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ABSTRACT OF THE THESIS 
 

Development of Diffuse Optical Spectroscopic Imaging (DOSI) for Quantitative 

Determination of Body Composition 

By 
 

Drew Reilly 
 

Master of Science in Biomedical Engineering 
 

 University of California, Irvine, 2017 
 

Professor Bruce J. Tromberg, Chair 
 
 
 

      Body composition and tissue hydration are critical parameters that play an essential 

role in each person’s health status and disease risk. Current techniques for accurately and 

quantitatively measuring these features either lack sensitivity or are difficult and expensive 

to operate. Here, I present a new method for evaluating body composition using Diffuse 

Optical Spectroscopy. I also introduce a Tissue Hydration Index (THI), a method to assess 

the relative water content or hydration status of a person’s tissue. THI is developed using 

DOSI technology and a simplified approach for deriving the index using time-independent 

spectroscopy is proposed and validated. 
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INTRODUCTION 

For at least 30 years, obesity and overweight has become more prevalent 

throughout the world, with increased prevalence seen in developed and undeveloped 

countries, in children and adults, and both sexes (Ng et al. 2014).  Obesity is associated with 

many additional health issues (Lavie et al. 2009), shortens lifespan (PSC et al. 2009), and 

represents excessive personal, industrial, and societal monetary costs (Loeppke et al. 2009, 

Tsai et al. 2011).  In addition to the need for better prevention and treatment of obesity, 

enhanced screening and monitoring techniques could play a role in optimizing such 

prevention and treatment methods.  For example, body mass index (BMI) has been used for 

over 100 years to characterize an individual’s body fatness, but it is only an estimate of 

adiposity.  Direct methods to assess body composition involve cadaver analysis, but 

indirect methods, such as hydrodensitometry or dual energy x-ray absorptiometry (DXA), 

have been developed which involve some form of assumption about biological tissues.  

Unfortunately, these more accurate methods to determine adiposity are typically not 

portable and cannot be accessed by large portions of the population.  Magnetic Resonance 

Imaging (MRI) and Computed Tomography (CT) are the most accurate devices for 

quantifying body composition, but are expensive and time consuming and, in the case of CT, 

expose patients to ionizing radiation. In addition to these restrictions, direct body 

composition assessment methods may not be able to measure obese patients due to size 

restrictions.  

In addition to body composition, there is significant interest in assessing tissue 

water content or hydration status. Tissue water content measurements during exercise 

have shown that dehydration can impact mental and physical status (Mudambo et al. 
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1997). Tissue water content imbalances are associated with many diseases, including but 

not limited to high blood pressure, obesity, muscle cramps, and digestion problems 

(Sarvazyan et al. 2005). MRI is the best measurement tool available, but still has all the 

limitations listed above. Bioelectric impedance methods have been developed to measure 

tissue water and fat content, but accuracy is variable and only average body values can be 

determined (Lorenzo et al. 2003). In sports medicine, a field which is heavily interested in 

hydration and water content measurements, urine and blood tests are often used to 

measure hydration. But urine tests have limited detection ability and blood tests are 

invasive and expensive in terms of time and cost (Popowski et al. 2001). Ultrasound 

assessment of hydration measures changes in soundwaves and associates them with 

changes in hydration.  This allows for excellent indirect monitoring of hydration status of 

the tissue (Sarvazyan et al. 2005) by visualizing changes in structure and acoustic 

impedance.  

Optics have been used to study water and fat content extensively. One of these 

optical methods is Diffuse Optical Spectroscopic Imaging (DOSI) is a small, portable, 

relatively inexpensive tool for measuring concentrations of blood, water and fat. Water and 

lipid measurements with DOSI have been validated with MRI measurements of emulsion 

phantoms (Merritt et al. 2003). DOSI breast cancer measurements can separate water into 

“free” and “bound” states (Chung et al. 2008). In vivo temperature can be measured with 

DOSI water information (Chung et al. 2010). These studies show that DOSI is a versatile, 

reliable tool for quantifying tissue water and fat content.  

In addition to quantifying water and fat content, optical methods have been used 

extensively to monitor relative changes in oxygenated hemoglobin and deoxygenated 
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hemoglobin, as well as tissue oxygen saturation (Elwell et al. 2011). DOSI can go a step 

further and directly method hemodynamic parameters (Pham et al 2002) as well as 

quantify absolute concentrations of hemoglobin (Lee et al. 2006). 

Here, I present a study using DOSI and DXA to measure a set of healthy young 

subjects, build a model to measure body composition with DOSI, and introduce a Tissue 

Hydration Index, a method for measuring tissue hydration using NIRS. 

  

CHAPTER 1: Diffuse Optical Spectroscopy 

Diffuse Optical Spectroscopy combines two optical modalities, Frequency Domain 

Photon Migration (FDPM) and Steady State Broadband Spectroscopy (SS), to fully 

characterize the optical properties of a turbid tissue (Bevilacqua et al. 2000). Briefly, these 

optical properties can then be used to determine concentrations of biochemical 

constituents of tissue.  In FDPM, Near Infrared (NIR) laser diodes are intensity modulated 

at hundreds of megahertz using a radio frequency (RF) source. Light remitted from the 

tissue is detected by an avalanche photodiode (APD) in contact with the surface. The APD 

converts the detected light into an RF signal, which is compared to the original RF source to 

determine the amplitude and phase of the detected light. This process is completed for each 

laser diode with modulation frequencies typically between 50 - 500 MHz.  

In tandem with the FDPM measurement, a SS spectroscopic measurement is taken 

as well. A Tungsten Halogen lamp is used to illuminate the sample and a broadband 

reflectance spectrum is recorded. The ability to separate scattering from absorption in the 

reflectance spectrum is accomplished by processing the FDPM and SS data together.   
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FDPM data is processed to yield the reduced scattering coefficient (µs') and 

absorption coefficient (µa). The measured reflected light (R) is in Equation 1.1. 

Equation 1.1: Measured FDPM light 

R = C0 ∗ A ∗ e−i(phi+phi0) 

A and phi are the modulation amplitude and phase in the FDPM data (Bevilacqua et al. 

2000). C0 and phi0 are the instrument response coefficients. To obtain C0 and phi0, a 

measurement of optical phantoms with known values for µa and µs' and every wavelength 

is taken. Using the known µa and µs', we compare these to our measured values at our 

FDPM diode wavelengths to isolate C0 and phi0 and remove them from all future 

measurements. With C0 and phi0 known, we apply a nonlinear least squares fit to find A 

and phi simultaneously. This is done until the function converges and µa and µs' are known 

at the FDPM diode wavelengths. 

To obtain 𝜇𝜇𝑠𝑠' at every wavelength, a power law fit is employed. This method exploits 

the well-known Mie scattering behavior of light in the range of 650-1000nm in biological 

tissue and tissue-simulating phantoms (Bevilacqua et al. 2000).. Again, a nonlinear least 

squares fitting tool is used to find the coefficients to Equation 1.2, where AS is the 

"Scattering Amplitude", bSis the "Scattering Slope" and lambda is wavelength.  

Equation 1.2 – Power Law Fit of Light Scattering 

µs' (λ) = As ∗ λ−bs  
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Figure 1.1 –  Typical DOSI Measurement on human subject. (A) is the calculated 
spectrum of the Reduced Scattering Coefficient and (B) is the scatter-corrected tissue 
absorption spectrum and chromophore fit. 

 
Now that reduced scattering coefficients are known at every wavelength we revisit 

the steady state measurement. Like with FDPM, a sample of known reflectance is measured 

to get the instrument response, which is removed from all future measurements. SS 

measurements at FDPM wavelengths are then scaled by the theoretical reflectance values. 

From there, the scatter-corrected absorption spectrum is computed by minimizing the 

difference between the measured and theoretical reflectance values (Figure 1.1).  

With the scatter-corrected absorption spectrum computed, a linear least squares 

method is used to compute chromophore concentrations within the tissue by comparing 

the measured absorption spectrum with the known spectra for oxy-hemo/myoglobin 

(HbO2), deoxy-hemo/myoglobin (Hb), water, and lipid.  In addition, these parameters are 

used to compute tissue oxygen saturation (StO2) and total hemo/myoglobin (THbMb). 
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Previous DOSI Clinical Applications 

DOSI has been used in a wide variety of clinical applications. In addition to studies 

mentioned above, weight loss in obese patients has been shown to change the scattering 

properties of adipose tissue (Ganesan et al. 2016).  The effects of exercise on muscle 

oxygenation before, during, and after have been studied (Ganesan, Cotter et al. 2015), 

showing that DOSI is an effective tool for studying muscle tissue. DOSI has been used in 

many studies to investigate breast cancer. One such study uses the Tissue Optical Index 

(TOI) to monitor the pathological response in breast cancer tumors during neoadjuvant 

chemotherapy (O’Sullivan, Leproux et al. 2013). 

 

Dual Energy X-Ray Absorptiometry 

In addition to DOSI, Dual Energy X-Ray Absorptiometry (DXA) was used in our study 

and is considered a gold standard when it comes to body composition measurements 

(Branski et al 2010). DXA, a whole-body composition assessment tool, uses a three-

compartment model to quantify a subject’s lean body mass (kg), fat body mass (kg), and 

body mineral content (kg) by measuring the difference in attenuation between two low 

energy x-ray beams.  DXA measurements were performed with a Hologic Discovery-A DXA 

system with Apex 3.3 software (Hologic, Marlborough, MA, USA). Prior to scanning, the 

subject must remove all metal from their person as to not interfere with the measurements.  

 

CHAPTER 2: Body Composition Study 

In all, 103 healthy participants aged 7-34 years were measured. While DOSI has 

been used to study many individuals in the past, measurements on a younger population 
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such as this are not as common. In addition to using this data set to build the body 

composition assessment methodologies, optical properties for this population are also 

reported on which may be of interest to the optics research community. 

Table 2.1 – Breakdown of Body Composition Population by Sex 

 
Table 2.2 – Breakdown of Body Composition Population by Body Mass Index(BMI) 

Grouping 
  

 

 

 

  
 

 
Table 2.3 Breakdown of Body Composition by Age – Sex Grouping. 

 
AGE-SEX GROUPING NUMBER OF SUBJECTS BMI 

EARLY PUBERTAL BOYS 23 17.71 ± 3.02 

EARLY PUBERTAL GIRLS 20 17.52 ± 3.20 

LATE PUBERTAL BOYS 18 21.39 ± 2.57 

LATE PUBERTAL GIRLS 23 20.17 ± 2.43 

ADULT MALES 8 24.86 ± 1.86 

ADULT FEMALES 11 22.12 ± 2.29 

 

SEX NUMBER OF SUBJECTS BMI 

FEMALE 54 19.97 ± 3.30 

MALE 49 20.23 ± 3.76 

BMI NUMBER OF SUBJECTS 

NORMAL 61 

OVERWEIGHT 8 

UNDERWEIGHT 34  
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Figure 2.1 – Diagram of DOSI measurement locations on the subject. 
 

 
DOSI measurements were taken at 12 sites on the body, including two arm, four 

abdominal, and six leg locations, seen in Figure 2.1. The source-detector separation was set 

to 28 millimeters for all patient measurements and data was processed using an inhouse 

MATLAB script. A full body DXA scan was also performed.  

The goal of this study was to optical properties for this unique age range and 

compare the results across groups. Graphs were made along several categories of our 

sample population. Absorption and scattering parameters (µa and µs') were plotted for the 

population separated by sex, age class, sex-age class, and BMI. Age class is a grouping based 

on three categories: Early Pubertal, Late Pubertal, and Adult.  

Demographics can be seen in Tables 2.1 – 2.3. Figures 2.2(A) and 2.2(B) show a 

statistical difference between µa and µs' between sexes, but when broken down by age in 

Figures 2.2(C) and 2.2(D), late pubertal and adults have similar µa and µs’ where as early 

pubertal subjects have different optical properties. The sex-age graphs in Figure 2.2(E) and 
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2.2(F) offer the most information about our subjects by showing two distinct groups. Late 

pubertal boys and adult males have similar µs′  and  µa spectra whereas early pubertal boys 

and all female participants have similar optical properties. This can be attributed to the 

increase in lean muscle mass seen in the transition from early to late pubertal boys without 

the increase in fat mass seen in late pubertal girls (Soliman et al 2014). When BMI is used 

to separate into normal, overweight and underweight groups, optical properties between 

groupings are shown to have no statistical difference in scattering or absorption spectra. 
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Figure 2.2 (A-H) – DOSI Scattering and Absorption Spectra of Participants grouped by 
Sex, Age, Sex-Age, and BMI. Standard Error of each category is plotted in the form of 
error bars.  
 
DXA Body Fat vs DOSI 

Having both DOSI parameters and DXA body fat percentage for these patients 

allowed for a direct comparison of DOSI to DXA for each body part and parameter to whole 

body fat percentage. Figure 2.3 has these comparison plots for each body part’s total 
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Figure 2.3(A-L) – Comparison of DOSI Total Hemoglobin Chromophore to DXA Body 
Fat % by body part. 
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Now that we have established that DOSI measurements throughout the body have a 

high correlation with DXA body fat percentage, a predictive model using DOSI parameters 

to predict body fat percentage can be made.  

 

Predicting Body Fat with DOSI 

To use DOSI parameters to predict body fat percentage, a linear model was selected 

to be the most effective method. We selected five DOSI parameters as possible predictive 

values at all twelve measurement sites. These parameters were THbMb, Water %, Fat %, 

As, and bs. A correlation test was run on all 60 variables against DXA body fat percentage to 

determine if each measurement would be a good predictor. After applying a Holm-

Bonferroni correction to correct for multiple comparison, Scattering Amplitude was shown 

to be a non-significant predictor of body fat percentage. 

The next step was to construct a linear model using our four significant DOSI 

parameters to predict body fat percentage using Equation 2.1. Using THbMb, Water, Fat, 

and bs, we designed a linear regression model to predict body fat percentage. Twenty 

percent of our patients were randomly excluded to test our model with once it was 

complete. The initial model used the four DOSI parameters from all twelve body location 

measurements. Each parameter was normalized to its entire set to reduce computational 

cost and increase efficiency. After normalization, the DOSI parameters were mapped to 

DXA body fat percentage using a gradient descent algorithm, the results of which can be 

seen in Table 2.4.  

Equation 2.1 – Linear Model Form 

Yn = β0 + β1(Xn1) + β2(Xn2) + β3(Xn3) + β4(Xn4) + β5(Xn5) +  εn  
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Table 2.4 – Initial Linear Model developed using DOSI parameters and DXA body fat 
percentage.  

 

 
To try to improve the model and reduce the number of measurements needed, a 

method for determining which sites provided the most important data to the model was 

created. First, each measurement site was fitted to the DXA body fat values, creating a new 

linear model. The body part with the highest adjusted R2 was selected and saved (Bicep 

Short). Next, that site along with each other site was again fitted to DXA values, and the 

model with the highest adjusted R2 was again saved (Bicep Short and Rectus Femoris). This 

process was repeated until the adjusted R2 of the model stopped increasing. The  

Table 2.5 – Correlation tests between our three DOSI chromophore parameters. High 
correlation between all three explains why one of the parameters has an insignificant 
p – value in the linear regression model. 

 

Correlation Variables R P 

Total Hemoglobin vs Water -0.9435 2.8813e-50 

Total Hemoglobin vs Fat 0.9616 1.5648e-58 

Water vs Fat -0.9692 2.9318e-63 
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final model can be seen in Table 2.6. The measurement sites selected were Bicep Short, 

Rectus Femoris, Lower Right Abdomen, Gastrocnemius Lateral, Upper Left Abdomen, and 

Vastus Lateralis. For both models, one can notice that the P – values for either water or fat 

say that those measurements are not statistically significant contributors to the model. 

However, the high p – values are due to high correlation between these parameters and 

other DOSI parameters used in the model (Table 2.5). 

Table 2.6 – Final Linear Model comprised of DOSI measurements from Bicep Short, 
Rectus Femoris, Lower Right Abdomen, Gastrocnemius Lateral, Upper Left Abdomen, 
and Vastus Lateralis. 
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Figure 2.4 – Learning Curve for our final linear regression model. The Training and 
Test Errors converge to 3.29 %.  
 

 
Figure 2.5 – Scatter Plot showing DXA body fat values vs DOSI body fat values. Unity 
line is plotted for reference. There is a high linearity between the two methods  
(𝐑𝐑𝟐𝟐 = 𝟎𝟎.𝟖𝟖𝟖𝟖).  
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The full power of using the linear model can be seen in Figure 2.5. The high linearity 

between DXA body fat percentage, a gold standard for body composition measurements, 

and the DOSI body fat percentage linear model described above. With high correlation and 

low error, it is clear that DOSI is a useful tool for evaluating body fat percentage.  

 
CHAPTER 3: Tissue Hydration Index 

To evaluate the feasibility of creating an index from lipid and water measurements 

to predict water and fat, an initial test was performed between a ratio of water and fat DOSI 

parameters, and water and fat in Figure 3.1. Here, the Broadband Tissue Hydration Index 

(THIBB) is first introduced and described by Equation 3.1. There is linear relationship 

between water and fat, and THIBB. In Figure 3.1, as THIBB increases, water increases, and 

fat decreases. The broadening at high THIBB values on the water plot is due to other 

elements in the measurement volume that DOSI is not capable of quantifying (i.e. bone).  

Equation 3.1 – Broadband Tissue Hydration Index 

 THIBB =  
WaterDOSI

WaterDOSI + FatDOSI
 

 

Figure 3.1 – Plots showing that there is a high correlation between DOSI Water and 
Fat chromophore concentrations and a ratio of them.   
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Wavelength Selection 

Using the body composition data, we set about selecting the ideal wavelengths for a 

simplified two wavelength measurement system for fat and water concentration. Due to 

the shape of the absorption spectra, we selected a range of interest for lipid from 920nm to 

940nm and a range of interest for water from 960nm to 980nm. The algorithm searched 

these ranges to find the minimum reflectance value, corresponding to a maximum in 

absorption 

 

Figure 3.2 – Absorption Spectra of Lipid, Water, and ranges used for searching for 
lipid and water peaks for each measurement in the body composition data.  
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From the Figure 3.3, 969 nm was chosen as the optimal wavelength for the water 

diode and 929 nm was chosen as the optimal wavelength for the lipid diode. These 

measurements were taken from the steady state (SS) reflectance portion of the body 

composition data that was discussed previously in Chapter 2.  

 

Figure 3.3 – Results of experiment described in previous figure. 929 nm was chosen 
as the wavelength to measure the lipid peak and 969 nm was chosen to measure the 
water peak. The column at 940 nm in the lipid histogram is due to participants with 
low fat content, thus having no discernible fat peak in their lipid spectra.  
 
With the goal of replacing the spectrometer with just two laser diodes, LEDs or similar light 

sources, the reflectance measurements at 929 nm and 969 were used to create a lookup 

table to map Hydration to Water and Fat concentrations. For each patient, the calibrated 

reflectance values at these two wavelengths was taken and transformed into a 

measurement analogous to absorption by the equation 3.1 (Conway et al. 1984).  This data 

is taken before the reflectance is adjusted by the theoretical value calculated by DOSI. The 

absorbance analog is then converted to the Steady State Tissue Hydration Index (THISS) 

using equation 3.2.  To map THISS to Water % and Fat %, a lookup table was developed 

using water and fat concentrations from the DOSI body composition study. 
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Equation 3.1 – Absorbance analog transformation 

Absorbanceanalog =  −log10(Reflectance) 
   

Equation 3.2 – Steady State Tissue Hydration Index 
 

THISS =  
AbsorbanceWater Peak

AbsorbanceWater Peak +  AbsotrbanceLipid Peak
 

 

 

As an initial test, Steady State reflectance data at 929nm and 969nm were calibrated 

using a reflectance standard, and transformed into absorbance, and then THISS. In Figure 

3.4, there is a clear trend where change in slope increases with THISS. Because of this, a 

polynomial fit was selected to fit the data. The reverse trend in low THISS sections of the 

graphs (0.2 to 0.3) is inconsequential because we do not observe THISS values that low in 

our subjects. 

 

Figure 3.4 – Graphs of 𝐓𝐓𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒vs Water and Fat Percentage. 𝐓𝐓𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒 is not linear, but can 
be modelled as a parable and adds the ability to quickly acquire data.  
 
 

Validation 

To assess how well the THISS performed in reality, several phantoms were made 

using different concentrations of Water and Fat and measured with DOSI. The THISS for 
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these phantoms were calculated and correlation tests and plots were made and are shown 

in Figure 3.4. The five high water, low fat phantoms were made by taking 20% intralipid 

and measuring it at stock solution concentration, and decreasing the fat concentration by 

5% each time until only 1% fat remained (i.e. 20%, 15%, 10%, 5%, 1%). The medium 

water, medium fat phantoms, are just cheddar and cream cheese. Water concentrations 

were determined after DOS measurement by weighing the cheese before and after 

dehydration at 200°C for 6 hours. Fat concentrations were determined using the Total Fat 

and Serving Size information located on the packaging. For the low water, high fat 

phantoms, butter and lard were used. The water concentrations were determined by 

weighing the butter before and after heating on a hotplate for 30 minutes at 150°C. Both 

butter and lard fat measurements were taken from Total Fat and Serving Size information 

located on the packaging as well. 

 

Figure 3.5 – Scatter plot showing Water % and Fat % vs THISS. There is a high 
correlation between both Water measurements and both Fat measurements. A unity 
line is shown to give a sense of the accuracy of these measurements.  
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Chapter 4: Summary and Conclusions 

This paper presents three distinct yet related ideas. Using a study with a unique age 

range, we report on how differences in age, sex, age-sex category, and BMI can impact 

tissue scattering and absorption spectra. The difference between sexes can be 

distinguished in late pubertal and adult subjects, but not in early pubertal. Scattering and 

Absorption spectra offer no clear difference between the BMI categories of normal, 

overweight and underweight subjects.  

After seeing that there was a high correlation between DXA body fat percentage and 

DOSI parameters, a linear model was made to map DOSI total hemoglobin, water, fat, and 

scattering power to DXA body fat percentage. This resulting model was validated by 

excluding 20% of our data from the training data and evaluating the model error on the 

test data.  

Finally, a Tissue Hydration Index is introduced for the first time. Initial tests using 

broadband DOSI, followed by wavelength optimization using only 2 steady state (SS) 

reflectance wavelengths, resulted in the THISS being evaluated at 929nm for the lipid peak 

and 969nm for the water peak. To test the validity of the THI, phantoms with varying water 

and fat were made and those concentrations were plotted against the THISS to make a 

titration curve, showing the predictive power of the THISS. 

 

Future Work 

There are several paths for this work to be taken. Measurements of obese subjects, 

as well as elite athletes to further characterize DOSI’s predictive power as it comes to body 

composition. To further study lean soft tissue, or muscle, comparing DOSI to MRI instead of 
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DXA would be preferable because MRI can quantify muscle better than DXA. To take full 

advantage of DOSI, hemodynamic measurements for each patient would allow for DOSI to 

be used a risk assessment method for disease. And to get a full view of the overall 

population, expanding the age range to 35 and older would provide more information on 

the overall population.  

To further the THISS, constructing a standalone system that uses continuous wave 

lasers, LEDs, or conventional light sources at 929nm and 969nm, or similar wavelengths, 

would be a good step in showing the power of the THISS to predict water and fat 

percentage using a lookup table. THIBB and THISS could be used to monitor hydration 

states of tissue during exercise,  
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