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Anticipatory attention is a neurocognitive state in which attention control

regions bias neural activity in sensory cortical areas to facilitate the selective

processing of incoming targets. Previous electroencephalographic (EEG)

studies have identified event-related potential (ERP) signatures of anticipatory

attention, and implicated alpha band (8–12 Hz) EEG oscillatory activity

in the selective control of neural excitability in visual cortex. However,

the degree to which ERP and alpha band measures reflect related or

distinct underlying neural processes remains to be further understood. To

investigate this question, we analyzed EEG data from 20 human participants

performing a cued object-based attention task. We used support vector

machine (SVM) decoding analysis to compare the attentional time courses

of ERP signals and alpha band power. We found that ERP signals encoding

attentional instructions are dynamic and precede stable attention-related

changes in alpha power, suggesting that ERP and alpha power reflect

distinct neural processes. We proposed that the ERP patterns reflect transient

attentional orienting signals originating in higher order control areas, whereas

the patterns of synchronized oscillatory neural activity in the alpha band

reflect a sustained attentional state. These findings support the hypothesis

that anticipatory attention involves transient top-down control signals that

establish more stable neural states in visual cortex, enabling selective

sensory processing.

KEYWORDS

attention, EEG, decoding, alpha, ERP, cue, object, SVM—support vector machine

Hypothesis

With anticipatory attention, the brain prioritizes incoming stimuli relevant to
behavioral goals. To accomplish this, attention control regions in the brain increase
excitability of sensory cortical areas responsive to targeted stimuli. It is unknown
whether attention control regions influence sensory regions with sustained input, or if
instead a transient control signal is sufficient to induce a stable, sensitive sensory state.
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We collected electroencephalography data while participants
performed anticipatory attention. Using machine learning
classification, we found that two signals of interest—the event-
related potential (ERP) signal and EEG alpha band power—
reflect distinct phases of an anticipatory attention process, with
different stability properties. We hypothesize that ERP reflects
a transient control signal and alpha power reflects a stable,
modulated sensory state.

Introduction

Attention is the selective prioritization of sensory or
cognitive information that is relevant to behavioral goals.
Endogenous attention, in which “top-down” control is a key
component, is the volitional focusing of processing capacity
on goal-relevant sensory or cognitive targets (Corbetta and
Shulman, 2002). The effort involved in deliberately directing
processing resources distinguishes endogenous attention from
exogenous (bottom-up) attention that is driven by sensory
properties such as salience (Itti, 2005; Geng and Mangun, 2009)
and meaning (Henderson and Hayes, 2017), and other forms
of attention driven by selection history and reward association
(Awh et al., 2012; Anderson, 2016; Failing and Theeuwes,
2018).

Endogenous attention can be deployed in anticipation of
an upcoming sensory stimulus (Posner, 1980). In real life,
for example, when someone in a hurry waits for a traffic
light to turn green, they are effortfully monitoring the traffic
light to the exclusion of other potentially salient stimuli in
their environment so that as soon as the light changes, they
can speed onward. They do not know when the light will
change, so their anticipation of the green light induces a steady
state of heightened and selective attentiveness, readying their
visual system to detect the target stimulus and coordinate the
appropriate motor response with minimal delay.

Research conducted with electroencephalography (EEG)
methods has revealed multiple scalp-level signatures of
anticipatory attention. Examining phase-locked voltage
fluctuations in trial-averaged EEG data relative to the onset of
an experimental event such as the attention cue has uncovered
differences among the condition-averaged ERP waveforms
attributable to different orienting processes (Dale et al., 2008),
including an early contralateral positivity (Simpson et al., 2006),
an early attention-directing negativity (Harter et al., 1989;
Nobre et al., 2000), an anterior attention-directing negativity
(Simpson et al., 2006), and a late directing attention positivity
(Hopf and Mangun, 2000). Functional MRI and seeded source
modeling have been used to associate different ERP signatures
with brain areas that constitute an attention control network
(Grent-‘T-Jong and Woldorff, 2007).

Alpha band (8—12 Hz) power modulation, inversely
indexing the change of cortical excitability, has also been

associated with anticipatory attention (Jensen and Mazaheri,
2010; Van Diepen et al., 2019). In covert visual spatial
attention, alpha band power has been found to be relatively
lower over the visual cortex contralateral to the attended
hemifield (Worden et al., 2000; Sauseng et al., 2005). In
feature-based attention, alpha power modulation has also
been observed in feature processing areas (Snyder and Foxe,
2010).

In our previous work, we showed that multivariate patterns
of alpha power distributions carry information about the
object category that is in the current focus of attention (Noah
et al., 2020). In that study, we implemented a cued, object-
based attention paradigm in which, on each trial, participants
anticipated an upcoming target object image after being
cued to the expected object category, and were instructed to
perform a perceptual judgment about the target object image
when it appeared. Using a support vector machine (SVM)
decoding approach, we observed that EEG alpha band (8–
12 Hz) power topographies were systematically modulated in
the late-cue period, corresponding to the object category being
anticipated. We interpreted this finding to support a model of
visual attention in which modulation of alpha band oscillatory
neural activity plays a crucial role in facilitating processing of
anticipated, task-relevant visual information. In that study, we
did not investigate the relationship between ERP signatures of
anticipatory object-based attention and alpha band modulation,
and so here we address that topic.

The extent to which anticipatory attention-related ERP
components and alpha band modulation are related to
the same or different underlying neural mechanisms of
attention remains poorly understood. ERPs phase-locked to
an experimental event and ongoing neural oscillations are
distinct neural activities with different generating mechanisms
(Shah et al., 2004). As such, it seems likely that occipital
scalp-recoded ERPs and alpha power patterns related to
attentional control index different neural mechanism of
attentional control. Indeed, attention-related ERP components
have been localized to frontal brain areas (Grent-‘T-Jong
and Woldorff, 2007) and occipital areas (Hopf and Mangun,
2000; Hong et al., 2015), whereas alpha power asymmetries
with spatial attention are consistent with neural generators
in occipital cortex (Worden et al., 2000; Snyder and Foxe,
2010).

These arguments notwithstanding, the possible overlap
between some ERP measures of anticipatory attention and
alpha band modulation cannot be entirely ruled out. For
example, sustained voltage deflections over visual cortex
contralateral to the covertly attended hemifield could index
a similar mechanism as alpha band modulation: decreased
alpha band power is thought to correspond to increased
baseline excitability (Jensen and Mazaheri, 2010), and this
excitability could also be reflected in the phase-locked EEG
signal as a sustained voltage increase. Thus, empirical studies
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are required to examine the extent of overlap between
ERP measures of anticipatory attention and alpha band
measures.

To investigate the relationship between ERP and EEG alpha
measures of attentional control and visual cortical biasing
during anticipatory attention, we analyzed EEG from human
participants who had performed an anticipatory object-based
attention task. We applied SVM classification to compare the
time courses of ERP decoding and alpha decoding during
selective visual attention.

Methods

The design of this experimental paradigm is identical to
that of previously published work (Noah et al., 2020). In the
study presented here, we report data from a larger number
of participants and utilize different analysis methods to probe
our hypothesis about the relationship between ERP measures
of attentional control and oscillatory signals related to visual
cortical biasing.

Participants

All participants were healthy undergraduate and graduate
student volunteers from University of California, Davis,
had normal or corrected-to-normal vision, gave informed
consent in accordance with the University of California,
Davis, Institutional Review Board, and received monetary
compensation for their time.

EEG data were recorded from 23 healthy undergraduate
and graduate student volunteers (11 males and 12 females).
EEG datasets from three participants were excluded because
of irreconcilable noise in the EEG data or subject non-
compliance with the task requirements, yielding a final EEG
dataset including 20 participants (9 males and 11 females).
This sample size was chosen based on prior experiments that
found significant above chance decoding in the alpha band
EEG signal during an anticipatory object-based attention task
(Noah et al., 2020).

Apparatus and stimuli

Participants were comfortably seated in an electrically
shielded, sound-attenuating room (ETS-Lindgren,
United States). Stimuli were presented on a VIEWPixx/EEG
LED monitor, model VPX-VPX-2006A (VPixx Technologies
Inc., Quebec Canada), at a viewing distance of 85 cm, vertically
centered at eye level. The display measured 23.6 inches
diagonally, with a native resolution of 1,920 by 1,080 pixels
and a refresh rate of 120 Hz. The recording room and objects

in the room were painted black to reduce reflected light. The
recording room was dimly illuminated using DC lights.

The behavioral task for this experiment was to determine, on
each trial, whether the briefly presented target image belonging
to the cued object category (face, scene, or tool) was in-
focus or blurry. The trial sequence is presented in Figure 1A.

The stimuli to be discriminated were composites of an image
belonging to the target category superimposed with an image
belonging to a non-cued, distractor category. Crucially, both
the target image and the distractor image in the composite
image could be in-focus or blurry independently of each other
(Figure 1B), therefore, the task could not be performed solely by
attending to and responding to the presence or absence of blur.
As well, the stimulus parameters were such that task difficulty
was high, and successful discrimination of focus/blur therefore
required anticipatory attentional effort.

Each trial began with the pseudorandomly selected
presentation of one of three possible cue types for 200 ms
(1◦

× 1◦ triangle, square, or circle, using PsychToolbox;
Brainard, 1997). Valid cues informed participants which target
object category (face, scene, or tool, respectively) was likely
to subsequently appear (80% probability) and instructed
participants to attend to the object image from that category.
Cues were presented 1◦ above the central fixation point.
Following pseudorandomly selected SOAs (1,000–2,500 ms)
from cue onset, target stimuli (5◦

× 5◦ square image) were
presented at fixation for 50 ms. We used variable SOAs to
maximize the incentive for participants to engage sustained
anticipatory attention during the cue-target interval. For a
discussion of tradeoffs involved in experimental designs with
variable cue-target intervals, see (Vallesi, 2010).

Twenty percent of trials were invalidly cued, allowing us
to assess the effect of cue validity on behavioral performance.
For the invalid trials, the stimulus image was a composite of
an image from a randomly chosen non-cued object category,
superimposed with a black and white checkerboard. The
checkerboard could also be blurry or in-focus independently
of the object image. Participants were instructed that
whenever they encountered a trial where the blended
stimulus didn’t include an image belonging to the cued
object category, but instead contained only one object image
and a checkerboard overlay, then they had to indicate
whether the non-cued object image in the stimulus was
blurry or in-focus. We predicted that participants would
be slower to respond on invalidly cued trials, analogously
to the behavioral effect of validity observed in cued spatial
attention paradigms.

The stimulus images spanned a square 5◦
× 5◦ of

visual angle. To create blurred images, Gaussian blur with
a standard deviation of 2 was applied to the images. All
stimuli were presented against a gray background. A white
fixation dot was continuously present in the center of the
display.
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All three object categories included 40 different individual
images. On each trial, random images were drawn to
produce the composite stimulus image. All target images were
gathered from the Internet. Face images were front-facing
and neutral-expression, cropped and placed against a white
background (Ma et al., 2015). All face images were cropped
to ovals centered on the face and placed against a white
background. Full-frame scene images were drawn from the
University of Texas at Austin’s natural scene collection (Geisler
and Perry, 2011) and campus scene collection (Burge and
Geisler, 2011). Tool images, cropped, and placed against a
white background, were drawn from the Bank of Standardized
Stimuli (Brodeur et al., 2014). Unlike scene images, which
contained visual details spanning the entire 5◦

× 5◦ square,
face and tool images were set against white backgrounds
and so did not contain visual information up to all the
image boundaries. Therefore, to eliminate the possibility that
participants could use cue information to focus spatial attention
instead of object-based attention to perform the blurry/in-
focus discrimination, on any trial where a face or tool
image was included in the composite stimulus, the position
of that face or tool image was randomly jittered from the
center.

A pseudorandomly distributed inter-trial-interval (ITI;
1,500–2,500 ms) separated target offset from the cue onset
of the next trial.

Procedure

Participants were instructed to maintain fixation on
the center of the screen during each trial, and to anticipate
the cued object category until the target image appeared.
They were further instructed to indicate whether the target
image was blurry or not-blurry with a button press as
quickly as possible upon target presentation, using the index
finger button for “blurry” and the middle finger button
for “not-blurry.” Responses were only recorded during the
ITI between target onset and the next trial. Trials were
classified as correct when the recorded response matched
the target image subcategory, and incorrect when the
response did not match, or when there was no recorded
response.

Participants were instructed to respond as quickly as
they could to the target stimulus, making it vital that
the participants engaged preparatory attention toward the
cued object category during the preparatory period. All
participants were trained with at least 42 trials of the
task and were able to achieve at least 60% response
accuracy before performing it under EEG data collection; to
achieve this, stimulus duration was adjusted on an individual
participant basis during the initial training phase to facilitate
training on the task.

Each participant completed 15 blocks of the experiment,
with each block comprising 42 trials, totaling 630 trials.

Electroencephalography recording

Raw EEG data were acquired with a 64-channel Brain
Products actiCAP active electrode system (Brain Products
GmbH) and digitized using a Neuroscan SynAmps2 input board
and amplifier (Compumedics USA, Inc.). Signals were recorded
with Scan 4.5 acquisition software (Compumedics USA, Inc.)
at a sampling rate of 1,000 Hz and a DC to 200 Hz online
band pass. Sixty-four Ag/AgCl active electrodes were placed in
fitted elastic caps using the following montage, in accordance
with the international 10-10 system (Jurcak et al., 2007): FP1,
FP2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6,
F8, FT9, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, FT10,
T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP9, TP7, CP5, CP3, CP1,
CPz, CP2, CP4, CP6, TP8, TP10, P7, P5, P3, P1, Pz, P2, P4,
P6, P8, PO7, PO3, POz, PO4, PO8, PO9, O1, Oz, O2, PO10;
with channels AFz and FCz assigned as ground and online
reference, respectively. Additionally, electrodes at sites TP9 and
TP10 were placed directly on the left and right mastoids. The Cz
electrode was oriented to the vertex of each participant’s head by
measuring anterior to posterior from nasion to inion, and right
to left between preauricular points. High viscosity electrolyte gel
was administered at each electrode site to facilitate conduction
between electrode and scalp, and impedance values were kept
below 25 k�. Continuous data were saved in individual files
corresponding to each trial block of the stimulus paradigm.

Electroencephalography
preprocessing

All data preprocessing procedures were completed with
the EEGLAB Matlab toolbox (Delorme and Makeig, 2004).
For each participant, all EEG data files were merged into a
single dataset before data processing. Each dataset was visually
inspected for the presence of bad channels, and any bad
channels identified were subject to data interpolation from
neighboring electrodes. The data were Hamming window sinc
FIR filtered (1–83 Hz), and then down sampled to 250 Hz.
Data were algebraically re-referenced to the average of all
electrodes, and then further low pass filtered to 40 Hz.
Data were epoched from 500 ms before cue onset to 1,000
ms after cue onset, so that anticipatory data from all trials
could be examined together. Data were visually inspected to
flag and reject trials with muscle tension artifact and eye
movement artifacts that occurred during cue presentation.
Independent component analysis (ICA) decomposition was
then used to remove artifacts associated with blinks and eye
movements.
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Electroencephalography decoding
analysis

We implemented a decoding analysis to quantitatively assess
whether object-based attention was systematically associated
with changes in phase-independent alpha band (8–12 Hz) power
topography and phase-dependent ERP across conditions. The
data used for the ERP decoding was restricted to signals below
6 Hz in frequency, to minimize the overlap in information
with the alpha band data. This analysis routine was adapted
from a routine to decode working memory and attention
representations from scalp EEG (Bae and Luck, 2018; Noah
et al., 2020). To isolate the 8–12 Hz alpha band signal from
the EEG, we used a power spectral density procedure, with
the Matlab periodogram() function (window length 500 ms,
step length 40 ms). Bandpass filtered alpha band signal was
subjected to Hilbert transform to approximate instantaneous
power in this band. Thus, we proceeded to decode two separate
signals over 64 electrodes: 0–6 Hz ERP and 8–12 Hz alpha band
power.

Decoding was performed independently at each time point
within the epochs. We implemented our decoding model with
the Matlab fitcecoc() function to use the combination of a
SVM and error-correcting output coding (ECOC) algorithms.
A separate binary classifier was trained for each cue condition
(attend-face, attend-scene, or attend-tool), using a one-vs.-one
approach, with classifier performance combined by the ECOC
algorithm. Thus, decoding was considered correct when the
classifier correctly determined the cue condition from among
the three possible cue conditions, and chance performance was
set at 33.33% (one-third).

The decoding for each time point followed a sixfold
cross-validation procedure. Data from five-sixths of the trials,
randomly selected, were used to train the classifier with the
correct labeling. The remaining one-sixth of the trials were used
to test the classifier, using the Matlab predict() function. This
entire training and testing procedure was iterated 10 times,
with new training and testing data assigned randomly in each
iteration. For each cue condition, each participant, and each
time point, decoding accuracy was calculated by summing the
number of correct labelings across trials and iterations and
dividing by the total number of labelings.

We averaged together the decoding results for all 10
iterations to examine decoding accuracy across participants, at
every time point in the epoch. At any given time point, above-
chance decoding accuracy suggests that the decoded signal
contains information about the attended object category. We
utilized a Monte Carlo simulation-based significance assessment
to reveal statistically significant clusters of decoding accuracies.
Full details of this cluster-based permutation test for statistical
significance are described in previous publications describing
how this method was applied in other experiments (Bae and
Luck, 2018; Noah et al., 2020).

We conducted a cross-temporal decoding analysis to
measure the extent to which decoded patterns of EEG voltages
and oscillatory power were stable over time. Our cross-temporal
decoding procedure involved classifying each test data time
point for each train data time point. For each time point,
training set data was used to generate a classifier model, and
then data from each time point in the testing set was subjected to
classification by the trained model. Thus, the ability of a classifier
trained at one time point to perform above-chance decoding on
test data from other time points indicates that the topographic
pattern of voltages or oscillatory power over which the model
was trained was equivalent across the time points in question.

Results

The ERP decoding timeseries is presented in Figure 2A. In
the cue period between 0 and 1,000 ms after cue onset, a cluster
of statistically above-chance time points extended from 0 to
750 ms. Average decoding accuracy across participants peaked
around 200 ms at about 45% (33% is the chance level). Decoding
accuracy remained at roughly the same level to 400 ms, and then
began to steadily decline. Above-chance level decoding prior to
stimulus onset (t = 0) is likely an artifact due to narrow-band
filtering (0–6 Hz). The reason for choosing 6 Hz as the upper
limit of the passing band was to avoid the influence of alpha
oscillations (8–12 Hz) on the ERP analyses. According to the
theory of spectral filtering, the narrower the filtering band, the
more severe the temporal smearing.

It is common in the EEG decoding literature for absolute
decoding accuracy values to be close to chance. Therefore,
statistically significant difference from chance is taken to be the
primary indicator of information about the decoded conditions
being present in the decoded signal (Bae and Luck, 2018; Noah
et al., 2020). That absolute decoding accuracies cannot easily be
interpreted as continuous measures of condition information in
decoded signals is a limitation of the EEG decoding method.

The alpha power decoding timeseries is presented in
Figure 2B. In the cue period, average decoding accuracy
across participants did not reach the level of statistically
significant above-chance performance until 625 ms post cue
onset. Statistically significant above-chance decoding occurred
from this time until 875 ms. Decoding performance began
dropping off after this point but remained above chance levels.
In the early phase of the cue period, decoding performance
trended above-chance in the window of 0–300 ms but did
not reach the level of statistical significance. It is possible that
above-chance decoding performance in this early window is
attributable to the different sensory responses to the three
different cue shapes that accompanied each object attention
condition. In a previous study, we examined the extent to which
above-chance alpha power decoding could be achieved solely
based on physical differences in the cue shape and localized
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FIGURE 1

(A) Example trial sequence. Each trial began with the presentation of a symbolic cue that was predictive of the upcoming object category (80%).
Following an anticipation period (cue-to-target) varying from 1.0 to 2.5 s, a composite stimulus image was presented. Participants were
required to make a rapid-accurate discrimination of whether the cued object image was blurry or not-blurry (valid trials), or whether the uncued
object image was blurry or not-blurry (invalid trials). (B) Example stimulus images in the attention task. In the set of example valid trial stimuli
shown, Face is the target object category to be identified as in-focus or blurry, and the overlaid Tool or Scene images are the distractor images.
For each stimulus image, both the target and distractor can be blurry or in-focus, independently of each other. Example invalid trial stimuli are
also provided to illustrate that both the uncued target image and the overlaid checkerboard can be blurry or not-blurry, independently of one
another. In the invalid trial condition, participants were still trained to respond to the uncued target image with the same blurry/not-blurry
distinction, using the same response buttons as for valid trials.

shape-driven above-chance performance to the early window of
0–300 ms post cue onset (Noah et al., 2020).

Cross-temporal decoding matrices are presented in
Figure 3. In this decoding approach, a classifier built at
time t is used to decode the data from all other time points.
As shown in Figure 3A, the cross-temporal ERP decoding
matrix reveals that decoding performance off the diagonal fell
quickly to chance levels, suggesting transient representation.

By contrast, the cross-temporal alpha power decoding matrix
(Figure 3B) shows a pattern of relatively long-lasting above-
chance off-diagonal decoding performance. Cross-temporal
alpha power decoding remained above-chance at comparable
levels from the onset of statistically significant decoding, as
determined by cluster-based permutation test and visualized
in Figure 2B, until the end of the cue period, suggesting stable
representation.
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FIGURE 2

Cue period decoding accuracy timeseries for ERP (A) and alpha
power (B). Decoding accuracy was averaged across EEG data
from 20 participants. The solid line inside the shaded regions
represents mean decoding accuracy across participants and the
shading represents the standard error across participants. The
blue dots denote clusters of time points statistically significantly
greater than chance (33%). The ERP signal was extracted from
the original EEG signal by low pass filter with a 6 Hz cutoff.
Instantaneous alpha power was calculated with a Hilbert
transform over 8–12 Hz bandpass filtered EEG data.

Discussion

The neural mechanisms underlying the control of
anticipatory voluntary attention can be subdivided into
those belonging to “sources” of biasing signals and “sites” where
the top-down biasing influences target processing (Posner
and Petersen, 1990; Petersen and Posner, 2012). Top-down
attention has been likened to a spotlight (Posner et al., 1980),
and the sources of attentional biasing signals are like the lamp,
which can be swiveled and pointed toward whatever needs to be
selectively illuminated for enhanced visibility. Sensory cortical
sites where biasing enhances target representations are like
the contents of the spotlight’s beam: their visibility increases
because of the lamp’s light.

Sources of top-down attentional biasing signals have been
identified in frontal and parietal cortex (Nobre et al., 1997;
Corbetta et al., 2000; Hopfinger et al., 2000; Kastner and
Ungerleider, 2000). A network comprising intraparietal sulcus,

superior parietal lobule, frontal eye field, and supplementary
eye field has been identified as an originator of endogenous
attentional control signals and labeled as the dorsal attention
network (He et al., 2007; Szczepanski et al., 2013). Activity in
the dorsal attention network has been linked to modulations of
neural activity in sensory areas (Liu et al., 2016; Popov et al.,
2017). The role of ventral pre-arcuate region of prefrontal cortex
has been identified as a possible source of top-down biasing
signals when the target of attention is a naturalistic object
(Bichot et al., 2015).

In the visual domain, one potential mechanism by which
top-down attention affects processing in sensory cortex is
modulation of oscillatory neural activity in the 8–12 Hz alpha
band (Scheeringa et al., 2011; Liu et al., 2016). The alpha band
may reflect a natural frequency of occipital-corticothalamic
circuits (Rosanova et al., 2009; Vallesi et al., 2021). Furthermore,
alpha band power within a neural population may reflect the
excitability of that population, with lower power indicating
higher excitability. Therefore, direct modulation of alpha band
power may represent a means by which higher order control
regions, such as the dorsal attention network, dynamically
regulate the flow of information through various visual cortical
pathways to flexibly support behavioral goals (Jensen and
Mazaheri, 2010; Van Diepen et al., 2019). Consistent with
this theory, systematic alpha power modulations have been
observed to accompany attention to spatial locations (Worden
et al., 2000), attention to low-level visual features (Snyder and
Foxe, 2010), and attention to object categories (Noah et al.,
2020), suggesting that alpha power modulation is a common
mechanism of attentional control throughout visual cortex.

The hypothesis that alpha synchronization serves as a
controllable gate on sensory processing dovetails with findings
that anticipatory attention increases firing rates and other
correlates of neural activity in sensory cortical areas that are
selective for the cued visual information in advance of the actual
appearance of the cued stimulus (Luck et al., 1997; Chawla et al.,
1999; Kastner et al., 1999; Hopfinger et al., 2000). These findings
suggest that anticipatory attention to a target spatial region
or visual feature may be subserved by an increase in baseline
excitability and spike firing rates in the corresponding cortical
processing areas, and that therefore the efficacy of anticipatory
attention over a length of time depends on the baseline increase
being sustained.

These findings prompt the question of whether sustained
increases in sensory cortical baseline activity are dependent on
sustained input from attention control regions, or if instead
transient inputs from control sources are sufficient to induce
steady states of sensory receptivity. The continuous involvement
of a network of multiple brain areas in the former scenario
would at least be metabolically inefficient (Zenon et al., 2019),
and possibly also interfere with the ability of these areas
to participate in other computational processes during the
anticipatory period (Ophir et al., 2009).
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FIGURE 3

Cross-temporal cue period decoding accuracy matrices for ERP (A) and alpha power (B). Decoding accuracy was measured for each
combination of training time point and testing time point and visualized by color map.

Previous studies of human endogenous attention using
fMRI have suggested that attention control signals arising from
posterior parietal cortex may be transient, while the effects of
sustained attention in visual cortex are sustained (Yantis et al.,
2002; Serences and Yantis, 2006). However, the question of
whether sustained increases in baseline sensory cortical activity
are dependent on sustained activity in the dorsal attention
network is not well addressed in fMRI studies (Chawla et al.,

1999; Kastner et al., 1999; Hopfinger et al., 2000) because of
the low temporal resolution of the hemodynamic signal. In
contrast, the millisecond timescale of EEG allows us to address
this question with greater temporal precision.

We hypothesize that anticipatory attention does not require
continuous maintenance by ongoing input from the dorsal
attention network, and is instead a biased, stable state in
sensory cortical structures that is induced by transient top-down
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control signals. Furthermore, we hypothesize that alpha power
distributions across visual cortex are endpoints of these top-
down control signals, and therefore a cortical alpha power
distribution is predicted to be static once it is induced by
dynamic control mechanisms.

Based on previous research associating early ERP
components with neural processes in frontal and parietal brain
areas (Grent-‘T-Jong and Woldorff, 2007), we interpreted our
0–6 Hz ERP band data as encoding attentional control signals.
We predicted that control mechanisms would predominantly
operate before the onset of systematic modulated alpha power
topographies. Thus, we predicted that the ERP signal would be
highly dynamic whereas the alpha power topography would
be static, and that EEG decoding would reflect this ordering
and these characteristics of the ERP and alpha power scalp
distributions.

Our SVM decoding results supported our predictions. We
observed that in our ERP decoding timeseries, statistically
significant above-chance decoding began early in the cue period,
peaking around 150–200 ms post-cue, and declining toward
chance levels by 750 ms. Statistically significant above-chance
decoding of alpha power topographies began near the offset of
significant ERP decoding, around 700 ms. That above-chance
ERP decoding preceded above-chance alpha power decoding
supports our hypothesis that the function of the orienting
signals encoded in the ERP is to establish an alpha power
topography that supports the selective processing of incoming
targeted stimulus information.

We subjected the 0–6 Hz signal to our decoding analysis
in the form of instantaneous voltage scalp topographies to
capture the cue-related ERP without any overlap from cue-
related alpha band responses, following previous EEG decoding
analyses that sequestered the 0–6 Hz band for the same purpose
(Bae and Luck, 2018). We interpreted the ERP signal as
encoding attentional orienting processes. Theoretically, the EEG
signal should reflect all the neural activity instigated by cue
presentation, including activity underlying visual perception of
the cue, interpretation of the cue meaning, and execution of
task instructions conveyed by the cue (attentional orienting to
object category). The decodability of the cue condition from
the EEG signal reflects differences in evoked patterns of brain
activity between the different cue conditions, discernible at the
scalp. Thus, because different attentional orienting processes
are invoked in the different cue conditions, these orienting
processes should be reflected in the EEG signal and detectable
with EEG decoding.

Our cross-temporal ERP decoding results showed that
above-chance decoding did not spread far from the one-to-
one training-to-testing diagonal, reflecting that the scalp pattern
of ERP voltages encoding the cue-related information changed
highly dynamically, near the resolution of our cross-temporal
decoding analysis. This dynamism in the cue-related ERP
topography suggests that the attentional orienting processes

initiated after cue presentation involved transient activity in the
neural areas underlying the ERP signal.

We interpret our cross-temporal ERP decoding results
to mean that attentional orienting processes in higher order
cortical areas compute the appropriate sensory cortical targets
to receive modulatory input and issue biasing signals to sensory
cortex to enact localized control. Both these computations
and the top-down biasing must be encoded in transient
neural signals rather than sustained activity, because any
sustained activity that varied as a function of our experiment’s
cue condition would be reflected in patterns of off-diagonal
above-chance accuracy in our cross-temporal ERP decoding
matrix. Therefore, our cross-temporal ERP decoding results
support our hypothesis that the top-down biasing signal issued
from attentional control regions is not a continuous input
to sensory cortex.

Our cross-temporal alpha power decoding results indicate
that the scalp patterns of alpha power (and therefore the activity
of underlying neural generators of these patterns) that varied as
a function of cue condition were sustained and highly stable.
Unlike our treatment of the 0–6 Hz ERP signal, we modified
the 8–12 Hz alpha band signal by Hilbert transform to estimate
instantaneous oscillatory power in this frequency band, and thus
our alpha decoding reflected alpha power scalp topographies
rather than topographies of instantaneous voltages extracted
from 8 to 12 Hz activity. That our cross-temporal alpha power
decoding remained stably above chance over the roughly 400
ms period from its onset reflects that scalp topographies of
power in the alpha frequency band were stable over this period.
The brain state associated with this period could therefore
be characterized as a resonant system with spatial parameters
dictating its functional utility.

Alpha band oscillatory neural activity may reflect an
equilibrium state of visual cortical activity. There is evidence
that visual cortex settles into an alpha band oscillatory pattern
when visual input becomes static (Berger, 1929; Adrian and
Matthews, 1934; Pfurtscheller et al., 1996), and furthermore,
perturbational studies suggest that the alpha band may be a
natural frequency of the visual system (Rosanova et al., 2009;
Vallesi et al., 2021). We propose that alpha band activity
does reflect a form of cortical inactivity by its nature as a
fixed-point behavior. However, unlike historical hypotheses that
this inactivity is mere idling and possibly epiphenomenal, we
hypothesize that the equilibrium behavior of alpha activity is
essential to its functional role. It seems at least plausible that
because visual cortical circuits tend toward stable oscillatory
behavior in the alpha frequency range (Rosanova et al., 2009;
Hindriks et al., 2015; Vallesi et al., 2021), extrinsic inputs to these
circuits can modulate the amplitude and phase coherence of
synchronized firing by adjusting the system’s initial conditions.

We propose three possible mechanisms by which transient
control signals can induce sustained patterns in visual cortex.
First, considering that synchronized oscillatory activity in
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the alpha band may reflect a natural activity pattern of
the visual system, top-down control mechanisms may need
only act transiently to modulate sustained alpha patterns by
either destabilizing alpha band phase coherence in circuits
selectively responsive to attended visual features, or conversely,
synchronizing phase coherence in circuits selectively responsive
to task-irrelevant visual features.

Second, representation of the attentional instruction in
visual cortex may be sustained by an activity-silent information
maintenance mechanism, by analogy with that proposed to
support working memory (Stokes, 2015). Activity-dependent
short-term synaptic plasticity is a possible mechanism by which
changes in the functional connectivity of a network construct a
temporary task-relevant circuit.

Third, higher-order cortical attention signals may be relayed
to visual cortex via subcortical control centers. In particular,
attentional instruction from frontoparietal control networks
may regulate the activity of the pulvinar and in turn facilitate
neural communication of attended information in visual cortex
by regulating oscillatory local field potential phase coherence in
the alpha band (Saalmann et al., 2012). It is unclear whether
coordination of communication between visual cortical areas
is a result of local thalamic computation or of a distributed
network of brain areas, such as an extrathalaic inhibitory
system involving the output nuclei of the basal ganglia (Halassa
and Kastner, 2017). However, either type of mechanism could
theoretically facilitate communication among visual cortical
areas after receiving transient frontoparietal control signals.

Altogether, we propose that alpha band activity represents
steady visual cortical states and that transient extrinsic
inputs can establish different equilibrium behaviors by
modulating initial conditions or system parameters. Our
proposal bridges historical viewpoints that alpha band
oscillations are epiphenomenal signatures of cortical idling
with more recent theories about the functional role of this
oscillatory regime. This hypothesis might explain why alpha
band activity appears to serve a gating function on cortical
information processing streams in various cognitive behaviors
such as working memory (Bae and Luck, 2018), spatial attention
(Worden et al., 2000), feature-based attention (Snyder and
Foxe, 2010), and object-based attention (Noah et al., 2020).

A limitation of the data analysis presented here is that it does
not support strong claims about causal relationships between the
processes reflected by these signals: We observe that ERP signals
encoding attentional instructions precede alpha power signals
encoding attentional state, but ordering alone is not sufficient
to justify a direct causal connection between the two signals.
Therefore, future research stemming from this proposal should
seek to identify the causal connections between attention control
signals and the modulation of alpha band oscillatory activity. For
example, future work could seek to model precise mechanisms
by which top-down inputs from higher cortical areas and
control networks adjust the visual cortical circuit factors that

contribute to the establishment of different alpha steady states
and identify signatures of these mechanisms in neural data.

Our proposal focuses on alpha band activity to the exclusion
of other frequency bands. In previous work, we observed
that cued anticipatory object-based attention modulates alpha
power topographies, and we did not find any evidence of
systematic modulation in similar topographies of theta, beta,
or gamma band EEG (Noah et al., 2020). Therefore, here we
center alpha band modulation in our theoretical mechanism
of anticipatory attention. However, future work testing the
hypothesis that modulated alpha power is a steady state
phenomenon induced by transient top-down attention control
signals should also examine activity in other frequency bands
and other electrophysiological signals associated with sustained
attention in visual cortex to better understand how modulated
alpha power might lead to facilitated cortical computation of
task-relevant visual information.

Conclusion

In this study, we examined ERP and alpha power
modulation through the lens of SVM decoding to assess the
extent to which these two electrophysiological signals reflect
different neural processes underlying the control of object
attention. Our results suggested that attentional orienting
signals are not continuously applied to maintain a receptive
anticipatory state in visual cortex, but rather are dynamic and
transient, and the resultant biased visual cortical state was
maintained by alpha band oscillations.

We conducted an SVM analysis and cross-temporal
decoding analysis to examine the time courses of decoding
performance, a proxy measure for cue condition-dependent
information in the ERP and alpha power signals, and the
stability of the decoded patterns across time. Our results
suggest that higher order control signals, encoded in the 0–
6 Hz ERP signal, are active before the onset of a stable state
reflected by sustained patterns of attention-related alpha power.
Furthermore, we propose that to support anticipatory attention,
the function of attentional orienting signals originating in
higher order sources, such as the dorsal attention network,
is to establish conditions in visual cortex so that the system
evolves toward an equilibrium state that facilitates the selective
reception and transmission of target-related visual information.

The source-site subdivision of endogenous attention’s neural
mechanisms has historically likened attention to a spotlight,
with one set of neural processes involved in orienting the
spotlight and a separate set of mechanisms “illuminating” the
representational content of sensory processing areas (Posner
et al., 1980). Based on our observation that control mechanisms
are transient and the induced attentive state does not rely on
continuous energetic input from control sources, we propose
that the spotlight metaphor mischaracterizes important aspects
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of attentional processes. The spotlight metaphor implies that
enhancement of sensory representations depends on continuous
illumination: once the lamp has been oriented toward the target
and the light comes on, it needs to stay on for the target to
remain visible.

A new metaphor is suggested by previous lines of fMRI
research suggesting the transience of control signals in posterior
parietal cortex (Yantis et al., 2002; Serences and Yantis, 2006)
and our EEG-based observation of the transience of top-down
control signals that instantiate a stable attentional state of visual-
cortical alpha power topography. We propose that attention’s
implementation in sensory cortex can be thought of more like a
radio than a spotlight. The attention control sources are akin to
the listener, who tunes the radio to a specific channel. Tuning the
radio to the relevant channel facilitates reception of the desired
signal, and no other signals on other channels. The act of tuning
is a transient event, but the result is sustained.
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