
natural sinks, with a wide variety of geological, chemical, biological, engineering and
hydrological processes contributing to human alteration of the global salt cycle.
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US Salt Production, Consumption, and Major Uses

« Consumption

« Production
Chemical

« Ice Control

- Food Processing

1920
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a, Rising trends in global production of salts since 1929, as reported by the USGS®. b,
Rising NaCl production (defined as the quantity of salt mined or manufactured that is
available for sale) and consumption (defined as the quantity of salt sold or used, plus
imports, minus exports) in the USA, with major uses of consumption shown®.
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Figure 3.
Global heterogeneity in environmental salinity. a, Soils impacted by anthropogenic

salinization (red-shaded areas) to at least some degree as of 2016 (ref. 93). b—e, Probability
density plots showing the distributions of riverine (solid line) or groundwater (dashed

line) freshwater conductivity values among countries or regions with =100 sites from an
open-access global database of observations made over the past four decades178. Note
that Eastern Australia includes Queensland, New South Wales, Victoria, Australian Capital
Territory and Tasmania. Central Australia includes South Australia and Northern Territory.
Electrical conductivity in water often serves as an easily measured proxy for total salinity
in freshwater. Distributions reflect mean readings drawn from disparate river and stream
or groundwater sampling locations from within each country or region. Coastal sites were
omitted from distributions. Country or region site sample sizes are provided in the density
plot legends.
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Figure 4.
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Sodium and chloride concentrations in rivers. a,b, Rising trends in concentrations of Na+
and Cl- salt ions in select world rivers. ¢, Deviations in Na+:Cl- molar ratios from 1:1

(refs. 179-181) (indicated by dashed line). Variations Na+:Cl- molar ratios reflect variations
in the sources, transport and transformation of salt ions across climate, geology, human
activities, flowpaths and time. Rivers draining semiarid and arid regions with more sodic
soils can have higher Na+:Cl- molar ratios whereas rivers draining humid regions have
lower relative Na+:Cl- molar ratios owing to road salt (and other pollution sources) and
greater retention of Na+ on soil ion exchange sites compared with Cl-. Data from the Global
Freshwater Quality Database GEMStat.
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