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Abbreviations and acronyms: 

KCa2.x (small-conductance Ca2+-activated K+ channel)  

KCa3.1 (intermediate-conductance Ca2+-activated K+ channel) 

ALS (amyotropic lateral sclerosis) 

Cam (calmodulin) 

CamBD (calmodulin binding domain) 

ICARS (International Cooperative Ataxia Rating Scale) 

KCNN (potassium channel gene class N) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Abstract 

 

This short review discusses pharmacological modulation of the opening/closing 

properties (gating) of small- and intermediate-conductance Ca2+-activated K+ channels 

(KCa2 and KCa3.1) with special focus on mechanisms-of-action, selectivity, binding sites, 

and therapeutic potentials. Despite KCa channel gating-modulation being a relatively 

novel field in drug discovery, efforts in this area have already revealed a surprising 

plethora of pharmacological sites-of-actions and channel subtype selectivity exerted by 

different chemical classes. The currently published positive modulators show that such 

molecules are potentially useful for the treatment of various neurodegenerative 

disorders such as ataxia, alcohol dependence, and epilepsy as well as hypertension. 

The negative KCa2 modulators are very effective agents for atrial fibrillation. The 

prediction is that further unraveling of the molecular details of gating pharmacology will 

allow for the design of even more potent and subtype selective KCa modulators entering 

into drug development for these indications.  
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1. Pharmacological modulation of ion channel gating  

In the current context we define pharmacological modulation of ion channels as 

modulation of their activation, inactivation or deactivating mechanisms. In other words, 

gating modulation. Thus, we will not discuss trafficking modulation, which alters channel 

density on the plasma membrane or classical pore blockers, which simply obstruct the 

flow of ions through an open channel.1 We will also not consider compounds operating 

at orthosteric sites (agonists), like endogeneous neurotransmitters on ionotropic 

receptors. This article will instead focus on allosteric modulation that strengthens 

(positive modulator) or weakens (negative modulator) the response to the physiological 

stimuli for channel activation.  

Pharmacological gating modulation is historically a well-established principle in 

drug development. The most famous example is probably the modulation of GABAA 

receptors by benzodiazepines: Drugs like diazepam bind to an interface pocket between 

the α and γ subunits and increase the affinity for activation by GABA, an effect which 

strengthens inhibitory signaling in the brain and is valuable in the treatment of anxiety 

and seizure disorders. Importantly, the efficacy of different benzodiazepines at this 

binding site varies from full to partial positive modulators and comprises compounds 

with no efficacy, and even compounds exerting negative gating modulation.2, 3 Another 

well-known example is the dihydropyridine binding site on L-type Ca2+ channels 

(Cav1.x): Nifedipine and amlodipine exert complex modulation of voltage-dependent 

gating parameters resulting in overall decreased Ca2+-currents at physiological 

membrane potentials.4 These negative gating modulators are valuable drugs for the 

treatment of essential hypertension by their relaxing effect on vascular smooth muscles. 
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However, other dihydropyridines like Bay-K-8644 act as positive gating modulators via 

the same binding site by primarily shifting the voltage activation curve towards more 

negative membrane potentials.5, 6 

In the following paragraphs we will review the current understanding of positive 

and negative gating modulation of Ca2+-activated K+ channels of small- and 

intermediate-conductance, KCa2.x and KCa3.1 (the KCNN channels), which is an 

emerging field in drug discovery. 

  

 

2. Small/intermediate conductance Ca2+-activated K+ channels 

Four KCNN genes exist in mammals.7 KCNN1, KCNN2 and KCNN3 encode the 

small-conductance Ca2+-activated K+ channels KCa2.1, KCa2.2 and KCa2.3 (a.k.a. SK1, 

SK2 and SK3), which are prominently expressed in neurons but also found in some 

peripheral tissues such as cardiomyocytes and liver.8 KCNN4 encodes the 

intermediate-conductance KCa3.1 (IK, SK4) channel, which is nearly exclusively 

expressed on non-excitable cells such lymphocytes, erythrocytes, fibroblasts, vascular 

endothelium and secretory epithelia.9 However, this notion was recently challenged by a 

paper finding evidence for KCa3.1 expression in hippocampal CA1 neurons, where the 

channel apparently contributes to the slow afterhyperpolarization.10 All KCNN channels 

share a common mode-of-activation in that their gating is voltage-independent and 

depends exclusively on calmodulin (Cam), which is tightly bound to a Cam binding 

domain (CamBD) in the C-terminus of the channel (Fig. 1).11-15 Upon Ca2+ binding to 

Cam the channels activate in a highly coordinated fashion following an extremely steep 
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Hill-equation for KCa2 (and a slightly less steep curve for KCa3.1) and EC50 values 

estimated by various groups to be in the range of 250 to 900 nM.14, 16, 17 The Ca2+ 

sensitivities of KCNN channels are physiologically modulated by closely associated 

kinases and phosphatases: For KCa2 channels casein kinase 2 (CK2) and protein 

phosphatase 2A (PP2A) mediate phosphorylation/dephosphorylation of Cam threonine 

80, with the phosphorylated state being less Ca2+ sensitive (Fig. 1).8 For KCa3.1 the 

nucleoside diphosphate kinase B phosphorylates histidine 358 in the C-terminal, which 

is permissive for Ca2+ activation.18 KCa2 channels expressed in the soma of neurons are 

functionally coupled to voltage-activated Ca2+ channels (Cav channels) and give rise to 

Ca2+-dependent afterhyperpolarizations of medium duration (mAHP) following single or 

trains of action potentials, which is an essential component of early spike frequency 

modulation in cortical and limbic neurons.19 In pacemaker neurons of the basal ganglia 

and cerebellum, cyclic activation of KCa2 channels secures highly regular firing, which is 

essential for muscle coordination and movement.20, 21 KCa2 channels expressed 

postsynaptically in dendritic spines are coupled to NMDA (GluN1-3) receptors and their 

activation hyperpolarizes the spine and accelerates voltage-dependent Mg2+ block of 

the NMDA receptor.22 Thus, dendritic KCa2 channels are important components of 

memory and learning processes at the subcellular level.23-25 In contrast, KCa3.1 

channels in endothelial cells and cells of the immune system, such as T-lymphocytes, 

are activated by more global Ca2+ signals like Ca2+ released from intracellular stores or 

by the refilling influx through store operated Ca2+ channels like transient receptor 

potential channels (TRPs) and Ca2+ release activated channels (CRAC).26, 27 KCa3.1 is a 
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major component of the endothelial derived hyperpolarizing (EDH) response28, 29 and 

important for cell proliferation and cytokine release in lymphocytes.27, 30, 31  

 

3. Positive modulation of KCa2/KCa3.1 channels 

3.1 Key compounds and drugs 

It can be argued that the oldest positive modulator of KCNN channels is 1-EBIO 

(Fig. 2), which was identified before the channels were cloned.32  1-EBIO activates all 

four KCNN channels. With an EC50 of ~30 µM KCa3.1 is most sensitive, while the three 

KCa2 channels are activated at roughly 5-10 fold higher concentrations.33-35 However, 1-

EBIO is a tool compound for research purposes only. A pivotal finding for the field 

therefore was the demonstration that chlorzoxazone and zoxazolamine, centrally acting 

muscle relaxants used for many years to treat spasticity, also activated KCNN 

channels.36 Another compound, riluzole, the only drug FDA approved for treatment of 

amyotropic lateral sclerosis (ALS), was shown to activate KCa3.1/KCa2.x channels even 

more potently than 1-EBIO.37 Despite having a very “rich” ion channel pharmacology, 

including block of voltage-dependent Na+
 (Nav) channels (but not glutamate receptors 

even though its therapeutic action is often referred to as being anti-glutamatergic), the 

activation of KCNN channels is among riluzole’s most potent effects.38 Two molecules 

also belonging to the benzimidazole/benzothiazole prototype KCa activator class are 

NS309, a very potent molecule (EC50 10-20 nM for KCa3.1 and ~600 nM for KCa2 

channels) and very useful for in vitro mechanistic work, and SKA-31, which was 

optimized from riluzole with the aim of getting better selectivity (inactive on Nav 

channels) and maintaining good in vivo properties.38, 39 The very close analogues, SKA-
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111 and SKA-121, exhibits much higher KCa3.1/KCa2 selectivity, and accentuate the 

primary role of the benzimidazole/benzothiazole series as being KCa3.1 activators.40   

In contrast to the above mentioned molecules, which show little selectivity between 

the KCa2 family members, CyPPA and its more potent congener NS13001 have 

fundamentally different structures and also changed selectivity profiles (Fig. 2). Both 

compounds selectively activate KCa2.3 and KCa2.2 but are completely inactive on KCa2.1 

and KCa3.1.16, 41 Still other lines of molecules are represented by GW542573X and CM-

TMPF, which are selective and potent (CM-TMPF) activators of the human KCa2.1 

channel.42, 43 

 

3.2 Mode(s) of action 

Basically, all KCNN activators conform with our definition of a positive gating 

modulator, since they act by shifting the Ca2+-activation curve towards lower 

concentrations of Ca2+ in a concentration-dependent way (Fig. 2 bottom). This means 

that the determined EC50 values for Ca2+, calculated from Ca2+-concentration response 

curves, decreases as the concentration of modulator increases. Using fast application of 

different intracellular Ca2+ concentrations to inside-out patches, it has furthermore been 

shown that 1-EBIO has no effect on activation time constant, whereas it strongly 

reduces the deactivation constant.44  Applied to a physiological situation this means that 

KCa2 channels will not activate quicker or to a significantly higher degree during a fast 

neuronal action potential, but they will stay open longer after the action potential and 

local Ca2+ transient has ceased. This is exactly what is observed, since positive 

modulators prolong the mAHP, thereby increasing the time to the firing of the next 
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action potential.34, 45 Given these functional data it is therefore an obvious and tempting 

interpretation that the mode-of-action of positive modulators simply is to decrease the 

Kd value for Ca2+ binding to Cam by decreasing the koff-value for Ca2+. Intriguingly, 

however, this is not exactly what happens! Studies of Cam mutants, which make 

unstable association with the CamBD, have shown that NS309 is able to stabilize the 

interaction, which points towards an action of NS309 in the transformation of 

conformational changes between the Cam and the channel.46 Direct measurements of 

Ca2+ off-rates have confirmed that conclusion. 

 

3.3 Site(s) of action 

A chimaeric construct where the entire C-terminus (Fig. 1) was transferred from 

KCa3.1 to KCa2.2 demonstrated that the higher 1-EBIO potency on KCa3.1 followed the 

C-terminus, suggesting that this domain (probably the CamBD) contains the binding 

site.44 We were able to confirm and refine that conclusion for the more selective CyPPA 

by a mutation program with KCa2.3 (active) and KCa2.1 (inactive), whereas the 

equivalent program for the KCa2.1-selective molecules, CM-TPMF and GW542573X, 

gave the highly surprising result that their sites-of-action resided in transmembrane 

domain 5 in the pore.42, 43 Recently, crystal structures for Cam/CamBD with bound 1-

EBIO and NS309, respectively, have been solved.47, 48 Both molecules reside in a 

pocket formed at the interface between Cam/CamBD (Fig. 3), but have different 

coordination sites on Cam and CamBD. Interestingly, NS309 interacts with an internally 

disorganized stretch of amino acids (called IDF, shown in red in Fig. 3), which was not 

visible in the 1-EBIO crystal. This interaction was speculated to explain the 
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disproportionately high affinity of NS309 compared to other structures in the prototype 

series. (In this context it is highly interesting that the regulatory membrane lipid, PIP2, 

which recently has been shown to be an obligatory co-agonist to Ca2+, also binds with 

high affinity in this region, and also interacts with residues on both Cam and the IDF.49 

Detailed analyses are warranted to clarify whether NS309 possibly can substitute for 

PIP2 or whether it increases its affinity). Based on docking and mutations directed by 

the crystal structure, it was made plausible that CyPPA binds at the same or an 

overlapping site as NS309 and 1-EBIO. However, the crystal structure unfortunately did 

not give any hints as to why CyPPA is completely inactive on KCa2.1. To answer this 

question CyPPA, or a closely related analogue, probably needs to be co-crystallized 

with the KCa2.2 (or KCa2.3) CamBD and Cam.  

 

3.4 Therapeutic indications for positive modulators of KCa2 channels 

KCa2 channel expression and/or function has been reported to be down-

regulated in limbic brain regions following induction of alcohol dependence and in the 

hippocampus following pilocarpine induced status epilepticus, suggesting that positive 

KCa2 channel modulation might be particularly useful for situations where physiological 

KCa2 channel function has been perturbed.50-53 More generally, due to their ability to 

prolong the mAHP by increasing the apparent Ca2+ sensitivity of KCa2 channels, positive 

gating modulators may also have an important role to play in the treatment of 

neurological diseases characterized by hyperactivity or disorganized firing. An 

illustrative example is episodic ataxia (EA2) caused by a partial loss-of-function of P/Q 

type Ca2+ channels (Cav2.1), which make cerebellar Purkinje cell firing irregular due to 
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inefficient cyclic activation of KCa2 channels by action potentials. Local application of 1-

EBIO to the cerebellum or systemic administration of chlorzoxazone both reestablished 

regular pacemaking activity and partially counteracted ataxia.54, 55 While this effect is 

straightforward to rationalize from the mode-of-action of positive modulators, it is less 

clear why CyPPA, NS13001, and SKA-31 exert positive effects in rodent models of 

spinocerebellar ataxias (SCA2 and SCA3), which are due to gain-of-function toxicity 

caused by glutamine prolongation of ataxins.41, 56 One possibility is that diseased 

Purkinje cells - maybe independently of the molecular cause - go through phases where 

the highly regulated pacemaker firing is lost, for example through changes in climbing 

fiber input or denervation,57, 58 leading to excessive endogeneous burst firing, 

depolarization block, and Ca2+ overload, which may contribute to accelerated cell death. 

Positive modulators of KCa2 channels might terminate bursting by reintroducing 

mAHPs, reactivate depolarization blocked cells by hyperpolarization, and possibly 

prevent or delay Purkinje cell degeneration by relieving their metabolic burden. 

Recently, supportive information for a broader use in ataxia diseases has been obtained 

from a few smaller clinical trials. Riluzole dosed at 50 mg/kg/day b.i.d. (the treatment 

regimen used for ALS patients) for 8 weeks was shown to improve symptoms measured 

by the ICARS scale in ataxia patients of mixed etiology.59 Furthermore, chlorzoxazone 

specifically improved downbeat nystagmus, an involuntary vertical eye movement, a 

devastating symptom affecting many ataxia patients.60 

A new putative indication for KCa2 positive modulators may be pain disorders. A 

recent study showed that KCa2 activation with intrathecally administered NS309 can 

potentiate the analgesic effects of NMDA antagonists in rat pain models.61 This effect 
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may be interpreted in the light of the tight functional coupling between NMDA receptors 

and KCa2.2 channels (see above) in postsynaptic dendritic spines in pain pathways. 

 

3.5. Indications for positive modulators of KCa3.1 channels 

Although KCa2 and KCa3.1 channels are usually not present in the same tissues, 

one place where KCa2.3 and KCa3.1 are co-expressed is the vascular endothelium, 

where both channels are involved in the endothelium-derived hyperpolarization (EDH) 

response which regulates the contractile state of the underlying smooth muscle cell 

layer.62, 63 Mice deficient in KCa3.1 and/or KCa2.3 exhibit impaired EDH responses and 

show a ~10 mmHg increase in mean arterial blood pressure,28, 29 while SKA-31 lowers 

blood pressure in normotensive and hypertensive mice as well as in conscious, 

normotensive dogs.29, 38, 64 Since the blood pressure lowering effect of SKA-31 is absent 

in KCa3.1-/- mice and higher doses of SKA-31 induce sedation and lower heart rate 

through central KCa2 channel activation,65 it seems desirable to identify KCa3.1 selective 

positive gating modulators in order to help investigate whether such compounds could 

be developed into a new class of endothelial targeted antihypertensives.63 This 

objective recently seems to have been achieved with the demonstration that the KCa3.1 

selective SKA-121 lowers blood pressure in normotensive and hypertensive mice 

without affecting heart rate.40 However, SKA-121 has a short half-life (at least in 

rodents) and therefore does not constitute an ideal candidate compound for 

development. 

From a therapeutic perspective an argument against positive gating modulators 

might be that their continued presence can lead to down-regulation of channel 
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expression, thereby preventing effective treatment in long term dosing regimens. This is 

a well-founded concern based on the known plasticity of ion channel expression in 

many situations. Furthermore, it has been observed that classical positive KCNN 

modulators like 1-EBIO, NS309, and SKA-31 can reduce the expression of KCa3.1 in 

proliferative vascular smooth muscle cells as well as KCa3.1 blockers or KCa3.1 

silencing.66, 67 However, the phenomenon has not been reported for KCa2 channels in 

terminally differentiated cells like neurons and cardiomyocytes, and not described for 

KCa3.1 and KCa2.3 in vascular endothelium.  

 

 4. Negative modulation of KCa2 channels 

4.1 Key compounds 

Negative gating modulation of KCa2 channels is a relatively new concept, in 

contrast to the rich literature on peptide and small molecule blockers of both KCa2.x and 

KCa3.1.35 (It should be noted that recent work shows that apamin, the prototypic 

“blocker” of KCa2.x channels, actually acts by an allosteric mechanism collapsing the 

outer pore.68, 69 However, this is independent of gating, and therefore apamin is not 

counted as a negative modulator in this context). Detailed mechanistic data are mainly 

available for the compound that defined the concept, NS8593 (and its closest 

analogues), which inhibits cloned human and rat isoforms of KCa2 with equal potency, 

while it is inactive on KCa3.1.70, 71 NS8593 (Fig. 2) is a non-charged molecule with a very 

different structure than the small molecule blockers (“apamin mimics”).72, 73 Recently, 

the negative modulator field has been enriched with Bu-TPMF, a KCa2.1 selective 
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negative modulator,42 and with a fluoro-trivanillic ester compound (RA-2), which inhibits 

both KCa3.1 and KCa2.3 with low nM potencies.74, 75  

 

4.2 Mode of action 

Like all negative-gating modulators NS8593 causes a concentration-dependent 

shift of the Ca2+-activation curve towards higher Ca2+ concentrations (Fig. 2 bottom). In 

practical terms, if NS8593 is applied at a relatively low Ca2+ concentration (low degree 

of channel activation) the inhibitor potency appears high, while it is essentially without 

effect at higher Ca2+ concentrations (high degree of channel activation).70, 76 The 

distinction between the Ca2+ concentration per se and the degree of activation is 

essential here, since the effect of NS8593 also disappear at a high degree of channel 

activation obtained by a combination of a low Ca2+-concentration and a positive 

modulator like NS309 or SKA-31.45, 70, 76 

 

4.3 Site(s) of action 

In contrast to small molecule blockers, NS8593 does not displace apamin in 

binding studies, and the compound remains active on a channel made apamin-

insensitive by specific mutations in the outer pore mouth.71 Another difference is that 

NS8593 is able to reach its binding site both when applied from the outside and from 

the inside of the membrane.70 Since the inhibition by NS8593 can easily be “reversed” 

by positive allosteric modulators and since the right shifting of the Ca2+-activation curve 

resembles the effect of the physiological negative gating modulation described above, 

we were initially convinced that the site of action would be at the Cam/CamBD region or 
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maybe at Cam itself. This proved not to be the case! NS8593 interacts deeply in the 

inner vestibule of the pore, at a site defined by just two amino acids, serine 507 and 

alanine 532 (KCa2.3) positioned close to the inner side of the K+ selectivity filter (Fig. 

1).76 Since the physical gate of KCNN channels has - by independent measures - been 

located at a “deep” position in the channel,77 we speculate that the mechanism behind 

the negative gating modulation of NS8593, may be due to its interaction with the gate 

itself. A crystal with bound NS8593 would be very interesting! It is noteworthy that 

KCa3.1 inhibitors like TRAM-34 act at the equivalently positioned residues in KCa3.1, 

which questions whether these also act by “shutting the gate” or - as hitherto assumed - 

by “blocking ion flow”.78 However, the inhibition by TRAM-34 shows no clear 

dependence on intracellular Ca2+ (or degree of activation) and the effect cannot be 

“reversed” by positive modulators.76 

In contrast to NS8593, Bu-TPMF, the KCa2.1 selective negative gating modulator, 

interacts with a site lower down in the inner pore vestibule in TM5 (Fig. 1). This site is 

identical to the site-of-action of the KCa2.1 selective positive modulators, CM-TPMF and 

GW542573X (Fig. 2).42  The binding site of the fluro-di-benzoate RA-2 is currently 

unknown,75 but based on the molecules large size and different structure, is not likely to 

be as high up in the inner pore as NS8593.  

 

4.4 Indications for negative gating modulators of KCa2 channels 

Much evidence indicates that blocking KCa2 channels by apamin improves 

learning processes, which is easily comprehended by the close functional association 

between KCa2.2 and NMDA receptors, as demonstrated in the hippocampus.8 
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Furthermore, inhibition of KCa2.3 by NS8593 in dopaminergic neurons leads to 

increased bursting both ex vivo and in vivo, which may influence the balance between 

tonic and phasic dopaminergic signaling and constitute a principle for treatment of 

various psychiatric conditions.45, 79 However, the therapeutic exploitation for CNS 

diseases is hitherto hampered by the low therapeutic index towards tremors, ataxia and 

convulsions, probably induced by Kca2.2 inhibition.  

The currently most promising use of negative gating modulators is as atrial 

selective cardiac anti-arrhythmics.80  NS8593 as well as several small molecule 

blockers of KCa2 channels have shown efficacy in protecting against and terminating 

atrial fibrillation both ex vivo and in vivo across a number of different species.81 

Intriguingly, this concept also appears to be viable after hypertension induced cardiac 

remodeling.82  

 

5. Conclusion 

Despite the strong precedence of pharmacological modulation of ion channel gating in 

the history of drug discovery provided by GABAA receptor modulators, it is an often 

heard argument that ion channel modulation is too “messy” a principle for rational drug 

discovery compared to agonist/antagonists or blockers. These reservations may be 

founded in therapeutic considerations (such as tolerance development as discussed for 

positive modulators), but we suspect that the attitude is often founded on operational 

screening considerations, rather than an analysis of the need for specific mode of 

actions for treatment of various diseases. It is certainly true that the need for a well-

defined partial activation of ion channels - a general prerequisite for modulator screens - 
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represents a challenge for quantification, but with the increasingly refined methods for 

medium-to-high throughput electrophysiology and spectroscopic methods these 

challenges can usually be handled.83-85 The appearance of both positive and negative 

gating modulators of KCNN channels from HTS screening programs and classical 

medicinal chemistry efforts as described in the foregoing paragraphs shows that this is 

certainly possible. Furthermore, the emerging diversity in terms of mode-of-actions and 

subtype selectivities suggest to us that the field of KCNN gating modulators offers 

exciting therapeutic possibilities that currently are only beginning to be realized. 
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Figure Legends 

 

Figure 1.  Membrane topology of a KCa2 channel and known sites of action of positive 

and negative gating modulators. Cam; calmodulin; CK2; casein kinase 2; PP2A; protein 

phosphatase 2A. 

 

Figure 2.  Top, Chemical structures of positive and negative gating modulators. Bottom, 

Schematic of effect of gating modulators on the channel Ca2+ concentration response 

curve. 

 

Figure 3.  Space-filled structure of NS309, calmodulin and KCa2.2 C-terminus complex. 

The KCa2.2 residues that become “ordered” following NS309 binding are shown in red. 
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